]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/shmem.c
video: mxsfb: fix typo: 'FAILING' instead of 'FALLING'
[karo-tx-linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70
71 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79
80 /*
81  * shmem_fallocate and shmem_writepage communicate via inode->i_private
82  * (with i_mutex making sure that it has only one user at a time):
83  * we would prefer not to enlarge the shmem inode just for that.
84  */
85 struct shmem_falloc {
86         pgoff_t start;          /* start of range currently being fallocated */
87         pgoff_t next;           /* the next page offset to be fallocated */
88         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
89         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
90 };
91
92 /* Flag allocation requirements to shmem_getpage */
93 enum sgp_type {
94         SGP_READ,       /* don't exceed i_size, don't allocate page */
95         SGP_CACHE,      /* don't exceed i_size, may allocate page */
96         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
97         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
98         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
99 };
100
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104         return totalram_pages / 2;
105 }
106
107 static unsigned long shmem_default_max_inodes(void)
108 {
109         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115                                 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
118
119 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, int *fault_type)
121 {
122         return shmem_getpage_gfp(inode, index, pagep, sgp,
123                         mapping_gfp_mask(inode->i_mapping), fault_type);
124 }
125
126 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
127 {
128         return sb->s_fs_info;
129 }
130
131 /*
132  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
133  * for shared memory and for shared anonymous (/dev/zero) mappings
134  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
135  * consistent with the pre-accounting of private mappings ...
136  */
137 static inline int shmem_acct_size(unsigned long flags, loff_t size)
138 {
139         return (flags & VM_NORESERVE) ?
140                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
141 }
142
143 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
144 {
145         if (!(flags & VM_NORESERVE))
146                 vm_unacct_memory(VM_ACCT(size));
147 }
148
149 /*
150  * ... whereas tmpfs objects are accounted incrementally as
151  * pages are allocated, in order to allow huge sparse files.
152  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
153  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
154  */
155 static inline int shmem_acct_block(unsigned long flags)
156 {
157         return (flags & VM_NORESERVE) ?
158                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
159 }
160
161 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
162 {
163         if (flags & VM_NORESERVE)
164                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
165 }
166
167 static const struct super_operations shmem_ops;
168 static const struct address_space_operations shmem_aops;
169 static const struct file_operations shmem_file_operations;
170 static const struct inode_operations shmem_inode_operations;
171 static const struct inode_operations shmem_dir_inode_operations;
172 static const struct inode_operations shmem_special_inode_operations;
173 static const struct vm_operations_struct shmem_vm_ops;
174
175 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
176         .ra_pages       = 0,    /* No readahead */
177         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
178 };
179
180 static LIST_HEAD(shmem_swaplist);
181 static DEFINE_MUTEX(shmem_swaplist_mutex);
182
183 static int shmem_reserve_inode(struct super_block *sb)
184 {
185         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
186         if (sbinfo->max_inodes) {
187                 spin_lock(&sbinfo->stat_lock);
188                 if (!sbinfo->free_inodes) {
189                         spin_unlock(&sbinfo->stat_lock);
190                         return -ENOSPC;
191                 }
192                 sbinfo->free_inodes--;
193                 spin_unlock(&sbinfo->stat_lock);
194         }
195         return 0;
196 }
197
198 static void shmem_free_inode(struct super_block *sb)
199 {
200         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
201         if (sbinfo->max_inodes) {
202                 spin_lock(&sbinfo->stat_lock);
203                 sbinfo->free_inodes++;
204                 spin_unlock(&sbinfo->stat_lock);
205         }
206 }
207
208 /**
209  * shmem_recalc_inode - recalculate the block usage of an inode
210  * @inode: inode to recalc
211  *
212  * We have to calculate the free blocks since the mm can drop
213  * undirtied hole pages behind our back.
214  *
215  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
216  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
217  *
218  * It has to be called with the spinlock held.
219  */
220 static void shmem_recalc_inode(struct inode *inode)
221 {
222         struct shmem_inode_info *info = SHMEM_I(inode);
223         long freed;
224
225         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
226         if (freed > 0) {
227                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228                 if (sbinfo->max_blocks)
229                         percpu_counter_add(&sbinfo->used_blocks, -freed);
230                 info->alloced -= freed;
231                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
232                 shmem_unacct_blocks(info->flags, freed);
233         }
234 }
235
236 /*
237  * Replace item expected in radix tree by a new item, while holding tree lock.
238  */
239 static int shmem_radix_tree_replace(struct address_space *mapping,
240                         pgoff_t index, void *expected, void *replacement)
241 {
242         void **pslot;
243         void *item = NULL;
244
245         VM_BUG_ON(!expected);
246         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
247         if (pslot)
248                 item = radix_tree_deref_slot_protected(pslot,
249                                                         &mapping->tree_lock);
250         if (item != expected)
251                 return -ENOENT;
252         if (replacement)
253                 radix_tree_replace_slot(pslot, replacement);
254         else
255                 radix_tree_delete(&mapping->page_tree, index);
256         return 0;
257 }
258
259 /*
260  * Sometimes, before we decide whether to proceed or to fail, we must check
261  * that an entry was not already brought back from swap by a racing thread.
262  *
263  * Checking page is not enough: by the time a SwapCache page is locked, it
264  * might be reused, and again be SwapCache, using the same swap as before.
265  */
266 static bool shmem_confirm_swap(struct address_space *mapping,
267                                pgoff_t index, swp_entry_t swap)
268 {
269         void *item;
270
271         rcu_read_lock();
272         item = radix_tree_lookup(&mapping->page_tree, index);
273         rcu_read_unlock();
274         return item == swp_to_radix_entry(swap);
275 }
276
277 /*
278  * Like add_to_page_cache_locked, but error if expected item has gone.
279  */
280 static int shmem_add_to_page_cache(struct page *page,
281                                    struct address_space *mapping,
282                                    pgoff_t index, gfp_t gfp, void *expected)
283 {
284         int error;
285
286         VM_BUG_ON(!PageLocked(page));
287         VM_BUG_ON(!PageSwapBacked(page));
288
289         page_cache_get(page);
290         page->mapping = mapping;
291         page->index = index;
292
293         spin_lock_irq(&mapping->tree_lock);
294         if (!expected)
295                 error = radix_tree_insert(&mapping->page_tree, index, page);
296         else
297                 error = shmem_radix_tree_replace(mapping, index, expected,
298                                                                  page);
299         if (!error) {
300                 mapping->nrpages++;
301                 __inc_zone_page_state(page, NR_FILE_PAGES);
302                 __inc_zone_page_state(page, NR_SHMEM);
303                 spin_unlock_irq(&mapping->tree_lock);
304         } else {
305                 page->mapping = NULL;
306                 spin_unlock_irq(&mapping->tree_lock);
307                 page_cache_release(page);
308         }
309         return error;
310 }
311
312 /*
313  * Like delete_from_page_cache, but substitutes swap for page.
314  */
315 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316 {
317         struct address_space *mapping = page->mapping;
318         int error;
319
320         spin_lock_irq(&mapping->tree_lock);
321         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322         page->mapping = NULL;
323         mapping->nrpages--;
324         __dec_zone_page_state(page, NR_FILE_PAGES);
325         __dec_zone_page_state(page, NR_SHMEM);
326         spin_unlock_irq(&mapping->tree_lock);
327         page_cache_release(page);
328         BUG_ON(error);
329 }
330
331 /*
332  * Like find_get_pages, but collecting swap entries as well as pages.
333  */
334 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
335                                         pgoff_t start, unsigned int nr_pages,
336                                         struct page **pages, pgoff_t *indices)
337 {
338         unsigned int i;
339         unsigned int ret;
340         unsigned int nr_found;
341
342         rcu_read_lock();
343 restart:
344         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
345                                 (void ***)pages, indices, start, nr_pages);
346         ret = 0;
347         for (i = 0; i < nr_found; i++) {
348                 struct page *page;
349 repeat:
350                 page = radix_tree_deref_slot((void **)pages[i]);
351                 if (unlikely(!page))
352                         continue;
353                 if (radix_tree_exception(page)) {
354                         if (radix_tree_deref_retry(page))
355                                 goto restart;
356                         /*
357                          * Otherwise, we must be storing a swap entry
358                          * here as an exceptional entry: so return it
359                          * without attempting to raise page count.
360                          */
361                         goto export;
362                 }
363                 if (!page_cache_get_speculative(page))
364                         goto repeat;
365
366                 /* Has the page moved? */
367                 if (unlikely(page != *((void **)pages[i]))) {
368                         page_cache_release(page);
369                         goto repeat;
370                 }
371 export:
372                 indices[ret] = indices[i];
373                 pages[ret] = page;
374                 ret++;
375         }
376         if (unlikely(!ret && nr_found))
377                 goto restart;
378         rcu_read_unlock();
379         return ret;
380 }
381
382 /*
383  * Remove swap entry from radix tree, free the swap and its page cache.
384  */
385 static int shmem_free_swap(struct address_space *mapping,
386                            pgoff_t index, void *radswap)
387 {
388         int error;
389
390         spin_lock_irq(&mapping->tree_lock);
391         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
392         spin_unlock_irq(&mapping->tree_lock);
393         if (!error)
394                 free_swap_and_cache(radix_to_swp_entry(radswap));
395         return error;
396 }
397
398 /*
399  * Pagevec may contain swap entries, so shuffle up pages before releasing.
400  */
401 static void shmem_deswap_pagevec(struct pagevec *pvec)
402 {
403         int i, j;
404
405         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
406                 struct page *page = pvec->pages[i];
407                 if (!radix_tree_exceptional_entry(page))
408                         pvec->pages[j++] = page;
409         }
410         pvec->nr = j;
411 }
412
413 /*
414  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
415  */
416 void shmem_unlock_mapping(struct address_space *mapping)
417 {
418         struct pagevec pvec;
419         pgoff_t indices[PAGEVEC_SIZE];
420         pgoff_t index = 0;
421
422         pagevec_init(&pvec, 0);
423         /*
424          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
425          */
426         while (!mapping_unevictable(mapping)) {
427                 /*
428                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
429                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
430                  */
431                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
432                                         PAGEVEC_SIZE, pvec.pages, indices);
433                 if (!pvec.nr)
434                         break;
435                 index = indices[pvec.nr - 1] + 1;
436                 shmem_deswap_pagevec(&pvec);
437                 check_move_unevictable_pages(pvec.pages, pvec.nr);
438                 pagevec_release(&pvec);
439                 cond_resched();
440         }
441 }
442
443 /*
444  * Remove range of pages and swap entries from radix tree, and free them.
