]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/shmem.c
tmpfs: preliminary minor tidyups
[karo-tx-linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94         pgoff_t start;          /* start of range currently being fallocated */
95         pgoff_t next;           /* the next page offset to be fallocated */
96         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
97         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102         SGP_READ,       /* don't exceed i_size, don't allocate page */
103         SGP_CACHE,      /* don't exceed i_size, may allocate page */
104         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
105         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111         return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122                                 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127         struct page **pagep, enum sgp_type sgp, int *fault_type)
128 {
129         return shmem_getpage_gfp(inode, index, pagep, sgp,
130                         mapping_gfp_mask(inode->i_mapping), fault_type);
131 }
132
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135         return sb->s_fs_info;
136 }
137
138 /*
139  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140  * for shared memory and for shared anonymous (/dev/zero) mappings
141  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142  * consistent with the pre-accounting of private mappings ...
143  */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146         return (flags & VM_NORESERVE) ?
147                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152         if (!(flags & VM_NORESERVE))
153                 vm_unacct_memory(VM_ACCT(size));
154 }
155
156 static inline int shmem_reacct_size(unsigned long flags,
157                 loff_t oldsize, loff_t newsize)
158 {
159         if (!(flags & VM_NORESERVE)) {
160                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
161                         return security_vm_enough_memory_mm(current->mm,
162                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
163                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
164                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
165         }
166         return 0;
167 }
168
169 /*
170  * ... whereas tmpfs objects are accounted incrementally as
171  * pages are allocated, in order to allow large sparse files.
172  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
173  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
174  */
175 static inline int shmem_acct_block(unsigned long flags)
176 {
177         return (flags & VM_NORESERVE) ?
178                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
179 }
180
181 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
182 {
183         if (flags & VM_NORESERVE)
184                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
185 }
186
187 static const struct super_operations shmem_ops;
188 static const struct address_space_operations shmem_aops;
189 static const struct file_operations shmem_file_operations;
190 static const struct inode_operations shmem_inode_operations;
191 static const struct inode_operations shmem_dir_inode_operations;
192 static const struct inode_operations shmem_special_inode_operations;
193 static const struct vm_operations_struct shmem_vm_ops;
194
195 static LIST_HEAD(shmem_swaplist);
196 static DEFINE_MUTEX(shmem_swaplist_mutex);
197
198 static int shmem_reserve_inode(struct super_block *sb)
199 {
200         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
201         if (sbinfo->max_inodes) {
202                 spin_lock(&sbinfo->stat_lock);
203                 if (!sbinfo->free_inodes) {
204                         spin_unlock(&sbinfo->stat_lock);
205                         return -ENOSPC;
206                 }
207                 sbinfo->free_inodes--;
208                 spin_unlock(&sbinfo->stat_lock);
209         }
210         return 0;
211 }
212
213 static void shmem_free_inode(struct super_block *sb)
214 {
215         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
216         if (sbinfo->max_inodes) {
217                 spin_lock(&sbinfo->stat_lock);
218                 sbinfo->free_inodes++;
219                 spin_unlock(&sbinfo->stat_lock);
220         }
221 }
222
223 /**
224  * shmem_recalc_inode - recalculate the block usage of an inode
225  * @inode: inode to recalc
226  *
227  * We have to calculate the free blocks since the mm can drop
228  * undirtied hole pages behind our back.
229  *
230  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
231  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
232  *
233  * It has to be called with the spinlock held.
234  */
235 static void shmem_recalc_inode(struct inode *inode)
236 {
237         struct shmem_inode_info *info = SHMEM_I(inode);
238         long freed;
239
240         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
241         if (freed > 0) {
242                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
243                 if (sbinfo->max_blocks)
244                         percpu_counter_add(&sbinfo->used_blocks, -freed);
245                 info->alloced -= freed;
246                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
247                 shmem_unacct_blocks(info->flags, freed);
248         }
249 }
250
251 /*
252  * Replace item expected in radix tree by a new item, while holding tree lock.
253  */
254 static int shmem_radix_tree_replace(struct address_space *mapping,
255                         pgoff_t index, void *expected, void *replacement)
256 {
257         void **pslot;
258         void *item;
259
260         VM_BUG_ON(!expected);
261         VM_BUG_ON(!replacement);
262         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
263         if (!pslot)
264                 return -ENOENT;
265         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
266         if (item != expected)
267                 return -ENOENT;
268         radix_tree_replace_slot(pslot, replacement);
269         return 0;
270 }
271
272 /*
273  * Sometimes, before we decide whether to proceed or to fail, we must check
274  * that an entry was not already brought back from swap by a racing thread.
275  *
276  * Checking page is not enough: by the time a SwapCache page is locked, it
277  * might be reused, and again be SwapCache, using the same swap as before.
278  */
279 static bool shmem_confirm_swap(struct address_space *mapping,
280                                pgoff_t index, swp_entry_t swap)
281 {
282         void *item;
283
284         rcu_read_lock();
285         item = radix_tree_lookup(&mapping->page_tree, index);
286         rcu_read_unlock();
287         return item == swp_to_radix_entry(swap);
288 }
289
290 /*
291  * Like add_to_page_cache_locked, but error if expected item has gone.
292  */
293 static int shmem_add_to_page_cache(struct page *page,
294                                    struct address_space *mapping,
295                                    pgoff_t index, void *expected)
296 {
297         int error;
298
299         VM_BUG_ON_PAGE(!PageLocked(page), page);
300         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
301
302         get_page(page);
303         page->mapping = mapping;
304         page->index = index;
305
306         spin_lock_irq(&mapping->tree_lock);
307         if (!expected)
308                 error = radix_tree_insert(&mapping->page_tree, index, page);
309         else
310                 error = shmem_radix_tree_replace(mapping, index, expected,
311                                                                  page);
312         if (!error) {
313                 mapping->nrpages++;
314                 __inc_zone_page_state(page, NR_FILE_PAGES);
315                 __inc_zone_page_state(page, NR_SHMEM);
316                 spin_unlock_irq(&mapping->tree_lock);
317         } else {
318                 page->mapping = NULL;
319                 spin_unlock_irq(&mapping->tree_lock);
320                 put_page(page);
321         }
322         return error;
323 }
324
325 /*
326  * Like delete_from_page_cache, but substitutes swap for page.
327  */
328 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
329 {
330         struct address_space *mapping = page->mapping;
331         int error;
332
333         spin_lock_irq(&mapping->tree_lock);
334         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
335         page->mapping = NULL;
336         mapping->nrpages--;
337         __dec_zone_page_state(page, NR_FILE_PAGES);
338         __dec_zone_page_state(page, NR_SHMEM);
339         spin_unlock_irq(&mapping->tree_lock);
340         put_page(page);
341         BUG_ON(error);
342 }
343
344 /*
345  * Remove swap entry from radix tree, free the swap and its page cache.
346  */
347 static int shmem_free_swap(struct address_space *mapping,
348                            pgoff_t index, void *radswap)
349 {
350         void *old;
351
352         spin_lock_irq(&mapping->tree_lock);
353         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
354         spin_unlock_irq(&mapping->tree_lock);
355         if (old != radswap)
356                 return -ENOENT;
357         free_swap_and_cache(radix_to_swp_entry(radswap));
358         return 0;
359 }
360
361 /*
362  * Determine (in bytes) how many of the shmem object's pages mapped by the
363  * given offsets are swapped out.
364  *
365  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
366  * as long as the inode doesn't go away and racy results are not a problem.
367  */
368 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
369                                                 pgoff_t start, pgoff_t end)
370 {
371         struct radix_tree_iter iter;
372         void **slot;
373         struct page *page;
374         unsigned long swapped = 0;
375
376         rcu_read_lock();
377
378         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
379                 if (iter.index >= end)
380                         break;
381
382                 page = radix_tree_deref_slot(slot);
383
384                 if (radix_tree_deref_retry(page)) {
385                         slot = radix_tree_iter_retry(&iter);
386                         continue;
387                 }
388
389                 if (radix_tree_exceptional_entry(page))
390                         swapped++;
391
392                 if (need_resched()) {
393                         cond_resched_rcu();
394                         slot = radix_tree_iter_next(&iter);
395                 }
396         }
397
398         rcu_read_unlock();
399
400         return swapped << PAGE_SHIFT;
401 }
402
403 /*
404  * Determine (in bytes) how many of the shmem object's pages mapped by the
405  * given vma is swapped out.
406  *
407  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
408  * as long as the inode doesn't go away and racy results are not a problem.
409  */
410 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
411 {
412         struct inode *inode = file_inode(vma->vm_file);
413         struct shmem_inode_info *info = SHMEM_I(inode);
414         struct address_space *mapping = inode->i_mapping;
415         unsigned long swapped;
416
417         /* Be careful as we don't hold info->lock */
418         swapped = READ_ONCE(info->swapped);
419
420         /*
421          * The easier cases are when the shmem object has nothing in swap, or
422          * the vma maps it whole. Then we can simply use the stats that we
423          * already track.
424          */
425         if (!swapped)
426                 return 0;
427
428         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
429                 return swapped << PAGE_SHIFT;
430
431         /* Here comes the more involved part */
432         return shmem_partial_swap_usage(mapping,
433                         linear_page_index(vma, vma->vm_start),
434                         linear_page_index(vma, vma->vm_end));
435 }
436
437 /*
438  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
439  */
440 void shmem_unlock_mapping(struct address_space *mapping)
441 {
442         struct pagevec pvec;
443         pgoff_t indices[PAGEVEC_SIZE];
444         pgoff_t index = 0;
445
446         pagevec_init(&pvec, 0);
447         /*
448          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
449          */
450         while (!mapping_unevictable(mapping)) {
451                 /*
452                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
453                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
454                  */
455                 pvec.nr = find_get_entries(mapping, index,
456                                            PAGEVEC_SIZE, pvec.pages, indices);
457                 if (!pvec.nr)
458                         break;
459                 index = indices[pvec.nr - 1] + 1;
460                 pagevec_remove_exceptionals(&pvec);
461                 check_move_unevictable_pages(pvec.pages, pvec.nr);
462                 pagevec_release(&pvec);
463                 cond_resched();
464         }
465 }
466
467 /*
468  * Remove range of pages and swap entries from radix tree, and free them.
