]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/shmem.c
start adding the tag to iov_iter
[karo-tx-linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate and shmem_writepage communicate via inode->i_private
84  * (with i_mutex making sure that it has only one user at a time):
85  * we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         pgoff_t start;          /* start of range currently being fallocated */
89         pgoff_t next;           /* the next page offset to be fallocated */
90         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
91         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
92 };
93
94 /* Flag allocation requirements to shmem_getpage */
95 enum sgp_type {
96         SGP_READ,       /* don't exceed i_size, don't allocate page */
97         SGP_CACHE,      /* don't exceed i_size, may allocate page */
98         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
99         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
100         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
101 };
102
103 #ifdef CONFIG_TMPFS
104 static unsigned long shmem_default_max_blocks(void)
105 {
106         return totalram_pages / 2;
107 }
108
109 static unsigned long shmem_default_max_inodes(void)
110 {
111         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112 }
113 #endif
114
115 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117                                 struct shmem_inode_info *info, pgoff_t index);
118 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122         struct page **pagep, enum sgp_type sgp, int *fault_type)
123 {
124         return shmem_getpage_gfp(inode, index, pagep, sgp,
125                         mapping_gfp_mask(inode->i_mapping), fault_type);
126 }
127
128 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 {
130         return sb->s_fs_info;
131 }
132
133 /*
134  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135  * for shared memory and for shared anonymous (/dev/zero) mappings
136  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137  * consistent with the pre-accounting of private mappings ...
138  */
139 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 {
141         return (flags & VM_NORESERVE) ?
142                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143 }
144
145 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 {
147         if (!(flags & VM_NORESERVE))
148                 vm_unacct_memory(VM_ACCT(size));
149 }
150
151 /*
152  * ... whereas tmpfs objects are accounted incrementally as
153  * pages are allocated, in order to allow huge sparse files.
154  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156  */
157 static inline int shmem_acct_block(unsigned long flags)
158 {
159         return (flags & VM_NORESERVE) ?
160                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161 }
162
163 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164 {
165         if (flags & VM_NORESERVE)
166                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167 }
168
169 static const struct super_operations shmem_ops;
170 static const struct address_space_operations shmem_aops;
171 static const struct file_operations shmem_file_operations;
172 static const struct inode_operations shmem_inode_operations;
173 static const struct inode_operations shmem_dir_inode_operations;
174 static const struct inode_operations shmem_special_inode_operations;
175 static const struct vm_operations_struct shmem_vm_ops;
176
177 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
178         .ra_pages       = 0,    /* No readahead */
179         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180 };
181
182 static LIST_HEAD(shmem_swaplist);
183 static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185 static int shmem_reserve_inode(struct super_block *sb)
186 {
187         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188         if (sbinfo->max_inodes) {
189                 spin_lock(&sbinfo->stat_lock);
190                 if (!sbinfo->free_inodes) {
191                         spin_unlock(&sbinfo->stat_lock);
192                         return -ENOSPC;
193                 }
194                 sbinfo->free_inodes--;
195                 spin_unlock(&sbinfo->stat_lock);
196         }
197         return 0;
198 }
199
200 static void shmem_free_inode(struct super_block *sb)
201 {
202         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203         if (sbinfo->max_inodes) {
204                 spin_lock(&sbinfo->stat_lock);
205                 sbinfo->free_inodes++;
206                 spin_unlock(&sbinfo->stat_lock);
207         }
208 }
209
210 /**
211  * shmem_recalc_inode - recalculate the block usage of an inode
212  * @inode: inode to recalc
213  *
214  * We have to calculate the free blocks since the mm can drop
215  * undirtied hole pages behind our back.
216  *
217  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
218  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219  *
220  * It has to be called with the spinlock held.
221  */
222 static void shmem_recalc_inode(struct inode *inode)
223 {
224         struct shmem_inode_info *info = SHMEM_I(inode);
225         long freed;
226
227         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228         if (freed > 0) {
229                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230                 if (sbinfo->max_blocks)
231                         percpu_counter_add(&sbinfo->used_blocks, -freed);
232                 info->alloced -= freed;
233                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234                 shmem_unacct_blocks(info->flags, freed);
235         }
236 }
237
238 /*
239  * Replace item expected in radix tree by a new item, while holding tree lock.
240  */
241 static int shmem_radix_tree_replace(struct address_space *mapping,
242                         pgoff_t index, void *expected, void *replacement)
243 {
244         void **pslot;
245         void *item;
246
247         VM_BUG_ON(!expected);
248         VM_BUG_ON(!replacement);
249         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250         if (!pslot)
251                 return -ENOENT;
252         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
253         if (item != expected)
254                 return -ENOENT;
255         radix_tree_replace_slot(pslot, replacement);
256         return 0;
257 }
258
259 /*
260  * Sometimes, before we decide whether to proceed or to fail, we must check
261  * that an entry was not already brought back from swap by a racing thread.
262  *
263  * Checking page is not enough: by the time a SwapCache page is locked, it
264  * might be reused, and again be SwapCache, using the same swap as before.
265  */
266 static bool shmem_confirm_swap(struct address_space *mapping,
267                                pgoff_t index, swp_entry_t swap)
268 {
269         void *item;
270
271         rcu_read_lock();
272         item = radix_tree_lookup(&mapping->page_tree, index);
273         rcu_read_unlock();
274         return item == swp_to_radix_entry(swap);
275 }
276
277 /*
278  * Like add_to_page_cache_locked, but error if expected item has gone.
279  */
280 static int shmem_add_to_page_cache(struct page *page,
281                                    struct address_space *mapping,
282                                    pgoff_t index, gfp_t gfp, void *expected)
283 {
284         int error;
285
286         VM_BUG_ON_PAGE(!PageLocked(page), page);
287         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
288
289         page_cache_get(page);
290         page->mapping = mapping;
291         page->index = index;
292
293         spin_lock_irq(&mapping->tree_lock);
294         if (!expected)
295                 error = radix_tree_insert(&mapping->page_tree, index, page);
296         else
297                 error = shmem_radix_tree_replace(mapping, index, expected,
298                                                                  page);
299         if (!error) {
300                 mapping->nrpages++;
301                 __inc_zone_page_state(page, NR_FILE_PAGES);
302                 __inc_zone_page_state(page, NR_SHMEM);
303                 spin_unlock_irq(&mapping->tree_lock);
304         } else {
305                 page->mapping = NULL;
306                 spin_unlock_irq(&mapping->tree_lock);
307                 page_cache_release(page);
308         }
309         return error;
310 }
311
312 /*
313  * Like delete_from_page_cache, but substitutes swap for page.
314  */
315 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316 {
317         struct address_space *mapping = page->mapping;
318         int error;
319
320         spin_lock_irq(&mapping->tree_lock);
321         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322         page->mapping = NULL;
323         mapping->nrpages--;
324         __dec_zone_page_state(page, NR_FILE_PAGES);
325         __dec_zone_page_state(page, NR_SHMEM);
326         spin_unlock_irq(&mapping->tree_lock);
327         page_cache_release(page);
328         BUG_ON(error);
329 }
330
331 /*
332  * Remove swap entry from radix tree, free the swap and its page cache.
333  */
334 static int shmem_free_swap(struct address_space *mapping,
335                            pgoff_t index, void *radswap)
336 {
337         void *old;
338
339         spin_lock_irq(&mapping->tree_lock);
340         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
341         spin_unlock_irq(&mapping->tree_lock);
342         if (old != radswap)
343                 return -ENOENT;
344         free_swap_and_cache(radix_to_swp_entry(radswap));
345         return 0;
346 }
347
348 /*
349  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
350  */
351 void shmem_unlock_mapping(struct address_space *mapping)
352 {
353         struct pagevec pvec;
354         pgoff_t indices[PAGEVEC_SIZE];
355         pgoff_t index = 0;
356
357         pagevec_init(&pvec, 0);
358         /*
359          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
360          */
361         while (!mapping_unevictable(mapping)) {
362                 /*
363                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
364                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
365                  */
366                 pvec.nr = find_get_entries(mapping, index,
367                                            PAGEVEC_SIZE, pvec.pages, indices);
368                 if (!pvec.nr)
369                         break;
370                 index = indices[pvec.nr - 1] + 1;
371                 pagevec_remove_exceptionals(&pvec);
372                 check_move_unevictable_pages(pvec.pages, pvec.nr);
373                 pagevec_release(&pvec);
374                 cond_resched();
375         }
376 }
377
378 /*
379  * Remove range of pages and swap entries from radix tree, and free them.
