]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/shmem.c
userfaultfd: shmem: avoid a lockup resulting from corrupted page->flags
[karo-tx-linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36
37 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
38
39 static struct vfsmount *shm_mnt;
40
41 #ifdef CONFIG_SHMEM
42 /*
43  * This virtual memory filesystem is heavily based on the ramfs. It
44  * extends ramfs by the ability to use swap and honor resource limits
45  * which makes it a completely usable filesystem.
46  */
47
48 #include <linux/xattr.h>
49 #include <linux/exportfs.h>
50 #include <linux/posix_acl.h>
51 #include <linux/posix_acl_xattr.h>
52 #include <linux/mman.h>
53 #include <linux/string.h>
54 #include <linux/slab.h>
55 #include <linux/backing-dev.h>
56 #include <linux/shmem_fs.h>
57 #include <linux/writeback.h>
58 #include <linux/blkdev.h>
59 #include <linux/pagevec.h>
60 #include <linux/percpu_counter.h>
61 #include <linux/falloc.h>
62 #include <linux/splice.h>
63 #include <linux/security.h>
64 #include <linux/swapops.h>
65 #include <linux/mempolicy.h>
66 #include <linux/namei.h>
67 #include <linux/ctype.h>
68 #include <linux/migrate.h>
69 #include <linux/highmem.h>
70 #include <linux/seq_file.h>
71 #include <linux/magic.h>
72 #include <linux/syscalls.h>
73 #include <linux/fcntl.h>
74 #include <uapi/linux/memfd.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/rmap.h>
77
78 #include <linux/uaccess.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
84 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
85
86 /* Pretend that each entry is of this size in directory's i_size */
87 #define BOGO_DIRENT_SIZE 20
88
89 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
90 #define SHORT_SYMLINK_LEN 128
91
92 /*
93  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
94  * inode->i_private (with i_mutex making sure that it has only one user at
95  * a time): we would prefer not to enlarge the shmem inode just for that.
96  */
97 struct shmem_falloc {
98         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
99         pgoff_t start;          /* start of range currently being fallocated */
100         pgoff_t next;           /* the next page offset to be fallocated */
101         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
102         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
103 };
104
105 #ifdef CONFIG_TMPFS
106 static unsigned long shmem_default_max_blocks(void)
107 {
108         return totalram_pages / 2;
109 }
110
111 static unsigned long shmem_default_max_inodes(void)
112 {
113         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
114 }
115 #endif
116
117 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
118 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
119                                 struct shmem_inode_info *info, pgoff_t index);
120 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
121                 struct page **pagep, enum sgp_type sgp,
122                 gfp_t gfp, struct vm_area_struct *vma,
123                 struct vm_fault *vmf, int *fault_type);
124
125 int shmem_getpage(struct inode *inode, pgoff_t index,
126                 struct page **pagep, enum sgp_type sgp)
127 {
128         return shmem_getpage_gfp(inode, index, pagep, sgp,
129                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
130 }
131
132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133 {
134         return sb->s_fs_info;
135 }
136
137 /*
138  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139  * for shared memory and for shared anonymous (/dev/zero) mappings
140  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141  * consistent with the pre-accounting of private mappings ...
142  */
143 static inline int shmem_acct_size(unsigned long flags, loff_t size)
144 {
145         return (flags & VM_NORESERVE) ?
146                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147 }
148
149 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150 {
151         if (!(flags & VM_NORESERVE))
152                 vm_unacct_memory(VM_ACCT(size));
153 }
154
155 static inline int shmem_reacct_size(unsigned long flags,
156                 loff_t oldsize, loff_t newsize)
157 {
158         if (!(flags & VM_NORESERVE)) {
159                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160                         return security_vm_enough_memory_mm(current->mm,
161                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
162                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164         }
165         return 0;
166 }
167
168 /*
169  * ... whereas tmpfs objects are accounted incrementally as
170  * pages are allocated, in order to allow large sparse files.
171  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173  */
174 static inline int shmem_acct_block(unsigned long flags, long pages)
175 {
176         if (!(flags & VM_NORESERVE))
177                 return 0;
178
179         return security_vm_enough_memory_mm(current->mm,
180                         pages * VM_ACCT(PAGE_SIZE));
181 }
182
183 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
184 {
185         if (flags & VM_NORESERVE)
186                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
187 }
188
189 static const struct super_operations shmem_ops;
190 static const struct address_space_operations shmem_aops;
191 static const struct file_operations shmem_file_operations;
192 static const struct inode_operations shmem_inode_operations;
193 static const struct inode_operations shmem_dir_inode_operations;
194 static const struct inode_operations shmem_special_inode_operations;
195 static const struct vm_operations_struct shmem_vm_ops;
196 static struct file_system_type shmem_fs_type;
197
198 bool vma_is_shmem(struct vm_area_struct *vma)
199 {
200         return vma->vm_ops == &shmem_vm_ops;
201 }
202
203 static LIST_HEAD(shmem_swaplist);
204 static DEFINE_MUTEX(shmem_swaplist_mutex);
205
206 static int shmem_reserve_inode(struct super_block *sb)
207 {
208         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
209         if (sbinfo->max_inodes) {
210                 spin_lock(&sbinfo->stat_lock);
211                 if (!sbinfo->free_inodes) {
212                         spin_unlock(&sbinfo->stat_lock);
213                         return -ENOSPC;
214                 }
215                 sbinfo->free_inodes--;
216                 spin_unlock(&sbinfo->stat_lock);
217         }
218         return 0;
219 }
220
221 static void shmem_free_inode(struct super_block *sb)
222 {
223         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
224         if (sbinfo->max_inodes) {
225                 spin_lock(&sbinfo->stat_lock);
226                 sbinfo->free_inodes++;
227                 spin_unlock(&sbinfo->stat_lock);
228         }
229 }
230
231 /**
232  * shmem_recalc_inode - recalculate the block usage of an inode
233  * @inode: inode to recalc
234  *
235  * We have to calculate the free blocks since the mm can drop
236  * undirtied hole pages behind our back.
237  *
238  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
239  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
240  *
241  * It has to be called with the spinlock held.
242  */
243 static void shmem_recalc_inode(struct inode *inode)
244 {
245         struct shmem_inode_info *info = SHMEM_I(inode);
246         long freed;
247
248         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
249         if (freed > 0) {
250                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
251                 if (sbinfo->max_blocks)
252                         percpu_counter_add(&sbinfo->used_blocks, -freed);
253                 info->alloced -= freed;
254                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
255                 shmem_unacct_blocks(info->flags, freed);
256         }
257 }
258
259 bool shmem_charge(struct inode *inode, long pages)
260 {
261         struct shmem_inode_info *info = SHMEM_I(inode);
262         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
263         unsigned long flags;
264
265         if (shmem_acct_block(info->flags, pages))
266                 return false;
267         spin_lock_irqsave(&info->lock, flags);
268         info->alloced += pages;
269         inode->i_blocks += pages * BLOCKS_PER_PAGE;
270         shmem_recalc_inode(inode);
271         spin_unlock_irqrestore(&info->lock, flags);
272         inode->i_mapping->nrpages += pages;
273
274         if (!sbinfo->max_blocks)
275                 return true;
276         if (percpu_counter_compare(&sbinfo->used_blocks,
277                                 sbinfo->max_blocks - pages) > 0) {
278                 inode->i_mapping->nrpages -= pages;
279                 spin_lock_irqsave(&info->lock, flags);
280                 info->alloced -= pages;
281                 shmem_recalc_inode(inode);
282                 spin_unlock_irqrestore(&info->lock, flags);
283                 shmem_unacct_blocks(info->flags, pages);
284                 return false;
285         }
286         percpu_counter_add(&sbinfo->used_blocks, pages);
287         return true;
288 }
289
290 void shmem_uncharge(struct inode *inode, long pages)
291 {
292         struct shmem_inode_info *info = SHMEM_I(inode);
293         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
294         unsigned long flags;
295
296         spin_lock_irqsave(&info->lock, flags);
297         info->alloced -= pages;
298         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
299         shmem_recalc_inode(inode);
300         spin_unlock_irqrestore(&info->lock, flags);
301
302         if (sbinfo->max_blocks)
303                 percpu_counter_sub(&sbinfo->used_blocks, pages);
304         shmem_unacct_blocks(info->flags, pages);
305 }
306
307 /*
308  * Replace item expected in radix tree by a new item, while holding tree lock.
309  */
310 static int shmem_radix_tree_replace(struct address_space *mapping,
311                         pgoff_t index, void *expected, void *replacement)
312 {
313         struct radix_tree_node *node;
314         void **pslot;
315         void *item;
316
317         VM_BUG_ON(!expected);
318         VM_BUG_ON(!replacement);
319         item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
320         if (!item)
321                 return -ENOENT;
322         if (item != expected)
323                 return -ENOENT;
324         __radix_tree_replace(&mapping->page_tree, node, pslot,
325                              replacement, NULL, NULL);
326         return 0;
327 }
328
329 /*
330  * Sometimes, before we decide whether to proceed or to fail, we must check
331  * that an entry was not already brought back from swap by a racing thread.
332  *
333  * Checking page is not enough: by the time a SwapCache page is locked, it
334  * might be reused, and again be SwapCache, using the same swap as before.
335  */
336 static bool shmem_confirm_swap(struct address_space *mapping,
337                                pgoff_t index, swp_entry_t swap)
338 {
339         void *item;
340
341         rcu_read_lock();
342         item = radix_tree_lookup(&mapping->page_tree, index);
343         rcu_read_unlock();
344         return item == swp_to_radix_entry(swap);
345 }
346
347 /*
348  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
349  *
350  * SHMEM_HUGE_NEVER:
351  *      disables huge pages for the mount;
352  * SHMEM_HUGE_ALWAYS:
353  *      enables huge pages for the mount;
354  * SHMEM_HUGE_WITHIN_SIZE:
355  *      only allocate huge pages if the page will be fully within i_size,
356  *      also respect fadvise()/madvise() hints;
357  * SHMEM_HUGE_ADVISE:
358  *      only allocate huge pages if requested with fadvise()/madvise();
359  */
360
361 #define SHMEM_HUGE_NEVER        0
362 #define SHMEM_HUGE_ALWAYS       1
363 #define SHMEM_HUGE_WITHIN_SIZE  2
364 #define SHMEM_HUGE_ADVISE       3
365
366 /*
367  * Special values.
368  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
369  *
370  * SHMEM_HUGE_DENY:
371  *      disables huge on shm_mnt and all mounts, for emergency use;
372  * SHMEM_HUGE_FORCE:
373  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
374  *
375  */
376 #define SHMEM_HUGE_DENY         (-1)
377 #define SHMEM_HUGE_FORCE        (-2)
378
379 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
380 /* ifdef here to avoid bloating shmem.o when not necessary */
381
382 int shmem_huge __read_mostly;
383
384 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
385 static int shmem_parse_huge(const char *str)
386 {
387         if (!strcmp(str, "never"))
388                 return SHMEM_HUGE_NEVER;
389         if (!strcmp(str, "always"))
390                 return SHMEM_HUGE_ALWAYS;
391         if (!strcmp(str, "within_size"))
392                 return SHMEM_HUGE_WITHIN_SIZE;
393         if (!strcmp(str, "advise"))
394                 return SHMEM_HUGE_ADVISE;
395         if (!strcmp(str, "deny"))
396                 return SHMEM_HUGE_DENY;
397         if (!strcmp(str, "force"))
398                 return SHMEM_HUGE_FORCE;
399         return -EINVAL;
400 }
401
402 static const char *shmem_format_huge(int huge)
403 {
404         switch (huge) {
405         case SHMEM_HUGE_NEVER:
406                 return "never";
407         case SHMEM_HUGE_ALWAYS:
408                 return "always";
409         case SHMEM_HUGE_WITHIN_SIZE:
410                 return "within_size";
411         case SHMEM_HUGE_ADVISE:
412                 return "advise";
413         case SHMEM_HUGE_DENY:
414                 return "deny";
415         case SHMEM_HUGE_FORCE:
416                 return "force";
417         default:
418                 VM_BUG_ON(1);
419                 return "bad_val";
420         }
421 }
422 #endif
423
424 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
425                 struct shrink_control *sc, unsigned long nr_to_split)
426 {
427         LIST_HEAD(list), *pos, *next;
428         LIST_HEAD(to_remove);
429         struct inode *inode;
430         struct shmem_inode_info *info;
431         struct page *page;
432         unsigned long batch = sc ? sc->nr_to_scan : 128;
433         int removed = 0, split = 0;
434
435         if (list_empty(&sbinfo->shrinklist))
436                 return SHRINK_STOP;
437
438         spin_lock(&sbinfo->shrinklist_lock);
439         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
440                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
441
442                 /* pin the inode */
443                 inode = igrab(&info->vfs_inode);
444
445                 /* inode is about to be evicted */
446                 if (!inode) {
447                         list_del_init(&info->shrinklist);
448                         removed++;
449                         goto next;
450                 }
451
452                 /* Check if there's anything to gain */
453                 if (round_up(inode->i_size, PAGE_SIZE) ==
454                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
455                         list_move(&info->shrinklist, &to_remove);
456                         removed++;
457                         goto next;
458                 }
459
460                 list_move(&info->shrinklist, &list);
461 next:
462                 if (!--batch)
463                         break;
464         }
465         spin_unlock(&sbinfo->shrinklist_lock);
466
467         list_for_each_safe(pos, next, &to_remove) {
468                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
469                 inode = &info->vfs_inode;
470                 list_del_init(&info->shrinklist);
471                 iput(inode);
472         }
473
474         list_for_each_safe(pos, next, &list) {
475                 int ret;
476
477                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
478                 inode = &info->vfs_inode;
479
480                 if (nr_to_split && split >= nr_to_split) {
481                         iput(inode);
482                         continue;
483                 }
484
485                 page = find_lock_page(inode->i_mapping,
486                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
487                 if (!page)
488                         goto drop;
489
490                 if (!PageTransHuge(page)) {
491                         unlock_page(page);
492                         put_page(page);
493                         goto drop;
494                 }
495
496                 ret = split_huge_page(page);
497                 unlock_page(page);
498                 put_page(page);
499
500                 if (ret) {
501                         /* split failed: leave it on the list */
502                         iput(inode);
503                         continue;
504                 }
505
506                 split++;
507 drop:
508                 list_del_init(&info->shrinklist);
509                 removed++;
510                 iput(inode);
511         }
512
513         spin_lock(&sbinfo->shrinklist_lock);
514         list_splice_tail(&list, &sbinfo->shrinklist);
515         sbinfo->shrinklist_len -= removed;
516         spin_unlock(&sbinfo->shrinklist_lock);
517
518         return split;
519 }
520
521 static long shmem_unused_huge_scan(struct super_block *sb,
522                 struct shrink_control *sc)
523 {
524         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
525
526         if (!READ_ONCE(sbinfo->shrinklist_len))
527                 return SHRINK_STOP;
528
529         return shmem_unused_huge_shrink(sbinfo, sc, 0);
530 }
531
532 static long shmem_unused_huge_count(struct super_block *sb,
533                 struct shrink_control *sc)
534 {
535         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
536         return READ_ONCE(sbinfo->shrinklist_len);
537 }
538 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
539
540 #define shmem_huge SHMEM_HUGE_DENY
541
542 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
543                 struct shrink_control *sc, unsigned long nr_to_split)
544 {
545         return 0;
546 }
547 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
548
549 /*
550  * Like add_to_page_cache_locked, but error if expected item has gone.
551  */
552 static int shmem_add_to_page_cache(struct page *page,
553                                    struct address_space *mapping,
554                                    pgoff_t index, void *expected)
555 {
556         int error, nr = hpage_nr_pages(page);
557
558         VM_BUG_ON_PAGE(PageTail(page), page);
559         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
560         VM_BUG_ON_PAGE(!PageLocked(page), page);
561         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
562         VM_BUG_ON(expected && PageTransHuge(page));
563
564         page_ref_add(page, nr);
565         page->mapping = mapping;
566         page->index = index;
567
568         spin_lock_irq(&mapping->tree_lock);
569         if (PageTransHuge(page)) {
570                 void __rcu **results;
571                 pgoff_t idx;
572                 int i;
573
574                 error = 0;
575                 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
576                                         &results, &idx, index, 1) &&
577                                 idx < index + HPAGE_PMD_NR) {
578                         error = -EEXIST;
579                 }
580
581                 if (!error) {
582                         for (i = 0; i < HPAGE_PMD_NR; i++) {
583                                 error = radix_tree_insert(&mapping->page_tree,
584                                                 index + i, page + i);
585                                 VM_BUG_ON(error);
586                         }
587                         count_vm_event(THP_FILE_ALLOC);
588                 }
589         } else if (!expected) {
590                 error = radix_tree_insert(&mapping->page_tree, index, page);
591         } else {
592                 error = shmem_radix_tree_replace(mapping, index, expected,
593                                                                  page);
594         }
595
596         if (!error) {
597                 mapping->nrpages += nr;
598                 if (PageTransHuge(page))
599                         __inc_node_page_state(page, NR_SHMEM_THPS);
600                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
601                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
602                 spin_unlock_irq(&mapping->tree_lock);
603         } else {
604                 page->mapping = NULL;
605                 spin_unlock_irq(&mapping->tree_lock);
606                 page_ref_sub(page, nr);
607         }
608         return error;
609 }
610
611 /*
612  * Like delete_from_page_cache, but substitutes swap for page.