469  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
470  */
471 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
472                                                                  bool unfalloc)
473 {
474         struct address_space *mapping = inode->i_mapping;
475         struct shmem_inode_info *info = SHMEM_I(inode);
476         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
477         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
478         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
479         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
480         struct pagevec pvec;
481         pgoff_t indices[PAGEVEC_SIZE];
482         long nr_swaps_freed = 0;
483         pgoff_t index;
484         int i;
485
486         if (lend == -1)
487                 end = -1;       /* unsigned, so actually very big */
488
489         pagevec_init(&pvec, 0);
490         index = start;
491         while (index < end) {
492                 pvec.nr = find_get_entries(mapping, index,
493                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
494                         pvec.pages, indices);
495                 if (!pvec.nr)
496                         break;
497                 for (i = 0; i < pagevec_count(&pvec); i++) {
498                         struct page *page = pvec.pages[i];
499
500                         index = indices[i];
501                         if (index >= end)
502                                 break;
503
504                         if (radix_tree_exceptional_entry(page)) {
505                                 if (unfalloc)
506                                         continue;
507                                 nr_swaps_freed += !shmem_free_swap(mapping,
508                                                                 index, page);
509                                 continue;
510                         }
511
512                         if (!trylock_page(page))
513                                 continue;
514                         if (!unfalloc || !PageUptodate(page)) {
515                                 if (page->mapping == mapping) {
516                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
517                                         truncate_inode_page(mapping, page);
518                                 }
519                         }
520                         unlock_page(page);
521                 }
522                 pagevec_remove_exceptionals(&pvec);
523                 pagevec_release(&pvec);
524                 cond_resched();
525                 index++;
526         }
527
528         if (partial_start) {
529                 struct page *page = NULL;
530                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
531                 if (page) {
532                         unsigned int top = PAGE_SIZE;
533                         if (start > end) {
534                                 top = partial_end;
535                                 partial_end = 0;
536                         }
537                         zero_user_segment(page, partial_start, top);
538                         set_page_dirty(page);
539                         unlock_page(page);
540                         put_page(page);
541                 }
542         }
543         if (partial_end) {
544                 struct page *page = NULL;
545                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
546                 if (page) {
547                         zero_user_segment(page, 0, partial_end);
548                         set_page_dirty(page);
549                         unlock_page(page);
550                         put_page(page);
551                 }
552         }
553         if (start >= end)
554                 return;
555
556         index = start;
557         while (index < end) {
558                 cond_resched();
559
560                 pvec.nr = find_get_entries(mapping, index,
561                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
562                                 pvec.pages, indices);
563                 if (!pvec.nr) {
564                         /* If all gone or hole-punch or unfalloc, we're done */
565                         if (index == start || end != -1)
566                                 break;
567                         /* But if truncating, restart to make sure all gone */
568                         index = start;
569                         continue;
570                 }
571                 for (i = 0; i < pagevec_count(&pvec); i++) {
572                         struct page *page = pvec.pages[i];
573
574                         index = indices[i];
575                         if (index >= end)
576                                 break;
577
578                         if (radix_tree_exceptional_entry(page)) {
579                                 if (unfalloc)
580                                         continue;
581                                 if (shmem_free_swap(mapping, index, page)) {
582                                         /* Swap was replaced by page: retry */
583                                         index--;
584                                         break;
585                                 }
586                                 nr_swaps_freed++;
587                                 continue;
588                         }
589
590                         lock_page(page);
591                         if (!unfalloc || !PageUptodate(page)) {
592                                 if (page->mapping == mapping) {
593                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
594                                         truncate_inode_page(mapping, page);
595                                 } else {
596                                         /* Page was replaced by swap: retry */
597                                         unlock_page(page);
598                                         index--;
599                                         break;
600                                 }
601                         }
602                         unlock_page(page);
603                 }
604                 pagevec_remove_exceptionals(&pvec);
605                 pagevec_release(&pvec);
606                 index++;
607         }
608
609         spin_lock(&info->lock);
610         info->swapped -= nr_swaps_freed;
611         shmem_recalc_inode(inode);
612         spin_unlock(&info->lock);
613 }
614
615 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
616 {
617         shmem_undo_range(inode, lstart, lend, false);
618         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
619 }
620 EXPORT_SYMBOL_GPL(shmem_truncate_range);
621
622 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
623                          struct kstat *stat)
624 {
625         struct inode *inode = dentry->d_inode;
626         struct shmem_inode_info *info = SHMEM_I(inode);
627
628         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
629                 spin_lock(&info->lock);
630                 shmem_recalc_inode(inode);
631                 spin_unlock(&info->lock);
632         }
633         generic_fillattr(inode, stat);
634         return 0;
635 }
636
637 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
638 {
639         struct inode *inode = d_inode(dentry);
640         struct shmem_inode_info *info = SHMEM_I(inode);
641         int error;
642
643         error = inode_change_ok(inode, attr);
644         if (error)
645                 return error;
646
647         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
648                 loff_t oldsize = inode->i_size;
649                 loff_t newsize = attr->ia_size;
650
651                 /* protected by i_mutex */
652                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
653                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
654                         return -EPERM;
655
656                 if (newsize != oldsize) {
657                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
658                                         oldsize, newsize);
659                         if (error)
660                                 return error;
661                         i_size_write(inode, newsize);
662                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
663                 }
664                 if (newsize <= oldsize) {
665                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
666                         if (oldsize > holebegin)
667                                 unmap_mapping_range(inode->i_mapping,
668                                                         holebegin, 0, 1);
669                         if (info->alloced)
670                                 shmem_truncate_range(inode,
671                                                         newsize, (loff_t)-1);
672                         /* unmap again to remove racily COWed private pages */
673                         if (oldsize > holebegin)
674                                 unmap_mapping_range(inode->i_mapping,
675                                                         holebegin, 0, 1);
676                 }
677         }
678
679         setattr_copy(inode, attr);
680         if (attr->ia_valid & ATTR_MODE)
681                 error = posix_acl_chmod(inode, inode->i_mode);
682         return error;
683 }
684
685 static void shmem_evict_inode(struct inode *inode)
686 {
687         struct shmem_inode_info *info = SHMEM_I(inode);
688
689         if (inode->i_mapping->a_ops == &shmem_aops) {
690                 shmem_unacct_size(info->flags, inode->i_size);
691                 inode->i_size = 0;
692                 shmem_truncate_range(inode, 0, (loff_t)-1);
693                 if (!list_empty(&info->swaplist)) {
694                         mutex_lock(&shmem_swaplist_mutex);
695                         list_del_init(&info->swaplist);
696                         mutex_unlock(&shmem_swaplist_mutex);
697                 }
698         }
699
700         simple_xattrs_free(&info->xattrs);
701         WARN_ON(inode->i_blocks);
702         shmem_free_inode(inode->i_sb);
703         clear_inode(inode);
704 }
705
706 /*
707  * If swap found in inode, free it and move page from swapcache to filecache.
708  */
709 static int shmem_unuse_inode(struct shmem_inode_info *info,
710                              swp_entry_t swap, struct page **pagep)
711 {
712         struct address_space *mapping = info->vfs_inode.i_mapping;
713         void *radswap;
714         pgoff_t index;
715         gfp_t gfp;
716         int error = 0;
717
718         radswap = swp_to_radix_entry(swap);
719         index = radix_tree_locate_item(&mapping->page_tree, radswap);
720         if (index == -1)
721                 return -EAGAIN; /* tell shmem_unuse we found nothing */
722
723         /*
724          * Move _head_ to start search for next from here.
725          * But be careful: shmem_evict_inode checks list_empty without taking
726          * mutex, and there's an instant in list_move_tail when info->swaplist
727          * would appear empty, if it were the only one on shmem_swaplist.
728          */
729         if (shmem_swaplist.next != &info->swaplist)
730                 list_move_tail(&shmem_swaplist, &info->swaplist);
731
732         gfp = mapping_gfp_mask(mapping);
733         if (shmem_should_replace_page(*pagep, gfp)) {
734                 mutex_unlock(&shmem_swaplist_mutex);
735                 error = shmem_replace_page(pagep, gfp, info, index);
736                 mutex_lock(&shmem_swaplist_mutex);
737                 /*
738                  * We needed to drop mutex to make that restrictive page
739                  * allocation, but the inode might have been freed while we
740                  * dropped it: although a racing shmem_evict_inode() cannot
741                  * complete without emptying the radix_tree, our page lock
742                  * on this swapcache page is not enough to prevent that -
743                  * free_swap_and_cache() of our swap entry will only
744                  * trylock_page(), removing swap from radix_tree whatever.
745                  *
746                  * We must not proceed to shmem_add_to_page_cache() if the
747                  * inode has been freed, but of course we cannot rely on
748                  * inode or mapping or info to check that.  However, we can
749                  * safely check if our swap entry is still in use (and here
750                  * it can't have got reused for another page): if it's still
751                  * in use, then the inode cannot have been freed yet, and we
752                  * can safely proceed (if it's no longer in use, that tells
753                  * nothing about the inode, but we don't need to unuse swap).
754                  */
755                 if (!page_swapcount(*pagep))
756                         error = -ENOENT;
757         }
758
759         /*
760          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
761          * but also to hold up shmem_evict_inode(): so inode cannot be freed
762          * beneath us (pagelock doesn't help until the page is in pagecache).
763          */
764         if (!error)
765                 error = shmem_add_to_page_cache(*pagep, mapping, index,
766                                                 radswap);
767         if (error != -ENOMEM) {
768                 /*
769                  * Truncation and eviction use free_swap_and_cache(), which
770                  * only does trylock page: if we raced, best clean up here.
771                  */
772                 delete_from_swap_cache(*pagep);
773                 set_page_dirty(*pagep);
774                 if (!error) {
775                         spin_lock(&info->lock);
776                         info->swapped--;
777                         spin_unlock(&info->lock);
778                         swap_free(swap);
779                 }
780         }
781         return error;
782 }
783
784 /*
785  * Search through swapped inodes to find and replace swap by page.
786  */
787 int shmem_unuse(swp_entry_t swap, struct page *page)
788 {
789         struct list_head *this, *next;
790         struct shmem_inode_info *info;
791         struct mem_cgroup *memcg;
792         int error = 0;
793
794         /*
795          * There's a faint possibility that swap page was replaced before
796          * caller locked it: caller will come back later with the right page.
797          */
798         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
799                 goto out;
800
801         /*
802          * Charge page using GFP_KERNEL while we can wait, before taking
803          * the shmem_swaplist_mutex which might hold up shmem_writepage().
804          * Charged back to the user (not to caller) when swap account is used.
805          */
806         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
807                         false);
808         if (error)
809                 goto out;
810         /* No radix_tree_preload: swap entry keeps a place for page in tree */
811         error = -EAGAIN;
812
813         mutex_lock(&shmem_swaplist_mutex);
814         list_for_each_safe(this, next, &shmem_swaplist) {
815                 info = list_entry(this, struct shmem_inode_info, swaplist);
816                 if (info->swapped)
817                         error = shmem_unuse_inode(info, swap, &page);
818                 else
819                         list_del_init(&info->swaplist);
820                 cond_resched();
821                 if (error != -EAGAIN)
822                         break;
823                 /* found nothing in this: move on to search the next */
824         }
825         mutex_unlock(&shmem_swaplist_mutex);
826
827         if (error) {
828                 if (error != -ENOMEM)
829                         error = 0;
830                 mem_cgroup_cancel_charge(page, memcg, false);
831         } else
832                 mem_cgroup_commit_charge(page, memcg, true, false);
833 out:
834         unlock_page(page);
835         put_page(page);
836         return error;
837 }
838
839 /*
840  * Move the page from the page cache to the swap cache.
841  */
842 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
843 {
844         struct shmem_inode_info *info;
845         struct address_space *mapping;
846         struct inode *inode;
847         swp_entry_t swap;
848         pgoff_t index;
849
850         BUG_ON(!PageLocked(page));
851         mapping = page->mapping;
852         index = page->index;
853         inode = mapping->host;
854         info = SHMEM_I(inode);
855         if (info->flags & VM_LOCKED)
856                 goto redirty;
857         if (!total_swap_pages)
858                 goto redirty;
859
860         /*
861          * Our capabilities prevent regular writeback or sync from ever calling
862          * shmem_writepage; but a stacking filesystem might use ->writepage of
863          * its underlying filesystem, in which case tmpfs should write out to
864          * swap only in response to memory pressure, and not for the writeback
865          * threads or sync.
866          */
867         if (!wbc->for_reclaim) {
868                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
869                 goto redirty;
870         }
871
872         /*
873          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
874          * value into swapfile.c, the only way we can correctly account for a
875          * fallocated page arriving here is now to initialize it and write it.
876          *
877          * That's okay for a page already fallocated earlier, but if we have
878          * not yet completed the fallocation, then (a) we want to keep track
879          * of this page in case we have to undo it, and (b) it may not be a
880          * good idea to continue anyway, once we're pushing into swap.  So
881          * reactivate the page, and let shmem_fallocate() quit when too many.
882          */
883         if (!PageUptodate(page)) {
884                 if (inode->i_private) {
885                         struct shmem_falloc *shmem_falloc;
886                         spin_lock(&inode->i_lock);
887                         shmem_falloc = inode->i_private;
888                         if (shmem_falloc &&
889                             !shmem_falloc->waitq &&
890                             index >= shmem_falloc->start &&
891                             index < shmem_falloc->next)
892                                 shmem_falloc->nr_unswapped++;
893                         else
894                                 shmem_falloc = NULL;
895                         spin_unlock(&inode->i_lock);
896                         if (shmem_falloc)
897                                 goto redirty;
898                 }
899                 clear_highpage(page);
900                 flush_dcache_page(page);
901                 SetPageUptodate(page);
902         }
903
904         swap = get_swap_page();
905         if (!swap.val)
906                 goto redirty;
907
908         if (mem_cgroup_try_charge_swap(page, swap))
909                 goto free_swap;
910
911         /*
912          * Add inode to shmem_unuse()'s list of swapped-out inodes,
913          * if it's not already there.  Do it now before the page is
914          * moved to swap cache, when its pagelock no longer protects
915          * the inode from eviction.  But don't unlock the mutex until
916          * we've incremented swapped, because shmem_unuse_inode() will
917          * prune a !swapped inode from the swaplist under this mutex.
918          */
919         mutex_lock(&shmem_swaplist_mutex);
920         if (list_empty(&info->swaplist))
921                 list_add_tail(&info->swaplist, &shmem_swaplist);
922
923         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
924                 spin_lock(&info->lock);
925                 shmem_recalc_inode(inode);
926                 info->swapped++;
927                 spin_unlock(&info->lock);
928
929                 swap_shmem_alloc(swap);
930                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
931
932                 mutex_unlock(&shmem_swaplist_mutex);
933                 BUG_ON(page_mapped(page));
934                 swap_writepage(page, wbc);
935                 return 0;
936         }
937
938         mutex_unlock(&shmem_swaplist_mutex);
939 free_swap:
940         swapcache_free(swap);
941 redirty:
942         set_page_dirty(page);
943         if (wbc->for_reclaim)
944                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
945         unlock_page(page);
946         return 0;
947 }
948
949 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
950 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
951 {
952         char buffer[64];
953
954         if (!mpol || mpol->mode == MPOL_DEFAULT)
955                 return;         /* show nothing */
956
957         mpol_to_str(buffer, sizeof(buffer), mpol);
958
959         seq_printf(seq, ",mpol=%s", buffer);
960 }
961
962 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
963 {
964         struct mempolicy *mpol = NULL;
965         if (sbinfo->mpol) {
966                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
967                 mpol = sbinfo->mpol;
968                 mpol_get(mpol);
969                 spin_unlock(&sbinfo->stat_lock);
970         }
971         return mpol;
972 }
973 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
974 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
975 {
976 }
977 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
978 {
979         return NULL;
980 }
981 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
982 #ifndef CONFIG_NUMA
983 #define vm_policy vm_private_data
984 #endif
985
986 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
987                         struct shmem_inode_info *info, pgoff_t index)
988 {
989         struct vm_area_struct pvma;
990         struct page *page;
991
992         /* Create a pseudo vma that just contains the policy */
993         pvma.vm_start = 0;
994         /* Bias interleave by inode number to distribute better across nodes */
995         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
996         pvma.vm_ops = NULL;
997         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
998
999         page = swapin_readahead(swap, gfp, &pvma, 0);
1000
1001         /* Drop reference taken by mpol_shared_policy_lookup() */
1002         mpol_cond_put(pvma.vm_policy);
1003
1004         return page;
1005 }
1006
1007 static struct page *shmem_alloc_page(gfp_t gfp,
1008                         struct shmem_inode_info *info, pgoff_t index)
1009 {
1010         struct vm_area_struct pvma;
1011         struct page *page;
1012
1013         /* Create a pseudo vma that just contains the policy */
1014         pvma.vm_start = 0;
1015         /* Bias interleave by inode number to distribute better across nodes */
1016         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1017         pvma.vm_ops = NULL;
1018         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1019
1020         page = alloc_pages_vma(gfp, 0, &pvma, 0, numa_node_id(), false);
1021         if (page) {
1022                 __SetPageLocked(page);
1023                 __SetPageSwapBacked(page);
1024         }
1025
1026         /* Drop reference taken by mpol_shared_policy_lookup() */
1027         mpol_cond_put(pvma.vm_policy);
1028
1029         return page;
1030 }
1031
1032 /*
1033  * When a page is moved from swapcache to shmem filecache (either by the
1034  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1035  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1036  * ignorance of the mapping it belongs to.  If that mapping has special
1037  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1038  * we may need to copy to a suitable page before moving to filecache.
