]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/shmem.c
Merge branch 'patchwork' into to_next
[karo-tx-linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/generic_acl.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate and shmem_writepage communicate via inode->i_private
84  * (with i_mutex making sure that it has only one user at a time):
85  * we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         pgoff_t start;          /* start of range currently being fallocated */
89         pgoff_t next;           /* the next page offset to be fallocated */
90         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
91         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
92 };
93
94 /* Flag allocation requirements to shmem_getpage */
95 enum sgp_type {
96         SGP_READ,       /* don't exceed i_size, don't allocate page */
97         SGP_CACHE,      /* don't exceed i_size, may allocate page */
98         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
99         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
100         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
101 };
102
103 #ifdef CONFIG_TMPFS
104 static unsigned long shmem_default_max_blocks(void)
105 {
106         return totalram_pages / 2;
107 }
108
109 static unsigned long shmem_default_max_inodes(void)
110 {
111         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112 }
113 #endif
114
115 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117                                 struct shmem_inode_info *info, pgoff_t index);
118 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122         struct page **pagep, enum sgp_type sgp, int *fault_type)
123 {
124         return shmem_getpage_gfp(inode, index, pagep, sgp,
125                         mapping_gfp_mask(inode->i_mapping), fault_type);
126 }
127
128 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 {
130         return sb->s_fs_info;
131 }
132
133 /*
134  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135  * for shared memory and for shared anonymous (/dev/zero) mappings
136  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137  * consistent with the pre-accounting of private mappings ...
138  */
139 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 {
141         return (flags & VM_NORESERVE) ?
142                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143 }
144
145 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 {
147         if (!(flags & VM_NORESERVE))
148                 vm_unacct_memory(VM_ACCT(size));
149 }
150
151 /*
152  * ... whereas tmpfs objects are accounted incrementally as
153  * pages are allocated, in order to allow huge sparse files.
154  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156  */
157 static inline int shmem_acct_block(unsigned long flags)
158 {
159         return (flags & VM_NORESERVE) ?
160                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161 }
162
163 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164 {
165         if (flags & VM_NORESERVE)
166                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167 }
168
169 static const struct super_operations shmem_ops;
170 static const struct address_space_operations shmem_aops;
171 static const struct file_operations shmem_file_operations;
172 static const struct inode_operations shmem_inode_operations;
173 static const struct inode_operations shmem_dir_inode_operations;
174 static const struct inode_operations shmem_special_inode_operations;
175 static const struct vm_operations_struct shmem_vm_ops;
176
177 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
178         .ra_pages       = 0,    /* No readahead */
179         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180 };
181
182 static LIST_HEAD(shmem_swaplist);
183 static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185 static int shmem_reserve_inode(struct super_block *sb)
186 {
187         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188         if (sbinfo->max_inodes) {
189                 spin_lock(&sbinfo->stat_lock);
190                 if (!sbinfo->free_inodes) {
191                         spin_unlock(&sbinfo->stat_lock);
192                         return -ENOSPC;
193                 }
194                 sbinfo->free_inodes--;
195                 spin_unlock(&sbinfo->stat_lock);
196         }
197         return 0;
198 }
199
200 static void shmem_free_inode(struct super_block *sb)
201 {
202         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203         if (sbinfo->max_inodes) {
204                 spin_lock(&sbinfo->stat_lock);
205                 sbinfo->free_inodes++;
206                 spin_unlock(&sbinfo->stat_lock);
207         }
208 }
209
210 /**
211  * shmem_recalc_inode - recalculate the block usage of an inode
212  * @inode: inode to recalc
213  *
214  * We have to calculate the free blocks since the mm can drop
215  * undirtied hole pages behind our back.
216  *
217  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
218  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219  *
220  * It has to be called with the spinlock held.
221  */
222 static void shmem_recalc_inode(struct inode *inode)
223 {
224         struct shmem_inode_info *info = SHMEM_I(inode);
225         long freed;
226
227         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228         if (freed > 0) {
229                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230                 if (sbinfo->max_blocks)
231                         percpu_counter_add(&sbinfo->used_blocks, -freed);
232                 info->alloced -= freed;
233                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234                 shmem_unacct_blocks(info->flags, freed);
235         }
236 }
237
238 /*
239  * Replace item expected in radix tree by a new item, while holding tree lock.
240  */
241 static int shmem_radix_tree_replace(struct address_space *mapping,
242                         pgoff_t index, void *expected, void *replacement)
243 {
244         void **pslot;
245         void *item = NULL;
246
247         VM_BUG_ON(!expected);
248         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
249         if (pslot)
250                 item = radix_tree_deref_slot_protected(pslot,
251                                                         &mapping->tree_lock);
252         if (item != expected)
253                 return -ENOENT;
254         if (replacement)
255                 radix_tree_replace_slot(pslot, replacement);
256         else
257                 radix_tree_delete(&mapping->page_tree, index);
258         return 0;
259 }
260
261 /*
262  * Sometimes, before we decide whether to proceed or to fail, we must check
263  * that an entry was not already brought back from swap by a racing thread.
264  *
265  * Checking page is not enough: by the time a SwapCache page is locked, it
266  * might be reused, and again be SwapCache, using the same swap as before.
267  */
268 static bool shmem_confirm_swap(struct address_space *mapping,
269                                pgoff_t index, swp_entry_t swap)
270 {
271         void *item;
272
273         rcu_read_lock();
274         item = radix_tree_lookup(&mapping->page_tree, index);
275         rcu_read_unlock();
276         return item == swp_to_radix_entry(swap);
277 }
278
279 /*
280  * Like add_to_page_cache_locked, but error if expected item has gone.
281  */
282 static int shmem_add_to_page_cache(struct page *page,
283                                    struct address_space *mapping,
284                                    pgoff_t index, gfp_t gfp, void *expected)
285 {
286         int error;
287
288         VM_BUG_ON(!PageLocked(page));
289         VM_BUG_ON(!PageSwapBacked(page));
290
291         page_cache_get(page);
292         page->mapping = mapping;
293         page->index = index;
294
295         spin_lock_irq(&mapping->tree_lock);
296         if (!expected)
297                 error = radix_tree_insert(&mapping->page_tree, index, page);
298         else
299                 error = shmem_radix_tree_replace(mapping, index, expected,
300                                                                  page);
301         if (!error) {
302                 mapping->nrpages++;
303                 __inc_zone_page_state(page, NR_FILE_PAGES);
304                 __inc_zone_page_state(page, NR_SHMEM);
305                 spin_unlock_irq(&mapping->tree_lock);
306         } else {
307                 page->mapping = NULL;
308                 spin_unlock_irq(&mapping->tree_lock);
309                 page_cache_release(page);
310         }
311         return error;
312 }
313
314 /*
315  * Like delete_from_page_cache, but substitutes swap for page.
316  */
317 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
318 {
319         struct address_space *mapping = page->mapping;
320         int error;
321
322         spin_lock_irq(&mapping->tree_lock);
323         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
324         page->mapping = NULL;
325         mapping->nrpages--;
326         __dec_zone_page_state(page, NR_FILE_PAGES);
327         __dec_zone_page_state(page, NR_SHMEM);
328         spin_unlock_irq(&mapping->tree_lock);
329         page_cache_release(page);
330         BUG_ON(error);
331 }
332
333 /*
334  * Like find_get_pages, but collecting swap entries as well as pages.
335  */
336 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
337                                         pgoff_t start, unsigned int nr_pages,
338                                         struct page **pages, pgoff_t *indices)
339 {
340         void **slot;
341         unsigned int ret = 0;
342         struct radix_tree_iter iter;
343
344         if (!nr_pages)
345                 return 0;
346
347         rcu_read_lock();
348 restart:
349         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
350                 struct page *page;
351 repeat:
352                 page = radix_tree_deref_slot(slot);
353                 if (unlikely(!page))
354                         continue;
355                 if (radix_tree_exception(page)) {
356                         if (radix_tree_deref_retry(page))
357                                 goto restart;
358                         /*
359                          * Otherwise, we must be storing a swap entry
360                          * here as an exceptional entry: so return it
361                          * without attempting to raise page count.
362                          */
363                         goto export;
364                 }
365                 if (!page_cache_get_speculative(page))
366                         goto repeat;
367
368                 /* Has the page moved? */
369                 if (unlikely(page != *slot)) {
370                         page_cache_release(page);
371                         goto repeat;
372                 }
373 export:
374                 indices[ret] = iter.index;
375                 pages[ret] = page;
376                 if (++ret == nr_pages)
377                         break;
378         }
379         rcu_read_unlock();
380         return ret;
381 }
382
383 /*
384  * Remove swap entry from radix tree, free the swap and its page cache.
385  */
386 static int shmem_free_swap(struct address_space *mapping,
387                            pgoff_t index, void *radswap)
388 {
389         int error;
390
391         spin_lock_irq(&mapping->tree_lock);
392         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
393         spin_unlock_irq(&mapping->tree_lock);
394         if (!error)
395                 free_swap_and_cache(radix_to_swp_entry(radswap));
396         return error;
397 }
398
399 /*
400  * Pagevec may contain swap entries, so shuffle up pages before releasing.
401  */
402 static void shmem_deswap_pagevec(struct pagevec *pvec)
403 {
404         int i, j;
405
406         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
407                 struct page *page = pvec->pages[i];
408                 if (!radix_tree_exceptional_entry(page))
409                         pvec->pages[j++] = page;
410         }
411         pvec->nr = j;
412 }
413
414 /*
415  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
416  */
417 void shmem_unlock_mapping(struct address_space *mapping)
418 {
419         struct pagevec pvec;
420         pgoff_t indices[PAGEVEC_SIZE];
421         pgoff_t index = 0;
422
423         pagevec_init(&pvec, 0);
424         /*
425          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
426          */
427         while (!mapping_unevictable(mapping)) {
428                 /*
429                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
430                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
431                  */
432                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
433                                         PAGEVEC_SIZE, pvec.pages, indices);
434                 if (!pvec.nr)
435                         break;
436                 index = indices[pvec.nr - 1] + 1;
437                 shmem_deswap_pagevec(&pvec);
438                 check_move_unevictable_pages(pvec.pages, pvec.nr);
439                 pagevec_release(&pvec);
440                 cond_resched();
441         }
442 }
443
444 /*
445  * Remove range of pages and swap entries from radix tree, and free them.