613  */
614 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
615 {
616         struct address_space *mapping = page->mapping;
617         int error;
618
619         VM_BUG_ON_PAGE(PageCompound(page), page);
620
621         spin_lock_irq(&mapping->tree_lock);
622         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
623         page->mapping = NULL;
624         mapping->nrpages--;
625         __dec_node_page_state(page, NR_FILE_PAGES);
626         __dec_node_page_state(page, NR_SHMEM);
627         spin_unlock_irq(&mapping->tree_lock);
628         put_page(page);
629         BUG_ON(error);
630 }
631
632 /*
633  * Remove swap entry from radix tree, free the swap and its page cache.
634  */
635 static int shmem_free_swap(struct address_space *mapping,
636                            pgoff_t index, void *radswap)
637 {
638         void *old;
639
640         spin_lock_irq(&mapping->tree_lock);
641         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
642         spin_unlock_irq(&mapping->tree_lock);
643         if (old != radswap)
644                 return -ENOENT;
645         free_swap_and_cache(radix_to_swp_entry(radswap));
646         return 0;
647 }
648
649 /*
650  * Determine (in bytes) how many of the shmem object's pages mapped by the
651  * given offsets are swapped out.
652  *
653  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
654  * as long as the inode doesn't go away and racy results are not a problem.
655  */
656 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
657                                                 pgoff_t start, pgoff_t end)
658 {
659         struct radix_tree_iter iter;
660         void **slot;
661         struct page *page;
662         unsigned long swapped = 0;
663
664         rcu_read_lock();
665
666         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
667                 if (iter.index >= end)
668                         break;
669
670                 page = radix_tree_deref_slot(slot);
671
672                 if (radix_tree_deref_retry(page)) {
673                         slot = radix_tree_iter_retry(&iter);
674                         continue;
675                 }
676
677                 if (radix_tree_exceptional_entry(page))
678                         swapped++;
679
680                 if (need_resched()) {
681                         slot = radix_tree_iter_resume(slot, &iter);
682                         cond_resched_rcu();
683                 }
684         }
685
686         rcu_read_unlock();
687
688         return swapped << PAGE_SHIFT;
689 }
690
691 /*
692  * Determine (in bytes) how many of the shmem object's pages mapped by the
693  * given vma is swapped out.
694  *
695  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
696  * as long as the inode doesn't go away and racy results are not a problem.
697  */
698 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
699 {
700         struct inode *inode = file_inode(vma->vm_file);
701         struct shmem_inode_info *info = SHMEM_I(inode);
702         struct address_space *mapping = inode->i_mapping;
703         unsigned long swapped;
704
705         /* Be careful as we don't hold info->lock */
706         swapped = READ_ONCE(info->swapped);
707
708         /*
709          * The easier cases are when the shmem object has nothing in swap, or
710          * the vma maps it whole. Then we can simply use the stats that we
711          * already track.
712          */
713         if (!swapped)
714                 return 0;
715
716         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
717                 return swapped << PAGE_SHIFT;
718
719         /* Here comes the more involved part */
720         return shmem_partial_swap_usage(mapping,
721                         linear_page_index(vma, vma->vm_start),
722                         linear_page_index(vma, vma->vm_end));
723 }
724
725 /*
726  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
727  */
728 void shmem_unlock_mapping(struct address_space *mapping)
729 {
730         struct pagevec pvec;
731         pgoff_t indices[PAGEVEC_SIZE];
732         pgoff_t index = 0;
733
734         pagevec_init(&pvec, 0);
735         /*
736          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
737          */
738         while (!mapping_unevictable(mapping)) {
739                 /*
740                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
741                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
742                  */
743                 pvec.nr = find_get_entries(mapping, index,
744                                            PAGEVEC_SIZE, pvec.pages, indices);
745                 if (!pvec.nr)
746                         break;
747                 index = indices[pvec.nr - 1] + 1;
748                 pagevec_remove_exceptionals(&pvec);
749                 check_move_unevictable_pages(pvec.pages, pvec.nr);
750                 pagevec_release(&pvec);
751                 cond_resched();
752         }
753 }
754
755 /*
756  * Remove range of pages and swap entries from radix tree, and free them.
757  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
758  */
759 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
760                                                                  bool unfalloc)
761 {
762         struct address_space *mapping = inode->i_mapping;
763         struct shmem_inode_info *info = SHMEM_I(inode);
764         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
765         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
766         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
767         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
768         struct pagevec pvec;
769         pgoff_t indices[PAGEVEC_SIZE];
770         long nr_swaps_freed = 0;
771         pgoff_t index;
772         int i;
773
774         if (lend == -1)
775                 end = -1;       /* unsigned, so actually very big */
776
777         pagevec_init(&pvec, 0);
778         index = start;
779         while (index < end) {
780                 pvec.nr = find_get_entries(mapping, index,
781                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
782                         pvec.pages, indices);
783                 if (!pvec.nr)
784                         break;
785                 for (i = 0; i < pagevec_count(&pvec); i++) {
786                         struct page *page = pvec.pages[i];
787
788                         index = indices[i];
789                         if (index >= end)
790                                 break;
791
792                         if (radix_tree_exceptional_entry(page)) {
793                                 if (unfalloc)
794                                         continue;
795                                 nr_swaps_freed += !shmem_free_swap(mapping,
796                                                                 index, page);
797                                 continue;
798                         }
799
800                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
801
802                         if (!trylock_page(page))
803                                 continue;
804
805                         if (PageTransTail(page)) {
806                                 /* Middle of THP: zero out the page */
807                                 clear_highpage(page);
808                                 unlock_page(page);
809                                 continue;
810                         } else if (PageTransHuge(page)) {
811                                 if (index == round_down(end, HPAGE_PMD_NR)) {
812                                         /*
813                                          * Range ends in the middle of THP:
814                                          * zero out the page
815                                          */
816                                         clear_highpage(page);
817                                         unlock_page(page);
818                                         continue;
819                                 }
820                                 index += HPAGE_PMD_NR - 1;
821                                 i += HPAGE_PMD_NR - 1;
822                         }
823
824                         if (!unfalloc || !PageUptodate(page)) {
825                                 VM_BUG_ON_PAGE(PageTail(page), page);
826                                 if (page_mapping(page) == mapping) {
827                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
828                                         truncate_inode_page(mapping, page);
829                                 }
830                         }
831                         unlock_page(page);
832                 }
833                 pagevec_remove_exceptionals(&pvec);
834                 pagevec_release(&pvec);
835                 cond_resched();
836                 index++;
837         }
838
839         if (partial_start) {
840                 struct page *page = NULL;
841                 shmem_getpage(inode, start - 1, &page, SGP_READ);
842                 if (page) {
843                         unsigned int top = PAGE_SIZE;
844                         if (start > end) {
845                                 top = partial_end;
846                                 partial_end = 0;
847                         }
848                         zero_user_segment(page, partial_start, top);
849                         set_page_dirty(page);
850                         unlock_page(page);
851                         put_page(page);
852                 }
853         }
854         if (partial_end) {
855                 struct page *page = NULL;
856                 shmem_getpage(inode, end, &page, SGP_READ);
857                 if (page) {
858                         zero_user_segment(page, 0, partial_end);
859                         set_page_dirty(page);
860                         unlock_page(page);
861                         put_page(page);
862                 }
863         }
864         if (start >= end)
865                 return;
866
867         index = start;
868         while (index < end) {
869                 cond_resched();
870
871                 pvec.nr = find_get_entries(mapping, index,
872                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
873                                 pvec.pages, indices);
874                 if (!pvec.nr) {
875                         /* If all gone or hole-punch or unfalloc, we're done */
876                         if (index == start || end != -1)
877                                 break;
878                         /* But if truncating, restart to make sure all gone */
879                         index = start;
880                         continue;
881                 }
882                 for (i = 0; i < pagevec_count(&pvec); i++) {
883                         struct page *page = pvec.pages[i];
884
885                         index = indices[i];
886                         if (index >= end)
887                                 break;
888
889                         if (radix_tree_exceptional_entry(page)) {
890                                 if (unfalloc)
891                                         continue;
892                                 if (shmem_free_swap(mapping, index, page)) {
893                                         /* Swap was replaced by page: retry */
894                                         index--;
895                                         break;
896                                 }
897                                 nr_swaps_freed++;
898                                 continue;
899                         }
900
901                         lock_page(page);
902
903                         if (PageTransTail(page)) {
904                                 /* Middle of THP: zero out the page */
905                                 clear_highpage(page);
906                                 unlock_page(page);
907                                 /*
908                                  * Partial thp truncate due 'start' in middle
909                                  * of THP: don't need to look on these pages
910                                  * again on !pvec.nr restart.
911                                  */
912                                 if (index != round_down(end, HPAGE_PMD_NR))
913                                         start++;
914                                 continue;
915                         } else if (PageTransHuge(page)) {
916                                 if (index == round_down(end, HPAGE_PMD_NR)) {
917                                         /*
918                                          * Range ends in the middle of THP:
919                                          * zero out the page
920                                          */
921                                         clear_highpage(page);
922                                         unlock_page(page);
923                                         continue;
924                                 }
925                                 index += HPAGE_PMD_NR - 1;
926                                 i += HPAGE_PMD_NR - 1;
927                         }
928
929                         if (!unfalloc || !PageUptodate(page)) {
930                                 VM_BUG_ON_PAGE(PageTail(page), page);
931                                 if (page_mapping(page) == mapping) {
932                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
933                                         truncate_inode_page(mapping, page);
934                                 } else {
935                                         /* Page was replaced by swap: retry */
936                                         unlock_page(page);
937                                         index--;
938                                         break;
939                                 }
940                         }
941                         unlock_page(page);
942                 }
943                 pagevec_remove_exceptionals(&pvec);
944                 pagevec_release(&pvec);
945                 index++;
946         }
947
948         spin_lock_irq(&info->lock);
949         info->swapped -= nr_swaps_freed;
950         shmem_recalc_inode(inode);
951         spin_unlock_irq(&info->lock);
952 }
953
954 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
955 {
956         shmem_undo_range(inode, lstart, lend, false);
957         inode->i_ctime = inode->i_mtime = current_time(inode);
958 }
959 EXPORT_SYMBOL_GPL(shmem_truncate_range);
960
961 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
962                          struct kstat *stat)
963 {
964         struct inode *inode = dentry->d_inode;
965         struct shmem_inode_info *info = SHMEM_I(inode);
966
967         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
968                 spin_lock_irq(&info->lock);
969                 shmem_recalc_inode(inode);
970                 spin_unlock_irq(&info->lock);
971         }
972         generic_fillattr(inode, stat);
973         return 0;
974 }
975
976 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
977 {
978         struct inode *inode = d_inode(dentry);
979         struct shmem_inode_info *info = SHMEM_I(inode);
980         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
981         int error;
982
983         error = setattr_prepare(dentry, attr);
984         if (error)
985                 return error;
986
987         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
988                 loff_t oldsize = inode->i_size;
989                 loff_t newsize = attr->ia_size;
990
991                 /* protected by i_mutex */
992                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
993                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
994                         return -EPERM;
995
996                 if (newsize != oldsize) {
997                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
998                                         oldsize, newsize);
999                         if (error)
1000                                 return error;
1001                         i_size_write(inode, newsize);
1002                         inode->i_ctime = inode->i_mtime = current_time(inode);
1003                 }
1004                 if (newsize <= oldsize) {
1005                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1006                         if (oldsize > holebegin)
1007                                 unmap_mapping_range(inode->i_mapping,
1008                                                         holebegin, 0, 1);
1009                         if (info->alloced)
1010                                 shmem_truncate_range(inode,
1011                                                         newsize, (loff_t)-1);
1012                         /* unmap again to remove racily COWed private pages */
1013                         if (oldsize > holebegin)
1014                                 unmap_mapping_range(inode->i_mapping,
1015                                                         holebegin, 0, 1);
1016
1017                         /*
1018                          * Part of the huge page can be beyond i_size: subject
1019                          * to shrink under memory pressure.
1020                          */
1021                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1022                                 spin_lock(&sbinfo->shrinklist_lock);
1023                                 if (list_empty(&info->shrinklist)) {
1024                                         list_add_tail(&info->shrinklist,
1025                                                         &sbinfo->shrinklist);
1026                                         sbinfo->shrinklist_len++;
1027                                 }
1028                                 spin_unlock(&sbinfo->shrinklist_lock);
1029                         }
1030                 }
1031         }
1032
1033         setattr_copy(inode, attr);
1034         if (attr->ia_valid & ATTR_MODE)
1035                 error = posix_acl_chmod(inode, inode->i_mode);
1036         return error;
1037 }
1038
1039 static void shmem_evict_inode(struct inode *inode)
1040 {
1041         struct shmem_inode_info *info = SHMEM_I(inode);
1042         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1043
1044         if (inode->i_mapping->a_ops == &shmem_aops) {
1045                 shmem_unacct_size(info->flags, inode->i_size);
1046                 inode->i_size = 0;
1047                 shmem_truncate_range(inode, 0, (loff_t)-1);
1048                 if (!list_empty(&info->shrinklist)) {
1049                         spin_lock(&sbinfo->shrinklist_lock);
1050                         if (!list_empty(&info->shrinklist)) {
1051                                 list_del_init(&info->shrinklist);
1052                                 sbinfo->shrinklist_len--;
1053                         }
1054                         spin_unlock(&sbinfo->shrinklist_lock);
1055                 }
1056                 if (!list_empty(&info->swaplist)) {
1057                         mutex_lock(&shmem_swaplist_mutex);
1058                         list_del_init(&info->swaplist);
1059                         mutex_unlock(&shmem_swaplist_mutex);
1060                 }
1061         }
1062
1063         simple_xattrs_free(&info->xattrs);
1064         WARN_ON(inode->i_blocks);
1065         shmem_free_inode(inode->i_sb);
1066         clear_inode(inode);
1067 }
1068
1069 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1070 {
1071         struct radix_tree_iter iter;
1072         void **slot;
1073         unsigned long found = -1;
1074         unsigned int checked = 0;
1075
1076         rcu_read_lock();
1077         radix_tree_for_each_slot(slot, root, &iter, 0) {
1078                 if (*slot == item) {
1079                         found = iter.index;
1080                         break;
1081                 }
1082                 checked++;
1083                 if ((checked % 4096) != 0)
1084                         continue;
1085                 slot = radix_tree_iter_resume(slot, &iter);
1086                 cond_resched_rcu();
1087         }
1088
1089         rcu_read_unlock();
1090         return found;
1091 }
1092
1093 /*
1094  * If swap found in inode, free it and move page from swapcache to filecache.
1095  */
1096 static int shmem_unuse_inode(struct shmem_inode_info *info,
1097                              swp_entry_t swap, struct page **pagep)
1098 {
1099         struct address_space *mapping = info->vfs_inode.i_mapping;
1100         void *radswap;
1101         pgoff_t index;
1102         gfp_t gfp;
1103         int error = 0;
1104
1105         radswap = swp_to_radix_entry(swap);
1106         index = find_swap_entry(&mapping->page_tree, radswap);
1107         if (index == -1)
1108                 return -EAGAIN; /* tell shmem_unuse we found nothing */
1109
1110         /*
1111          * Move _head_ to start search for next from here.
1112          * But be careful: shmem_evict_inode checks list_empty without taking
1113          * mutex, and there's an instant in list_move_tail when info->swaplist
1114          * would appear empty, if it were the only one on shmem_swaplist.
1115          */
1116         if (shmem_swaplist.next != &info->swaplist)
1117                 list_move_tail(&shmem_swaplist, &info->swaplist);
1118
1119         gfp = mapping_gfp_mask(mapping);
1120         if (shmem_should_replace_page(*pagep, gfp)) {
1121                 mutex_unlock(&shmem_swaplist_mutex);
1122                 error = shmem_replace_page(pagep, gfp, info, index);
1123                 mutex_lock(&shmem_swaplist_mutex);
1124                 /*
1125                  * We needed to drop mutex to make that restrictive page
1126                  * allocation, but the inode might have been freed while we
1127                  * dropped it: although a racing shmem_evict_inode() cannot
1128                  * complete without emptying the radix_tree, our page lock
1129                  * on this swapcache page is not enough to prevent that -
1130                  * free_swap_and_cache() of our swap entry will only
1131                  * trylock_page(), removing swap from radix_tree whatever.