445  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
446  */
447 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
448                                                                  bool unfalloc)
449 {
450         struct address_space *mapping = inode->i_mapping;
451         struct shmem_inode_info *info = SHMEM_I(inode);
452         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
453         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
454         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
455         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
456         struct pagevec pvec;
457         pgoff_t indices[PAGEVEC_SIZE];
458         long nr_swaps_freed = 0;
459         pgoff_t index;
460         int i;
461
462         if (lend == -1)
463                 end = -1;       /* unsigned, so actually very big */
464
465         pagevec_init(&pvec, 0);
466         index = start;
467         while (index < end) {
468                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
469                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
470                                                         pvec.pages, indices);
471                 if (!pvec.nr)
472                         break;
473                 mem_cgroup_uncharge_start();
474                 for (i = 0; i < pagevec_count(&pvec); i++) {
475                         struct page *page = pvec.pages[i];
476
477                         index = indices[i];
478                         if (index >= end)
479                                 break;
480
481                         if (radix_tree_exceptional_entry(page)) {
482                                 if (unfalloc)
483                                         continue;
484                                 nr_swaps_freed += !shmem_free_swap(mapping,
485                                                                 index, page);
486                                 continue;
487                         }
488
489                         if (!trylock_page(page))
490                                 continue;
491                         if (!unfalloc || !PageUptodate(page)) {
492                                 if (page->mapping == mapping) {
493                                         VM_BUG_ON(PageWriteback(page));
494                                         truncate_inode_page(mapping, page);
495                                 }
496                         }
497                         unlock_page(page);
498                 }
499                 shmem_deswap_pagevec(&pvec);
500                 pagevec_release(&pvec);
501                 mem_cgroup_uncharge_end();
502                 cond_resched();
503                 index++;
504         }
505
506         if (partial_start) {
507                 struct page *page = NULL;
508                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
509                 if (page) {
510                         unsigned int top = PAGE_CACHE_SIZE;
511                         if (start > end) {
512                                 top = partial_end;
513                                 partial_end = 0;
514                         }
515                         zero_user_segment(page, partial_start, top);
516                         set_page_dirty(page);
517                         unlock_page(page);
518                         page_cache_release(page);
519                 }
520         }
521         if (partial_end) {
522                 struct page *page = NULL;
523                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
524                 if (page) {
525                         zero_user_segment(page, 0, partial_end);
526                         set_page_dirty(page);
527                         unlock_page(page);
528                         page_cache_release(page);
529                 }
530         }
531         if (start >= end)
532                 return;
533
534         index = start;
535         for ( ; ; ) {
536                 cond_resched();
537                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
538                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
539                                                         pvec.pages, indices);
540                 if (!pvec.nr) {
541                         if (index == start || unfalloc)
542                                 break;
543                         index = start;
544                         continue;
545                 }
546                 if ((index == start || unfalloc) && indices[0] >= end) {
547                         shmem_deswap_pagevec(&pvec);
548                         pagevec_release(&pvec);
549                         break;
550                 }
551                 mem_cgroup_uncharge_start();
552                 for (i = 0; i < pagevec_count(&pvec); i++) {
553                         struct page *page = pvec.pages[i];
554
555                         index = indices[i];
556                         if (index >= end)
557                                 break;
558
559                         if (radix_tree_exceptional_entry(page)) {
560                                 if (unfalloc)
561                                         continue;
562                                 nr_swaps_freed += !shmem_free_swap(mapping,
563                                                                 index, page);
564                                 continue;
565                         }
566
567                         lock_page(page);
568                         if (!unfalloc || !PageUptodate(page)) {
569                                 if (page->mapping == mapping) {
570                                         VM_BUG_ON(PageWriteback(page));
571                                         truncate_inode_page(mapping, page);
572                                 }
573                         }
574                         unlock_page(page);
575                 }
576                 shmem_deswap_pagevec(&pvec);
577                 pagevec_release(&pvec);
578                 mem_cgroup_uncharge_end();
579                 index++;
580         }
581
582         spin_lock(&info->lock);
583         info->swapped -= nr_swaps_freed;
584         shmem_recalc_inode(inode);
585         spin_unlock(&info->lock);
586 }
587
588 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
589 {
590         shmem_undo_range(inode, lstart, lend, false);
591         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
592 }
593 EXPORT_SYMBOL_GPL(shmem_truncate_range);
594
595 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
596 {
597         struct inode *inode = dentry->d_inode;
598         int error;
599
600         error = inode_change_ok(inode, attr);
601         if (error)
602                 return error;
603
604         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
605                 loff_t oldsize = inode->i_size;
606                 loff_t newsize = attr->ia_size;
607
608                 if (newsize != oldsize) {
609                         i_size_write(inode, newsize);
610                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
611                 }
612                 if (newsize < oldsize) {
613                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
614                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
615                         shmem_truncate_range(inode, newsize, (loff_t)-1);
616                         /* unmap again to remove racily COWed private pages */
617                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
618                 }
619         }
620
621         setattr_copy(inode, attr);
622 #ifdef CONFIG_TMPFS_POSIX_ACL
623         if (attr->ia_valid & ATTR_MODE)
624                 error = generic_acl_chmod(inode);
625 #endif
626         return error;
627 }
628
629 static void shmem_evict_inode(struct inode *inode)
630 {
631         struct shmem_inode_info *info = SHMEM_I(inode);
632
633         if (inode->i_mapping->a_ops == &shmem_aops) {
634                 shmem_unacct_size(info->flags, inode->i_size);
635                 inode->i_size = 0;
636                 shmem_truncate_range(inode, 0, (loff_t)-1);
637                 if (!list_empty(&info->swaplist)) {
638                         mutex_lock(&shmem_swaplist_mutex);
639                         list_del_init(&info->swaplist);
640                         mutex_unlock(&shmem_swaplist_mutex);
641                 }
642         } else
643                 kfree(info->symlink);
644
645         simple_xattrs_free(&info->xattrs);
646         WARN_ON(inode->i_blocks);
647         shmem_free_inode(inode->i_sb);
648         clear_inode(inode);
649 }
650
651 /*
652  * If swap found in inode, free it and move page from swapcache to filecache.
653  */
654 static int shmem_unuse_inode(struct shmem_inode_info *info,
655                              swp_entry_t swap, struct page **pagep)
656 {
657         struct address_space *mapping = info->vfs_inode.i_mapping;
658         void *radswap;
659         pgoff_t index;
660         gfp_t gfp;
661         int error = 0;
662
663         radswap = swp_to_radix_entry(swap);
664         index = radix_tree_locate_item(&mapping->page_tree, radswap);
665         if (index == -1)
666                 return 0;
667
668         /*
669          * Move _head_ to start search for next from here.
670          * But be careful: shmem_evict_inode checks list_empty without taking
671          * mutex, and there's an instant in list_move_tail when info->swaplist
672          * would appear empty, if it were the only one on shmem_swaplist.
673          */
674         if (shmem_swaplist.next != &info->swaplist)
675                 list_move_tail(&shmem_swaplist, &info->swaplist);
676
677         gfp = mapping_gfp_mask(mapping);
678         if (shmem_should_replace_page(*pagep, gfp)) {
679                 mutex_unlock(&shmem_swaplist_mutex);
680                 error = shmem_replace_page(pagep, gfp, info, index);
681                 mutex_lock(&shmem_swaplist_mutex);
682                 /*
683                  * We needed to drop mutex to make that restrictive page
684                  * allocation, but the inode might have been freed while we
685                  * dropped it: although a racing shmem_evict_inode() cannot
686                  * complete without emptying the radix_tree, our page lock
687                  * on this swapcache page is not enough to prevent that -
688                  * free_swap_and_cache() of our swap entry will only
689                  * trylock_page(), removing swap from radix_tree whatever.
690                  *
691                  * We must not proceed to shmem_add_to_page_cache() if the
692                  * inode has been freed, but of course we cannot rely on
693                  * inode or mapping or info to check that.  However, we can
694                  * safely check if our swap entry is still in use (and here
695                  * it can't have got reused for another page): if it's still
696                  * in use, then the inode cannot have been freed yet, and we
697                  * can safely proceed (if it's no longer in use, that tells
698                  * nothing about the inode, but we don't need to unuse swap).
699                  */
700                 if (!page_swapcount(*pagep))
701                         error = -ENOENT;
702         }
703
704         /*
705          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
706          * but also to hold up shmem_evict_inode(): so inode cannot be freed
707          * beneath us (pagelock doesn't help until the page is in pagecache).
708          */
709         if (!error)
710                 error = shmem_add_to_page_cache(*pagep, mapping, index,
711                                                 GFP_NOWAIT, radswap);
712         if (error != -ENOMEM) {
713                 /*
714                  * Truncation and eviction use free_swap_and_cache(), which
715                  * only does trylock page: if we raced, best clean up here.
716                  */
717                 delete_from_swap_cache(*pagep);
718                 set_page_dirty(*pagep);
719                 if (!error) {
720                         spin_lock(&info->lock);
721                         info->swapped--;
722                         spin_unlock(&info->lock);
723                         swap_free(swap);
724                 }
725                 error = 1;      /* not an error, but entry was found */
726         }
727         return error;
728 }
729
730 /*
731  * Search through swapped inodes to find and replace swap by page.
732  */
733 int shmem_unuse(swp_entry_t swap, struct page *page)
734 {
735         struct list_head *this, *next;
736         struct shmem_inode_info *info;
737         int found = 0;
738         int error = 0;
739
740         /*
741          * There's a faint possibility that swap page was replaced before
742          * caller locked it: caller will come back later with the right page.
743          */
744         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
745                 goto out;
746
747         /*
748          * Charge page using GFP_KERNEL while we can wait, before taking
749          * the shmem_swaplist_mutex which might hold up shmem_writepage().
750          * Charged back to the user (not to caller) when swap account is used.
751          */
752         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
753         if (error)
754                 goto out;
755         /* No radix_tree_preload: swap entry keeps a place for page in tree */
756
757         mutex_lock(&shmem_swaplist_mutex);
758         list_for_each_safe(this, next, &shmem_swaplist) {
759                 info = list_entry(this, struct shmem_inode_info, swaplist);
760                 if (info->swapped)
761                         found = shmem_unuse_inode(info, swap, &page);
762                 else
763                         list_del_init(&info->swaplist);
764                 cond_resched();
765                 if (found)
766                         break;
767         }
768         mutex_unlock(&shmem_swaplist_mutex);
769
770         if (found < 0)
771                 error = found;
772 out:
773         unlock_page(page);
774         page_cache_release(page);
775         return error;
776 }
777
778 /*
779  * Move the page from the page cache to the swap cache.
780  */
781 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
782 {
783         struct shmem_inode_info *info;
784         struct address_space *mapping;
785         struct inode *inode;
786         swp_entry_t swap;
787         pgoff_t index;
788
789         BUG_ON(!PageLocked(page));
790         mapping = page->mapping;
791         index = page->index;
792         inode = mapping->host;
793         info = SHMEM_I(inode);
794         if (info->flags & VM_LOCKED)
795                 goto redirty;
796         if (!total_swap_pages)
797                 goto redirty;
798
799         /*
800          * shmem_backing_dev_info's capabilities prevent regular writeback or
801          * sync from ever calling shmem_writepage; but a stacking filesystem
802          * might use ->writepage of its underlying filesystem, in which case
803          * tmpfs should write out to swap only in response to memory pressure,
804          * and not for the writeback threads or sync.