446  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
447  */
448 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
449                                                                  bool unfalloc)
450 {
451         struct address_space *mapping = inode->i_mapping;
452         struct shmem_inode_info *info = SHMEM_I(inode);
453         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
454         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
455         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
456         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
457         struct pagevec pvec;
458         pgoff_t indices[PAGEVEC_SIZE];
459         long nr_swaps_freed = 0;
460         pgoff_t index;
461         int i;
462
463         if (lend == -1)
464                 end = -1;       /* unsigned, so actually very big */
465
466         pagevec_init(&pvec, 0);
467         index = start;
468         while (index < end) {
469                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
470                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
471                                                         pvec.pages, indices);
472                 if (!pvec.nr)
473                         break;
474                 mem_cgroup_uncharge_start();
475                 for (i = 0; i < pagevec_count(&pvec); i++) {
476                         struct page *page = pvec.pages[i];
477
478                         index = indices[i];
479                         if (index >= end)
480                                 break;
481
482                         if (radix_tree_exceptional_entry(page)) {
483                                 if (unfalloc)
484                                         continue;
485                                 nr_swaps_freed += !shmem_free_swap(mapping,
486                                                                 index, page);
487                                 continue;
488                         }
489
490                         if (!trylock_page(page))
491                                 continue;
492                         if (!unfalloc || !PageUptodate(page)) {
493                                 if (page->mapping == mapping) {
494                                         VM_BUG_ON(PageWriteback(page));
495                                         truncate_inode_page(mapping, page);
496                                 }
497                         }
498                         unlock_page(page);
499                 }
500                 shmem_deswap_pagevec(&pvec);
501                 pagevec_release(&pvec);
502                 mem_cgroup_uncharge_end();
503                 cond_resched();
504                 index++;
505         }
506
507         if (partial_start) {
508                 struct page *page = NULL;
509                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
510                 if (page) {
511                         unsigned int top = PAGE_CACHE_SIZE;
512                         if (start > end) {
513                                 top = partial_end;
514                                 partial_end = 0;
515                         }
516                         zero_user_segment(page, partial_start, top);
517                         set_page_dirty(page);
518                         unlock_page(page);
519                         page_cache_release(page);
520                 }
521         }
522         if (partial_end) {
523                 struct page *page = NULL;
524                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
525                 if (page) {
526                         zero_user_segment(page, 0, partial_end);
527                         set_page_dirty(page);
528                         unlock_page(page);
529                         page_cache_release(page);
530                 }
531         }
532         if (start >= end)
533                 return;
534
535         index = start;
536         for ( ; ; ) {
537                 cond_resched();
538                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
539                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
540                                                         pvec.pages, indices);
541                 if (!pvec.nr) {
542                         if (index == start || unfalloc)
543                                 break;
544                         index = start;
545                         continue;
546                 }
547                 if ((index == start || unfalloc) && indices[0] >= end) {
548                         shmem_deswap_pagevec(&pvec);
549                         pagevec_release(&pvec);
550                         break;
551                 }
552                 mem_cgroup_uncharge_start();
553                 for (i = 0; i < pagevec_count(&pvec); i++) {
554                         struct page *page = pvec.pages[i];
555
556                         index = indices[i];
557                         if (index >= end)
558                                 break;
559
560                         if (radix_tree_exceptional_entry(page)) {
561                                 if (unfalloc)
562                                         continue;
563                                 nr_swaps_freed += !shmem_free_swap(mapping,
564                                                                 index, page);
565                                 continue;
566                         }
567
568                         lock_page(page);
569                         if (!unfalloc || !PageUptodate(page)) {
570                                 if (page->mapping == mapping) {
571                                         VM_BUG_ON(PageWriteback(page));
572                                         truncate_inode_page(mapping, page);
573                                 }
574                         }
575                         unlock_page(page);
576                 }
577                 shmem_deswap_pagevec(&pvec);
578                 pagevec_release(&pvec);
579                 mem_cgroup_uncharge_end();
580                 index++;
581         }
582
583         spin_lock(&info->lock);
584         info->swapped -= nr_swaps_freed;
585         shmem_recalc_inode(inode);
586         spin_unlock(&info->lock);
587 }
588
589 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
590 {
591         shmem_undo_range(inode, lstart, lend, false);
592         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
593 }
594 EXPORT_SYMBOL_GPL(shmem_truncate_range);
595
596 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
597 {
598         struct inode *inode = dentry->d_inode;
599         int error;
600
601         error = inode_change_ok(inode, attr);
602         if (error)
603                 return error;
604
605         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
606                 loff_t oldsize = inode->i_size;
607                 loff_t newsize = attr->ia_size;
608
609                 if (newsize != oldsize) {
610                         i_size_write(inode, newsize);
611                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
612                 }
613                 if (newsize < oldsize) {
614                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
615                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616                         shmem_truncate_range(inode, newsize, (loff_t)-1);
617                         /* unmap again to remove racily COWed private pages */
618                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
619                 }
620         }
621
622         setattr_copy(inode, attr);
623 #ifdef CONFIG_TMPFS_POSIX_ACL
624         if (attr->ia_valid & ATTR_MODE)
625                 error = generic_acl_chmod(inode);
626 #endif
627         return error;
628 }
629
630 static void shmem_evict_inode(struct inode *inode)
631 {
632         struct shmem_inode_info *info = SHMEM_I(inode);
633
634         if (inode->i_mapping->a_ops == &shmem_aops) {
635                 shmem_unacct_size(info->flags, inode->i_size);
636                 inode->i_size = 0;
637                 shmem_truncate_range(inode, 0, (loff_t)-1);
638                 if (!list_empty(&info->swaplist)) {
639                         mutex_lock(&shmem_swaplist_mutex);
640                         list_del_init(&info->swaplist);
641                         mutex_unlock(&shmem_swaplist_mutex);
642                 }
643         } else
644                 kfree(info->symlink);
645
646         simple_xattrs_free(&info->xattrs);
647         WARN_ON(inode->i_blocks);
648         shmem_free_inode(inode->i_sb);
649         clear_inode(inode);
650 }
651
652 /*
653  * If swap found in inode, free it and move page from swapcache to filecache.
654  */
655 static int shmem_unuse_inode(struct shmem_inode_info *info,
656                              swp_entry_t swap, struct page **pagep)
657 {
658         struct address_space *mapping = info->vfs_inode.i_mapping;
659         void *radswap;
660         pgoff_t index;
661         gfp_t gfp;
662         int error = 0;
663
664         radswap = swp_to_radix_entry(swap);
665         index = radix_tree_locate_item(&mapping->page_tree, radswap);
666         if (index == -1)
667                 return 0;
668
669         /*
670          * Move _head_ to start search for next from here.
671          * But be careful: shmem_evict_inode checks list_empty without taking
672          * mutex, and there's an instant in list_move_tail when info->swaplist
673          * would appear empty, if it were the only one on shmem_swaplist.
674          */
675         if (shmem_swaplist.next != &info->swaplist)
676                 list_move_tail(&shmem_swaplist, &info->swaplist);
677
678         gfp = mapping_gfp_mask(mapping);
679         if (shmem_should_replace_page(*pagep, gfp)) {
680                 mutex_unlock(&shmem_swaplist_mutex);
681                 error = shmem_replace_page(pagep, gfp, info, index);
682                 mutex_lock(&shmem_swaplist_mutex);
683                 /*
684                  * We needed to drop mutex to make that restrictive page
685                  * allocation, but the inode might have been freed while we
686                  * dropped it: although a racing shmem_evict_inode() cannot
687                  * complete without emptying the radix_tree, our page lock
688                  * on this swapcache page is not enough to prevent that -
689                  * free_swap_and_cache() of our swap entry will only
690                  * trylock_page(), removing swap from radix_tree whatever.
691                  *
692                  * We must not proceed to shmem_add_to_page_cache() if the
693                  * inode has been freed, but of course we cannot rely on
694                  * inode or mapping or info to check that.  However, we can
695                  * safely check if our swap entry is still in use (and here
696                  * it can't have got reused for another page): if it's still
697                  * in use, then the inode cannot have been freed yet, and we
698                  * can safely proceed (if it's no longer in use, that tells
699                  * nothing about the inode, but we don't need to unuse swap).
700                  */
701                 if (!page_swapcount(*pagep))
702                         error = -ENOENT;
703         }
704
705         /*
706          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
707          * but also to hold up shmem_evict_inode(): so inode cannot be freed
708          * beneath us (pagelock doesn't help until the page is in pagecache).
709          */
710         if (!error)
711                 error = shmem_add_to_page_cache(*pagep, mapping, index,
712                                                 GFP_NOWAIT, radswap);
713         if (error != -ENOMEM) {
714                 /*
715                  * Truncation and eviction use free_swap_and_cache(), which
716                  * only does trylock page: if we raced, best clean up here.
717                  */
718                 delete_from_swap_cache(*pagep);
719                 set_page_dirty(*pagep);
720                 if (!error) {
721                         spin_lock(&info->lock);
722                         info->swapped--;
723                         spin_unlock(&info->lock);
724                         swap_free(swap);
725                 }
726                 error = 1;      /* not an error, but entry was found */
727         }
728         return error;
729 }
730
731 /*
732  * Search through swapped inodes to find and replace swap by page.
733  */
734 int shmem_unuse(swp_entry_t swap, struct page *page)
735 {
736         struct list_head *this, *next;
737         struct shmem_inode_info *info;
738         int found = 0;
739         int error = 0;
740
741         /*
742          * There's a faint possibility that swap page was replaced before
743          * caller locked it: caller will come back later with the right page.
744          */
745         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
746                 goto out;
747
748         /*
749          * Charge page using GFP_KERNEL while we can wait, before taking
750          * the shmem_swaplist_mutex which might hold up shmem_writepage().
751          * Charged back to the user (not to caller) when swap account is used.
752          */
753         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
754         if (error)
755                 goto out;
756         /* No radix_tree_preload: swap entry keeps a place for page in tree */
757
758         mutex_lock(&shmem_swaplist_mutex);
759         list_for_each_safe(this, next, &shmem_swaplist) {
760                 info = list_entry(this, struct shmem_inode_info, swaplist);
761                 if (info->swapped)
762                         found = shmem_unuse_inode(info, swap, &page);
763                 else
764                         list_del_init(&info->swaplist);
765                 cond_resched();
766                 if (found)
767                         break;
768         }
769         mutex_unlock(&shmem_swaplist_mutex);
770
771         if (found < 0)
772                 error = found;
773 out:
774         unlock_page(page);
775         page_cache_release(page);
776         return error;
777 }
778
779 /*
780  * Move the page from the page cache to the swap cache.
781  */
782 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
783 {
784         struct shmem_inode_info *info;
785         struct address_space *mapping;
786         struct inode *inode;
787         swp_entry_t swap;
788         pgoff_t index;
789
790         BUG_ON(!PageLocked(page));
791         mapping = page->mapping;
792         index = page->index;
793         inode = mapping->host;
794         info = SHMEM_I(inode);
795         if (info->flags & VM_LOCKED)
796                 goto redirty;
797         if (!total_swap_pages)
798                 goto redirty;
799
800         /*
801          * shmem_backing_dev_info's capabilities prevent regular writeback or
802          * sync from ever calling shmem_writepage; but a stacking filesystem
803          * might use ->writepage of its underlying filesystem, in which case
804          * tmpfs should write out to swap only in response to memory pressure,
805          * and not for the writeback threads or sync.
806          */
807         if (!wbc->for_reclaim) {
808                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
809                 goto redirty;
810         }
811
812         /*
813          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
814          * value into swapfile.c, the only way we can correctly account for a
815          * fallocated page arriving here is now to initialize it and write it.
816          *
817          * That's okay for a page already fallocated earlier, but if we have
818          * not yet completed the fallocation, then (a) we want to keep track
819          * of this page in case we have to undo it, and (b) it may not be a
820          * good idea to continue anyway, once we're pushing into swap.  So
821          * reactivate the page, and let shmem_fallocate() quit when too many.
822          */
823         if (!PageUptodate(page)) {
824                 if (inode->i_private) {
825                         struct shmem_falloc *shmem_falloc;
826                         spin_lock(&inode->i_lock);
827                         shmem_falloc = inode->i_private;
828                         if (shmem_falloc &&
829                             index >= shmem_falloc->start &&
830                             index < shmem_falloc->next)
831                                 shmem_falloc->nr_unswapped++;
832                         else
833                                 shmem_falloc = NULL;
834                         spin_unlock(&inode->i_lock);
835                         if (shmem_falloc)
836                                 goto redirty;
837                 }
838                 clear_highpage(page);
839                 flush_dcache_page(page);
840                 SetPageUptodate(page);
841         }
842
843         swap = get_swap_page();
844         if (!swap.val)
845                 goto redirty;
846
847         /*
848          * Add inode to shmem_unuse()'s list of swapped-out inodes,
849          * if it's not already there.  Do it now before the page is
850          * moved to swap cache, when its pagelock no longer protects
851          * the inode from eviction.  But don't unlock the mutex until
852          * we've incremented swapped, because shmem_unuse_inode() will
853          * prune a !swapped inode from the swaplist under this mutex.