380  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
381  */
382 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
383                                                                  bool unfalloc)
384 {
385         struct address_space *mapping = inode->i_mapping;
386         struct shmem_inode_info *info = SHMEM_I(inode);
387         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
388         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
389         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
390         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
391         struct pagevec pvec;
392         pgoff_t indices[PAGEVEC_SIZE];
393         long nr_swaps_freed = 0;
394         pgoff_t index;
395         int i;
396
397         if (lend == -1)
398                 end = -1;       /* unsigned, so actually very big */
399
400         pagevec_init(&pvec, 0);
401         index = start;
402         while (index < end) {
403                 pvec.nr = find_get_entries(mapping, index,
404                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
405                         pvec.pages, indices);
406                 if (!pvec.nr)
407                         break;
408                 mem_cgroup_uncharge_start();
409                 for (i = 0; i < pagevec_count(&pvec); i++) {
410                         struct page *page = pvec.pages[i];
411
412                         index = indices[i];
413                         if (index >= end)
414                                 break;
415
416                         if (radix_tree_exceptional_entry(page)) {
417                                 if (unfalloc)
418                                         continue;
419                                 nr_swaps_freed += !shmem_free_swap(mapping,
420                                                                 index, page);
421                                 continue;
422                         }
423
424                         if (!trylock_page(page))
425                                 continue;
426                         if (!unfalloc || !PageUptodate(page)) {
427                                 if (page->mapping == mapping) {
428                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
429                                         truncate_inode_page(mapping, page);
430                                 }
431                         }
432                         unlock_page(page);
433                 }
434                 pagevec_remove_exceptionals(&pvec);
435                 pagevec_release(&pvec);
436                 mem_cgroup_uncharge_end();
437                 cond_resched();
438                 index++;
439         }
440
441         if (partial_start) {
442                 struct page *page = NULL;
443                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
444                 if (page) {
445                         unsigned int top = PAGE_CACHE_SIZE;
446                         if (start > end) {
447                                 top = partial_end;
448                                 partial_end = 0;
449                         }
450                         zero_user_segment(page, partial_start, top);
451                         set_page_dirty(page);
452                         unlock_page(page);
453                         page_cache_release(page);
454                 }
455         }
456         if (partial_end) {
457                 struct page *page = NULL;
458                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
459                 if (page) {
460                         zero_user_segment(page, 0, partial_end);
461                         set_page_dirty(page);
462                         unlock_page(page);
463                         page_cache_release(page);
464                 }
465         }
466         if (start >= end)
467                 return;
468
469         index = start;
470         for ( ; ; ) {
471                 cond_resched();
472
473                 pvec.nr = find_get_entries(mapping, index,
474                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
475                                 pvec.pages, indices);
476                 if (!pvec.nr) {
477                         if (index == start || unfalloc)
478                                 break;
479                         index = start;
480                         continue;
481                 }
482                 if ((index == start || unfalloc) && indices[0] >= end) {
483                         pagevec_remove_exceptionals(&pvec);
484                         pagevec_release(&pvec);
485                         break;
486                 }
487                 mem_cgroup_uncharge_start();
488                 for (i = 0; i < pagevec_count(&pvec); i++) {
489                         struct page *page = pvec.pages[i];
490
491                         index = indices[i];
492                         if (index >= end)
493                                 break;
494
495                         if (radix_tree_exceptional_entry(page)) {
496                                 if (unfalloc)
497                                         continue;
498                                 nr_swaps_freed += !shmem_free_swap(mapping,
499                                                                 index, page);
500                                 continue;
501                         }
502
503                         lock_page(page);
504                         if (!unfalloc || !PageUptodate(page)) {
505                                 if (page->mapping == mapping) {
506                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
507                                         truncate_inode_page(mapping, page);
508                                 }
509                         }
510                         unlock_page(page);
511                 }
512                 pagevec_remove_exceptionals(&pvec);
513                 pagevec_release(&pvec);
514                 mem_cgroup_uncharge_end();
515                 index++;
516         }
517
518         spin_lock(&info->lock);
519         info->swapped -= nr_swaps_freed;
520         shmem_recalc_inode(inode);
521         spin_unlock(&info->lock);
522 }
523
524 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
525 {
526         shmem_undo_range(inode, lstart, lend, false);
527         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
528 }
529 EXPORT_SYMBOL_GPL(shmem_truncate_range);
530
531 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
532 {
533         struct inode *inode = dentry->d_inode;
534         int error;
535
536         error = inode_change_ok(inode, attr);
537         if (error)
538                 return error;
539
540         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
541                 loff_t oldsize = inode->i_size;
542                 loff_t newsize = attr->ia_size;
543
544                 if (newsize != oldsize) {
545                         i_size_write(inode, newsize);
546                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547                 }
548                 if (newsize < oldsize) {
549                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
550                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
551                         shmem_truncate_range(inode, newsize, (loff_t)-1);
552                         /* unmap again to remove racily COWed private pages */
553                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
554                 }
555         }
556
557         setattr_copy(inode, attr);
558         if (attr->ia_valid & ATTR_MODE)
559                 error = posix_acl_chmod(inode, inode->i_mode);
560         return error;
561 }
562
563 static void shmem_evict_inode(struct inode *inode)
564 {
565         struct shmem_inode_info *info = SHMEM_I(inode);
566
567         if (inode->i_mapping->a_ops == &shmem_aops) {
568                 shmem_unacct_size(info->flags, inode->i_size);
569                 inode->i_size = 0;
570                 shmem_truncate_range(inode, 0, (loff_t)-1);
571                 if (!list_empty(&info->swaplist)) {
572                         mutex_lock(&shmem_swaplist_mutex);
573                         list_del_init(&info->swaplist);
574                         mutex_unlock(&shmem_swaplist_mutex);
575                 }
576         } else
577                 kfree(info->symlink);
578
579         simple_xattrs_free(&info->xattrs);
580         WARN_ON(inode->i_blocks);
581         shmem_free_inode(inode->i_sb);
582         clear_inode(inode);
583 }
584
585 /*
586  * If swap found in inode, free it and move page from swapcache to filecache.
587  */
588 static int shmem_unuse_inode(struct shmem_inode_info *info,
589                              swp_entry_t swap, struct page **pagep)
590 {
591         struct address_space *mapping = info->vfs_inode.i_mapping;
592         void *radswap;
593         pgoff_t index;
594         gfp_t gfp;
595         int error = 0;
596
597         radswap = swp_to_radix_entry(swap);
598         index = radix_tree_locate_item(&mapping->page_tree, radswap);
599         if (index == -1)
600                 return 0;
601
602         /*
603          * Move _head_ to start search for next from here.
604          * But be careful: shmem_evict_inode checks list_empty without taking
605          * mutex, and there's an instant in list_move_tail when info->swaplist
606          * would appear empty, if it were the only one on shmem_swaplist.
607          */
608         if (shmem_swaplist.next != &info->swaplist)
609                 list_move_tail(&shmem_swaplist, &info->swaplist);
610
611         gfp = mapping_gfp_mask(mapping);
612         if (shmem_should_replace_page(*pagep, gfp)) {
613                 mutex_unlock(&shmem_swaplist_mutex);
614                 error = shmem_replace_page(pagep, gfp, info, index);
615                 mutex_lock(&shmem_swaplist_mutex);
616                 /*
617                  * We needed to drop mutex to make that restrictive page
618                  * allocation, but the inode might have been freed while we
619                  * dropped it: although a racing shmem_evict_inode() cannot
620                  * complete without emptying the radix_tree, our page lock
621                  * on this swapcache page is not enough to prevent that -
622                  * free_swap_and_cache() of our swap entry will only
623                  * trylock_page(), removing swap from radix_tree whatever.
624                  *
625                  * We must not proceed to shmem_add_to_page_cache() if the
626                  * inode has been freed, but of course we cannot rely on
627                  * inode or mapping or info to check that.  However, we can
628                  * safely check if our swap entry is still in use (and here
629                  * it can't have got reused for another page): if it's still
630                  * in use, then the inode cannot have been freed yet, and we
631                  * can safely proceed (if it's no longer in use, that tells
632                  * nothing about the inode, but we don't need to unuse swap).
633                  */
634                 if (!page_swapcount(*pagep))
635                         error = -ENOENT;
636         }
637
638         /*
639          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
640          * but also to hold up shmem_evict_inode(): so inode cannot be freed
641          * beneath us (pagelock doesn't help until the page is in pagecache).
642          */
643         if (!error)
644                 error = shmem_add_to_page_cache(*pagep, mapping, index,
645                                                 GFP_NOWAIT, radswap);
646         if (error != -ENOMEM) {
647                 /*
648                  * Truncation and eviction use free_swap_and_cache(), which
649                  * only does trylock page: if we raced, best clean up here.
650                  */
651                 delete_from_swap_cache(*pagep);
652                 set_page_dirty(*pagep);
653                 if (!error) {
654                         spin_lock(&info->lock);
655                         info->swapped--;
656                         spin_unlock(&info->lock);
657                         swap_free(swap);
658                 }
659                 error = 1;      /* not an error, but entry was found */
660         }
661         return error;
662 }
663
664 /*
665  * Search through swapped inodes to find and replace swap by page.
666  */
667 int shmem_unuse(swp_entry_t swap, struct page *page)
668 {
669         struct list_head *this, *next;
670         struct shmem_inode_info *info;
671         int found = 0;
672         int error = 0;
673
674         /*
675          * There's a faint possibility that swap page was replaced before
676          * caller locked it: caller will come back later with the right page.
677          */
678         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
679                 goto out;
680
681         /*
682          * Charge page using GFP_KERNEL while we can wait, before taking
683          * the shmem_swaplist_mutex which might hold up shmem_writepage().
684          * Charged back to the user (not to caller) when swap account is used.
685          */
686         error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
687         if (error)
688                 goto out;
689         /* No radix_tree_preload: swap entry keeps a place for page in tree */
690
691         mutex_lock(&shmem_swaplist_mutex);
692         list_for_each_safe(this, next, &shmem_swaplist) {
693                 info = list_entry(this, struct shmem_inode_info, swaplist);
694                 if (info->swapped)
695                         found = shmem_unuse_inode(info, swap, &page);
696                 else
697                         list_del_init(&info->swaplist);
698                 cond_resched();
699                 if (found)
700                         break;
701         }
702         mutex_unlock(&shmem_swaplist_mutex);
703
704         if (found < 0)
705                 error = found;
706 out:
707         unlock_page(page);
708         page_cache_release(page);
709         return error;
710 }
711
712 /*
713  * Move the page from the page cache to the swap cache.
714  */
715 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
716 {
717         struct shmem_inode_info *info;
718         struct address_space *mapping;
719         struct inode *inode;
720         swp_entry_t swap;
721         pgoff_t index;
722
723         BUG_ON(!PageLocked(page));
724         mapping = page->mapping;
725         index = page->index;
726         inode = mapping->host;
727         info = SHMEM_I(inode);
728         if (info->flags & VM_LOCKED)
729                 goto redirty;
730         if (!total_swap_pages)
731                 goto redirty;
732
733         /*
734          * shmem_backing_dev_info's capabilities prevent regular writeback or
735          * sync from ever calling shmem_writepage; but a stacking filesystem
736          * might use ->writepage of its underlying filesystem, in which case
737          * tmpfs should write out to swap only in response to memory pressure,
738          * and not for the writeback threads or sync.
739          */
740         if (!wbc->for_reclaim) {
741                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
742                 goto redirty;
743         }
744
745         /*
746          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
747          * value into swapfile.c, the only way we can correctly account for a
748          * fallocated page arriving here is now to initialize it and write it.
749          *
750          * That's okay for a page already fallocated earlier, but if we have
751          * not yet completed the fallocation, then (a) we want to keep track
752          * of this page in case we have to undo it, and (b) it may not be a
753          * good idea to continue anyway, once we're pushing into swap.  So
754          * reactivate the page, and let shmem_fallocate() quit when too many.
755          */
756         if (!PageUptodate(page)) {
757                 if (inode->i_private) {
758                         struct shmem_falloc *shmem_falloc;
759                         spin_lock(&inode->i_lock);
760                         shmem_falloc = inode->i_private;
761                         if (shmem_falloc &&
762                             index >= shmem_falloc->start &&
763                             index < shmem_falloc->next)
764                                 shmem_falloc->nr_unswapped++;
765                         else
766                                 shmem_falloc = NULL;
767                         spin_unlock(&inode->i_lock);
768                         if (shmem_falloc)
769                                 goto redirty;
770                 }
771                 clear_highpage(page);
772                 flush_dcache_page(page);
773                 SetPageUptodate(page);
774         }
775
776         swap = get_swap_page();
777         if (!swap.val)
778                 goto redirty;
779
780         /*
781          * Add inode to shmem_unuse()'s list of swapped-out inodes,
782          * if it's not already there.  Do it now before the page is
783          * moved to swap cache, when its pagelock no longer protects
784          * the inode from eviction.  But don't unlock the mutex until
785          * we've incremented swapped, because shmem_unuse_inode() will
786          * prune a !swapped inode from the swaplist under this mutex.