805          */
806         if (!wbc->for_reclaim) {
807                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
808                 goto redirty;
809         }
810
811         /*
812          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
813          * value into swapfile.c, the only way we can correctly account for a
814          * fallocated page arriving here is now to initialize it and write it.
815          *
816          * That's okay for a page already fallocated earlier, but if we have
817          * not yet completed the fallocation, then (a) we want to keep track
818          * of this page in case we have to undo it, and (b) it may not be a
819          * good idea to continue anyway, once we're pushing into swap.  So
820          * reactivate the page, and let shmem_fallocate() quit when too many.
821          */
822         if (!PageUptodate(page)) {
823                 if (inode->i_private) {
824                         struct shmem_falloc *shmem_falloc;
825                         spin_lock(&inode->i_lock);
826                         shmem_falloc = inode->i_private;
827                         if (shmem_falloc &&
828                             index >= shmem_falloc->start &&
829                             index < shmem_falloc->next)
830                                 shmem_falloc->nr_unswapped++;
831                         else
832                                 shmem_falloc = NULL;
833                         spin_unlock(&inode->i_lock);
834                         if (shmem_falloc)
835                                 goto redirty;
836                 }
837                 clear_highpage(page);
838                 flush_dcache_page(page);
839                 SetPageUptodate(page);
840         }
841
842         swap = get_swap_page();
843         if (!swap.val)
844                 goto redirty;
845
846         /*
847          * Add inode to shmem_unuse()'s list of swapped-out inodes,
848          * if it's not already there.  Do it now before the page is
849          * moved to swap cache, when its pagelock no longer protects
850          * the inode from eviction.  But don't unlock the mutex until
851          * we've incremented swapped, because shmem_unuse_inode() will
852          * prune a !swapped inode from the swaplist under this mutex.
853          */
854         mutex_lock(&shmem_swaplist_mutex);
855         if (list_empty(&info->swaplist))
856                 list_add_tail(&info->swaplist, &shmem_swaplist);
857
858         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
859                 swap_shmem_alloc(swap);
860                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
861
862                 spin_lock(&info->lock);
863                 info->swapped++;
864                 shmem_recalc_inode(inode);
865                 spin_unlock(&info->lock);
866
867                 mutex_unlock(&shmem_swaplist_mutex);
868                 BUG_ON(page_mapped(page));
869                 swap_writepage(page, wbc);
870                 return 0;
871         }
872
873         mutex_unlock(&shmem_swaplist_mutex);
874         swapcache_free(swap, NULL);
875 redirty:
876         set_page_dirty(page);
877         if (wbc->for_reclaim)
878                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
879         unlock_page(page);
880         return 0;
881 }
882
883 #ifdef CONFIG_NUMA
884 #ifdef CONFIG_TMPFS
885 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
886 {
887         char buffer[64];
888
889         if (!mpol || mpol->mode == MPOL_DEFAULT)
890                 return;         /* show nothing */
891
892         mpol_to_str(buffer, sizeof(buffer), mpol, 1);
893
894         seq_printf(seq, ",mpol=%s", buffer);
895 }
896
897 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
898 {
899         struct mempolicy *mpol = NULL;
900         if (sbinfo->mpol) {
901                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
902                 mpol = sbinfo->mpol;
903                 mpol_get(mpol);
904                 spin_unlock(&sbinfo->stat_lock);
905         }
906         return mpol;
907 }
908 #endif /* CONFIG_TMPFS */
909
910 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
911                         struct shmem_inode_info *info, pgoff_t index)
912 {
913         struct mempolicy mpol, *spol;
914         struct vm_area_struct pvma;
915
916         spol = mpol_cond_copy(&mpol,
917                         mpol_shared_policy_lookup(&info->policy, index));
918
919         /* Create a pseudo vma that just contains the policy */
920         pvma.vm_start = 0;
921         /* Bias interleave by inode number to distribute better across nodes */
922         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
923         pvma.vm_ops = NULL;
924         pvma.vm_policy = spol;
925         pvma.anon_vma = NULL;
926         return swapin_readahead(swap, gfp, &pvma, 0);
927 }
928
929 static struct page *shmem_alloc_page(gfp_t gfp,
930                         struct shmem_inode_info *info, pgoff_t index)
931 {
932         struct vm_area_struct pvma;
933
934         /* Create a pseudo vma that just contains the policy */
935         pvma.vm_start = 0;
936         /* Bias interleave by inode number to distribute better across nodes */
937         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
938         pvma.vm_ops = NULL;
939         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
940
941         /*
942          * alloc_page_vma() will drop the shared policy reference
943          */
944         return alloc_page_vma(gfp, &pvma, 0);
945 }
946 #else /* !CONFIG_NUMA */
947 #ifdef CONFIG_TMPFS
948 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
949 {
950 }
951 #endif /* CONFIG_TMPFS */
952
953 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
954                         struct shmem_inode_info *info, pgoff_t index)
955 {
956         return swapin_readahead(swap, gfp, NULL, 0);
957 }
958
959 static inline struct page *shmem_alloc_page(gfp_t gfp,
960                         struct shmem_inode_info *info, pgoff_t index)
961 {
962         return alloc_page(gfp);
963 }
964 #endif /* CONFIG_NUMA */
965
966 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
967 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
968 {
969         return NULL;
970 }
971 #endif
972
973 /*
974  * When a page is moved from swapcache to shmem filecache (either by the
975  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
976  * shmem_unuse_inode()), it may have been read in earlier from swap, in
977  * ignorance of the mapping it belongs to.  If that mapping has special
978  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
979  * we may need to copy to a suitable page before moving to filecache.
980  *
981  * In a future release, this may well be extended to respect cpuset and
982  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
983  * but for now it is a simple matter of zone.
984  */
985 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
986 {
987         return page_zonenum(page) > gfp_zone(gfp);
988 }
989
990 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
991                                 struct shmem_inode_info *info, pgoff_t index)
992 {
993         struct page *oldpage, *newpage;
994         struct address_space *swap_mapping;
995         pgoff_t swap_index;
996         int error;
997
998         oldpage = *pagep;
999         swap_index = page_private(oldpage);
1000         swap_mapping = page_mapping(oldpage);
1001
1002         /*
1003          * We have arrived here because our zones are constrained, so don't
1004          * limit chance of success by further cpuset and node constraints.
1005          */
1006         gfp &= ~GFP_CONSTRAINT_MASK;
1007         newpage = shmem_alloc_page(gfp, info, index);
1008         if (!newpage)
1009                 return -ENOMEM;
1010
1011         page_cache_get(newpage);
1012         copy_highpage(newpage, oldpage);
1013         flush_dcache_page(newpage);
1014
1015         __set_page_locked(newpage);
1016         SetPageUptodate(newpage);
1017         SetPageSwapBacked(newpage);
1018         set_page_private(newpage, swap_index);
1019         SetPageSwapCache(newpage);
1020
1021         /*
1022          * Our caller will very soon move newpage out of swapcache, but it's
1023          * a nice clean interface for us to replace oldpage by newpage there.
1024          */
1025         spin_lock_irq(&swap_mapping->tree_lock);
1026         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1027                                                                    newpage);
1028         if (!error) {
1029                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1030                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1031         }
1032         spin_unlock_irq(&swap_mapping->tree_lock);
1033
1034         if (unlikely(error)) {
1035                 /*
1036                  * Is this possible?  I think not, now that our callers check
1037                  * both PageSwapCache and page_private after getting page lock;
1038                  * but be defensive.  Reverse old to newpage for clear and free.
1039                  */
1040                 oldpage = newpage;
1041         } else {
1042                 mem_cgroup_replace_page_cache(oldpage, newpage);
1043                 lru_cache_add_anon(newpage);
1044                 *pagep = newpage;
1045         }
1046
1047         ClearPageSwapCache(oldpage);
1048         set_page_private(oldpage, 0);
1049
1050         unlock_page(oldpage);
1051         page_cache_release(oldpage);
1052         page_cache_release(oldpage);
1053         return error;
1054 }
1055
1056 /*
1057  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1058  *
1059  * If we allocate a new one we do not mark it dirty. That's up to the
1060  * vm. If we swap it in we mark it dirty since we also free the swap
1061  * entry since a page cannot live in both the swap and page cache
1062  */
1063 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1064         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1065 {
1066         struct address_space *mapping = inode->i_mapping;
1067         struct shmem_inode_info *info;
1068         struct shmem_sb_info *sbinfo;
1069         struct page *page;
1070         swp_entry_t swap;
1071         int error;
1072         int once = 0;
1073         int alloced = 0;
1074
1075         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1076                 return -EFBIG;
1077 repeat:
1078         swap.val = 0;
1079         page = find_lock_page(mapping, index);
1080         if (radix_tree_exceptional_entry(page)) {
1081                 swap = radix_to_swp_entry(page);
1082                 page = NULL;
1083         }
1084
1085         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1086             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1087                 error = -EINVAL;
1088                 goto failed;
1089         }
1090
1091         /* fallocated page? */
1092         if (page && !PageUptodate(page)) {
1093                 if (sgp != SGP_READ)
1094                         goto clear;
1095                 unlock_page(page);
1096                 page_cache_release(page);
1097                 page = NULL;
1098         }
1099         if (page || (sgp == SGP_READ && !swap.val)) {
1100                 *pagep = page;
1101                 return 0;
1102         }
1103
1104         /*
1105          * Fast cache lookup did not find it:
1106          * bring it back from swap or allocate.
1107          */
1108         info = SHMEM_I(inode);
1109         sbinfo = SHMEM_SB(inode->i_sb);
1110
1111         if (swap.val) {
1112                 /* Look it up and read it in.. */
1113                 page = lookup_swap_cache(swap);
1114                 if (!page) {
1115                         /* here we actually do the io */
1116                         if (fault_type)
1117                                 *fault_type |= VM_FAULT_MAJOR;
1118                         page = shmem_swapin(swap, gfp, info, index);
1119                         if (!page) {
1120                                 error = -ENOMEM;
1121                                 goto failed;
1122                         }
1123                 }
1124
1125                 /* We have to do this with page locked to prevent races */
1126                 lock_page(page);
1127                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1128                     !shmem_confirm_swap(mapping, index, swap)) {
1129                         error = -EEXIST;        /* try again */
1130                         goto unlock;
1131                 }
1132                 if (!PageUptodate(page)) {
1133                         error = -EIO;
1134                         goto failed;
1135                 }
1136                 wait_on_page_writeback(page);
1137
1138                 if (shmem_should_replace_page(page, gfp)) {
1139                         error = shmem_replace_page(&page, gfp, info, index);
1140                         if (error)
1141                                 goto failed;
1142                 }
1143
1144                 error = mem_cgroup_cache_charge(page, current->mm,
1145                                                 gfp & GFP_RECLAIM_MASK);
1146                 if (!error) {
1147                         error = shmem_add_to_page_cache(page, mapping, index,
1148                                                 gfp, swp_to_radix_entry(swap));
1149                         /*
1150                          * We already confirmed swap under page lock, and make
1151                          * no memory allocation here, so usually no possibility
1152                          * of error; but free_swap_and_cache() only trylocks a
1153                          * page, so it is just possible that the entry has been
1154                          * truncated or holepunched since swap was confirmed.