854          */
855         mutex_lock(&shmem_swaplist_mutex);
856         if (list_empty(&info->swaplist))
857                 list_add_tail(&info->swaplist, &shmem_swaplist);
858
859         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
860                 swap_shmem_alloc(swap);
861                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
862
863                 spin_lock(&info->lock);
864                 info->swapped++;
865                 shmem_recalc_inode(inode);
866                 spin_unlock(&info->lock);
867
868                 mutex_unlock(&shmem_swaplist_mutex);
869                 BUG_ON(page_mapped(page));
870                 swap_writepage(page, wbc);
871                 return 0;
872         }
873
874         mutex_unlock(&shmem_swaplist_mutex);
875         swapcache_free(swap, NULL);
876 redirty:
877         set_page_dirty(page);
878         if (wbc->for_reclaim)
879                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
880         unlock_page(page);
881         return 0;
882 }
883
884 #ifdef CONFIG_NUMA
885 #ifdef CONFIG_TMPFS
886 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
887 {
888         char buffer[64];
889
890         if (!mpol || mpol->mode == MPOL_DEFAULT)
891                 return;         /* show nothing */
892
893         mpol_to_str(buffer, sizeof(buffer), mpol);
894
895         seq_printf(seq, ",mpol=%s", buffer);
896 }
897
898 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
899 {
900         struct mempolicy *mpol = NULL;
901         if (sbinfo->mpol) {
902                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
903                 mpol = sbinfo->mpol;
904                 mpol_get(mpol);
905                 spin_unlock(&sbinfo->stat_lock);
906         }
907         return mpol;
908 }
909 #endif /* CONFIG_TMPFS */
910
911 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
912                         struct shmem_inode_info *info, pgoff_t index)
913 {
914         struct vm_area_struct pvma;
915         struct page *page;
916
917         /* Create a pseudo vma that just contains the policy */
918         pvma.vm_start = 0;
919         /* Bias interleave by inode number to distribute better across nodes */
920         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
921         pvma.vm_ops = NULL;
922         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
923
924         page = swapin_readahead(swap, gfp, &pvma, 0);
925
926         /* Drop reference taken by mpol_shared_policy_lookup() */
927         mpol_cond_put(pvma.vm_policy);
928
929         return page;
930 }
931
932 static struct page *shmem_alloc_page(gfp_t gfp,
933                         struct shmem_inode_info *info, pgoff_t index)
934 {
935         struct vm_area_struct pvma;
936         struct page *page;
937
938         /* Create a pseudo vma that just contains the policy */
939         pvma.vm_start = 0;
940         /* Bias interleave by inode number to distribute better across nodes */
941         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
942         pvma.vm_ops = NULL;
943         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
944
945         page = alloc_page_vma(gfp, &pvma, 0);
946
947         /* Drop reference taken by mpol_shared_policy_lookup() */
948         mpol_cond_put(pvma.vm_policy);
949
950         return page;
951 }
952 #else /* !CONFIG_NUMA */
953 #ifdef CONFIG_TMPFS
954 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
955 {
956 }
957 #endif /* CONFIG_TMPFS */
958
959 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
960                         struct shmem_inode_info *info, pgoff_t index)
961 {
962         return swapin_readahead(swap, gfp, NULL, 0);
963 }
964
965 static inline struct page *shmem_alloc_page(gfp_t gfp,
966                         struct shmem_inode_info *info, pgoff_t index)
967 {
968         return alloc_page(gfp);
969 }
970 #endif /* CONFIG_NUMA */
971
972 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
973 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
974 {
975         return NULL;
976 }
977 #endif
978
979 /*
980  * When a page is moved from swapcache to shmem filecache (either by the
981  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
982  * shmem_unuse_inode()), it may have been read in earlier from swap, in
983  * ignorance of the mapping it belongs to.  If that mapping has special
984  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
985  * we may need to copy to a suitable page before moving to filecache.
986  *
987  * In a future release, this may well be extended to respect cpuset and
988  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
989  * but for now it is a simple matter of zone.
990  */
991 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
992 {
993         return page_zonenum(page) > gfp_zone(gfp);
994 }
995
996 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
997                                 struct shmem_inode_info *info, pgoff_t index)
998 {
999         struct page *oldpage, *newpage;
1000         struct address_space *swap_mapping;
1001         pgoff_t swap_index;
1002         int error;
1003
1004         oldpage = *pagep;
1005         swap_index = page_private(oldpage);
1006         swap_mapping = page_mapping(oldpage);
1007
1008         /*
1009          * We have arrived here because our zones are constrained, so don't
1010          * limit chance of success by further cpuset and node constraints.
1011          */
1012         gfp &= ~GFP_CONSTRAINT_MASK;
1013         newpage = shmem_alloc_page(gfp, info, index);
1014         if (!newpage)
1015                 return -ENOMEM;
1016
1017         page_cache_get(newpage);
1018         copy_highpage(newpage, oldpage);
1019         flush_dcache_page(newpage);
1020
1021         __set_page_locked(newpage);
1022         SetPageUptodate(newpage);
1023         SetPageSwapBacked(newpage);
1024         set_page_private(newpage, swap_index);
1025         SetPageSwapCache(newpage);
1026
1027         /*
1028          * Our caller will very soon move newpage out of swapcache, but it's
1029          * a nice clean interface for us to replace oldpage by newpage there.
1030          */
1031         spin_lock_irq(&swap_mapping->tree_lock);
1032         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1033                                                                    newpage);
1034         if (!error) {
1035                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1036                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1037         }
1038         spin_unlock_irq(&swap_mapping->tree_lock);
1039
1040         if (unlikely(error)) {
1041                 /*
1042                  * Is this possible?  I think not, now that our callers check
1043                  * both PageSwapCache and page_private after getting page lock;
1044                  * but be defensive.  Reverse old to newpage for clear and free.
1045                  */
1046                 oldpage = newpage;
1047         } else {
1048                 mem_cgroup_replace_page_cache(oldpage, newpage);
1049                 lru_cache_add_anon(newpage);
1050                 *pagep = newpage;
1051         }
1052
1053         ClearPageSwapCache(oldpage);
1054         set_page_private(oldpage, 0);
1055
1056         unlock_page(oldpage);
1057         page_cache_release(oldpage);
1058         page_cache_release(oldpage);
1059         return error;
1060 }
1061
1062 /*
1063  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1064  *
1065  * If we allocate a new one we do not mark it dirty. That's up to the
1066  * vm. If we swap it in we mark it dirty since we also free the swap
1067  * entry since a page cannot live in both the swap and page cache
1068  */
1069 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1070         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1071 {
1072         struct address_space *mapping = inode->i_mapping;
1073         struct shmem_inode_info *info;
1074         struct shmem_sb_info *sbinfo;
1075         struct page *page;
1076         swp_entry_t swap;
1077         int error;
1078         int once = 0;
1079         int alloced = 0;
1080
1081         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1082                 return -EFBIG;
1083 repeat:
1084         swap.val = 0;
1085         page = find_lock_page(mapping, index);
1086         if (radix_tree_exceptional_entry(page)) {
1087                 swap = radix_to_swp_entry(page);
1088                 page = NULL;
1089         }
1090
1091         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1092             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1093                 error = -EINVAL;
1094                 goto failed;
1095         }
1096
1097         /* fallocated page? */
1098         if (page && !PageUptodate(page)) {
1099                 if (sgp != SGP_READ)
1100                         goto clear;
1101                 unlock_page(page);
1102                 page_cache_release(page);
1103                 page = NULL;
1104         }
1105         if (page || (sgp == SGP_READ && !swap.val)) {
1106                 *pagep = page;
1107                 return 0;
1108         }
1109
1110         /*
1111          * Fast cache lookup did not find it:
1112          * bring it back from swap or allocate.
1113          */
1114         info = SHMEM_I(inode);
1115         sbinfo = SHMEM_SB(inode->i_sb);
1116
1117         if (swap.val) {
1118                 /* Look it up and read it in.. */
1119                 page = lookup_swap_cache(swap);
1120                 if (!page) {
1121                         /* here we actually do the io */
1122                         if (fault_type)
1123                                 *fault_type |= VM_FAULT_MAJOR;
1124                         page = shmem_swapin(swap, gfp, info, index);
1125                         if (!page) {
1126                                 error = -ENOMEM;
1127                                 goto failed;
1128                         }
1129                 }
1130
1131                 /* We have to do this with page locked to prevent races */
1132                 lock_page(page);
1133                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1134                     !shmem_confirm_swap(mapping, index, swap)) {
1135                         error = -EEXIST;        /* try again */
1136                         goto unlock;
1137                 }
1138                 if (!PageUptodate(page)) {
1139                         error = -EIO;
1140                         goto failed;
1141                 }
1142                 wait_on_page_writeback(page);
1143
1144                 if (shmem_should_replace_page(page, gfp)) {
1145                         error = shmem_replace_page(&page, gfp, info, index);
1146                         if (error)
1147                                 goto failed;
1148                 }
1149
1150                 error = mem_cgroup_cache_charge(page, current->mm,
1151                                                 gfp & GFP_RECLAIM_MASK);
1152                 if (!error) {
1153                         error = shmem_add_to_page_cache(page, mapping, index,
1154                                                 gfp, swp_to_radix_entry(swap));
1155                         /*
1156                          * We already confirmed swap under page lock, and make
1157                          * no memory allocation here, so usually no possibility
1158                          * of error; but free_swap_and_cache() only trylocks a
1159                          * page, so it is just possible that the entry has been
1160                          * truncated or holepunched since swap was confirmed.
1161                          * shmem_undo_range() will have done some of the
1162                          * unaccounting, now delete_from_swap_cache() will do
1163                          * the rest (including mem_cgroup_uncharge_swapcache).
1164                          * Reset swap.val? No, leave it so "failed" goes back to
1165                          * "repeat": reading a hole and writing should succeed.