1132                  *
1133                  * We must not proceed to shmem_add_to_page_cache() if the
1134                  * inode has been freed, but of course we cannot rely on
1135                  * inode or mapping or info to check that.  However, we can
1136                  * safely check if our swap entry is still in use (and here
1137                  * it can't have got reused for another page): if it's still
1138                  * in use, then the inode cannot have been freed yet, and we
1139                  * can safely proceed (if it's no longer in use, that tells
1140                  * nothing about the inode, but we don't need to unuse swap).
1141                  */
1142                 if (!page_swapcount(*pagep))
1143                         error = -ENOENT;
1144         }
1145
1146         /*
1147          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1148          * but also to hold up shmem_evict_inode(): so inode cannot be freed
1149          * beneath us (pagelock doesn't help until the page is in pagecache).
1150          */
1151         if (!error)
1152                 error = shmem_add_to_page_cache(*pagep, mapping, index,
1153                                                 radswap);
1154         if (error != -ENOMEM) {
1155                 /*
1156                  * Truncation and eviction use free_swap_and_cache(), which
1157                  * only does trylock page: if we raced, best clean up here.
1158                  */
1159                 delete_from_swap_cache(*pagep);
1160                 set_page_dirty(*pagep);
1161                 if (!error) {
1162                         spin_lock_irq(&info->lock);
1163                         info->swapped--;
1164                         spin_unlock_irq(&info->lock);
1165                         swap_free(swap);
1166                 }
1167         }
1168         return error;
1169 }
1170
1171 /*
1172  * Search through swapped inodes to find and replace swap by page.
1173  */
1174 int shmem_unuse(swp_entry_t swap, struct page *page)
1175 {
1176         struct list_head *this, *next;
1177         struct shmem_inode_info *info;
1178         struct mem_cgroup *memcg;
1179         int error = 0;
1180
1181         /*
1182          * There's a faint possibility that swap page was replaced before
1183          * caller locked it: caller will come back later with the right page.
1184          */
1185         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1186                 goto out;
1187
1188         /*
1189          * Charge page using GFP_KERNEL while we can wait, before taking
1190          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1191          * Charged back to the user (not to caller) when swap account is used.
1192          */
1193         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1194                         false);
1195         if (error)
1196                 goto out;
1197         /* No radix_tree_preload: swap entry keeps a place for page in tree */
1198         error = -EAGAIN;
1199
1200         mutex_lock(&shmem_swaplist_mutex);
1201         list_for_each_safe(this, next, &shmem_swaplist) {
1202                 info = list_entry(this, struct shmem_inode_info, swaplist);
1203                 if (info->swapped)
1204                         error = shmem_unuse_inode(info, swap, &page);
1205                 else
1206                         list_del_init(&info->swaplist);
1207                 cond_resched();
1208                 if (error != -EAGAIN)
1209                         break;
1210                 /* found nothing in this: move on to search the next */
1211         }
1212         mutex_unlock(&shmem_swaplist_mutex);
1213
1214         if (error) {
1215                 if (error != -ENOMEM)
1216                         error = 0;
1217                 mem_cgroup_cancel_charge(page, memcg, false);
1218         } else
1219                 mem_cgroup_commit_charge(page, memcg, true, false);
1220 out:
1221         unlock_page(page);
1222         put_page(page);
1223         return error;
1224 }
1225
1226 /*
1227  * Move the page from the page cache to the swap cache.
1228  */
1229 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1230 {
1231         struct shmem_inode_info *info;
1232         struct address_space *mapping;
1233         struct inode *inode;
1234         swp_entry_t swap;
1235         pgoff_t index;
1236
1237         VM_BUG_ON_PAGE(PageCompound(page), page);
1238         BUG_ON(!PageLocked(page));
1239         mapping = page->mapping;
1240         index = page->index;
1241         inode = mapping->host;
1242         info = SHMEM_I(inode);
1243         if (info->flags & VM_LOCKED)
1244                 goto redirty;
1245         if (!total_swap_pages)
1246                 goto redirty;
1247
1248         /*
1249          * Our capabilities prevent regular writeback or sync from ever calling
1250          * shmem_writepage; but a stacking filesystem might use ->writepage of
1251          * its underlying filesystem, in which case tmpfs should write out to
1252          * swap only in response to memory pressure, and not for the writeback
1253          * threads or sync.
1254          */
1255         if (!wbc->for_reclaim) {
1256                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1257                 goto redirty;
1258         }
1259
1260         /*
1261          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1262          * value into swapfile.c, the only way we can correctly account for a
1263          * fallocated page arriving here is now to initialize it and write it.
1264          *
1265          * That's okay for a page already fallocated earlier, but if we have
1266          * not yet completed the fallocation, then (a) we want to keep track
1267          * of this page in case we have to undo it, and (b) it may not be a
1268          * good idea to continue anyway, once we're pushing into swap.  So
1269          * reactivate the page, and let shmem_fallocate() quit when too many.
1270          */
1271         if (!PageUptodate(page)) {
1272                 if (inode->i_private) {
1273                         struct shmem_falloc *shmem_falloc;
1274                         spin_lock(&inode->i_lock);
1275                         shmem_falloc = inode->i_private;
1276                         if (shmem_falloc &&
1277                             !shmem_falloc->waitq &&
1278                             index >= shmem_falloc->start &&
1279                             index < shmem_falloc->next)
1280                                 shmem_falloc->nr_unswapped++;
1281                         else
1282                                 shmem_falloc = NULL;
1283                         spin_unlock(&inode->i_lock);
1284                         if (shmem_falloc)
1285                                 goto redirty;
1286                 }
1287                 clear_highpage(page);
1288                 flush_dcache_page(page);
1289                 SetPageUptodate(page);
1290         }
1291
1292         swap = get_swap_page();
1293         if (!swap.val)
1294                 goto redirty;
1295
1296         if (mem_cgroup_try_charge_swap(page, swap))
1297                 goto free_swap;
1298
1299         /*
1300          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1301          * if it's not already there.  Do it now before the page is
1302          * moved to swap cache, when its pagelock no longer protects
1303          * the inode from eviction.  But don't unlock the mutex until
1304          * we've incremented swapped, because shmem_unuse_inode() will
1305          * prune a !swapped inode from the swaplist under this mutex.
1306          */
1307         mutex_lock(&shmem_swaplist_mutex);
1308         if (list_empty(&info->swaplist))
1309                 list_add_tail(&info->swaplist, &shmem_swaplist);
1310
1311         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1312                 spin_lock_irq(&info->lock);
1313                 shmem_recalc_inode(inode);
1314                 info->swapped++;
1315                 spin_unlock_irq(&info->lock);
1316
1317                 swap_shmem_alloc(swap);
1318                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1319
1320                 mutex_unlock(&shmem_swaplist_mutex);
1321                 BUG_ON(page_mapped(page));
1322                 swap_writepage(page, wbc);
1323                 return 0;
1324         }
1325
1326         mutex_unlock(&shmem_swaplist_mutex);
1327 free_swap:
1328         swapcache_free(swap);
1329 redirty:
1330         set_page_dirty(page);
1331         if (wbc->for_reclaim)
1332                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1333         unlock_page(page);
1334         return 0;
1335 }
1336
1337 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1338 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1339 {
1340         char buffer[64];
1341
1342         if (!mpol || mpol->mode == MPOL_DEFAULT)
1343                 return;         /* show nothing */
1344
1345         mpol_to_str(buffer, sizeof(buffer), mpol);
1346
1347         seq_printf(seq, ",mpol=%s", buffer);
1348 }
1349
1350 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1351 {
1352         struct mempolicy *mpol = NULL;
1353         if (sbinfo->mpol) {
1354                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1355                 mpol = sbinfo->mpol;
1356                 mpol_get(mpol);
1357                 spin_unlock(&sbinfo->stat_lock);
1358         }
1359         return mpol;
1360 }
1361 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1362 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1363 {
1364 }
1365 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1366 {
1367         return NULL;
1368 }
1369 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1370 #ifndef CONFIG_NUMA
1371 #define vm_policy vm_private_data
1372 #endif
1373
1374 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1375                 struct shmem_inode_info *info, pgoff_t index)
1376 {
1377         /* Create a pseudo vma that just contains the policy */
1378         vma->vm_start = 0;
1379         /* Bias interleave by inode number to distribute better across nodes */
1380         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1381         vma->vm_ops = NULL;
1382         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1383 }
1384
1385 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1386 {
1387         /* Drop reference taken by mpol_shared_policy_lookup() */
1388         mpol_cond_put(vma->vm_policy);
1389 }
1390
1391 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1392                         struct shmem_inode_info *info, pgoff_t index)
1393 {
1394         struct vm_area_struct pvma;
1395         struct page *page;
1396
1397         shmem_pseudo_vma_init(&pvma, info, index);
1398         page = swapin_readahead(swap, gfp, &pvma, 0);
1399         shmem_pseudo_vma_destroy(&pvma);
1400
1401         return page;
1402 }
1403
1404 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1405                 struct shmem_inode_info *info, pgoff_t index)
1406 {
1407         struct vm_area_struct pvma;
1408         struct inode *inode = &info->vfs_inode;
1409         struct address_space *mapping = inode->i_mapping;
1410         pgoff_t idx, hindex;
1411         void __rcu **results;
1412         struct page *page;
1413
1414         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1415                 return NULL;
1416
1417         hindex = round_down(index, HPAGE_PMD_NR);
1418         rcu_read_lock();
1419         if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1420                                 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1421                 rcu_read_unlock();
1422                 return NULL;
1423         }
1424         rcu_read_unlock();
1425
1426         shmem_pseudo_vma_init(&pvma, info, hindex);
1427         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1428                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1429         shmem_pseudo_vma_destroy(&pvma);
1430         if (page)
1431                 prep_transhuge_page(page);
1432         return page;
1433 }
1434
1435 static struct page *shmem_alloc_page(gfp_t gfp,
1436                         struct shmem_inode_info *info, pgoff_t index)
1437 {
1438         struct vm_area_struct pvma;
1439         struct page *page;
1440
1441         shmem_pseudo_vma_init(&pvma, info, index);
1442         page = alloc_page_vma(gfp, &pvma, 0);
1443         shmem_pseudo_vma_destroy(&pvma);
1444
1445         return page;
1446 }
1447
1448 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1449                 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1450                 pgoff_t index, bool huge)
1451 {
1452         struct page *page;
1453         int nr;
1454         int err = -ENOSPC;
1455
1456         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1457                 huge = false;
1458         nr = huge ? HPAGE_PMD_NR : 1;
1459
1460         if (shmem_acct_block(info->flags, nr))
1461                 goto failed;
1462         if (sbinfo->max_blocks) {
1463                 if (percpu_counter_compare(&sbinfo->used_blocks,
1464                                         sbinfo->max_blocks - nr) > 0)
1465                         goto unacct;
1466                 percpu_counter_add(&sbinfo->used_blocks, nr);
1467         }
1468
1469         if (huge)
1470                 page = shmem_alloc_hugepage(gfp, info, index);
1471         else
1472                 page = shmem_alloc_page(gfp, info, index);
1473         if (page) {
1474                 __SetPageLocked(page);
1475                 __SetPageSwapBacked(page);
1476                 return page;
1477         }
1478
1479         err = -ENOMEM;
1480         if (sbinfo->max_blocks)
1481                 percpu_counter_add(&sbinfo->used_blocks, -nr);
1482 unacct:
1483         shmem_unacct_blocks(info->flags, nr);
1484 failed:
1485         return ERR_PTR(err);
1486 }
1487
1488 /*
1489  * When a page is moved from swapcache to shmem filecache (either by the
1490  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1491  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1492  * ignorance of the mapping it belongs to.  If that mapping has special
1493  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1494  * we may need to copy to a suitable page before moving to filecache.
1495  *
1496  * In a future release, this may well be extended to respect cpuset and
1497  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1498  * but for now it is a simple matter of zone.
1499  */
1500 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1501 {
1502         return page_zonenum(page) > gfp_zone(gfp);
1503 }
1504
1505 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1506                                 struct shmem_inode_info *info, pgoff_t index)
1507 {
1508         struct page *oldpage, *newpage;
1509         struct address_space *swap_mapping;
1510         pgoff_t swap_index;
1511         int error;
1512
1513         oldpage = *pagep;
1514         swap_index = page_private(oldpage);
1515         swap_mapping = page_mapping(oldpage);
1516
1517         /*
1518          * We have arrived here because our zones are constrained, so don't
1519          * limit chance of success by further cpuset and node constraints.
1520          */
1521         gfp &= ~GFP_CONSTRAINT_MASK;
1522         newpage = shmem_alloc_page(gfp, info, index);
1523         if (!newpage)
1524                 return -ENOMEM;
1525
1526         get_page(newpage);
1527         copy_highpage(newpage, oldpage);
1528         flush_dcache_page(newpage);
1529
1530         __SetPageLocked(newpage);
1531         __SetPageSwapBacked(newpage);
1532         SetPageUptodate(newpage);
1533         set_page_private(newpage, swap_index);
1534         SetPageSwapCache(newpage);
1535
1536         /*
1537          * Our caller will very soon move newpage out of swapcache, but it's
1538          * a nice clean interface for us to replace oldpage by newpage there.
1539          */
1540         spin_lock_irq(&swap_mapping->tree_lock);
1541         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1542                                                                    newpage);
1543         if (!error) {
1544                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1545                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1546         }
1547         spin_unlock_irq(&swap_mapping->tree_lock);
1548
1549         if (unlikely(error)) {
1550                 /*
1551                  * Is this possible?  I think not, now that our callers check
1552                  * both PageSwapCache and page_private after getting page lock;
1553                  * but be defensive.  Reverse old to newpage for clear and free.
1554                  */
1555                 oldpage = newpage;
1556         } else {
1557                 mem_cgroup_migrate(oldpage, newpage);
1558                 lru_cache_add_anon(newpage);
1559                 *pagep = newpage;
1560         }
1561
1562         ClearPageSwapCache(oldpage);
1563         set_page_private(oldpage, 0);
1564
1565         unlock_page(oldpage);
1566         put_page(oldpage);
1567         put_page(oldpage);
1568         return error;
1569 }
1570
1571 /*
1572  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1573  *
1574  * If we allocate a new one we do not mark it dirty. That's up to the
1575  * vm. If we swap it in we mark it dirty since we also free the swap
1576  * entry since a page cannot live in both the swap and page cache.
1577  *
1578  * fault_mm and fault_type are only supplied by shmem_fault:
1579  * otherwise they are NULL.
1580  */
1581 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1582         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1583         struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1584 {
1585         struct address_space *mapping = inode->i_mapping;
1586         struct shmem_inode_info *info = SHMEM_I(inode);
1587         struct shmem_sb_info *sbinfo;
1588         struct mm_struct *charge_mm;
1589         struct mem_cgroup *memcg;
1590         struct page *page;
1591         swp_entry_t swap;
1592         enum sgp_type sgp_huge = sgp;
1593         pgoff_t hindex = index;
1594         int error;
1595         int once = 0;
1596         int alloced = 0;
1597
1598         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1599                 return -EFBIG;
1600         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1601                 sgp = SGP_CACHE;
1602 repeat:
1603         swap.val = 0;
1604         page = find_lock_entry(mapping, index);
1605         if (radix_tree_exceptional_entry(page)) {
1606                 swap = radix_to_swp_entry(page);
1607                 page = NULL;
1608         }
1609
1610         if (sgp <= SGP_CACHE &&
1611             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1612                 error = -EINVAL;
1613                 goto unlock;
1614         }
1615
1616         if (page && sgp == SGP_WRITE)
1617                 mark_page_accessed(page);
1618
1619         /* fallocated page? */
1620         if (page && !PageUptodate(page)) {
1621                 if (sgp != SGP_READ)
1622                         goto clear;
1623                 unlock_page(page);
1624                 put_page(page);
1625                 page = NULL;
1626         }
1627         if (page || (sgp == SGP_READ && !swap.val)) {
1628                 *pagep = page;
1629                 return 0;
1630         }
1631
1632         /*
1633          * Fast cache lookup did not find it:
1634          * bring it back from swap or allocate.
