]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/shmem.c
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[karo-tx-linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36
37 static struct vfsmount *shm_mnt;
38
39 #ifdef CONFIG_SHMEM
40 /*
41  * This virtual memory filesystem is heavily based on the ramfs. It
42  * extends ramfs by the ability to use swap and honor resource limits
43  * which makes it a completely usable filesystem.
44  */
45
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
76
77 #include "internal.h"
78
79 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
80 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
81
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87
88 /*
89  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90  * inode->i_private (with i_mutex making sure that it has only one user at
91  * a time): we would prefer not to enlarge the shmem inode just for that.
92  */
93 struct shmem_falloc {
94         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95         pgoff_t start;          /* start of range currently being fallocated */
96         pgoff_t next;           /* the next page offset to be fallocated */
97         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
98         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
99 };
100
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104         return totalram_pages / 2;
105 }
106
107 static unsigned long shmem_default_max_inodes(void)
108 {
109         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115                                 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117                 struct page **pagep, enum sgp_type sgp,
118                 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121                 struct page **pagep, enum sgp_type sgp)
122 {
123         return shmem_getpage_gfp(inode, index, pagep, sgp,
124                 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129         return sb->s_fs_info;
130 }
131
132 /*
133  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134  * for shared memory and for shared anonymous (/dev/zero) mappings
135  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136  * consistent with the pre-accounting of private mappings ...
137  */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140         return (flags & VM_NORESERVE) ?
141                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146         if (!(flags & VM_NORESERVE))
147                 vm_unacct_memory(VM_ACCT(size));
148 }
149
150 static inline int shmem_reacct_size(unsigned long flags,
151                 loff_t oldsize, loff_t newsize)
152 {
153         if (!(flags & VM_NORESERVE)) {
154                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155                         return security_vm_enough_memory_mm(current->mm,
156                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
157                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159         }
160         return 0;
161 }
162
163 /*
164  * ... whereas tmpfs objects are accounted incrementally as
165  * pages are allocated, in order to allow large sparse files.
166  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168  */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171         if (!(flags & VM_NORESERVE))
172                 return 0;
173
174         return security_vm_enough_memory_mm(current->mm,
175                         pages * VM_ACCT(PAGE_SIZE));
176 }
177
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180         if (flags & VM_NORESERVE)
181                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191 static struct file_system_type shmem_fs_type;
192
193 static LIST_HEAD(shmem_swaplist);
194 static DEFINE_MUTEX(shmem_swaplist_mutex);
195
196 static int shmem_reserve_inode(struct super_block *sb)
197 {
198         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199         if (sbinfo->max_inodes) {
200                 spin_lock(&sbinfo->stat_lock);
201                 if (!sbinfo->free_inodes) {
202                         spin_unlock(&sbinfo->stat_lock);
203                         return -ENOSPC;
204                 }
205                 sbinfo->free_inodes--;
206                 spin_unlock(&sbinfo->stat_lock);
207         }
208         return 0;
209 }
210
211 static void shmem_free_inode(struct super_block *sb)
212 {
213         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214         if (sbinfo->max_inodes) {
215                 spin_lock(&sbinfo->stat_lock);
216                 sbinfo->free_inodes++;
217                 spin_unlock(&sbinfo->stat_lock);
218         }
219 }
220
221 /**
222  * shmem_recalc_inode - recalculate the block usage of an inode
223  * @inode: inode to recalc
224  *
225  * We have to calculate the free blocks since the mm can drop
226  * undirtied hole pages behind our back.
227  *
228  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
229  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230  *
231  * It has to be called with the spinlock held.
232  */
233 static void shmem_recalc_inode(struct inode *inode)
234 {
235         struct shmem_inode_info *info = SHMEM_I(inode);
236         long freed;
237
238         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239         if (freed > 0) {
240                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241                 if (sbinfo->max_blocks)
242                         percpu_counter_add(&sbinfo->used_blocks, -freed);
243                 info->alloced -= freed;
244                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245                 shmem_unacct_blocks(info->flags, freed);
246         }
247 }
248
249 bool shmem_charge(struct inode *inode, long pages)
250 {
251         struct shmem_inode_info *info = SHMEM_I(inode);
252         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253         unsigned long flags;
254
255         if (shmem_acct_block(info->flags, pages))
256                 return false;
257         spin_lock_irqsave(&info->lock, flags);
258         info->alloced += pages;
259         inode->i_blocks += pages * BLOCKS_PER_PAGE;
260         shmem_recalc_inode(inode);
261         spin_unlock_irqrestore(&info->lock, flags);
262         inode->i_mapping->nrpages += pages;
263
264         if (!sbinfo->max_blocks)
265                 return true;
266         if (percpu_counter_compare(&sbinfo->used_blocks,
267                                 sbinfo->max_blocks - pages) > 0) {
268                 inode->i_mapping->nrpages -= pages;
269                 spin_lock_irqsave(&info->lock, flags);
270                 info->alloced -= pages;
271                 shmem_recalc_inode(inode);
272                 spin_unlock_irqrestore(&info->lock, flags);
273                 shmem_unacct_blocks(info->flags, pages);
274                 return false;
275         }
276         percpu_counter_add(&sbinfo->used_blocks, pages);
277         return true;
278 }
279
280 void shmem_uncharge(struct inode *inode, long pages)
281 {
282         struct shmem_inode_info *info = SHMEM_I(inode);
283         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284         unsigned long flags;
285
286         spin_lock_irqsave(&info->lock, flags);
287         info->alloced -= pages;
288         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289         shmem_recalc_inode(inode);
290         spin_unlock_irqrestore(&info->lock, flags);
291
292         if (sbinfo->max_blocks)
293                 percpu_counter_sub(&sbinfo->used_blocks, pages);
294         shmem_unacct_blocks(info->flags, pages);
295 }
296
297 /*
298  * Replace item expected in radix tree by a new item, while holding tree lock.
299  */
300 static int shmem_radix_tree_replace(struct address_space *mapping,
301                         pgoff_t index, void *expected, void *replacement)
302 {
303         struct radix_tree_node *node;
304         void **pslot;
305         void *item;
306
307         VM_BUG_ON(!expected);
308         VM_BUG_ON(!replacement);
309         item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
310         if (!item)
311                 return -ENOENT;
312         if (item != expected)
313                 return -ENOENT;
314         __radix_tree_replace(&mapping->page_tree, node, pslot,
315                              replacement, NULL, NULL);
316         return 0;
317 }
318
319 /*
320  * Sometimes, before we decide whether to proceed or to fail, we must check
321  * that an entry was not already brought back from swap by a racing thread.
322  *
323  * Checking page is not enough: by the time a SwapCache page is locked, it
324  * might be reused, and again be SwapCache, using the same swap as before.
325  */
326 static bool shmem_confirm_swap(struct address_space *mapping,
327                                pgoff_t index, swp_entry_t swap)
328 {
329         void *item;
330
331         rcu_read_lock();
332         item = radix_tree_lookup(&mapping->page_tree, index);
333         rcu_read_unlock();
334         return item == swp_to_radix_entry(swap);
335 }
336
337 /*
338  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
339  *
340  * SHMEM_HUGE_NEVER:
341  *      disables huge pages for the mount;
342  * SHMEM_HUGE_ALWAYS:
343  *      enables huge pages for the mount;
344  * SHMEM_HUGE_WITHIN_SIZE:
345  *      only allocate huge pages if the page will be fully within i_size,
346  *      also respect fadvise()/madvise() hints;
347  * SHMEM_HUGE_ADVISE:
348  *      only allocate huge pages if requested with fadvise()/madvise();
349  */
350
351 #define SHMEM_HUGE_NEVER        0
352 #define SHMEM_HUGE_ALWAYS       1
353 #define SHMEM_HUGE_WITHIN_SIZE  2
354 #define SHMEM_HUGE_ADVISE       3
355
356 /*
357  * Special values.
358  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
359  *
360  * SHMEM_HUGE_DENY:
361  *      disables huge on shm_mnt and all mounts, for emergency use;
362  * SHMEM_HUGE_FORCE:
363  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
364  *
365  */
366 #define SHMEM_HUGE_DENY         (-1)
367 #define SHMEM_HUGE_FORCE        (-2)
368
369 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
370 /* ifdef here to avoid bloating shmem.o when not necessary */
371
372 int shmem_huge __read_mostly;
373
374 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
375 static int shmem_parse_huge(const char *str)
376 {
377         if (!strcmp(str, "never"))
378                 return SHMEM_HUGE_NEVER;
379         if (!strcmp(str, "always"))
380                 return SHMEM_HUGE_ALWAYS;
381         if (!strcmp(str, "within_size"))
382                 return SHMEM_HUGE_WITHIN_SIZE;
383         if (!strcmp(str, "advise"))
384                 return SHMEM_HUGE_ADVISE;
385         if (!strcmp(str, "deny"))
386                 return SHMEM_HUGE_DENY;
387         if (!strcmp(str, "force"))
388                 return SHMEM_HUGE_FORCE;
389         return -EINVAL;
390 }
391
392 static const char *shmem_format_huge(int huge)
393 {
394         switch (huge) {
395         case SHMEM_HUGE_NEVER:
396                 return "never";
397         case SHMEM_HUGE_ALWAYS:
398                 return "always";
399         case SHMEM_HUGE_WITHIN_SIZE:
400                 return "within_size";
401         case SHMEM_HUGE_ADVISE:
402                 return "advise";
403         case SHMEM_HUGE_DENY:
404                 return "deny";
405         case SHMEM_HUGE_FORCE:
406                 return "force";
407         default:
408                 VM_BUG_ON(1);
409                 return "bad_val";
410         }
411 }
412 #endif
413
414 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
415                 struct shrink_control *sc, unsigned long nr_to_split)
416 {
417         LIST_HEAD(list), *pos, *next;
418         struct inode *inode;
419         struct shmem_inode_info *info;
420         struct page *page;
421         unsigned long batch = sc ? sc->nr_to_scan : 128;
422         int removed = 0, split = 0;
423
424         if (list_empty(&sbinfo->shrinklist))
425                 return SHRINK_STOP;
426
427         spin_lock(&sbinfo->shrinklist_lock);
428         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
429                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
430
431                 /* pin the inode */
432                 inode = igrab(&info->vfs_inode);
433
434                 /* inode is about to be evicted */
435                 if (!inode) {
436                         list_del_init(&info->shrinklist);
437                         removed++;
438                         goto next;
439                 }
440
441                 /* Check if there's anything to gain */
442                 if (round_up(inode->i_size, PAGE_SIZE) ==
443                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
444                         list_del_init(&info->shrinklist);
445                         removed++;
446                         iput(inode);
447                         goto next;
448                 }
449
450                 list_move(&info->shrinklist, &list);
451 next:
452                 if (!--batch)
453                         break;
454         }
455         spin_unlock(&sbinfo->shrinklist_lock);
456
457         list_for_each_safe(pos, next, &list) {
458                 int ret;
459
460                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
461                 inode = &info->vfs_inode;
462
463                 if (nr_to_split && split >= nr_to_split) {
464                         iput(inode);
465                         continue;
466                 }
467
468                 page = find_lock_page(inode->i_mapping,
469                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
470                 if (!page)
471                         goto drop;
472
473                 if (!PageTransHuge(page)) {
474                         unlock_page(page);
475                         put_page(page);
476                         goto drop;
477                 }
478
479                 ret = split_huge_page(page);
480                 unlock_page(page);
481                 put_page(page);
482
483                 if (ret) {
484                         /* split failed: leave it on the list */
485                         iput(inode);
486                         continue;
487                 }
488
489                 split++;
490 drop:
491                 list_del_init(&info->shrinklist);
492                 removed++;
493                 iput(inode);
494         }
495
496         spin_lock(&sbinfo->shrinklist_lock);
497         list_splice_tail(&list, &sbinfo->shrinklist);
498         sbinfo->shrinklist_len -= removed;
499         spin_unlock(&sbinfo->shrinklist_lock);
500
501         return split;
502 }
503
504 static long shmem_unused_huge_scan(struct super_block *sb,
505                 struct shrink_control *sc)
506 {
507         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
508
509         if (!READ_ONCE(sbinfo->shrinklist_len))
510                 return SHRINK_STOP;
511
512         return shmem_unused_huge_shrink(sbinfo, sc, 0);
513 }
514
515 static long shmem_unused_huge_count(struct super_block *sb,
516                 struct shrink_control *sc)
517 {
518         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
519         return READ_ONCE(sbinfo->shrinklist_len);
520 }
521 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
522
523 #define shmem_huge SHMEM_HUGE_DENY
524
525 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
526                 struct shrink_control *sc, unsigned long nr_to_split)
527 {
528         return 0;
529 }
530 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
531
532 /*
533  * Like add_to_page_cache_locked, but error if expected item has gone.
534  */
535 static int shmem_add_to_page_cache(struct page *page,
536                                    struct address_space *mapping,
537                                    pgoff_t index, void *expected)
538 {
539         int error, nr = hpage_nr_pages(page);
540
541         VM_BUG_ON_PAGE(PageTail(page), page);
542         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
543         VM_BUG_ON_PAGE(!PageLocked(page), page);
544         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
545         VM_BUG_ON(expected && PageTransHuge(page));
546
547         page_ref_add(page, nr);
548         page->mapping = mapping;
549         page->index = index;
550
551         spin_lock_irq(&mapping->tree_lock);
552         if (PageTransHuge(page)) {
553                 void __rcu **results;
554                 pgoff_t idx;
555                 int i;
556
557                 error = 0;
558                 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
559                                         &results, &idx, index, 1) &&
560                                 idx < index + HPAGE_PMD_NR) {
561                         error = -EEXIST;
562                 }
563
564                 if (!error) {
565                         for (i = 0; i < HPAGE_PMD_NR; i++) {
566                                 error = radix_tree_insert(&mapping->page_tree,
567                                                 index + i, page + i);
568                                 VM_BUG_ON(error);
569                         }
570                         count_vm_event(THP_FILE_ALLOC);
571                 }
572         } else if (!expected) {
573                 error = radix_tree_insert(&mapping->page_tree, index, page);
574         } else {
575                 error = shmem_radix_tree_replace(mapping, index, expected,
576                                                                  page);
577         }
578
579         if (!error) {
580                 mapping->nrpages += nr;
581                 if (PageTransHuge(page))
582                         __inc_node_page_state(page, NR_SHMEM_THPS);
583                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
584                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
585                 spin_unlock_irq(&mapping->tree_lock);
586         } else {
587                 page->mapping = NULL;
588                 spin_unlock_irq(&mapping->tree_lock);
589                 page_ref_sub(page, nr);
590         }
591         return error;
592 }
593
594 /*
595  * Like delete_from_page_cache, but substitutes swap for page.
596  */
597 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
598 {
599         struct address_space *mapping = page->mapping;
600         int error;
601
602         VM_BUG_ON_PAGE(PageCompound(page), page);
603
604         spin_lock_irq(&mapping->tree_lock);
605         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
606         page->mapping = NULL;
607         mapping->nrpages--;
608         __dec_node_page_state(page, NR_FILE_PAGES);
609         __dec_node_page_state(page, NR_SHMEM);
610         spin_unlock_irq(&mapping->tree_lock);
611         put_page(page);
612         BUG_ON(error);
613 }
614
615 /*
616  * Remove swap entry from radix tree, free the swap and its page cache.
617  */
618 static int shmem_free_swap(struct address_space *mapping,
619                            pgoff_t index, void *radswap)
620 {
621         void *old;
622
623         spin_lock_irq(&mapping->tree_lock);
624         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
625         spin_unlock_irq(&mapping->tree_lock);
626         if (old != radswap)
627                 return -ENOENT;
628         free_swap_and_cache(radix_to_swp_entry(radswap));
629         return 0;
630 }
631
632 /*
633  * Determine (in bytes) how many of the shmem object's pages mapped by the
634  * given offsets are swapped out.