787          */
788         mutex_lock(&shmem_swaplist_mutex);
789         if (list_empty(&info->swaplist))
790                 list_add_tail(&info->swaplist, &shmem_swaplist);
791
792         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
793                 swap_shmem_alloc(swap);
794                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
795
796                 spin_lock(&info->lock);
797                 info->swapped++;
798                 shmem_recalc_inode(inode);
799                 spin_unlock(&info->lock);
800
801                 mutex_unlock(&shmem_swaplist_mutex);
802                 BUG_ON(page_mapped(page));
803                 swap_writepage(page, wbc);
804                 return 0;
805         }
806
807         mutex_unlock(&shmem_swaplist_mutex);
808         swapcache_free(swap, NULL);
809 redirty:
810         set_page_dirty(page);
811         if (wbc->for_reclaim)
812                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
813         unlock_page(page);
814         return 0;
815 }
816
817 #ifdef CONFIG_NUMA
818 #ifdef CONFIG_TMPFS
819 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
820 {
821         char buffer[64];
822
823         if (!mpol || mpol->mode == MPOL_DEFAULT)
824                 return;         /* show nothing */
825
826         mpol_to_str(buffer, sizeof(buffer), mpol);
827
828         seq_printf(seq, ",mpol=%s", buffer);
829 }
830
831 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
832 {
833         struct mempolicy *mpol = NULL;
834         if (sbinfo->mpol) {
835                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
836                 mpol = sbinfo->mpol;
837                 mpol_get(mpol);
838                 spin_unlock(&sbinfo->stat_lock);
839         }
840         return mpol;
841 }
842 #endif /* CONFIG_TMPFS */
843
844 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
845                         struct shmem_inode_info *info, pgoff_t index)
846 {
847         struct vm_area_struct pvma;
848         struct page *page;
849
850         /* Create a pseudo vma that just contains the policy */
851         pvma.vm_start = 0;
852         /* Bias interleave by inode number to distribute better across nodes */
853         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
854         pvma.vm_ops = NULL;
855         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
856
857         page = swapin_readahead(swap, gfp, &pvma, 0);
858
859         /* Drop reference taken by mpol_shared_policy_lookup() */
860         mpol_cond_put(pvma.vm_policy);
861
862         return page;
863 }
864
865 static struct page *shmem_alloc_page(gfp_t gfp,
866                         struct shmem_inode_info *info, pgoff_t index)
867 {
868         struct vm_area_struct pvma;
869         struct page *page;
870
871         /* Create a pseudo vma that just contains the policy */
872         pvma.vm_start = 0;
873         /* Bias interleave by inode number to distribute better across nodes */
874         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
875         pvma.vm_ops = NULL;
876         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
877
878         page = alloc_page_vma(gfp, &pvma, 0);
879
880         /* Drop reference taken by mpol_shared_policy_lookup() */
881         mpol_cond_put(pvma.vm_policy);
882
883         return page;
884 }
885 #else /* !CONFIG_NUMA */
886 #ifdef CONFIG_TMPFS
887 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
888 {
889 }
890 #endif /* CONFIG_TMPFS */
891
892 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
893                         struct shmem_inode_info *info, pgoff_t index)
894 {
895         return swapin_readahead(swap, gfp, NULL, 0);
896 }
897
898 static inline struct page *shmem_alloc_page(gfp_t gfp,
899                         struct shmem_inode_info *info, pgoff_t index)
900 {
901         return alloc_page(gfp);
902 }
903 #endif /* CONFIG_NUMA */
904
905 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
906 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
907 {
908         return NULL;
909 }
910 #endif
911
912 /*
913  * When a page is moved from swapcache to shmem filecache (either by the
914  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
915  * shmem_unuse_inode()), it may have been read in earlier from swap, in
916  * ignorance of the mapping it belongs to.  If that mapping has special
917  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
918  * we may need to copy to a suitable page before moving to filecache.
919  *
920  * In a future release, this may well be extended to respect cpuset and
921  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
922  * but for now it is a simple matter of zone.
923  */
924 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
925 {
926         return page_zonenum(page) > gfp_zone(gfp);
927 }
928
929 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
930                                 struct shmem_inode_info *info, pgoff_t index)
931 {
932         struct page *oldpage, *newpage;
933         struct address_space *swap_mapping;
934         pgoff_t swap_index;
935         int error;
936
937         oldpage = *pagep;
938         swap_index = page_private(oldpage);
939         swap_mapping = page_mapping(oldpage);
940
941         /*
942          * We have arrived here because our zones are constrained, so don't
943          * limit chance of success by further cpuset and node constraints.
944          */
945         gfp &= ~GFP_CONSTRAINT_MASK;
946         newpage = shmem_alloc_page(gfp, info, index);
947         if (!newpage)
948                 return -ENOMEM;
949
950         page_cache_get(newpage);
951         copy_highpage(newpage, oldpage);
952         flush_dcache_page(newpage);
953
954         __set_page_locked(newpage);
955         SetPageUptodate(newpage);
956         SetPageSwapBacked(newpage);
957         set_page_private(newpage, swap_index);
958         SetPageSwapCache(newpage);
959
960         /*
961          * Our caller will very soon move newpage out of swapcache, but it's
962          * a nice clean interface for us to replace oldpage by newpage there.
963          */
964         spin_lock_irq(&swap_mapping->tree_lock);
965         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
966                                                                    newpage);
967         if (!error) {
968                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
969                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
970         }
971         spin_unlock_irq(&swap_mapping->tree_lock);
972
973         if (unlikely(error)) {
974                 /*
975                  * Is this possible?  I think not, now that our callers check
976                  * both PageSwapCache and page_private after getting page lock;
977                  * but be defensive.  Reverse old to newpage for clear and free.
978                  */
979                 oldpage = newpage;
980         } else {
981                 mem_cgroup_replace_page_cache(oldpage, newpage);
982                 lru_cache_add_anon(newpage);
983                 *pagep = newpage;
984         }
985
986         ClearPageSwapCache(oldpage);
987         set_page_private(oldpage, 0);
988
989         unlock_page(oldpage);
990         page_cache_release(oldpage);
991         page_cache_release(oldpage);
992         return error;
993 }
994
995 /*
996  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
997  *
998  * If we allocate a new one we do not mark it dirty. That's up to the
999  * vm. If we swap it in we mark it dirty since we also free the swap
1000  * entry since a page cannot live in both the swap and page cache
1001  */
1002 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1003         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1004 {
1005         struct address_space *mapping = inode->i_mapping;
1006         struct shmem_inode_info *info;
1007         struct shmem_sb_info *sbinfo;
1008         struct page *page;
1009         swp_entry_t swap;
1010         int error;
1011         int once = 0;
1012         int alloced = 0;
1013
1014         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1015                 return -EFBIG;
1016 repeat:
1017         swap.val = 0;
1018         page = find_lock_entry(mapping, index);
1019         if (radix_tree_exceptional_entry(page)) {
1020                 swap = radix_to_swp_entry(page);
1021                 page = NULL;
1022         }
1023
1024         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1025             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1026                 error = -EINVAL;
1027                 goto failed;
1028         }
1029
1030         /* fallocated page? */
1031         if (page && !PageUptodate(page)) {
1032                 if (sgp != SGP_READ)
1033                         goto clear;
1034                 unlock_page(page);
1035                 page_cache_release(page);
1036                 page = NULL;
1037         }
1038         if (page || (sgp == SGP_READ && !swap.val)) {
1039                 *pagep = page;
1040                 return 0;
1041         }
1042
1043         /*
1044          * Fast cache lookup did not find it:
1045          * bring it back from swap or allocate.
1046          */
1047         info = SHMEM_I(inode);
1048         sbinfo = SHMEM_SB(inode->i_sb);
1049
1050         if (swap.val) {
1051                 /* Look it up and read it in.. */
1052                 page = lookup_swap_cache(swap);
1053                 if (!page) {
1054                         /* here we actually do the io */
1055                         if (fault_type)
1056                                 *fault_type |= VM_FAULT_MAJOR;
1057                         page = shmem_swapin(swap, gfp, info, index);
1058                         if (!page) {
1059                                 error = -ENOMEM;
1060                                 goto failed;
1061                         }
1062                 }
1063
1064                 /* We have to do this with page locked to prevent races */
1065                 lock_page(page);
1066                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1067                     !shmem_confirm_swap(mapping, index, swap)) {
1068                         error = -EEXIST;        /* try again */
1069                         goto unlock;
1070                 }
1071                 if (!PageUptodate(page)) {
1072                         error = -EIO;
1073                         goto failed;
1074                 }
1075                 wait_on_page_writeback(page);
1076
1077                 if (shmem_should_replace_page(page, gfp)) {
1078                         error = shmem_replace_page(&page, gfp, info, index);
1079                         if (error)
1080                                 goto failed;
1081                 }
1082
1083                 error = mem_cgroup_charge_file(page, current->mm,
1084                                                 gfp & GFP_RECLAIM_MASK);
1085                 if (!error) {
1086                         error = shmem_add_to_page_cache(page, mapping, index,
1087                                                 gfp, swp_to_radix_entry(swap));
1088                         /*
1089                          * We already confirmed swap under page lock, and make
1090                          * no memory allocation here, so usually no possibility
1091                          * of error; but free_swap_and_cache() only trylocks a
1092                          * page, so it is just possible that the entry has been
1093                          * truncated or holepunched since swap was confirmed.
1094                          * shmem_undo_range() will have done some of the
1095                          * unaccounting, now delete_from_swap_cache() will do
1096                          * the rest (including mem_cgroup_uncharge_swapcache).
1097                          * Reset swap.val? No, leave it so "failed" goes back to
1098                          * "repeat": reading a hole and writing should succeed.
1099                          */
1100                         if (error)
1101                                 delete_from_swap_cache(page);
1102                 }
1103                 if (error)
1104                         goto failed;
1105
1106                 spin_lock(&info->lock);
1107                 info->swapped--;
1108                 shmem_recalc_inode(inode);
1109                 spin_unlock(&info->lock);
1110
1111                 delete_from_swap_cache(page);
1112                 set_page_dirty(page);
1113                 swap_free(swap);
1114
1115         } else {
1116                 if (shmem_acct_block(info->flags)) {
1117                         error = -ENOSPC;
1118                         goto failed;
1119                 }
1120                 if (sbinfo->max_blocks) {
1121                         if (percpu_counter_compare(&sbinfo->used_blocks,
1122                                                 sbinfo->max_blocks) >= 0) {
1123                                 error = -ENOSPC;
1124                                 goto unacct;
1125                         }
1126                         percpu_counter_inc(&sbinfo->used_blocks);
1127                 }
1128
1129                 page = shmem_alloc_page(gfp, info, index);
1130                 if (!page) {
1131                         error = -ENOMEM;
1132                         goto decused;
1133                 }
1134
1135                 SetPageSwapBacked(page);
1136                 __set_page_locked(page);
1137                 error = mem_cgroup_charge_file(page, current->mm,
1138                                                 gfp & GFP_RECLAIM_MASK);
1139                 if (error)
1140                         goto decused;
1141                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1142                 if (!error) {
1143                         error = shmem_add_to_page_cache(page, mapping, index,
1144                                                         gfp, NULL);
1145                         radix_tree_preload_end();
1146                 }
1147                 if (error) {
1148                         mem_cgroup_uncharge_cache_page(page);
1149                         goto decused;
1150                 }
1151                 lru_cache_add_anon(page);
1152
1153                 spin_lock(&info->lock);
1154                 info->alloced++;
1155                 inode->i_blocks += BLOCKS_PER_PAGE;
1156                 shmem_recalc_inode(inode);
1157                 spin_unlock(&info->lock);
1158                 alloced = true;
1159
1160                 /*
1161                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1162                  */
1163                 if (sgp == SGP_FALLOC)
1164                         sgp = SGP_WRITE;
1165 clear:
1166                 /*
1167                  * Let SGP_WRITE caller clear ends if write does not fill page;
1168                  * but SGP_FALLOC on a page fallocated earlier must initialize
1169                  * it now, lest undo on failure cancel our earlier guarantee.