1635          */
1636         sbinfo = SHMEM_SB(inode->i_sb);
1637         charge_mm = vma ? vma->vm_mm : current->mm;
1638
1639         if (swap.val) {
1640                 /* Look it up and read it in.. */
1641                 page = lookup_swap_cache(swap);
1642                 if (!page) {
1643                         /* Or update major stats only when swapin succeeds?? */
1644                         if (fault_type) {
1645                                 *fault_type |= VM_FAULT_MAJOR;
1646                                 count_vm_event(PGMAJFAULT);
1647                                 mem_cgroup_count_vm_event(charge_mm,
1648                                                           PGMAJFAULT);
1649                         }
1650                         /* Here we actually start the io */
1651                         page = shmem_swapin(swap, gfp, info, index);
1652                         if (!page) {
1653                                 error = -ENOMEM;
1654                                 goto failed;
1655                         }
1656                 }
1657
1658                 /* We have to do this with page locked to prevent races */
1659                 lock_page(page);
1660                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1661                     !shmem_confirm_swap(mapping, index, swap)) {
1662                         error = -EEXIST;        /* try again */
1663                         goto unlock;
1664                 }
1665                 if (!PageUptodate(page)) {
1666                         error = -EIO;
1667                         goto failed;
1668                 }
1669                 wait_on_page_writeback(page);
1670
1671                 if (shmem_should_replace_page(page, gfp)) {
1672                         error = shmem_replace_page(&page, gfp, info, index);
1673                         if (error)
1674                                 goto failed;
1675                 }
1676
1677                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1678                                 false);
1679                 if (!error) {
1680                         error = shmem_add_to_page_cache(page, mapping, index,
1681                                                 swp_to_radix_entry(swap));
1682                         /*
1683                          * We already confirmed swap under page lock, and make
1684                          * no memory allocation here, so usually no possibility
1685                          * of error; but free_swap_and_cache() only trylocks a
1686                          * page, so it is just possible that the entry has been
1687                          * truncated or holepunched since swap was confirmed.
1688                          * shmem_undo_range() will have done some of the
1689                          * unaccounting, now delete_from_swap_cache() will do
1690                          * the rest.
1691                          * Reset swap.val? No, leave it so "failed" goes back to
1692                          * "repeat": reading a hole and writing should succeed.
1693                          */
1694                         if (error) {
1695                                 mem_cgroup_cancel_charge(page, memcg, false);
1696                                 delete_from_swap_cache(page);
1697                         }
1698                 }
1699                 if (error)
1700                         goto failed;
1701
1702                 mem_cgroup_commit_charge(page, memcg, true, false);
1703
1704                 spin_lock_irq(&info->lock);
1705                 info->swapped--;
1706                 shmem_recalc_inode(inode);
1707                 spin_unlock_irq(&info->lock);
1708
1709                 if (sgp == SGP_WRITE)
1710                         mark_page_accessed(page);
1711
1712                 delete_from_swap_cache(page);
1713                 set_page_dirty(page);
1714                 swap_free(swap);
1715
1716         } else {
1717                 if (vma && userfaultfd_missing(vma)) {
1718                         *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1719                         return 0;
1720                 }
1721
1722                 /* shmem_symlink() */
1723                 if (mapping->a_ops != &shmem_aops)
1724                         goto alloc_nohuge;
1725                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1726                         goto alloc_nohuge;
1727                 if (shmem_huge == SHMEM_HUGE_FORCE)
1728                         goto alloc_huge;
1729                 switch (sbinfo->huge) {
1730                         loff_t i_size;
1731                         pgoff_t off;
1732                 case SHMEM_HUGE_NEVER:
1733                         goto alloc_nohuge;
1734                 case SHMEM_HUGE_WITHIN_SIZE:
1735                         off = round_up(index, HPAGE_PMD_NR);
1736                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1737                         if (i_size >= HPAGE_PMD_SIZE &&
1738                                         i_size >> PAGE_SHIFT >= off)
1739                                 goto alloc_huge;
1740                         /* fallthrough */
1741                 case SHMEM_HUGE_ADVISE:
1742                         if (sgp_huge == SGP_HUGE)
1743                                 goto alloc_huge;
1744                         /* TODO: implement fadvise() hints */
1745                         goto alloc_nohuge;
1746                 }
1747
1748 alloc_huge:
1749                 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1750                                 index, true);
1751                 if (IS_ERR(page)) {
1752 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1753                                         index, false);
1754                 }
1755                 if (IS_ERR(page)) {
1756                         int retry = 5;
1757                         error = PTR_ERR(page);
1758                         page = NULL;
1759                         if (error != -ENOSPC)
1760                                 goto failed;
1761                         /*
1762                          * Try to reclaim some spece by splitting a huge page
1763                          * beyond i_size on the filesystem.
1764                          */
1765                         while (retry--) {
1766                                 int ret;
1767                                 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1768                                 if (ret == SHRINK_STOP)
1769                                         break;
1770                                 if (ret)
1771                                         goto alloc_nohuge;
1772                         }
1773                         goto failed;
1774                 }
1775
1776                 if (PageTransHuge(page))
1777                         hindex = round_down(index, HPAGE_PMD_NR);
1778                 else
1779                         hindex = index;
1780
1781                 if (sgp == SGP_WRITE)
1782                         __SetPageReferenced(page);
1783
1784                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1785                                 PageTransHuge(page));
1786                 if (error)
1787                         goto unacct;
1788                 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1789                                 compound_order(page));
1790                 if (!error) {
1791                         error = shmem_add_to_page_cache(page, mapping, hindex,
1792                                                         NULL);
1793                         radix_tree_preload_end();
1794                 }
1795                 if (error) {
1796                         mem_cgroup_cancel_charge(page, memcg,
1797                                         PageTransHuge(page));
1798                         goto unacct;
1799                 }
1800                 mem_cgroup_commit_charge(page, memcg, false,
1801                                 PageTransHuge(page));
1802                 lru_cache_add_anon(page);
1803
1804                 spin_lock_irq(&info->lock);
1805                 info->alloced += 1 << compound_order(page);
1806                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1807                 shmem_recalc_inode(inode);
1808                 spin_unlock_irq(&info->lock);
1809                 alloced = true;
1810
1811                 if (PageTransHuge(page) &&
1812                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1813                                 hindex + HPAGE_PMD_NR - 1) {
1814                         /*
1815                          * Part of the huge page is beyond i_size: subject
1816                          * to shrink under memory pressure.
1817                          */
1818                         spin_lock(&sbinfo->shrinklist_lock);
1819                         if (list_empty(&info->shrinklist)) {
1820                                 list_add_tail(&info->shrinklist,
1821                                                 &sbinfo->shrinklist);
1822                                 sbinfo->shrinklist_len++;
1823                         }
1824                         spin_unlock(&sbinfo->shrinklist_lock);
1825                 }
1826
1827                 /*
1828                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1829                  */
1830                 if (sgp == SGP_FALLOC)
1831                         sgp = SGP_WRITE;
1832 clear:
1833                 /*
1834                  * Let SGP_WRITE caller clear ends if write does not fill page;
1835                  * but SGP_FALLOC on a page fallocated earlier must initialize
1836                  * it now, lest undo on failure cancel our earlier guarantee.
1837                  */
1838                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1839                         struct page *head = compound_head(page);
1840                         int i;
1841
1842                         for (i = 0; i < (1 << compound_order(head)); i++) {
1843                                 clear_highpage(head + i);
1844                                 flush_dcache_page(head + i);
1845                         }
1846                         SetPageUptodate(head);
1847                 }
1848         }
1849
1850         /* Perhaps the file has been truncated since we checked */
1851         if (sgp <= SGP_CACHE &&
1852             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1853                 if (alloced) {
1854                         ClearPageDirty(page);
1855                         delete_from_page_cache(page);
1856                         spin_lock_irq(&info->lock);
1857                         shmem_recalc_inode(inode);
1858                         spin_unlock_irq(&info->lock);
1859                 }
1860                 error = -EINVAL;
1861                 goto unlock;
1862         }
1863         *pagep = page + index - hindex;
1864         return 0;
1865
1866         /*
1867          * Error recovery.
1868          */
1869 unacct:
1870         if (sbinfo->max_blocks)
1871                 percpu_counter_sub(&sbinfo->used_blocks,
1872                                 1 << compound_order(page));
1873         shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1874
1875         if (PageTransHuge(page)) {
1876                 unlock_page(page);
1877                 put_page(page);
1878                 goto alloc_nohuge;
1879         }
1880 failed:
1881         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1882                 error = -EEXIST;
1883 unlock:
1884         if (page) {
1885                 unlock_page(page);
1886                 put_page(page);
1887         }
1888         if (error == -ENOSPC && !once++) {
1889                 spin_lock_irq(&info->lock);
1890                 shmem_recalc_inode(inode);
1891                 spin_unlock_irq(&info->lock);
1892                 goto repeat;
1893         }
1894         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1895                 goto repeat;
1896         return error;
1897 }
1898
1899 /*
1900  * This is like autoremove_wake_function, but it removes the wait queue
1901  * entry unconditionally - even if something else had already woken the
1902  * target.
1903  */
1904 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1905 {
1906         int ret = default_wake_function(wait, mode, sync, key);
1907         list_del_init(&wait->task_list);
1908         return ret;
1909 }
1910
1911 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1912 {
1913         struct inode *inode = file_inode(vma->vm_file);
1914         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1915         enum sgp_type sgp;
1916         int error;
1917         int ret = VM_FAULT_LOCKED;
1918
1919         /*
1920          * Trinity finds that probing a hole which tmpfs is punching can
1921          * prevent the hole-punch from ever completing: which in turn
1922          * locks writers out with its hold on i_mutex.  So refrain from
1923          * faulting pages into the hole while it's being punched.  Although
1924          * shmem_undo_range() does remove the additions, it may be unable to
1925          * keep up, as each new page needs its own unmap_mapping_range() call,
1926          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1927          *
1928          * It does not matter if we sometimes reach this check just before the
1929          * hole-punch begins, so that one fault then races with the punch:
1930          * we just need to make racing faults a rare case.
1931          *
1932          * The implementation below would be much simpler if we just used a
1933          * standard mutex or completion: but we cannot take i_mutex in fault,
1934          * and bloating every shmem inode for this unlikely case would be sad.
1935          */
1936         if (unlikely(inode->i_private)) {
1937                 struct shmem_falloc *shmem_falloc;
1938
1939                 spin_lock(&inode->i_lock);
1940                 shmem_falloc = inode->i_private;
1941                 if (shmem_falloc &&
1942                     shmem_falloc->waitq &&
1943                     vmf->pgoff >= shmem_falloc->start &&
1944                     vmf->pgoff < shmem_falloc->next) {
1945                         wait_queue_head_t *shmem_falloc_waitq;
1946                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1947
1948                         ret = VM_FAULT_NOPAGE;
1949                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1950                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1951                                 /* It's polite to up mmap_sem if we can */
1952                                 up_read(&vma->vm_mm->mmap_sem);
1953                                 ret = VM_FAULT_RETRY;
1954                         }
1955
1956                         shmem_falloc_waitq = shmem_falloc->waitq;
1957                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1958                                         TASK_UNINTERRUPTIBLE);
1959                         spin_unlock(&inode->i_lock);
1960                         schedule();
1961
1962                         /*
1963                          * shmem_falloc_waitq points into the shmem_fallocate()
1964                          * stack of the hole-punching task: shmem_falloc_waitq
1965                          * is usually invalid by the time we reach here, but
1966                          * finish_wait() does not dereference it in that case;
1967                          * though i_lock needed lest racing with wake_up_all().
1968                          */
1969                         spin_lock(&inode->i_lock);
1970                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1971                         spin_unlock(&inode->i_lock);
1972                         return ret;
1973                 }
1974                 spin_unlock(&inode->i_lock);
1975         }
1976
1977         sgp = SGP_CACHE;
1978         if (vma->vm_flags & VM_HUGEPAGE)
1979                 sgp = SGP_HUGE;
1980         else if (vma->vm_flags & VM_NOHUGEPAGE)
1981                 sgp = SGP_NOHUGE;
1982
1983         error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1984                                   gfp, vma, vmf, &ret);
1985         if (error)
1986                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1987         return ret;
1988 }
1989
1990 unsigned long shmem_get_unmapped_area(struct file *file,
1991                                       unsigned long uaddr, unsigned long len,
1992                                       unsigned long pgoff, unsigned long flags)
1993 {
1994         unsigned long (*get_area)(struct file *,
1995                 unsigned long, unsigned long, unsigned long, unsigned long);
1996         unsigned long addr;
1997         unsigned long offset;
1998         unsigned long inflated_len;
1999         unsigned long inflated_addr;
2000         unsigned long inflated_offset;
2001
2002         if (len > TASK_SIZE)
2003                 return -ENOMEM;
2004
2005         get_area = current->mm->get_unmapped_area;
2006         addr = get_area(file, uaddr, len, pgoff, flags);
2007
2008         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2009                 return addr;
2010         if (IS_ERR_VALUE(addr))
2011                 return addr;
2012         if (addr & ~PAGE_MASK)
2013                 return addr;
2014         if (addr > TASK_SIZE - len)
2015                 return addr;
2016
2017         if (shmem_huge == SHMEM_HUGE_DENY)
2018                 return addr;
2019         if (len < HPAGE_PMD_SIZE)
2020                 return addr;
2021         if (flags & MAP_FIXED)
2022                 return addr;
2023         /*
2024          * Our priority is to support MAP_SHARED mapped hugely;
2025          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2026          * But if caller specified an address hint, respect that as before.
2027          */
2028         if (uaddr)
2029                 return addr;
2030
2031         if (shmem_huge != SHMEM_HUGE_FORCE) {
2032                 struct super_block *sb;
2033
2034                 if (file) {
2035                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2036                         sb = file_inode(file)->i_sb;
2037                 } else {
2038                         /*
2039                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2040                          * for "/dev/zero", to create a shared anonymous object.
2041                          */
2042                         if (IS_ERR(shm_mnt))
2043                                 return addr;
2044                         sb = shm_mnt->mnt_sb;
2045                 }
2046                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2047                         return addr;
2048         }
2049
2050         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2051         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2052                 return addr;
2053         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2054                 return addr;
2055
2056         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2057         if (inflated_len > TASK_SIZE)
2058                 return addr;
2059         if (inflated_len < len)
2060                 return addr;
2061
2062         inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2063         if (IS_ERR_VALUE(inflated_addr))
2064                 return addr;
2065         if (inflated_addr & ~PAGE_MASK)
2066                 return addr;
2067
2068         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2069         inflated_addr += offset - inflated_offset;
2070         if (inflated_offset > offset)
2071                 inflated_addr += HPAGE_PMD_SIZE;
2072
2073         if (inflated_addr > TASK_SIZE - len)
2074                 return addr;
2075         return inflated_addr;
2076 }
2077
2078 #ifdef CONFIG_NUMA
2079 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2080 {
2081         struct inode *inode = file_inode(vma->vm_file);
2082         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2083 }
2084
2085 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2086                                           unsigned long addr)
2087 {
2088         struct inode *inode = file_inode(vma->vm_file);
2089         pgoff_t index;
2090
2091         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2092         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2093 }
2094 #endif
2095
2096 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2097 {
2098         struct inode *inode = file_inode(file);
2099         struct shmem_inode_info *info = SHMEM_I(inode);
2100         int retval = -ENOMEM;
2101
2102         spin_lock_irq(&info->lock);
2103         if (lock && !(info->flags & VM_LOCKED)) {
2104                 if (!user_shm_lock(inode->i_size, user))
2105                         goto out_nomem;
2106                 info->flags |= VM_LOCKED;
2107                 mapping_set_unevictable(file->f_mapping);
2108         }
2109         if (!lock && (info->flags & VM_LOCKED) && user) {
2110                 user_shm_unlock(inode->i_size, user);
2111                 info->flags &= ~VM_LOCKED;
2112                 mapping_clear_unevictable(file->f_mapping);
2113         }
2114         retval = 0;
2115
2116 out_nomem:
2117         spin_unlock_irq(&info->lock);
2118         return retval;
2119 }
2120
2121 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2122 {
2123         file_accessed(file);
2124         vma->vm_ops = &shmem_vm_ops;
2125         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2126                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2127                         (vma->vm_end & HPAGE_PMD_MASK)) {
2128                 khugepaged_enter(vma, vma->vm_flags);
2129         }
2130         return 0;
2131 }
2132
2133 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2134                                      umode_t mode, dev_t dev, unsigned long flags)
2135 {
2136         struct inode *inode;
2137         struct shmem_inode_info *info;
2138         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2139
2140         if (shmem_reserve_inode(sb))
2141                 return NULL;
2142
2143         inode = new_inode(sb);
2144         if (inode) {
2145                 inode->i_ino = get_next_ino();
2146                 inode_init_owner(inode, dir, mode);
2147                 inode->i_blocks = 0;
2148                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2149                 inode->i_generation = get_seconds();
2150                 info = SHMEM_I(inode);
2151                 memset(info, 0, (char *)inode - (char *)info);
2152                 spin_lock_init(&info->lock);
2153                 info->seals = F_SEAL_SEAL;
2154                 info->flags = flags & VM_NORESERVE;
2155                 INIT_LIST_HEAD(&info->shrinklist);
2156                 INIT_LIST_HEAD(&info->swaplist);
2157                 simple_xattrs_init(&info->xattrs);
2158                 cache_no_acl(inode);
2159
2160                 switch (mode & S_IFMT) {
2161                 default:
2162                         inode->i_op = &shmem_special_inode_operations;
2163                         init_special_inode(inode, mode, dev);
2164                         break;
2165                 case S_IFREG:
2166                         inode->i_mapping->a_ops = &shmem_aops;
2167                         inode->i_op = &shmem_inode_operations;
2168                         inode->i_fop = &shmem_file_operations;
2169                         mpol_shared_policy_init(&info->policy,
2170                                                  shmem_get_sbmpol(sbinfo));
2171                         break;
2172                 case S_IFDIR:
2173                         inc_nlink(inode);
2174                         /* Some things misbehave if size == 0 on a directory */
2175                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2176                         inode->i_op = &shmem_dir_inode_operations;
2177                         inode->i_fop = &simple_dir_operations;
2178                         break;
2179                 case S_IFLNK:
2180                         /*
2181                          * Must not load anything in the rbtree,
2182                          * mpol_free_shared_policy will not be called.