1039  *
1040  * In a future release, this may well be extended to respect cpuset and
1041  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1042  * but for now it is a simple matter of zone.
1043  */
1044 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1045 {
1046         return page_zonenum(page) > gfp_zone(gfp);
1047 }
1048
1049 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1050                                 struct shmem_inode_info *info, pgoff_t index)
1051 {
1052         struct page *oldpage, *newpage;
1053         struct address_space *swap_mapping;
1054         pgoff_t swap_index;
1055         int error;
1056
1057         oldpage = *pagep;
1058         swap_index = page_private(oldpage);
1059         swap_mapping = page_mapping(oldpage);
1060
1061         /*
1062          * We have arrived here because our zones are constrained, so don't
1063          * limit chance of success by further cpuset and node constraints.
1064          */
1065         gfp &= ~GFP_CONSTRAINT_MASK;
1066         newpage = shmem_alloc_page(gfp, info, index);
1067         if (!newpage)
1068                 return -ENOMEM;
1069
1070         get_page(newpage);
1071         copy_highpage(newpage, oldpage);
1072         flush_dcache_page(newpage);
1073
1074         SetPageUptodate(newpage);
1075         set_page_private(newpage, swap_index);
1076         SetPageSwapCache(newpage);
1077
1078         /*
1079          * Our caller will very soon move newpage out of swapcache, but it's
1080          * a nice clean interface for us to replace oldpage by newpage there.
1081          */
1082         spin_lock_irq(&swap_mapping->tree_lock);
1083         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1084                                                                    newpage);
1085         if (!error) {
1086                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1087                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1088         }
1089         spin_unlock_irq(&swap_mapping->tree_lock);
1090
1091         if (unlikely(error)) {
1092                 /*
1093                  * Is this possible?  I think not, now that our callers check
1094                  * both PageSwapCache and page_private after getting page lock;
1095                  * but be defensive.  Reverse old to newpage for clear and free.
1096                  */
1097                 oldpage = newpage;
1098         } else {
1099                 mem_cgroup_migrate(oldpage, newpage);
1100                 lru_cache_add_anon(newpage);
1101                 *pagep = newpage;
1102         }
1103
1104         ClearPageSwapCache(oldpage);
1105         set_page_private(oldpage, 0);
1106
1107         unlock_page(oldpage);
1108         put_page(oldpage);
1109         put_page(oldpage);
1110         return error;
1111 }
1112
1113 /*
1114  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1115  *
1116  * If we allocate a new one we do not mark it dirty. That's up to the
1117  * vm. If we swap it in we mark it dirty since we also free the swap
1118  * entry since a page cannot live in both the swap and page cache
1119  */
1120 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1121         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1122 {
1123         struct address_space *mapping = inode->i_mapping;
1124         struct shmem_inode_info *info;
1125         struct shmem_sb_info *sbinfo;
1126         struct mem_cgroup *memcg;
1127         struct page *page;
1128         swp_entry_t swap;
1129         int error;
1130         int once = 0;
1131         int alloced = 0;
1132
1133         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1134                 return -EFBIG;
1135 repeat:
1136         swap.val = 0;
1137         page = find_lock_entry(mapping, index);
1138         if (radix_tree_exceptional_entry(page)) {
1139                 swap = radix_to_swp_entry(page);
1140                 page = NULL;
1141         }
1142
1143         if (sgp <= SGP_CACHE &&
1144             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1145                 error = -EINVAL;
1146                 goto unlock;
1147         }
1148
1149         if (page && sgp == SGP_WRITE)
1150                 mark_page_accessed(page);
1151
1152         /* fallocated page? */
1153         if (page && !PageUptodate(page)) {
1154                 if (sgp != SGP_READ)
1155                         goto clear;
1156                 unlock_page(page);
1157                 put_page(page);
1158                 page = NULL;
1159         }
1160         if (page || (sgp == SGP_READ && !swap.val)) {
1161                 *pagep = page;
1162                 return 0;
1163         }
1164
1165         /*
1166          * Fast cache lookup did not find it:
1167          * bring it back from swap or allocate.
1168          */
1169         info = SHMEM_I(inode);
1170         sbinfo = SHMEM_SB(inode->i_sb);
1171
1172         if (swap.val) {
1173                 /* Look it up and read it in.. */
1174                 page = lookup_swap_cache(swap);
1175                 if (!page) {
1176                         /* here we actually do the io */
1177                         if (fault_type)
1178                                 *fault_type |= VM_FAULT_MAJOR;
1179                         page = shmem_swapin(swap, gfp, info, index);
1180                         if (!page) {
1181                                 error = -ENOMEM;
1182                                 goto failed;
1183                         }
1184                 }
1185
1186                 /* We have to do this with page locked to prevent races */
1187                 lock_page(page);
1188                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1189                     !shmem_confirm_swap(mapping, index, swap)) {
1190                         error = -EEXIST;        /* try again */
1191                         goto unlock;
1192                 }
1193                 if (!PageUptodate(page)) {
1194                         error = -EIO;
1195                         goto failed;
1196                 }
1197                 wait_on_page_writeback(page);
1198
1199                 if (shmem_should_replace_page(page, gfp)) {
1200                         error = shmem_replace_page(&page, gfp, info, index);
1201                         if (error)
1202                                 goto failed;
1203                 }
1204
1205                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1206                                 false);
1207                 if (!error) {
1208                         error = shmem_add_to_page_cache(page, mapping, index,
1209                                                 swp_to_radix_entry(swap));
1210                         /*
1211                          * We already confirmed swap under page lock, and make
1212                          * no memory allocation here, so usually no possibility
1213                          * of error; but free_swap_and_cache() only trylocks a
1214                          * page, so it is just possible that the entry has been
1215                          * truncated or holepunched since swap was confirmed.
1216                          * shmem_undo_range() will have done some of the
1217                          * unaccounting, now delete_from_swap_cache() will do
1218                          * the rest.
1219                          * Reset swap.val? No, leave it so "failed" goes back to
1220                          * "repeat": reading a hole and writing should succeed.
1221                          */
1222                         if (error) {
1223                                 mem_cgroup_cancel_charge(page, memcg, false);
1224                                 delete_from_swap_cache(page);
1225                         }
1226                 }
1227                 if (error)
1228                         goto failed;
1229
1230                 mem_cgroup_commit_charge(page, memcg, true, false);
1231
1232                 spin_lock(&info->lock);
1233                 info->swapped--;
1234                 shmem_recalc_inode(inode);
1235                 spin_unlock(&info->lock);
1236
1237                 if (sgp == SGP_WRITE)
1238                         mark_page_accessed(page);
1239
1240                 delete_from_swap_cache(page);
1241                 set_page_dirty(page);
1242                 swap_free(swap);
1243
1244         } else {
1245                 if (shmem_acct_block(info->flags)) {
1246                         error = -ENOSPC;
1247                         goto failed;
1248                 }
1249                 if (sbinfo->max_blocks) {
1250                         if (percpu_counter_compare(&sbinfo->used_blocks,
1251                                                 sbinfo->max_blocks) >= 0) {
1252                                 error = -ENOSPC;
1253                                 goto unacct;
1254                         }
1255                         percpu_counter_inc(&sbinfo->used_blocks);
1256                 }
1257
1258                 page = shmem_alloc_page(gfp, info, index);
1259                 if (!page) {
1260                         error = -ENOMEM;
1261                         goto decused;
1262                 }
1263                 if (sgp == SGP_WRITE)
1264                         __SetPageReferenced(page);
1265
1266                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1267                                 false);
1268                 if (error)
1269                         goto decused;
1270                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1271                 if (!error) {
1272                         error = shmem_add_to_page_cache(page, mapping, index,
1273                                                         NULL);
1274                         radix_tree_preload_end();
1275                 }
1276                 if (error) {
1277                         mem_cgroup_cancel_charge(page, memcg, false);
1278                         goto decused;
1279                 }
1280                 mem_cgroup_commit_charge(page, memcg, false, false);
1281                 lru_cache_add_anon(page);
1282
1283                 spin_lock(&info->lock);
1284                 info->alloced++;
1285                 inode->i_blocks += BLOCKS_PER_PAGE;
1286                 shmem_recalc_inode(inode);
1287                 spin_unlock(&info->lock);
1288                 alloced = true;
1289
1290                 /*
1291                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1292                  */
1293                 if (sgp == SGP_FALLOC)
1294                         sgp = SGP_WRITE;
1295 clear:
1296                 /*
1297                  * Let SGP_WRITE caller clear ends if write does not fill page;
1298                  * but SGP_FALLOC on a page fallocated earlier must initialize
1299                  * it now, lest undo on failure cancel our earlier guarantee.
1300                  */
1301                 if (sgp != SGP_WRITE) {
1302                         clear_highpage(page);
1303                         flush_dcache_page(page);
1304                         SetPageUptodate(page);
1305                 }
1306         }
1307
1308         /* Perhaps the file has been truncated since we checked */
1309         if (sgp <= SGP_CACHE &&
1310             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1311                 if (alloced) {
1312                         ClearPageDirty(page);
1313                         delete_from_page_cache(page);
1314                         spin_lock(&info->lock);
1315                         shmem_recalc_inode(inode);
1316                         spin_unlock(&info->lock);
1317                 }
1318                 error = -EINVAL;
1319                 goto unlock;
1320         }
1321         *pagep = page;
1322         return 0;
1323
1324         /*
1325          * Error recovery.
1326          */
1327 decused:
1328         if (sbinfo->max_blocks)
1329                 percpu_counter_add(&sbinfo->used_blocks, -1);
1330 unacct:
1331         shmem_unacct_blocks(info->flags, 1);
1332 failed:
1333         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1334                 error = -EEXIST;
1335 unlock:
1336         if (page) {
1337                 unlock_page(page);
1338                 put_page(page);
1339         }
1340         if (error == -ENOSPC && !once++) {
1341                 info = SHMEM_I(inode);
1342                 spin_lock(&info->lock);
1343                 shmem_recalc_inode(inode);
1344                 spin_unlock(&info->lock);
1345                 goto repeat;
1346         }
1347         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1348                 goto repeat;
1349         return error;
1350 }
1351
1352 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1353 {
1354         struct inode *inode = file_inode(vma->vm_file);
1355         int error;
1356         int ret = VM_FAULT_LOCKED;
1357
1358         /*
1359          * Trinity finds that probing a hole which tmpfs is punching can
1360          * prevent the hole-punch from ever completing: which in turn
1361          * locks writers out with its hold on i_mutex.  So refrain from
1362          * faulting pages into the hole while it's being punched.  Although
1363          * shmem_undo_range() does remove the additions, it may be unable to
1364          * keep up, as each new page needs its own unmap_mapping_range() call,
1365          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1366          *
1367          * It does not matter if we sometimes reach this check just before the
1368          * hole-punch begins, so that one fault then races with the punch:
1369          * we just need to make racing faults a rare case.
1370          *
1371          * The implementation below would be much simpler if we just used a
1372          * standard mutex or completion: but we cannot take i_mutex in fault,
1373          * and bloating every shmem inode for this unlikely case would be sad.
1374          */
1375         if (unlikely(inode->i_private)) {
1376                 struct shmem_falloc *shmem_falloc;
1377
1378                 spin_lock(&inode->i_lock);
1379                 shmem_falloc = inode->i_private;
1380                 if (shmem_falloc &&
1381                     shmem_falloc->waitq &&
1382                     vmf->pgoff >= shmem_falloc->start &&
1383                     vmf->pgoff < shmem_falloc->next) {
1384                         wait_queue_head_t *shmem_falloc_waitq;
1385                         DEFINE_WAIT(shmem_fault_wait);
1386
1387                         ret = VM_FAULT_NOPAGE;
1388                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1389                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1390                                 /* It's polite to up mmap_sem if we can */
1391                                 up_read(&vma->vm_mm->mmap_sem);
1392                                 ret = VM_FAULT_RETRY;
1393                         }
1394
1395                         shmem_falloc_waitq = shmem_falloc->waitq;
1396                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1397                                         TASK_UNINTERRUPTIBLE);
1398                         spin_unlock(&inode->i_lock);
1399                         schedule();
1400
1401                         /*
1402                          * shmem_falloc_waitq points into the shmem_fallocate()
1403                          * stack of the hole-punching task: shmem_falloc_waitq
1404                          * is usually invalid by the time we reach here, but
1405                          * finish_wait() does not dereference it in that case;
1406                          * though i_lock needed lest racing with wake_up_all().