1166                          */
1167                         if (error)
1168                                 delete_from_swap_cache(page);
1169                 }
1170                 if (error)
1171                         goto failed;
1172
1173                 spin_lock(&info->lock);
1174                 info->swapped--;
1175                 shmem_recalc_inode(inode);
1176                 spin_unlock(&info->lock);
1177
1178                 delete_from_swap_cache(page);
1179                 set_page_dirty(page);
1180                 swap_free(swap);
1181
1182         } else {
1183                 if (shmem_acct_block(info->flags)) {
1184                         error = -ENOSPC;
1185                         goto failed;
1186                 }
1187                 if (sbinfo->max_blocks) {
1188                         if (percpu_counter_compare(&sbinfo->used_blocks,
1189                                                 sbinfo->max_blocks) >= 0) {
1190                                 error = -ENOSPC;
1191                                 goto unacct;
1192                         }
1193                         percpu_counter_inc(&sbinfo->used_blocks);
1194                 }
1195
1196                 page = shmem_alloc_page(gfp, info, index);
1197                 if (!page) {
1198                         error = -ENOMEM;
1199                         goto decused;
1200                 }
1201
1202                 SetPageSwapBacked(page);
1203                 __set_page_locked(page);
1204                 error = mem_cgroup_cache_charge(page, current->mm,
1205                                                 gfp & GFP_RECLAIM_MASK);
1206                 if (error)
1207                         goto decused;
1208                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1209                 if (!error) {
1210                         error = shmem_add_to_page_cache(page, mapping, index,
1211                                                         gfp, NULL);
1212                         radix_tree_preload_end();
1213                 }
1214                 if (error) {
1215                         mem_cgroup_uncharge_cache_page(page);
1216                         goto decused;
1217                 }
1218                 lru_cache_add_anon(page);
1219
1220                 spin_lock(&info->lock);
1221                 info->alloced++;
1222                 inode->i_blocks += BLOCKS_PER_PAGE;
1223                 shmem_recalc_inode(inode);
1224                 spin_unlock(&info->lock);
1225                 alloced = true;
1226
1227                 /*
1228                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1229                  */
1230                 if (sgp == SGP_FALLOC)
1231                         sgp = SGP_WRITE;
1232 clear:
1233                 /*
1234                  * Let SGP_WRITE caller clear ends if write does not fill page;
1235                  * but SGP_FALLOC on a page fallocated earlier must initialize
1236                  * it now, lest undo on failure cancel our earlier guarantee.
1237                  */
1238                 if (sgp != SGP_WRITE) {
1239                         clear_highpage(page);
1240                         flush_dcache_page(page);
1241                         SetPageUptodate(page);
1242                 }
1243                 if (sgp == SGP_DIRTY)
1244                         set_page_dirty(page);
1245         }
1246
1247         /* Perhaps the file has been truncated since we checked */
1248         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1249             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1250                 error = -EINVAL;
1251                 if (alloced)
1252                         goto trunc;
1253                 else
1254                         goto failed;
1255         }
1256         *pagep = page;
1257         return 0;
1258
1259         /*
1260          * Error recovery.
1261          */
1262 trunc:
1263         info = SHMEM_I(inode);
1264         ClearPageDirty(page);
1265         delete_from_page_cache(page);
1266         spin_lock(&info->lock);
1267         info->alloced--;
1268         inode->i_blocks -= BLOCKS_PER_PAGE;
1269         spin_unlock(&info->lock);
1270 decused:
1271         sbinfo = SHMEM_SB(inode->i_sb);
1272         if (sbinfo->max_blocks)
1273                 percpu_counter_add(&sbinfo->used_blocks, -1);
1274 unacct:
1275         shmem_unacct_blocks(info->flags, 1);
1276 failed:
1277         if (swap.val && error != -EINVAL &&
1278             !shmem_confirm_swap(mapping, index, swap))
1279                 error = -EEXIST;
1280 unlock:
1281         if (page) {
1282                 unlock_page(page);
1283                 page_cache_release(page);
1284         }
1285         if (error == -ENOSPC && !once++) {
1286                 info = SHMEM_I(inode);
1287                 spin_lock(&info->lock);
1288                 shmem_recalc_inode(inode);
1289                 spin_unlock(&info->lock);
1290                 goto repeat;
1291         }
1292         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1293                 goto repeat;
1294         return error;
1295 }
1296
1297 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1298 {
1299         struct inode *inode = file_inode(vma->vm_file);
1300         int error;
1301         int ret = VM_FAULT_LOCKED;
1302
1303         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1304         if (error)
1305                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1306
1307         if (ret & VM_FAULT_MAJOR) {
1308                 count_vm_event(PGMAJFAULT);
1309                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1310         }
1311         return ret;
1312 }
1313
1314 #ifdef CONFIG_NUMA
1315 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1316 {
1317         struct inode *inode = file_inode(vma->vm_file);
1318         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1319 }
1320
1321 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1322                                           unsigned long addr)
1323 {
1324         struct inode *inode = file_inode(vma->vm_file);
1325         pgoff_t index;
1326
1327         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1328         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1329 }
1330 #endif
1331
1332 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1333 {
1334         struct inode *inode = file_inode(file);
1335         struct shmem_inode_info *info = SHMEM_I(inode);
1336         int retval = -ENOMEM;
1337
1338         spin_lock(&info->lock);
1339         if (lock && !(info->flags & VM_LOCKED)) {
1340                 if (!user_shm_lock(inode->i_size, user))
1341                         goto out_nomem;
1342                 info->flags |= VM_LOCKED;
1343                 mapping_set_unevictable(file->f_mapping);
1344         }
1345         if (!lock && (info->flags & VM_LOCKED) && user) {
1346                 user_shm_unlock(inode->i_size, user);
1347                 info->flags &= ~VM_LOCKED;
1348                 mapping_clear_unevictable(file->f_mapping);
1349         }
1350         retval = 0;
1351
1352 out_nomem:
1353         spin_unlock(&info->lock);
1354         return retval;
1355 }
1356
1357 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1358 {
1359         file_accessed(file);
1360         vma->vm_ops = &shmem_vm_ops;
1361         return 0;
1362 }
1363
1364 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1365                                      umode_t mode, dev_t dev, unsigned long flags)
1366 {
1367         struct inode *inode;
1368         struct shmem_inode_info *info;
1369         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1370
1371         if (shmem_reserve_inode(sb))
1372                 return NULL;
1373
1374         inode = new_inode(sb);
1375         if (inode) {
1376                 inode->i_ino = get_next_ino();
1377                 inode_init_owner(inode, dir, mode);
1378                 inode->i_blocks = 0;
1379                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1380                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1381                 inode->i_generation = get_seconds();
1382                 info = SHMEM_I(inode);
1383                 memset(info, 0, (char *)inode - (char *)info);
1384                 spin_lock_init(&info->lock);
1385                 info->flags = flags & VM_NORESERVE;
1386                 INIT_LIST_HEAD(&info->swaplist);
1387                 simple_xattrs_init(&info->xattrs);
1388                 cache_no_acl(inode);
1389
1390                 switch (mode & S_IFMT) {
1391                 default:
1392                         inode->i_op = &shmem_special_inode_operations;
1393                         init_special_inode(inode, mode, dev);
1394                         break;
1395                 case S_IFREG:
1396                         inode->i_mapping->a_ops = &shmem_aops;
1397                         inode->i_op = &shmem_inode_operations;
1398                         inode->i_fop = &shmem_file_operations;
1399                         mpol_shared_policy_init(&info->policy,
1400                                                  shmem_get_sbmpol(sbinfo));
1401                         break;
1402                 case S_IFDIR:
1403                         inc_nlink(inode);
1404                         /* Some things misbehave if size == 0 on a directory */
1405                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1406                         inode->i_op = &shmem_dir_inode_operations;
1407                         inode->i_fop = &simple_dir_operations;
1408                         break;
1409                 case S_IFLNK:
1410                         /*
1411                          * Must not load anything in the rbtree,
1412                          * mpol_free_shared_policy will not be called.
1413                          */
1414                         mpol_shared_policy_init(&info->policy, NULL);
1415                         break;
1416                 }
1417         } else
1418                 shmem_free_inode(sb);
1419         return inode;
1420 }
1421
1422 #ifdef CONFIG_TMPFS
1423 static const struct inode_operations shmem_symlink_inode_operations;
1424 static const struct inode_operations shmem_short_symlink_operations;
1425
1426 #ifdef CONFIG_TMPFS_XATTR
1427 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1428 #else
1429 #define shmem_initxattrs NULL
1430 #endif
1431
1432 static int
1433 shmem_write_begin(struct file *file, struct address_space *mapping,
1434                         loff_t pos, unsigned len, unsigned flags,
1435                         struct page **pagep, void **fsdata)
1436 {
1437         struct inode *inode = mapping->host;
1438         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1439         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1440 }
1441
1442 static int
1443 shmem_write_end(struct file *file, struct address_space *mapping,
1444                         loff_t pos, unsigned len, unsigned copied,
1445                         struct page *page, void *fsdata)
1446 {
1447         struct inode *inode = mapping->host;
1448
1449         if (pos + copied > inode->i_size)
1450                 i_size_write(inode, pos + copied);
1451
1452         if (!PageUptodate(page)) {
1453                 if (copied < PAGE_CACHE_SIZE) {
1454                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1455                         zero_user_segments(page, 0, from,
1456                                         from + copied, PAGE_CACHE_SIZE);
1457                 }
1458                 SetPageUptodate(page);
1459         }
1460         set_page_dirty(page);
1461         unlock_page(page);
1462         page_cache_release(page);
1463
1464         return copied;
1465 }
1466
1467 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1468 {
1469         struct inode *inode = file_inode(filp);
1470         struct address_space *mapping = inode->i_mapping;
1471         pgoff_t index;
1472         unsigned long offset;
1473         enum sgp_type sgp = SGP_READ;
1474
1475         /*
1476          * Might this read be for a stacking filesystem?  Then when reading
1477          * holes of a sparse file, we actually need to allocate those pages,
1478          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1479          */
1480         if (segment_eq(get_fs(), KERNEL_DS))
1481                 sgp = SGP_DIRTY;
1482
1483         index = *ppos >> PAGE_CACHE_SHIFT;
1484         offset = *ppos & ~PAGE_CACHE_MASK;
1485
1486         for (;;) {
1487                 struct page *page = NULL;
1488                 pgoff_t end_index;
1489                 unsigned long nr, ret;
1490                 loff_t i_size = i_size_read(inode);
1491
1492                 end_index = i_size >> PAGE_CACHE_SHIFT;
1493                 if (index > end_index)
1494                         break;
1495                 if (index == end_index) {
1496                         nr = i_size & ~PAGE_CACHE_MASK;
1497                         if (nr <= offset)
1498                                 break;
1499                 }
1500
1501                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1502                 if (desc->error) {
1503                         if (desc->error == -EINVAL)
1504                                 desc->error = 0;
1505                         break;
1506                 }
1507                 if (page)
1508                         unlock_page(page);
1509
1510                 /*
1511                  * We must evaluate after, since reads (unlike writes)
1512                  * are called without i_mutex protection against truncate
1513                  */
1514                 nr = PAGE_CACHE_SIZE;
1515                 i_size = i_size_read(inode);
1516                 end_index = i_size >> PAGE_CACHE_SHIFT;
1517                 if (index == end_index) {
1518                         nr = i_size & ~PAGE_CACHE_MASK;
1519                         if (nr <= offset) {
1520                                 if (page)
1521                                         page_cache_release(page);
1522                                 break;
1523                         }
1524                 }
1525                 nr -= offset;
1526
1527                 if (page) {
1528                         /*
1529                          * If users can be writing to this page using arbitrary
1530                          * virtual addresses, take care about potential aliasing
1531                          * before reading the page on the kernel side.
1532                          */
1533                         if (mapping_writably_mapped(mapping))
1534                                 flush_dcache_page(page);
1535                         /*
1536                          * Mark the page accessed if we read the beginning.
1537                          */
1538                         if (!offset)
1539                                 mark_page_accessed(page);
1540                 } else {
1541                         page = ZERO_PAGE(0);
1542                         page_cache_get(page);
1543                 }
1544
1545                 /*
1546                  * Ok, we have the page, and it's up-to-date, so
1547                  * now we can copy it to user space...
1548                  *
1549                  * The actor routine returns how many bytes were actually used..
1550                  * NOTE! This may not be the same as how much of a user buffer
1551                  * we filled up (we may be padding etc), so we can only update
1552                  * "pos" here (the actor routine has to update the user buffer
1553                  * pointers and the remaining count).