2183                          */
2184                         mpol_shared_policy_init(&info->policy, NULL);
2185                         break;
2186                 }
2187         } else
2188                 shmem_free_inode(sb);
2189         return inode;
2190 }
2191
2192 bool shmem_mapping(struct address_space *mapping)
2193 {
2194         return mapping->a_ops == &shmem_aops;
2195 }
2196
2197 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2198                            pmd_t *dst_pmd,
2199                            struct vm_area_struct *dst_vma,
2200                            unsigned long dst_addr,
2201                            unsigned long src_addr,
2202                            struct page **pagep)
2203 {
2204         struct inode *inode = file_inode(dst_vma->vm_file);
2205         struct shmem_inode_info *info = SHMEM_I(inode);
2206         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2207         struct address_space *mapping = inode->i_mapping;
2208         gfp_t gfp = mapping_gfp_mask(mapping);
2209         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2210         struct mem_cgroup *memcg;
2211         spinlock_t *ptl;
2212         void *page_kaddr;
2213         struct page *page;
2214         pte_t _dst_pte, *dst_pte;
2215         int ret;
2216
2217         if (!*pagep) {
2218                 ret = -ENOMEM;
2219                 if (shmem_acct_block(info->flags, 1))
2220                         goto out;
2221                 if (sbinfo->max_blocks) {
2222                         if (percpu_counter_compare(&sbinfo->used_blocks,
2223                                                    sbinfo->max_blocks) >= 0)
2224                                 goto out_unacct_blocks;
2225                         percpu_counter_inc(&sbinfo->used_blocks);
2226                 }
2227
2228                 page = shmem_alloc_page(gfp, info, pgoff);
2229                 if (!page)
2230                         goto out_dec_used_blocks;
2231
2232                 page_kaddr = kmap_atomic(page);
2233                 ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2234                                      PAGE_SIZE);
2235                 kunmap_atomic(page_kaddr);
2236
2237                 /* fallback to copy_from_user outside mmap_sem */
2238                 if (unlikely(ret)) {
2239                         *pagep = page;
2240                         /* don't free the page */
2241                         return -EFAULT;
2242                 }
2243         } else {
2244                 page = *pagep;
2245                 *pagep = NULL;
2246         }
2247
2248         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2249         __SetPageLocked(page);
2250         __SetPageSwapBacked(page);
2251         __SetPageUptodate(page);
2252
2253         ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2254         if (ret)
2255                 goto out_release;
2256
2257         ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2258         if (!ret) {
2259                 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2260                 radix_tree_preload_end();
2261         }
2262         if (ret)
2263                 goto out_release_uncharge;
2264
2265         mem_cgroup_commit_charge(page, memcg, false, false);
2266
2267         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2268         if (dst_vma->vm_flags & VM_WRITE)
2269                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2270
2271         ret = -EEXIST;
2272         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2273         if (!pte_none(*dst_pte))
2274                 goto out_release_uncharge_unlock;
2275
2276         lru_cache_add_anon(page);
2277
2278         spin_lock(&info->lock);
2279         info->alloced++;
2280         inode->i_blocks += BLOCKS_PER_PAGE;
2281         shmem_recalc_inode(inode);
2282         spin_unlock(&info->lock);
2283
2284         inc_mm_counter(dst_mm, mm_counter_file(page));
2285         page_add_file_rmap(page, false);
2286         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2287
2288         /* No need to invalidate - it was non-present before */
2289         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2290         unlock_page(page);
2291         pte_unmap_unlock(dst_pte, ptl);
2292         ret = 0;
2293 out:
2294         return ret;
2295 out_release_uncharge_unlock:
2296         pte_unmap_unlock(dst_pte, ptl);
2297 out_release_uncharge:
2298         mem_cgroup_cancel_charge(page, memcg, false);
2299 out_release:
2300         unlock_page(page);
2301         put_page(page);
2302 out_dec_used_blocks:
2303         if (sbinfo->max_blocks)
2304                 percpu_counter_add(&sbinfo->used_blocks, -1);
2305 out_unacct_blocks:
2306         shmem_unacct_blocks(info->flags, 1);
2307         goto out;
2308 }
2309
2310 #ifdef CONFIG_TMPFS
2311 static const struct inode_operations shmem_symlink_inode_operations;
2312 static const struct inode_operations shmem_short_symlink_operations;
2313
2314 #ifdef CONFIG_TMPFS_XATTR
2315 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2316 #else
2317 #define shmem_initxattrs NULL
2318 #endif
2319
2320 static int
2321 shmem_write_begin(struct file *file, struct address_space *mapping,
2322                         loff_t pos, unsigned len, unsigned flags,
2323                         struct page **pagep, void **fsdata)
2324 {
2325         struct inode *inode = mapping->host;
2326         struct shmem_inode_info *info = SHMEM_I(inode);
2327         pgoff_t index = pos >> PAGE_SHIFT;
2328
2329         /* i_mutex is held by caller */
2330         if (unlikely(info->seals)) {
2331                 if (info->seals & F_SEAL_WRITE)
2332                         return -EPERM;
2333                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2334                         return -EPERM;
2335         }
2336
2337         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2338 }
2339
2340 static int
2341 shmem_write_end(struct file *file, struct address_space *mapping,
2342                         loff_t pos, unsigned len, unsigned copied,
2343                         struct page *page, void *fsdata)
2344 {
2345         struct inode *inode = mapping->host;
2346
2347         if (pos + copied > inode->i_size)
2348                 i_size_write(inode, pos + copied);
2349
2350         if (!PageUptodate(page)) {
2351                 struct page *head = compound_head(page);
2352                 if (PageTransCompound(page)) {
2353                         int i;
2354
2355                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2356                                 if (head + i == page)
2357                                         continue;
2358                                 clear_highpage(head + i);
2359                                 flush_dcache_page(head + i);
2360                         }
2361                 }
2362                 if (copied < PAGE_SIZE) {
2363                         unsigned from = pos & (PAGE_SIZE - 1);
2364                         zero_user_segments(page, 0, from,
2365                                         from + copied, PAGE_SIZE);
2366                 }
2367                 SetPageUptodate(head);
2368         }
2369         set_page_dirty(page);
2370         unlock_page(page);
2371         put_page(page);
2372
2373         return copied;
2374 }
2375
2376 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2377 {
2378         struct file *file = iocb->ki_filp;
2379         struct inode *inode = file_inode(file);
2380         struct address_space *mapping = inode->i_mapping;
2381         pgoff_t index;
2382         unsigned long offset;
2383         enum sgp_type sgp = SGP_READ;
2384         int error = 0;
2385         ssize_t retval = 0;
2386         loff_t *ppos = &iocb->ki_pos;
2387
2388         /*
2389          * Might this read be for a stacking filesystem?  Then when reading
2390          * holes of a sparse file, we actually need to allocate those pages,
2391          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2392          */
2393         if (!iter_is_iovec(to))
2394                 sgp = SGP_CACHE;
2395
2396         index = *ppos >> PAGE_SHIFT;
2397         offset = *ppos & ~PAGE_MASK;
2398
2399         for (;;) {
2400                 struct page *page = NULL;
2401                 pgoff_t end_index;
2402                 unsigned long nr, ret;
2403                 loff_t i_size = i_size_read(inode);
2404
2405                 end_index = i_size >> PAGE_SHIFT;
2406                 if (index > end_index)
2407                         break;
2408                 if (index == end_index) {
2409                         nr = i_size & ~PAGE_MASK;
2410                         if (nr <= offset)
2411                                 break;
2412                 }
2413
2414                 error = shmem_getpage(inode, index, &page, sgp);
2415                 if (error) {
2416                         if (error == -EINVAL)
2417                                 error = 0;
2418                         break;
2419                 }
2420                 if (page) {
2421                         if (sgp == SGP_CACHE)
2422                                 set_page_dirty(page);
2423                         unlock_page(page);
2424                 }
2425
2426                 /*
2427                  * We must evaluate after, since reads (unlike writes)
2428                  * are called without i_mutex protection against truncate
2429                  */
2430                 nr = PAGE_SIZE;
2431                 i_size = i_size_read(inode);
2432                 end_index = i_size >> PAGE_SHIFT;
2433                 if (index == end_index) {
2434                         nr = i_size & ~PAGE_MASK;
2435                         if (nr <= offset) {
2436                                 if (page)
2437                                         put_page(page);
2438                                 break;
2439                         }
2440                 }
2441                 nr -= offset;
2442
2443                 if (page) {
2444                         /*
2445                          * If users can be writing to this page using arbitrary
2446                          * virtual addresses, take care about potential aliasing
2447                          * before reading the page on the kernel side.
2448                          */
2449                         if (mapping_writably_mapped(mapping))
2450                                 flush_dcache_page(page);
2451                         /*
2452                          * Mark the page accessed if we read the beginning.
2453                          */
2454                         if (!offset)
2455                                 mark_page_accessed(page);
2456                 } else {
2457                         page = ZERO_PAGE(0);
2458                         get_page(page);
2459                 }
2460
2461                 /*
2462                  * Ok, we have the page, and it's up-to-date, so
2463                  * now we can copy it to user space...
2464                  */
2465                 ret = copy_page_to_iter(page, offset, nr, to);
2466                 retval += ret;
2467                 offset += ret;
2468                 index += offset >> PAGE_SHIFT;
2469                 offset &= ~PAGE_MASK;
2470
2471                 put_page(page);
2472                 if (!iov_iter_count(to))
2473                         break;
2474                 if (ret < nr) {
2475                         error = -EFAULT;
2476                         break;
2477                 }
2478                 cond_resched();
2479         }
2480
2481         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2482         file_accessed(file);
2483         return retval ? retval : error;
2484 }
2485
2486 /*
2487  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2488  */
2489 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2490                                     pgoff_t index, pgoff_t end, int whence)
2491 {
2492         struct page *page;
2493         struct pagevec pvec;
2494         pgoff_t indices[PAGEVEC_SIZE];
2495         bool done = false;
2496         int i;
2497
2498         pagevec_init(&pvec, 0);
2499         pvec.nr = 1;            /* start small: we may be there already */
2500         while (!done) {
2501                 pvec.nr = find_get_entries(mapping, index,
2502                                         pvec.nr, pvec.pages, indices);
2503                 if (!pvec.nr) {
2504                         if (whence == SEEK_DATA)
2505                                 index = end;
2506                         break;
2507                 }
2508                 for (i = 0; i < pvec.nr; i++, index++) {
2509                         if (index < indices[i]) {
2510                                 if (whence == SEEK_HOLE) {
2511                                         done = true;
2512                                         break;
2513                                 }
2514                                 index = indices[i];
2515                         }
2516                         page = pvec.pages[i];
2517                         if (page && !radix_tree_exceptional_entry(page)) {
2518                                 if (!PageUptodate(page))
2519                                         page = NULL;
2520                         }
2521                         if (index >= end ||
2522                             (page && whence == SEEK_DATA) ||
2523                             (!page && whence == SEEK_HOLE)) {
2524                                 done = true;
2525                                 break;
2526                         }
2527                 }
2528                 pagevec_remove_exceptionals(&pvec);
2529                 pagevec_release(&pvec);
2530                 pvec.nr = PAGEVEC_SIZE;
2531                 cond_resched();
2532         }
2533         return index;
2534 }
2535
2536 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2537 {
2538         struct address_space *mapping = file->f_mapping;
2539         struct inode *inode = mapping->host;
2540         pgoff_t start, end;
2541         loff_t new_offset;
2542
2543         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2544                 return generic_file_llseek_size(file, offset, whence,
2545                                         MAX_LFS_FILESIZE, i_size_read(inode));
2546         inode_lock(inode);
2547         /* We're holding i_mutex so we can access i_size directly */
2548
2549         if (offset < 0)
2550                 offset = -EINVAL;
2551         else if (offset >= inode->i_size)
2552                 offset = -ENXIO;
2553         else {
2554                 start = offset >> PAGE_SHIFT;
2555                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2556                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2557                 new_offset <<= PAGE_SHIFT;
2558                 if (new_offset > offset) {
2559                         if (new_offset < inode->i_size)
2560                                 offset = new_offset;
2561                         else if (whence == SEEK_DATA)
2562                                 offset = -ENXIO;
2563                         else
2564                                 offset = inode->i_size;
2565                 }
2566         }
2567
2568         if (offset >= 0)
2569                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2570         inode_unlock(inode);
2571         return offset;
2572 }
2573
2574 /*
2575  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2576  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2577  */
2578 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2579 #define LAST_SCAN               4       /* about 150ms max */
2580
2581 static void shmem_tag_pins(struct address_space *mapping)
2582 {
2583         struct radix_tree_iter iter;
2584         void **slot;
2585         pgoff_t start;
2586         struct page *page;
2587
2588         lru_add_drain();
2589         start = 0;
2590         rcu_read_lock();
2591
2592         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2593                 page = radix_tree_deref_slot(slot);
2594                 if (!page || radix_tree_exception(page)) {
2595                         if (radix_tree_deref_retry(page)) {
2596                                 slot = radix_tree_iter_retry(&iter);
2597                                 continue;
2598                         }
2599                 } else if (page_count(page) - page_mapcount(page) > 1) {
2600                         spin_lock_irq(&mapping->tree_lock);
2601                         radix_tree_tag_set(&mapping->page_tree, iter.index,
2602                                            SHMEM_TAG_PINNED);
2603                         spin_unlock_irq(&mapping->tree_lock);
2604                 }
2605
2606                 if (need_resched()) {
2607                         slot = radix_tree_iter_resume(slot, &iter);
2608                         cond_resched_rcu();
2609                 }
2610         }
2611         rcu_read_unlock();
2612 }
2613
2614 /*
2615  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2616  * via get_user_pages(), drivers might have some pending I/O without any active
2617  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2618  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2619  * them to be dropped.
2620  * The caller must guarantee that no new user will acquire writable references
2621  * to those pages to avoid races.
2622  */
2623 static int shmem_wait_for_pins(struct address_space *mapping)
2624 {
2625         struct radix_tree_iter iter;
2626         void **slot;
2627         pgoff_t start;
2628         struct page *page;
2629         int error, scan;
2630
2631         shmem_tag_pins(mapping);
2632
2633         error = 0;
2634         for (scan = 0; scan <= LAST_SCAN; scan++) {
2635                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2636                         break;
2637
2638                 if (!scan)
2639                         lru_add_drain_all();
2640                 else if (schedule_timeout_killable((HZ << scan) / 200))
2641                         scan = LAST_SCAN;
2642
2643                 start = 0;
2644                 rcu_read_lock();
2645                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2646                                            start, SHMEM_TAG_PINNED) {
2647
2648                         page = radix_tree_deref_slot(slot);
2649                         if (radix_tree_exception(page)) {
2650                                 if (radix_tree_deref_retry(page)) {
2651                                         slot = radix_tree_iter_retry(&iter);
2652                                         continue;
2653                                 }
2654
2655                                 page = NULL;
2656                         }
2657
2658                         if (page &&
2659                             page_count(page) - page_mapcount(page) != 1) {
2660                                 if (scan < LAST_SCAN)
2661                                         goto continue_resched;
2662
2663                                 /*
2664                                  * On the last scan, we clean up all those tags
2665                                  * we inserted; but make a note that we still
2666                                  * found pages pinned.