1407                          */
1408                         spin_lock(&inode->i_lock);
1409                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1410                         spin_unlock(&inode->i_lock);
1411                         return ret;
1412                 }
1413                 spin_unlock(&inode->i_lock);
1414         }
1415
1416         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1417         if (error)
1418                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1419
1420         if (ret & VM_FAULT_MAJOR) {
1421                 count_vm_event(PGMAJFAULT);
1422                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1423         }
1424         return ret;
1425 }
1426
1427 #ifdef CONFIG_NUMA
1428 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1429 {
1430         struct inode *inode = file_inode(vma->vm_file);
1431         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1432 }
1433
1434 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1435                                           unsigned long addr)
1436 {
1437         struct inode *inode = file_inode(vma->vm_file);
1438         pgoff_t index;
1439
1440         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1441         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1442 }
1443 #endif
1444
1445 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1446 {
1447         struct inode *inode = file_inode(file);
1448         struct shmem_inode_info *info = SHMEM_I(inode);
1449         int retval = -ENOMEM;
1450
1451         spin_lock(&info->lock);
1452         if (lock && !(info->flags & VM_LOCKED)) {
1453                 if (!user_shm_lock(inode->i_size, user))
1454                         goto out_nomem;
1455                 info->flags |= VM_LOCKED;
1456                 mapping_set_unevictable(file->f_mapping);
1457         }
1458         if (!lock && (info->flags & VM_LOCKED) && user) {
1459                 user_shm_unlock(inode->i_size, user);
1460                 info->flags &= ~VM_LOCKED;
1461                 mapping_clear_unevictable(file->f_mapping);
1462         }
1463         retval = 0;
1464
1465 out_nomem:
1466         spin_unlock(&info->lock);
1467         return retval;
1468 }
1469
1470 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1471 {
1472         file_accessed(file);
1473         vma->vm_ops = &shmem_vm_ops;
1474         return 0;
1475 }
1476
1477 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1478                                      umode_t mode, dev_t dev, unsigned long flags)
1479 {
1480         struct inode *inode;
1481         struct shmem_inode_info *info;
1482         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1483
1484         if (shmem_reserve_inode(sb))
1485                 return NULL;
1486
1487         inode = new_inode(sb);
1488         if (inode) {
1489                 inode->i_ino = get_next_ino();
1490                 inode_init_owner(inode, dir, mode);
1491                 inode->i_blocks = 0;
1492                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1493                 inode->i_generation = get_seconds();
1494                 info = SHMEM_I(inode);
1495                 memset(info, 0, (char *)inode - (char *)info);
1496                 spin_lock_init(&info->lock);
1497                 info->seals = F_SEAL_SEAL;
1498                 info->flags = flags & VM_NORESERVE;
1499                 INIT_LIST_HEAD(&info->swaplist);
1500                 simple_xattrs_init(&info->xattrs);
1501                 cache_no_acl(inode);
1502
1503                 switch (mode & S_IFMT) {
1504                 default:
1505                         inode->i_op = &shmem_special_inode_operations;
1506                         init_special_inode(inode, mode, dev);
1507                         break;
1508                 case S_IFREG:
1509                         inode->i_mapping->a_ops = &shmem_aops;
1510                         inode->i_op = &shmem_inode_operations;
1511                         inode->i_fop = &shmem_file_operations;
1512                         mpol_shared_policy_init(&info->policy,
1513                                                  shmem_get_sbmpol(sbinfo));
1514                         break;
1515                 case S_IFDIR:
1516                         inc_nlink(inode);
1517                         /* Some things misbehave if size == 0 on a directory */
1518                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1519                         inode->i_op = &shmem_dir_inode_operations;
1520                         inode->i_fop = &simple_dir_operations;
1521                         break;
1522                 case S_IFLNK:
1523                         /*
1524                          * Must not load anything in the rbtree,
1525                          * mpol_free_shared_policy will not be called.
1526                          */
1527                         mpol_shared_policy_init(&info->policy, NULL);
1528                         break;
1529                 }
1530         } else
1531                 shmem_free_inode(sb);
1532         return inode;
1533 }
1534
1535 bool shmem_mapping(struct address_space *mapping)
1536 {
1537         if (!mapping->host)
1538                 return false;
1539
1540         return mapping->host->i_sb->s_op == &shmem_ops;
1541 }
1542
1543 #ifdef CONFIG_TMPFS
1544 static const struct inode_operations shmem_symlink_inode_operations;
1545 static const struct inode_operations shmem_short_symlink_operations;
1546
1547 #ifdef CONFIG_TMPFS_XATTR
1548 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1549 #else
1550 #define shmem_initxattrs NULL
1551 #endif
1552
1553 static int
1554 shmem_write_begin(struct file *file, struct address_space *mapping,
1555                         loff_t pos, unsigned len, unsigned flags,
1556                         struct page **pagep, void **fsdata)
1557 {
1558         struct inode *inode = mapping->host;
1559         struct shmem_inode_info *info = SHMEM_I(inode);
1560         pgoff_t index = pos >> PAGE_SHIFT;
1561
1562         /* i_mutex is held by caller */
1563         if (unlikely(info->seals)) {
1564                 if (info->seals & F_SEAL_WRITE)
1565                         return -EPERM;
1566                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1567                         return -EPERM;
1568         }
1569
1570         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1571 }
1572
1573 static int
1574 shmem_write_end(struct file *file, struct address_space *mapping,
1575                         loff_t pos, unsigned len, unsigned copied,
1576                         struct page *page, void *fsdata)
1577 {
1578         struct inode *inode = mapping->host;
1579
1580         if (pos + copied > inode->i_size)
1581                 i_size_write(inode, pos + copied);
1582
1583         if (!PageUptodate(page)) {
1584                 if (copied < PAGE_SIZE) {
1585                         unsigned from = pos & (PAGE_SIZE - 1);
1586                         zero_user_segments(page, 0, from,
1587                                         from + copied, PAGE_SIZE);
1588                 }
1589                 SetPageUptodate(page);
1590         }
1591         set_page_dirty(page);
1592         unlock_page(page);
1593         put_page(page);
1594
1595         return copied;
1596 }
1597
1598 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1599 {
1600         struct file *file = iocb->ki_filp;
1601         struct inode *inode = file_inode(file);
1602         struct address_space *mapping = inode->i_mapping;
1603         pgoff_t index;
1604         unsigned long offset;
1605         enum sgp_type sgp = SGP_READ;
1606         int error = 0;
1607         ssize_t retval = 0;
1608         loff_t *ppos = &iocb->ki_pos;
1609
1610         /*
1611          * Might this read be for a stacking filesystem?  Then when reading
1612          * holes of a sparse file, we actually need to allocate those pages,
1613          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1614          */
1615         if (!iter_is_iovec(to))
1616                 sgp = SGP_CACHE;
1617
1618         index = *ppos >> PAGE_SHIFT;
1619         offset = *ppos & ~PAGE_MASK;
1620
1621         for (;;) {
1622                 struct page *page = NULL;
1623                 pgoff_t end_index;
1624                 unsigned long nr, ret;
1625                 loff_t i_size = i_size_read(inode);
1626
1627                 end_index = i_size >> PAGE_SHIFT;
1628                 if (index > end_index)
1629                         break;
1630                 if (index == end_index) {
1631                         nr = i_size & ~PAGE_MASK;
1632                         if (nr <= offset)
1633                                 break;
1634                 }
1635
1636                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1637                 if (error) {
1638                         if (error == -EINVAL)
1639                                 error = 0;
1640                         break;
1641                 }
1642                 if (page) {
1643                         if (sgp == SGP_CACHE)
1644                                 set_page_dirty(page);
1645                         unlock_page(page);
1646                 }
1647
1648                 /*
1649                  * We must evaluate after, since reads (unlike writes)
1650                  * are called without i_mutex protection against truncate
1651                  */
1652                 nr = PAGE_SIZE;
1653                 i_size = i_size_read(inode);
1654                 end_index = i_size >> PAGE_SHIFT;
1655                 if (index == end_index) {
1656                         nr = i_size & ~PAGE_MASK;
1657                         if (nr <= offset) {
1658                                 if (page)
1659                                         put_page(page);
1660                                 break;
1661                         }
1662                 }
1663                 nr -= offset;
1664
1665                 if (page) {
1666                         /*
1667                          * If users can be writing to this page using arbitrary
1668                          * virtual addresses, take care about potential aliasing
1669                          * before reading the page on the kernel side.
1670                          */
1671                         if (mapping_writably_mapped(mapping))
1672                                 flush_dcache_page(page);
1673                         /*
1674                          * Mark the page accessed if we read the beginning.
1675                          */
1676                         if (!offset)
1677                                 mark_page_accessed(page);
1678                 } else {
1679                         page = ZERO_PAGE(0);
1680                         get_page(page);
1681                 }
1682
1683                 /*
1684                  * Ok, we have the page, and it's up-to-date, so
1685                  * now we can copy it to user space...