1554                  */
1555                 ret = actor(desc, page, offset, nr);
1556                 offset += ret;
1557                 index += offset >> PAGE_CACHE_SHIFT;
1558                 offset &= ~PAGE_CACHE_MASK;
1559
1560                 page_cache_release(page);
1561                 if (ret != nr || !desc->count)
1562                         break;
1563
1564                 cond_resched();
1565         }
1566
1567         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1568         file_accessed(filp);
1569 }
1570
1571 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1572                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1573 {
1574         struct file *filp = iocb->ki_filp;
1575         ssize_t retval;
1576         unsigned long seg;
1577         size_t count;
1578         loff_t *ppos = &iocb->ki_pos;
1579
1580         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1581         if (retval)
1582                 return retval;
1583
1584         for (seg = 0; seg < nr_segs; seg++) {
1585                 read_descriptor_t desc;
1586
1587                 desc.written = 0;
1588                 desc.arg.buf = iov[seg].iov_base;
1589                 desc.count = iov[seg].iov_len;
1590                 if (desc.count == 0)
1591                         continue;
1592                 desc.error = 0;
1593                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1594                 retval += desc.written;
1595                 if (desc.error) {
1596                         retval = retval ?: desc.error;
1597                         break;
1598                 }
1599                 if (desc.count > 0)
1600                         break;
1601         }
1602         return retval;
1603 }
1604
1605 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1606                                 struct pipe_inode_info *pipe, size_t len,
1607                                 unsigned int flags)
1608 {
1609         struct address_space *mapping = in->f_mapping;
1610         struct inode *inode = mapping->host;
1611         unsigned int loff, nr_pages, req_pages;
1612         struct page *pages[PIPE_DEF_BUFFERS];
1613         struct partial_page partial[PIPE_DEF_BUFFERS];
1614         struct page *page;
1615         pgoff_t index, end_index;
1616         loff_t isize, left;
1617         int error, page_nr;
1618         struct splice_pipe_desc spd = {
1619                 .pages = pages,
1620                 .partial = partial,
1621                 .nr_pages_max = PIPE_DEF_BUFFERS,
1622                 .flags = flags,
1623                 .ops = &page_cache_pipe_buf_ops,
1624                 .spd_release = spd_release_page,
1625         };
1626
1627         isize = i_size_read(inode);
1628         if (unlikely(*ppos >= isize))
1629                 return 0;
1630
1631         left = isize - *ppos;
1632         if (unlikely(left < len))
1633                 len = left;
1634
1635         if (splice_grow_spd(pipe, &spd))
1636                 return -ENOMEM;
1637
1638         index = *ppos >> PAGE_CACHE_SHIFT;
1639         loff = *ppos & ~PAGE_CACHE_MASK;
1640         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1641         nr_pages = min(req_pages, pipe->buffers);
1642
1643         spd.nr_pages = find_get_pages_contig(mapping, index,
1644                                                 nr_pages, spd.pages);
1645         index += spd.nr_pages;
1646         error = 0;
1647
1648         while (spd.nr_pages < nr_pages) {
1649                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1650                 if (error)
1651                         break;
1652                 unlock_page(page);
1653                 spd.pages[spd.nr_pages++] = page;
1654                 index++;
1655         }
1656
1657         index = *ppos >> PAGE_CACHE_SHIFT;
1658         nr_pages = spd.nr_pages;
1659         spd.nr_pages = 0;
1660
1661         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1662                 unsigned int this_len;
1663
1664                 if (!len)
1665                         break;
1666
1667                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1668                 page = spd.pages[page_nr];
1669
1670                 if (!PageUptodate(page) || page->mapping != mapping) {
1671                         error = shmem_getpage(inode, index, &page,
1672                                                         SGP_CACHE, NULL);
1673                         if (error)
1674                                 break;
1675                         unlock_page(page);
1676                         page_cache_release(spd.pages[page_nr]);
1677                         spd.pages[page_nr] = page;
1678                 }
1679
1680                 isize = i_size_read(inode);
1681                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1682                 if (unlikely(!isize || index > end_index))
1683                         break;
1684
1685                 if (end_index == index) {
1686                         unsigned int plen;
1687
1688                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1689                         if (plen <= loff)
1690                                 break;
1691
1692                         this_len = min(this_len, plen - loff);
1693                         len = this_len;
1694                 }
1695
1696                 spd.partial[page_nr].offset = loff;
1697                 spd.partial[page_nr].len = this_len;
1698                 len -= this_len;
1699                 loff = 0;
1700                 spd.nr_pages++;
1701                 index++;
1702         }
1703
1704         while (page_nr < nr_pages)
1705                 page_cache_release(spd.pages[page_nr++]);
1706
1707         if (spd.nr_pages)
1708                 error = splice_to_pipe(pipe, &spd);
1709
1710         splice_shrink_spd(&spd);
1711
1712         if (error > 0) {
1713                 *ppos += error;
1714                 file_accessed(in);
1715         }
1716         return error;
1717 }
1718
1719 /*
1720  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1721  */
1722 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1723                                     pgoff_t index, pgoff_t end, int whence)
1724 {
1725         struct page *page;
1726         struct pagevec pvec;
1727         pgoff_t indices[PAGEVEC_SIZE];
1728         bool done = false;
1729         int i;
1730
1731         pagevec_init(&pvec, 0);
1732         pvec.nr = 1;            /* start small: we may be there already */
1733         while (!done) {
1734                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1735                                         pvec.nr, pvec.pages, indices);
1736                 if (!pvec.nr) {
1737                         if (whence == SEEK_DATA)
1738                                 index = end;
1739                         break;
1740                 }
1741                 for (i = 0; i < pvec.nr; i++, index++) {
1742                         if (index < indices[i]) {
1743                                 if (whence == SEEK_HOLE) {
1744                                         done = true;
1745                                         break;
1746                                 }
1747                                 index = indices[i];
1748                         }
1749                         page = pvec.pages[i];
1750                         if (page && !radix_tree_exceptional_entry(page)) {
1751                                 if (!PageUptodate(page))
1752                                         page = NULL;
1753                         }
1754                         if (index >= end ||
1755                             (page && whence == SEEK_DATA) ||
1756                             (!page && whence == SEEK_HOLE)) {
1757                                 done = true;
1758                                 break;
1759                         }
1760                 }
1761                 shmem_deswap_pagevec(&pvec);
1762                 pagevec_release(&pvec);
1763                 pvec.nr = PAGEVEC_SIZE;
1764                 cond_resched();
1765         }
1766         return index;
1767 }
1768
1769 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1770 {
1771         struct address_space *mapping = file->f_mapping;
1772         struct inode *inode = mapping->host;
1773         pgoff_t start, end;
1774         loff_t new_offset;
1775
1776         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1777                 return generic_file_llseek_size(file, offset, whence,
1778                                         MAX_LFS_FILESIZE, i_size_read(inode));
1779         mutex_lock(&inode->i_mutex);
1780         /* We're holding i_mutex so we can access i_size directly */
1781
1782         if (offset < 0)
1783                 offset = -EINVAL;
1784         else if (offset >= inode->i_size)
1785                 offset = -ENXIO;
1786         else {
1787                 start = offset >> PAGE_CACHE_SHIFT;
1788                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1789                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1790                 new_offset <<= PAGE_CACHE_SHIFT;
1791                 if (new_offset > offset) {
1792                         if (new_offset < inode->i_size)
1793                                 offset = new_offset;
1794                         else if (whence == SEEK_DATA)
1795                                 offset = -ENXIO;
1796                         else
1797                                 offset = inode->i_size;
1798                 }
1799         }
1800
1801         if (offset >= 0)
1802                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1803         mutex_unlock(&inode->i_mutex);
1804         return offset;
1805 }
1806
1807 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1808                                                          loff_t len)
1809 {
1810         struct inode *inode = file_inode(file);
1811         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1812         struct shmem_falloc shmem_falloc;
1813         pgoff_t start, index, end;
1814         int error;
1815
1816         mutex_lock(&inode->i_mutex);
1817
1818         if (mode & FALLOC_FL_PUNCH_HOLE) {
1819                 struct address_space *mapping = file->f_mapping;
1820                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1821                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1822
1823                 if ((u64)unmap_end > (u64)unmap_start)
1824                         unmap_mapping_range(mapping, unmap_start,
1825                                             1 + unmap_end - unmap_start, 0);
1826                 shmem_truncate_range(inode, offset, offset + len - 1);
1827                 /* No need to unmap again: hole-punching leaves COWed pages */
1828                 error = 0;
1829                 goto out;
1830         }
1831
1832         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1833         error = inode_newsize_ok(inode, offset + len);
1834         if (error)
1835                 goto out;
1836
1837         start = offset >> PAGE_CACHE_SHIFT;
1838         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1839         /* Try to avoid a swapstorm if len is impossible to satisfy */
1840         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1841                 error = -ENOSPC;
1842                 goto out;
1843         }
1844
1845         shmem_falloc.start = start;
1846         shmem_falloc.next  = start;
1847         shmem_falloc.nr_falloced = 0;
1848         shmem_falloc.nr_unswapped = 0;
1849         spin_lock(&inode->i_lock);
1850         inode->i_private = &shmem_falloc;
1851         spin_unlock(&inode->i_lock);
1852
1853         for (index = start; index < end; index++) {
1854                 struct page *page;
1855
1856                 /*
1857                  * Good, the fallocate(2) manpage permits EINTR: we may have
1858                  * been interrupted because we are using up too much memory.
1859                  */
1860                 if (signal_pending(current))
1861                         error = -EINTR;
1862                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1863                         error = -ENOMEM;
1864                 else
1865                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1866                                                                         NULL);
1867                 if (error) {
1868                         /* Remove the !PageUptodate pages we added */
1869                         shmem_undo_range(inode,
1870                                 (loff_t)start << PAGE_CACHE_SHIFT,
1871                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1872                         goto undone;
1873                 }
1874
1875                 /*
1876                  * Inform shmem_writepage() how far we have reached.
1877                  * No need for lock or barrier: we have the page lock.
1878                  */
1879                 shmem_falloc.next++;
1880                 if (!PageUptodate(page))
1881                         shmem_falloc.nr_falloced++;
1882
1883                 /*
1884                  * If !PageUptodate, leave it that way so that freeable pages
1885                  * can be recognized if we need to rollback on error later.
1886                  * But set_page_dirty so that memory pressure will swap rather
1887                  * than free the pages we are allocating (and SGP_CACHE pages
1888                  * might still be clean: we now need to mark those dirty too).
1889                  */
1890                 set_page_dirty(page);
1891                 unlock_page(page);
1892                 page_cache_release(page);
1893                 cond_resched();
1894         }
1895
1896         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1897                 i_size_write(inode, offset + len);
1898         inode->i_ctime = CURRENT_TIME;
1899 undone:
1900         spin_lock(&inode->i_lock);
1901         inode->i_private = NULL;
1902         spin_unlock(&inode->i_lock);
1903 out:
1904         mutex_unlock(&inode->i_mutex);
1905         return error;
1906 }
1907
1908 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1909 {
1910         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1911
1912         buf->f_type = TMPFS_MAGIC;
1913         buf->f_bsize = PAGE_CACHE_SIZE;
1914         buf->f_namelen = NAME_MAX;
1915         if (sbinfo->max_blocks) {
1916                 buf->f_blocks = sbinfo->max_blocks;
1917                 buf->f_bavail =
1918                 buf->f_bfree  = sbinfo->max_blocks -
1919                                 percpu_counter_sum(&sbinfo->used_blocks);
1920         }
1921         if (sbinfo->max_inodes) {
1922                 buf->f_files = sbinfo->max_inodes;
1923                 buf->f_ffree = sbinfo->free_inodes;
1924         }
1925         /* else leave those fields 0 like simple_statfs */
1926         return 0;
1927 }
1928
1929 /*
1930  * File creation. Allocate an inode, and we're done..