635  *
636  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
637  * as long as the inode doesn't go away and racy results are not a problem.
638  */
639 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
640                                                 pgoff_t start, pgoff_t end)
641 {
642         struct radix_tree_iter iter;
643         void **slot;
644         struct page *page;
645         unsigned long swapped = 0;
646
647         rcu_read_lock();
648
649         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
650                 if (iter.index >= end)
651                         break;
652
653                 page = radix_tree_deref_slot(slot);
654
655                 if (radix_tree_deref_retry(page)) {
656                         slot = radix_tree_iter_retry(&iter);
657                         continue;
658                 }
659
660                 if (radix_tree_exceptional_entry(page))
661                         swapped++;
662
663                 if (need_resched()) {
664                         cond_resched_rcu();
665                         slot = radix_tree_iter_next(&iter);
666                 }
667         }
668
669         rcu_read_unlock();
670
671         return swapped << PAGE_SHIFT;
672 }
673
674 /*
675  * Determine (in bytes) how many of the shmem object's pages mapped by the
676  * given vma is swapped out.
677  *
678  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
679  * as long as the inode doesn't go away and racy results are not a problem.
680  */
681 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
682 {
683         struct inode *inode = file_inode(vma->vm_file);
684         struct shmem_inode_info *info = SHMEM_I(inode);
685         struct address_space *mapping = inode->i_mapping;
686         unsigned long swapped;
687
688         /* Be careful as we don't hold info->lock */
689         swapped = READ_ONCE(info->swapped);
690
691         /*
692          * The easier cases are when the shmem object has nothing in swap, or
693          * the vma maps it whole. Then we can simply use the stats that we
694          * already track.
695          */
696         if (!swapped)
697                 return 0;
698
699         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
700                 return swapped << PAGE_SHIFT;
701
702         /* Here comes the more involved part */
703         return shmem_partial_swap_usage(mapping,
704                         linear_page_index(vma, vma->vm_start),
705                         linear_page_index(vma, vma->vm_end));
706 }
707
708 /*
709  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
710  */
711 void shmem_unlock_mapping(struct address_space *mapping)
712 {
713         struct pagevec pvec;
714         pgoff_t indices[PAGEVEC_SIZE];
715         pgoff_t index = 0;
716
717         pagevec_init(&pvec, 0);
718         /*
719          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
720          */
721         while (!mapping_unevictable(mapping)) {
722                 /*
723                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
724                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
725                  */
726                 pvec.nr = find_get_entries(mapping, index,
727                                            PAGEVEC_SIZE, pvec.pages, indices);
728                 if (!pvec.nr)
729                         break;
730                 index = indices[pvec.nr - 1] + 1;
731                 pagevec_remove_exceptionals(&pvec);
732                 check_move_unevictable_pages(pvec.pages, pvec.nr);
733                 pagevec_release(&pvec);
734                 cond_resched();
735         }
736 }
737
738 /*
739  * Remove range of pages and swap entries from radix tree, and free them.
740  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
741  */
742 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
743                                                                  bool unfalloc)
744 {
745         struct address_space *mapping = inode->i_mapping;
746         struct shmem_inode_info *info = SHMEM_I(inode);
747         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
748         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
749         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
750         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
751         struct pagevec pvec;
752         pgoff_t indices[PAGEVEC_SIZE];
753         long nr_swaps_freed = 0;
754         pgoff_t index;
755         int i;
756
757         if (lend == -1)
758                 end = -1;       /* unsigned, so actually very big */
759
760         pagevec_init(&pvec, 0);
761         index = start;
762         while (index < end) {
763                 pvec.nr = find_get_entries(mapping, index,
764                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
765                         pvec.pages, indices);
766                 if (!pvec.nr)
767                         break;
768                 for (i = 0; i < pagevec_count(&pvec); i++) {
769                         struct page *page = pvec.pages[i];
770
771                         index = indices[i];
772                         if (index >= end)
773                                 break;
774
775                         if (radix_tree_exceptional_entry(page)) {
776                                 if (unfalloc)
777                                         continue;
778                                 nr_swaps_freed += !shmem_free_swap(mapping,
779                                                                 index, page);
780                                 continue;
781                         }
782
783                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
784
785                         if (!trylock_page(page))
786                                 continue;
787
788                         if (PageTransTail(page)) {
789                                 /* Middle of THP: zero out the page */
790                                 clear_highpage(page);
791                                 unlock_page(page);
792                                 continue;
793                         } else if (PageTransHuge(page)) {
794                                 if (index == round_down(end, HPAGE_PMD_NR)) {
795                                         /*
796                                          * Range ends in the middle of THP:
797                                          * zero out the page
798                                          */
799                                         clear_highpage(page);
800                                         unlock_page(page);
801                                         continue;
802                                 }
803                                 index += HPAGE_PMD_NR - 1;
804                                 i += HPAGE_PMD_NR - 1;
805                         }
806
807                         if (!unfalloc || !PageUptodate(page)) {
808                                 VM_BUG_ON_PAGE(PageTail(page), page);
809                                 if (page_mapping(page) == mapping) {
810                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
811                                         truncate_inode_page(mapping, page);
812                                 }
813                         }
814                         unlock_page(page);
815                 }
816                 pagevec_remove_exceptionals(&pvec);
817                 pagevec_release(&pvec);
818                 cond_resched();
819                 index++;
820         }
821
822         if (partial_start) {
823                 struct page *page = NULL;
824                 shmem_getpage(inode, start - 1, &page, SGP_READ);
825                 if (page) {
826                         unsigned int top = PAGE_SIZE;
827                         if (start > end) {
828                                 top = partial_end;
829                                 partial_end = 0;
830                         }
831                         zero_user_segment(page, partial_start, top);
832                         set_page_dirty(page);
833                         unlock_page(page);
834                         put_page(page);
835                 }
836         }
837         if (partial_end) {
838                 struct page *page = NULL;
839                 shmem_getpage(inode, end, &page, SGP_READ);
840                 if (page) {
841                         zero_user_segment(page, 0, partial_end);
842                         set_page_dirty(page);
843                         unlock_page(page);
844                         put_page(page);
845                 }
846         }
847         if (start >= end)
848                 return;
849
850         index = start;
851         while (index < end) {
852                 cond_resched();
853
854                 pvec.nr = find_get_entries(mapping, index,
855                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
856                                 pvec.pages, indices);
857                 if (!pvec.nr) {
858                         /* If all gone or hole-punch or unfalloc, we're done */
859                         if (index == start || end != -1)
860                                 break;
861                         /* But if truncating, restart to make sure all gone */
862                         index = start;
863                         continue;
864                 }
865                 for (i = 0; i < pagevec_count(&pvec); i++) {
866                         struct page *page = pvec.pages[i];
867
868                         index = indices[i];
869                         if (index >= end)
870                                 break;
871
872                         if (radix_tree_exceptional_entry(page)) {
873                                 if (unfalloc)
874                                         continue;
875                                 if (shmem_free_swap(mapping, index, page)) {
876                                         /* Swap was replaced by page: retry */
877                                         index--;
878                                         break;
879                                 }
880                                 nr_swaps_freed++;
881                                 continue;
882                         }
883
884                         lock_page(page);
885
886                         if (PageTransTail(page)) {
887                                 /* Middle of THP: zero out the page */
888                                 clear_highpage(page);
889                                 unlock_page(page);
890                                 /*
891                                  * Partial thp truncate due 'start' in middle
892                                  * of THP: don't need to look on these pages
893                                  * again on !pvec.nr restart.
894                                  */
895                                 if (index != round_down(end, HPAGE_PMD_NR))
896                                         start++;
897                                 continue;
898                         } else if (PageTransHuge(page)) {
899                                 if (index == round_down(end, HPAGE_PMD_NR)) {
900                                         /*
901                                          * Range ends in the middle of THP:
902                                          * zero out the page
903                                          */
904                                         clear_highpage(page);
905                                         unlock_page(page);
906                                         continue;
907                                 }
908                                 index += HPAGE_PMD_NR - 1;
909                                 i += HPAGE_PMD_NR - 1;
910                         }
911
912                         if (!unfalloc || !PageUptodate(page)) {
913                                 VM_BUG_ON_PAGE(PageTail(page), page);
914                                 if (page_mapping(page) == mapping) {
915                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
916                                         truncate_inode_page(mapping, page);
917                                 } else {
918                                         /* Page was replaced by swap: retry */
919                                         unlock_page(page);
920                                         index--;
921                                         break;
922                                 }
923                         }
924                         unlock_page(page);
925                 }
926                 pagevec_remove_exceptionals(&pvec);
927                 pagevec_release(&pvec);
928                 index++;
929         }
930
931         spin_lock_irq(&info->lock);
932         info->swapped -= nr_swaps_freed;
933         shmem_recalc_inode(inode);
934         spin_unlock_irq(&info->lock);
935 }
936
937 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
938 {
939         shmem_undo_range(inode, lstart, lend, false);
940         inode->i_ctime = inode->i_mtime = current_time(inode);
941 }
942 EXPORT_SYMBOL_GPL(shmem_truncate_range);
943
944 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
945                          struct kstat *stat)
946 {
947         struct inode *inode = dentry->d_inode;
948         struct shmem_inode_info *info = SHMEM_I(inode);
949
950         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
951                 spin_lock_irq(&info->lock);
952                 shmem_recalc_inode(inode);
953                 spin_unlock_irq(&info->lock);
954         }
955         generic_fillattr(inode, stat);
956         return 0;
957 }
958
959 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
960 {
961         struct inode *inode = d_inode(dentry);
962         struct shmem_inode_info *info = SHMEM_I(inode);
963         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
964         int error;
965
966         error = setattr_prepare(dentry, attr);
967         if (error)
968                 return error;
969
970         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
971                 loff_t oldsize = inode->i_size;
972                 loff_t newsize = attr->ia_size;
973
974                 /* protected by i_mutex */
975                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
976                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
977                         return -EPERM;
978
979                 if (newsize != oldsize) {
980                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
981                                         oldsize, newsize);
982                         if (error)
983                                 return error;
984                         i_size_write(inode, newsize);
985                         inode->i_ctime = inode->i_mtime = current_time(inode);
986                 }
987                 if (newsize <= oldsize) {
988                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
989                         if (oldsize > holebegin)
990                                 unmap_mapping_range(inode->i_mapping,
991                                                         holebegin, 0, 1);
992                         if (info->alloced)
993                                 shmem_truncate_range(inode,
994                                                         newsize, (loff_t)-1);
995                         /* unmap again to remove racily COWed private pages */
996                         if (oldsize > holebegin)
997                                 unmap_mapping_range(inode->i_mapping,
998                                                         holebegin, 0, 1);
999
1000                         /*
1001                          * Part of the huge page can be beyond i_size: subject
1002                          * to shrink under memory pressure.
1003                          */
1004                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1005                                 spin_lock(&sbinfo->shrinklist_lock);
1006                                 if (list_empty(&info->shrinklist)) {
1007                                         list_add_tail(&info->shrinklist,
1008                                                         &sbinfo->shrinklist);
1009                                         sbinfo->shrinklist_len++;
1010                                 }
1011                                 spin_unlock(&sbinfo->shrinklist_lock);
1012                         }
1013                 }
1014         }
1015
1016         setattr_copy(inode, attr);
1017         if (attr->ia_valid & ATTR_MODE)
1018                 error = posix_acl_chmod(inode, inode->i_mode);
1019         return error;
1020 }
1021
1022 static void shmem_evict_inode(struct inode *inode)
1023 {
1024         struct shmem_inode_info *info = SHMEM_I(inode);
1025         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1026
1027         if (inode->i_mapping->a_ops == &shmem_aops) {
1028                 shmem_unacct_size(info->flags, inode->i_size);
1029                 inode->i_size = 0;
1030                 shmem_truncate_range(inode, 0, (loff_t)-1);
1031                 if (!list_empty(&info->shrinklist)) {
1032                         spin_lock(&sbinfo->shrinklist_lock);
1033                         if (!list_empty(&info->shrinklist)) {
1034                                 list_del_init(&info->shrinklist);
1035                                 sbinfo->shrinklist_len--;
1036                         }
1037                         spin_unlock(&sbinfo->shrinklist_lock);
1038                 }
1039                 if (!list_empty(&info->swaplist)) {
1040                         mutex_lock(&shmem_swaplist_mutex);
1041                         list_del_init(&info->swaplist);
1042                         mutex_unlock(&shmem_swaplist_mutex);
1043                 }
1044         }
1045
1046         simple_xattrs_free(&info->xattrs);
1047         WARN_ON(inode->i_blocks);
1048         shmem_free_inode(inode->i_sb);
1049         clear_inode(inode);
1050 }
1051
1052 /*
1053  * If swap found in inode, free it and move page from swapcache to filecache.
1054  */
1055 static int shmem_unuse_inode(struct shmem_inode_info *info,
1056                              swp_entry_t swap, struct page **pagep)
1057 {
1058         struct address_space *mapping = info->vfs_inode.i_mapping;
1059         void *radswap;
1060         pgoff_t index;
1061         gfp_t gfp;
1062         int error = 0;
1063
1064         radswap = swp_to_radix_entry(swap);
1065         index = radix_tree_locate_item(&mapping->page_tree, radswap);
1066         if (index == -1)
1067                 return -EAGAIN; /* tell shmem_unuse we found nothing */
1068
1069         /*
1070          * Move _head_ to start search for next from here.
1071          * But be careful: shmem_evict_inode checks list_empty without taking
1072          * mutex, and there's an instant in list_move_tail when info->swaplist
1073          * would appear empty, if it were the only one on shmem_swaplist.
1074          */
1075         if (shmem_swaplist.next != &info->swaplist)
1076                 list_move_tail(&shmem_swaplist, &info->swaplist);
1077
1078         gfp = mapping_gfp_mask(mapping);
1079         if (shmem_should_replace_page(*pagep, gfp)) {
1080                 mutex_unlock(&shmem_swaplist_mutex);
1081                 error = shmem_replace_page(pagep, gfp, info, index);
1082                 mutex_lock(&shmem_swaplist_mutex);
1083                 /*
1084                  * We needed to drop mutex to make that restrictive page
1085                  * allocation, but the inode might have been freed while we
1086                  * dropped it: although a racing shmem_evict_inode() cannot
1087                  * complete without emptying the radix_tree, our page lock
1088                  * on this swapcache page is not enough to prevent that -
1089                  * free_swap_and_cache() of our swap entry will only
1090                  * trylock_page(), removing swap from radix_tree whatever.
1091                  *
1092                  * We must not proceed to shmem_add_to_page_cache() if the
1093                  * inode has been freed, but of course we cannot rely on
1094                  * inode or mapping or info to check that.  However, we can
1095                  * safely check if our swap entry is still in use (and here
1096                  * it can't have got reused for another page): if it's still
1097                  * in use, then the inode cannot have been freed yet, and we
1098                  * can safely proceed (if it's no longer in use, that tells
1099                  * nothing about the inode, but we don't need to unuse swap).
1100                  */
1101                 if (!page_swapcount(*pagep))
1102                         error = -ENOENT;
1103         }
1104
1105         /*
1106          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1107          * but also to hold up shmem_evict_inode(): so inode cannot be freed
1108          * beneath us (pagelock doesn't help until the page is in pagecache).
1109          */
1110         if (!error)
1111                 error = shmem_add_to_page_cache(*pagep, mapping, index,
1112                                                 radswap);
1113         if (error != -ENOMEM) {
1114                 /*
1115                  * Truncation and eviction use free_swap_and_cache(), which
1116                  * only does trylock page: if we raced, best clean up here.
1117                  */
1118                 delete_from_swap_cache(*pagep);
1119                 set_page_dirty(*pagep);
1120                 if (!error) {
1121                         spin_lock_irq(&info->lock);
1122                         info->swapped--;
1123                         spin_unlock_irq(&info->lock);
1124                         swap_free(swap);
1125                 }
1126         }
1127         return error;
1128 }
1129
1130 /*
1131  * Search through swapped inodes to find and replace swap by page.