1155                          * shmem_undo_range() will have done some of the
1156                          * unaccounting, now delete_from_swap_cache() will do
1157                          * the rest (including mem_cgroup_uncharge_swapcache).
1158                          * Reset swap.val? No, leave it so "failed" goes back to
1159                          * "repeat": reading a hole and writing should succeed.
1160                          */
1161                         if (error) {
1162                                 VM_BUG_ON(error != -ENOENT);
1163                                 delete_from_swap_cache(page);
1164                         }
1165                 }
1166                 if (error)
1167                         goto failed;
1168
1169                 spin_lock(&info->lock);
1170                 info->swapped--;
1171                 shmem_recalc_inode(inode);
1172                 spin_unlock(&info->lock);
1173
1174                 delete_from_swap_cache(page);
1175                 set_page_dirty(page);
1176                 swap_free(swap);
1177
1178         } else {
1179                 if (shmem_acct_block(info->flags)) {
1180                         error = -ENOSPC;
1181                         goto failed;
1182                 }
1183                 if (sbinfo->max_blocks) {
1184                         if (percpu_counter_compare(&sbinfo->used_blocks,
1185                                                 sbinfo->max_blocks) >= 0) {
1186                                 error = -ENOSPC;
1187                                 goto unacct;
1188                         }
1189                         percpu_counter_inc(&sbinfo->used_blocks);
1190                 }
1191
1192                 page = shmem_alloc_page(gfp, info, index);
1193                 if (!page) {
1194                         error = -ENOMEM;
1195                         goto decused;
1196                 }
1197
1198                 SetPageSwapBacked(page);
1199                 __set_page_locked(page);
1200                 error = mem_cgroup_cache_charge(page, current->mm,
1201                                                 gfp & GFP_RECLAIM_MASK);
1202                 if (error)
1203                         goto decused;
1204                 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1205                 if (!error) {
1206                         error = shmem_add_to_page_cache(page, mapping, index,
1207                                                         gfp, NULL);
1208                         radix_tree_preload_end();
1209                 }
1210                 if (error) {
1211                         mem_cgroup_uncharge_cache_page(page);
1212                         goto decused;
1213                 }
1214                 lru_cache_add_anon(page);
1215
1216                 spin_lock(&info->lock);
1217                 info->alloced++;
1218                 inode->i_blocks += BLOCKS_PER_PAGE;
1219                 shmem_recalc_inode(inode);
1220                 spin_unlock(&info->lock);
1221                 alloced = true;
1222
1223                 /*
1224                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1225                  */
1226                 if (sgp == SGP_FALLOC)
1227                         sgp = SGP_WRITE;
1228 clear:
1229                 /*
1230                  * Let SGP_WRITE caller clear ends if write does not fill page;
1231                  * but SGP_FALLOC on a page fallocated earlier must initialize
1232                  * it now, lest undo on failure cancel our earlier guarantee.
1233                  */
1234                 if (sgp != SGP_WRITE) {
1235                         clear_highpage(page);
1236                         flush_dcache_page(page);
1237                         SetPageUptodate(page);
1238                 }
1239                 if (sgp == SGP_DIRTY)
1240                         set_page_dirty(page);
1241         }
1242
1243         /* Perhaps the file has been truncated since we checked */
1244         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1245             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1246                 error = -EINVAL;
1247                 if (alloced)
1248                         goto trunc;
1249                 else
1250                         goto failed;
1251         }
1252         *pagep = page;
1253         return 0;
1254
1255         /*
1256          * Error recovery.
1257          */
1258 trunc:
1259         info = SHMEM_I(inode);
1260         ClearPageDirty(page);
1261         delete_from_page_cache(page);
1262         spin_lock(&info->lock);
1263         info->alloced--;
1264         inode->i_blocks -= BLOCKS_PER_PAGE;
1265         spin_unlock(&info->lock);
1266 decused:
1267         sbinfo = SHMEM_SB(inode->i_sb);
1268         if (sbinfo->max_blocks)
1269                 percpu_counter_add(&sbinfo->used_blocks, -1);
1270 unacct:
1271         shmem_unacct_blocks(info->flags, 1);
1272 failed:
1273         if (swap.val && error != -EINVAL &&
1274             !shmem_confirm_swap(mapping, index, swap))
1275                 error = -EEXIST;
1276 unlock:
1277         if (page) {
1278                 unlock_page(page);
1279                 page_cache_release(page);
1280         }
1281         if (error == -ENOSPC && !once++) {
1282                 info = SHMEM_I(inode);
1283                 spin_lock(&info->lock);
1284                 shmem_recalc_inode(inode);
1285                 spin_unlock(&info->lock);
1286                 goto repeat;
1287         }
1288         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1289                 goto repeat;
1290         return error;
1291 }
1292
1293 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1294 {
1295         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1296         int error;
1297         int ret = VM_FAULT_LOCKED;
1298
1299         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1300         if (error)
1301                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1302
1303         if (ret & VM_FAULT_MAJOR) {
1304                 count_vm_event(PGMAJFAULT);
1305                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1306         }
1307         return ret;
1308 }
1309
1310 #ifdef CONFIG_NUMA
1311 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1312 {
1313         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1314         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1315 }
1316
1317 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1318                                           unsigned long addr)
1319 {
1320         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1321         pgoff_t index;
1322
1323         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1324         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1325 }
1326 #endif
1327
1328 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1329 {
1330         struct inode *inode = file->f_path.dentry->d_inode;
1331         struct shmem_inode_info *info = SHMEM_I(inode);
1332         int retval = -ENOMEM;
1333
1334         spin_lock(&info->lock);
1335         if (lock && !(info->flags & VM_LOCKED)) {
1336                 if (!user_shm_lock(inode->i_size, user))
1337                         goto out_nomem;
1338                 info->flags |= VM_LOCKED;
1339                 mapping_set_unevictable(file->f_mapping);
1340         }
1341         if (!lock && (info->flags & VM_LOCKED) && user) {
1342                 user_shm_unlock(inode->i_size, user);
1343                 info->flags &= ~VM_LOCKED;
1344                 mapping_clear_unevictable(file->f_mapping);
1345         }
1346         retval = 0;
1347
1348 out_nomem:
1349         spin_unlock(&info->lock);
1350         return retval;
1351 }
1352
1353 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1354 {
1355         file_accessed(file);
1356         vma->vm_ops = &shmem_vm_ops;
1357         return 0;
1358 }
1359
1360 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1361                                      umode_t mode, dev_t dev, unsigned long flags)
1362 {
1363         struct inode *inode;
1364         struct shmem_inode_info *info;
1365         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1366
1367         if (shmem_reserve_inode(sb))
1368                 return NULL;
1369
1370         inode = new_inode(sb);
1371         if (inode) {
1372                 inode->i_ino = get_next_ino();
1373                 inode_init_owner(inode, dir, mode);
1374                 inode->i_blocks = 0;
1375                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1376                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1377                 inode->i_generation = get_seconds();
1378                 info = SHMEM_I(inode);
1379                 memset(info, 0, (char *)inode - (char *)info);
1380                 spin_lock_init(&info->lock);
1381                 info->flags = flags & VM_NORESERVE;
1382                 INIT_LIST_HEAD(&info->swaplist);
1383                 simple_xattrs_init(&info->xattrs);
1384                 cache_no_acl(inode);
1385
1386                 switch (mode & S_IFMT) {
1387                 default:
1388                         inode->i_op = &shmem_special_inode_operations;
1389                         init_special_inode(inode, mode, dev);
1390                         break;
1391                 case S_IFREG:
1392                         inode->i_mapping->a_ops = &shmem_aops;
1393                         inode->i_op = &shmem_inode_operations;
1394                         inode->i_fop = &shmem_file_operations;
1395                         mpol_shared_policy_init(&info->policy,
1396                                                  shmem_get_sbmpol(sbinfo));
1397                         break;
1398                 case S_IFDIR:
1399                         inc_nlink(inode);
1400                         /* Some things misbehave if size == 0 on a directory */
1401                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1402                         inode->i_op = &shmem_dir_inode_operations;
1403                         inode->i_fop = &simple_dir_operations;
1404                         break;
1405                 case S_IFLNK:
1406                         /*
1407                          * Must not load anything in the rbtree,
1408                          * mpol_free_shared_policy will not be called.
1409                          */
1410                         mpol_shared_policy_init(&info->policy, NULL);
1411                         break;
1412                 }
1413         } else
1414                 shmem_free_inode(sb);
1415         return inode;
1416 }
1417
1418 #ifdef CONFIG_TMPFS
1419 static const struct inode_operations shmem_symlink_inode_operations;
1420 static const struct inode_operations shmem_short_symlink_operations;
1421
1422 #ifdef CONFIG_TMPFS_XATTR
1423 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1424 #else
1425 #define shmem_initxattrs NULL
1426 #endif
1427
1428 static int
1429 shmem_write_begin(struct file *file, struct address_space *mapping,
1430                         loff_t pos, unsigned len, unsigned flags,
1431                         struct page **pagep, void **fsdata)
1432 {
1433         struct inode *inode = mapping->host;
1434         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1435         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1436 }
1437
1438 static int
1439 shmem_write_end(struct file *file, struct address_space *mapping,
1440                         loff_t pos, unsigned len, unsigned copied,
1441                         struct page *page, void *fsdata)
1442 {
1443         struct inode *inode = mapping->host;
1444
1445         if (pos + copied > inode->i_size)
1446                 i_size_write(inode, pos + copied);
1447
1448         if (!PageUptodate(page)) {
1449                 if (copied < PAGE_CACHE_SIZE) {
1450                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1451                         zero_user_segments(page, 0, from,
1452                                         from + copied, PAGE_CACHE_SIZE);
1453                 }
1454                 SetPageUptodate(page);
1455         }
1456         set_page_dirty(page);
1457         unlock_page(page);
1458         page_cache_release(page);
1459
1460         return copied;
1461 }
1462
1463 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1464 {
1465         struct inode *inode = filp->f_path.dentry->d_inode;
1466         struct address_space *mapping = inode->i_mapping;
1467         pgoff_t index;
1468         unsigned long offset;
1469         enum sgp_type sgp = SGP_READ;
1470
1471         /*
1472          * Might this read be for a stacking filesystem?  Then when reading
1473          * holes of a sparse file, we actually need to allocate those pages,
1474          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1475          */
1476         if (segment_eq(get_fs(), KERNEL_DS))
1477                 sgp = SGP_DIRTY;
1478
1479         index = *ppos >> PAGE_CACHE_SHIFT;
1480         offset = *ppos & ~PAGE_CACHE_MASK;
1481
1482         for (;;) {
1483                 struct page *page = NULL;
1484                 pgoff_t end_index;
1485                 unsigned long nr, ret;
1486                 loff_t i_size = i_size_read(inode);
1487
1488                 end_index = i_size >> PAGE_CACHE_SHIFT;
1489                 if (index > end_index)
1490                         break;
1491                 if (index == end_index) {
1492                         nr = i_size & ~PAGE_CACHE_MASK;
1493                         if (nr <= offset)
1494                                 break;
1495                 }
1496
1497                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1498                 if (desc->error) {
1499                         if (desc->error == -EINVAL)
1500                                 desc->error = 0;
1501                         break;
1502                 }
1503                 if (page)
1504                         unlock_page(page);
1505
1506                 /*
1507                  * We must evaluate after, since reads (unlike writes)
1508                  * are called without i_mutex protection against truncate
1509                  */
1510                 nr = PAGE_CACHE_SIZE;
1511                 i_size = i_size_read(inode);
1512                 end_index = i_size >> PAGE_CACHE_SHIFT;
1513                 if (index == end_index) {
1514                         nr = i_size & ~PAGE_CACHE_MASK;
1515                         if (nr <= offset) {
1516                                 if (page)
1517                                         page_cache_release(page);
1518                                 break;
1519                         }
1520                 }
1521                 nr -= offset;
1522
1523                 if (page) {
1524                         /*
1525                          * If users can be writing to this page using arbitrary
1526                          * virtual addresses, take care about potential aliasing
1527                          * before reading the page on the kernel side.