1931  */
1932 static int
1933 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1934 {
1935         struct inode *inode;
1936         int error = -ENOSPC;
1937
1938         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1939         if (inode) {
1940 #ifdef CONFIG_TMPFS_POSIX_ACL
1941                 error = generic_acl_init(inode, dir);
1942                 if (error) {
1943                         iput(inode);
1944                         return error;
1945                 }
1946 #endif
1947                 error = security_inode_init_security(inode, dir,
1948                                                      &dentry->d_name,
1949                                                      shmem_initxattrs, NULL);
1950                 if (error) {
1951                         if (error != -EOPNOTSUPP) {
1952                                 iput(inode);
1953                                 return error;
1954                         }
1955                 }
1956
1957                 error = 0;
1958                 dir->i_size += BOGO_DIRENT_SIZE;
1959                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1960                 d_instantiate(dentry, inode);
1961                 dget(dentry); /* Extra count - pin the dentry in core */
1962         }
1963         return error;
1964 }
1965
1966 static int
1967 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1968 {
1969         struct inode *inode;
1970         int error = -ENOSPC;
1971
1972         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1973         if (inode) {
1974                 error = security_inode_init_security(inode, dir,
1975                                                      NULL,
1976                                                      shmem_initxattrs, NULL);
1977                 if (error) {
1978                         if (error != -EOPNOTSUPP) {
1979                                 iput(inode);
1980                                 return error;
1981                         }
1982                 }
1983 #ifdef CONFIG_TMPFS_POSIX_ACL
1984                 error = generic_acl_init(inode, dir);
1985                 if (error) {
1986                         iput(inode);
1987                         return error;
1988                 }
1989 #else
1990                 error = 0;
1991 #endif
1992                 d_tmpfile(dentry, inode);
1993         }
1994         return error;
1995 }
1996
1997 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1998 {
1999         int error;
2000
2001         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2002                 return error;
2003         inc_nlink(dir);
2004         return 0;
2005 }
2006
2007 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2008                 bool excl)
2009 {
2010         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2011 }
2012
2013 /*
2014  * Link a file..
2015  */
2016 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2017 {
2018         struct inode *inode = old_dentry->d_inode;
2019         int ret;
2020
2021         /*
2022          * No ordinary (disk based) filesystem counts links as inodes;
2023          * but each new link needs a new dentry, pinning lowmem, and
2024          * tmpfs dentries cannot be pruned until they are unlinked.
2025          */
2026         ret = shmem_reserve_inode(inode->i_sb);
2027         if (ret)
2028                 goto out;
2029
2030         dir->i_size += BOGO_DIRENT_SIZE;
2031         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2032         inc_nlink(inode);
2033         ihold(inode);   /* New dentry reference */
2034         dget(dentry);           /* Extra pinning count for the created dentry */
2035         d_instantiate(dentry, inode);
2036 out:
2037         return ret;
2038 }
2039
2040 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2041 {
2042         struct inode *inode = dentry->d_inode;
2043
2044         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2045                 shmem_free_inode(inode->i_sb);
2046
2047         dir->i_size -= BOGO_DIRENT_SIZE;
2048         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2049         drop_nlink(inode);
2050         dput(dentry);   /* Undo the count from "create" - this does all the work */
2051         return 0;
2052 }
2053
2054 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2055 {
2056         if (!simple_empty(dentry))
2057                 return -ENOTEMPTY;
2058
2059         drop_nlink(dentry->d_inode);
2060         drop_nlink(dir);
2061         return shmem_unlink(dir, dentry);
2062 }
2063
2064 /*
2065  * The VFS layer already does all the dentry stuff for rename,
2066  * we just have to decrement the usage count for the target if
2067  * it exists so that the VFS layer correctly free's it when it
2068  * gets overwritten.
2069  */
2070 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2071 {
2072         struct inode *inode = old_dentry->d_inode;
2073         int they_are_dirs = S_ISDIR(inode->i_mode);
2074
2075         if (!simple_empty(new_dentry))
2076                 return -ENOTEMPTY;
2077
2078         if (new_dentry->d_inode) {
2079                 (void) shmem_unlink(new_dir, new_dentry);
2080                 if (they_are_dirs)
2081                         drop_nlink(old_dir);
2082         } else if (they_are_dirs) {
2083                 drop_nlink(old_dir);
2084                 inc_nlink(new_dir);
2085         }
2086
2087         old_dir->i_size -= BOGO_DIRENT_SIZE;
2088         new_dir->i_size += BOGO_DIRENT_SIZE;
2089         old_dir->i_ctime = old_dir->i_mtime =
2090         new_dir->i_ctime = new_dir->i_mtime =
2091         inode->i_ctime = CURRENT_TIME;
2092         return 0;
2093 }
2094
2095 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2096 {
2097         int error;
2098         int len;
2099         struct inode *inode;
2100         struct page *page;
2101         char *kaddr;
2102         struct shmem_inode_info *info;
2103
2104         len = strlen(symname) + 1;
2105         if (len > PAGE_CACHE_SIZE)
2106                 return -ENAMETOOLONG;
2107
2108         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2109         if (!inode)
2110                 return -ENOSPC;
2111
2112         error = security_inode_init_security(inode, dir, &dentry->d_name,
2113                                              shmem_initxattrs, NULL);
2114         if (error) {
2115                 if (error != -EOPNOTSUPP) {
2116                         iput(inode);
2117                         return error;
2118                 }
2119                 error = 0;
2120         }
2121
2122         info = SHMEM_I(inode);
2123         inode->i_size = len-1;
2124         if (len <= SHORT_SYMLINK_LEN) {
2125                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2126                 if (!info->symlink) {
2127                         iput(inode);
2128                         return -ENOMEM;
2129                 }
2130                 inode->i_op = &shmem_short_symlink_operations;
2131         } else {
2132                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2133                 if (error) {
2134                         iput(inode);
2135                         return error;
2136                 }
2137                 inode->i_mapping->a_ops = &shmem_aops;
2138                 inode->i_op = &shmem_symlink_inode_operations;
2139                 kaddr = kmap_atomic(page);
2140                 memcpy(kaddr, symname, len);
2141                 kunmap_atomic(kaddr);
2142                 SetPageUptodate(page);
2143                 set_page_dirty(page);
2144                 unlock_page(page);
2145                 page_cache_release(page);
2146         }
2147         dir->i_size += BOGO_DIRENT_SIZE;
2148         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2149         d_instantiate(dentry, inode);
2150         dget(dentry);
2151         return 0;
2152 }
2153
2154 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2155 {
2156         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2157         return NULL;
2158 }
2159
2160 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2161 {
2162         struct page *page = NULL;
2163         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2164         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2165         if (page)
2166                 unlock_page(page);
2167         return page;
2168 }
2169
2170 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2171 {
2172         if (!IS_ERR(nd_get_link(nd))) {
2173                 struct page *page = cookie;
2174                 kunmap(page);
2175                 mark_page_accessed(page);
2176                 page_cache_release(page);
2177         }
2178 }
2179
2180 #ifdef CONFIG_TMPFS_XATTR
2181 /*
2182  * Superblocks without xattr inode operations may get some security.* xattr
2183  * support from the LSM "for free". As soon as we have any other xattrs
2184  * like ACLs, we also need to implement the security.* handlers at
2185  * filesystem level, though.
2186  */
2187
2188 /*
2189  * Callback for security_inode_init_security() for acquiring xattrs.
2190  */
2191 static int shmem_initxattrs(struct inode *inode,
2192                             const struct xattr *xattr_array,
2193                             void *fs_info)
2194 {
2195         struct shmem_inode_info *info = SHMEM_I(inode);
2196         const struct xattr *xattr;
2197         struct simple_xattr *new_xattr;
2198         size_t len;
2199
2200         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2201                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2202                 if (!new_xattr)
2203                         return -ENOMEM;
2204
2205                 len = strlen(xattr->name) + 1;
2206                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2207                                           GFP_KERNEL);
2208                 if (!new_xattr->name) {
2209                         kfree(new_xattr);
2210                         return -ENOMEM;
2211                 }
2212
2213                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2214                        XATTR_SECURITY_PREFIX_LEN);
2215                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2216                        xattr->name, len);
2217
2218                 simple_xattr_list_add(&info->xattrs, new_xattr);
2219         }
2220
2221         return 0;
2222 }
2223
2224 static const struct xattr_handler *shmem_xattr_handlers[] = {
2225 #ifdef CONFIG_TMPFS_POSIX_ACL
2226         &generic_acl_access_handler,
2227         &generic_acl_default_handler,
2228 #endif
2229         NULL
2230 };
2231
2232 static int shmem_xattr_validate(const char *name)
2233 {
2234         struct { const char *prefix; size_t len; } arr[] = {
2235                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2236                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2237         };
2238         int i;
2239
2240         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2241                 size_t preflen = arr[i].len;
2242                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2243                         if (!name[preflen])
2244                                 return -EINVAL;
2245                         return 0;
2246                 }
2247         }
2248         return -EOPNOTSUPP;
2249 }
2250
2251 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2252                               void *buffer, size_t size)
2253 {
2254         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2255         int err;
2256
2257         /*
2258          * If this is a request for a synthetic attribute in the system.*
2259          * namespace use the generic infrastructure to resolve a handler
2260          * for it via sb->s_xattr.
2261          */
2262         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2263                 return generic_getxattr(dentry, name, buffer, size);
2264
2265         err = shmem_xattr_validate(name);
2266         if (err)
2267                 return err;
2268
2269         return simple_xattr_get(&info->xattrs, name, buffer, size);
2270 }
2271
2272 static int shmem_setxattr(struct dentry *dentry, const char *name,
2273                           const void *value, size_t size, int flags)
2274 {
2275         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2276         int err;
2277
2278         /*
2279          * If this is a request for a synthetic attribute in the system.*
2280          * namespace use the generic infrastructure to resolve a handler
2281          * for it via sb->s_xattr.
2282          */
2283         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2284                 return generic_setxattr(dentry, name, value, size, flags);
2285
2286         err = shmem_xattr_validate(name);
2287         if (err)
2288                 return err;
2289
2290         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2291 }
2292
2293 static int shmem_removexattr(struct dentry *dentry, const char *name)
2294 {
2295         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2296         int err;
2297
2298         /*
2299          * If this is a request for a synthetic attribute in the system.*
2300          * namespace use the generic infrastructure to resolve a handler
2301          * for it via sb->s_xattr.