1170                  */
1171                 if (sgp != SGP_WRITE) {
1172                         clear_highpage(page);
1173                         flush_dcache_page(page);
1174                         SetPageUptodate(page);
1175                 }
1176                 if (sgp == SGP_DIRTY)
1177                         set_page_dirty(page);
1178         }
1179
1180         /* Perhaps the file has been truncated since we checked */
1181         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1182             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1183                 error = -EINVAL;
1184                 if (alloced)
1185                         goto trunc;
1186                 else
1187                         goto failed;
1188         }
1189         *pagep = page;
1190         return 0;
1191
1192         /*
1193          * Error recovery.
1194          */
1195 trunc:
1196         info = SHMEM_I(inode);
1197         ClearPageDirty(page);
1198         delete_from_page_cache(page);
1199         spin_lock(&info->lock);
1200         info->alloced--;
1201         inode->i_blocks -= BLOCKS_PER_PAGE;
1202         spin_unlock(&info->lock);
1203 decused:
1204         sbinfo = SHMEM_SB(inode->i_sb);
1205         if (sbinfo->max_blocks)
1206                 percpu_counter_add(&sbinfo->used_blocks, -1);
1207 unacct:
1208         shmem_unacct_blocks(info->flags, 1);
1209 failed:
1210         if (swap.val && error != -EINVAL &&
1211             !shmem_confirm_swap(mapping, index, swap))
1212                 error = -EEXIST;
1213 unlock:
1214         if (page) {
1215                 unlock_page(page);
1216                 page_cache_release(page);
1217         }
1218         if (error == -ENOSPC && !once++) {
1219                 info = SHMEM_I(inode);
1220                 spin_lock(&info->lock);
1221                 shmem_recalc_inode(inode);
1222                 spin_unlock(&info->lock);
1223                 goto repeat;
1224         }
1225         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1226                 goto repeat;
1227         return error;
1228 }
1229
1230 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1231 {
1232         struct inode *inode = file_inode(vma->vm_file);
1233         int error;
1234         int ret = VM_FAULT_LOCKED;
1235
1236         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1237         if (error)
1238                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1239
1240         if (ret & VM_FAULT_MAJOR) {
1241                 count_vm_event(PGMAJFAULT);
1242                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1243         }
1244         return ret;
1245 }
1246
1247 #ifdef CONFIG_NUMA
1248 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1249 {
1250         struct inode *inode = file_inode(vma->vm_file);
1251         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1252 }
1253
1254 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1255                                           unsigned long addr)
1256 {
1257         struct inode *inode = file_inode(vma->vm_file);
1258         pgoff_t index;
1259
1260         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1261         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1262 }
1263 #endif
1264
1265 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1266 {
1267         struct inode *inode = file_inode(file);
1268         struct shmem_inode_info *info = SHMEM_I(inode);
1269         int retval = -ENOMEM;
1270
1271         spin_lock(&info->lock);
1272         if (lock && !(info->flags & VM_LOCKED)) {
1273                 if (!user_shm_lock(inode->i_size, user))
1274                         goto out_nomem;
1275                 info->flags |= VM_LOCKED;
1276                 mapping_set_unevictable(file->f_mapping);
1277         }
1278         if (!lock && (info->flags & VM_LOCKED) && user) {
1279                 user_shm_unlock(inode->i_size, user);
1280                 info->flags &= ~VM_LOCKED;
1281                 mapping_clear_unevictable(file->f_mapping);
1282         }
1283         retval = 0;
1284
1285 out_nomem:
1286         spin_unlock(&info->lock);
1287         return retval;
1288 }
1289
1290 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1291 {
1292         file_accessed(file);
1293         vma->vm_ops = &shmem_vm_ops;
1294         return 0;
1295 }
1296
1297 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1298                                      umode_t mode, dev_t dev, unsigned long flags)
1299 {
1300         struct inode *inode;
1301         struct shmem_inode_info *info;
1302         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1303
1304         if (shmem_reserve_inode(sb))
1305                 return NULL;
1306
1307         inode = new_inode(sb);
1308         if (inode) {
1309                 inode->i_ino = get_next_ino();
1310                 inode_init_owner(inode, dir, mode);
1311                 inode->i_blocks = 0;
1312                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1313                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1314                 inode->i_generation = get_seconds();
1315                 info = SHMEM_I(inode);
1316                 memset(info, 0, (char *)inode - (char *)info);
1317                 spin_lock_init(&info->lock);
1318                 info->flags = flags & VM_NORESERVE;
1319                 INIT_LIST_HEAD(&info->swaplist);
1320                 simple_xattrs_init(&info->xattrs);
1321                 cache_no_acl(inode);
1322
1323                 switch (mode & S_IFMT) {
1324                 default:
1325                         inode->i_op = &shmem_special_inode_operations;
1326                         init_special_inode(inode, mode, dev);
1327                         break;
1328                 case S_IFREG:
1329                         inode->i_mapping->a_ops = &shmem_aops;
1330                         inode->i_op = &shmem_inode_operations;
1331                         inode->i_fop = &shmem_file_operations;
1332                         mpol_shared_policy_init(&info->policy,
1333                                                  shmem_get_sbmpol(sbinfo));
1334                         break;
1335                 case S_IFDIR:
1336                         inc_nlink(inode);
1337                         /* Some things misbehave if size == 0 on a directory */
1338                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1339                         inode->i_op = &shmem_dir_inode_operations;
1340                         inode->i_fop = &simple_dir_operations;
1341                         break;
1342                 case S_IFLNK:
1343                         /*
1344                          * Must not load anything in the rbtree,
1345                          * mpol_free_shared_policy will not be called.
1346                          */
1347                         mpol_shared_policy_init(&info->policy, NULL);
1348                         break;
1349                 }
1350         } else
1351                 shmem_free_inode(sb);
1352         return inode;
1353 }
1354
1355 bool shmem_mapping(struct address_space *mapping)
1356 {
1357         return mapping->backing_dev_info == &shmem_backing_dev_info;
1358 }
1359
1360 #ifdef CONFIG_TMPFS
1361 static const struct inode_operations shmem_symlink_inode_operations;
1362 static const struct inode_operations shmem_short_symlink_operations;
1363
1364 #ifdef CONFIG_TMPFS_XATTR
1365 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1366 #else
1367 #define shmem_initxattrs NULL
1368 #endif
1369
1370 static int
1371 shmem_write_begin(struct file *file, struct address_space *mapping,
1372                         loff_t pos, unsigned len, unsigned flags,
1373                         struct page **pagep, void **fsdata)
1374 {
1375         struct inode *inode = mapping->host;
1376         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1377         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1378 }
1379
1380 static int
1381 shmem_write_end(struct file *file, struct address_space *mapping,
1382                         loff_t pos, unsigned len, unsigned copied,
1383                         struct page *page, void *fsdata)
1384 {
1385         struct inode *inode = mapping->host;
1386
1387         if (pos + copied > inode->i_size)
1388                 i_size_write(inode, pos + copied);
1389
1390         if (!PageUptodate(page)) {
1391                 if (copied < PAGE_CACHE_SIZE) {
1392                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1393                         zero_user_segments(page, 0, from,
1394                                         from + copied, PAGE_CACHE_SIZE);
1395                 }
1396                 SetPageUptodate(page);
1397         }
1398         set_page_dirty(page);
1399         unlock_page(page);
1400         page_cache_release(page);
1401
1402         return copied;
1403 }
1404
1405 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1406                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1407 {
1408         struct file *file = iocb->ki_filp;
1409         struct inode *inode = file_inode(file);
1410         struct address_space *mapping = inode->i_mapping;
1411         pgoff_t index;
1412         unsigned long offset;
1413         enum sgp_type sgp = SGP_READ;
1414         int error = 0;
1415         ssize_t retval = 0;
1416         size_t count = iov_length(iov, nr_segs);
1417         loff_t *ppos = &iocb->ki_pos;
1418         struct iov_iter iter;
1419
1420         iov_iter_init(&iter, READ, iov, nr_segs, count);
1421
1422         /*
1423          * Might this read be for a stacking filesystem?  Then when reading
1424          * holes of a sparse file, we actually need to allocate those pages,
1425          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1426          */
1427         if (segment_eq(get_fs(), KERNEL_DS))
1428                 sgp = SGP_DIRTY;
1429
1430         index = *ppos >> PAGE_CACHE_SHIFT;
1431         offset = *ppos & ~PAGE_CACHE_MASK;
1432
1433         for (;;) {
1434                 struct page *page = NULL;
1435                 pgoff_t end_index;
1436                 unsigned long nr, ret;
1437                 loff_t i_size = i_size_read(inode);
1438
1439                 end_index = i_size >> PAGE_CACHE_SHIFT;
1440                 if (index > end_index)
1441                         break;
1442                 if (index == end_index) {
1443                         nr = i_size & ~PAGE_CACHE_MASK;
1444                         if (nr <= offset)
1445                                 break;
1446                 }
1447
1448                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1449                 if (error) {
1450                         if (error == -EINVAL)
1451                                 error = 0;
1452                         break;
1453                 }
1454                 if (page)
1455                         unlock_page(page);
1456
1457                 /*
1458                  * We must evaluate after, since reads (unlike writes)
1459                  * are called without i_mutex protection against truncate
1460                  */
1461                 nr = PAGE_CACHE_SIZE;
1462                 i_size = i_size_read(inode);
1463                 end_index = i_size >> PAGE_CACHE_SHIFT;
1464                 if (index == end_index) {
1465                         nr = i_size & ~PAGE_CACHE_MASK;
1466                         if (nr <= offset) {
1467                                 if (page)
1468                                         page_cache_release(page);
1469                                 break;
1470                         }
1471                 }
1472                 nr -= offset;
1473
1474                 if (page) {
1475                         /*
1476                          * If users can be writing to this page using arbitrary
1477                          * virtual addresses, take care about potential aliasing
1478                          * before reading the page on the kernel side.
1479                          */
1480                         if (mapping_writably_mapped(mapping))
1481                                 flush_dcache_page(page);
1482                         /*
1483                          * Mark the page accessed if we read the beginning.
1484                          */
1485                         if (!offset)
1486                                 mark_page_accessed(page);
1487                 } else {
1488                         page = ZERO_PAGE(0);
1489                         page_cache_get(page);
1490                 }
1491
1492                 /*
1493                  * Ok, we have the page, and it's up-to-date, so
1494                  * now we can copy it to user space...