1528                          */
1529                         if (mapping_writably_mapped(mapping))
1530                                 flush_dcache_page(page);
1531                         /*
1532                          * Mark the page accessed if we read the beginning.
1533                          */
1534                         if (!offset)
1535                                 mark_page_accessed(page);
1536                 } else {
1537                         page = ZERO_PAGE(0);
1538                         page_cache_get(page);
1539                 }
1540
1541                 /*
1542                  * Ok, we have the page, and it's up-to-date, so
1543                  * now we can copy it to user space...
1544                  *
1545                  * The actor routine returns how many bytes were actually used..
1546                  * NOTE! This may not be the same as how much of a user buffer
1547                  * we filled up (we may be padding etc), so we can only update
1548                  * "pos" here (the actor routine has to update the user buffer
1549                  * pointers and the remaining count).
1550                  */
1551                 ret = actor(desc, page, offset, nr);
1552                 offset += ret;
1553                 index += offset >> PAGE_CACHE_SHIFT;
1554                 offset &= ~PAGE_CACHE_MASK;
1555
1556                 page_cache_release(page);
1557                 if (ret != nr || !desc->count)
1558                         break;
1559
1560                 cond_resched();
1561         }
1562
1563         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1564         file_accessed(filp);
1565 }
1566
1567 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1568                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1569 {
1570         struct file *filp = iocb->ki_filp;
1571         ssize_t retval;
1572         unsigned long seg;
1573         size_t count;
1574         loff_t *ppos = &iocb->ki_pos;
1575
1576         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1577         if (retval)
1578                 return retval;
1579
1580         for (seg = 0; seg < nr_segs; seg++) {
1581                 read_descriptor_t desc;
1582
1583                 desc.written = 0;
1584                 desc.arg.buf = iov[seg].iov_base;
1585                 desc.count = iov[seg].iov_len;
1586                 if (desc.count == 0)
1587                         continue;
1588                 desc.error = 0;
1589                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1590                 retval += desc.written;
1591                 if (desc.error) {
1592                         retval = retval ?: desc.error;
1593                         break;
1594                 }
1595                 if (desc.count > 0)
1596                         break;
1597         }
1598         return retval;
1599 }
1600
1601 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1602                                 struct pipe_inode_info *pipe, size_t len,
1603                                 unsigned int flags)
1604 {
1605         struct address_space *mapping = in->f_mapping;
1606         struct inode *inode = mapping->host;
1607         unsigned int loff, nr_pages, req_pages;
1608         struct page *pages[PIPE_DEF_BUFFERS];
1609         struct partial_page partial[PIPE_DEF_BUFFERS];
1610         struct page *page;
1611         pgoff_t index, end_index;
1612         loff_t isize, left;
1613         int error, page_nr;
1614         struct splice_pipe_desc spd = {
1615                 .pages = pages,
1616                 .partial = partial,
1617                 .nr_pages_max = PIPE_DEF_BUFFERS,
1618                 .flags = flags,
1619                 .ops = &page_cache_pipe_buf_ops,
1620                 .spd_release = spd_release_page,
1621         };
1622
1623         isize = i_size_read(inode);
1624         if (unlikely(*ppos >= isize))
1625                 return 0;
1626
1627         left = isize - *ppos;
1628         if (unlikely(left < len))
1629                 len = left;
1630
1631         if (splice_grow_spd(pipe, &spd))
1632                 return -ENOMEM;
1633
1634         index = *ppos >> PAGE_CACHE_SHIFT;
1635         loff = *ppos & ~PAGE_CACHE_MASK;
1636         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1637         nr_pages = min(req_pages, pipe->buffers);
1638
1639         spd.nr_pages = find_get_pages_contig(mapping, index,
1640                                                 nr_pages, spd.pages);
1641         index += spd.nr_pages;
1642         error = 0;
1643
1644         while (spd.nr_pages < nr_pages) {
1645                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1646                 if (error)
1647                         break;
1648                 unlock_page(page);
1649                 spd.pages[spd.nr_pages++] = page;
1650                 index++;
1651         }
1652
1653         index = *ppos >> PAGE_CACHE_SHIFT;
1654         nr_pages = spd.nr_pages;
1655         spd.nr_pages = 0;
1656
1657         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1658                 unsigned int this_len;
1659
1660                 if (!len)
1661                         break;
1662
1663                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1664                 page = spd.pages[page_nr];
1665
1666                 if (!PageUptodate(page) || page->mapping != mapping) {
1667                         error = shmem_getpage(inode, index, &page,
1668                                                         SGP_CACHE, NULL);
1669                         if (error)
1670                                 break;
1671                         unlock_page(page);
1672                         page_cache_release(spd.pages[page_nr]);
1673                         spd.pages[page_nr] = page;
1674                 }
1675
1676                 isize = i_size_read(inode);
1677                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1678                 if (unlikely(!isize || index > end_index))
1679                         break;
1680
1681                 if (end_index == index) {
1682                         unsigned int plen;
1683
1684                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1685                         if (plen <= loff)
1686                                 break;
1687
1688                         this_len = min(this_len, plen - loff);
1689                         len = this_len;
1690                 }
1691
1692                 spd.partial[page_nr].offset = loff;
1693                 spd.partial[page_nr].len = this_len;
1694                 len -= this_len;
1695                 loff = 0;
1696                 spd.nr_pages++;
1697                 index++;
1698         }
1699
1700         while (page_nr < nr_pages)
1701                 page_cache_release(spd.pages[page_nr++]);
1702
1703         if (spd.nr_pages)
1704                 error = splice_to_pipe(pipe, &spd);
1705
1706         splice_shrink_spd(&spd);
1707
1708         if (error > 0) {
1709                 *ppos += error;
1710                 file_accessed(in);
1711         }
1712         return error;
1713 }
1714
1715 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1716                                                          loff_t len)
1717 {
1718         struct inode *inode = file->f_path.dentry->d_inode;
1719         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1720         struct shmem_falloc shmem_falloc;
1721         pgoff_t start, index, end;
1722         int error;
1723
1724         mutex_lock(&inode->i_mutex);
1725
1726         if (mode & FALLOC_FL_PUNCH_HOLE) {
1727                 struct address_space *mapping = file->f_mapping;
1728                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1729                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1730
1731                 if ((u64)unmap_end > (u64)unmap_start)
1732                         unmap_mapping_range(mapping, unmap_start,
1733                                             1 + unmap_end - unmap_start, 0);
1734                 shmem_truncate_range(inode, offset, offset + len - 1);
1735                 /* No need to unmap again: hole-punching leaves COWed pages */
1736                 error = 0;
1737                 goto out;
1738         }
1739
1740         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1741         error = inode_newsize_ok(inode, offset + len);
1742         if (error)
1743                 goto out;
1744
1745         start = offset >> PAGE_CACHE_SHIFT;
1746         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1747         /* Try to avoid a swapstorm if len is impossible to satisfy */
1748         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1749                 error = -ENOSPC;
1750                 goto out;
1751         }
1752
1753         shmem_falloc.start = start;
1754         shmem_falloc.next  = start;
1755         shmem_falloc.nr_falloced = 0;
1756         shmem_falloc.nr_unswapped = 0;
1757         spin_lock(&inode->i_lock);
1758         inode->i_private = &shmem_falloc;
1759         spin_unlock(&inode->i_lock);
1760
1761         for (index = start; index < end; index++) {
1762                 struct page *page;
1763
1764                 /*
1765                  * Good, the fallocate(2) manpage permits EINTR: we may have
1766                  * been interrupted because we are using up too much memory.
1767                  */
1768                 if (signal_pending(current))
1769                         error = -EINTR;
1770                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1771                         error = -ENOMEM;
1772                 else
1773                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1774                                                                         NULL);
1775                 if (error) {
1776                         /* Remove the !PageUptodate pages we added */
1777                         shmem_undo_range(inode,
1778                                 (loff_t)start << PAGE_CACHE_SHIFT,
1779                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1780                         goto undone;
1781                 }
1782
1783                 /*
1784                  * Inform shmem_writepage() how far we have reached.
1785                  * No need for lock or barrier: we have the page lock.
1786                  */
1787                 shmem_falloc.next++;
1788                 if (!PageUptodate(page))
1789                         shmem_falloc.nr_falloced++;
1790
1791                 /*
1792                  * If !PageUptodate, leave it that way so that freeable pages
1793                  * can be recognized if we need to rollback on error later.
1794                  * But set_page_dirty so that memory pressure will swap rather
1795                  * than free the pages we are allocating (and SGP_CACHE pages
1796                  * might still be clean: we now need to mark those dirty too).
1797                  */
1798                 set_page_dirty(page);
1799                 unlock_page(page);
1800                 page_cache_release(page);
1801                 cond_resched();
1802         }
1803
1804         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1805                 i_size_write(inode, offset + len);
1806         inode->i_ctime = CURRENT_TIME;
1807 undone:
1808         spin_lock(&inode->i_lock);
1809         inode->i_private = NULL;
1810         spin_unlock(&inode->i_lock);
1811 out:
1812         mutex_unlock(&inode->i_mutex);
1813         return error;
1814 }
1815
1816 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1817 {
1818         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1819
1820         buf->f_type = TMPFS_MAGIC;
1821         buf->f_bsize = PAGE_CACHE_SIZE;
1822         buf->f_namelen = NAME_MAX;
1823         if (sbinfo->max_blocks) {
1824                 buf->f_blocks = sbinfo->max_blocks;
1825                 buf->f_bavail =
1826                 buf->f_bfree  = sbinfo->max_blocks -
1827                                 percpu_counter_sum(&sbinfo->used_blocks);
1828         }
1829         if (sbinfo->max_inodes) {
1830                 buf->f_files = sbinfo->max_inodes;
1831                 buf->f_ffree = sbinfo->free_inodes;
1832         }
1833         /* else leave those fields 0 like simple_statfs */
1834         return 0;
1835 }
1836
1837 /*
1838  * File creation. Allocate an inode, and we're done..