1132  */
1133 int shmem_unuse(swp_entry_t swap, struct page *page)
1134 {
1135         struct list_head *this, *next;
1136         struct shmem_inode_info *info;
1137         struct mem_cgroup *memcg;
1138         int error = 0;
1139
1140         /*
1141          * There's a faint possibility that swap page was replaced before
1142          * caller locked it: caller will come back later with the right page.
1143          */
1144         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1145                 goto out;
1146
1147         /*
1148          * Charge page using GFP_KERNEL while we can wait, before taking
1149          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1150          * Charged back to the user (not to caller) when swap account is used.
1151          */
1152         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1153                         false);
1154         if (error)
1155                 goto out;
1156         /* No radix_tree_preload: swap entry keeps a place for page in tree */
1157         error = -EAGAIN;
1158
1159         mutex_lock(&shmem_swaplist_mutex);
1160         list_for_each_safe(this, next, &shmem_swaplist) {
1161                 info = list_entry(this, struct shmem_inode_info, swaplist);
1162                 if (info->swapped)
1163                         error = shmem_unuse_inode(info, swap, &page);
1164                 else
1165                         list_del_init(&info->swaplist);
1166                 cond_resched();
1167                 if (error != -EAGAIN)
1168                         break;
1169                 /* found nothing in this: move on to search the next */
1170         }
1171         mutex_unlock(&shmem_swaplist_mutex);
1172
1173         if (error) {
1174                 if (error != -ENOMEM)
1175                         error = 0;
1176                 mem_cgroup_cancel_charge(page, memcg, false);
1177         } else
1178                 mem_cgroup_commit_charge(page, memcg, true, false);
1179 out:
1180         unlock_page(page);
1181         put_page(page);
1182         return error;
1183 }
1184
1185 /*
1186  * Move the page from the page cache to the swap cache.
1187  */
1188 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1189 {
1190         struct shmem_inode_info *info;
1191         struct address_space *mapping;
1192         struct inode *inode;
1193         swp_entry_t swap;
1194         pgoff_t index;
1195
1196         VM_BUG_ON_PAGE(PageCompound(page), page);
1197         BUG_ON(!PageLocked(page));
1198         mapping = page->mapping;
1199         index = page->index;
1200         inode = mapping->host;
1201         info = SHMEM_I(inode);
1202         if (info->flags & VM_LOCKED)
1203                 goto redirty;
1204         if (!total_swap_pages)
1205                 goto redirty;
1206
1207         /*
1208          * Our capabilities prevent regular writeback or sync from ever calling
1209          * shmem_writepage; but a stacking filesystem might use ->writepage of
1210          * its underlying filesystem, in which case tmpfs should write out to
1211          * swap only in response to memory pressure, and not for the writeback
1212          * threads or sync.
1213          */
1214         if (!wbc->for_reclaim) {
1215                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1216                 goto redirty;
1217         }
1218
1219         /*
1220          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1221          * value into swapfile.c, the only way we can correctly account for a
1222          * fallocated page arriving here is now to initialize it and write it.
1223          *
1224          * That's okay for a page already fallocated earlier, but if we have
1225          * not yet completed the fallocation, then (a) we want to keep track
1226          * of this page in case we have to undo it, and (b) it may not be a
1227          * good idea to continue anyway, once we're pushing into swap.  So
1228          * reactivate the page, and let shmem_fallocate() quit when too many.
1229          */
1230         if (!PageUptodate(page)) {
1231                 if (inode->i_private) {
1232                         struct shmem_falloc *shmem_falloc;
1233                         spin_lock(&inode->i_lock);
1234                         shmem_falloc = inode->i_private;
1235                         if (shmem_falloc &&
1236                             !shmem_falloc->waitq &&
1237                             index >= shmem_falloc->start &&
1238                             index < shmem_falloc->next)
1239                                 shmem_falloc->nr_unswapped++;
1240                         else
1241                                 shmem_falloc = NULL;
1242                         spin_unlock(&inode->i_lock);
1243                         if (shmem_falloc)
1244                                 goto redirty;
1245                 }
1246                 clear_highpage(page);
1247                 flush_dcache_page(page);
1248                 SetPageUptodate(page);
1249         }
1250
1251         swap = get_swap_page();
1252         if (!swap.val)
1253                 goto redirty;
1254
1255         if (mem_cgroup_try_charge_swap(page, swap))
1256                 goto free_swap;
1257
1258         /*
1259          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1260          * if it's not already there.  Do it now before the page is
1261          * moved to swap cache, when its pagelock no longer protects
1262          * the inode from eviction.  But don't unlock the mutex until
1263          * we've incremented swapped, because shmem_unuse_inode() will
1264          * prune a !swapped inode from the swaplist under this mutex.
1265          */
1266         mutex_lock(&shmem_swaplist_mutex);
1267         if (list_empty(&info->swaplist))
1268                 list_add_tail(&info->swaplist, &shmem_swaplist);
1269
1270         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1271                 spin_lock_irq(&info->lock);
1272                 shmem_recalc_inode(inode);
1273                 info->swapped++;
1274                 spin_unlock_irq(&info->lock);
1275
1276                 swap_shmem_alloc(swap);
1277                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1278
1279                 mutex_unlock(&shmem_swaplist_mutex);
1280                 BUG_ON(page_mapped(page));
1281                 swap_writepage(page, wbc);
1282                 return 0;
1283         }
1284
1285         mutex_unlock(&shmem_swaplist_mutex);
1286 free_swap:
1287         swapcache_free(swap);
1288 redirty:
1289         set_page_dirty(page);
1290         if (wbc->for_reclaim)
1291                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1292         unlock_page(page);
1293         return 0;
1294 }
1295
1296 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1297 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1298 {
1299         char buffer[64];
1300
1301         if (!mpol || mpol->mode == MPOL_DEFAULT)
1302                 return;         /* show nothing */
1303
1304         mpol_to_str(buffer, sizeof(buffer), mpol);
1305
1306         seq_printf(seq, ",mpol=%s", buffer);
1307 }
1308
1309 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1310 {
1311         struct mempolicy *mpol = NULL;
1312         if (sbinfo->mpol) {
1313                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1314                 mpol = sbinfo->mpol;
1315                 mpol_get(mpol);
1316                 spin_unlock(&sbinfo->stat_lock);
1317         }
1318         return mpol;
1319 }
1320 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1321 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1322 {
1323 }
1324 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1325 {
1326         return NULL;
1327 }
1328 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1329 #ifndef CONFIG_NUMA
1330 #define vm_policy vm_private_data
1331 #endif
1332
1333 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1334                 struct shmem_inode_info *info, pgoff_t index)
1335 {
1336         /* Create a pseudo vma that just contains the policy */
1337         vma->vm_start = 0;
1338         /* Bias interleave by inode number to distribute better across nodes */
1339         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1340         vma->vm_ops = NULL;
1341         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1342 }
1343
1344 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1345 {
1346         /* Drop reference taken by mpol_shared_policy_lookup() */
1347         mpol_cond_put(vma->vm_policy);
1348 }
1349
1350 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1351                         struct shmem_inode_info *info, pgoff_t index)
1352 {
1353         struct vm_area_struct pvma;
1354         struct page *page;
1355
1356         shmem_pseudo_vma_init(&pvma, info, index);
1357         page = swapin_readahead(swap, gfp, &pvma, 0);
1358         shmem_pseudo_vma_destroy(&pvma);
1359
1360         return page;
1361 }
1362
1363 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1364                 struct shmem_inode_info *info, pgoff_t index)
1365 {
1366         struct vm_area_struct pvma;
1367         struct inode *inode = &info->vfs_inode;
1368         struct address_space *mapping = inode->i_mapping;
1369         pgoff_t idx, hindex;
1370         void __rcu **results;
1371         struct page *page;
1372
1373         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1374                 return NULL;
1375
1376         hindex = round_down(index, HPAGE_PMD_NR);
1377         rcu_read_lock();
1378         if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1379                                 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1380                 rcu_read_unlock();
1381                 return NULL;
1382         }
1383         rcu_read_unlock();
1384
1385         shmem_pseudo_vma_init(&pvma, info, hindex);
1386         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1387                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1388         shmem_pseudo_vma_destroy(&pvma);
1389         if (page)
1390                 prep_transhuge_page(page);
1391         return page;
1392 }
1393
1394 static struct page *shmem_alloc_page(gfp_t gfp,
1395                         struct shmem_inode_info *info, pgoff_t index)
1396 {
1397         struct vm_area_struct pvma;
1398         struct page *page;
1399
1400         shmem_pseudo_vma_init(&pvma, info, index);
1401         page = alloc_page_vma(gfp, &pvma, 0);
1402         shmem_pseudo_vma_destroy(&pvma);
1403
1404         return page;
1405 }
1406
1407 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1408                 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1409                 pgoff_t index, bool huge)
1410 {
1411         struct page *page;
1412         int nr;
1413         int err = -ENOSPC;
1414
1415         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1416                 huge = false;
1417         nr = huge ? HPAGE_PMD_NR : 1;
1418
1419         if (shmem_acct_block(info->flags, nr))
1420                 goto failed;
1421         if (sbinfo->max_blocks) {
1422                 if (percpu_counter_compare(&sbinfo->used_blocks,
1423                                         sbinfo->max_blocks - nr) > 0)
1424                         goto unacct;
1425                 percpu_counter_add(&sbinfo->used_blocks, nr);
1426         }
1427
1428         if (huge)
1429                 page = shmem_alloc_hugepage(gfp, info, index);
1430         else
1431                 page = shmem_alloc_page(gfp, info, index);
1432         if (page) {
1433                 __SetPageLocked(page);
1434                 __SetPageSwapBacked(page);
1435                 return page;
1436         }
1437
1438         err = -ENOMEM;
1439         if (sbinfo->max_blocks)
1440                 percpu_counter_add(&sbinfo->used_blocks, -nr);
1441 unacct:
1442         shmem_unacct_blocks(info->flags, nr);
1443 failed:
1444         return ERR_PTR(err);
1445 }
1446
1447 /*
1448  * When a page is moved from swapcache to shmem filecache (either by the
1449  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1450  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1451  * ignorance of the mapping it belongs to.  If that mapping has special
1452  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1453  * we may need to copy to a suitable page before moving to filecache.
1454  *
1455  * In a future release, this may well be extended to respect cpuset and
1456  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1457  * but for now it is a simple matter of zone.
1458  */
1459 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1460 {
1461         return page_zonenum(page) > gfp_zone(gfp);
1462 }
1463
1464 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1465                                 struct shmem_inode_info *info, pgoff_t index)
1466 {
1467         struct page *oldpage, *newpage;
1468         struct address_space *swap_mapping;
1469         pgoff_t swap_index;
1470         int error;
1471
1472         oldpage = *pagep;
1473         swap_index = page_private(oldpage);
1474         swap_mapping = page_mapping(oldpage);
1475
1476         /*
1477          * We have arrived here because our zones are constrained, so don't
1478          * limit chance of success by further cpuset and node constraints.
1479          */
1480         gfp &= ~GFP_CONSTRAINT_MASK;
1481         newpage = shmem_alloc_page(gfp, info, index);
1482         if (!newpage)
1483                 return -ENOMEM;
1484
1485         get_page(newpage);
1486         copy_highpage(newpage, oldpage);
1487         flush_dcache_page(newpage);
1488
1489         __SetPageLocked(newpage);
1490         __SetPageSwapBacked(newpage);
1491         SetPageUptodate(newpage);
1492         set_page_private(newpage, swap_index);
1493         SetPageSwapCache(newpage);
1494
1495         /*
1496          * Our caller will very soon move newpage out of swapcache, but it's
1497          * a nice clean interface for us to replace oldpage by newpage there.
1498          */
1499         spin_lock_irq(&swap_mapping->tree_lock);
1500         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1501                                                                    newpage);
1502         if (!error) {
1503                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1504                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1505         }
1506         spin_unlock_irq(&swap_mapping->tree_lock);
1507
1508         if (unlikely(error)) {
1509                 /*
1510                  * Is this possible?  I think not, now that our callers check
1511                  * both PageSwapCache and page_private after getting page lock;
1512                  * but be defensive.  Reverse old to newpage for clear and free.
1513                  */
1514                 oldpage = newpage;
1515         } else {
1516                 mem_cgroup_migrate(oldpage, newpage);
1517                 lru_cache_add_anon(newpage);
1518                 *pagep = newpage;
1519         }
1520
1521         ClearPageSwapCache(oldpage);
1522         set_page_private(oldpage, 0);
1523
1524         unlock_page(oldpage);
1525         put_page(oldpage);
1526         put_page(oldpage);
1527         return error;
1528 }
1529
1530 /*
1531  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1532  *
1533  * If we allocate a new one we do not mark it dirty. That's up to the
1534  * vm. If we swap it in we mark it dirty since we also free the swap
1535  * entry since a page cannot live in both the swap and page cache.
1536  *
1537  * fault_mm and fault_type are only supplied by shmem_fault:
1538  * otherwise they are NULL.
1539  */
1540 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1541         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1542         struct mm_struct *fault_mm, int *fault_type)
1543 {
1544         struct address_space *mapping = inode->i_mapping;
1545         struct shmem_inode_info *info = SHMEM_I(inode);
1546         struct shmem_sb_info *sbinfo;
1547         struct mm_struct *charge_mm;
1548         struct mem_cgroup *memcg;
1549         struct page *page;
1550         swp_entry_t swap;
1551         enum sgp_type sgp_huge = sgp;
1552         pgoff_t hindex = index;
1553         int error;
1554         int once = 0;
1555         int alloced = 0;
1556
1557         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1558                 return -EFBIG;
1559         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1560                 sgp = SGP_CACHE;
1561 repeat:
1562         swap.val = 0;
1563         page = find_lock_entry(mapping, index);
1564         if (radix_tree_exceptional_entry(page)) {
1565                 swap = radix_to_swp_entry(page);
1566                 page = NULL;
1567         }
1568
1569         if (sgp <= SGP_CACHE &&
1570             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1571                 error = -EINVAL;
1572                 goto unlock;
1573         }
1574
1575         if (page && sgp == SGP_WRITE)
1576                 mark_page_accessed(page);
1577
1578         /* fallocated page? */
1579         if (page && !PageUptodate(page)) {
1580                 if (sgp != SGP_READ)
1581                         goto clear;
1582                 unlock_page(page);
1583                 put_page(page);
1584                 page = NULL;
1585         }
1586         if (page || (sgp == SGP_READ && !swap.val)) {
1587                 *pagep = page;
1588                 return 0;
1589         }
1590
1591         /*
1592          * Fast cache lookup did not find it:
1593          * bring it back from swap or allocate.
1594          */
1595         sbinfo = SHMEM_SB(inode->i_sb);
1596         charge_mm = fault_mm ? : current->mm;
1597
1598         if (swap.val) {
1599                 /* Look it up and read it in.. */
1600                 page = lookup_swap_cache(swap);
1601                 if (!page) {
1602                         /* Or update major stats only when swapin succeeds?? */
1603                         if (fault_type) {
1604                                 *fault_type |= VM_FAULT_MAJOR;
1605                                 count_vm_event(PGMAJFAULT);
1606                                 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1607                         }
1608                         /* Here we actually start the io */
1609                         page = shmem_swapin(swap, gfp, info, index);
1610                         if (!page) {
1611                                 error = -ENOMEM;
1612                                 goto failed;
1613                         }
1614                 }
1615
1616                 /* We have to do this with page locked to prevent races */
1617                 lock_page(page);
1618                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1619                     !shmem_confirm_swap(mapping, index, swap)) {
1620                         error = -EEXIST;        /* try again */
1621                         goto unlock;
1622                 }
1623                 if (!PageUptodate(page)) {
1624                         error = -EIO;
1625                         goto failed;
1626                 }
1627                 wait_on_page_writeback(page);
1628
1629                 if (shmem_should_replace_page(page, gfp)) {
1630                         error = shmem_replace_page(&page, gfp, info, index);
1631                         if (error)
1632                                 goto failed;
1633                 }
1634
1635                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1636                                 false);
1637                 if (!error) {
1638                         error = shmem_add_to_page_cache(page, mapping, index,
1639                                                 swp_to_radix_entry(swap));
1640                         /*
1641                          * We already confirmed swap under page lock, and make
1642                          * no memory allocation here, so usually no possibility
1643                          * of error; but free_swap_and_cache() only trylocks a
1644                          * page, so it is just possible that the entry has been
1645                          * truncated or holepunched since swap was confirmed.