1495                  */
1496                 ret = copy_page_to_iter(page, offset, nr, &iter);
1497                 retval += ret;
1498                 offset += ret;
1499                 index += offset >> PAGE_CACHE_SHIFT;
1500                 offset &= ~PAGE_CACHE_MASK;
1501
1502                 page_cache_release(page);
1503                 if (!iov_iter_count(&iter))
1504                         break;
1505                 if (ret < nr) {
1506                         error = -EFAULT;
1507                         break;
1508                 }
1509                 cond_resched();
1510         }
1511
1512         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1513         file_accessed(file);
1514         return retval ? retval : error;
1515 }
1516
1517 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1518                                 struct pipe_inode_info *pipe, size_t len,
1519                                 unsigned int flags)
1520 {
1521         struct address_space *mapping = in->f_mapping;
1522         struct inode *inode = mapping->host;
1523         unsigned int loff, nr_pages, req_pages;
1524         struct page *pages[PIPE_DEF_BUFFERS];
1525         struct partial_page partial[PIPE_DEF_BUFFERS];
1526         struct page *page;
1527         pgoff_t index, end_index;
1528         loff_t isize, left;
1529         int error, page_nr;
1530         struct splice_pipe_desc spd = {
1531                 .pages = pages,
1532                 .partial = partial,
1533                 .nr_pages_max = PIPE_DEF_BUFFERS,
1534                 .flags = flags,
1535                 .ops = &page_cache_pipe_buf_ops,
1536                 .spd_release = spd_release_page,
1537         };
1538
1539         isize = i_size_read(inode);
1540         if (unlikely(*ppos >= isize))
1541                 return 0;
1542
1543         left = isize - *ppos;
1544         if (unlikely(left < len))
1545                 len = left;
1546
1547         if (splice_grow_spd(pipe, &spd))
1548                 return -ENOMEM;
1549
1550         index = *ppos >> PAGE_CACHE_SHIFT;
1551         loff = *ppos & ~PAGE_CACHE_MASK;
1552         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1553         nr_pages = min(req_pages, spd.nr_pages_max);
1554
1555         spd.nr_pages = find_get_pages_contig(mapping, index,
1556                                                 nr_pages, spd.pages);
1557         index += spd.nr_pages;
1558         error = 0;
1559
1560         while (spd.nr_pages < nr_pages) {
1561                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1562                 if (error)
1563                         break;
1564                 unlock_page(page);
1565                 spd.pages[spd.nr_pages++] = page;
1566                 index++;
1567         }
1568
1569         index = *ppos >> PAGE_CACHE_SHIFT;
1570         nr_pages = spd.nr_pages;
1571         spd.nr_pages = 0;
1572
1573         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1574                 unsigned int this_len;
1575
1576                 if (!len)
1577                         break;
1578
1579                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1580                 page = spd.pages[page_nr];
1581
1582                 if (!PageUptodate(page) || page->mapping != mapping) {
1583                         error = shmem_getpage(inode, index, &page,
1584                                                         SGP_CACHE, NULL);
1585                         if (error)
1586                                 break;
1587                         unlock_page(page);
1588                         page_cache_release(spd.pages[page_nr]);
1589                         spd.pages[page_nr] = page;
1590                 }
1591
1592                 isize = i_size_read(inode);
1593                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1594                 if (unlikely(!isize || index > end_index))
1595                         break;
1596
1597                 if (end_index == index) {
1598                         unsigned int plen;
1599
1600                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1601                         if (plen <= loff)
1602                                 break;
1603
1604                         this_len = min(this_len, plen - loff);
1605                         len = this_len;
1606                 }
1607
1608                 spd.partial[page_nr].offset = loff;
1609                 spd.partial[page_nr].len = this_len;
1610                 len -= this_len;
1611                 loff = 0;
1612                 spd.nr_pages++;
1613                 index++;
1614         }
1615
1616         while (page_nr < nr_pages)
1617                 page_cache_release(spd.pages[page_nr++]);
1618
1619         if (spd.nr_pages)
1620                 error = splice_to_pipe(pipe, &spd);
1621
1622         splice_shrink_spd(&spd);
1623
1624         if (error > 0) {
1625                 *ppos += error;
1626                 file_accessed(in);
1627         }
1628         return error;
1629 }
1630
1631 /*
1632  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1633  */
1634 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1635                                     pgoff_t index, pgoff_t end, int whence)
1636 {
1637         struct page *page;
1638         struct pagevec pvec;
1639         pgoff_t indices[PAGEVEC_SIZE];
1640         bool done = false;
1641         int i;
1642
1643         pagevec_init(&pvec, 0);
1644         pvec.nr = 1;            /* start small: we may be there already */
1645         while (!done) {
1646                 pvec.nr = find_get_entries(mapping, index,
1647                                         pvec.nr, pvec.pages, indices);
1648                 if (!pvec.nr) {
1649                         if (whence == SEEK_DATA)
1650                                 index = end;
1651                         break;
1652                 }
1653                 for (i = 0; i < pvec.nr; i++, index++) {
1654                         if (index < indices[i]) {
1655                                 if (whence == SEEK_HOLE) {
1656                                         done = true;
1657                                         break;
1658                                 }
1659                                 index = indices[i];
1660                         }
1661                         page = pvec.pages[i];
1662                         if (page && !radix_tree_exceptional_entry(page)) {
1663                                 if (!PageUptodate(page))
1664                                         page = NULL;
1665                         }
1666                         if (index >= end ||
1667                             (page && whence == SEEK_DATA) ||
1668                             (!page && whence == SEEK_HOLE)) {
1669                                 done = true;
1670                                 break;
1671                         }
1672                 }
1673                 pagevec_remove_exceptionals(&pvec);
1674                 pagevec_release(&pvec);
1675                 pvec.nr = PAGEVEC_SIZE;
1676                 cond_resched();
1677         }
1678         return index;
1679 }
1680
1681 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1682 {
1683         struct address_space *mapping = file->f_mapping;
1684         struct inode *inode = mapping->host;
1685         pgoff_t start, end;
1686         loff_t new_offset;
1687
1688         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1689                 return generic_file_llseek_size(file, offset, whence,
1690                                         MAX_LFS_FILESIZE, i_size_read(inode));
1691         mutex_lock(&inode->i_mutex);
1692         /* We're holding i_mutex so we can access i_size directly */
1693
1694         if (offset < 0)
1695                 offset = -EINVAL;
1696         else if (offset >= inode->i_size)
1697                 offset = -ENXIO;
1698         else {
1699                 start = offset >> PAGE_CACHE_SHIFT;
1700                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1701                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1702                 new_offset <<= PAGE_CACHE_SHIFT;
1703                 if (new_offset > offset) {
1704                         if (new_offset < inode->i_size)
1705                                 offset = new_offset;
1706                         else if (whence == SEEK_DATA)
1707                                 offset = -ENXIO;
1708                         else
1709                                 offset = inode->i_size;
1710                 }
1711         }
1712
1713         if (offset >= 0)
1714                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1715         mutex_unlock(&inode->i_mutex);
1716         return offset;
1717 }
1718
1719 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1720                                                          loff_t len)
1721 {
1722         struct inode *inode = file_inode(file);
1723         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1724         struct shmem_falloc shmem_falloc;
1725         pgoff_t start, index, end;
1726         int error;
1727
1728         mutex_lock(&inode->i_mutex);
1729
1730         if (mode & FALLOC_FL_PUNCH_HOLE) {
1731                 struct address_space *mapping = file->f_mapping;
1732                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1733                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1734
1735                 if ((u64)unmap_end > (u64)unmap_start)
1736                         unmap_mapping_range(mapping, unmap_start,
1737                                             1 + unmap_end - unmap_start, 0);
1738                 shmem_truncate_range(inode, offset, offset + len - 1);
1739                 /* No need to unmap again: hole-punching leaves COWed pages */
1740                 error = 0;
1741                 goto out;
1742         }
1743
1744         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1745         error = inode_newsize_ok(inode, offset + len);
1746         if (error)
1747                 goto out;
1748
1749         start = offset >> PAGE_CACHE_SHIFT;
1750         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1751         /* Try to avoid a swapstorm if len is impossible to satisfy */
1752         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1753                 error = -ENOSPC;
1754                 goto out;
1755         }
1756
1757         shmem_falloc.start = start;
1758         shmem_falloc.next  = start;
1759         shmem_falloc.nr_falloced = 0;
1760         shmem_falloc.nr_unswapped = 0;
1761         spin_lock(&inode->i_lock);
1762         inode->i_private = &shmem_falloc;
1763         spin_unlock(&inode->i_lock);
1764
1765         for (index = start; index < end; index++) {
1766                 struct page *page;
1767
1768                 /*
1769                  * Good, the fallocate(2) manpage permits EINTR: we may have
1770                  * been interrupted because we are using up too much memory.
1771                  */
1772                 if (signal_pending(current))
1773                         error = -EINTR;
1774                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1775                         error = -ENOMEM;
1776                 else
1777                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1778                                                                         NULL);
1779                 if (error) {
1780                         /* Remove the !PageUptodate pages we added */
1781                         shmem_undo_range(inode,
1782                                 (loff_t)start << PAGE_CACHE_SHIFT,
1783                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1784                         goto undone;
1785                 }
1786
1787                 /*
1788                  * Inform shmem_writepage() how far we have reached.
1789                  * No need for lock or barrier: we have the page lock.
1790                  */
1791                 shmem_falloc.next++;
1792                 if (!PageUptodate(page))
1793                         shmem_falloc.nr_falloced++;
1794
1795                 /*
1796                  * If !PageUptodate, leave it that way so that freeable pages
1797                  * can be recognized if we need to rollback on error later.
1798                  * But set_page_dirty so that memory pressure will swap rather
1799                  * than free the pages we are allocating (and SGP_CACHE pages
1800                  * might still be clean: we now need to mark those dirty too).
1801                  */
1802                 set_page_dirty(page);
1803                 unlock_page(page);
1804                 page_cache_release(page);
1805                 cond_resched();
1806         }
1807
1808         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1809                 i_size_write(inode, offset + len);
1810         inode->i_ctime = CURRENT_TIME;
1811 undone:
1812         spin_lock(&inode->i_lock);
1813         inode->i_private = NULL;
1814         spin_unlock(&inode->i_lock);
1815 out:
1816         mutex_unlock(&inode->i_mutex);
1817         return error;
1818 }
1819
1820 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1821 {
1822         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1823
1824         buf->f_type = TMPFS_MAGIC;
1825         buf->f_bsize = PAGE_CACHE_SIZE;
1826         buf->f_namelen = NAME_MAX;
1827         if (sbinfo->max_blocks) {
1828                 buf->f_blocks = sbinfo->max_blocks;
1829                 buf->f_bavail =
1830                 buf->f_bfree  = sbinfo->max_blocks -
1831                                 percpu_counter_sum(&sbinfo->used_blocks);
1832         }
1833         if (sbinfo->max_inodes) {
1834                 buf->f_files = sbinfo->max_inodes;
1835                 buf->f_ffree = sbinfo->free_inodes;
1836         }
1837         /* else leave those fields 0 like simple_statfs */
1838         return 0;
1839 }
1840
1841 /*
1842  * File creation. Allocate an inode, and we're done..