2302          */
2303         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2304                 return generic_removexattr(dentry, name);
2305
2306         err = shmem_xattr_validate(name);
2307         if (err)
2308                 return err;
2309
2310         return simple_xattr_remove(&info->xattrs, name);
2311 }
2312
2313 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2314 {
2315         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2316         return simple_xattr_list(&info->xattrs, buffer, size);
2317 }
2318 #endif /* CONFIG_TMPFS_XATTR */
2319
2320 static const struct inode_operations shmem_short_symlink_operations = {
2321         .readlink       = generic_readlink,
2322         .follow_link    = shmem_follow_short_symlink,
2323 #ifdef CONFIG_TMPFS_XATTR
2324         .setxattr       = shmem_setxattr,
2325         .getxattr       = shmem_getxattr,
2326         .listxattr      = shmem_listxattr,
2327         .removexattr    = shmem_removexattr,
2328 #endif
2329 };
2330
2331 static const struct inode_operations shmem_symlink_inode_operations = {
2332         .readlink       = generic_readlink,
2333         .follow_link    = shmem_follow_link,
2334         .put_link       = shmem_put_link,
2335 #ifdef CONFIG_TMPFS_XATTR
2336         .setxattr       = shmem_setxattr,
2337         .getxattr       = shmem_getxattr,
2338         .listxattr      = shmem_listxattr,
2339         .removexattr    = shmem_removexattr,
2340 #endif
2341 };
2342
2343 static struct dentry *shmem_get_parent(struct dentry *child)
2344 {
2345         return ERR_PTR(-ESTALE);
2346 }
2347
2348 static int shmem_match(struct inode *ino, void *vfh)
2349 {
2350         __u32 *fh = vfh;
2351         __u64 inum = fh[2];
2352         inum = (inum << 32) | fh[1];
2353         return ino->i_ino == inum && fh[0] == ino->i_generation;
2354 }
2355
2356 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2357                 struct fid *fid, int fh_len, int fh_type)
2358 {
2359         struct inode *inode;
2360         struct dentry *dentry = NULL;
2361         u64 inum;
2362
2363         if (fh_len < 3)
2364                 return NULL;
2365
2366         inum = fid->raw[2];
2367         inum = (inum << 32) | fid->raw[1];
2368
2369         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2370                         shmem_match, fid->raw);
2371         if (inode) {
2372                 dentry = d_find_alias(inode);
2373                 iput(inode);
2374         }
2375
2376         return dentry;
2377 }
2378
2379 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2380                                 struct inode *parent)
2381 {
2382         if (*len < 3) {
2383                 *len = 3;
2384                 return FILEID_INVALID;
2385         }
2386
2387         if (inode_unhashed(inode)) {
2388                 /* Unfortunately insert_inode_hash is not idempotent,
2389                  * so as we hash inodes here rather than at creation
2390                  * time, we need a lock to ensure we only try
2391                  * to do it once
2392                  */
2393                 static DEFINE_SPINLOCK(lock);
2394                 spin_lock(&lock);
2395                 if (inode_unhashed(inode))
2396                         __insert_inode_hash(inode,
2397                                             inode->i_ino + inode->i_generation);
2398                 spin_unlock(&lock);
2399         }
2400
2401         fh[0] = inode->i_generation;
2402         fh[1] = inode->i_ino;
2403         fh[2] = ((__u64)inode->i_ino) >> 32;
2404
2405         *len = 3;
2406         return 1;
2407 }
2408
2409 static const struct export_operations shmem_export_ops = {
2410         .get_parent     = shmem_get_parent,
2411         .encode_fh      = shmem_encode_fh,
2412         .fh_to_dentry   = shmem_fh_to_dentry,
2413 };
2414
2415 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2416                                bool remount)
2417 {
2418         char *this_char, *value, *rest;
2419         struct mempolicy *mpol = NULL;
2420         uid_t uid;
2421         gid_t gid;
2422
2423         while (options != NULL) {
2424                 this_char = options;
2425                 for (;;) {
2426                         /*
2427                          * NUL-terminate this option: unfortunately,
2428                          * mount options form a comma-separated list,
2429                          * but mpol's nodelist may also contain commas.
2430                          */
2431                         options = strchr(options, ',');
2432                         if (options == NULL)
2433                                 break;
2434                         options++;
2435                         if (!isdigit(*options)) {
2436                                 options[-1] = '\0';
2437                                 break;
2438                         }
2439                 }
2440                 if (!*this_char)
2441                         continue;
2442                 if ((value = strchr(this_char,'=')) != NULL) {
2443                         *value++ = 0;
2444                 } else {
2445                         printk(KERN_ERR
2446                             "tmpfs: No value for mount option '%s'\n",
2447                             this_char);
2448                         goto error;
2449                 }
2450
2451                 if (!strcmp(this_char,"size")) {
2452                         unsigned long long size;
2453                         size = memparse(value,&rest);
2454                         if (*rest == '%') {
2455                                 size <<= PAGE_SHIFT;
2456                                 size *= totalram_pages;
2457                                 do_div(size, 100);
2458                                 rest++;
2459                         }
2460                         if (*rest)
2461                                 goto bad_val;
2462                         sbinfo->max_blocks =
2463                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2464                 } else if (!strcmp(this_char,"nr_blocks")) {
2465                         sbinfo->max_blocks = memparse(value, &rest);
2466                         if (*rest)
2467                                 goto bad_val;
2468                 } else if (!strcmp(this_char,"nr_inodes")) {
2469                         sbinfo->max_inodes = memparse(value, &rest);
2470                         if (*rest)
2471                                 goto bad_val;
2472                 } else if (!strcmp(this_char,"mode")) {
2473                         if (remount)
2474                                 continue;
2475                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2476                         if (*rest)
2477                                 goto bad_val;
2478                 } else if (!strcmp(this_char,"uid")) {
2479                         if (remount)
2480                                 continue;
2481                         uid = simple_strtoul(value, &rest, 0);
2482                         if (*rest)
2483                                 goto bad_val;
2484                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2485                         if (!uid_valid(sbinfo->uid))
2486                                 goto bad_val;
2487                 } else if (!strcmp(this_char,"gid")) {
2488                         if (remount)
2489                                 continue;
2490                         gid = simple_strtoul(value, &rest, 0);
2491                         if (*rest)
2492                                 goto bad_val;
2493                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2494                         if (!gid_valid(sbinfo->gid))
2495                                 goto bad_val;
2496                 } else if (!strcmp(this_char,"mpol")) {
2497                         mpol_put(mpol);
2498                         mpol = NULL;
2499                         if (mpol_parse_str(value, &mpol))
2500                                 goto bad_val;
2501                 } else {
2502                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2503                                this_char);
2504                         goto error;
2505                 }
2506         }
2507         sbinfo->mpol = mpol;
2508         return 0;
2509
2510 bad_val:
2511         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2512                value, this_char);
2513 error:
2514         mpol_put(mpol);
2515         return 1;
2516
2517 }
2518
2519 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2520 {
2521         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2522         struct shmem_sb_info config = *sbinfo;
2523         unsigned long inodes;
2524         int error = -EINVAL;
2525
2526         config.mpol = NULL;
2527         if (shmem_parse_options(data, &config, true))
2528                 return error;
2529
2530         spin_lock(&sbinfo->stat_lock);
2531         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2532         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2533                 goto out;
2534         if (config.max_inodes < inodes)
2535                 goto out;
2536         /*
2537          * Those tests disallow limited->unlimited while any are in use;
2538          * but we must separately disallow unlimited->limited, because
2539          * in that case we have no record of how much is already in use.
2540          */
2541         if (config.max_blocks && !sbinfo->max_blocks)
2542                 goto out;
2543         if (config.max_inodes && !sbinfo->max_inodes)
2544                 goto out;
2545
2546         error = 0;
2547         sbinfo->max_blocks  = config.max_blocks;
2548         sbinfo->max_inodes  = config.max_inodes;
2549         sbinfo->free_inodes = config.max_inodes - inodes;
2550
2551         /*
2552          * Preserve previous mempolicy unless mpol remount option was specified.
2553          */
2554         if (config.mpol) {
2555                 mpol_put(sbinfo->mpol);
2556                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2557         }
2558 out:
2559         spin_unlock(&sbinfo->stat_lock);
2560         return error;
2561 }
2562
2563 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2564 {
2565         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2566
2567         if (sbinfo->max_blocks != shmem_default_max_blocks())
2568                 seq_printf(seq, ",size=%luk",
2569                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2570         if (sbinfo->max_inodes != shmem_default_max_inodes())
2571                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2572         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2573                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2574         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2575                 seq_printf(seq, ",uid=%u",
2576                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2577         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2578                 seq_printf(seq, ",gid=%u",
2579                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2580         shmem_show_mpol(seq, sbinfo->mpol);
2581         return 0;
2582 }
2583 #endif /* CONFIG_TMPFS */
2584
2585 static void shmem_put_super(struct super_block *sb)
2586 {
2587         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2588
2589         percpu_counter_destroy(&sbinfo->used_blocks);
2590         mpol_put(sbinfo->mpol);
2591         kfree(sbinfo);
2592         sb->s_fs_info = NULL;
2593 }
2594
2595 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2596 {
2597         struct inode *inode;
2598         struct shmem_sb_info *sbinfo;
2599         int err = -ENOMEM;
2600
2601         /* Round up to L1_CACHE_BYTES to resist false sharing */
2602         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2603                                 L1_CACHE_BYTES), GFP_KERNEL);
2604         if (!sbinfo)
2605                 return -ENOMEM;
2606
2607         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2608         sbinfo->uid = current_fsuid();
2609         sbinfo->gid = current_fsgid();
2610         sb->s_fs_info = sbinfo;
2611
2612 #ifdef CONFIG_TMPFS
2613         /*
2614          * Per default we only allow half of the physical ram per
2615          * tmpfs instance, limiting inodes to one per page of lowmem;
2616          * but the internal instance is left unlimited.