1839  */
1840 static int
1841 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1842 {
1843         struct inode *inode;
1844         int error = -ENOSPC;
1845
1846         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1847         if (inode) {
1848                 error = security_inode_init_security(inode, dir,
1849                                                      &dentry->d_name,
1850                                                      shmem_initxattrs, NULL);
1851                 if (error) {
1852                         if (error != -EOPNOTSUPP) {
1853                                 iput(inode);
1854                                 return error;
1855                         }
1856                 }
1857 #ifdef CONFIG_TMPFS_POSIX_ACL
1858                 error = generic_acl_init(inode, dir);
1859                 if (error) {
1860                         iput(inode);
1861                         return error;
1862                 }
1863 #else
1864                 error = 0;
1865 #endif
1866                 dir->i_size += BOGO_DIRENT_SIZE;
1867                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1868                 d_instantiate(dentry, inode);
1869                 dget(dentry); /* Extra count - pin the dentry in core */
1870         }
1871         return error;
1872 }
1873
1874 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1875 {
1876         int error;
1877
1878         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1879                 return error;
1880         inc_nlink(dir);
1881         return 0;
1882 }
1883
1884 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1885                 bool excl)
1886 {
1887         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1888 }
1889
1890 /*
1891  * Link a file..
1892  */
1893 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1894 {
1895         struct inode *inode = old_dentry->d_inode;
1896         int ret;
1897
1898         /*
1899          * No ordinary (disk based) filesystem counts links as inodes;
1900          * but each new link needs a new dentry, pinning lowmem, and
1901          * tmpfs dentries cannot be pruned until they are unlinked.
1902          */
1903         ret = shmem_reserve_inode(inode->i_sb);
1904         if (ret)
1905                 goto out;
1906
1907         dir->i_size += BOGO_DIRENT_SIZE;
1908         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1909         inc_nlink(inode);
1910         ihold(inode);   /* New dentry reference */
1911         dget(dentry);           /* Extra pinning count for the created dentry */
1912         d_instantiate(dentry, inode);
1913 out:
1914         return ret;
1915 }
1916
1917 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1918 {
1919         struct inode *inode = dentry->d_inode;
1920
1921         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1922                 shmem_free_inode(inode->i_sb);
1923
1924         dir->i_size -= BOGO_DIRENT_SIZE;
1925         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1926         drop_nlink(inode);
1927         dput(dentry);   /* Undo the count from "create" - this does all the work */
1928         return 0;
1929 }
1930
1931 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1932 {
1933         if (!simple_empty(dentry))
1934                 return -ENOTEMPTY;
1935
1936         drop_nlink(dentry->d_inode);
1937         drop_nlink(dir);
1938         return shmem_unlink(dir, dentry);
1939 }
1940
1941 /*
1942  * The VFS layer already does all the dentry stuff for rename,
1943  * we just have to decrement the usage count for the target if
1944  * it exists so that the VFS layer correctly free's it when it
1945  * gets overwritten.
1946  */
1947 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1948 {
1949         struct inode *inode = old_dentry->d_inode;
1950         int they_are_dirs = S_ISDIR(inode->i_mode);
1951
1952         if (!simple_empty(new_dentry))
1953                 return -ENOTEMPTY;
1954
1955         if (new_dentry->d_inode) {
1956                 (void) shmem_unlink(new_dir, new_dentry);
1957                 if (they_are_dirs)
1958                         drop_nlink(old_dir);
1959         } else if (they_are_dirs) {
1960                 drop_nlink(old_dir);
1961                 inc_nlink(new_dir);
1962         }
1963
1964         old_dir->i_size -= BOGO_DIRENT_SIZE;
1965         new_dir->i_size += BOGO_DIRENT_SIZE;
1966         old_dir->i_ctime = old_dir->i_mtime =
1967         new_dir->i_ctime = new_dir->i_mtime =
1968         inode->i_ctime = CURRENT_TIME;
1969         return 0;
1970 }
1971
1972 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1973 {
1974         int error;
1975         int len;
1976         struct inode *inode;
1977         struct page *page;
1978         char *kaddr;
1979         struct shmem_inode_info *info;
1980
1981         len = strlen(symname) + 1;
1982         if (len > PAGE_CACHE_SIZE)
1983                 return -ENAMETOOLONG;
1984
1985         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1986         if (!inode)
1987                 return -ENOSPC;
1988
1989         error = security_inode_init_security(inode, dir, &dentry->d_name,
1990                                              shmem_initxattrs, NULL);
1991         if (error) {
1992                 if (error != -EOPNOTSUPP) {
1993                         iput(inode);
1994                         return error;
1995                 }
1996                 error = 0;
1997         }
1998
1999         info = SHMEM_I(inode);
2000         inode->i_size = len-1;
2001         if (len <= SHORT_SYMLINK_LEN) {
2002                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2003                 if (!info->symlink) {
2004                         iput(inode);
2005                         return -ENOMEM;
2006                 }
2007                 inode->i_op = &shmem_short_symlink_operations;
2008         } else {
2009                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2010                 if (error) {
2011                         iput(inode);
2012                         return error;
2013                 }
2014                 inode->i_mapping->a_ops = &shmem_aops;
2015                 inode->i_op = &shmem_symlink_inode_operations;
2016                 kaddr = kmap_atomic(page);
2017                 memcpy(kaddr, symname, len);
2018                 kunmap_atomic(kaddr);
2019                 SetPageUptodate(page);
2020                 set_page_dirty(page);
2021                 unlock_page(page);
2022                 page_cache_release(page);
2023         }
2024         dir->i_size += BOGO_DIRENT_SIZE;
2025         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2026         d_instantiate(dentry, inode);
2027         dget(dentry);
2028         return 0;
2029 }
2030
2031 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2032 {
2033         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2034         return NULL;
2035 }
2036
2037 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2038 {
2039         struct page *page = NULL;
2040         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2041         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2042         if (page)
2043                 unlock_page(page);
2044         return page;
2045 }
2046
2047 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2048 {
2049         if (!IS_ERR(nd_get_link(nd))) {
2050                 struct page *page = cookie;
2051                 kunmap(page);
2052                 mark_page_accessed(page);
2053                 page_cache_release(page);
2054         }
2055 }
2056
2057 #ifdef CONFIG_TMPFS_XATTR
2058 /*
2059  * Superblocks without xattr inode operations may get some security.* xattr
2060  * support from the LSM "for free". As soon as we have any other xattrs
2061  * like ACLs, we also need to implement the security.* handlers at
2062  * filesystem level, though.
2063  */
2064
2065 /*
2066  * Callback for security_inode_init_security() for acquiring xattrs.
2067  */
2068 static int shmem_initxattrs(struct inode *inode,
2069                             const struct xattr *xattr_array,
2070                             void *fs_info)
2071 {
2072         struct shmem_inode_info *info = SHMEM_I(inode);
2073         const struct xattr *xattr;
2074         struct simple_xattr *new_xattr;
2075         size_t len;
2076
2077         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2078                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2079                 if (!new_xattr)
2080                         return -ENOMEM;
2081
2082                 len = strlen(xattr->name) + 1;
2083                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2084                                           GFP_KERNEL);
2085                 if (!new_xattr->name) {
2086                         kfree(new_xattr);
2087                         return -ENOMEM;
2088                 }
2089
2090                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2091                        XATTR_SECURITY_PREFIX_LEN);
2092                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2093                        xattr->name, len);
2094
2095                 simple_xattr_list_add(&info->xattrs, new_xattr);
2096         }
2097
2098         return 0;
2099 }
2100
2101 static const struct xattr_handler *shmem_xattr_handlers[] = {
2102 #ifdef CONFIG_TMPFS_POSIX_ACL
2103         &generic_acl_access_handler,
2104         &generic_acl_default_handler,
2105 #endif
2106         NULL
2107 };
2108
2109 static int shmem_xattr_validate(const char *name)
2110 {
2111         struct { const char *prefix; size_t len; } arr[] = {
2112                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2113                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2114         };
2115         int i;
2116
2117         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2118                 size_t preflen = arr[i].len;
2119                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2120                         if (!name[preflen])
2121                                 return -EINVAL;
2122                         return 0;
2123                 }
2124         }
2125         return -EOPNOTSUPP;
2126 }
2127
2128 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2129                               void *buffer, size_t size)
2130 {
2131         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2132         int err;
2133
2134         /*
2135          * If this is a request for a synthetic attribute in the system.*
2136          * namespace use the generic infrastructure to resolve a handler
2137          * for it via sb->s_xattr.
2138          */
2139         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2140                 return generic_getxattr(dentry, name, buffer, size);
2141
2142         err = shmem_xattr_validate(name);
2143         if (err)
2144                 return err;
2145
2146         return simple_xattr_get(&info->xattrs, name, buffer, size);
2147 }
2148
2149 static int shmem_setxattr(struct dentry *dentry, const char *name,
2150                           const void *value, size_t size, int flags)
2151 {
2152         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2153         int err;
2154
2155         /*
2156          * If this is a request for a synthetic attribute in the system.*
2157          * namespace use the generic infrastructure to resolve a handler
2158          * for it via sb->s_xattr.
2159          */
2160         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2161                 return generic_setxattr(dentry, name, value, size, flags);
2162
2163         err = shmem_xattr_validate(name);
2164         if (err)
2165                 return err;
2166
2167         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2168 }
2169
2170 static int shmem_removexattr(struct dentry *dentry, const char *name)
2171 {
2172         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2173         int err;
2174
2175         /*
2176          * If this is a request for a synthetic attribute in the system.*
2177          * namespace use the generic infrastructure to resolve a handler
2178          * for it via sb->s_xattr.