2667                                  */
2668                                 error = -EBUSY;
2669                         }
2670
2671                         spin_lock_irq(&mapping->tree_lock);
2672                         radix_tree_tag_clear(&mapping->page_tree,
2673                                              iter.index, SHMEM_TAG_PINNED);
2674                         spin_unlock_irq(&mapping->tree_lock);
2675 continue_resched:
2676                         if (need_resched()) {
2677                                 slot = radix_tree_iter_resume(slot, &iter);
2678                                 cond_resched_rcu();
2679                         }
2680                 }
2681                 rcu_read_unlock();
2682         }
2683
2684         return error;
2685 }
2686
2687 #define F_ALL_SEALS (F_SEAL_SEAL | \
2688                      F_SEAL_SHRINK | \
2689                      F_SEAL_GROW | \
2690                      F_SEAL_WRITE)
2691
2692 int shmem_add_seals(struct file *file, unsigned int seals)
2693 {
2694         struct inode *inode = file_inode(file);
2695         struct shmem_inode_info *info = SHMEM_I(inode);
2696         int error;
2697
2698         /*
2699          * SEALING
2700          * Sealing allows multiple parties to share a shmem-file but restrict
2701          * access to a specific subset of file operations. Seals can only be
2702          * added, but never removed. This way, mutually untrusted parties can
2703          * share common memory regions with a well-defined policy. A malicious
2704          * peer can thus never perform unwanted operations on a shared object.
2705          *
2706          * Seals are only supported on special shmem-files and always affect
2707          * the whole underlying inode. Once a seal is set, it may prevent some
2708          * kinds of access to the file. Currently, the following seals are
2709          * defined:
2710          *   SEAL_SEAL: Prevent further seals from being set on this file
2711          *   SEAL_SHRINK: Prevent the file from shrinking
2712          *   SEAL_GROW: Prevent the file from growing
2713          *   SEAL_WRITE: Prevent write access to the file
2714          *
2715          * As we don't require any trust relationship between two parties, we
2716          * must prevent seals from being removed. Therefore, sealing a file
2717          * only adds a given set of seals to the file, it never touches
2718          * existing seals. Furthermore, the "setting seals"-operation can be
2719          * sealed itself, which basically prevents any further seal from being
2720          * added.
2721          *
2722          * Semantics of sealing are only defined on volatile files. Only
2723          * anonymous shmem files support sealing. More importantly, seals are
2724          * never written to disk. Therefore, there's no plan to support it on
2725          * other file types.
2726          */
2727
2728         if (file->f_op != &shmem_file_operations)
2729                 return -EINVAL;
2730         if (!(file->f_mode & FMODE_WRITE))
2731                 return -EPERM;
2732         if (seals & ~(unsigned int)F_ALL_SEALS)
2733                 return -EINVAL;
2734
2735         inode_lock(inode);
2736
2737         if (info->seals & F_SEAL_SEAL) {
2738                 error = -EPERM;
2739                 goto unlock;
2740         }
2741
2742         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2743                 error = mapping_deny_writable(file->f_mapping);
2744                 if (error)
2745                         goto unlock;
2746
2747                 error = shmem_wait_for_pins(file->f_mapping);
2748                 if (error) {
2749                         mapping_allow_writable(file->f_mapping);
2750                         goto unlock;
2751                 }
2752         }
2753
2754         info->seals |= seals;
2755         error = 0;
2756
2757 unlock:
2758         inode_unlock(inode);
2759         return error;
2760 }
2761 EXPORT_SYMBOL_GPL(shmem_add_seals);
2762
2763 int shmem_get_seals(struct file *file)
2764 {
2765         if (file->f_op != &shmem_file_operations)
2766                 return -EINVAL;
2767
2768         return SHMEM_I(file_inode(file))->seals;
2769 }
2770 EXPORT_SYMBOL_GPL(shmem_get_seals);
2771
2772 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2773 {
2774         long error;
2775
2776         switch (cmd) {
2777         case F_ADD_SEALS:
2778                 /* disallow upper 32bit */
2779                 if (arg > UINT_MAX)
2780                         return -EINVAL;
2781
2782                 error = shmem_add_seals(file, arg);
2783                 break;
2784         case F_GET_SEALS:
2785                 error = shmem_get_seals(file);
2786                 break;
2787         default:
2788                 error = -EINVAL;
2789                 break;
2790         }
2791
2792         return error;
2793 }
2794
2795 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2796                                                          loff_t len)
2797 {
2798         struct inode *inode = file_inode(file);
2799         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2800         struct shmem_inode_info *info = SHMEM_I(inode);
2801         struct shmem_falloc shmem_falloc;
2802         pgoff_t start, index, end;
2803         int error;
2804
2805         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2806                 return -EOPNOTSUPP;
2807
2808         inode_lock(inode);
2809
2810         if (mode & FALLOC_FL_PUNCH_HOLE) {
2811                 struct address_space *mapping = file->f_mapping;
2812                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2813                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2814                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2815
2816                 /* protected by i_mutex */
2817                 if (info->seals & F_SEAL_WRITE) {
2818                         error = -EPERM;
2819                         goto out;
2820                 }
2821
2822                 shmem_falloc.waitq = &shmem_falloc_waitq;
2823                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2824                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2825                 spin_lock(&inode->i_lock);
2826                 inode->i_private = &shmem_falloc;
2827                 spin_unlock(&inode->i_lock);
2828
2829                 if ((u64)unmap_end > (u64)unmap_start)
2830                         unmap_mapping_range(mapping, unmap_start,
2831                                             1 + unmap_end - unmap_start, 0);
2832                 shmem_truncate_range(inode, offset, offset + len - 1);
2833                 /* No need to unmap again: hole-punching leaves COWed pages */
2834
2835                 spin_lock(&inode->i_lock);
2836                 inode->i_private = NULL;
2837                 wake_up_all(&shmem_falloc_waitq);
2838                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2839                 spin_unlock(&inode->i_lock);
2840                 error = 0;
2841                 goto out;
2842         }
2843
2844         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2845         error = inode_newsize_ok(inode, offset + len);
2846         if (error)
2847                 goto out;
2848
2849         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2850                 error = -EPERM;
2851                 goto out;
2852         }
2853
2854         start = offset >> PAGE_SHIFT;
2855         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2856         /* Try to avoid a swapstorm if len is impossible to satisfy */
2857         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2858                 error = -ENOSPC;
2859                 goto out;
2860         }
2861
2862         shmem_falloc.waitq = NULL;
2863         shmem_falloc.start = start;
2864         shmem_falloc.next  = start;
2865         shmem_falloc.nr_falloced = 0;
2866         shmem_falloc.nr_unswapped = 0;
2867         spin_lock(&inode->i_lock);
2868         inode->i_private = &shmem_falloc;
2869         spin_unlock(&inode->i_lock);
2870
2871         for (index = start; index < end; index++) {
2872                 struct page *page;
2873
2874                 /*
2875                  * Good, the fallocate(2) manpage permits EINTR: we may have
2876                  * been interrupted because we are using up too much memory.
2877                  */
2878                 if (signal_pending(current))
2879                         error = -EINTR;
2880                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2881                         error = -ENOMEM;
2882                 else
2883                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2884                 if (error) {
2885                         /* Remove the !PageUptodate pages we added */
2886                         if (index > start) {
2887                                 shmem_undo_range(inode,
2888                                     (loff_t)start << PAGE_SHIFT,
2889                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2890                         }
2891                         goto undone;
2892                 }
2893
2894                 /*
2895                  * Inform shmem_writepage() how far we have reached.
2896                  * No need for lock or barrier: we have the page lock.
2897                  */
2898                 shmem_falloc.next++;
2899                 if (!PageUptodate(page))
2900                         shmem_falloc.nr_falloced++;
2901
2902                 /*
2903                  * If !PageUptodate, leave it that way so that freeable pages
2904                  * can be recognized if we need to rollback on error later.
2905                  * But set_page_dirty so that memory pressure will swap rather
2906                  * than free the pages we are allocating (and SGP_CACHE pages
2907                  * might still be clean: we now need to mark those dirty too).
2908                  */
2909                 set_page_dirty(page);
2910                 unlock_page(page);
2911                 put_page(page);
2912                 cond_resched();
2913         }
2914
2915         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2916                 i_size_write(inode, offset + len);
2917         inode->i_ctime = current_time(inode);
2918 undone:
2919         spin_lock(&inode->i_lock);
2920         inode->i_private = NULL;
2921         spin_unlock(&inode->i_lock);
2922 out:
2923         inode_unlock(inode);
2924         return error;
2925 }
2926
2927 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2928 {
2929         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2930
2931         buf->f_type = TMPFS_MAGIC;
2932         buf->f_bsize = PAGE_SIZE;
2933         buf->f_namelen = NAME_MAX;
2934         if (sbinfo->max_blocks) {
2935                 buf->f_blocks = sbinfo->max_blocks;
2936                 buf->f_bavail =
2937                 buf->f_bfree  = sbinfo->max_blocks -
2938                                 percpu_counter_sum(&sbinfo->used_blocks);
2939         }
2940         if (sbinfo->max_inodes) {
2941                 buf->f_files = sbinfo->max_inodes;
2942                 buf->f_ffree = sbinfo->free_inodes;
2943         }
2944         /* else leave those fields 0 like simple_statfs */
2945         return 0;
2946 }
2947
2948 /*
2949  * File creation. Allocate an inode, and we're done..
2950  */
2951 static int
2952 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2953 {
2954         struct inode *inode;
2955         int error = -ENOSPC;
2956
2957         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2958         if (inode) {
2959                 error = simple_acl_create(dir, inode);
2960                 if (error)
2961                         goto out_iput;
2962                 error = security_inode_init_security(inode, dir,
2963                                                      &dentry->d_name,
2964                                                      shmem_initxattrs, NULL);
2965                 if (error && error != -EOPNOTSUPP)
2966                         goto out_iput;
2967
2968                 error = 0;
2969                 dir->i_size += BOGO_DIRENT_SIZE;
2970                 dir->i_ctime = dir->i_mtime = current_time(dir);
2971                 d_instantiate(dentry, inode);
2972                 dget(dentry); /* Extra count - pin the dentry in core */
2973         }
2974         return error;
2975 out_iput:
2976         iput(inode);
2977         return error;
2978 }
2979
2980 static int
2981 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2982 {
2983         struct inode *inode;
2984         int error = -ENOSPC;
2985
2986         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2987         if (inode) {
2988                 error = security_inode_init_security(inode, dir,
2989                                                      NULL,
2990                                                      shmem_initxattrs, NULL);
2991                 if (error && error != -EOPNOTSUPP)
2992                         goto out_iput;
2993                 error = simple_acl_create(dir, inode);
2994                 if (error)
2995                         goto out_iput;
2996                 d_tmpfile(dentry, inode);
2997         }
2998         return error;
2999 out_iput:
3000         iput(inode);
3001         return error;
3002 }
3003
3004 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3005 {
3006         int error;
3007
3008         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3009                 return error;
3010         inc_nlink(dir);
3011         return 0;
3012 }
3013
3014 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3015                 bool excl)
3016 {
3017         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3018 }
3019
3020 /*
3021  * Link a file..
3022  */
3023 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3024 {
3025         struct inode *inode = d_inode(old_dentry);
3026         int ret;
3027
3028         /*
3029          * No ordinary (disk based) filesystem counts links as inodes;
3030          * but each new link needs a new dentry, pinning lowmem, and
3031          * tmpfs dentries cannot be pruned until they are unlinked.
3032          */
3033         ret = shmem_reserve_inode(inode->i_sb);
3034         if (ret)
3035                 goto out;
3036
3037         dir->i_size += BOGO_DIRENT_SIZE;
3038         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3039         inc_nlink(inode);
3040         ihold(inode);   /* New dentry reference */
3041         dget(dentry);           /* Extra pinning count for the created dentry */
3042         d_instantiate(dentry, inode);
3043 out:
3044         return ret;
3045 }
3046
3047 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3048 {
3049         struct inode *inode = d_inode(dentry);
3050
3051         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3052                 shmem_free_inode(inode->i_sb);
3053
3054         dir->i_size -= BOGO_DIRENT_SIZE;
3055         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3056         drop_nlink(inode);
3057         dput(dentry);   /* Undo the count from "create" - this does all the work */
3058         return 0;
3059 }
3060
3061 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3062 {
3063         if (!simple_empty(dentry))
3064                 return -ENOTEMPTY;
3065
3066         drop_nlink(d_inode(dentry));
3067         drop_nlink(dir);
3068         return shmem_unlink(dir, dentry);
3069 }
3070
3071 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3072 {
3073         bool old_is_dir = d_is_dir(old_dentry);
3074         bool new_is_dir = d_is_dir(new_dentry);
3075
3076         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3077                 if (old_is_dir) {
3078                         drop_nlink(old_dir);
3079                         inc_nlink(new_dir);
3080                 } else {
3081                         drop_nlink(new_dir);
3082                         inc_nlink(old_dir);
3083                 }
3084         }
3085         old_dir->i_ctime = old_dir->i_mtime =
3086         new_dir->i_ctime = new_dir->i_mtime =
3087         d_inode(old_dentry)->i_ctime =
3088         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3089
3090         return 0;
3091 }
3092
3093 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3094 {
3095         struct dentry *whiteout;
3096         int error;
3097
3098         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3099         if (!whiteout)
3100                 return -ENOMEM;
3101
3102         error = shmem_mknod(old_dir, whiteout,
3103                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3104         dput(whiteout);
3105         if (error)
3106                 return error;
3107
3108         /*
3109          * Cheat and hash the whiteout while the old dentry is still in
3110          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3111          *
3112          * d_lookup() will consistently find one of them at this point,
3113          * not sure which one, but that isn't even important.
3114          */
3115         d_rehash(whiteout);
3116         return 0;
3117 }
3118
3119 /*
3120  * The VFS layer already does all the dentry stuff for rename,
3121  * we just have to decrement the usage count for the target if
3122  * it exists so that the VFS layer correctly free's it when it
3123  * gets overwritten.
3124  */
3125 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3126 {
3127         struct inode *inode = d_inode(old_dentry);
3128         int they_are_dirs = S_ISDIR(inode->i_mode);
3129
3130         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3131                 return -EINVAL;
3132
3133         if (flags & RENAME_EXCHANGE)
3134                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3135
3136         if (!simple_empty(new_dentry))
3137                 return -ENOTEMPTY;
3138
3139         if (flags & RENAME_WHITEOUT) {
3140                 int error;
3141
3142                 error = shmem_whiteout(old_dir, old_dentry);
3143                 if (error)
3144                         return error;
3145         }
3146
3147         if (d_really_is_positive(new_dentry)) {
3148                 (void) shmem_unlink(new_dir, new_dentry);
3149                 if (they_are_dirs) {
3150                         drop_nlink(d_inode(new_dentry));
3151                         drop_nlink(old_dir);
3152                 }
3153         } else if (they_are_dirs) {
3154                 drop_nlink(old_dir);
3155                 inc_nlink(new_dir);
3156         }
3157
3158         old_dir->i_size -= BOGO_DIRENT_SIZE;
3159         new_dir->i_size += BOGO_DIRENT_SIZE;
3160         old_dir->i_ctime = old_dir->i_mtime =
3161         new_dir->i_ctime = new_dir->i_mtime =
3162         inode->i_ctime = current_time(old_dir);
3163         return 0;
3164 }
3165
3166 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3167 {
3168         int error;
3169         int len;
3170         struct inode *inode;
3171         struct page *page;
3172         struct shmem_inode_info *info;
3173
3174         len = strlen(symname) + 1;
3175         if (len > PAGE_SIZE)
3176                 return -ENAMETOOLONG;
3177
3178         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3179         if (!inode)
3180                 return -ENOSPC;
3181
3182         error = security_inode_init_security(inode, dir, &dentry->d_name,
3183                                              shmem_initxattrs, NULL);
3184         if (error) {
3185                 if (error != -EOPNOTSUPP) {
3186                         iput(inode);
3187                         return error;
3188                 }
3189                 error = 0;
3190         }
3191
3192         info = SHMEM_I(inode);
3193         inode->i_size = len-1;
3194         if (len <= SHORT_SYMLINK_LEN) {
3195                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3196                 if (!inode->i_link) {
3197                         iput(inode);
3198                         return -ENOMEM;
3199                 }
3200                 inode->i_op = &shmem_short_symlink_operations;
3201         } else {
3202                 inode_nohighmem(inode);
3203                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3204                 if (error) {
3205                         iput(inode);
3206                         return error;
3207                 }
3208                 inode->i_mapping->a_ops = &shmem_aops;
3209                 inode->i_op = &shmem_symlink_inode_operations;
3210                 memcpy(page_address(page), symname, len);
3211                 SetPageUptodate(page);
3212                 set_page_dirty(page);
3213                 unlock_page(page);
3214                 put_page(page);
3215         }
3216         dir->i_size += BOGO_DIRENT_SIZE;
3217         dir->i_ctime = dir->i_mtime = current_time(dir);
3218         d_instantiate(dentry, inode);
3219         dget(dentry);
3220         return 0;
3221 }
3222
3223 static void shmem_put_link(void *arg)
3224 {
3225         mark_page_accessed(arg);
3226         put_page(arg);
3227 }
3228
3229 static const char *shmem_get_link(struct dentry *dentry,
3230                                   struct inode *inode,
3231                                   struct delayed_call *done)
3232 {
3233         struct page *page = NULL;
3234         int error;
3235         if (!dentry) {
3236                 page = find_get_page(inode->i_mapping, 0);
3237                 if (!page)
3238                         return ERR_PTR(-ECHILD);
3239                 if (!PageUptodate(page)) {
3240                         put_page(page);
3241                         return ERR_PTR(-ECHILD);
3242                 }
3243         } else {
3244                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3245                 if (error)
3246                         return ERR_PTR(error);
3247                 unlock_page(page);
3248         }
3249         set_delayed_call(done, shmem_put_link, page);
3250         return page_address(page);
3251 }
3252
3253 #ifdef CONFIG_TMPFS_XATTR
3254 /*
3255  * Superblocks without xattr inode operations may get some security.* xattr
3256  * support from the LSM "for free". As soon as we have any other xattrs
3257  * like ACLs, we also need to implement the security.* handlers at
3258  * filesystem level, though.