1686                  */
1687                 ret = copy_page_to_iter(page, offset, nr, to);
1688                 retval += ret;
1689                 offset += ret;
1690                 index += offset >> PAGE_SHIFT;
1691                 offset &= ~PAGE_MASK;
1692
1693                 put_page(page);
1694                 if (!iov_iter_count(to))
1695                         break;
1696                 if (ret < nr) {
1697                         error = -EFAULT;
1698                         break;
1699                 }
1700                 cond_resched();
1701         }
1702
1703         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1704         file_accessed(file);
1705         return retval ? retval : error;
1706 }
1707
1708 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1709                                 struct pipe_inode_info *pipe, size_t len,
1710                                 unsigned int flags)
1711 {
1712         struct address_space *mapping = in->f_mapping;
1713         struct inode *inode = mapping->host;
1714         unsigned int loff, nr_pages, req_pages;
1715         struct page *pages[PIPE_DEF_BUFFERS];
1716         struct partial_page partial[PIPE_DEF_BUFFERS];
1717         struct page *page;
1718         pgoff_t index, end_index;
1719         loff_t isize, left;
1720         int error, page_nr;
1721         struct splice_pipe_desc spd = {
1722                 .pages = pages,
1723                 .partial = partial,
1724                 .nr_pages_max = PIPE_DEF_BUFFERS,
1725                 .flags = flags,
1726                 .ops = &page_cache_pipe_buf_ops,
1727                 .spd_release = spd_release_page,
1728         };
1729
1730         isize = i_size_read(inode);
1731         if (unlikely(*ppos >= isize))
1732                 return 0;
1733
1734         left = isize - *ppos;
1735         if (unlikely(left < len))
1736                 len = left;
1737
1738         if (splice_grow_spd(pipe, &spd))
1739                 return -ENOMEM;
1740
1741         index = *ppos >> PAGE_SHIFT;
1742         loff = *ppos & ~PAGE_MASK;
1743         req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1744         nr_pages = min(req_pages, spd.nr_pages_max);
1745
1746         spd.nr_pages = find_get_pages_contig(mapping, index,
1747                                                 nr_pages, spd.pages);
1748         index += spd.nr_pages;
1749         error = 0;
1750
1751         while (spd.nr_pages < nr_pages) {
1752                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1753                 if (error)
1754                         break;
1755                 unlock_page(page);
1756                 spd.pages[spd.nr_pages++] = page;
1757                 index++;
1758         }
1759
1760         index = *ppos >> PAGE_SHIFT;
1761         nr_pages = spd.nr_pages;
1762         spd.nr_pages = 0;
1763
1764         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1765                 unsigned int this_len;
1766
1767                 if (!len)
1768                         break;
1769
1770                 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1771                 page = spd.pages[page_nr];
1772
1773                 if (!PageUptodate(page) || page->mapping != mapping) {
1774                         error = shmem_getpage(inode, index, &page,
1775                                                         SGP_CACHE, NULL);
1776                         if (error)
1777                                 break;
1778                         unlock_page(page);
1779                         put_page(spd.pages[page_nr]);
1780                         spd.pages[page_nr] = page;
1781                 }
1782
1783                 isize = i_size_read(inode);
1784                 end_index = (isize - 1) >> PAGE_SHIFT;
1785                 if (unlikely(!isize || index > end_index))
1786                         break;
1787
1788                 if (end_index == index) {
1789                         unsigned int plen;
1790
1791                         plen = ((isize - 1) & ~PAGE_MASK) + 1;
1792                         if (plen <= loff)
1793                                 break;
1794
1795                         this_len = min(this_len, plen - loff);
1796                         len = this_len;
1797                 }
1798
1799                 spd.partial[page_nr].offset = loff;
1800                 spd.partial[page_nr].len = this_len;
1801                 len -= this_len;
1802                 loff = 0;
1803                 spd.nr_pages++;
1804                 index++;
1805         }
1806
1807         while (page_nr < nr_pages)
1808                 put_page(spd.pages[page_nr++]);
1809
1810         if (spd.nr_pages)
1811                 error = splice_to_pipe(pipe, &spd);
1812
1813         splice_shrink_spd(&spd);
1814
1815         if (error > 0) {
1816                 *ppos += error;
1817                 file_accessed(in);
1818         }
1819         return error;
1820 }
1821
1822 /*
1823  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1824  */
1825 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1826                                     pgoff_t index, pgoff_t end, int whence)
1827 {
1828         struct page *page;
1829         struct pagevec pvec;
1830         pgoff_t indices[PAGEVEC_SIZE];
1831         bool done = false;
1832         int i;
1833
1834         pagevec_init(&pvec, 0);
1835         pvec.nr = 1;            /* start small: we may be there already */
1836         while (!done) {
1837                 pvec.nr = find_get_entries(mapping, index,
1838                                         pvec.nr, pvec.pages, indices);
1839                 if (!pvec.nr) {
1840                         if (whence == SEEK_DATA)
1841                                 index = end;
1842                         break;
1843                 }
1844                 for (i = 0; i < pvec.nr; i++, index++) {
1845                         if (index < indices[i]) {
1846                                 if (whence == SEEK_HOLE) {
1847                                         done = true;
1848                                         break;
1849                                 }
1850                                 index = indices[i];
1851                         }
1852                         page = pvec.pages[i];
1853                         if (page && !radix_tree_exceptional_entry(page)) {
1854                                 if (!PageUptodate(page))
1855                                         page = NULL;
1856                         }
1857                         if (index >= end ||
1858                             (page && whence == SEEK_DATA) ||
1859                             (!page && whence == SEEK_HOLE)) {
1860                                 done = true;
1861                                 break;
1862                         }
1863                 }
1864                 pagevec_remove_exceptionals(&pvec);
1865                 pagevec_release(&pvec);
1866                 pvec.nr = PAGEVEC_SIZE;
1867                 cond_resched();
1868         }
1869         return index;
1870 }
1871
1872 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1873 {
1874         struct address_space *mapping = file->f_mapping;
1875         struct inode *inode = mapping->host;
1876         pgoff_t start, end;
1877         loff_t new_offset;
1878
1879         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1880                 return generic_file_llseek_size(file, offset, whence,
1881                                         MAX_LFS_FILESIZE, i_size_read(inode));
1882         inode_lock(inode);
1883         /* We're holding i_mutex so we can access i_size directly */
1884
1885         if (offset < 0)
1886                 offset = -EINVAL;
1887         else if (offset >= inode->i_size)
1888                 offset = -ENXIO;
1889         else {
1890                 start = offset >> PAGE_SHIFT;
1891                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1892                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1893                 new_offset <<= PAGE_SHIFT;
1894                 if (new_offset > offset) {
1895                         if (new_offset < inode->i_size)
1896                                 offset = new_offset;
1897                         else if (whence == SEEK_DATA)
1898                                 offset = -ENXIO;
1899                         else
1900                                 offset = inode->i_size;
1901                 }
1902         }
1903
1904         if (offset >= 0)
1905                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1906         inode_unlock(inode);
1907         return offset;
1908 }
1909
1910 /*
1911  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1912  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1913  */
1914 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1915 #define LAST_SCAN               4       /* about 150ms max */
1916
1917 static void shmem_tag_pins(struct address_space *mapping)
1918 {
1919         struct radix_tree_iter iter;
1920         void **slot;
1921         pgoff_t start;
1922         struct page *page;
1923
1924         lru_add_drain();
1925         start = 0;
1926         rcu_read_lock();
1927
1928         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1929                 page = radix_tree_deref_slot(slot);
1930                 if (!page || radix_tree_exception(page)) {
1931                         if (radix_tree_deref_retry(page)) {
1932                                 slot = radix_tree_iter_retry(&iter);
1933                                 continue;
1934                         }
1935                 } else if (page_count(page) - page_mapcount(page) > 1) {
1936                         spin_lock_irq(&mapping->tree_lock);
1937                         radix_tree_tag_set(&mapping->page_tree, iter.index,
1938                                            SHMEM_TAG_PINNED);
1939                         spin_unlock_irq(&mapping->tree_lock);
1940                 }
1941
1942                 if (need_resched()) {
1943                         cond_resched_rcu();
1944                         slot = radix_tree_iter_next(&iter);
1945                 }
1946         }
1947         rcu_read_unlock();
1948 }
1949
1950 /*
1951  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1952  * via get_user_pages(), drivers might have some pending I/O without any active
1953  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1954  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1955  * them to be dropped.
1956  * The caller must guarantee that no new user will acquire writable references
1957  * to those pages to avoid races.
1958  */
1959 static int shmem_wait_for_pins(struct address_space *mapping)
1960 {
1961         struct radix_tree_iter iter;
1962         void **slot;
1963         pgoff_t start;
1964         struct page *page;
1965         int error, scan;
1966
1967         shmem_tag_pins(mapping);
1968
1969         error = 0;
1970         for (scan = 0; scan <= LAST_SCAN; scan++) {
1971                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1972                         break;
1973
1974                 if (!scan)
1975                         lru_add_drain_all();
1976                 else if (schedule_timeout_killable((HZ << scan) / 200))
1977                         scan = LAST_SCAN;
1978
1979                 start = 0;
1980                 rcu_read_lock();
1981                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1982                                            start, SHMEM_TAG_PINNED) {
1983
1984                         page = radix_tree_deref_slot(slot);
1985                         if (radix_tree_exception(page)) {
1986                                 if (radix_tree_deref_retry(page)) {
1987                                         slot = radix_tree_iter_retry(&iter);
1988                                         continue;
1989                                 }
1990
1991                                 page = NULL;
1992                         }
1993
1994                         if (page &&
1995                             page_count(page) - page_mapcount(page) != 1) {
1996                                 if (scan < LAST_SCAN)
1997                                         goto continue_resched;
1998
1999                                 /*
2000                                  * On the last scan, we clean up all those tags
2001                                  * we inserted; but make a note that we still
2002                                  * found pages pinned.
2003                                  */
2004                                 error = -EBUSY;
2005                         }
2006
2007                         spin_lock_irq(&mapping->tree_lock);
2008                         radix_tree_tag_clear(&mapping->page_tree,
2009                                              iter.index, SHMEM_TAG_PINNED);
2010                         spin_unlock_irq(&mapping->tree_lock);
2011 continue_resched:
2012                         if (need_resched()) {
2013                                 cond_resched_rcu();
2014                                 slot = radix_tree_iter_next(&iter);
2015                         }
2016                 }
2017                 rcu_read_unlock();
2018         }
2019
2020         return error;
2021 }
2022
2023 #define F_ALL_SEALS (F_SEAL_SEAL | \
2024                      F_SEAL_SHRINK | \
2025                      F_SEAL_GROW | \
2026                      F_SEAL_WRITE)
2027
2028 int shmem_add_seals(struct file *file, unsigned int seals)
2029 {
2030         struct inode *inode = file_inode(file);
2031         struct shmem_inode_info *info = SHMEM_I(inode);
2032         int error;
2033
2034         /*
2035          * SEALING
2036          * Sealing allows multiple parties to share a shmem-file but restrict
2037          * access to a specific subset of file operations. Seals can only be
2038          * added, but never removed. This way, mutually untrusted parties can
2039          * share common memory regions with a well-defined policy. A malicious
2040          * peer can thus never perform unwanted operations on a shared object.
2041          *
2042          * Seals are only supported on special shmem-files and always affect
2043          * the whole underlying inode. Once a seal is set, it may prevent some
2044          * kinds of access to the file. Currently, the following seals are
2045          * defined:
2046          *   SEAL_SEAL: Prevent further seals from being set on this file
2047          *   SEAL_SHRINK: Prevent the file from shrinking
2048          *   SEAL_GROW: Prevent the file from growing
2049          *   SEAL_WRITE: Prevent write access to the file
2050          *
2051          * As we don't require any trust relationship between two parties, we
2052          * must prevent seals from being removed. Therefore, sealing a file
2053          * only adds a given set of seals to the file, it never touches
2054          * existing seals. Furthermore, the "setting seals"-operation can be
2055          * sealed itself, which basically prevents any further seal from being
2056          * added.
2057          *
2058          * Semantics of sealing are only defined on volatile files. Only
2059          * anonymous shmem files support sealing. More importantly, seals are
2060          * never written to disk. Therefore, there's no plan to support it on
2061          * other file types.
2062          */
2063
2064         if (file->f_op != &shmem_file_operations)
2065                 return -EINVAL;
2066         if (!(file->f_mode & FMODE_WRITE))
2067                 return -EPERM;
2068         if (seals & ~(unsigned int)F_ALL_SEALS)
2069                 return -EINVAL;
2070
2071         inode_lock(inode);
2072
2073         if (info->seals & F_SEAL_SEAL) {
2074                 error = -EPERM;
2075                 goto unlock;
2076         }
2077
2078         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2079                 error = mapping_deny_writable(file->f_mapping);
2080                 if (error)
2081                         goto unlock;
2082
2083                 error = shmem_wait_for_pins(file->f_mapping);
2084                 if (error) {
2085                         mapping_allow_writable(file->f_mapping);
2086                         goto unlock;
2087                 }
2088         }
2089
2090         info->seals |= seals;
2091         error = 0;
2092
2093 unlock:
2094         inode_unlock(inode);
2095         return error;
2096 }
2097 EXPORT_SYMBOL_GPL(shmem_add_seals);
2098
2099 int shmem_get_seals(struct file *file)
2100 {
2101         if (file->f_op != &shmem_file_operations)
2102                 return -EINVAL;
2103
2104         return SHMEM_I(file_inode(file))->seals;
2105 }
2106 EXPORT_SYMBOL_GPL(shmem_get_seals);
2107
2108 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2109 {
2110         long error;
2111
2112         switch (cmd) {
2113         case F_ADD_SEALS:
2114                 /* disallow upper 32bit */
2115                 if (arg > UINT_MAX)
2116                         return -EINVAL;
2117
2118                 error = shmem_add_seals(file, arg);
2119                 break;
2120         case F_GET_SEALS:
2121                 error = shmem_get_seals(file);
2122                 break;
2123         default:
2124                 error = -EINVAL;
2125                 break;
2126         }
2127
2128         return error;
2129 }
2130
2131 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2132                                                          loff_t len)
2133 {
2134         struct inode *inode = file_inode(file);
2135         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2136         struct shmem_inode_info *info = SHMEM_I(inode);
2137         struct shmem_falloc shmem_falloc;
2138         pgoff_t start, index, end;
2139         int error;
2140
2141         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2142                 return -EOPNOTSUPP;
2143
2144         inode_lock(inode);
2145
2146         if (mode & FALLOC_FL_PUNCH_HOLE) {
2147                 struct address_space *mapping = file->f_mapping;
2148                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2149                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2150                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2151
2152                 /* protected by i_mutex */
2153                 if (info->seals & F_SEAL_WRITE) {
2154                         error = -EPERM;
2155                         goto out;
2156                 }
2157
2158                 shmem_falloc.waitq = &shmem_falloc_waitq;
2159                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2160                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2161                 spin_lock(&inode->i_lock);
2162                 inode->i_private = &shmem_falloc;
2163                 spin_unlock(&inode->i_lock);
2164
2165                 if ((u64)unmap_end > (u64)unmap_start)
2166                         unmap_mapping_range(mapping, unmap_start,
2167                                             1 + unmap_end - unmap_start, 0);
2168                 shmem_truncate_range(inode, offset, offset + len - 1);
2169                 /* No need to unmap again: hole-punching leaves COWed pages */
2170
2171                 spin_lock(&inode->i_lock);
2172                 inode->i_private = NULL;
2173                 wake_up_all(&shmem_falloc_waitq);
2174                 spin_unlock(&inode->i_lock);
2175                 error = 0;
2176                 goto out;
2177         }
2178
2179         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2180         error = inode_newsize_ok(inode, offset + len);
2181         if (error)
2182                 goto out;
2183
2184         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2185                 error = -EPERM;
2186                 goto out;
2187         }
2188
2189         start = offset >> PAGE_SHIFT;
2190         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2191         /* Try to avoid a swapstorm if len is impossible to satisfy */
2192         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2193                 error = -ENOSPC;
2194                 goto out;
2195         }
2196
2197         shmem_falloc.waitq = NULL;
2198         shmem_falloc.start = start;
2199         shmem_falloc.next  = start;
2200         shmem_falloc.nr_falloced = 0;
2201         shmem_falloc.nr_unswapped = 0;
2202         spin_lock(&inode->i_lock);
2203         inode->i_private = &shmem_falloc;
2204         spin_unlock(&inode->i_lock);
2205
2206         for (index = start; index < end; index++) {
2207                 struct page *page;
2208
2209                 /*
2210                  * Good, the fallocate(2) manpage permits EINTR: we may have
2211                  * been interrupted because we are using up too much memory.