1646                          * shmem_undo_range() will have done some of the
1647                          * unaccounting, now delete_from_swap_cache() will do
1648                          * the rest.
1649                          * Reset swap.val? No, leave it so "failed" goes back to
1650                          * "repeat": reading a hole and writing should succeed.
1651                          */
1652                         if (error) {
1653                                 mem_cgroup_cancel_charge(page, memcg, false);
1654                                 delete_from_swap_cache(page);
1655                         }
1656                 }
1657                 if (error)
1658                         goto failed;
1659
1660                 mem_cgroup_commit_charge(page, memcg, true, false);
1661
1662                 spin_lock_irq(&info->lock);
1663                 info->swapped--;
1664                 shmem_recalc_inode(inode);
1665                 spin_unlock_irq(&info->lock);
1666
1667                 if (sgp == SGP_WRITE)
1668                         mark_page_accessed(page);
1669
1670                 delete_from_swap_cache(page);
1671                 set_page_dirty(page);
1672                 swap_free(swap);
1673
1674         } else {
1675                 /* shmem_symlink() */
1676                 if (mapping->a_ops != &shmem_aops)
1677                         goto alloc_nohuge;
1678                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1679                         goto alloc_nohuge;
1680                 if (shmem_huge == SHMEM_HUGE_FORCE)
1681                         goto alloc_huge;
1682                 switch (sbinfo->huge) {
1683                         loff_t i_size;
1684                         pgoff_t off;
1685                 case SHMEM_HUGE_NEVER:
1686                         goto alloc_nohuge;
1687                 case SHMEM_HUGE_WITHIN_SIZE:
1688                         off = round_up(index, HPAGE_PMD_NR);
1689                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1690                         if (i_size >= HPAGE_PMD_SIZE &&
1691                                         i_size >> PAGE_SHIFT >= off)
1692                                 goto alloc_huge;
1693                         /* fallthrough */
1694                 case SHMEM_HUGE_ADVISE:
1695                         if (sgp_huge == SGP_HUGE)
1696                                 goto alloc_huge;
1697                         /* TODO: implement fadvise() hints */
1698                         goto alloc_nohuge;
1699                 }
1700
1701 alloc_huge:
1702                 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1703                                 index, true);
1704                 if (IS_ERR(page)) {
1705 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1706                                         index, false);
1707                 }
1708                 if (IS_ERR(page)) {
1709                         int retry = 5;
1710                         error = PTR_ERR(page);
1711                         page = NULL;
1712                         if (error != -ENOSPC)
1713                                 goto failed;
1714                         /*
1715                          * Try to reclaim some spece by splitting a huge page
1716                          * beyond i_size on the filesystem.
1717                          */
1718                         while (retry--) {
1719                                 int ret;
1720                                 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1721                                 if (ret == SHRINK_STOP)
1722                                         break;
1723                                 if (ret)
1724                                         goto alloc_nohuge;
1725                         }
1726                         goto failed;
1727                 }
1728
1729                 if (PageTransHuge(page))
1730                         hindex = round_down(index, HPAGE_PMD_NR);
1731                 else
1732                         hindex = index;
1733
1734                 if (sgp == SGP_WRITE)
1735                         __SetPageReferenced(page);
1736
1737                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1738                                 PageTransHuge(page));
1739                 if (error)
1740                         goto unacct;
1741                 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1742                                 compound_order(page));
1743                 if (!error) {
1744                         error = shmem_add_to_page_cache(page, mapping, hindex,
1745                                                         NULL);
1746                         radix_tree_preload_end();
1747                 }
1748                 if (error) {
1749                         mem_cgroup_cancel_charge(page, memcg,
1750                                         PageTransHuge(page));
1751                         goto unacct;
1752                 }
1753                 mem_cgroup_commit_charge(page, memcg, false,
1754                                 PageTransHuge(page));
1755                 lru_cache_add_anon(page);
1756
1757                 spin_lock_irq(&info->lock);
1758                 info->alloced += 1 << compound_order(page);
1759                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1760                 shmem_recalc_inode(inode);
1761                 spin_unlock_irq(&info->lock);
1762                 alloced = true;
1763
1764                 if (PageTransHuge(page) &&
1765                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1766                                 hindex + HPAGE_PMD_NR - 1) {
1767                         /*
1768                          * Part of the huge page is beyond i_size: subject
1769                          * to shrink under memory pressure.
1770                          */
1771                         spin_lock(&sbinfo->shrinklist_lock);
1772                         if (list_empty(&info->shrinklist)) {
1773                                 list_add_tail(&info->shrinklist,
1774                                                 &sbinfo->shrinklist);
1775                                 sbinfo->shrinklist_len++;
1776                         }
1777                         spin_unlock(&sbinfo->shrinklist_lock);
1778                 }
1779
1780                 /*
1781                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1782                  */
1783                 if (sgp == SGP_FALLOC)
1784                         sgp = SGP_WRITE;
1785 clear:
1786                 /*
1787                  * Let SGP_WRITE caller clear ends if write does not fill page;
1788                  * but SGP_FALLOC on a page fallocated earlier must initialize
1789                  * it now, lest undo on failure cancel our earlier guarantee.
1790                  */
1791                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1792                         struct page *head = compound_head(page);
1793                         int i;
1794
1795                         for (i = 0; i < (1 << compound_order(head)); i++) {
1796                                 clear_highpage(head + i);
1797                                 flush_dcache_page(head + i);
1798                         }
1799                         SetPageUptodate(head);
1800                 }
1801         }
1802
1803         /* Perhaps the file has been truncated since we checked */
1804         if (sgp <= SGP_CACHE &&
1805             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1806                 if (alloced) {
1807                         ClearPageDirty(page);
1808                         delete_from_page_cache(page);
1809                         spin_lock_irq(&info->lock);
1810                         shmem_recalc_inode(inode);
1811                         spin_unlock_irq(&info->lock);
1812                 }
1813                 error = -EINVAL;
1814                 goto unlock;
1815         }
1816         *pagep = page + index - hindex;
1817         return 0;
1818
1819         /*
1820          * Error recovery.
1821          */
1822 unacct:
1823         if (sbinfo->max_blocks)
1824                 percpu_counter_sub(&sbinfo->used_blocks,
1825                                 1 << compound_order(page));
1826         shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1827
1828         if (PageTransHuge(page)) {
1829                 unlock_page(page);
1830                 put_page(page);
1831                 goto alloc_nohuge;
1832         }
1833 failed:
1834         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1835                 error = -EEXIST;
1836 unlock:
1837         if (page) {
1838                 unlock_page(page);
1839                 put_page(page);
1840         }
1841         if (error == -ENOSPC && !once++) {
1842                 spin_lock_irq(&info->lock);
1843                 shmem_recalc_inode(inode);
1844                 spin_unlock_irq(&info->lock);
1845                 goto repeat;
1846         }
1847         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1848                 goto repeat;
1849         return error;
1850 }
1851
1852 /*
1853  * This is like autoremove_wake_function, but it removes the wait queue
1854  * entry unconditionally - even if something else had already woken the
1855  * target.
1856  */
1857 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1858 {
1859         int ret = default_wake_function(wait, mode, sync, key);
1860         list_del_init(&wait->task_list);
1861         return ret;
1862 }
1863
1864 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1865 {
1866         struct inode *inode = file_inode(vma->vm_file);
1867         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1868         enum sgp_type sgp;
1869         int error;
1870         int ret = VM_FAULT_LOCKED;
1871
1872         /*
1873          * Trinity finds that probing a hole which tmpfs is punching can
1874          * prevent the hole-punch from ever completing: which in turn
1875          * locks writers out with its hold on i_mutex.  So refrain from
1876          * faulting pages into the hole while it's being punched.  Although
1877          * shmem_undo_range() does remove the additions, it may be unable to
1878          * keep up, as each new page needs its own unmap_mapping_range() call,
1879          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1880          *
1881          * It does not matter if we sometimes reach this check just before the
1882          * hole-punch begins, so that one fault then races with the punch:
1883          * we just need to make racing faults a rare case.
1884          *
1885          * The implementation below would be much simpler if we just used a
1886          * standard mutex or completion: but we cannot take i_mutex in fault,
1887          * and bloating every shmem inode for this unlikely case would be sad.
1888          */
1889         if (unlikely(inode->i_private)) {
1890                 struct shmem_falloc *shmem_falloc;
1891
1892                 spin_lock(&inode->i_lock);
1893                 shmem_falloc = inode->i_private;
1894                 if (shmem_falloc &&
1895                     shmem_falloc->waitq &&
1896                     vmf->pgoff >= shmem_falloc->start &&
1897                     vmf->pgoff < shmem_falloc->next) {
1898                         wait_queue_head_t *shmem_falloc_waitq;
1899                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1900
1901                         ret = VM_FAULT_NOPAGE;
1902                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1903                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1904                                 /* It's polite to up mmap_sem if we can */
1905                                 up_read(&vma->vm_mm->mmap_sem);
1906                                 ret = VM_FAULT_RETRY;
1907                         }
1908
1909                         shmem_falloc_waitq = shmem_falloc->waitq;
1910                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1911                                         TASK_UNINTERRUPTIBLE);
1912                         spin_unlock(&inode->i_lock);
1913                         schedule();
1914
1915                         /*
1916                          * shmem_falloc_waitq points into the shmem_fallocate()
1917                          * stack of the hole-punching task: shmem_falloc_waitq
1918                          * is usually invalid by the time we reach here, but
1919                          * finish_wait() does not dereference it in that case;
1920                          * though i_lock needed lest racing with wake_up_all().
1921                          */
1922                         spin_lock(&inode->i_lock);
1923                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1924                         spin_unlock(&inode->i_lock);
1925                         return ret;
1926                 }
1927                 spin_unlock(&inode->i_lock);
1928         }
1929
1930         sgp = SGP_CACHE;
1931         if (vma->vm_flags & VM_HUGEPAGE)
1932                 sgp = SGP_HUGE;
1933         else if (vma->vm_flags & VM_NOHUGEPAGE)
1934                 sgp = SGP_NOHUGE;
1935
1936         error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1937                                   gfp, vma->vm_mm, &ret);
1938         if (error)
1939                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1940         return ret;
1941 }
1942
1943 unsigned long shmem_get_unmapped_area(struct file *file,
1944                                       unsigned long uaddr, unsigned long len,
1945                                       unsigned long pgoff, unsigned long flags)
1946 {
1947         unsigned long (*get_area)(struct file *,
1948                 unsigned long, unsigned long, unsigned long, unsigned long);
1949         unsigned long addr;
1950         unsigned long offset;
1951         unsigned long inflated_len;
1952         unsigned long inflated_addr;
1953         unsigned long inflated_offset;
1954
1955         if (len > TASK_SIZE)
1956                 return -ENOMEM;
1957
1958         get_area = current->mm->get_unmapped_area;
1959         addr = get_area(file, uaddr, len, pgoff, flags);
1960
1961         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1962                 return addr;
1963         if (IS_ERR_VALUE(addr))
1964                 return addr;
1965         if (addr & ~PAGE_MASK)
1966                 return addr;
1967         if (addr > TASK_SIZE - len)
1968                 return addr;
1969
1970         if (shmem_huge == SHMEM_HUGE_DENY)
1971                 return addr;
1972         if (len < HPAGE_PMD_SIZE)
1973                 return addr;
1974         if (flags & MAP_FIXED)
1975                 return addr;
1976         /*
1977          * Our priority is to support MAP_SHARED mapped hugely;
1978          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1979          * But if caller specified an address hint, respect that as before.
1980          */
1981         if (uaddr)
1982                 return addr;
1983
1984         if (shmem_huge != SHMEM_HUGE_FORCE) {
1985                 struct super_block *sb;
1986
1987                 if (file) {
1988                         VM_BUG_ON(file->f_op != &shmem_file_operations);
1989                         sb = file_inode(file)->i_sb;
1990                 } else {
1991                         /*
1992                          * Called directly from mm/mmap.c, or drivers/char/mem.c
1993                          * for "/dev/zero", to create a shared anonymous object.
1994                          */
1995                         if (IS_ERR(shm_mnt))
1996                                 return addr;
1997                         sb = shm_mnt->mnt_sb;
1998                 }
1999                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2000                         return addr;
2001         }
2002
2003         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2004         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2005                 return addr;
2006         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2007                 return addr;
2008
2009         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2010         if (inflated_len > TASK_SIZE)
2011                 return addr;
2012         if (inflated_len < len)
2013                 return addr;
2014
2015         inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2016         if (IS_ERR_VALUE(inflated_addr))
2017                 return addr;
2018         if (inflated_addr & ~PAGE_MASK)
2019                 return addr;
2020
2021         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2022         inflated_addr += offset - inflated_offset;
2023         if (inflated_offset > offset)
2024                 inflated_addr += HPAGE_PMD_SIZE;
2025
2026         if (inflated_addr > TASK_SIZE - len)
2027                 return addr;
2028         return inflated_addr;
2029 }
2030
2031 #ifdef CONFIG_NUMA
2032 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2033 {
2034         struct inode *inode = file_inode(vma->vm_file);
2035         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2036 }
2037
2038 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2039                                           unsigned long addr)
2040 {
2041         struct inode *inode = file_inode(vma->vm_file);
2042         pgoff_t index;
2043
2044         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2045         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2046 }
2047 #endif
2048
2049 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2050 {
2051         struct inode *inode = file_inode(file);
2052         struct shmem_inode_info *info = SHMEM_I(inode);
2053         int retval = -ENOMEM;
2054
2055         spin_lock_irq(&info->lock);
2056         if (lock && !(info->flags & VM_LOCKED)) {
2057                 if (!user_shm_lock(inode->i_size, user))
2058                         goto out_nomem;
2059                 info->flags |= VM_LOCKED;
2060                 mapping_set_unevictable(file->f_mapping);
2061         }
2062         if (!lock && (info->flags & VM_LOCKED) && user) {
2063                 user_shm_unlock(inode->i_size, user);
2064                 info->flags &= ~VM_LOCKED;
2065                 mapping_clear_unevictable(file->f_mapping);
2066         }
2067         retval = 0;
2068
2069 out_nomem:
2070         spin_unlock_irq(&info->lock);
2071         return retval;
2072 }
2073
2074 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2075 {
2076         file_accessed(file);
2077         vma->vm_ops = &shmem_vm_ops;
2078         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2079                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2080                         (vma->vm_end & HPAGE_PMD_MASK)) {
2081                 khugepaged_enter(vma, vma->vm_flags);
2082         }
2083         return 0;
2084 }
2085
2086 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2087                                      umode_t mode, dev_t dev, unsigned long flags)
2088 {
2089         struct inode *inode;
2090         struct shmem_inode_info *info;
2091         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2092
2093         if (shmem_reserve_inode(sb))
2094                 return NULL;
2095
2096         inode = new_inode(sb);
2097         if (inode) {
2098                 inode->i_ino = get_next_ino();
2099                 inode_init_owner(inode, dir, mode);
2100                 inode->i_blocks = 0;
2101                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2102                 inode->i_generation = get_seconds();
2103                 info = SHMEM_I(inode);
2104                 memset(info, 0, (char *)inode - (char *)info);
2105                 spin_lock_init(&info->lock);
2106                 info->seals = F_SEAL_SEAL;
2107                 info->flags = flags & VM_NORESERVE;
2108                 INIT_LIST_HEAD(&info->shrinklist);
2109                 INIT_LIST_HEAD(&info->swaplist);
2110                 simple_xattrs_init(&info->xattrs);
2111                 cache_no_acl(inode);
2112
2113                 switch (mode & S_IFMT) {
2114                 default:
2115                         inode->i_op = &shmem_special_inode_operations;
2116                         init_special_inode(inode, mode, dev);
2117                         break;
2118                 case S_IFREG:
2119                         inode->i_mapping->a_ops = &shmem_aops;
2120                         inode->i_op = &shmem_inode_operations;
2121                         inode->i_fop = &shmem_file_operations;
2122                         mpol_shared_policy_init(&info->policy,
2123                                                  shmem_get_sbmpol(sbinfo));
2124                         break;
2125                 case S_IFDIR:
2126                         inc_nlink(inode);
2127                         /* Some things misbehave if size == 0 on a directory */
2128                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2129                         inode->i_op = &shmem_dir_inode_operations;
2130                         inode->i_fop = &simple_dir_operations;
2131                         break;
2132                 case S_IFLNK:
2133                         /*
2134                          * Must not load anything in the rbtree,
2135                          * mpol_free_shared_policy will not be called.