2179          */
2180         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2181                 return generic_removexattr(dentry, name);
2182
2183         err = shmem_xattr_validate(name);
2184         if (err)
2185                 return err;
2186
2187         return simple_xattr_remove(&info->xattrs, name);
2188 }
2189
2190 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2191 {
2192         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2193         return simple_xattr_list(&info->xattrs, buffer, size);
2194 }
2195 #endif /* CONFIG_TMPFS_XATTR */
2196
2197 static const struct inode_operations shmem_short_symlink_operations = {
2198         .readlink       = generic_readlink,
2199         .follow_link    = shmem_follow_short_symlink,
2200 #ifdef CONFIG_TMPFS_XATTR
2201         .setxattr       = shmem_setxattr,
2202         .getxattr       = shmem_getxattr,
2203         .listxattr      = shmem_listxattr,
2204         .removexattr    = shmem_removexattr,
2205 #endif
2206 };
2207
2208 static const struct inode_operations shmem_symlink_inode_operations = {
2209         .readlink       = generic_readlink,
2210         .follow_link    = shmem_follow_link,
2211         .put_link       = shmem_put_link,
2212 #ifdef CONFIG_TMPFS_XATTR
2213         .setxattr       = shmem_setxattr,
2214         .getxattr       = shmem_getxattr,
2215         .listxattr      = shmem_listxattr,
2216         .removexattr    = shmem_removexattr,
2217 #endif
2218 };
2219
2220 static struct dentry *shmem_get_parent(struct dentry *child)
2221 {
2222         return ERR_PTR(-ESTALE);
2223 }
2224
2225 static int shmem_match(struct inode *ino, void *vfh)
2226 {
2227         __u32 *fh = vfh;
2228         __u64 inum = fh[2];
2229         inum = (inum << 32) | fh[1];
2230         return ino->i_ino == inum && fh[0] == ino->i_generation;
2231 }
2232
2233 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2234                 struct fid *fid, int fh_len, int fh_type)
2235 {
2236         struct inode *inode;
2237         struct dentry *dentry = NULL;
2238         u64 inum;
2239
2240         if (fh_len < 3)
2241                 return NULL;
2242
2243         inum = fid->raw[2];
2244         inum = (inum << 32) | fid->raw[1];
2245
2246         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2247                         shmem_match, fid->raw);
2248         if (inode) {
2249                 dentry = d_find_alias(inode);
2250                 iput(inode);
2251         }
2252
2253         return dentry;
2254 }
2255
2256 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2257                                 struct inode *parent)
2258 {
2259         if (*len < 3) {
2260                 *len = 3;
2261                 return 255;
2262         }
2263
2264         if (inode_unhashed(inode)) {
2265                 /* Unfortunately insert_inode_hash is not idempotent,
2266                  * so as we hash inodes here rather than at creation
2267                  * time, we need a lock to ensure we only try
2268                  * to do it once
2269                  */
2270                 static DEFINE_SPINLOCK(lock);
2271                 spin_lock(&lock);
2272                 if (inode_unhashed(inode))
2273                         __insert_inode_hash(inode,
2274                                             inode->i_ino + inode->i_generation);
2275                 spin_unlock(&lock);
2276         }
2277
2278         fh[0] = inode->i_generation;
2279         fh[1] = inode->i_ino;
2280         fh[2] = ((__u64)inode->i_ino) >> 32;
2281
2282         *len = 3;
2283         return 1;
2284 }
2285
2286 static const struct export_operations shmem_export_ops = {
2287         .get_parent     = shmem_get_parent,
2288         .encode_fh      = shmem_encode_fh,
2289         .fh_to_dentry   = shmem_fh_to_dentry,
2290 };
2291
2292 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2293                                bool remount)
2294 {
2295         char *this_char, *value, *rest;
2296         uid_t uid;
2297         gid_t gid;
2298
2299         while (options != NULL) {
2300                 this_char = options;
2301                 for (;;) {
2302                         /*
2303                          * NUL-terminate this option: unfortunately,
2304                          * mount options form a comma-separated list,
2305                          * but mpol's nodelist may also contain commas.
2306                          */
2307                         options = strchr(options, ',');
2308                         if (options == NULL)
2309                                 break;
2310                         options++;
2311                         if (!isdigit(*options)) {
2312                                 options[-1] = '\0';
2313                                 break;
2314                         }
2315                 }
2316                 if (!*this_char)
2317                         continue;
2318                 if ((value = strchr(this_char,'=')) != NULL) {
2319                         *value++ = 0;
2320                 } else {
2321                         printk(KERN_ERR
2322                             "tmpfs: No value for mount option '%s'\n",
2323                             this_char);
2324                         return 1;
2325                 }
2326
2327                 if (!strcmp(this_char,"size")) {
2328                         unsigned long long size;
2329                         size = memparse(value,&rest);
2330                         if (*rest == '%') {
2331                                 size <<= PAGE_SHIFT;
2332                                 size *= totalram_pages;
2333                                 do_div(size, 100);
2334                                 rest++;
2335                         }
2336                         if (*rest)
2337                                 goto bad_val;
2338                         sbinfo->max_blocks =
2339                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2340                 } else if (!strcmp(this_char,"nr_blocks")) {
2341                         sbinfo->max_blocks = memparse(value, &rest);
2342                         if (*rest)
2343                                 goto bad_val;
2344                 } else if (!strcmp(this_char,"nr_inodes")) {
2345                         sbinfo->max_inodes = memparse(value, &rest);
2346                         if (*rest)
2347                                 goto bad_val;
2348                 } else if (!strcmp(this_char,"mode")) {
2349                         if (remount)
2350                                 continue;
2351                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2352                         if (*rest)
2353                                 goto bad_val;
2354                 } else if (!strcmp(this_char,"uid")) {
2355                         if (remount)
2356                                 continue;
2357                         uid = simple_strtoul(value, &rest, 0);
2358                         if (*rest)
2359                                 goto bad_val;
2360                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2361                         if (!uid_valid(sbinfo->uid))
2362                                 goto bad_val;
2363                 } else if (!strcmp(this_char,"gid")) {
2364                         if (remount)
2365                                 continue;
2366                         gid = simple_strtoul(value, &rest, 0);
2367                         if (*rest)
2368                                 goto bad_val;
2369                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2370                         if (!gid_valid(sbinfo->gid))
2371                                 goto bad_val;
2372                 } else if (!strcmp(this_char,"mpol")) {
2373                         if (mpol_parse_str(value, &sbinfo->mpol, 1))
2374                                 goto bad_val;
2375                 } else {
2376                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2377                                this_char);
2378                         return 1;
2379                 }
2380         }
2381         return 0;
2382
2383 bad_val:
2384         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2385                value, this_char);
2386         return 1;
2387
2388 }
2389
2390 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2391 {
2392         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2393         struct shmem_sb_info config = *sbinfo;
2394         unsigned long inodes;
2395         int error = -EINVAL;
2396
2397         if (shmem_parse_options(data, &config, true))
2398                 return error;
2399
2400         spin_lock(&sbinfo->stat_lock);
2401         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2402         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2403                 goto out;
2404         if (config.max_inodes < inodes)
2405                 goto out;
2406         /*
2407          * Those tests disallow limited->unlimited while any are in use;
2408          * but we must separately disallow unlimited->limited, because
2409          * in that case we have no record of how much is already in use.
2410          */
2411         if (config.max_blocks && !sbinfo->max_blocks)
2412                 goto out;
2413         if (config.max_inodes && !sbinfo->max_inodes)
2414                 goto out;
2415
2416         error = 0;
2417         sbinfo->max_blocks  = config.max_blocks;
2418         sbinfo->max_inodes  = config.max_inodes;
2419         sbinfo->free_inodes = config.max_inodes - inodes;
2420
2421         mpol_put(sbinfo->mpol);
2422         sbinfo->mpol        = config.mpol;      /* transfers initial ref */
2423 out:
2424         spin_unlock(&sbinfo->stat_lock);
2425         return error;
2426 }
2427
2428 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2429 {
2430         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2431
2432         if (sbinfo->max_blocks != shmem_default_max_blocks())
2433                 seq_printf(seq, ",size=%luk",
2434                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2435         if (sbinfo->max_inodes != shmem_default_max_inodes())
2436                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2437         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2438                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2439         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2440                 seq_printf(seq, ",uid=%u",
2441                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2442         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2443                 seq_printf(seq, ",gid=%u",
2444                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2445         shmem_show_mpol(seq, sbinfo->mpol);
2446         return 0;
2447 }
2448 #endif /* CONFIG_TMPFS */
2449
2450 static void shmem_put_super(struct super_block *sb)
2451 {
2452         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2453
2454         percpu_counter_destroy(&sbinfo->used_blocks);
2455         kfree(sbinfo);
2456         sb->s_fs_info = NULL;
2457 }
2458
2459 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2460 {
2461         struct inode *inode;
2462         struct shmem_sb_info *sbinfo;
2463         int err = -ENOMEM;
2464
2465         /* Round up to L1_CACHE_BYTES to resist false sharing */
2466         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2467                                 L1_CACHE_BYTES), GFP_KERNEL);
2468         if (!sbinfo)
2469                 return -ENOMEM;
2470
2471         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2472         sbinfo->uid = current_fsuid();
2473         sbinfo->gid = current_fsgid();
2474         sb->s_fs_info = sbinfo;
2475
2476 #ifdef CONFIG_TMPFS
2477         /*
2478          * Per default we only allow half of the physical ram per
2479          * tmpfs instance, limiting inodes to one per page of lowmem;
2480          * but the internal instance is left unlimited.