2212                  */
2213                 if (signal_pending(current))
2214                         error = -EINTR;
2215                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2216                         error = -ENOMEM;
2217                 else
2218                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2219                                                                         NULL);
2220                 if (error) {
2221                         /* Remove the !PageUptodate pages we added */
2222                         shmem_undo_range(inode,
2223                                 (loff_t)start << PAGE_SHIFT,
2224                                 (loff_t)index << PAGE_SHIFT, true);
2225                         goto undone;
2226                 }
2227
2228                 /*
2229                  * Inform shmem_writepage() how far we have reached.
2230                  * No need for lock or barrier: we have the page lock.
2231                  */
2232                 shmem_falloc.next++;
2233                 if (!PageUptodate(page))
2234                         shmem_falloc.nr_falloced++;
2235
2236                 /*
2237                  * If !PageUptodate, leave it that way so that freeable pages
2238                  * can be recognized if we need to rollback on error later.
2239                  * But set_page_dirty so that memory pressure will swap rather
2240                  * than free the pages we are allocating (and SGP_CACHE pages
2241                  * might still be clean: we now need to mark those dirty too).
2242                  */
2243                 set_page_dirty(page);
2244                 unlock_page(page);
2245                 put_page(page);
2246                 cond_resched();
2247         }
2248
2249         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2250                 i_size_write(inode, offset + len);
2251         inode->i_ctime = CURRENT_TIME;
2252 undone:
2253         spin_lock(&inode->i_lock);
2254         inode->i_private = NULL;
2255         spin_unlock(&inode->i_lock);
2256 out:
2257         inode_unlock(inode);
2258         return error;
2259 }
2260
2261 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2262 {
2263         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2264
2265         buf->f_type = TMPFS_MAGIC;
2266         buf->f_bsize = PAGE_SIZE;
2267         buf->f_namelen = NAME_MAX;
2268         if (sbinfo->max_blocks) {
2269                 buf->f_blocks = sbinfo->max_blocks;
2270                 buf->f_bavail =
2271                 buf->f_bfree  = sbinfo->max_blocks -
2272                                 percpu_counter_sum(&sbinfo->used_blocks);
2273         }
2274         if (sbinfo->max_inodes) {
2275                 buf->f_files = sbinfo->max_inodes;
2276                 buf->f_ffree = sbinfo->free_inodes;
2277         }
2278         /* else leave those fields 0 like simple_statfs */
2279         return 0;
2280 }
2281
2282 /*
2283  * File creation. Allocate an inode, and we're done..
2284  */
2285 static int
2286 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2287 {
2288         struct inode *inode;
2289         int error = -ENOSPC;
2290
2291         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2292         if (inode) {
2293                 error = simple_acl_create(dir, inode);
2294                 if (error)
2295                         goto out_iput;
2296                 error = security_inode_init_security(inode, dir,
2297                                                      &dentry->d_name,
2298                                                      shmem_initxattrs, NULL);
2299                 if (error && error != -EOPNOTSUPP)
2300                         goto out_iput;
2301
2302                 error = 0;
2303                 dir->i_size += BOGO_DIRENT_SIZE;
2304                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2305                 d_instantiate(dentry, inode);
2306                 dget(dentry); /* Extra count - pin the dentry in core */
2307         }
2308         return error;
2309 out_iput:
2310         iput(inode);
2311         return error;
2312 }
2313
2314 static int
2315 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2316 {
2317         struct inode *inode;
2318         int error = -ENOSPC;
2319
2320         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2321         if (inode) {
2322                 error = security_inode_init_security(inode, dir,
2323                                                      NULL,
2324                                                      shmem_initxattrs, NULL);
2325                 if (error && error != -EOPNOTSUPP)
2326                         goto out_iput;
2327                 error = simple_acl_create(dir, inode);
2328                 if (error)
2329                         goto out_iput;
2330                 d_tmpfile(dentry, inode);
2331         }
2332         return error;
2333 out_iput:
2334         iput(inode);
2335         return error;
2336 }
2337
2338 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2339 {
2340         int error;
2341
2342         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2343                 return error;
2344         inc_nlink(dir);
2345         return 0;
2346 }
2347
2348 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2349                 bool excl)
2350 {
2351         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2352 }
2353
2354 /*
2355  * Link a file..
2356  */
2357 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2358 {
2359         struct inode *inode = d_inode(old_dentry);
2360         int ret;
2361
2362         /*
2363          * No ordinary (disk based) filesystem counts links as inodes;
2364          * but each new link needs a new dentry, pinning lowmem, and
2365          * tmpfs dentries cannot be pruned until they are unlinked.
2366          */
2367         ret = shmem_reserve_inode(inode->i_sb);
2368         if (ret)
2369                 goto out;
2370
2371         dir->i_size += BOGO_DIRENT_SIZE;
2372         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2373         inc_nlink(inode);
2374         ihold(inode);   /* New dentry reference */
2375         dget(dentry);           /* Extra pinning count for the created dentry */
2376         d_instantiate(dentry, inode);
2377 out:
2378         return ret;
2379 }
2380
2381 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2382 {
2383         struct inode *inode = d_inode(dentry);
2384
2385         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2386                 shmem_free_inode(inode->i_sb);
2387
2388         dir->i_size -= BOGO_DIRENT_SIZE;
2389         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2390         drop_nlink(inode);
2391         dput(dentry);   /* Undo the count from "create" - this does all the work */
2392         return 0;
2393 }
2394
2395 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2396 {
2397         if (!simple_empty(dentry))
2398                 return -ENOTEMPTY;
2399
2400         drop_nlink(d_inode(dentry));
2401         drop_nlink(dir);
2402         return shmem_unlink(dir, dentry);
2403 }
2404
2405 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2406 {
2407         bool old_is_dir = d_is_dir(old_dentry);
2408         bool new_is_dir = d_is_dir(new_dentry);
2409
2410         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2411                 if (old_is_dir) {
2412                         drop_nlink(old_dir);
2413                         inc_nlink(new_dir);
2414                 } else {
2415                         drop_nlink(new_dir);
2416                         inc_nlink(old_dir);
2417                 }
2418         }
2419         old_dir->i_ctime = old_dir->i_mtime =
2420         new_dir->i_ctime = new_dir->i_mtime =
2421         d_inode(old_dentry)->i_ctime =
2422         d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2423
2424         return 0;
2425 }
2426
2427 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2428 {
2429         struct dentry *whiteout;
2430         int error;
2431
2432         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2433         if (!whiteout)
2434                 return -ENOMEM;
2435
2436         error = shmem_mknod(old_dir, whiteout,
2437                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2438         dput(whiteout);
2439         if (error)
2440                 return error;
2441
2442         /*
2443          * Cheat and hash the whiteout while the old dentry is still in
2444          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2445          *
2446          * d_lookup() will consistently find one of them at this point,
2447          * not sure which one, but that isn't even important.
2448          */
2449         d_rehash(whiteout);
2450         return 0;
2451 }
2452
2453 /*
2454  * The VFS layer already does all the dentry stuff for rename,
2455  * we just have to decrement the usage count for the target if
2456  * it exists so that the VFS layer correctly free's it when it
2457  * gets overwritten.
2458  */
2459 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2460 {
2461         struct inode *inode = d_inode(old_dentry);
2462         int they_are_dirs = S_ISDIR(inode->i_mode);
2463
2464         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2465                 return -EINVAL;
2466
2467         if (flags & RENAME_EXCHANGE)
2468                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2469
2470         if (!simple_empty(new_dentry))
2471                 return -ENOTEMPTY;
2472
2473         if (flags & RENAME_WHITEOUT) {
2474                 int error;
2475
2476                 error = shmem_whiteout(old_dir, old_dentry);
2477                 if (error)
2478                         return error;
2479         }
2480
2481         if (d_really_is_positive(new_dentry)) {
2482                 (void) shmem_unlink(new_dir, new_dentry);
2483                 if (they_are_dirs) {
2484                         drop_nlink(d_inode(new_dentry));
2485                         drop_nlink(old_dir);
2486                 }
2487         } else if (they_are_dirs) {
2488                 drop_nlink(old_dir);
2489                 inc_nlink(new_dir);
2490         }
2491
2492         old_dir->i_size -= BOGO_DIRENT_SIZE;
2493         new_dir->i_size += BOGO_DIRENT_SIZE;
2494         old_dir->i_ctime = old_dir->i_mtime =
2495         new_dir->i_ctime = new_dir->i_mtime =
2496         inode->i_ctime = CURRENT_TIME;
2497         return 0;
2498 }
2499
2500 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2501 {
2502         int error;
2503         int len;
2504         struct inode *inode;
2505         struct page *page;
2506         struct shmem_inode_info *info;
2507
2508         len = strlen(symname) + 1;
2509         if (len > PAGE_SIZE)
2510                 return -ENAMETOOLONG;
2511
2512         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2513         if (!inode)
2514                 return -ENOSPC;
2515
2516         error = security_inode_init_security(inode, dir, &dentry->d_name,
2517                                              shmem_initxattrs, NULL);
2518         if (error) {
2519                 if (error != -EOPNOTSUPP) {
2520                         iput(inode);
2521                         return error;
2522                 }
2523                 error = 0;
2524         }
2525
2526         info = SHMEM_I(inode);
2527         inode->i_size = len-1;
2528         if (len <= SHORT_SYMLINK_LEN) {
2529                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2530                 if (!inode->i_link) {
2531                         iput(inode);
2532                         return -ENOMEM;
2533                 }
2534                 inode->i_op = &shmem_short_symlink_operations;
2535         } else {
2536                 inode_nohighmem(inode);
2537                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2538                 if (error) {
2539                         iput(inode);
2540                         return error;
2541                 }
2542                 inode->i_mapping->a_ops = &shmem_aops;
2543                 inode->i_op = &shmem_symlink_inode_operations;
2544                 memcpy(page_address(page), symname, len);
2545                 SetPageUptodate(page);
2546                 set_page_dirty(page);
2547                 unlock_page(page);
2548                 put_page(page);
2549         }
2550         dir->i_size += BOGO_DIRENT_SIZE;
2551         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2552         d_instantiate(dentry, inode);
2553         dget(dentry);
2554         return 0;
2555 }
2556
2557 static void shmem_put_link(void *arg)
2558 {
2559         mark_page_accessed(arg);
2560         put_page(arg);
2561 }
2562
2563 static const char *shmem_get_link(struct dentry *dentry,
2564                                   struct inode *inode,
2565                                   struct delayed_call *done)
2566 {
2567         struct page *page = NULL;
2568         int error;
2569         if (!dentry) {
2570                 page = find_get_page(inode->i_mapping, 0);
2571                 if (!page)
2572                         return ERR_PTR(-ECHILD);
2573                 if (!PageUptodate(page)) {
2574                         put_page(page);
2575                         return ERR_PTR(-ECHILD);
2576                 }
2577         } else {
2578                 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2579                 if (error)
2580                         return ERR_PTR(error);
2581                 unlock_page(page);
2582         }
2583         set_delayed_call(done, shmem_put_link, page);
2584         return page_address(page);
2585 }
2586
2587 #ifdef CONFIG_TMPFS_XATTR
2588 /*
2589  * Superblocks without xattr inode operations may get some security.* xattr
2590  * support from the LSM "for free". As soon as we have any other xattrs
2591  * like ACLs, we also need to implement the security.* handlers at
2592  * filesystem level, though.
2593  */
2594
2595 /*
2596  * Callback for security_inode_init_security() for acquiring xattrs.