2136                          */
2137                         mpol_shared_policy_init(&info->policy, NULL);
2138                         break;
2139                 }
2140         } else
2141                 shmem_free_inode(sb);
2142         return inode;
2143 }
2144
2145 bool shmem_mapping(struct address_space *mapping)
2146 {
2147         if (!mapping->host)
2148                 return false;
2149
2150         return mapping->host->i_sb->s_op == &shmem_ops;
2151 }
2152
2153 #ifdef CONFIG_TMPFS
2154 static const struct inode_operations shmem_symlink_inode_operations;
2155 static const struct inode_operations shmem_short_symlink_operations;
2156
2157 #ifdef CONFIG_TMPFS_XATTR
2158 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2159 #else
2160 #define shmem_initxattrs NULL
2161 #endif
2162
2163 static int
2164 shmem_write_begin(struct file *file, struct address_space *mapping,
2165                         loff_t pos, unsigned len, unsigned flags,
2166                         struct page **pagep, void **fsdata)
2167 {
2168         struct inode *inode = mapping->host;
2169         struct shmem_inode_info *info = SHMEM_I(inode);
2170         pgoff_t index = pos >> PAGE_SHIFT;
2171
2172         /* i_mutex is held by caller */
2173         if (unlikely(info->seals)) {
2174                 if (info->seals & F_SEAL_WRITE)
2175                         return -EPERM;
2176                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2177                         return -EPERM;
2178         }
2179
2180         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2181 }
2182
2183 static int
2184 shmem_write_end(struct file *file, struct address_space *mapping,
2185                         loff_t pos, unsigned len, unsigned copied,
2186                         struct page *page, void *fsdata)
2187 {
2188         struct inode *inode = mapping->host;
2189
2190         if (pos + copied > inode->i_size)
2191                 i_size_write(inode, pos + copied);
2192
2193         if (!PageUptodate(page)) {
2194                 struct page *head = compound_head(page);
2195                 if (PageTransCompound(page)) {
2196                         int i;
2197
2198                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2199                                 if (head + i == page)
2200                                         continue;
2201                                 clear_highpage(head + i);
2202                                 flush_dcache_page(head + i);
2203                         }
2204                 }
2205                 if (copied < PAGE_SIZE) {
2206                         unsigned from = pos & (PAGE_SIZE - 1);
2207                         zero_user_segments(page, 0, from,
2208                                         from + copied, PAGE_SIZE);
2209                 }
2210                 SetPageUptodate(head);
2211         }
2212         set_page_dirty(page);
2213         unlock_page(page);
2214         put_page(page);
2215
2216         return copied;
2217 }
2218
2219 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2220 {
2221         struct file *file = iocb->ki_filp;
2222         struct inode *inode = file_inode(file);
2223         struct address_space *mapping = inode->i_mapping;
2224         pgoff_t index;
2225         unsigned long offset;
2226         enum sgp_type sgp = SGP_READ;
2227         int error = 0;
2228         ssize_t retval = 0;
2229         loff_t *ppos = &iocb->ki_pos;
2230
2231         /*
2232          * Might this read be for a stacking filesystem?  Then when reading
2233          * holes of a sparse file, we actually need to allocate those pages,
2234          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2235          */
2236         if (!iter_is_iovec(to))
2237                 sgp = SGP_CACHE;
2238
2239         index = *ppos >> PAGE_SHIFT;
2240         offset = *ppos & ~PAGE_MASK;
2241
2242         for (;;) {
2243                 struct page *page = NULL;
2244                 pgoff_t end_index;
2245                 unsigned long nr, ret;
2246                 loff_t i_size = i_size_read(inode);
2247
2248                 end_index = i_size >> PAGE_SHIFT;
2249                 if (index > end_index)
2250                         break;
2251                 if (index == end_index) {
2252                         nr = i_size & ~PAGE_MASK;
2253                         if (nr <= offset)
2254                                 break;
2255                 }
2256
2257                 error = shmem_getpage(inode, index, &page, sgp);
2258                 if (error) {
2259                         if (error == -EINVAL)
2260                                 error = 0;
2261                         break;
2262                 }
2263                 if (page) {
2264                         if (sgp == SGP_CACHE)
2265                                 set_page_dirty(page);
2266                         unlock_page(page);
2267                 }
2268
2269                 /*
2270                  * We must evaluate after, since reads (unlike writes)
2271                  * are called without i_mutex protection against truncate
2272                  */
2273                 nr = PAGE_SIZE;
2274                 i_size = i_size_read(inode);
2275                 end_index = i_size >> PAGE_SHIFT;
2276                 if (index == end_index) {
2277                         nr = i_size & ~PAGE_MASK;
2278                         if (nr <= offset) {
2279                                 if (page)
2280                                         put_page(page);
2281                                 break;
2282                         }
2283                 }
2284                 nr -= offset;
2285
2286                 if (page) {
2287                         /*
2288                          * If users can be writing to this page using arbitrary
2289                          * virtual addresses, take care about potential aliasing
2290                          * before reading the page on the kernel side.
2291                          */
2292                         if (mapping_writably_mapped(mapping))
2293                                 flush_dcache_page(page);
2294                         /*
2295                          * Mark the page accessed if we read the beginning.
2296                          */
2297                         if (!offset)
2298                                 mark_page_accessed(page);
2299                 } else {
2300                         page = ZERO_PAGE(0);
2301                         get_page(page);
2302                 }
2303
2304                 /*
2305                  * Ok, we have the page, and it's up-to-date, so
2306                  * now we can copy it to user space...
2307                  */
2308                 ret = copy_page_to_iter(page, offset, nr, to);
2309                 retval += ret;
2310                 offset += ret;
2311                 index += offset >> PAGE_SHIFT;
2312                 offset &= ~PAGE_MASK;
2313
2314                 put_page(page);
2315                 if (!iov_iter_count(to))
2316                         break;
2317                 if (ret < nr) {
2318                         error = -EFAULT;
2319                         break;
2320                 }
2321                 cond_resched();
2322         }
2323
2324         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2325         file_accessed(file);
2326         return retval ? retval : error;
2327 }
2328
2329 /*
2330  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2331  */
2332 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2333                                     pgoff_t index, pgoff_t end, int whence)
2334 {
2335         struct page *page;
2336         struct pagevec pvec;
2337         pgoff_t indices[PAGEVEC_SIZE];
2338         bool done = false;
2339         int i;
2340
2341         pagevec_init(&pvec, 0);
2342         pvec.nr = 1;            /* start small: we may be there already */
2343         while (!done) {
2344                 pvec.nr = find_get_entries(mapping, index,
2345                                         pvec.nr, pvec.pages, indices);
2346                 if (!pvec.nr) {
2347                         if (whence == SEEK_DATA)
2348                                 index = end;
2349                         break;
2350                 }
2351                 for (i = 0; i < pvec.nr; i++, index++) {
2352                         if (index < indices[i]) {
2353                                 if (whence == SEEK_HOLE) {
2354                                         done = true;
2355                                         break;
2356                                 }
2357                                 index = indices[i];
2358                         }
2359                         page = pvec.pages[i];
2360                         if (page && !radix_tree_exceptional_entry(page)) {
2361                                 if (!PageUptodate(page))
2362                                         page = NULL;
2363                         }
2364                         if (index >= end ||
2365                             (page && whence == SEEK_DATA) ||
2366                             (!page && whence == SEEK_HOLE)) {
2367                                 done = true;
2368                                 break;
2369                         }
2370                 }
2371                 pagevec_remove_exceptionals(&pvec);
2372                 pagevec_release(&pvec);
2373                 pvec.nr = PAGEVEC_SIZE;
2374                 cond_resched();
2375         }
2376         return index;
2377 }
2378
2379 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2380 {
2381         struct address_space *mapping = file->f_mapping;
2382         struct inode *inode = mapping->host;
2383         pgoff_t start, end;
2384         loff_t new_offset;
2385
2386         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2387                 return generic_file_llseek_size(file, offset, whence,
2388                                         MAX_LFS_FILESIZE, i_size_read(inode));
2389         inode_lock(inode);
2390         /* We're holding i_mutex so we can access i_size directly */
2391
2392         if (offset < 0)
2393                 offset = -EINVAL;
2394         else if (offset >= inode->i_size)
2395                 offset = -ENXIO;
2396         else {
2397                 start = offset >> PAGE_SHIFT;
2398                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2399                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2400                 new_offset <<= PAGE_SHIFT;
2401                 if (new_offset > offset) {
2402                         if (new_offset < inode->i_size)
2403                                 offset = new_offset;
2404                         else if (whence == SEEK_DATA)
2405                                 offset = -ENXIO;
2406                         else
2407                                 offset = inode->i_size;
2408                 }
2409         }
2410
2411         if (offset >= 0)
2412                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2413         inode_unlock(inode);
2414         return offset;
2415 }
2416
2417 /*
2418  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2419  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2420  */
2421 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2422 #define LAST_SCAN               4       /* about 150ms max */
2423
2424 static void shmem_tag_pins(struct address_space *mapping)
2425 {
2426         struct radix_tree_iter iter;
2427         void **slot;
2428         pgoff_t start;
2429         struct page *page;
2430
2431         lru_add_drain();
2432         start = 0;
2433         rcu_read_lock();
2434
2435         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2436                 page = radix_tree_deref_slot(slot);
2437                 if (!page || radix_tree_exception(page)) {
2438                         if (radix_tree_deref_retry(page)) {
2439                                 slot = radix_tree_iter_retry(&iter);
2440                                 continue;
2441                         }
2442                 } else if (page_count(page) - page_mapcount(page) > 1) {
2443                         spin_lock_irq(&mapping->tree_lock);
2444                         radix_tree_tag_set(&mapping->page_tree, iter.index,
2445                                            SHMEM_TAG_PINNED);
2446                         spin_unlock_irq(&mapping->tree_lock);
2447                 }
2448
2449                 if (need_resched()) {
2450                         cond_resched_rcu();
2451                         slot = radix_tree_iter_next(&iter);
2452                 }
2453         }
2454         rcu_read_unlock();
2455 }
2456
2457 /*
2458  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2459  * via get_user_pages(), drivers might have some pending I/O without any active
2460  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2461  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2462  * them to be dropped.
2463  * The caller must guarantee that no new user will acquire writable references
2464  * to those pages to avoid races.
2465  */
2466 static int shmem_wait_for_pins(struct address_space *mapping)
2467 {
2468         struct radix_tree_iter iter;
2469         void **slot;
2470         pgoff_t start;
2471         struct page *page;
2472         int error, scan;
2473
2474         shmem_tag_pins(mapping);
2475
2476         error = 0;
2477         for (scan = 0; scan <= LAST_SCAN; scan++) {
2478                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2479                         break;
2480
2481                 if (!scan)
2482                         lru_add_drain_all();
2483                 else if (schedule_timeout_killable((HZ << scan) / 200))
2484                         scan = LAST_SCAN;
2485
2486                 start = 0;
2487                 rcu_read_lock();
2488                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2489                                            start, SHMEM_TAG_PINNED) {
2490
2491                         page = radix_tree_deref_slot(slot);
2492                         if (radix_tree_exception(page)) {
2493                                 if (radix_tree_deref_retry(page)) {
2494                                         slot = radix_tree_iter_retry(&iter);
2495                                         continue;
2496                                 }
2497
2498                                 page = NULL;
2499                         }
2500
2501                         if (page &&
2502                             page_count(page) - page_mapcount(page) != 1) {
2503                                 if (scan < LAST_SCAN)
2504                                         goto continue_resched;
2505
2506                                 /*
2507                                  * On the last scan, we clean up all those tags
2508                                  * we inserted; but make a note that we still
2509                                  * found pages pinned.
2510                                  */
2511                                 error = -EBUSY;
2512                         }
2513
2514                         spin_lock_irq(&mapping->tree_lock);
2515                         radix_tree_tag_clear(&mapping->page_tree,
2516                                              iter.index, SHMEM_TAG_PINNED);
2517                         spin_unlock_irq(&mapping->tree_lock);
2518 continue_resched:
2519                         if (need_resched()) {
2520                                 cond_resched_rcu();
2521                                 slot = radix_tree_iter_next(&iter);
2522                         }
2523                 }
2524                 rcu_read_unlock();
2525         }
2526
2527         return error;
2528 }
2529
2530 #define F_ALL_SEALS (F_SEAL_SEAL | \
2531                      F_SEAL_SHRINK | \
2532                      F_SEAL_GROW | \
2533                      F_SEAL_WRITE)
2534
2535 int shmem_add_seals(struct file *file, unsigned int seals)
2536 {
2537         struct inode *inode = file_inode(file);
2538         struct shmem_inode_info *info = SHMEM_I(inode);
2539         int error;
2540
2541         /*
2542          * SEALING
2543          * Sealing allows multiple parties to share a shmem-file but restrict
2544          * access to a specific subset of file operations. Seals can only be
2545          * added, but never removed. This way, mutually untrusted parties can
2546          * share common memory regions with a well-defined policy. A malicious
2547          * peer can thus never perform unwanted operations on a shared object.
2548          *
2549          * Seals are only supported on special shmem-files and always affect
2550          * the whole underlying inode. Once a seal is set, it may prevent some
2551          * kinds of access to the file. Currently, the following seals are
2552          * defined:
2553          *   SEAL_SEAL: Prevent further seals from being set on this file
2554          *   SEAL_SHRINK: Prevent the file from shrinking
2555          *   SEAL_GROW: Prevent the file from growing
2556          *   SEAL_WRITE: Prevent write access to the file
2557          *
2558          * As we don't require any trust relationship between two parties, we
2559          * must prevent seals from being removed. Therefore, sealing a file
2560          * only adds a given set of seals to the file, it never touches
2561          * existing seals. Furthermore, the "setting seals"-operation can be
2562          * sealed itself, which basically prevents any further seal from being
2563          * added.
2564          *
2565          * Semantics of sealing are only defined on volatile files. Only
2566          * anonymous shmem files support sealing. More importantly, seals are
2567          * never written to disk. Therefore, there's no plan to support it on
2568          * other file types.