3259  */
3260
3261 /*
3262  * Callback for security_inode_init_security() for acquiring xattrs.
3263  */
3264 static int shmem_initxattrs(struct inode *inode,
3265                             const struct xattr *xattr_array,
3266                             void *fs_info)
3267 {
3268         struct shmem_inode_info *info = SHMEM_I(inode);
3269         const struct xattr *xattr;
3270         struct simple_xattr *new_xattr;
3271         size_t len;
3272
3273         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3274                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3275                 if (!new_xattr)
3276                         return -ENOMEM;
3277
3278                 len = strlen(xattr->name) + 1;
3279                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3280                                           GFP_KERNEL);
3281                 if (!new_xattr->name) {
3282                         kfree(new_xattr);
3283                         return -ENOMEM;
3284                 }
3285
3286                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3287                        XATTR_SECURITY_PREFIX_LEN);
3288                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3289                        xattr->name, len);
3290
3291                 simple_xattr_list_add(&info->xattrs, new_xattr);
3292         }
3293
3294         return 0;
3295 }
3296
3297 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3298                                    struct dentry *unused, struct inode *inode,
3299                                    const char *name, void *buffer, size_t size)
3300 {
3301         struct shmem_inode_info *info = SHMEM_I(inode);
3302
3303         name = xattr_full_name(handler, name);
3304         return simple_xattr_get(&info->xattrs, name, buffer, size);
3305 }
3306
3307 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3308                                    struct dentry *unused, struct inode *inode,
3309                                    const char *name, const void *value,
3310                                    size_t size, int flags)
3311 {
3312         struct shmem_inode_info *info = SHMEM_I(inode);
3313
3314         name = xattr_full_name(handler, name);
3315         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3316 }
3317
3318 static const struct xattr_handler shmem_security_xattr_handler = {
3319         .prefix = XATTR_SECURITY_PREFIX,
3320         .get = shmem_xattr_handler_get,
3321         .set = shmem_xattr_handler_set,
3322 };
3323
3324 static const struct xattr_handler shmem_trusted_xattr_handler = {
3325         .prefix = XATTR_TRUSTED_PREFIX,
3326         .get = shmem_xattr_handler_get,
3327         .set = shmem_xattr_handler_set,
3328 };
3329
3330 static const struct xattr_handler *shmem_xattr_handlers[] = {
3331 #ifdef CONFIG_TMPFS_POSIX_ACL
3332         &posix_acl_access_xattr_handler,
3333         &posix_acl_default_xattr_handler,
3334 #endif
3335         &shmem_security_xattr_handler,
3336         &shmem_trusted_xattr_handler,
3337         NULL
3338 };
3339
3340 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3341 {
3342         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3343         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3344 }
3345 #endif /* CONFIG_TMPFS_XATTR */
3346
3347 static const struct inode_operations shmem_short_symlink_operations = {
3348         .get_link       = simple_get_link,
3349 #ifdef CONFIG_TMPFS_XATTR
3350         .listxattr      = shmem_listxattr,
3351 #endif
3352 };
3353
3354 static const struct inode_operations shmem_symlink_inode_operations = {
3355         .get_link       = shmem_get_link,
3356 #ifdef CONFIG_TMPFS_XATTR
3357         .listxattr      = shmem_listxattr,
3358 #endif
3359 };
3360
3361 static struct dentry *shmem_get_parent(struct dentry *child)
3362 {
3363         return ERR_PTR(-ESTALE);
3364 }
3365
3366 static int shmem_match(struct inode *ino, void *vfh)
3367 {
3368         __u32 *fh = vfh;
3369         __u64 inum = fh[2];
3370         inum = (inum << 32) | fh[1];
3371         return ino->i_ino == inum && fh[0] == ino->i_generation;
3372 }
3373
3374 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3375                 struct fid *fid, int fh_len, int fh_type)
3376 {
3377         struct inode *inode;
3378         struct dentry *dentry = NULL;
3379         u64 inum;
3380
3381         if (fh_len < 3)
3382                 return NULL;
3383
3384         inum = fid->raw[2];
3385         inum = (inum << 32) | fid->raw[1];
3386
3387         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3388                         shmem_match, fid->raw);
3389         if (inode) {
3390                 dentry = d_find_alias(inode);
3391                 iput(inode);
3392         }
3393
3394         return dentry;
3395 }
3396
3397 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3398                                 struct inode *parent)
3399 {
3400         if (*len < 3) {
3401                 *len = 3;
3402                 return FILEID_INVALID;
3403         }
3404
3405         if (inode_unhashed(inode)) {
3406                 /* Unfortunately insert_inode_hash is not idempotent,
3407                  * so as we hash inodes here rather than at creation
3408                  * time, we need a lock to ensure we only try
3409                  * to do it once
3410                  */
3411                 static DEFINE_SPINLOCK(lock);
3412                 spin_lock(&lock);
3413                 if (inode_unhashed(inode))
3414                         __insert_inode_hash(inode,
3415                                             inode->i_ino + inode->i_generation);
3416                 spin_unlock(&lock);
3417         }
3418
3419         fh[0] = inode->i_generation;
3420         fh[1] = inode->i_ino;
3421         fh[2] = ((__u64)inode->i_ino) >> 32;
3422
3423         *len = 3;
3424         return 1;
3425 }
3426
3427 static const struct export_operations shmem_export_ops = {
3428         .get_parent     = shmem_get_parent,
3429         .encode_fh      = shmem_encode_fh,
3430         .fh_to_dentry   = shmem_fh_to_dentry,
3431 };
3432
3433 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3434                                bool remount)
3435 {
3436         char *this_char, *value, *rest;
3437         struct mempolicy *mpol = NULL;
3438         uid_t uid;
3439         gid_t gid;
3440
3441         while (options != NULL) {
3442                 this_char = options;
3443                 for (;;) {
3444                         /*
3445                          * NUL-terminate this option: unfortunately,
3446                          * mount options form a comma-separated list,
3447                          * but mpol's nodelist may also contain commas.
3448                          */
3449                         options = strchr(options, ',');
3450                         if (options == NULL)
3451                                 break;
3452                         options++;
3453                         if (!isdigit(*options)) {
3454                                 options[-1] = '\0';
3455                                 break;
3456                         }
3457                 }
3458                 if (!*this_char)
3459                         continue;
3460                 if ((value = strchr(this_char,'=')) != NULL) {
3461                         *value++ = 0;
3462                 } else {
3463                         pr_err("tmpfs: No value for mount option '%s'\n",
3464                                this_char);
3465                         goto error;
3466                 }
3467
3468                 if (!strcmp(this_char,"size")) {
3469                         unsigned long long size;
3470                         size = memparse(value,&rest);
3471                         if (*rest == '%') {
3472                                 size <<= PAGE_SHIFT;
3473                                 size *= totalram_pages;
3474                                 do_div(size, 100);
3475                                 rest++;
3476                         }
3477                         if (*rest)
3478                                 goto bad_val;
3479                         sbinfo->max_blocks =
3480                                 DIV_ROUND_UP(size, PAGE_SIZE);
3481                 } else if (!strcmp(this_char,"nr_blocks")) {
3482                         sbinfo->max_blocks = memparse(value, &rest);
3483                         if (*rest)
3484                                 goto bad_val;
3485                 } else if (!strcmp(this_char,"nr_inodes")) {
3486                         sbinfo->max_inodes = memparse(value, &rest);
3487                         if (*rest)
3488                                 goto bad_val;
3489                 } else if (!strcmp(this_char,"mode")) {
3490                         if (remount)
3491                                 continue;
3492                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3493                         if (*rest)
3494                                 goto bad_val;
3495                 } else if (!strcmp(this_char,"uid")) {
3496                         if (remount)
3497                                 continue;
3498                         uid = simple_strtoul(value, &rest, 0);
3499                         if (*rest)
3500                                 goto bad_val;
3501                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3502                         if (!uid_valid(sbinfo->uid))
3503                                 goto bad_val;
3504                 } else if (!strcmp(this_char,"gid")) {
3505                         if (remount)
3506                                 continue;
3507                         gid = simple_strtoul(value, &rest, 0);
3508                         if (*rest)
3509                                 goto bad_val;
3510                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3511                         if (!gid_valid(sbinfo->gid))
3512                                 goto bad_val;
3513 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3514                 } else if (!strcmp(this_char, "huge")) {
3515                         int huge;
3516                         huge = shmem_parse_huge(value);
3517                         if (huge < 0)
3518                                 goto bad_val;
3519                         if (!has_transparent_hugepage() &&
3520                                         huge != SHMEM_HUGE_NEVER)
3521                                 goto bad_val;
3522                         sbinfo->huge = huge;
3523 #endif
3524 #ifdef CONFIG_NUMA
3525                 } else if (!strcmp(this_char,"mpol")) {
3526                         mpol_put(mpol);
3527                         mpol = NULL;
3528                         if (mpol_parse_str(value, &mpol))
3529                                 goto bad_val;
3530 #endif
3531                 } else {
3532                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3533                         goto error;
3534                 }
3535         }
3536         sbinfo->mpol = mpol;
3537         return 0;
3538
3539 bad_val:
3540         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3541                value, this_char);
3542 error:
3543         mpol_put(mpol);
3544         return 1;
3545
3546 }
3547
3548 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3549 {
3550         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3551         struct shmem_sb_info config = *sbinfo;
3552         unsigned long inodes;
3553         int error = -EINVAL;
3554
3555         config.mpol = NULL;
3556         if (shmem_parse_options(data, &config, true))
3557                 return error;
3558
3559         spin_lock(&sbinfo->stat_lock);
3560         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3561         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3562                 goto out;
3563         if (config.max_inodes < inodes)
3564                 goto out;
3565         /*
3566          * Those tests disallow limited->unlimited while any are in use;
3567          * but we must separately disallow unlimited->limited, because
3568          * in that case we have no record of how much is already in use.
3569          */
3570         if (config.max_blocks && !sbinfo->max_blocks)
3571                 goto out;
3572         if (config.max_inodes && !sbinfo->max_inodes)
3573                 goto out;
3574
3575         error = 0;
3576         sbinfo->huge = config.huge;
3577         sbinfo->max_blocks  = config.max_blocks;
3578         sbinfo->max_inodes  = config.max_inodes;
3579         sbinfo->free_inodes = config.max_inodes - inodes;
3580
3581         /*
3582          * Preserve previous mempolicy unless mpol remount option was specified.
3583          */
3584         if (config.mpol) {
3585                 mpol_put(sbinfo->mpol);
3586                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3587         }
3588 out:
3589         spin_unlock(&sbinfo->stat_lock);
3590         return error;
3591 }
3592
3593 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3594 {
3595         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3596
3597         if (sbinfo->max_blocks != shmem_default_max_blocks())
3598                 seq_printf(seq, ",size=%luk",
3599                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3600         if (sbinfo->max_inodes != shmem_default_max_inodes())
3601                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3602         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3603                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3604         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3605                 seq_printf(seq, ",uid=%u",
3606                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3607         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3608                 seq_printf(seq, ",gid=%u",
3609                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3610 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3611         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3612         if (sbinfo->huge)
3613                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3614 #endif
3615         shmem_show_mpol(seq, sbinfo->mpol);
3616         return 0;
3617 }
3618
3619 #define MFD_NAME_PREFIX "memfd:"
3620 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3621 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3622
3623 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3624
3625 SYSCALL_DEFINE2(memfd_create,
3626                 const char __user *, uname,
3627                 unsigned int, flags)
3628 {
3629         struct shmem_inode_info *info;
3630         struct file *file;
3631         int fd, error;
3632         char *name;
3633         long len;
3634
3635         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3636                 return -EINVAL;
3637
3638         /* length includes terminating zero */
3639         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3640         if (len <= 0)
3641                 return -EFAULT;
3642         if (len > MFD_NAME_MAX_LEN + 1)
3643                 return -EINVAL;
3644
3645         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3646         if (!name)
3647                 return -ENOMEM;
3648
3649         strcpy(name, MFD_NAME_PREFIX);
3650         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3651                 error = -EFAULT;
3652                 goto err_name;
3653         }
3654
3655         /* terminating-zero may have changed after strnlen_user() returned */
3656         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3657                 error = -EFAULT;
3658                 goto err_name;
3659         }
3660
3661         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3662         if (fd < 0) {
3663                 error = fd;
3664                 goto err_name;
3665         }
3666
3667         file = shmem_file_setup(name, 0, VM_NORESERVE);
3668         if (IS_ERR(file)) {
3669                 error = PTR_ERR(file);
3670                 goto err_fd;
3671         }
3672         info = SHMEM_I(file_inode(file));
3673         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3674         file->f_flags |= O_RDWR | O_LARGEFILE;
3675         if (flags & MFD_ALLOW_SEALING)
3676                 info->seals &= ~F_SEAL_SEAL;
3677
3678         fd_install(fd, file);
3679         kfree(name);
3680         return fd;
3681
3682 err_fd:
3683         put_unused_fd(fd);
3684 err_name:
3685         kfree(name);
3686         return error;
3687 }
3688
3689 #endif /* CONFIG_TMPFS */
3690
3691 static void shmem_put_super(struct super_block *sb)
3692 {
3693         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3694
3695         percpu_counter_destroy(&sbinfo->used_blocks);
3696         mpol_put(sbinfo->mpol);
3697         kfree(sbinfo);
3698         sb->s_fs_info = NULL;
3699 }
3700
3701 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3702 {
3703         struct inode *inode;
3704         struct shmem_sb_info *sbinfo;
3705         int err = -ENOMEM;
3706
3707         /* Round up to L1_CACHE_BYTES to resist false sharing */
3708         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3709                                 L1_CACHE_BYTES), GFP_KERNEL);
3710         if (!sbinfo)
3711                 return -ENOMEM;
3712
3713         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3714         sbinfo->uid = current_fsuid();
3715         sbinfo->gid = current_fsgid();
3716         sb->s_fs_info = sbinfo;
3717
3718 #ifdef CONFIG_TMPFS
3719         /*
3720          * Per default we only allow half of the physical ram per
3721          * tmpfs instance, limiting inodes to one per page of lowmem;
3722          * but the internal instance is left unlimited.