2597  */
2598 static int shmem_initxattrs(struct inode *inode,
2599                             const struct xattr *xattr_array,
2600                             void *fs_info)
2601 {
2602         struct shmem_inode_info *info = SHMEM_I(inode);
2603         const struct xattr *xattr;
2604         struct simple_xattr *new_xattr;
2605         size_t len;
2606
2607         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2608                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2609                 if (!new_xattr)
2610                         return -ENOMEM;
2611
2612                 len = strlen(xattr->name) + 1;
2613                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2614                                           GFP_KERNEL);
2615                 if (!new_xattr->name) {
2616                         kfree(new_xattr);
2617                         return -ENOMEM;
2618                 }
2619
2620                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2621                        XATTR_SECURITY_PREFIX_LEN);
2622                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2623                        xattr->name, len);
2624
2625                 simple_xattr_list_add(&info->xattrs, new_xattr);
2626         }
2627
2628         return 0;
2629 }
2630
2631 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2632                                    struct dentry *unused, struct inode *inode,
2633                                    const char *name, void *buffer, size_t size)
2634 {
2635         struct shmem_inode_info *info = SHMEM_I(inode);
2636
2637         name = xattr_full_name(handler, name);
2638         return simple_xattr_get(&info->xattrs, name, buffer, size);
2639 }
2640
2641 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2642                                    struct dentry *dentry, const char *name,
2643                                    const void *value, size_t size, int flags)
2644 {
2645         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2646
2647         name = xattr_full_name(handler, name);
2648         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2649 }
2650
2651 static const struct xattr_handler shmem_security_xattr_handler = {
2652         .prefix = XATTR_SECURITY_PREFIX,
2653         .get = shmem_xattr_handler_get,
2654         .set = shmem_xattr_handler_set,
2655 };
2656
2657 static const struct xattr_handler shmem_trusted_xattr_handler = {
2658         .prefix = XATTR_TRUSTED_PREFIX,
2659         .get = shmem_xattr_handler_get,
2660         .set = shmem_xattr_handler_set,
2661 };
2662
2663 static const struct xattr_handler *shmem_xattr_handlers[] = {
2664 #ifdef CONFIG_TMPFS_POSIX_ACL
2665         &posix_acl_access_xattr_handler,
2666         &posix_acl_default_xattr_handler,
2667 #endif
2668         &shmem_security_xattr_handler,
2669         &shmem_trusted_xattr_handler,
2670         NULL
2671 };
2672
2673 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2674 {
2675         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2676         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2677 }
2678 #endif /* CONFIG_TMPFS_XATTR */
2679
2680 static const struct inode_operations shmem_short_symlink_operations = {
2681         .readlink       = generic_readlink,
2682         .get_link       = simple_get_link,
2683 #ifdef CONFIG_TMPFS_XATTR
2684         .setxattr       = generic_setxattr,
2685         .getxattr       = generic_getxattr,
2686         .listxattr      = shmem_listxattr,
2687         .removexattr    = generic_removexattr,
2688 #endif
2689 };
2690
2691 static const struct inode_operations shmem_symlink_inode_operations = {
2692         .readlink       = generic_readlink,
2693         .get_link       = shmem_get_link,
2694 #ifdef CONFIG_TMPFS_XATTR
2695         .setxattr       = generic_setxattr,
2696         .getxattr       = generic_getxattr,
2697         .listxattr      = shmem_listxattr,
2698         .removexattr    = generic_removexattr,
2699 #endif
2700 };
2701
2702 static struct dentry *shmem_get_parent(struct dentry *child)
2703 {
2704         return ERR_PTR(-ESTALE);
2705 }
2706
2707 static int shmem_match(struct inode *ino, void *vfh)
2708 {
2709         __u32 *fh = vfh;
2710         __u64 inum = fh[2];
2711         inum = (inum << 32) | fh[1];
2712         return ino->i_ino == inum && fh[0] == ino->i_generation;
2713 }
2714
2715 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2716                 struct fid *fid, int fh_len, int fh_type)
2717 {
2718         struct inode *inode;
2719         struct dentry *dentry = NULL;
2720         u64 inum;
2721
2722         if (fh_len < 3)
2723                 return NULL;
2724
2725         inum = fid->raw[2];
2726         inum = (inum << 32) | fid->raw[1];
2727
2728         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2729                         shmem_match, fid->raw);
2730         if (inode) {
2731                 dentry = d_find_alias(inode);
2732                 iput(inode);
2733         }
2734
2735         return dentry;
2736 }
2737
2738 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2739                                 struct inode *parent)
2740 {
2741         if (*len < 3) {
2742                 *len = 3;
2743                 return FILEID_INVALID;
2744         }
2745
2746         if (inode_unhashed(inode)) {
2747                 /* Unfortunately insert_inode_hash is not idempotent,
2748                  * so as we hash inodes here rather than at creation
2749                  * time, we need a lock to ensure we only try
2750                  * to do it once
2751                  */
2752                 static DEFINE_SPINLOCK(lock);
2753                 spin_lock(&lock);
2754                 if (inode_unhashed(inode))
2755                         __insert_inode_hash(inode,
2756                                             inode->i_ino + inode->i_generation);
2757                 spin_unlock(&lock);
2758         }
2759
2760         fh[0] = inode->i_generation;
2761         fh[1] = inode->i_ino;
2762         fh[2] = ((__u64)inode->i_ino) >> 32;
2763
2764         *len = 3;
2765         return 1;
2766 }
2767
2768 static const struct export_operations shmem_export_ops = {
2769         .get_parent     = shmem_get_parent,
2770         .encode_fh      = shmem_encode_fh,
2771         .fh_to_dentry   = shmem_fh_to_dentry,
2772 };
2773
2774 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2775                                bool remount)
2776 {
2777         char *this_char, *value, *rest;
2778         struct mempolicy *mpol = NULL;
2779         uid_t uid;
2780         gid_t gid;
2781
2782         while (options != NULL) {
2783                 this_char = options;
2784                 for (;;) {
2785                         /*
2786                          * NUL-terminate this option: unfortunately,
2787                          * mount options form a comma-separated list,
2788                          * but mpol's nodelist may also contain commas.
2789                          */
2790                         options = strchr(options, ',');
2791                         if (options == NULL)
2792                                 break;
2793                         options++;
2794                         if (!isdigit(*options)) {
2795                                 options[-1] = '\0';
2796                                 break;
2797                         }
2798                 }
2799                 if (!*this_char)
2800                         continue;
2801                 if ((value = strchr(this_char,'=')) != NULL) {
2802                         *value++ = 0;
2803                 } else {
2804                         pr_err("tmpfs: No value for mount option '%s'\n",
2805                                this_char);
2806                         goto error;
2807                 }
2808
2809                 if (!strcmp(this_char,"size")) {
2810                         unsigned long long size;
2811                         size = memparse(value,&rest);
2812                         if (*rest == '%') {
2813                                 size <<= PAGE_SHIFT;
2814                                 size *= totalram_pages;
2815                                 do_div(size, 100);
2816                                 rest++;
2817                         }
2818                         if (*rest)
2819                                 goto bad_val;
2820                         sbinfo->max_blocks =
2821                                 DIV_ROUND_UP(size, PAGE_SIZE);
2822                 } else if (!strcmp(this_char,"nr_blocks")) {
2823                         sbinfo->max_blocks = memparse(value, &rest);
2824                         if (*rest)
2825                                 goto bad_val;
2826                 } else if (!strcmp(this_char,"nr_inodes")) {
2827                         sbinfo->max_inodes = memparse(value, &rest);
2828                         if (*rest)
2829                                 goto bad_val;
2830                 } else if (!strcmp(this_char,"mode")) {
2831                         if (remount)
2832                                 continue;
2833                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2834                         if (*rest)
2835                                 goto bad_val;
2836                 } else if (!strcmp(this_char,"uid")) {
2837                         if (remount)
2838                                 continue;
2839                         uid = simple_strtoul(value, &rest, 0);
2840                         if (*rest)
2841                                 goto bad_val;
2842                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2843                         if (!uid_valid(sbinfo->uid))
2844                                 goto bad_val;
2845                 } else if (!strcmp(this_char,"gid")) {
2846                         if (remount)
2847                                 continue;
2848                         gid = simple_strtoul(value, &rest, 0);
2849                         if (*rest)
2850                                 goto bad_val;
2851                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2852                         if (!gid_valid(sbinfo->gid))
2853                                 goto bad_val;
2854                 } else if (!strcmp(this_char,"mpol")) {
2855                         mpol_put(mpol);
2856                         mpol = NULL;
2857                         if (mpol_parse_str(value, &mpol))
2858                                 goto bad_val;
2859                 } else {
2860                         pr_err("tmpfs: Bad mount option %s\n", this_char);
2861                         goto error;
2862                 }
2863         }
2864         sbinfo->mpol = mpol;
2865         return 0;
2866
2867 bad_val:
2868         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
2869                value, this_char);
2870 error:
2871         mpol_put(mpol);
2872         return 1;
2873
2874 }
2875
2876 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2877 {
2878         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2879         struct shmem_sb_info config = *sbinfo;
2880         unsigned long inodes;
2881         int error = -EINVAL;
2882
2883         config.mpol = NULL;
2884         if (shmem_parse_options(data, &config, true))
2885                 return error;
2886
2887         spin_lock(&sbinfo->stat_lock);
2888         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2889         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2890                 goto out;
2891         if (config.max_inodes < inodes)
2892                 goto out;
2893         /*
2894          * Those tests disallow limited->unlimited while any are in use;
2895          * but we must separately disallow unlimited->limited, because
2896          * in that case we have no record of how much is already in use.
2897          */
2898         if (config.max_blocks && !sbinfo->max_blocks)
2899                 goto out;
2900         if (config.max_inodes && !sbinfo->max_inodes)
2901                 goto out;
2902
2903         error = 0;
2904         sbinfo->max_blocks  = config.max_blocks;
2905         sbinfo->max_inodes  = config.max_inodes;
2906         sbinfo->free_inodes = config.max_inodes - inodes;
2907
2908         /*
2909          * Preserve previous mempolicy unless mpol remount option was specified.
2910          */
2911         if (config.mpol) {
2912                 mpol_put(sbinfo->mpol);
2913                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2914         }
2915 out:
2916         spin_unlock(&sbinfo->stat_lock);
2917         return error;
2918 }
2919
2920 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2921 {
2922         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2923
2924         if (sbinfo->max_blocks != shmem_default_max_blocks())
2925                 seq_printf(seq, ",size=%luk",
2926                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
2927         if (sbinfo->max_inodes != shmem_default_max_inodes())
2928                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2929         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2930                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2931         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2932                 seq_printf(seq, ",uid=%u",
2933                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2934         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2935                 seq_printf(seq, ",gid=%u",
2936                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2937         shmem_show_mpol(seq, sbinfo->mpol);
2938         return 0;
2939 }
2940
2941 #define MFD_NAME_PREFIX "memfd:"
2942 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2943 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2944
2945 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2946
2947 SYSCALL_DEFINE2(memfd_create,
2948                 const char __user *, uname,
2949                 unsigned int, flags)
2950 {
2951         struct shmem_inode_info *info;
2952         struct file *file;
2953         int fd, error;
2954         char *name;
2955         long len;
2956
2957         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2958                 return -EINVAL;
2959
2960         /* length includes terminating zero */
2961         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2962         if (len <= 0)
2963                 return -EFAULT;
2964         if (len > MFD_NAME_MAX_LEN + 1)
2965                 return -EINVAL;
2966
2967         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2968         if (!name)
2969                 return -ENOMEM;
2970
2971         strcpy(name, MFD_NAME_PREFIX);
2972         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2973                 error = -EFAULT;
2974                 goto err_name;
2975         }
2976
2977         /* terminating-zero may have changed after strnlen_user() returned */
2978         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2979                 error = -EFAULT;
2980                 goto err_name;
2981         }
2982
2983         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2984         if (fd < 0) {
2985                 error = fd;
2986                 goto err_name;
2987         }
2988
2989         file = shmem_file_setup(name, 0, VM_NORESERVE);
2990         if (IS_ERR(file)) {
2991                 error = PTR_ERR(file);
2992                 goto err_fd;
2993         }
2994         info = SHMEM_I(file_inode(file));
2995         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2996         file->f_flags |= O_RDWR | O_LARGEFILE;
2997         if (flags & MFD_ALLOW_SEALING)
2998                 info->seals &= ~F_SEAL_SEAL;
2999
3000         fd_install(fd, file);
3001         kfree(name);
3002         return fd;
3003
3004 err_fd:
3005         put_unused_fd(fd);
3006 err_name:
3007         kfree(name);
3008         return error;
3009 }
3010
3011 #endif /* CONFIG_TMPFS */
3012
3013 static void shmem_put_super(struct super_block *sb)
3014 {
3015         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3016
3017         percpu_counter_destroy(&sbinfo->used_blocks);
3018         mpol_put(sbinfo->mpol);
3019         kfree(sbinfo);
3020         sb->s_fs_info = NULL;
3021 }
3022
3023 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3024 {
3025         struct inode *inode;
3026         struct shmem_sb_info *sbinfo;
3027         int err = -ENOMEM;
3028
3029         /* Round up to L1_CACHE_BYTES to resist false sharing */
3030         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3031                                 L1_CACHE_BYTES), GFP_KERNEL);
3032         if (!sbinfo)
3033                 return -ENOMEM;
3034
3035         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3036         sbinfo->uid = current_fsuid();
3037         sbinfo->gid = current_fsgid();
3038         sb->s_fs_info = sbinfo;
3039
3040 #ifdef CONFIG_TMPFS
3041         /*
3042          * Per default we only allow half of the physical ram per
3043          * tmpfs instance, limiting inodes to one per page of lowmem;
3044          * but the internal instance is left unlimited.
