3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
145 #define FORCED_DEBUG 1
149 #define FORCED_DEBUG 0
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
166 typedef unsigned short freelist_idx_t;
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
179 * The limit is stored in the per-cpu structure to reduce the data cache
186 unsigned int batchcount;
187 unsigned int touched;
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
197 struct array_cache ac;
201 * Need this for bootstrapping a per node allocator.
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
208 static int drain_freelist(struct kmem_cache *cache,
209 struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
216 static int slab_early_init = 1;
218 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
220 static void kmem_cache_node_init(struct kmem_cache_node *parent)
222 INIT_LIST_HEAD(&parent->slabs_full);
223 INIT_LIST_HEAD(&parent->slabs_partial);
224 INIT_LIST_HEAD(&parent->slabs_free);
225 parent->shared = NULL;
226 parent->alien = NULL;
227 parent->colour_next = 0;
228 spin_lock_init(&parent->list_lock);
229 parent->free_objects = 0;
230 parent->free_touched = 0;
233 #define MAKE_LIST(cachep, listp, slab, nodeid) \
235 INIT_LIST_HEAD(listp); \
236 list_splice(&get_node(cachep, nodeid)->slab, listp); \
239 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
241 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
242 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
246 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
247 #define CFLGS_OFF_SLAB (0x80000000UL)
248 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
249 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
251 #define BATCHREFILL_LIMIT 16
253 * Optimization question: fewer reaps means less probability for unnessary
254 * cpucache drain/refill cycles.
256 * OTOH the cpuarrays can contain lots of objects,
257 * which could lock up otherwise freeable slabs.
259 #define REAPTIMEOUT_AC (2*HZ)
260 #define REAPTIMEOUT_NODE (4*HZ)
263 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
264 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
265 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
266 #define STATS_INC_GROWN(x) ((x)->grown++)
267 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
268 #define STATS_SET_HIGH(x) \
270 if ((x)->num_active > (x)->high_mark) \
271 (x)->high_mark = (x)->num_active; \
273 #define STATS_INC_ERR(x) ((x)->errors++)
274 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
275 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
276 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
277 #define STATS_SET_FREEABLE(x, i) \
279 if ((x)->max_freeable < i) \
280 (x)->max_freeable = i; \
282 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
283 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
284 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
285 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
287 #define STATS_INC_ACTIVE(x) do { } while (0)
288 #define STATS_DEC_ACTIVE(x) do { } while (0)
289 #define STATS_INC_ALLOCED(x) do { } while (0)
290 #define STATS_INC_GROWN(x) do { } while (0)
291 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
292 #define STATS_SET_HIGH(x) do { } while (0)
293 #define STATS_INC_ERR(x) do { } while (0)
294 #define STATS_INC_NODEALLOCS(x) do { } while (0)
295 #define STATS_INC_NODEFREES(x) do { } while (0)
296 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
297 #define STATS_SET_FREEABLE(x, i) do { } while (0)
298 #define STATS_INC_ALLOCHIT(x) do { } while (0)
299 #define STATS_INC_ALLOCMISS(x) do { } while (0)
300 #define STATS_INC_FREEHIT(x) do { } while (0)
301 #define STATS_INC_FREEMISS(x) do { } while (0)
307 * memory layout of objects:
309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
310 * the end of an object is aligned with the end of the real
311 * allocation. Catches writes behind the end of the allocation.
312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
314 * cachep->obj_offset: The real object.
315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316 * cachep->size - 1* BYTES_PER_WORD: last caller address
317 * [BYTES_PER_WORD long]
319 static int obj_offset(struct kmem_cache *cachep)
321 return cachep->obj_offset;
324 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
326 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
327 return (unsigned long long*) (objp + obj_offset(cachep) -
328 sizeof(unsigned long long));
331 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 if (cachep->flags & SLAB_STORE_USER)
335 return (unsigned long long *)(objp + cachep->size -
336 sizeof(unsigned long long) -
338 return (unsigned long long *) (objp + cachep->size -
339 sizeof(unsigned long long));
342 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
344 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
345 return (void **)(objp + cachep->size - BYTES_PER_WORD);
350 #define obj_offset(x) 0
351 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
352 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
353 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
357 #ifdef CONFIG_DEBUG_SLAB_LEAK
359 static inline bool is_store_user_clean(struct kmem_cache *cachep)
361 return atomic_read(&cachep->store_user_clean) == 1;
364 static inline void set_store_user_clean(struct kmem_cache *cachep)
366 atomic_set(&cachep->store_user_clean, 1);
369 static inline void set_store_user_dirty(struct kmem_cache *cachep)
371 if (is_store_user_clean(cachep))
372 atomic_set(&cachep->store_user_clean, 0);
376 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
381 * Do not go above this order unless 0 objects fit into the slab or
382 * overridden on the command line.