2569          */
2570
2571         if (file->f_op != &shmem_file_operations)
2572                 return -EINVAL;
2573         if (!(file->f_mode & FMODE_WRITE))
2574                 return -EPERM;
2575         if (seals & ~(unsigned int)F_ALL_SEALS)
2576                 return -EINVAL;
2577
2578         inode_lock(inode);
2579
2580         if (info->seals & F_SEAL_SEAL) {
2581                 error = -EPERM;
2582                 goto unlock;
2583         }
2584
2585         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2586                 error = mapping_deny_writable(file->f_mapping);
2587                 if (error)
2588                         goto unlock;
2589
2590                 error = shmem_wait_for_pins(file->f_mapping);
2591                 if (error) {
2592                         mapping_allow_writable(file->f_mapping);
2593                         goto unlock;
2594                 }
2595         }
2596
2597         info->seals |= seals;
2598         error = 0;
2599
2600 unlock:
2601         inode_unlock(inode);
2602         return error;
2603 }
2604 EXPORT_SYMBOL_GPL(shmem_add_seals);
2605
2606 int shmem_get_seals(struct file *file)
2607 {
2608         if (file->f_op != &shmem_file_operations)
2609                 return -EINVAL;
2610
2611         return SHMEM_I(file_inode(file))->seals;
2612 }
2613 EXPORT_SYMBOL_GPL(shmem_get_seals);
2614
2615 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2616 {
2617         long error;
2618
2619         switch (cmd) {
2620         case F_ADD_SEALS:
2621                 /* disallow upper 32bit */
2622                 if (arg > UINT_MAX)
2623                         return -EINVAL;
2624
2625                 error = shmem_add_seals(file, arg);
2626                 break;
2627         case F_GET_SEALS:
2628                 error = shmem_get_seals(file);
2629                 break;
2630         default:
2631                 error = -EINVAL;
2632                 break;
2633         }
2634
2635         return error;
2636 }
2637
2638 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2639                                                          loff_t len)
2640 {
2641         struct inode *inode = file_inode(file);
2642         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2643         struct shmem_inode_info *info = SHMEM_I(inode);
2644         struct shmem_falloc shmem_falloc;
2645         pgoff_t start, index, end;
2646         int error;
2647
2648         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2649                 return -EOPNOTSUPP;
2650
2651         inode_lock(inode);
2652
2653         if (mode & FALLOC_FL_PUNCH_HOLE) {
2654                 struct address_space *mapping = file->f_mapping;
2655                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2656                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2657                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2658
2659                 /* protected by i_mutex */
2660                 if (info->seals & F_SEAL_WRITE) {
2661                         error = -EPERM;
2662                         goto out;
2663                 }
2664
2665                 shmem_falloc.waitq = &shmem_falloc_waitq;
2666                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2667                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2668                 spin_lock(&inode->i_lock);
2669                 inode->i_private = &shmem_falloc;
2670                 spin_unlock(&inode->i_lock);
2671
2672                 if ((u64)unmap_end > (u64)unmap_start)
2673                         unmap_mapping_range(mapping, unmap_start,
2674                                             1 + unmap_end - unmap_start, 0);
2675                 shmem_truncate_range(inode, offset, offset + len - 1);
2676                 /* No need to unmap again: hole-punching leaves COWed pages */
2677
2678                 spin_lock(&inode->i_lock);
2679                 inode->i_private = NULL;
2680                 wake_up_all(&shmem_falloc_waitq);
2681                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2682                 spin_unlock(&inode->i_lock);
2683                 error = 0;
2684                 goto out;
2685         }
2686
2687         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2688         error = inode_newsize_ok(inode, offset + len);
2689         if (error)
2690                 goto out;
2691
2692         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2693                 error = -EPERM;
2694                 goto out;
2695         }
2696
2697         start = offset >> PAGE_SHIFT;
2698         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699         /* Try to avoid a swapstorm if len is impossible to satisfy */
2700         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2701                 error = -ENOSPC;
2702                 goto out;
2703         }
2704
2705         shmem_falloc.waitq = NULL;
2706         shmem_falloc.start = start;
2707         shmem_falloc.next  = start;
2708         shmem_falloc.nr_falloced = 0;
2709         shmem_falloc.nr_unswapped = 0;
2710         spin_lock(&inode->i_lock);
2711         inode->i_private = &shmem_falloc;
2712         spin_unlock(&inode->i_lock);
2713
2714         for (index = start; index < end; index++) {
2715                 struct page *page;
2716
2717                 /*
2718                  * Good, the fallocate(2) manpage permits EINTR: we may have
2719                  * been interrupted because we are using up too much memory.
2720                  */
2721                 if (signal_pending(current))
2722                         error = -EINTR;
2723                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2724                         error = -ENOMEM;
2725                 else
2726                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2727                 if (error) {
2728                         /* Remove the !PageUptodate pages we added */
2729                         if (index > start) {
2730                                 shmem_undo_range(inode,
2731                                     (loff_t)start << PAGE_SHIFT,
2732                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2733                         }
2734                         goto undone;
2735                 }
2736
2737                 /*
2738                  * Inform shmem_writepage() how far we have reached.
2739                  * No need for lock or barrier: we have the page lock.
2740                  */
2741                 shmem_falloc.next++;
2742                 if (!PageUptodate(page))
2743                         shmem_falloc.nr_falloced++;
2744
2745                 /*
2746                  * If !PageUptodate, leave it that way so that freeable pages
2747                  * can be recognized if we need to rollback on error later.
2748                  * But set_page_dirty so that memory pressure will swap rather
2749                  * than free the pages we are allocating (and SGP_CACHE pages
2750                  * might still be clean: we now need to mark those dirty too).
2751                  */
2752                 set_page_dirty(page);
2753                 unlock_page(page);
2754                 put_page(page);
2755                 cond_resched();
2756         }
2757
2758         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2759                 i_size_write(inode, offset + len);
2760         inode->i_ctime = current_time(inode);
2761 undone:
2762         spin_lock(&inode->i_lock);
2763         inode->i_private = NULL;
2764         spin_unlock(&inode->i_lock);
2765 out:
2766         inode_unlock(inode);
2767         return error;
2768 }
2769
2770 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2771 {
2772         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2773
2774         buf->f_type = TMPFS_MAGIC;
2775         buf->f_bsize = PAGE_SIZE;
2776         buf->f_namelen = NAME_MAX;
2777         if (sbinfo->max_blocks) {
2778                 buf->f_blocks = sbinfo->max_blocks;
2779                 buf->f_bavail =
2780                 buf->f_bfree  = sbinfo->max_blocks -
2781                                 percpu_counter_sum(&sbinfo->used_blocks);
2782         }
2783         if (sbinfo->max_inodes) {
2784                 buf->f_files = sbinfo->max_inodes;
2785                 buf->f_ffree = sbinfo->free_inodes;
2786         }
2787         /* else leave those fields 0 like simple_statfs */
2788         return 0;
2789 }
2790
2791 /*
2792  * File creation. Allocate an inode, and we're done..
2793  */
2794 static int
2795 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2796 {
2797         struct inode *inode;
2798         int error = -ENOSPC;
2799
2800         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2801         if (inode) {
2802                 error = simple_acl_create(dir, inode);
2803                 if (error)
2804                         goto out_iput;
2805                 error = security_inode_init_security(inode, dir,
2806                                                      &dentry->d_name,
2807                                                      shmem_initxattrs, NULL);
2808                 if (error && error != -EOPNOTSUPP)
2809                         goto out_iput;
2810
2811                 error = 0;
2812                 dir->i_size += BOGO_DIRENT_SIZE;
2813                 dir->i_ctime = dir->i_mtime = current_time(dir);
2814                 d_instantiate(dentry, inode);
2815                 dget(dentry); /* Extra count - pin the dentry in core */
2816         }
2817         return error;
2818 out_iput:
2819         iput(inode);
2820         return error;
2821 }
2822
2823 static int
2824 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2825 {
2826         struct inode *inode;
2827         int error = -ENOSPC;
2828
2829         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2830         if (inode) {
2831                 error = security_inode_init_security(inode, dir,
2832                                                      NULL,
2833                                                      shmem_initxattrs, NULL);
2834                 if (error && error != -EOPNOTSUPP)
2835                         goto out_iput;
2836                 error = simple_acl_create(dir, inode);
2837                 if (error)
2838                         goto out_iput;
2839                 d_tmpfile(dentry, inode);
2840         }
2841         return error;
2842 out_iput:
2843         iput(inode);
2844         return error;
2845 }
2846
2847 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2848 {
2849         int error;
2850
2851         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2852                 return error;
2853         inc_nlink(dir);
2854         return 0;
2855 }
2856
2857 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2858                 bool excl)
2859 {
2860         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2861 }
2862
2863 /*
2864  * Link a file..
2865  */
2866 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2867 {
2868         struct inode *inode = d_inode(old_dentry);
2869         int ret;
2870
2871         /*
2872          * No ordinary (disk based) filesystem counts links as inodes;
2873          * but each new link needs a new dentry, pinning lowmem, and
2874          * tmpfs dentries cannot be pruned until they are unlinked.
2875          */
2876         ret = shmem_reserve_inode(inode->i_sb);
2877         if (ret)
2878                 goto out;
2879
2880         dir->i_size += BOGO_DIRENT_SIZE;
2881         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2882         inc_nlink(inode);
2883         ihold(inode);   /* New dentry reference */
2884         dget(dentry);           /* Extra pinning count for the created dentry */
2885         d_instantiate(dentry, inode);
2886 out:
2887         return ret;
2888 }
2889
2890 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2891 {
2892         struct inode *inode = d_inode(dentry);
2893
2894         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2895                 shmem_free_inode(inode->i_sb);
2896
2897         dir->i_size -= BOGO_DIRENT_SIZE;
2898         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2899         drop_nlink(inode);
2900         dput(dentry);   /* Undo the count from "create" - this does all the work */
2901         return 0;
2902 }
2903
2904 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2905 {
2906         if (!simple_empty(dentry))
2907                 return -ENOTEMPTY;
2908
2909         drop_nlink(d_inode(dentry));
2910         drop_nlink(dir);
2911         return shmem_unlink(dir, dentry);
2912 }
2913
2914 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2915 {
2916         bool old_is_dir = d_is_dir(old_dentry);
2917         bool new_is_dir = d_is_dir(new_dentry);
2918
2919         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2920                 if (old_is_dir) {
2921                         drop_nlink(old_dir);
2922                         inc_nlink(new_dir);
2923                 } else {
2924                         drop_nlink(new_dir);
2925                         inc_nlink(old_dir);
2926                 }
2927         }
2928         old_dir->i_ctime = old_dir->i_mtime =
2929         new_dir->i_ctime = new_dir->i_mtime =
2930         d_inode(old_dentry)->i_ctime =
2931         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2932
2933         return 0;
2934 }
2935
2936 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2937 {
2938         struct dentry *whiteout;
2939         int error;
2940
2941         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2942         if (!whiteout)
2943                 return -ENOMEM;
2944
2945         error = shmem_mknod(old_dir, whiteout,
2946                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2947         dput(whiteout);
2948         if (error)
2949                 return error;
2950
2951         /*
2952          * Cheat and hash the whiteout while the old dentry is still in
2953          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2954          *
2955          * d_lookup() will consistently find one of them at this point,
2956          * not sure which one, but that isn't even important.
2957          */
2958         d_rehash(whiteout);
2959         return 0;
2960 }
2961
2962 /*
2963  * The VFS layer already does all the dentry stuff for rename,
2964  * we just have to decrement the usage count for the target if
2965  * it exists so that the VFS layer correctly free's it when it
2966  * gets overwritten.
2967  */
2968 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2969 {
2970         struct inode *inode = d_inode(old_dentry);
2971         int they_are_dirs = S_ISDIR(inode->i_mode);
2972
2973         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2974                 return -EINVAL;
2975
2976         if (flags & RENAME_EXCHANGE)
2977                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2978
2979         if (!simple_empty(new_dentry))
2980                 return -ENOTEMPTY;
2981
2982         if (flags & RENAME_WHITEOUT) {
2983                 int error;
2984
2985                 error = shmem_whiteout(old_dir, old_dentry);
2986                 if (error)
2987                         return error;
2988         }
2989
2990         if (d_really_is_positive(new_dentry)) {
2991                 (void) shmem_unlink(new_dir, new_dentry);
2992                 if (they_are_dirs) {
2993                         drop_nlink(d_inode(new_dentry));
2994                         drop_nlink(old_dir);
2995                 }
2996         } else if (they_are_dirs) {
2997                 drop_nlink(old_dir);
2998                 inc_nlink(new_dir);
2999         }
3000
3001         old_dir->i_size -= BOGO_DIRENT_SIZE;
3002         new_dir->i_size += BOGO_DIRENT_SIZE;
3003         old_dir->i_ctime = old_dir->i_mtime =
3004         new_dir->i_ctime = new_dir->i_mtime =
3005         inode->i_ctime = current_time(old_dir);
3006         return 0;
3007 }
3008
3009 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3010 {
3011         int error;
3012         int len;
3013         struct inode *inode;
3014         struct page *page;
3015         struct shmem_inode_info *info;
3016
3017         len = strlen(symname) + 1;
3018         if (len > PAGE_SIZE)
3019                 return -ENAMETOOLONG;
3020
3021         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3022         if (!inode)
3023                 return -ENOSPC;
3024
3025         error = security_inode_init_security(inode, dir, &dentry->d_name,
3026                                              shmem_initxattrs, NULL);
3027         if (error) {
3028                 if (error != -EOPNOTSUPP) {
3029                         iput(inode);
3030                         return error;
3031                 }
3032                 error = 0;
3033         }
3034
3035         info = SHMEM_I(inode);
3036         inode->i_size = len-1;
3037         if (len <= SHORT_SYMLINK_LEN) {
3038                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3039                 if (!inode->i_link) {
3040                         iput(inode);
3041                         return -ENOMEM;
3042                 }
3043                 inode->i_op = &shmem_short_symlink_operations;
3044         } else {
3045                 inode_nohighmem(inode);
3046                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3047                 if (error) {
3048                         iput(inode);
3049                         return error;
3050                 }
3051                 inode->i_mapping->a_ops = &shmem_aops;
3052                 inode->i_op = &shmem_symlink_inode_operations;
3053                 memcpy(page_address(page), symname, len);
3054                 SetPageUptodate(page);
3055                 set_page_dirty(page);
3056                 unlock_page(page);
3057                 put_page(page);
3058         }
3059         dir->i_size += BOGO_DIRENT_SIZE;
3060         dir->i_ctime = dir->i_mtime = current_time(dir);
3061         d_instantiate(dentry, inode);
3062         dget(dentry);
3063         return 0;
3064 }
3065
3066 static void shmem_put_link(void *arg)
3067 {
3068         mark_page_accessed(arg);
3069         put_page(arg);
3070 }
3071
3072 static const char *shmem_get_link(struct dentry *dentry,
3073                                   struct inode *inode,
3074                                   struct delayed_call *done)
3075 {
3076         struct page *page = NULL;
3077         int error;
3078         if (!dentry) {
3079                 page = find_get_page(inode->i_mapping, 0);
3080                 if (!page)
3081                         return ERR_PTR(-ECHILD);
3082                 if (!PageUptodate(page)) {
3083                         put_page(page);
3084                         return ERR_PTR(-ECHILD);
3085                 }
3086         } else {
3087                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3088                 if (error)
3089                         return ERR_PTR(error);
3090                 unlock_page(page);
3091         }
3092         set_delayed_call(done, shmem_put_link, page);
3093         return page_address(page);
3094 }
3095
3096 #ifdef CONFIG_TMPFS_XATTR
3097 /*
3098  * Superblocks without xattr inode operations may get some security.* xattr
3099  * support from the LSM "for free". As soon as we have any other xattrs
3100  * like ACLs, we also need to implement the security.* handlers at
3101  * filesystem level, though.
3102  */
3103
3104 /*
3105  * Callback for security_inode_init_security() for acquiring xattrs.