1843  */
1844 static int
1845 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1846 {
1847         struct inode *inode;
1848         int error = -ENOSPC;
1849
1850         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1851         if (inode) {
1852                 error = simple_acl_create(dir, inode);
1853                 if (error)
1854                         goto out_iput;
1855                 error = security_inode_init_security(inode, dir,
1856                                                      &dentry->d_name,
1857                                                      shmem_initxattrs, NULL);
1858                 if (error && error != -EOPNOTSUPP)
1859                         goto out_iput;
1860
1861                 error = 0;
1862                 dir->i_size += BOGO_DIRENT_SIZE;
1863                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1864                 d_instantiate(dentry, inode);
1865                 dget(dentry); /* Extra count - pin the dentry in core */
1866         }
1867         return error;
1868 out_iput:
1869         iput(inode);
1870         return error;
1871 }
1872
1873 static int
1874 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1875 {
1876         struct inode *inode;
1877         int error = -ENOSPC;
1878
1879         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1880         if (inode) {
1881                 error = security_inode_init_security(inode, dir,
1882                                                      NULL,
1883                                                      shmem_initxattrs, NULL);
1884                 if (error && error != -EOPNOTSUPP)
1885                         goto out_iput;
1886                 error = simple_acl_create(dir, inode);
1887                 if (error)
1888                         goto out_iput;
1889                 d_tmpfile(dentry, inode);
1890         }
1891         return error;
1892 out_iput:
1893         iput(inode);
1894         return error;
1895 }
1896
1897 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1898 {
1899         int error;
1900
1901         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1902                 return error;
1903         inc_nlink(dir);
1904         return 0;
1905 }
1906
1907 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1908                 bool excl)
1909 {
1910         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1911 }
1912
1913 /*
1914  * Link a file..
1915  */
1916 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1917 {
1918         struct inode *inode = old_dentry->d_inode;
1919         int ret;
1920
1921         /*
1922          * No ordinary (disk based) filesystem counts links as inodes;
1923          * but each new link needs a new dentry, pinning lowmem, and
1924          * tmpfs dentries cannot be pruned until they are unlinked.
1925          */
1926         ret = shmem_reserve_inode(inode->i_sb);
1927         if (ret)
1928                 goto out;
1929
1930         dir->i_size += BOGO_DIRENT_SIZE;
1931         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1932         inc_nlink(inode);
1933         ihold(inode);   /* New dentry reference */
1934         dget(dentry);           /* Extra pinning count for the created dentry */
1935         d_instantiate(dentry, inode);
1936 out:
1937         return ret;
1938 }
1939
1940 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1941 {
1942         struct inode *inode = dentry->d_inode;
1943
1944         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1945                 shmem_free_inode(inode->i_sb);
1946
1947         dir->i_size -= BOGO_DIRENT_SIZE;
1948         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1949         drop_nlink(inode);
1950         dput(dentry);   /* Undo the count from "create" - this does all the work */
1951         return 0;
1952 }
1953
1954 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1955 {
1956         if (!simple_empty(dentry))
1957                 return -ENOTEMPTY;
1958
1959         drop_nlink(dentry->d_inode);
1960         drop_nlink(dir);
1961         return shmem_unlink(dir, dentry);
1962 }
1963
1964 /*
1965  * The VFS layer already does all the dentry stuff for rename,
1966  * we just have to decrement the usage count for the target if
1967  * it exists so that the VFS layer correctly free's it when it
1968  * gets overwritten.
1969  */
1970 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1971 {
1972         struct inode *inode = old_dentry->d_inode;
1973         int they_are_dirs = S_ISDIR(inode->i_mode);
1974
1975         if (!simple_empty(new_dentry))
1976                 return -ENOTEMPTY;
1977
1978         if (new_dentry->d_inode) {
1979                 (void) shmem_unlink(new_dir, new_dentry);
1980                 if (they_are_dirs)
1981                         drop_nlink(old_dir);
1982         } else if (they_are_dirs) {
1983                 drop_nlink(old_dir);
1984                 inc_nlink(new_dir);
1985         }
1986
1987         old_dir->i_size -= BOGO_DIRENT_SIZE;
1988         new_dir->i_size += BOGO_DIRENT_SIZE;
1989         old_dir->i_ctime = old_dir->i_mtime =
1990         new_dir->i_ctime = new_dir->i_mtime =
1991         inode->i_ctime = CURRENT_TIME;
1992         return 0;
1993 }
1994
1995 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1996 {
1997         int error;
1998         int len;
1999         struct inode *inode;
2000         struct page *page;
2001         char *kaddr;
2002         struct shmem_inode_info *info;
2003
2004         len = strlen(symname) + 1;
2005         if (len > PAGE_CACHE_SIZE)
2006                 return -ENAMETOOLONG;
2007
2008         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2009         if (!inode)
2010                 return -ENOSPC;
2011
2012         error = security_inode_init_security(inode, dir, &dentry->d_name,
2013                                              shmem_initxattrs, NULL);
2014         if (error) {
2015                 if (error != -EOPNOTSUPP) {
2016                         iput(inode);
2017                         return error;
2018                 }
2019                 error = 0;
2020         }
2021
2022         info = SHMEM_I(inode);
2023         inode->i_size = len-1;
2024         if (len <= SHORT_SYMLINK_LEN) {
2025                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2026                 if (!info->symlink) {
2027                         iput(inode);
2028                         return -ENOMEM;
2029                 }
2030                 inode->i_op = &shmem_short_symlink_operations;
2031         } else {
2032                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2033                 if (error) {
2034                         iput(inode);
2035                         return error;
2036                 }
2037                 inode->i_mapping->a_ops = &shmem_aops;
2038                 inode->i_op = &shmem_symlink_inode_operations;
2039                 kaddr = kmap_atomic(page);
2040                 memcpy(kaddr, symname, len);
2041                 kunmap_atomic(kaddr);
2042                 SetPageUptodate(page);
2043                 set_page_dirty(page);
2044                 unlock_page(page);
2045                 page_cache_release(page);
2046         }
2047         dir->i_size += BOGO_DIRENT_SIZE;
2048         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2049         d_instantiate(dentry, inode);
2050         dget(dentry);
2051         return 0;
2052 }
2053
2054 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2055 {
2056         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2057         return NULL;
2058 }
2059
2060 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2061 {
2062         struct page *page = NULL;
2063         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2064         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2065         if (page)
2066                 unlock_page(page);
2067         return page;
2068 }
2069
2070 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2071 {
2072         if (!IS_ERR(nd_get_link(nd))) {
2073                 struct page *page = cookie;
2074                 kunmap(page);
2075                 mark_page_accessed(page);
2076                 page_cache_release(page);
2077         }
2078 }
2079
2080 #ifdef CONFIG_TMPFS_XATTR
2081 /*
2082  * Superblocks without xattr inode operations may get some security.* xattr
2083  * support from the LSM "for free". As soon as we have any other xattrs
2084  * like ACLs, we also need to implement the security.* handlers at
2085  * filesystem level, though.
2086  */
2087
2088 /*
2089  * Callback for security_inode_init_security() for acquiring xattrs.
2090  */
2091 static int shmem_initxattrs(struct inode *inode,
2092                             const struct xattr *xattr_array,
2093                             void *fs_info)
2094 {
2095         struct shmem_inode_info *info = SHMEM_I(inode);
2096         const struct xattr *xattr;
2097         struct simple_xattr *new_xattr;
2098         size_t len;
2099
2100         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2101                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2102                 if (!new_xattr)
2103                         return -ENOMEM;
2104
2105                 len = strlen(xattr->name) + 1;
2106                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2107                                           GFP_KERNEL);
2108                 if (!new_xattr->name) {
2109                         kfree(new_xattr);
2110                         return -ENOMEM;
2111                 }
2112
2113                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2114                        XATTR_SECURITY_PREFIX_LEN);
2115                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2116                        xattr->name, len);
2117
2118                 simple_xattr_list_add(&info->xattrs, new_xattr);
2119         }
2120
2121         return 0;
2122 }
2123
2124 static const struct xattr_handler *shmem_xattr_handlers[] = {
2125 #ifdef CONFIG_TMPFS_POSIX_ACL
2126         &posix_acl_access_xattr_handler,
2127         &posix_acl_default_xattr_handler,
2128 #endif
2129         NULL
2130 };
2131
2132 static int shmem_xattr_validate(const char *name)
2133 {
2134         struct { const char *prefix; size_t len; } arr[] = {
2135                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2136                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2137         };
2138         int i;
2139
2140         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2141                 size_t preflen = arr[i].len;
2142                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2143                         if (!name[preflen])
2144                                 return -EINVAL;
2145                         return 0;
2146                 }
2147         }
2148         return -EOPNOTSUPP;
2149 }
2150
2151 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2152                               void *buffer, size_t size)
2153 {
2154         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2155         int err;
2156
2157         /*
2158          * If this is a request for a synthetic attribute in the system.*
2159          * namespace use the generic infrastructure to resolve a handler
2160          * for it via sb->s_xattr.
2161          */
2162         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2163                 return generic_getxattr(dentry, name, buffer, size);
2164
2165         err = shmem_xattr_validate(name);
2166         if (err)
2167                 return err;
2168
2169         return simple_xattr_get(&info->xattrs, name, buffer, size);
2170 }
2171
2172 static int shmem_setxattr(struct dentry *dentry, const char *name,
2173                           const void *value, size_t size, int flags)
2174 {
2175         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2176         int err;
2177
2178         /*
2179          * If this is a request for a synthetic attribute in the system.*
2180          * namespace use the generic infrastructure to resolve a handler
2181          * for it via sb->s_xattr.
2182          */
2183         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2184                 return generic_setxattr(dentry, name, value, size, flags);
2185
2186         err = shmem_xattr_validate(name);
2187         if (err)
2188                 return err;
2189
2190         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2191 }
2192
2193 static int shmem_removexattr(struct dentry *dentry, const char *name)
2194 {
2195         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2196         int err;
2197
2198         /*
2199          * If this is a request for a synthetic attribute in the system.*
2200          * namespace use the generic infrastructure to resolve a handler
2201          * for it via sb->s_xattr.