2481          */
2482         if (!(sb->s_flags & MS_NOUSER)) {
2483                 sbinfo->max_blocks = shmem_default_max_blocks();
2484                 sbinfo->max_inodes = shmem_default_max_inodes();
2485                 if (shmem_parse_options(data, sbinfo, false)) {
2486                         err = -EINVAL;
2487                         goto failed;
2488                 }
2489         }
2490         sb->s_export_op = &shmem_export_ops;
2491         sb->s_flags |= MS_NOSEC;
2492 #else
2493         sb->s_flags |= MS_NOUSER;
2494 #endif
2495
2496         spin_lock_init(&sbinfo->stat_lock);
2497         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2498                 goto failed;
2499         sbinfo->free_inodes = sbinfo->max_inodes;
2500
2501         sb->s_maxbytes = MAX_LFS_FILESIZE;
2502         sb->s_blocksize = PAGE_CACHE_SIZE;
2503         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2504         sb->s_magic = TMPFS_MAGIC;
2505         sb->s_op = &shmem_ops;
2506         sb->s_time_gran = 1;
2507 #ifdef CONFIG_TMPFS_XATTR
2508         sb->s_xattr = shmem_xattr_handlers;
2509 #endif
2510 #ifdef CONFIG_TMPFS_POSIX_ACL
2511         sb->s_flags |= MS_POSIXACL;
2512 #endif
2513
2514         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2515         if (!inode)
2516                 goto failed;
2517         inode->i_uid = sbinfo->uid;
2518         inode->i_gid = sbinfo->gid;
2519         sb->s_root = d_make_root(inode);
2520         if (!sb->s_root)
2521                 goto failed;
2522         return 0;
2523
2524 failed:
2525         shmem_put_super(sb);
2526         return err;
2527 }
2528
2529 static struct kmem_cache *shmem_inode_cachep;
2530
2531 static struct inode *shmem_alloc_inode(struct super_block *sb)
2532 {
2533         struct shmem_inode_info *info;
2534         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2535         if (!info)
2536                 return NULL;
2537         return &info->vfs_inode;
2538 }
2539
2540 static void shmem_destroy_callback(struct rcu_head *head)
2541 {
2542         struct inode *inode = container_of(head, struct inode, i_rcu);
2543         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2544 }
2545
2546 static void shmem_destroy_inode(struct inode *inode)
2547 {
2548         if (S_ISREG(inode->i_mode))
2549                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2550         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2551 }
2552
2553 static void shmem_init_inode(void *foo)
2554 {
2555         struct shmem_inode_info *info = foo;
2556         inode_init_once(&info->vfs_inode);
2557 }
2558
2559 static int shmem_init_inodecache(void)
2560 {
2561         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2562                                 sizeof(struct shmem_inode_info),
2563                                 0, SLAB_PANIC, shmem_init_inode);
2564         return 0;
2565 }
2566
2567 static void shmem_destroy_inodecache(void)
2568 {
2569         kmem_cache_destroy(shmem_inode_cachep);
2570 }
2571
2572 static const struct address_space_operations shmem_aops = {
2573         .writepage      = shmem_writepage,
2574         .set_page_dirty = __set_page_dirty_no_writeback,
2575 #ifdef CONFIG_TMPFS
2576         .write_begin    = shmem_write_begin,
2577         .write_end      = shmem_write_end,
2578 #endif
2579         .migratepage    = migrate_page,
2580         .error_remove_page = generic_error_remove_page,
2581 };
2582
2583 static const struct file_operations shmem_file_operations = {
2584         .mmap           = shmem_mmap,
2585 #ifdef CONFIG_TMPFS
2586         .llseek         = generic_file_llseek,
2587         .read           = do_sync_read,
2588         .write          = do_sync_write,
2589         .aio_read       = shmem_file_aio_read,
2590         .aio_write      = generic_file_aio_write,
2591         .fsync          = noop_fsync,
2592         .splice_read    = shmem_file_splice_read,
2593         .splice_write   = generic_file_splice_write,
2594         .fallocate      = shmem_fallocate,
2595 #endif
2596 };
2597
2598 static const struct inode_operations shmem_inode_operations = {
2599         .setattr        = shmem_setattr,
2600 #ifdef CONFIG_TMPFS_XATTR
2601         .setxattr       = shmem_setxattr,
2602         .getxattr       = shmem_getxattr,
2603         .listxattr      = shmem_listxattr,
2604         .removexattr    = shmem_removexattr,
2605 #endif
2606 };
2607
2608 static const struct inode_operations shmem_dir_inode_operations = {
2609 #ifdef CONFIG_TMPFS
2610         .create         = shmem_create,
2611         .lookup         = simple_lookup,
2612         .link           = shmem_link,
2613         .unlink         = shmem_unlink,
2614         .symlink        = shmem_symlink,
2615         .mkdir          = shmem_mkdir,
2616         .rmdir          = shmem_rmdir,
2617         .mknod          = shmem_mknod,
2618         .rename         = shmem_rename,
2619 #endif
2620 #ifdef CONFIG_TMPFS_XATTR
2621         .setxattr       = shmem_setxattr,
2622         .getxattr       = shmem_getxattr,
2623         .listxattr      = shmem_listxattr,
2624         .removexattr    = shmem_removexattr,
2625 #endif
2626 #ifdef CONFIG_TMPFS_POSIX_ACL
2627         .setattr        = shmem_setattr,
2628 #endif
2629 };
2630
2631 static const struct inode_operations shmem_special_inode_operations = {
2632 #ifdef CONFIG_TMPFS_XATTR
2633         .setxattr       = shmem_setxattr,
2634         .getxattr       = shmem_getxattr,
2635         .listxattr      = shmem_listxattr,
2636         .removexattr    = shmem_removexattr,
2637 #endif
2638 #ifdef CONFIG_TMPFS_POSIX_ACL
2639         .setattr        = shmem_setattr,
2640 #endif
2641 };
2642
2643 static const struct super_operations shmem_ops = {
2644         .alloc_inode    = shmem_alloc_inode,
2645         .destroy_inode  = shmem_destroy_inode,
2646 #ifdef CONFIG_TMPFS
2647         .statfs         = shmem_statfs,
2648         .remount_fs     = shmem_remount_fs,
2649         .show_options   = shmem_show_options,
2650 #endif
2651         .evict_inode    = shmem_evict_inode,
2652         .drop_inode     = generic_delete_inode,
2653         .put_super      = shmem_put_super,
2654 };
2655
2656 static const struct vm_operations_struct shmem_vm_ops = {
2657         .fault          = shmem_fault,
2658 #ifdef CONFIG_NUMA
2659         .set_policy     = shmem_set_policy,
2660         .get_policy     = shmem_get_policy,
2661 #endif
2662         .remap_pages    = generic_file_remap_pages,
2663 };
2664
2665 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2666         int flags, const char *dev_name, void *data)
2667 {
2668         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2669 }
2670
2671 static struct file_system_type shmem_fs_type = {
2672         .owner          = THIS_MODULE,
2673         .name           = "tmpfs",
2674         .mount          = shmem_mount,
2675         .kill_sb        = kill_litter_super,
2676 };
2677
2678 int __init shmem_init(void)
2679 {
2680         int error;
2681
2682         error = bdi_init(&shmem_backing_dev_info);
2683         if (error)
2684                 goto out4;
2685
2686         error = shmem_init_inodecache();
2687         if (error)
2688                 goto out3;
2689
2690         error = register_filesystem(&shmem_fs_type);
2691         if (error) {
2692                 printk(KERN_ERR "Could not register tmpfs\n");
2693                 goto out2;
2694         }
2695
2696         shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2697                                  shmem_fs_type.name, NULL);
2698         if (IS_ERR(shm_mnt)) {
2699                 error = PTR_ERR(shm_mnt);
2700                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2701                 goto out1;
2702         }
2703         return 0;
2704
2705 out1:
2706         unregister_filesystem(&shmem_fs_type);
2707 out2:
2708         shmem_destroy_inodecache();
2709 out3:
2710         bdi_destroy(&shmem_backing_dev_info);
2711 out4:
2712         shm_mnt = ERR_PTR(error);
2713         return error;
2714 }
2715
2716 #else /* !CONFIG_SHMEM */
2717
2718 /*
2719  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2720  *
2721  * This is intended for small system where the benefits of the full
2722  * shmem code (swap-backed and resource-limited) are outweighed by
2723  * their complexity. On systems without swap this code should be
2724  * effectively equivalent, but much lighter weight.
2725  */
2726
2727 #include <linux/ramfs.h>
2728
2729 static struct file_system_type shmem_fs_type = {
2730         .name           = "tmpfs",
2731         .mount          = ramfs_mount,
2732         .kill_sb        = kill_litter_super,
2733 };
2734
2735 int __init shmem_init(void)
2736 {
2737         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2738
2739         shm_mnt = kern_mount(&shmem_fs_type);
2740         BUG_ON(IS_ERR(shm_mnt));
2741
2742         return 0;
2743 }
2744
2745 int shmem_unuse(swp_entry_t swap, struct page *page)
2746 {
2747         return 0;
2748 }
2749
2750 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2751 {
2752         return 0;
2753 }
2754
2755 void shmem_unlock_mapping(struct address_space *mapping)
2756 {
2757 }
2758
2759 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2760 {
2761         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2762 }
2763 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2764
2765 #define shmem_vm_ops                            generic_file_vm_ops
2766 #define shmem_file_operations                   ramfs_file_operations
2767 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2768 #define shmem_acct_size(flags, size)            0
2769 #define shmem_unacct_size(flags, size)          do {} while (0)
2770
2771 #endif /* CONFIG_SHMEM */
2772
2773 /* common code */
2774
2775 /**
2776  * shmem_file_setup - get an unlinked file living in tmpfs
2777  * @name: name for dentry (to be seen in /proc/<pid>/maps
2778  * @size: size to be set for the file
2779  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2780  */
2781 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2782 {
2783         int error;
2784         struct file *file;
2785         struct inode *inode;
2786         struct path path;
2787         struct dentry *root;
2788         struct qstr this;
2789
2790         if (IS_ERR(shm_mnt))
2791                 return (void *)shm_mnt;
2792
2793         if (size < 0 || size > MAX_LFS_FILESIZE)
2794                 return ERR_PTR(-EINVAL);
2795
2796         if (shmem_acct_size(flags, size))
2797                 return ERR_PTR(-ENOMEM);
2798
2799         error = -ENOMEM;
2800         this.name = name;
2801         this.len = strlen(name);
2802         this.hash = 0; /* will go */
2803         root = shm_mnt->mnt_root;
2804         path.dentry = d_alloc(root, &this);
2805         if (!path.dentry)
2806                 goto put_memory;
2807         path.mnt = mntget(shm_mnt);
2808
2809         error = -ENOSPC;
2810         inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2811         if (!inode)
2812                 goto put_dentry;
2813
2814         d_instantiate(path.dentry, inode);
2815         inode->i_size = size;
2816         clear_nlink(inode);     /* It is unlinked */
2817 #ifndef CONFIG_MMU
2818         error = ramfs_nommu_expand_for_mapping(inode, size);
2819         if (error)
2820                 goto put_dentry;
2821 #endif
2822
2823         error = -ENFILE;
2824         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2825                   &shmem_file_operations);
2826         if (!file)
2827                 goto put_dentry;
2828
2829         return file;
2830
2831 put_dentry:
2832         path_put(&path);
2833 put_memory:
2834         shmem_unacct_size(flags, size);
2835         return ERR_PTR(error);
2836 }
2837 EXPORT_SYMBOL_GPL(shmem_file_setup);
2838
2839 /**
2840  * shmem_zero_setup - setup a shared anonymous mapping
2841  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2842  */
2843 int shmem_zero_setup(struct vm_area_struct *vma)
2844 {
2845         struct file *file;
2846         loff_t size = vma->vm_end - vma->vm_start;
2847
2848         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2849         if (IS_ERR(file))
2850                 return PTR_ERR(file);
2851
2852         if (vma->vm_file)
2853                 fput(vma->vm_file);
2854         vma->vm_file = file;
2855         vma->vm_ops = &shmem_vm_ops;
2856         return 0;
2857 }
2858
2859 /**
2860  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2861  * @mapping:    the page's address_space
2862  * @index:      the page index
2863  * @gfp:        the page allocator flags to use if allocating
2864  *
2865  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2866  * with any new page allocations done using the specified allocation flags.
2867  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2868  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2869  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2870  *
2871  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2872  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2873  */
2874 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2875                                          pgoff_t index, gfp_t gfp)
2876 {
2877 #ifdef CONFIG_SHMEM
2878         struct inode *inode = mapping->host;
2879         struct page *page;
2880         int error;
2881
2882         BUG_ON(mapping->a_ops != &shmem_aops);
2883         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2884         if (error)
2885                 page = ERR_PTR(error);
2886         else
2887                 unlock_page(page);
2888         return page;
2889 #else
2890         /*
2891          * The tiny !SHMEM case uses ramfs without swap
2892          */
2893         return read_cache_page_gfp(mapping, index, gfp);
2894 #endif
2895 }
2896 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);