2617          */
2618         if (!(sb->s_flags & MS_KERNMOUNT)) {
2619                 sbinfo->max_blocks = shmem_default_max_blocks();
2620                 sbinfo->max_inodes = shmem_default_max_inodes();
2621                 if (shmem_parse_options(data, sbinfo, false)) {
2622                         err = -EINVAL;
2623                         goto failed;
2624                 }
2625         } else {
2626                 sb->s_flags |= MS_NOUSER;
2627         }
2628         sb->s_export_op = &shmem_export_ops;
2629         sb->s_flags |= MS_NOSEC;
2630 #else
2631         sb->s_flags |= MS_NOUSER;
2632 #endif
2633
2634         spin_lock_init(&sbinfo->stat_lock);
2635         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2636                 goto failed;
2637         sbinfo->free_inodes = sbinfo->max_inodes;
2638
2639         sb->s_maxbytes = MAX_LFS_FILESIZE;
2640         sb->s_blocksize = PAGE_CACHE_SIZE;
2641         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2642         sb->s_magic = TMPFS_MAGIC;
2643         sb->s_op = &shmem_ops;
2644         sb->s_time_gran = 1;
2645 #ifdef CONFIG_TMPFS_XATTR
2646         sb->s_xattr = shmem_xattr_handlers;
2647 #endif
2648 #ifdef CONFIG_TMPFS_POSIX_ACL
2649         sb->s_flags |= MS_POSIXACL;
2650 #endif
2651
2652         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2653         if (!inode)
2654                 goto failed;
2655         inode->i_uid = sbinfo->uid;
2656         inode->i_gid = sbinfo->gid;
2657         sb->s_root = d_make_root(inode);
2658         if (!sb->s_root)
2659                 goto failed;
2660         return 0;
2661
2662 failed:
2663         shmem_put_super(sb);
2664         return err;
2665 }
2666
2667 static struct kmem_cache *shmem_inode_cachep;
2668
2669 static struct inode *shmem_alloc_inode(struct super_block *sb)
2670 {
2671         struct shmem_inode_info *info;
2672         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2673         if (!info)
2674                 return NULL;
2675         return &info->vfs_inode;
2676 }
2677
2678 static void shmem_destroy_callback(struct rcu_head *head)
2679 {
2680         struct inode *inode = container_of(head, struct inode, i_rcu);
2681         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2682 }
2683
2684 static void shmem_destroy_inode(struct inode *inode)
2685 {
2686         if (S_ISREG(inode->i_mode))
2687                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2688         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2689 }
2690
2691 static void shmem_init_inode(void *foo)
2692 {
2693         struct shmem_inode_info *info = foo;
2694         inode_init_once(&info->vfs_inode);
2695 }
2696
2697 static int shmem_init_inodecache(void)
2698 {
2699         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2700                                 sizeof(struct shmem_inode_info),
2701                                 0, SLAB_PANIC, shmem_init_inode);
2702         return 0;
2703 }
2704
2705 static void shmem_destroy_inodecache(void)
2706 {
2707         kmem_cache_destroy(shmem_inode_cachep);
2708 }
2709
2710 static const struct address_space_operations shmem_aops = {
2711         .writepage      = shmem_writepage,
2712         .set_page_dirty = __set_page_dirty_no_writeback,
2713 #ifdef CONFIG_TMPFS
2714         .write_begin    = shmem_write_begin,
2715         .write_end      = shmem_write_end,
2716 #endif
2717         .migratepage    = migrate_page,
2718         .error_remove_page = generic_error_remove_page,
2719 };
2720
2721 static const struct file_operations shmem_file_operations = {
2722         .mmap           = shmem_mmap,
2723 #ifdef CONFIG_TMPFS
2724         .llseek         = shmem_file_llseek,
2725         .read           = do_sync_read,
2726         .write          = do_sync_write,
2727         .aio_read       = shmem_file_aio_read,
2728         .aio_write      = generic_file_aio_write,
2729         .fsync          = noop_fsync,
2730         .splice_read    = shmem_file_splice_read,
2731         .splice_write   = generic_file_splice_write,
2732         .fallocate      = shmem_fallocate,
2733 #endif
2734 };
2735
2736 static const struct inode_operations shmem_inode_operations = {
2737         .setattr        = shmem_setattr,
2738 #ifdef CONFIG_TMPFS_XATTR
2739         .setxattr       = shmem_setxattr,
2740         .getxattr       = shmem_getxattr,
2741         .listxattr      = shmem_listxattr,
2742         .removexattr    = shmem_removexattr,
2743 #endif
2744 };
2745
2746 static const struct inode_operations shmem_dir_inode_operations = {
2747 #ifdef CONFIG_TMPFS
2748         .create         = shmem_create,
2749         .lookup         = simple_lookup,
2750         .link           = shmem_link,
2751         .unlink         = shmem_unlink,
2752         .symlink        = shmem_symlink,
2753         .mkdir          = shmem_mkdir,
2754         .rmdir          = shmem_rmdir,
2755         .mknod          = shmem_mknod,
2756         .rename         = shmem_rename,
2757         .tmpfile        = shmem_tmpfile,
2758 #endif
2759 #ifdef CONFIG_TMPFS_XATTR
2760         .setxattr       = shmem_setxattr,
2761         .getxattr       = shmem_getxattr,
2762         .listxattr      = shmem_listxattr,
2763         .removexattr    = shmem_removexattr,
2764 #endif
2765 #ifdef CONFIG_TMPFS_POSIX_ACL
2766         .setattr        = shmem_setattr,
2767 #endif
2768 };
2769
2770 static const struct inode_operations shmem_special_inode_operations = {
2771 #ifdef CONFIG_TMPFS_XATTR
2772         .setxattr       = shmem_setxattr,
2773         .getxattr       = shmem_getxattr,
2774         .listxattr      = shmem_listxattr,
2775         .removexattr    = shmem_removexattr,
2776 #endif
2777 #ifdef CONFIG_TMPFS_POSIX_ACL
2778         .setattr        = shmem_setattr,
2779 #endif
2780 };
2781
2782 static const struct super_operations shmem_ops = {
2783         .alloc_inode    = shmem_alloc_inode,
2784         .destroy_inode  = shmem_destroy_inode,
2785 #ifdef CONFIG_TMPFS
2786         .statfs         = shmem_statfs,
2787         .remount_fs     = shmem_remount_fs,
2788         .show_options   = shmem_show_options,
2789 #endif
2790         .evict_inode    = shmem_evict_inode,
2791         .drop_inode     = generic_delete_inode,
2792         .put_super      = shmem_put_super,
2793 };
2794
2795 static const struct vm_operations_struct shmem_vm_ops = {
2796         .fault          = shmem_fault,
2797 #ifdef CONFIG_NUMA
2798         .set_policy     = shmem_set_policy,
2799         .get_policy     = shmem_get_policy,
2800 #endif
2801         .remap_pages    = generic_file_remap_pages,
2802 };
2803
2804 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2805         int flags, const char *dev_name, void *data)
2806 {
2807         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2808 }
2809
2810 static struct file_system_type shmem_fs_type = {
2811         .owner          = THIS_MODULE,
2812         .name           = "tmpfs",
2813         .mount          = shmem_mount,
2814         .kill_sb        = kill_litter_super,
2815         .fs_flags       = FS_USERNS_MOUNT,
2816 };
2817
2818 int __init shmem_init(void)
2819 {
2820         int error;
2821
2822         /* If rootfs called this, don't re-init */
2823         if (shmem_inode_cachep)
2824                 return 0;
2825
2826         error = bdi_init(&shmem_backing_dev_info);
2827         if (error)
2828                 goto out4;
2829
2830         error = shmem_init_inodecache();
2831         if (error)
2832                 goto out3;
2833
2834         error = register_filesystem(&shmem_fs_type);
2835         if (error) {
2836                 printk(KERN_ERR "Could not register tmpfs\n");
2837                 goto out2;
2838         }
2839
2840         shm_mnt = kern_mount(&shmem_fs_type);
2841         if (IS_ERR(shm_mnt)) {
2842                 error = PTR_ERR(shm_mnt);
2843                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2844                 goto out1;
2845         }
2846         return 0;
2847
2848 out1:
2849         unregister_filesystem(&shmem_fs_type);
2850 out2:
2851         shmem_destroy_inodecache();
2852 out3:
2853         bdi_destroy(&shmem_backing_dev_info);
2854 out4:
2855         shm_mnt = ERR_PTR(error);
2856         return error;
2857 }
2858
2859 #else /* !CONFIG_SHMEM */
2860
2861 /*
2862  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2863  *
2864  * This is intended for small system where the benefits of the full
2865  * shmem code (swap-backed and resource-limited) are outweighed by
2866  * their complexity. On systems without swap this code should be
2867  * effectively equivalent, but much lighter weight.
2868  */
2869
2870 static struct file_system_type shmem_fs_type = {
2871         .name           = "tmpfs",
2872         .mount          = ramfs_mount,
2873         .kill_sb        = kill_litter_super,
2874         .fs_flags       = FS_USERNS_MOUNT,
2875 };
2876
2877 int __init shmem_init(void)
2878 {
2879         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2880
2881         shm_mnt = kern_mount(&shmem_fs_type);
2882         BUG_ON(IS_ERR(shm_mnt));
2883
2884         return 0;
2885 }
2886
2887 int shmem_unuse(swp_entry_t swap, struct page *page)
2888 {
2889         return 0;
2890 }
2891
2892 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2893 {
2894         return 0;
2895 }
2896
2897 void shmem_unlock_mapping(struct address_space *mapping)
2898 {
2899 }
2900
2901 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2902 {
2903         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2904 }
2905 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2906
2907 #define shmem_vm_ops                            generic_file_vm_ops
2908 #define shmem_file_operations                   ramfs_file_operations
2909 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2910 #define shmem_acct_size(flags, size)            0
2911 #define shmem_unacct_size(flags, size)          do {} while (0)
2912
2913 #endif /* CONFIG_SHMEM */
2914
2915 /* common code */
2916
2917 static struct dentry_operations anon_ops = {
2918         .d_dname = simple_dname
2919 };
2920
2921 /**
2922  * shmem_file_setup - get an unlinked file living in tmpfs
2923  * @name: name for dentry (to be seen in /proc/<pid>/maps
2924  * @size: size to be set for the file
2925  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2926  */
2927 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2928 {
2929         struct file *res;
2930         struct inode *inode;
2931         struct path path;
2932         struct super_block *sb;
2933         struct qstr this;
2934
2935         if (IS_ERR(shm_mnt))
2936                 return ERR_CAST(shm_mnt);
2937
2938         if (size < 0 || size > MAX_LFS_FILESIZE)
2939                 return ERR_PTR(-EINVAL);
2940
2941         if (shmem_acct_size(flags, size))
2942                 return ERR_PTR(-ENOMEM);
2943
2944         res = ERR_PTR(-ENOMEM);
2945         this.name = name;
2946         this.len = strlen(name);
2947         this.hash = 0; /* will go */
2948         sb = shm_mnt->mnt_sb;
2949         path.dentry = d_alloc_pseudo(sb, &this);
2950         if (!path.dentry)
2951                 goto put_memory;
2952         d_set_d_op(path.dentry, &anon_ops);
2953         path.mnt = mntget(shm_mnt);
2954
2955         res = ERR_PTR(-ENOSPC);
2956         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2957         if (!inode)
2958                 goto put_dentry;
2959
2960         d_instantiate(path.dentry, inode);
2961         inode->i_size = size;
2962         clear_nlink(inode);     /* It is unlinked */
2963         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2964         if (IS_ERR(res))
2965                 goto put_dentry;
2966
2967         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2968                   &shmem_file_operations);
2969         if (IS_ERR(res))
2970                 goto put_dentry;
2971
2972         return res;
2973
2974 put_dentry:
2975         path_put(&path);
2976 put_memory:
2977         shmem_unacct_size(flags, size);
2978         return res;
2979 }
2980 EXPORT_SYMBOL_GPL(shmem_file_setup);
2981
2982 /**
2983  * shmem_zero_setup - setup a shared anonymous mapping
2984  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2985  */
2986 int shmem_zero_setup(struct vm_area_struct *vma)
2987 {
2988         struct file *file;
2989         loff_t size = vma->vm_end - vma->vm_start;
2990
2991         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2992         if (IS_ERR(file))
2993                 return PTR_ERR(file);
2994
2995         if (vma->vm_file)
2996                 fput(vma->vm_file);
2997         vma->vm_file = file;
2998         vma->vm_ops = &shmem_vm_ops;
2999         return 0;
3000 }
3001
3002 /**
3003  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3004  * @mapping:    the page's address_space
3005  * @index:      the page index
3006  * @gfp:        the page allocator flags to use if allocating
3007  *
3008  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3009  * with any new page allocations done using the specified allocation flags.
3010  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3011  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3012  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3013  *
3014  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3015  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3016  */
3017 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3018                                          pgoff_t index, gfp_t gfp)
3019 {
3020 #ifdef CONFIG_SHMEM
3021         struct inode *inode = mapping->host;
3022         struct page *page;
3023         int error;
3024
3025         BUG_ON(mapping->a_ops != &shmem_aops);
3026         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3027         if (error)
3028                 page = ERR_PTR(error);
3029         else
3030                 unlock_page(page);
3031         return page;
3032 #else
3033         /*
3034          * The tiny !SHMEM case uses ramfs without swap
3035          */
3036         return read_cache_page_gfp(mapping, index, gfp);
3037 #endif
3038 }
3039 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);