3045          */
3046         if (!(sb->s_flags & MS_KERNMOUNT)) {
3047                 sbinfo->max_blocks = shmem_default_max_blocks();
3048                 sbinfo->max_inodes = shmem_default_max_inodes();
3049                 if (shmem_parse_options(data, sbinfo, false)) {
3050                         err = -EINVAL;
3051                         goto failed;
3052                 }
3053         } else {
3054                 sb->s_flags |= MS_NOUSER;
3055         }
3056         sb->s_export_op = &shmem_export_ops;
3057         sb->s_flags |= MS_NOSEC;
3058 #else
3059         sb->s_flags |= MS_NOUSER;
3060 #endif
3061
3062         spin_lock_init(&sbinfo->stat_lock);
3063         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3064                 goto failed;
3065         sbinfo->free_inodes = sbinfo->max_inodes;
3066
3067         sb->s_maxbytes = MAX_LFS_FILESIZE;
3068         sb->s_blocksize = PAGE_SIZE;
3069         sb->s_blocksize_bits = PAGE_SHIFT;
3070         sb->s_magic = TMPFS_MAGIC;
3071         sb->s_op = &shmem_ops;
3072         sb->s_time_gran = 1;
3073 #ifdef CONFIG_TMPFS_XATTR
3074         sb->s_xattr = shmem_xattr_handlers;
3075 #endif
3076 #ifdef CONFIG_TMPFS_POSIX_ACL
3077         sb->s_flags |= MS_POSIXACL;
3078 #endif
3079
3080         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3081         if (!inode)
3082                 goto failed;
3083         inode->i_uid = sbinfo->uid;
3084         inode->i_gid = sbinfo->gid;
3085         sb->s_root = d_make_root(inode);
3086         if (!sb->s_root)
3087                 goto failed;
3088         return 0;
3089
3090 failed:
3091         shmem_put_super(sb);
3092         return err;
3093 }
3094
3095 static struct kmem_cache *shmem_inode_cachep;
3096
3097 static struct inode *shmem_alloc_inode(struct super_block *sb)
3098 {
3099         struct shmem_inode_info *info;
3100         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3101         if (!info)
3102                 return NULL;
3103         return &info->vfs_inode;
3104 }
3105
3106 static void shmem_destroy_callback(struct rcu_head *head)
3107 {
3108         struct inode *inode = container_of(head, struct inode, i_rcu);
3109         if (S_ISLNK(inode->i_mode))
3110                 kfree(inode->i_link);
3111         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3112 }
3113
3114 static void shmem_destroy_inode(struct inode *inode)
3115 {
3116         if (S_ISREG(inode->i_mode))
3117                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3118         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3119 }
3120
3121 static void shmem_init_inode(void *foo)
3122 {
3123         struct shmem_inode_info *info = foo;
3124         inode_init_once(&info->vfs_inode);
3125 }
3126
3127 static int shmem_init_inodecache(void)
3128 {
3129         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3130                                 sizeof(struct shmem_inode_info),
3131                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3132         return 0;
3133 }
3134
3135 static void shmem_destroy_inodecache(void)
3136 {
3137         kmem_cache_destroy(shmem_inode_cachep);
3138 }
3139
3140 static const struct address_space_operations shmem_aops = {
3141         .writepage      = shmem_writepage,
3142         .set_page_dirty = __set_page_dirty_no_writeback,
3143 #ifdef CONFIG_TMPFS
3144         .write_begin    = shmem_write_begin,
3145         .write_end      = shmem_write_end,
3146 #endif
3147 #ifdef CONFIG_MIGRATION
3148         .migratepage    = migrate_page,
3149 #endif
3150         .error_remove_page = generic_error_remove_page,
3151 };
3152
3153 static const struct file_operations shmem_file_operations = {
3154         .mmap           = shmem_mmap,
3155 #ifdef CONFIG_TMPFS
3156         .llseek         = shmem_file_llseek,
3157         .read_iter      = shmem_file_read_iter,
3158         .write_iter     = generic_file_write_iter,
3159         .fsync          = noop_fsync,
3160         .splice_read    = shmem_file_splice_read,
3161         .splice_write   = iter_file_splice_write,
3162         .fallocate      = shmem_fallocate,
3163 #endif
3164 };
3165
3166 static const struct inode_operations shmem_inode_operations = {
3167         .getattr        = shmem_getattr,
3168         .setattr        = shmem_setattr,
3169 #ifdef CONFIG_TMPFS_XATTR
3170         .setxattr       = generic_setxattr,
3171         .getxattr       = generic_getxattr,
3172         .listxattr      = shmem_listxattr,
3173         .removexattr    = generic_removexattr,
3174         .set_acl        = simple_set_acl,
3175 #endif
3176 };
3177
3178 static const struct inode_operations shmem_dir_inode_operations = {
3179 #ifdef CONFIG_TMPFS
3180         .create         = shmem_create,
3181         .lookup         = simple_lookup,
3182         .link           = shmem_link,
3183         .unlink         = shmem_unlink,
3184         .symlink        = shmem_symlink,
3185         .mkdir          = shmem_mkdir,
3186         .rmdir          = shmem_rmdir,
3187         .mknod          = shmem_mknod,
3188         .rename2        = shmem_rename2,
3189         .tmpfile        = shmem_tmpfile,
3190 #endif
3191 #ifdef CONFIG_TMPFS_XATTR
3192         .setxattr       = generic_setxattr,
3193         .getxattr       = generic_getxattr,
3194         .listxattr      = shmem_listxattr,
3195         .removexattr    = generic_removexattr,
3196 #endif
3197 #ifdef CONFIG_TMPFS_POSIX_ACL
3198         .setattr        = shmem_setattr,
3199         .set_acl        = simple_set_acl,
3200 #endif
3201 };
3202
3203 static const struct inode_operations shmem_special_inode_operations = {
3204 #ifdef CONFIG_TMPFS_XATTR
3205         .setxattr       = generic_setxattr,
3206         .getxattr       = generic_getxattr,
3207         .listxattr      = shmem_listxattr,
3208         .removexattr    = generic_removexattr,
3209 #endif
3210 #ifdef CONFIG_TMPFS_POSIX_ACL
3211         .setattr        = shmem_setattr,
3212         .set_acl        = simple_set_acl,
3213 #endif
3214 };
3215
3216 static const struct super_operations shmem_ops = {
3217         .alloc_inode    = shmem_alloc_inode,
3218         .destroy_inode  = shmem_destroy_inode,
3219 #ifdef CONFIG_TMPFS
3220         .statfs         = shmem_statfs,
3221         .remount_fs     = shmem_remount_fs,
3222         .show_options   = shmem_show_options,
3223 #endif
3224         .evict_inode    = shmem_evict_inode,
3225         .drop_inode     = generic_delete_inode,
3226         .put_super      = shmem_put_super,
3227 };
3228
3229 static const struct vm_operations_struct shmem_vm_ops = {
3230         .fault          = shmem_fault,
3231         .map_pages      = filemap_map_pages,
3232 #ifdef CONFIG_NUMA
3233         .set_policy     = shmem_set_policy,
3234         .get_policy     = shmem_get_policy,
3235 #endif
3236 };
3237
3238 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3239         int flags, const char *dev_name, void *data)
3240 {
3241         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3242 }
3243
3244 static struct file_system_type shmem_fs_type = {
3245         .owner          = THIS_MODULE,
3246         .name           = "tmpfs",
3247         .mount          = shmem_mount,
3248         .kill_sb        = kill_litter_super,
3249         .fs_flags       = FS_USERNS_MOUNT,
3250 };
3251
3252 int __init shmem_init(void)
3253 {
3254         int error;
3255
3256         /* If rootfs called this, don't re-init */
3257         if (shmem_inode_cachep)
3258                 return 0;
3259
3260         error = shmem_init_inodecache();
3261         if (error)
3262                 goto out3;
3263
3264         error = register_filesystem(&shmem_fs_type);
3265         if (error) {
3266                 pr_err("Could not register tmpfs\n");
3267                 goto out2;
3268         }
3269
3270         shm_mnt = kern_mount(&shmem_fs_type);
3271         if (IS_ERR(shm_mnt)) {
3272                 error = PTR_ERR(shm_mnt);
3273                 pr_err("Could not kern_mount tmpfs\n");
3274                 goto out1;
3275         }
3276         return 0;
3277
3278 out1:
3279         unregister_filesystem(&shmem_fs_type);
3280 out2:
3281         shmem_destroy_inodecache();
3282 out3:
3283         shm_mnt = ERR_PTR(error);
3284         return error;
3285 }
3286
3287 #else /* !CONFIG_SHMEM */
3288
3289 /*
3290  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3291  *
3292  * This is intended for small system where the benefits of the full
3293  * shmem code (swap-backed and resource-limited) are outweighed by
3294  * their complexity. On systems without swap this code should be
3295  * effectively equivalent, but much lighter weight.
3296  */
3297
3298 static struct file_system_type shmem_fs_type = {
3299         .name           = "tmpfs",
3300         .mount          = ramfs_mount,
3301         .kill_sb        = kill_litter_super,
3302         .fs_flags       = FS_USERNS_MOUNT,
3303 };
3304
3305 int __init shmem_init(void)
3306 {
3307         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3308
3309         shm_mnt = kern_mount(&shmem_fs_type);
3310         BUG_ON(IS_ERR(shm_mnt));
3311
3312         return 0;
3313 }
3314
3315 int shmem_unuse(swp_entry_t swap, struct page *page)
3316 {
3317         return 0;
3318 }
3319
3320 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3321 {
3322         return 0;
3323 }
3324
3325 void shmem_unlock_mapping(struct address_space *mapping)
3326 {
3327 }
3328
3329 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3330 {
3331         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3332 }
3333 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3334
3335 #define shmem_vm_ops                            generic_file_vm_ops
3336 #define shmem_file_operations                   ramfs_file_operations
3337 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3338 #define shmem_acct_size(flags, size)            0
3339 #define shmem_unacct_size(flags, size)          do {} while (0)
3340
3341 #endif /* CONFIG_SHMEM */
3342
3343 /* common code */
3344
3345 static struct dentry_operations anon_ops = {
3346         .d_dname = simple_dname
3347 };
3348
3349 static struct file *__shmem_file_setup(const char *name, loff_t size,
3350                                        unsigned long flags, unsigned int i_flags)
3351 {
3352         struct file *res;
3353         struct inode *inode;
3354         struct path path;
3355         struct super_block *sb;
3356         struct qstr this;
3357
3358         if (IS_ERR(shm_mnt))
3359                 return ERR_CAST(shm_mnt);
3360
3361         if (size < 0 || size > MAX_LFS_FILESIZE)
3362                 return ERR_PTR(-EINVAL);
3363
3364         if (shmem_acct_size(flags, size))
3365                 return ERR_PTR(-ENOMEM);
3366
3367         res = ERR_PTR(-ENOMEM);
3368         this.name = name;
3369         this.len = strlen(name);
3370         this.hash = 0; /* will go */
3371         sb = shm_mnt->mnt_sb;
3372         path.mnt = mntget(shm_mnt);
3373         path.dentry = d_alloc_pseudo(sb, &this);
3374         if (!path.dentry)
3375                 goto put_memory;
3376         d_set_d_op(path.dentry, &anon_ops);
3377
3378         res = ERR_PTR(-ENOSPC);
3379         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3380         if (!inode)
3381                 goto put_memory;
3382
3383         inode->i_flags |= i_flags;
3384         d_instantiate(path.dentry, inode);
3385         inode->i_size = size;
3386         clear_nlink(inode);     /* It is unlinked */
3387         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3388         if (IS_ERR(res))
3389                 goto put_path;
3390
3391         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3392                   &shmem_file_operations);
3393         if (IS_ERR(res))
3394                 goto put_path;
3395
3396         return res;
3397
3398 put_memory:
3399         shmem_unacct_size(flags, size);
3400 put_path:
3401         path_put(&path);
3402         return res;
3403 }
3404
3405 /**
3406  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3407  *      kernel internal.  There will be NO LSM permission checks against the
3408  *      underlying inode.  So users of this interface must do LSM checks at a
3409  *      higher layer.  The users are the big_key and shm implementations.  LSM
3410  *      checks are provided at the key or shm level rather than the inode.
3411  * @name: name for dentry (to be seen in /proc/<pid>/maps
3412  * @size: size to be set for the file
3413  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3414  */
3415 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3416 {
3417         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3418 }
3419
3420 /**
3421  * shmem_file_setup - get an unlinked file living in tmpfs
3422  * @name: name for dentry (to be seen in /proc/<pid>/maps
3423  * @size: size to be set for the file
3424  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3425  */
3426 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3427 {
3428         return __shmem_file_setup(name, size, flags, 0);
3429 }
3430 EXPORT_SYMBOL_GPL(shmem_file_setup);
3431
3432 /**
3433  * shmem_zero_setup - setup a shared anonymous mapping
3434  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3435  */
3436 int shmem_zero_setup(struct vm_area_struct *vma)
3437 {
3438         struct file *file;
3439         loff_t size = vma->vm_end - vma->vm_start;
3440
3441         /*
3442          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3443          * between XFS directory reading and selinux: since this file is only
3444          * accessible to the user through its mapping, use S_PRIVATE flag to
3445          * bypass file security, in the same way as shmem_kernel_file_setup().
3446          */
3447         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3448         if (IS_ERR(file))
3449                 return PTR_ERR(file);
3450
3451         if (vma->vm_file)
3452                 fput(vma->vm_file);
3453         vma->vm_file = file;
3454         vma->vm_ops = &shmem_vm_ops;
3455         return 0;
3456 }
3457
3458 /**
3459  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3460  * @mapping:    the page's address_space
3461  * @index:      the page index
3462  * @gfp:        the page allocator flags to use if allocating
3463  *
3464  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3465  * with any new page allocations done using the specified allocation flags.
3466  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3467  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3468  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3469  *
3470  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3471  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3472  */
3473 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3474                                          pgoff_t index, gfp_t gfp)
3475 {
3476 #ifdef CONFIG_SHMEM
3477         struct inode *inode = mapping->host;
3478         struct page *page;
3479         int error;
3480
3481         BUG_ON(mapping->a_ops != &shmem_aops);
3482         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3483         if (error)
3484                 page = ERR_PTR(error);
3485         else
3486                 unlock_page(page);
3487         return page;
3488 #else
3489         /*
3490          * The tiny !SHMEM case uses ramfs without swap
3491          */
3492         return read_cache_page_gfp(mapping, index, gfp);
3493 #endif
3494 }
3495 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);