2202          */
2203         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2204                 return generic_removexattr(dentry, name);
2205
2206         err = shmem_xattr_validate(name);
2207         if (err)
2208                 return err;
2209
2210         return simple_xattr_remove(&info->xattrs, name);
2211 }
2212
2213 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2214 {
2215         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2216         return simple_xattr_list(&info->xattrs, buffer, size);
2217 }
2218 #endif /* CONFIG_TMPFS_XATTR */
2219
2220 static const struct inode_operations shmem_short_symlink_operations = {
2221         .readlink       = generic_readlink,
2222         .follow_link    = shmem_follow_short_symlink,
2223 #ifdef CONFIG_TMPFS_XATTR
2224         .setxattr       = shmem_setxattr,
2225         .getxattr       = shmem_getxattr,
2226         .listxattr      = shmem_listxattr,
2227         .removexattr    = shmem_removexattr,
2228 #endif
2229 };
2230
2231 static const struct inode_operations shmem_symlink_inode_operations = {
2232         .readlink       = generic_readlink,
2233         .follow_link    = shmem_follow_link,
2234         .put_link       = shmem_put_link,
2235 #ifdef CONFIG_TMPFS_XATTR
2236         .setxattr       = shmem_setxattr,
2237         .getxattr       = shmem_getxattr,
2238         .listxattr      = shmem_listxattr,
2239         .removexattr    = shmem_removexattr,
2240 #endif
2241 };
2242
2243 static struct dentry *shmem_get_parent(struct dentry *child)
2244 {
2245         return ERR_PTR(-ESTALE);
2246 }
2247
2248 static int shmem_match(struct inode *ino, void *vfh)
2249 {
2250         __u32 *fh = vfh;
2251         __u64 inum = fh[2];
2252         inum = (inum << 32) | fh[1];
2253         return ino->i_ino == inum && fh[0] == ino->i_generation;
2254 }
2255
2256 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2257                 struct fid *fid, int fh_len, int fh_type)
2258 {
2259         struct inode *inode;
2260         struct dentry *dentry = NULL;
2261         u64 inum;
2262
2263         if (fh_len < 3)
2264                 return NULL;
2265
2266         inum = fid->raw[2];
2267         inum = (inum << 32) | fid->raw[1];
2268
2269         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2270                         shmem_match, fid->raw);
2271         if (inode) {
2272                 dentry = d_find_alias(inode);
2273                 iput(inode);
2274         }
2275
2276         return dentry;
2277 }
2278
2279 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2280                                 struct inode *parent)
2281 {
2282         if (*len < 3) {
2283                 *len = 3;
2284                 return FILEID_INVALID;
2285         }
2286
2287         if (inode_unhashed(inode)) {
2288                 /* Unfortunately insert_inode_hash is not idempotent,
2289                  * so as we hash inodes here rather than at creation
2290                  * time, we need a lock to ensure we only try
2291                  * to do it once
2292                  */
2293                 static DEFINE_SPINLOCK(lock);
2294                 spin_lock(&lock);
2295                 if (inode_unhashed(inode))
2296                         __insert_inode_hash(inode,
2297                                             inode->i_ino + inode->i_generation);
2298                 spin_unlock(&lock);
2299         }
2300
2301         fh[0] = inode->i_generation;
2302         fh[1] = inode->i_ino;
2303         fh[2] = ((__u64)inode->i_ino) >> 32;
2304
2305         *len = 3;
2306         return 1;
2307 }
2308
2309 static const struct export_operations shmem_export_ops = {
2310         .get_parent     = shmem_get_parent,
2311         .encode_fh      = shmem_encode_fh,
2312         .fh_to_dentry   = shmem_fh_to_dentry,
2313 };
2314
2315 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2316                                bool remount)
2317 {
2318         char *this_char, *value, *rest;
2319         struct mempolicy *mpol = NULL;
2320         uid_t uid;
2321         gid_t gid;
2322
2323         while (options != NULL) {
2324                 this_char = options;
2325                 for (;;) {
2326                         /*
2327                          * NUL-terminate this option: unfortunately,
2328                          * mount options form a comma-separated list,
2329                          * but mpol's nodelist may also contain commas.
2330                          */
2331                         options = strchr(options, ',');
2332                         if (options == NULL)
2333                                 break;
2334                         options++;
2335                         if (!isdigit(*options)) {
2336                                 options[-1] = '\0';
2337                                 break;
2338                         }
2339                 }
2340                 if (!*this_char)
2341                         continue;
2342                 if ((value = strchr(this_char,'=')) != NULL) {
2343                         *value++ = 0;
2344                 } else {
2345                         printk(KERN_ERR
2346                             "tmpfs: No value for mount option '%s'\n",
2347                             this_char);
2348                         goto error;
2349                 }
2350
2351                 if (!strcmp(this_char,"size")) {
2352                         unsigned long long size;
2353                         size = memparse(value,&rest);
2354                         if (*rest == '%') {
2355                                 size <<= PAGE_SHIFT;
2356                                 size *= totalram_pages;
2357                                 do_div(size, 100);
2358                                 rest++;
2359                         }
2360                         if (*rest)
2361                                 goto bad_val;
2362                         sbinfo->max_blocks =
2363                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2364                 } else if (!strcmp(this_char,"nr_blocks")) {
2365                         sbinfo->max_blocks = memparse(value, &rest);
2366                         if (*rest)
2367                                 goto bad_val;
2368                 } else if (!strcmp(this_char,"nr_inodes")) {
2369                         sbinfo->max_inodes = memparse(value, &rest);
2370                         if (*rest)
2371                                 goto bad_val;
2372                 } else if (!strcmp(this_char,"mode")) {
2373                         if (remount)
2374                                 continue;
2375                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2376                         if (*rest)
2377                                 goto bad_val;
2378                 } else if (!strcmp(this_char,"uid")) {
2379                         if (remount)
2380                                 continue;
2381                         uid = simple_strtoul(value, &rest, 0);
2382                         if (*rest)
2383                                 goto bad_val;
2384                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2385                         if (!uid_valid(sbinfo->uid))
2386                                 goto bad_val;
2387                 } else if (!strcmp(this_char,"gid")) {
2388                         if (remount)
2389                                 continue;
2390                         gid = simple_strtoul(value, &rest, 0);
2391                         if (*rest)
2392                                 goto bad_val;
2393                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2394                         if (!gid_valid(sbinfo->gid))
2395                                 goto bad_val;
2396                 } else if (!strcmp(this_char,"mpol")) {
2397                         mpol_put(mpol);
2398                         mpol = NULL;
2399                         if (mpol_parse_str(value, &mpol))
2400                                 goto bad_val;
2401                 } else {
2402                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2403                                this_char);
2404                         goto error;
2405                 }
2406         }
2407         sbinfo->mpol = mpol;
2408         return 0;
2409
2410 bad_val:
2411         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2412                value, this_char);
2413 error:
2414         mpol_put(mpol);
2415         return 1;
2416
2417 }
2418
2419 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2420 {
2421         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2422         struct shmem_sb_info config = *sbinfo;
2423         unsigned long inodes;
2424         int error = -EINVAL;
2425
2426         config.mpol = NULL;
2427         if (shmem_parse_options(data, &config, true))
2428                 return error;
2429
2430         spin_lock(&sbinfo->stat_lock);
2431         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2432         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2433                 goto out;
2434         if (config.max_inodes < inodes)
2435                 goto out;
2436         /*
2437          * Those tests disallow limited->unlimited while any are in use;
2438          * but we must separately disallow unlimited->limited, because
2439          * in that case we have no record of how much is already in use.
2440          */
2441         if (config.max_blocks && !sbinfo->max_blocks)
2442                 goto out;
2443         if (config.max_inodes && !sbinfo->max_inodes)
2444                 goto out;
2445
2446         error = 0;
2447         sbinfo->max_blocks  = config.max_blocks;
2448         sbinfo->max_inodes  = config.max_inodes;
2449         sbinfo->free_inodes = config.max_inodes - inodes;
2450
2451         /*
2452          * Preserve previous mempolicy unless mpol remount option was specified.
2453          */
2454         if (config.mpol) {
2455                 mpol_put(sbinfo->mpol);
2456                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2457         }
2458 out:
2459         spin_unlock(&sbinfo->stat_lock);
2460         return error;
2461 }
2462
2463 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2464 {
2465         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2466
2467         if (sbinfo->max_blocks != shmem_default_max_blocks())
2468                 seq_printf(seq, ",size=%luk",
2469                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2470         if (sbinfo->max_inodes != shmem_default_max_inodes())
2471                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2472         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2473                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2474         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2475                 seq_printf(seq, ",uid=%u",
2476                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2477         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2478                 seq_printf(seq, ",gid=%u",
2479                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2480         shmem_show_mpol(seq, sbinfo->mpol);
2481         return 0;
2482 }
2483 #endif /* CONFIG_TMPFS */
2484
2485 static void shmem_put_super(struct super_block *sb)
2486 {
2487         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2488
2489         percpu_counter_destroy(&sbinfo->used_blocks);
2490         mpol_put(sbinfo->mpol);
2491         kfree(sbinfo);
2492         sb->s_fs_info = NULL;
2493 }
2494
2495 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2496 {
2497         struct inode *inode;
2498         struct shmem_sb_info *sbinfo;
2499         int err = -ENOMEM;
2500
2501         /* Round up to L1_CACHE_BYTES to resist false sharing */
2502         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2503                                 L1_CACHE_BYTES), GFP_KERNEL);
2504         if (!sbinfo)
2505                 return -ENOMEM;
2506
2507         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2508         sbinfo->uid = current_fsuid();
2509         sbinfo->gid = current_fsgid();
2510         sb->s_fs_info = sbinfo;
2511
2512 #ifdef CONFIG_TMPFS
2513         /*
2514          * Per default we only allow half of the physical ram per
2515          * tmpfs instance, limiting inodes to one per page of lowmem;
2516          * but the internal instance is left unlimited.