3106  */
3107 static int shmem_initxattrs(struct inode *inode,
3108                             const struct xattr *xattr_array,
3109                             void *fs_info)
3110 {
3111         struct shmem_inode_info *info = SHMEM_I(inode);
3112         const struct xattr *xattr;
3113         struct simple_xattr *new_xattr;
3114         size_t len;
3115
3116         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3117                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3118                 if (!new_xattr)
3119                         return -ENOMEM;
3120
3121                 len = strlen(xattr->name) + 1;
3122                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3123                                           GFP_KERNEL);
3124                 if (!new_xattr->name) {
3125                         kfree(new_xattr);
3126                         return -ENOMEM;
3127                 }
3128
3129                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3130                        XATTR_SECURITY_PREFIX_LEN);
3131                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3132                        xattr->name, len);
3133
3134                 simple_xattr_list_add(&info->xattrs, new_xattr);
3135         }
3136
3137         return 0;
3138 }
3139
3140 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3141                                    struct dentry *unused, struct inode *inode,
3142                                    const char *name, void *buffer, size_t size)
3143 {
3144         struct shmem_inode_info *info = SHMEM_I(inode);
3145
3146         name = xattr_full_name(handler, name);
3147         return simple_xattr_get(&info->xattrs, name, buffer, size);
3148 }
3149
3150 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3151                                    struct dentry *unused, struct inode *inode,
3152                                    const char *name, const void *value,
3153                                    size_t size, int flags)
3154 {
3155         struct shmem_inode_info *info = SHMEM_I(inode);
3156
3157         name = xattr_full_name(handler, name);
3158         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3159 }
3160
3161 static const struct xattr_handler shmem_security_xattr_handler = {
3162         .prefix = XATTR_SECURITY_PREFIX,
3163         .get = shmem_xattr_handler_get,
3164         .set = shmem_xattr_handler_set,
3165 };
3166
3167 static const struct xattr_handler shmem_trusted_xattr_handler = {
3168         .prefix = XATTR_TRUSTED_PREFIX,
3169         .get = shmem_xattr_handler_get,
3170         .set = shmem_xattr_handler_set,
3171 };
3172
3173 static const struct xattr_handler *shmem_xattr_handlers[] = {
3174 #ifdef CONFIG_TMPFS_POSIX_ACL
3175         &posix_acl_access_xattr_handler,
3176         &posix_acl_default_xattr_handler,
3177 #endif
3178         &shmem_security_xattr_handler,
3179         &shmem_trusted_xattr_handler,
3180         NULL
3181 };
3182
3183 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3184 {
3185         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3186         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3187 }
3188 #endif /* CONFIG_TMPFS_XATTR */
3189
3190 static const struct inode_operations shmem_short_symlink_operations = {
3191         .readlink       = generic_readlink,
3192         .get_link       = simple_get_link,
3193 #ifdef CONFIG_TMPFS_XATTR
3194         .listxattr      = shmem_listxattr,
3195 #endif
3196 };
3197
3198 static const struct inode_operations shmem_symlink_inode_operations = {
3199         .readlink       = generic_readlink,
3200         .get_link       = shmem_get_link,
3201 #ifdef CONFIG_TMPFS_XATTR
3202         .listxattr      = shmem_listxattr,
3203 #endif
3204 };
3205
3206 static struct dentry *shmem_get_parent(struct dentry *child)
3207 {
3208         return ERR_PTR(-ESTALE);
3209 }
3210
3211 static int shmem_match(struct inode *ino, void *vfh)
3212 {
3213         __u32 *fh = vfh;
3214         __u64 inum = fh[2];
3215         inum = (inum << 32) | fh[1];
3216         return ino->i_ino == inum && fh[0] == ino->i_generation;
3217 }
3218
3219 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3220                 struct fid *fid, int fh_len, int fh_type)
3221 {
3222         struct inode *inode;
3223         struct dentry *dentry = NULL;
3224         u64 inum;
3225
3226         if (fh_len < 3)
3227                 return NULL;
3228
3229         inum = fid->raw[2];
3230         inum = (inum << 32) | fid->raw[1];
3231
3232         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3233                         shmem_match, fid->raw);
3234         if (inode) {
3235                 dentry = d_find_alias(inode);
3236                 iput(inode);
3237         }
3238
3239         return dentry;
3240 }
3241
3242 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3243                                 struct inode *parent)
3244 {
3245         if (*len < 3) {
3246                 *len = 3;
3247                 return FILEID_INVALID;
3248         }
3249
3250         if (inode_unhashed(inode)) {
3251                 /* Unfortunately insert_inode_hash is not idempotent,
3252                  * so as we hash inodes here rather than at creation
3253                  * time, we need a lock to ensure we only try
3254                  * to do it once
3255                  */
3256                 static DEFINE_SPINLOCK(lock);
3257                 spin_lock(&lock);
3258                 if (inode_unhashed(inode))
3259                         __insert_inode_hash(inode,
3260                                             inode->i_ino + inode->i_generation);
3261                 spin_unlock(&lock);
3262         }
3263
3264         fh[0] = inode->i_generation;
3265         fh[1] = inode->i_ino;
3266         fh[2] = ((__u64)inode->i_ino) >> 32;
3267
3268         *len = 3;
3269         return 1;
3270 }
3271
3272 static const struct export_operations shmem_export_ops = {
3273         .get_parent     = shmem_get_parent,
3274         .encode_fh      = shmem_encode_fh,
3275         .fh_to_dentry   = shmem_fh_to_dentry,
3276 };
3277
3278 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3279                                bool remount)
3280 {
3281         char *this_char, *value, *rest;
3282         struct mempolicy *mpol = NULL;
3283         uid_t uid;
3284         gid_t gid;
3285
3286         while (options != NULL) {
3287                 this_char = options;
3288                 for (;;) {
3289                         /*
3290                          * NUL-terminate this option: unfortunately,
3291                          * mount options form a comma-separated list,
3292                          * but mpol's nodelist may also contain commas.
3293                          */
3294                         options = strchr(options, ',');
3295                         if (options == NULL)
3296                                 break;
3297                         options++;
3298                         if (!isdigit(*options)) {
3299                                 options[-1] = '\0';
3300                                 break;
3301                         }
3302                 }
3303                 if (!*this_char)
3304                         continue;
3305                 if ((value = strchr(this_char,'=')) != NULL) {
3306                         *value++ = 0;
3307                 } else {
3308                         pr_err("tmpfs: No value for mount option '%s'\n",
3309                                this_char);
3310                         goto error;
3311                 }
3312
3313                 if (!strcmp(this_char,"size")) {
3314                         unsigned long long size;
3315                         size = memparse(value,&rest);
3316                         if (*rest == '%') {
3317                                 size <<= PAGE_SHIFT;
3318                                 size *= totalram_pages;
3319                                 do_div(size, 100);
3320                                 rest++;
3321                         }
3322                         if (*rest)
3323                                 goto bad_val;
3324                         sbinfo->max_blocks =
3325                                 DIV_ROUND_UP(size, PAGE_SIZE);
3326                 } else if (!strcmp(this_char,"nr_blocks")) {
3327                         sbinfo->max_blocks = memparse(value, &rest);
3328                         if (*rest)
3329                                 goto bad_val;
3330                 } else if (!strcmp(this_char,"nr_inodes")) {
3331                         sbinfo->max_inodes = memparse(value, &rest);
3332                         if (*rest)
3333                                 goto bad_val;
3334                 } else if (!strcmp(this_char,"mode")) {
3335                         if (remount)
3336                                 continue;
3337                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3338                         if (*rest)
3339                                 goto bad_val;
3340                 } else if (!strcmp(this_char,"uid")) {
3341                         if (remount)
3342                                 continue;
3343                         uid = simple_strtoul(value, &rest, 0);
3344                         if (*rest)
3345                                 goto bad_val;
3346                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3347                         if (!uid_valid(sbinfo->uid))
3348                                 goto bad_val;
3349                 } else if (!strcmp(this_char,"gid")) {
3350                         if (remount)
3351                                 continue;
3352                         gid = simple_strtoul(value, &rest, 0);
3353                         if (*rest)
3354                                 goto bad_val;
3355                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3356                         if (!gid_valid(sbinfo->gid))
3357                                 goto bad_val;
3358 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3359                 } else if (!strcmp(this_char, "huge")) {
3360                         int huge;
3361                         huge = shmem_parse_huge(value);
3362                         if (huge < 0)
3363                                 goto bad_val;
3364                         if (!has_transparent_hugepage() &&
3365                                         huge != SHMEM_HUGE_NEVER)
3366                                 goto bad_val;
3367                         sbinfo->huge = huge;
3368 #endif
3369 #ifdef CONFIG_NUMA
3370                 } else if (!strcmp(this_char,"mpol")) {
3371                         mpol_put(mpol);
3372                         mpol = NULL;
3373                         if (mpol_parse_str(value, &mpol))
3374                                 goto bad_val;
3375 #endif
3376                 } else {
3377                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3378                         goto error;
3379                 }
3380         }
3381         sbinfo->mpol = mpol;
3382         return 0;
3383
3384 bad_val:
3385         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3386                value, this_char);
3387 error:
3388         mpol_put(mpol);
3389         return 1;
3390
3391 }
3392
3393 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3394 {
3395         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3396         struct shmem_sb_info config = *sbinfo;
3397         unsigned long inodes;
3398         int error = -EINVAL;
3399
3400         config.mpol = NULL;
3401         if (shmem_parse_options(data, &config, true))
3402                 return error;
3403
3404         spin_lock(&sbinfo->stat_lock);
3405         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3406         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3407                 goto out;
3408         if (config.max_inodes < inodes)
3409                 goto out;
3410         /*
3411          * Those tests disallow limited->unlimited while any are in use;
3412          * but we must separately disallow unlimited->limited, because
3413          * in that case we have no record of how much is already in use.
3414          */
3415         if (config.max_blocks && !sbinfo->max_blocks)
3416                 goto out;
3417         if (config.max_inodes && !sbinfo->max_inodes)
3418                 goto out;
3419
3420         error = 0;
3421         sbinfo->huge = config.huge;
3422         sbinfo->max_blocks  = config.max_blocks;
3423         sbinfo->max_inodes  = config.max_inodes;
3424         sbinfo->free_inodes = config.max_inodes - inodes;
3425
3426         /*
3427          * Preserve previous mempolicy unless mpol remount option was specified.
3428          */
3429         if (config.mpol) {
3430                 mpol_put(sbinfo->mpol);
3431                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3432         }
3433 out:
3434         spin_unlock(&sbinfo->stat_lock);
3435         return error;
3436 }
3437
3438 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3439 {
3440         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3441
3442         if (sbinfo->max_blocks != shmem_default_max_blocks())
3443                 seq_printf(seq, ",size=%luk",
3444                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3445         if (sbinfo->max_inodes != shmem_default_max_inodes())
3446                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3447         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3448                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3449         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3450                 seq_printf(seq, ",uid=%u",
3451                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3452         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3453                 seq_printf(seq, ",gid=%u",
3454                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3455 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3456         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3457         if (sbinfo->huge)
3458                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3459 #endif
3460         shmem_show_mpol(seq, sbinfo->mpol);
3461         return 0;
3462 }
3463
3464 #define MFD_NAME_PREFIX "memfd:"
3465 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3466 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3467
3468 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3469
3470 SYSCALL_DEFINE2(memfd_create,
3471                 const char __user *, uname,
3472                 unsigned int, flags)
3473 {
3474         struct shmem_inode_info *info;
3475         struct file *file;
3476         int fd, error;
3477         char *name;
3478         long len;
3479
3480         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3481                 return -EINVAL;
3482
3483         /* length includes terminating zero */
3484         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3485         if (len <= 0)
3486                 return -EFAULT;
3487         if (len > MFD_NAME_MAX_LEN + 1)
3488                 return -EINVAL;
3489
3490         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3491         if (!name)
3492                 return -ENOMEM;
3493
3494         strcpy(name, MFD_NAME_PREFIX);
3495         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3496                 error = -EFAULT;
3497                 goto err_name;
3498         }
3499
3500         /* terminating-zero may have changed after strnlen_user() returned */
3501         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3502                 error = -EFAULT;
3503                 goto err_name;
3504         }
3505
3506         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3507         if (fd < 0) {
3508                 error = fd;
3509                 goto err_name;
3510         }
3511
3512         file = shmem_file_setup(name, 0, VM_NORESERVE);
3513         if (IS_ERR(file)) {
3514                 error = PTR_ERR(file);
3515                 goto err_fd;
3516         }
3517         info = SHMEM_I(file_inode(file));
3518         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3519         file->f_flags |= O_RDWR | O_LARGEFILE;
3520         if (flags & MFD_ALLOW_SEALING)
3521                 info->seals &= ~F_SEAL_SEAL;
3522
3523         fd_install(fd, file);
3524         kfree(name);
3525         return fd;
3526
3527 err_fd:
3528         put_unused_fd(fd);
3529 err_name:
3530         kfree(name);
3531         return error;
3532 }
3533
3534 #endif /* CONFIG_TMPFS */
3535
3536 static void shmem_put_super(struct super_block *sb)
3537 {
3538         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3539
3540         percpu_counter_destroy(&sbinfo->used_blocks);
3541         mpol_put(sbinfo->mpol);
3542         kfree(sbinfo);
3543         sb->s_fs_info = NULL;
3544 }
3545
3546 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3547 {
3548         struct inode *inode;
3549         struct shmem_sb_info *sbinfo;
3550         int err = -ENOMEM;
3551
3552         /* Round up to L1_CACHE_BYTES to resist false sharing */
3553         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3554                                 L1_CACHE_BYTES), GFP_KERNEL);
3555         if (!sbinfo)
3556                 return -ENOMEM;
3557
3558         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3559         sbinfo->uid = current_fsuid();
3560         sbinfo->gid = current_fsgid();
3561         sb->s_fs_info = sbinfo;
3562
3563 #ifdef CONFIG_TMPFS
3564         /*
3565          * Per default we only allow half of the physical ram per
3566          * tmpfs instance, limiting inodes to one per page of lowmem;
3567          * but the internal instance is left unlimited.