3723          */
3724         if (!(sb->s_flags & MS_KERNMOUNT)) {
3725                 sbinfo->max_blocks = shmem_default_max_blocks();
3726                 sbinfo->max_inodes = shmem_default_max_inodes();
3727                 if (shmem_parse_options(data, sbinfo, false)) {
3728                         err = -EINVAL;
3729                         goto failed;
3730                 }
3731         } else {
3732                 sb->s_flags |= MS_NOUSER;
3733         }
3734         sb->s_export_op = &shmem_export_ops;
3735         sb->s_flags |= MS_NOSEC;
3736 #else
3737         sb->s_flags |= MS_NOUSER;
3738 #endif
3739
3740         spin_lock_init(&sbinfo->stat_lock);
3741         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3742                 goto failed;
3743         sbinfo->free_inodes = sbinfo->max_inodes;
3744         spin_lock_init(&sbinfo->shrinklist_lock);
3745         INIT_LIST_HEAD(&sbinfo->shrinklist);
3746
3747         sb->s_maxbytes = MAX_LFS_FILESIZE;
3748         sb->s_blocksize = PAGE_SIZE;
3749         sb->s_blocksize_bits = PAGE_SHIFT;
3750         sb->s_magic = TMPFS_MAGIC;
3751         sb->s_op = &shmem_ops;
3752         sb->s_time_gran = 1;
3753 #ifdef CONFIG_TMPFS_XATTR
3754         sb->s_xattr = shmem_xattr_handlers;
3755 #endif
3756 #ifdef CONFIG_TMPFS_POSIX_ACL
3757         sb->s_flags |= MS_POSIXACL;
3758 #endif
3759
3760         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3761         if (!inode)
3762                 goto failed;
3763         inode->i_uid = sbinfo->uid;
3764         inode->i_gid = sbinfo->gid;
3765         sb->s_root = d_make_root(inode);
3766         if (!sb->s_root)
3767                 goto failed;
3768         return 0;
3769
3770 failed:
3771         shmem_put_super(sb);
3772         return err;
3773 }
3774
3775 static struct kmem_cache *shmem_inode_cachep;
3776
3777 static struct inode *shmem_alloc_inode(struct super_block *sb)
3778 {
3779         struct shmem_inode_info *info;
3780         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3781         if (!info)
3782                 return NULL;
3783         return &info->vfs_inode;
3784 }
3785
3786 static void shmem_destroy_callback(struct rcu_head *head)
3787 {
3788         struct inode *inode = container_of(head, struct inode, i_rcu);
3789         if (S_ISLNK(inode->i_mode))
3790                 kfree(inode->i_link);
3791         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3792 }
3793
3794 static void shmem_destroy_inode(struct inode *inode)
3795 {
3796         if (S_ISREG(inode->i_mode))
3797                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3798         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3799 }
3800
3801 static void shmem_init_inode(void *foo)
3802 {
3803         struct shmem_inode_info *info = foo;
3804         inode_init_once(&info->vfs_inode);
3805 }
3806
3807 static int shmem_init_inodecache(void)
3808 {
3809         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3810                                 sizeof(struct shmem_inode_info),
3811                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3812         return 0;
3813 }
3814
3815 static void shmem_destroy_inodecache(void)
3816 {
3817         kmem_cache_destroy(shmem_inode_cachep);
3818 }
3819
3820 static const struct address_space_operations shmem_aops = {
3821         .writepage      = shmem_writepage,
3822         .set_page_dirty = __set_page_dirty_no_writeback,
3823 #ifdef CONFIG_TMPFS
3824         .write_begin    = shmem_write_begin,
3825         .write_end      = shmem_write_end,
3826 #endif
3827 #ifdef CONFIG_MIGRATION
3828         .migratepage    = migrate_page,
3829 #endif
3830         .error_remove_page = generic_error_remove_page,
3831 };
3832
3833 static const struct file_operations shmem_file_operations = {
3834         .mmap           = shmem_mmap,
3835         .get_unmapped_area = shmem_get_unmapped_area,
3836 #ifdef CONFIG_TMPFS
3837         .llseek         = shmem_file_llseek,
3838         .read_iter      = shmem_file_read_iter,
3839         .write_iter     = generic_file_write_iter,
3840         .fsync          = noop_fsync,
3841         .splice_read    = generic_file_splice_read,
3842         .splice_write   = iter_file_splice_write,
3843         .fallocate      = shmem_fallocate,
3844 #endif
3845 };
3846
3847 static const struct inode_operations shmem_inode_operations = {
3848         .getattr        = shmem_getattr,
3849         .setattr        = shmem_setattr,
3850 #ifdef CONFIG_TMPFS_XATTR
3851         .listxattr      = shmem_listxattr,
3852         .set_acl        = simple_set_acl,
3853 #endif
3854 };
3855
3856 static const struct inode_operations shmem_dir_inode_operations = {
3857 #ifdef CONFIG_TMPFS
3858         .create         = shmem_create,
3859         .lookup         = simple_lookup,
3860         .link           = shmem_link,
3861         .unlink         = shmem_unlink,
3862         .symlink        = shmem_symlink,
3863         .mkdir          = shmem_mkdir,
3864         .rmdir          = shmem_rmdir,
3865         .mknod          = shmem_mknod,
3866         .rename         = shmem_rename2,
3867         .tmpfile        = shmem_tmpfile,
3868 #endif
3869 #ifdef CONFIG_TMPFS_XATTR
3870         .listxattr      = shmem_listxattr,
3871 #endif
3872 #ifdef CONFIG_TMPFS_POSIX_ACL
3873         .setattr        = shmem_setattr,
3874         .set_acl        = simple_set_acl,
3875 #endif
3876 };
3877
3878 static const struct inode_operations shmem_special_inode_operations = {
3879 #ifdef CONFIG_TMPFS_XATTR
3880         .listxattr      = shmem_listxattr,
3881 #endif
3882 #ifdef CONFIG_TMPFS_POSIX_ACL
3883         .setattr        = shmem_setattr,
3884         .set_acl        = simple_set_acl,
3885 #endif
3886 };
3887
3888 static const struct super_operations shmem_ops = {
3889         .alloc_inode    = shmem_alloc_inode,
3890         .destroy_inode  = shmem_destroy_inode,
3891 #ifdef CONFIG_TMPFS
3892         .statfs         = shmem_statfs,
3893         .remount_fs     = shmem_remount_fs,
3894         .show_options   = shmem_show_options,
3895 #endif
3896         .evict_inode    = shmem_evict_inode,
3897         .drop_inode     = generic_delete_inode,
3898         .put_super      = shmem_put_super,
3899 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3900         .nr_cached_objects      = shmem_unused_huge_count,
3901         .free_cached_objects    = shmem_unused_huge_scan,
3902 #endif
3903 };
3904
3905 static const struct vm_operations_struct shmem_vm_ops = {
3906         .fault          = shmem_fault,
3907         .map_pages      = filemap_map_pages,
3908 #ifdef CONFIG_NUMA
3909         .set_policy     = shmem_set_policy,
3910         .get_policy     = shmem_get_policy,
3911 #endif
3912 };
3913
3914 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3915         int flags, const char *dev_name, void *data)
3916 {
3917         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3918 }
3919
3920 static struct file_system_type shmem_fs_type = {
3921         .owner          = THIS_MODULE,
3922         .name           = "tmpfs",
3923         .mount          = shmem_mount,
3924         .kill_sb        = kill_litter_super,
3925         .fs_flags       = FS_USERNS_MOUNT,
3926 };
3927
3928 int __init shmem_init(void)
3929 {
3930         int error;
3931
3932         /* If rootfs called this, don't re-init */
3933         if (shmem_inode_cachep)
3934                 return 0;
3935
3936         error = shmem_init_inodecache();
3937         if (error)
3938                 goto out3;
3939
3940         error = register_filesystem(&shmem_fs_type);
3941         if (error) {
3942                 pr_err("Could not register tmpfs\n");
3943                 goto out2;
3944         }
3945
3946         shm_mnt = kern_mount(&shmem_fs_type);
3947         if (IS_ERR(shm_mnt)) {
3948                 error = PTR_ERR(shm_mnt);
3949                 pr_err("Could not kern_mount tmpfs\n");
3950                 goto out1;
3951         }
3952
3953 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3954         if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3955                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3956         else
3957                 shmem_huge = 0; /* just in case it was patched */
3958 #endif
3959         return 0;
3960
3961 out1:
3962         unregister_filesystem(&shmem_fs_type);
3963 out2:
3964         shmem_destroy_inodecache();
3965 out3:
3966         shm_mnt = ERR_PTR(error);
3967         return error;
3968 }
3969
3970 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3971 static ssize_t shmem_enabled_show(struct kobject *kobj,
3972                 struct kobj_attribute *attr, char *buf)
3973 {
3974         int values[] = {
3975                 SHMEM_HUGE_ALWAYS,
3976                 SHMEM_HUGE_WITHIN_SIZE,
3977                 SHMEM_HUGE_ADVISE,
3978                 SHMEM_HUGE_NEVER,
3979                 SHMEM_HUGE_DENY,
3980                 SHMEM_HUGE_FORCE,
3981         };
3982         int i, count;
3983
3984         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3985                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3986
3987                 count += sprintf(buf + count, fmt,
3988                                 shmem_format_huge(values[i]));
3989         }
3990         buf[count - 1] = '\n';
3991         return count;
3992 }
3993
3994 static ssize_t shmem_enabled_store(struct kobject *kobj,
3995                 struct kobj_attribute *attr, const char *buf, size_t count)
3996 {
3997         char tmp[16];
3998         int huge;
3999
4000         if (count + 1 > sizeof(tmp))
4001                 return -EINVAL;
4002         memcpy(tmp, buf, count);
4003         tmp[count] = '\0';
4004         if (count && tmp[count - 1] == '\n')
4005                 tmp[count - 1] = '\0';
4006
4007         huge = shmem_parse_huge(tmp);
4008         if (huge == -EINVAL)
4009                 return -EINVAL;
4010         if (!has_transparent_hugepage() &&
4011                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4012                 return -EINVAL;
4013
4014         shmem_huge = huge;
4015         if (shmem_huge < SHMEM_HUGE_DENY)
4016                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4017         return count;
4018 }
4019
4020 struct kobj_attribute shmem_enabled_attr =
4021         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4022 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4023
4024 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4025 bool shmem_huge_enabled(struct vm_area_struct *vma)
4026 {
4027         struct inode *inode = file_inode(vma->vm_file);
4028         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4029         loff_t i_size;
4030         pgoff_t off;
4031
4032         if (shmem_huge == SHMEM_HUGE_FORCE)
4033                 return true;
4034         if (shmem_huge == SHMEM_HUGE_DENY)
4035                 return false;
4036         switch (sbinfo->huge) {
4037                 case SHMEM_HUGE_NEVER:
4038                         return false;
4039                 case SHMEM_HUGE_ALWAYS:
4040                         return true;
4041                 case SHMEM_HUGE_WITHIN_SIZE:
4042                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4043                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4044                         if (i_size >= HPAGE_PMD_SIZE &&
4045                                         i_size >> PAGE_SHIFT >= off)
4046                                 return true;
4047                 case SHMEM_HUGE_ADVISE:
4048                         /* TODO: implement fadvise() hints */
4049                         return (vma->vm_flags & VM_HUGEPAGE);
4050                 default:
4051                         VM_BUG_ON(1);
4052                         return false;
4053         }
4054 }
4055 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4056
4057 #else /* !CONFIG_SHMEM */
4058
4059 /*
4060  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4061  *
4062  * This is intended for small system where the benefits of the full
4063  * shmem code (swap-backed and resource-limited) are outweighed by
4064  * their complexity. On systems without swap this code should be
4065  * effectively equivalent, but much lighter weight.
4066  */
4067
4068 static struct file_system_type shmem_fs_type = {
4069         .name           = "tmpfs",
4070         .mount          = ramfs_mount,
4071         .kill_sb        = kill_litter_super,
4072         .fs_flags       = FS_USERNS_MOUNT,
4073 };
4074
4075 int __init shmem_init(void)
4076 {
4077         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4078
4079         shm_mnt = kern_mount(&shmem_fs_type);
4080         BUG_ON(IS_ERR(shm_mnt));
4081
4082         return 0;
4083 }
4084
4085 int shmem_unuse(swp_entry_t swap, struct page *page)
4086 {
4087         return 0;
4088 }
4089
4090 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4091 {
4092         return 0;
4093 }
4094
4095 void shmem_unlock_mapping(struct address_space *mapping)
4096 {
4097 }
4098
4099 #ifdef CONFIG_MMU
4100 unsigned long shmem_get_unmapped_area(struct file *file,
4101                                       unsigned long addr, unsigned long len,
4102                                       unsigned long pgoff, unsigned long flags)
4103 {
4104         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4105 }
4106 #endif
4107
4108 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4109 {
4110         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4111 }
4112 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4113
4114 #define shmem_vm_ops                            generic_file_vm_ops
4115 #define shmem_file_operations                   ramfs_file_operations
4116 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4117 #define shmem_acct_size(flags, size)            0
4118 #define shmem_unacct_size(flags, size)          do {} while (0)
4119
4120 #endif /* CONFIG_SHMEM */
4121
4122 /* common code */
4123
4124 static const struct dentry_operations anon_ops = {
4125         .d_dname = simple_dname
4126 };
4127
4128 static struct file *__shmem_file_setup(const char *name, loff_t size,
4129                                        unsigned long flags, unsigned int i_flags)
4130 {
4131         struct file *res;
4132         struct inode *inode;
4133         struct path path;
4134         struct super_block *sb;
4135         struct qstr this;
4136
4137         if (IS_ERR(shm_mnt))
4138                 return ERR_CAST(shm_mnt);
4139
4140         if (size < 0 || size > MAX_LFS_FILESIZE)
4141                 return ERR_PTR(-EINVAL);
4142
4143         if (shmem_acct_size(flags, size))
4144                 return ERR_PTR(-ENOMEM);
4145
4146         res = ERR_PTR(-ENOMEM);
4147         this.name = name;
4148         this.len = strlen(name);
4149         this.hash = 0; /* will go */
4150         sb = shm_mnt->mnt_sb;
4151         path.mnt = mntget(shm_mnt);
4152         path.dentry = d_alloc_pseudo(sb, &this);
4153         if (!path.dentry)
4154                 goto put_memory;
4155         d_set_d_op(path.dentry, &anon_ops);
4156
4157         res = ERR_PTR(-ENOSPC);
4158         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4159         if (!inode)
4160                 goto put_memory;
4161
4162         inode->i_flags |= i_flags;
4163         d_instantiate(path.dentry, inode);
4164         inode->i_size = size;
4165         clear_nlink(inode);     /* It is unlinked */
4166         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4167         if (IS_ERR(res))
4168                 goto put_path;
4169
4170         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4171                   &shmem_file_operations);
4172         if (IS_ERR(res))
4173                 goto put_path;
4174
4175         return res;
4176
4177 put_memory:
4178         shmem_unacct_size(flags, size);
4179 put_path:
4180         path_put(&path);
4181         return res;
4182 }
4183
4184 /**
4185  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4186  *      kernel internal.  There will be NO LSM permission checks against the
4187  *      underlying inode.  So users of this interface must do LSM checks at a
4188  *      higher layer.  The users are the big_key and shm implementations.  LSM
4189  *      checks are provided at the key or shm level rather than the inode.
4190  * @name: name for dentry (to be seen in /proc/<pid>/maps
4191  * @size: size to be set for the file
4192  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4193  */
4194 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4195 {
4196         return __shmem_file_setup(name, size, flags, S_PRIVATE);
4197 }
4198
4199 /**
4200  * shmem_file_setup - get an unlinked file living in tmpfs
4201  * @name: name for dentry (to be seen in /proc/<pid>/maps
4202  * @size: size to be set for the file
4203  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4204  */
4205 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4206 {
4207         return __shmem_file_setup(name, size, flags, 0);
4208 }
4209 EXPORT_SYMBOL_GPL(shmem_file_setup);
4210
4211 /**
4212  * shmem_zero_setup - setup a shared anonymous mapping
4213  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4214  */
4215 int shmem_zero_setup(struct vm_area_struct *vma)
4216 {
4217         struct file *file;
4218         loff_t size = vma->vm_end - vma->vm_start;
4219
4220         /*
4221          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4222          * between XFS directory reading and selinux: since this file is only
4223          * accessible to the user through its mapping, use S_PRIVATE flag to
4224          * bypass file security, in the same way as shmem_kernel_file_setup().
4225          */
4226         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4227         if (IS_ERR(file))
4228                 return PTR_ERR(file);
4229
4230         if (vma->vm_file)
4231                 fput(vma->vm_file);
4232         vma->vm_file = file;
4233         vma->vm_ops = &shmem_vm_ops;
4234
4235         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4236                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4237                         (vma->vm_end & HPAGE_PMD_MASK)) {
4238                 khugepaged_enter(vma, vma->vm_flags);
4239         }
4240
4241         return 0;
4242 }
4243
4244 /**
4245  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4246  * @mapping:    the page's address_space
4247  * @index:      the page index
4248  * @gfp:        the page allocator flags to use if allocating
4249  *
4250  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4251  * with any new page allocations done using the specified allocation flags.
4252  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4253  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4254  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4255  *
4256  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4257  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4258  */
4259 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4260                                          pgoff_t index, gfp_t gfp)
4261 {
4262 #ifdef CONFIG_SHMEM
4263         struct inode *inode = mapping->host;
4264         struct page *page;
4265         int error;
4266
4267         BUG_ON(mapping->a_ops != &shmem_aops);
4268         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4269                                   gfp, NULL, NULL, NULL);
4270         if (error)
4271                 page = ERR_PTR(error);
4272         else
4273                 unlock_page(page);
4274         return page;
4275 #else
4276         /*
4277          * The tiny !SHMEM case uses ramfs without swap
4278          */
4279         return read_cache_page_gfp(mapping, index, gfp);
4280 #endif
4281 }
4282 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);