2517          */
2518         if (!(sb->s_flags & MS_KERNMOUNT)) {
2519                 sbinfo->max_blocks = shmem_default_max_blocks();
2520                 sbinfo->max_inodes = shmem_default_max_inodes();
2521                 if (shmem_parse_options(data, sbinfo, false)) {
2522                         err = -EINVAL;
2523                         goto failed;
2524                 }
2525         } else {
2526                 sb->s_flags |= MS_NOUSER;
2527         }
2528         sb->s_export_op = &shmem_export_ops;
2529         sb->s_flags |= MS_NOSEC;
2530 #else
2531         sb->s_flags |= MS_NOUSER;
2532 #endif
2533
2534         spin_lock_init(&sbinfo->stat_lock);
2535         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2536                 goto failed;
2537         sbinfo->free_inodes = sbinfo->max_inodes;
2538
2539         sb->s_maxbytes = MAX_LFS_FILESIZE;
2540         sb->s_blocksize = PAGE_CACHE_SIZE;
2541         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2542         sb->s_magic = TMPFS_MAGIC;
2543         sb->s_op = &shmem_ops;
2544         sb->s_time_gran = 1;
2545 #ifdef CONFIG_TMPFS_XATTR
2546         sb->s_xattr = shmem_xattr_handlers;
2547 #endif
2548 #ifdef CONFIG_TMPFS_POSIX_ACL
2549         sb->s_flags |= MS_POSIXACL;
2550 #endif
2551
2552         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2553         if (!inode)
2554                 goto failed;
2555         inode->i_uid = sbinfo->uid;
2556         inode->i_gid = sbinfo->gid;
2557         sb->s_root = d_make_root(inode);
2558         if (!sb->s_root)
2559                 goto failed;
2560         return 0;
2561
2562 failed:
2563         shmem_put_super(sb);
2564         return err;
2565 }
2566
2567 static struct kmem_cache *shmem_inode_cachep;
2568
2569 static struct inode *shmem_alloc_inode(struct super_block *sb)
2570 {
2571         struct shmem_inode_info *info;
2572         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2573         if (!info)
2574                 return NULL;
2575         return &info->vfs_inode;
2576 }
2577
2578 static void shmem_destroy_callback(struct rcu_head *head)
2579 {
2580         struct inode *inode = container_of(head, struct inode, i_rcu);
2581         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2582 }
2583
2584 static void shmem_destroy_inode(struct inode *inode)
2585 {
2586         if (S_ISREG(inode->i_mode))
2587                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2588         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2589 }
2590
2591 static void shmem_init_inode(void *foo)
2592 {
2593         struct shmem_inode_info *info = foo;
2594         inode_init_once(&info->vfs_inode);
2595 }
2596
2597 static int shmem_init_inodecache(void)
2598 {
2599         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2600                                 sizeof(struct shmem_inode_info),
2601                                 0, SLAB_PANIC, shmem_init_inode);
2602         return 0;
2603 }
2604
2605 static void shmem_destroy_inodecache(void)
2606 {
2607         kmem_cache_destroy(shmem_inode_cachep);
2608 }
2609
2610 static const struct address_space_operations shmem_aops = {
2611         .writepage      = shmem_writepage,
2612         .set_page_dirty = __set_page_dirty_no_writeback,
2613 #ifdef CONFIG_TMPFS
2614         .write_begin    = shmem_write_begin,
2615         .write_end      = shmem_write_end,
2616 #endif
2617         .migratepage    = migrate_page,
2618         .error_remove_page = generic_error_remove_page,
2619 };
2620
2621 static const struct file_operations shmem_file_operations = {
2622         .mmap           = shmem_mmap,
2623 #ifdef CONFIG_TMPFS
2624         .llseek         = shmem_file_llseek,
2625         .read           = do_sync_read,
2626         .write          = do_sync_write,
2627         .aio_read       = shmem_file_aio_read,
2628         .aio_write      = generic_file_aio_write,
2629         .fsync          = noop_fsync,
2630         .splice_read    = shmem_file_splice_read,
2631         .splice_write   = generic_file_splice_write,
2632         .fallocate      = shmem_fallocate,
2633 #endif
2634 };
2635
2636 static const struct inode_operations shmem_inode_operations = {
2637         .setattr        = shmem_setattr,
2638 #ifdef CONFIG_TMPFS_XATTR
2639         .setxattr       = shmem_setxattr,
2640         .getxattr       = shmem_getxattr,
2641         .listxattr      = shmem_listxattr,
2642         .removexattr    = shmem_removexattr,
2643         .set_acl        = simple_set_acl,
2644 #endif
2645 };
2646
2647 static const struct inode_operations shmem_dir_inode_operations = {
2648 #ifdef CONFIG_TMPFS
2649         .create         = shmem_create,
2650         .lookup         = simple_lookup,
2651         .link           = shmem_link,
2652         .unlink         = shmem_unlink,
2653         .symlink        = shmem_symlink,
2654         .mkdir          = shmem_mkdir,
2655         .rmdir          = shmem_rmdir,
2656         .mknod          = shmem_mknod,
2657         .rename         = shmem_rename,
2658         .tmpfile        = shmem_tmpfile,
2659 #endif
2660 #ifdef CONFIG_TMPFS_XATTR
2661         .setxattr       = shmem_setxattr,
2662         .getxattr       = shmem_getxattr,
2663         .listxattr      = shmem_listxattr,
2664         .removexattr    = shmem_removexattr,
2665 #endif
2666 #ifdef CONFIG_TMPFS_POSIX_ACL
2667         .setattr        = shmem_setattr,
2668         .set_acl        = simple_set_acl,
2669 #endif
2670 };
2671
2672 static const struct inode_operations shmem_special_inode_operations = {
2673 #ifdef CONFIG_TMPFS_XATTR
2674         .setxattr       = shmem_setxattr,
2675         .getxattr       = shmem_getxattr,
2676         .listxattr      = shmem_listxattr,
2677         .removexattr    = shmem_removexattr,
2678 #endif
2679 #ifdef CONFIG_TMPFS_POSIX_ACL
2680         .setattr        = shmem_setattr,
2681         .set_acl        = simple_set_acl,
2682 #endif
2683 };
2684
2685 static const struct super_operations shmem_ops = {
2686         .alloc_inode    = shmem_alloc_inode,
2687         .destroy_inode  = shmem_destroy_inode,
2688 #ifdef CONFIG_TMPFS
2689         .statfs         = shmem_statfs,
2690         .remount_fs     = shmem_remount_fs,
2691         .show_options   = shmem_show_options,
2692 #endif
2693         .evict_inode    = shmem_evict_inode,
2694         .drop_inode     = generic_delete_inode,
2695         .put_super      = shmem_put_super,
2696 };
2697
2698 static const struct vm_operations_struct shmem_vm_ops = {
2699         .fault          = shmem_fault,
2700         .map_pages      = filemap_map_pages,
2701 #ifdef CONFIG_NUMA
2702         .set_policy     = shmem_set_policy,
2703         .get_policy     = shmem_get_policy,
2704 #endif
2705         .remap_pages    = generic_file_remap_pages,
2706 };
2707
2708 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2709         int flags, const char *dev_name, void *data)
2710 {
2711         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2712 }
2713
2714 static struct file_system_type shmem_fs_type = {
2715         .owner          = THIS_MODULE,
2716         .name           = "tmpfs",
2717         .mount          = shmem_mount,
2718         .kill_sb        = kill_litter_super,
2719         .fs_flags       = FS_USERNS_MOUNT,
2720 };
2721
2722 int __init shmem_init(void)
2723 {
2724         int error;
2725
2726         /* If rootfs called this, don't re-init */
2727         if (shmem_inode_cachep)
2728                 return 0;
2729
2730         error = bdi_init(&shmem_backing_dev_info);
2731         if (error)
2732                 goto out4;
2733
2734         error = shmem_init_inodecache();
2735         if (error)
2736                 goto out3;
2737
2738         error = register_filesystem(&shmem_fs_type);
2739         if (error) {
2740                 printk(KERN_ERR "Could not register tmpfs\n");
2741                 goto out2;
2742         }
2743
2744         shm_mnt = kern_mount(&shmem_fs_type);
2745         if (IS_ERR(shm_mnt)) {
2746                 error = PTR_ERR(shm_mnt);
2747                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2748                 goto out1;
2749         }
2750         return 0;
2751
2752 out1:
2753         unregister_filesystem(&shmem_fs_type);
2754 out2:
2755         shmem_destroy_inodecache();
2756 out3:
2757         bdi_destroy(&shmem_backing_dev_info);
2758 out4:
2759         shm_mnt = ERR_PTR(error);
2760         return error;
2761 }
2762
2763 #else /* !CONFIG_SHMEM */
2764
2765 /*
2766  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2767  *
2768  * This is intended for small system where the benefits of the full
2769  * shmem code (swap-backed and resource-limited) are outweighed by
2770  * their complexity. On systems without swap this code should be
2771  * effectively equivalent, but much lighter weight.
2772  */
2773
2774 static struct file_system_type shmem_fs_type = {
2775         .name           = "tmpfs",
2776         .mount          = ramfs_mount,
2777         .kill_sb        = kill_litter_super,
2778         .fs_flags       = FS_USERNS_MOUNT,
2779 };
2780
2781 int __init shmem_init(void)
2782 {
2783         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2784
2785         shm_mnt = kern_mount(&shmem_fs_type);
2786         BUG_ON(IS_ERR(shm_mnt));
2787
2788         return 0;
2789 }
2790
2791 int shmem_unuse(swp_entry_t swap, struct page *page)
2792 {
2793         return 0;
2794 }
2795
2796 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2797 {
2798         return 0;
2799 }
2800
2801 void shmem_unlock_mapping(struct address_space *mapping)
2802 {
2803 }
2804
2805 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2806 {
2807         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2808 }
2809 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2810
2811 #define shmem_vm_ops                            generic_file_vm_ops
2812 #define shmem_file_operations                   ramfs_file_operations
2813 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2814 #define shmem_acct_size(flags, size)            0
2815 #define shmem_unacct_size(flags, size)          do {} while (0)
2816
2817 #endif /* CONFIG_SHMEM */
2818
2819 /* common code */
2820
2821 static struct dentry_operations anon_ops = {
2822         .d_dname = simple_dname
2823 };
2824
2825 static struct file *__shmem_file_setup(const char *name, loff_t size,
2826                                        unsigned long flags, unsigned int i_flags)
2827 {
2828         struct file *res;
2829         struct inode *inode;
2830         struct path path;
2831         struct super_block *sb;
2832         struct qstr this;
2833
2834         if (IS_ERR(shm_mnt))
2835                 return ERR_CAST(shm_mnt);
2836
2837         if (size < 0 || size > MAX_LFS_FILESIZE)
2838                 return ERR_PTR(-EINVAL);
2839
2840         if (shmem_acct_size(flags, size))
2841                 return ERR_PTR(-ENOMEM);
2842
2843         res = ERR_PTR(-ENOMEM);
2844         this.name = name;
2845         this.len = strlen(name);
2846         this.hash = 0; /* will go */
2847         sb = shm_mnt->mnt_sb;
2848         path.dentry = d_alloc_pseudo(sb, &this);
2849         if (!path.dentry)
2850                 goto put_memory;
2851         d_set_d_op(path.dentry, &anon_ops);
2852         path.mnt = mntget(shm_mnt);
2853
2854         res = ERR_PTR(-ENOSPC);
2855         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2856         if (!inode)
2857                 goto put_dentry;
2858
2859         inode->i_flags |= i_flags;
2860         d_instantiate(path.dentry, inode);
2861         inode->i_size = size;
2862         clear_nlink(inode);     /* It is unlinked */
2863         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2864         if (IS_ERR(res))
2865                 goto put_dentry;
2866
2867         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2868                   &shmem_file_operations);
2869         if (IS_ERR(res))
2870                 goto put_dentry;
2871
2872         return res;
2873
2874 put_dentry:
2875         path_put(&path);
2876 put_memory:
2877         shmem_unacct_size(flags, size);
2878         return res;
2879 }
2880
2881 /**
2882  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2883  *      kernel internal.  There will be NO LSM permission checks against the
2884  *      underlying inode.  So users of this interface must do LSM checks at a
2885  *      higher layer.  The one user is the big_key implementation.  LSM checks
2886  *      are provided at the key level rather than the inode level.
2887  * @name: name for dentry (to be seen in /proc/<pid>/maps
2888  * @size: size to be set for the file
2889  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2890  */
2891 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2892 {
2893         return __shmem_file_setup(name, size, flags, S_PRIVATE);
2894 }
2895
2896 /**
2897  * shmem_file_setup - get an unlinked file living in tmpfs
2898  * @name: name for dentry (to be seen in /proc/<pid>/maps
2899  * @size: size to be set for the file
2900  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2901  */
2902 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2903 {
2904         return __shmem_file_setup(name, size, flags, 0);
2905 }
2906 EXPORT_SYMBOL_GPL(shmem_file_setup);
2907
2908 /**
2909  * shmem_zero_setup - setup a shared anonymous mapping
2910  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2911  */
2912 int shmem_zero_setup(struct vm_area_struct *vma)
2913 {
2914         struct file *file;
2915         loff_t size = vma->vm_end - vma->vm_start;
2916
2917         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2918         if (IS_ERR(file))
2919                 return PTR_ERR(file);
2920
2921         if (vma->vm_file)
2922                 fput(vma->vm_file);
2923         vma->vm_file = file;
2924         vma->vm_ops = &shmem_vm_ops;
2925         return 0;
2926 }
2927
2928 /**
2929  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2930  * @mapping:    the page's address_space
2931  * @index:      the page index
2932  * @gfp:        the page allocator flags to use if allocating
2933  *
2934  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2935  * with any new page allocations done using the specified allocation flags.
2936  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2937  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2938  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2939  *
2940  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2941  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2942  */
2943 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2944                                          pgoff_t index, gfp_t gfp)
2945 {
2946 #ifdef CONFIG_SHMEM
2947         struct inode *inode = mapping->host;
2948         struct page *page;
2949         int error;
2950
2951         BUG_ON(mapping->a_ops != &shmem_aops);
2952         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2953         if (error)
2954                 page = ERR_PTR(error);
2955         else
2956                 unlock_page(page);
2957         return page;
2958 #else
2959         /*
2960          * The tiny !SHMEM case uses ramfs without swap
2961          */
2962         return read_cache_page_gfp(mapping, index, gfp);
2963 #endif
2964 }
2965 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);