3568          */
3569         if (!(sb->s_flags & MS_KERNMOUNT)) {
3570                 sbinfo->max_blocks = shmem_default_max_blocks();
3571                 sbinfo->max_inodes = shmem_default_max_inodes();
3572                 if (shmem_parse_options(data, sbinfo, false)) {
3573                         err = -EINVAL;
3574                         goto failed;
3575                 }
3576         } else {
3577                 sb->s_flags |= MS_NOUSER;
3578         }
3579         sb->s_export_op = &shmem_export_ops;
3580         sb->s_flags |= MS_NOSEC;
3581 #else
3582         sb->s_flags |= MS_NOUSER;
3583 #endif
3584
3585         spin_lock_init(&sbinfo->stat_lock);
3586         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3587                 goto failed;
3588         sbinfo->free_inodes = sbinfo->max_inodes;
3589         spin_lock_init(&sbinfo->shrinklist_lock);
3590         INIT_LIST_HEAD(&sbinfo->shrinklist);
3591
3592         sb->s_maxbytes = MAX_LFS_FILESIZE;
3593         sb->s_blocksize = PAGE_SIZE;
3594         sb->s_blocksize_bits = PAGE_SHIFT;
3595         sb->s_magic = TMPFS_MAGIC;
3596         sb->s_op = &shmem_ops;
3597         sb->s_time_gran = 1;
3598 #ifdef CONFIG_TMPFS_XATTR
3599         sb->s_xattr = shmem_xattr_handlers;
3600 #endif
3601 #ifdef CONFIG_TMPFS_POSIX_ACL
3602         sb->s_flags |= MS_POSIXACL;
3603 #endif
3604
3605         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3606         if (!inode)
3607                 goto failed;
3608         inode->i_uid = sbinfo->uid;
3609         inode->i_gid = sbinfo->gid;
3610         sb->s_root = d_make_root(inode);
3611         if (!sb->s_root)
3612                 goto failed;
3613         return 0;
3614
3615 failed:
3616         shmem_put_super(sb);
3617         return err;
3618 }
3619
3620 static struct kmem_cache *shmem_inode_cachep;
3621
3622 static struct inode *shmem_alloc_inode(struct super_block *sb)
3623 {
3624         struct shmem_inode_info *info;
3625         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3626         if (!info)
3627                 return NULL;
3628         return &info->vfs_inode;
3629 }
3630
3631 static void shmem_destroy_callback(struct rcu_head *head)
3632 {
3633         struct inode *inode = container_of(head, struct inode, i_rcu);
3634         if (S_ISLNK(inode->i_mode))
3635                 kfree(inode->i_link);
3636         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3637 }
3638
3639 static void shmem_destroy_inode(struct inode *inode)
3640 {
3641         if (S_ISREG(inode->i_mode))
3642                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3643         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3644 }
3645
3646 static void shmem_init_inode(void *foo)
3647 {
3648         struct shmem_inode_info *info = foo;
3649         inode_init_once(&info->vfs_inode);
3650 }
3651
3652 static int shmem_init_inodecache(void)
3653 {
3654         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3655                                 sizeof(struct shmem_inode_info),
3656                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3657         return 0;
3658 }
3659
3660 static void shmem_destroy_inodecache(void)
3661 {
3662         kmem_cache_destroy(shmem_inode_cachep);
3663 }
3664
3665 static const struct address_space_operations shmem_aops = {
3666         .writepage      = shmem_writepage,
3667         .set_page_dirty = __set_page_dirty_no_writeback,
3668 #ifdef CONFIG_TMPFS
3669         .write_begin    = shmem_write_begin,
3670         .write_end      = shmem_write_end,
3671 #endif
3672 #ifdef CONFIG_MIGRATION
3673         .migratepage    = migrate_page,
3674 #endif
3675         .error_remove_page = generic_error_remove_page,
3676 };
3677
3678 static const struct file_operations shmem_file_operations = {
3679         .mmap           = shmem_mmap,
3680         .get_unmapped_area = shmem_get_unmapped_area,
3681 #ifdef CONFIG_TMPFS
3682         .llseek         = shmem_file_llseek,
3683         .read_iter      = shmem_file_read_iter,
3684         .write_iter     = generic_file_write_iter,
3685         .fsync          = noop_fsync,
3686         .splice_read    = generic_file_splice_read,
3687         .splice_write   = iter_file_splice_write,
3688         .fallocate      = shmem_fallocate,
3689 #endif
3690 };
3691
3692 static const struct inode_operations shmem_inode_operations = {
3693         .getattr        = shmem_getattr,
3694         .setattr        = shmem_setattr,
3695 #ifdef CONFIG_TMPFS_XATTR
3696         .listxattr      = shmem_listxattr,
3697         .set_acl        = simple_set_acl,
3698 #endif
3699 };
3700
3701 static const struct inode_operations shmem_dir_inode_operations = {
3702 #ifdef CONFIG_TMPFS
3703         .create         = shmem_create,
3704         .lookup         = simple_lookup,
3705         .link           = shmem_link,
3706         .unlink         = shmem_unlink,
3707         .symlink        = shmem_symlink,
3708         .mkdir          = shmem_mkdir,
3709         .rmdir          = shmem_rmdir,
3710         .mknod          = shmem_mknod,
3711         .rename         = shmem_rename2,
3712         .tmpfile        = shmem_tmpfile,
3713 #endif
3714 #ifdef CONFIG_TMPFS_XATTR
3715         .listxattr      = shmem_listxattr,
3716 #endif
3717 #ifdef CONFIG_TMPFS_POSIX_ACL
3718         .setattr        = shmem_setattr,
3719         .set_acl        = simple_set_acl,
3720 #endif
3721 };
3722
3723 static const struct inode_operations shmem_special_inode_operations = {
3724 #ifdef CONFIG_TMPFS_XATTR
3725         .listxattr      = shmem_listxattr,
3726 #endif
3727 #ifdef CONFIG_TMPFS_POSIX_ACL
3728         .setattr        = shmem_setattr,
3729         .set_acl        = simple_set_acl,
3730 #endif
3731 };
3732
3733 static const struct super_operations shmem_ops = {
3734         .alloc_inode    = shmem_alloc_inode,
3735         .destroy_inode  = shmem_destroy_inode,
3736 #ifdef CONFIG_TMPFS
3737         .statfs         = shmem_statfs,
3738         .remount_fs     = shmem_remount_fs,
3739         .show_options   = shmem_show_options,
3740 #endif
3741         .evict_inode    = shmem_evict_inode,
3742         .drop_inode     = generic_delete_inode,
3743         .put_super      = shmem_put_super,
3744 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3745         .nr_cached_objects      = shmem_unused_huge_count,
3746         .free_cached_objects    = shmem_unused_huge_scan,
3747 #endif
3748 };
3749
3750 static const struct vm_operations_struct shmem_vm_ops = {
3751         .fault          = shmem_fault,
3752         .map_pages      = filemap_map_pages,
3753 #ifdef CONFIG_NUMA
3754         .set_policy     = shmem_set_policy,
3755         .get_policy     = shmem_get_policy,
3756 #endif
3757 };
3758
3759 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3760         int flags, const char *dev_name, void *data)
3761 {
3762         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3763 }
3764
3765 static struct file_system_type shmem_fs_type = {
3766         .owner          = THIS_MODULE,
3767         .name           = "tmpfs",
3768         .mount          = shmem_mount,
3769         .kill_sb        = kill_litter_super,
3770         .fs_flags       = FS_USERNS_MOUNT,
3771 };
3772
3773 int __init shmem_init(void)
3774 {
3775         int error;
3776
3777         /* If rootfs called this, don't re-init */
3778         if (shmem_inode_cachep)
3779                 return 0;
3780
3781         error = shmem_init_inodecache();
3782         if (error)
3783                 goto out3;
3784
3785         error = register_filesystem(&shmem_fs_type);
3786         if (error) {
3787                 pr_err("Could not register tmpfs\n");
3788                 goto out2;
3789         }
3790
3791         shm_mnt = kern_mount(&shmem_fs_type);
3792         if (IS_ERR(shm_mnt)) {
3793                 error = PTR_ERR(shm_mnt);
3794                 pr_err("Could not kern_mount tmpfs\n");
3795                 goto out1;
3796         }
3797
3798 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3799         if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3800                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3801         else
3802                 shmem_huge = 0; /* just in case it was patched */
3803 #endif
3804         return 0;
3805
3806 out1:
3807         unregister_filesystem(&shmem_fs_type);
3808 out2:
3809         shmem_destroy_inodecache();
3810 out3:
3811         shm_mnt = ERR_PTR(error);
3812         return error;
3813 }
3814
3815 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3816 static ssize_t shmem_enabled_show(struct kobject *kobj,
3817                 struct kobj_attribute *attr, char *buf)
3818 {
3819         int values[] = {
3820                 SHMEM_HUGE_ALWAYS,
3821                 SHMEM_HUGE_WITHIN_SIZE,
3822                 SHMEM_HUGE_ADVISE,
3823                 SHMEM_HUGE_NEVER,
3824                 SHMEM_HUGE_DENY,
3825                 SHMEM_HUGE_FORCE,
3826         };
3827         int i, count;
3828
3829         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3830                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3831
3832                 count += sprintf(buf + count, fmt,
3833                                 shmem_format_huge(values[i]));
3834         }
3835         buf[count - 1] = '\n';
3836         return count;
3837 }
3838
3839 static ssize_t shmem_enabled_store(struct kobject *kobj,
3840                 struct kobj_attribute *attr, const char *buf, size_t count)
3841 {
3842         char tmp[16];
3843         int huge;
3844
3845         if (count + 1 > sizeof(tmp))
3846                 return -EINVAL;
3847         memcpy(tmp, buf, count);
3848         tmp[count] = '\0';
3849         if (count && tmp[count - 1] == '\n')
3850                 tmp[count - 1] = '\0';
3851
3852         huge = shmem_parse_huge(tmp);
3853         if (huge == -EINVAL)
3854                 return -EINVAL;
3855         if (!has_transparent_hugepage() &&
3856                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3857                 return -EINVAL;
3858
3859         shmem_huge = huge;
3860         if (shmem_huge < SHMEM_HUGE_DENY)
3861                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3862         return count;
3863 }
3864
3865 struct kobj_attribute shmem_enabled_attr =
3866         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3867 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3868
3869 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3870 bool shmem_huge_enabled(struct vm_area_struct *vma)
3871 {
3872         struct inode *inode = file_inode(vma->vm_file);
3873         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3874         loff_t i_size;
3875         pgoff_t off;
3876
3877         if (shmem_huge == SHMEM_HUGE_FORCE)
3878                 return true;
3879         if (shmem_huge == SHMEM_HUGE_DENY)
3880                 return false;
3881         switch (sbinfo->huge) {
3882                 case SHMEM_HUGE_NEVER:
3883                         return false;
3884                 case SHMEM_HUGE_ALWAYS:
3885                         return true;
3886                 case SHMEM_HUGE_WITHIN_SIZE:
3887                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3888                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
3889                         if (i_size >= HPAGE_PMD_SIZE &&
3890                                         i_size >> PAGE_SHIFT >= off)
3891                                 return true;
3892                 case SHMEM_HUGE_ADVISE:
3893                         /* TODO: implement fadvise() hints */
3894                         return (vma->vm_flags & VM_HUGEPAGE);
3895                 default:
3896                         VM_BUG_ON(1);
3897                         return false;
3898         }
3899 }
3900 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3901
3902 #else /* !CONFIG_SHMEM */
3903
3904 /*
3905  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3906  *
3907  * This is intended for small system where the benefits of the full
3908  * shmem code (swap-backed and resource-limited) are outweighed by
3909  * their complexity. On systems without swap this code should be
3910  * effectively equivalent, but much lighter weight.
3911  */
3912
3913 static struct file_system_type shmem_fs_type = {
3914         .name           = "tmpfs",
3915         .mount          = ramfs_mount,
3916         .kill_sb        = kill_litter_super,
3917         .fs_flags       = FS_USERNS_MOUNT,
3918 };
3919
3920 int __init shmem_init(void)
3921 {
3922         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3923
3924         shm_mnt = kern_mount(&shmem_fs_type);
3925         BUG_ON(IS_ERR(shm_mnt));
3926
3927         return 0;
3928 }
3929
3930 int shmem_unuse(swp_entry_t swap, struct page *page)
3931 {
3932         return 0;
3933 }
3934
3935 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3936 {
3937         return 0;
3938 }
3939
3940 void shmem_unlock_mapping(struct address_space *mapping)
3941 {
3942 }
3943
3944 #ifdef CONFIG_MMU
3945 unsigned long shmem_get_unmapped_area(struct file *file,
3946                                       unsigned long addr, unsigned long len,
3947                                       unsigned long pgoff, unsigned long flags)
3948 {
3949         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3950 }
3951 #endif
3952
3953 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3954 {
3955         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3956 }
3957 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3958
3959 #define shmem_vm_ops                            generic_file_vm_ops
3960 #define shmem_file_operations                   ramfs_file_operations
3961 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3962 #define shmem_acct_size(flags, size)            0
3963 #define shmem_unacct_size(flags, size)          do {} while (0)
3964
3965 #endif /* CONFIG_SHMEM */
3966
3967 /* common code */
3968
3969 static const struct dentry_operations anon_ops = {
3970         .d_dname = simple_dname
3971 };
3972
3973 static struct file *__shmem_file_setup(const char *name, loff_t size,
3974                                        unsigned long flags, unsigned int i_flags)
3975 {
3976         struct file *res;
3977         struct inode *inode;
3978         struct path path;
3979         struct super_block *sb;
3980         struct qstr this;
3981
3982         if (IS_ERR(shm_mnt))
3983                 return ERR_CAST(shm_mnt);
3984
3985         if (size < 0 || size > MAX_LFS_FILESIZE)
3986                 return ERR_PTR(-EINVAL);
3987
3988         if (shmem_acct_size(flags, size))
3989                 return ERR_PTR(-ENOMEM);
3990
3991         res = ERR_PTR(-ENOMEM);
3992         this.name = name;
3993         this.len = strlen(name);
3994         this.hash = 0; /* will go */
3995         sb = shm_mnt->mnt_sb;
3996         path.mnt = mntget(shm_mnt);
3997         path.dentry = d_alloc_pseudo(sb, &this);
3998         if (!path.dentry)
3999                 goto put_memory;
4000         d_set_d_op(path.dentry, &anon_ops);
4001
4002         res = ERR_PTR(-ENOSPC);
4003         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4004         if (!inode)
4005                 goto put_memory;
4006
4007         inode->i_flags |= i_flags;
4008         d_instantiate(path.dentry, inode);
4009         inode->i_size = size;
4010         clear_nlink(inode);     /* It is unlinked */
4011         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4012         if (IS_ERR(res))
4013                 goto put_path;
4014
4015         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4016                   &shmem_file_operations);
4017         if (IS_ERR(res))
4018                 goto put_path;
4019
4020         return res;
4021
4022 put_memory:
4023         shmem_unacct_size(flags, size);
4024 put_path:
4025         path_put(&path);
4026         return res;
4027 }
4028
4029 /**
4030  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4031  *      kernel internal.  There will be NO LSM permission checks against the
4032  *      underlying inode.  So users of this interface must do LSM checks at a
4033  *      higher layer.  The users are the big_key and shm implementations.  LSM
4034  *      checks are provided at the key or shm level rather than the inode.
4035  * @name: name for dentry (to be seen in /proc/<pid>/maps
4036  * @size: size to be set for the file
4037  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4038  */
4039 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4040 {
4041         return __shmem_file_setup(name, size, flags, S_PRIVATE);
4042 }
4043
4044 /**
4045  * shmem_file_setup - get an unlinked file living in tmpfs
4046  * @name: name for dentry (to be seen in /proc/<pid>/maps
4047  * @size: size to be set for the file
4048  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4049  */
4050 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4051 {
4052         return __shmem_file_setup(name, size, flags, 0);
4053 }
4054 EXPORT_SYMBOL_GPL(shmem_file_setup);
4055
4056 /**
4057  * shmem_zero_setup - setup a shared anonymous mapping
4058  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4059  */
4060 int shmem_zero_setup(struct vm_area_struct *vma)
4061 {
4062         struct file *file;
4063         loff_t size = vma->vm_end - vma->vm_start;
4064
4065         /*
4066          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4067          * between XFS directory reading and selinux: since this file is only
4068          * accessible to the user through its mapping, use S_PRIVATE flag to
4069          * bypass file security, in the same way as shmem_kernel_file_setup().
4070          */
4071         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4072         if (IS_ERR(file))
4073                 return PTR_ERR(file);
4074
4075         if (vma->vm_file)
4076                 fput(vma->vm_file);
4077         vma->vm_file = file;
4078         vma->vm_ops = &shmem_vm_ops;
4079
4080         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4081                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4082                         (vma->vm_end & HPAGE_PMD_MASK)) {
4083                 khugepaged_enter(vma, vma->vm_flags);
4084         }
4085
4086         return 0;
4087 }
4088
4089 /**
4090  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4091  * @mapping:    the page's address_space
4092  * @index:      the page index
4093  * @gfp:        the page allocator flags to use if allocating
4094  *
4095  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4096  * with any new page allocations done using the specified allocation flags.
4097  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4098  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4099  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4100  *
4101  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4102  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4103  */
4104 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4105                                          pgoff_t index, gfp_t gfp)
4106 {
4107 #ifdef CONFIG_SHMEM
4108         struct inode *inode = mapping->host;
4109         struct page *page;
4110         int error;
4111
4112         BUG_ON(mapping->a_ops != &shmem_aops);
4113         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4114                                   gfp, NULL, NULL);
4115         if (error)
4116                 page = ERR_PTR(error);
4117         else
4118                 unlock_page(page);
4119         return page;
4120 #else
4121         /*
4122          * The tiny !SHMEM case uses ramfs without swap
4123          */
4124         return read_cache_page_gfp(mapping, index, gfp);
4125 #endif
4126 }
4127 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);