384 #define SLAB_MAX_ORDER_HI 1
385 #define SLAB_MAX_ORDER_LO 0
386 static int slab_max_order = SLAB_MAX_ORDER_LO;
387 static bool slab_max_order_set __initdata;
389 static inline struct kmem_cache *virt_to_cache(const void *obj)
391 struct page *page = virt_to_head_page(obj);
392 return page->slab_cache;
395 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
398 return page->s_mem + cache->size * idx;
402 * We want to avoid an expensive divide : (offset / cache->size)
403 * Using the fact that size is a constant for a particular cache,
404 * we can replace (offset / cache->size) by
405 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
407 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
408 const struct page *page, void *obj)
410 u32 offset = (obj - page->s_mem);
411 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
414 #define BOOT_CPUCACHE_ENTRIES 1
415 /* internal cache of cache description objs */
416 static struct kmem_cache kmem_cache_boot = {
418 .limit = BOOT_CPUCACHE_ENTRIES,
420 .size = sizeof(struct kmem_cache),
421 .name = "kmem_cache",
424 #define BAD_ALIEN_MAGIC 0x01020304ul
426 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
428 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
430 return this_cpu_ptr(cachep->cpu_cache);
434 * Calculate the number of objects and left-over bytes for a given buffer size.
436 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
437 unsigned long flags, size_t *left_over, unsigned int *num)
439 size_t slab_size = PAGE_SIZE << gfporder;
442 * The slab management structure can be either off the slab or
443 * on it. For the latter case, the memory allocated for a
446 * - @buffer_size bytes for each object
447 * - One freelist_idx_t for each object
449 * We don't need to consider alignment of freelist because
450 * freelist will be at the end of slab page. The objects will be
451 * at the correct alignment.
453 * If the slab management structure is off the slab, then the
454 * alignment will already be calculated into the size. Because
455 * the slabs are all pages aligned, the objects will be at the
456 * correct alignment when allocated.
458 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
459 *num = slab_size / buffer_size;
460 *left_over = slab_size % buffer_size;
462 *num = slab_size / (buffer_size + sizeof(freelist_idx_t));
463 *left_over = slab_size %
464 (buffer_size + sizeof(freelist_idx_t));
469 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
471 static void __slab_error(const char *function, struct kmem_cache *cachep,
474 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
475 function, cachep->name, msg);
477 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
482 * By default on NUMA we use alien caches to stage the freeing of
483 * objects allocated from other nodes. This causes massive memory
484 * inefficiencies when using fake NUMA setup to split memory into a
485 * large number of small nodes, so it can be disabled on the command
489 static int use_alien_caches __read_mostly = 1;
490 static int __init noaliencache_setup(char *s)
492 use_alien_caches = 0;
495 __setup("noaliencache", noaliencache_setup);
497 static int __init slab_max_order_setup(char *str)
499 get_option(&str, &slab_max_order);
500 slab_max_order = slab_max_order < 0 ? 0 :
501 min(slab_max_order, MAX_ORDER - 1);
502 slab_max_order_set = true;
506 __setup("slab_max_order=", slab_max_order_setup);
510 * Special reaping functions for NUMA systems called from cache_reap().
511 * These take care of doing round robin flushing of alien caches (containing
512 * objects freed on different nodes from which they were allocated) and the
513 * flushing of remote pcps by calling drain_node_pages.
515 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
517 static void init_reap_node(int cpu)
521 node = next_node(cpu_to_mem(cpu), node_online_map);
522 if (node == MAX_NUMNODES)
523 node = first_node(node_online_map);
525 per_cpu(slab_reap_node, cpu) = node;
528 static void next_reap_node(void)
530 int node = __this_cpu_read(slab_reap_node);
532 node = next_node(node, node_online_map);
533 if (unlikely(node >= MAX_NUMNODES))
534 node = first_node(node_online_map);
535 __this_cpu_write(slab_reap_node, node);
539 #define init_reap_node(cpu) do { } while (0)
540 #define next_reap_node(void) do { } while (0)
544 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
545 * via the workqueue/eventd.
546 * Add the CPU number into the expiration time to minimize the possibility of
547 * the CPUs getting into lockstep and contending for the global cache chain
550 static void start_cpu_timer(int cpu)
552 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555 * When this gets called from do_initcalls via cpucache_init(),
556 * init_workqueues() has already run, so keventd will be setup
559 if (keventd_up() && reap_work->work.func == NULL) {
561 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
562 schedule_delayed_work_on(cpu, reap_work,
563 __round_jiffies_relative(HZ, cpu));
567 static void init_arraycache(struct array_cache *ac, int limit, int batch)
570 * The array_cache structures contain pointers to free object.
571 * However, when such objects are allocated or transferred to another
572 * cache the pointers are not cleared and they could be counted as
573 * valid references during a kmemleak scan. Therefore, kmemleak must
574 * not scan such objects.
576 kmemleak_no_scan(ac);
580 ac->batchcount = batch;
585 static struct array_cache *alloc_arraycache(int node, int entries,
586 int batchcount, gfp_t gfp)
588 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
589 struct array_cache *ac = NULL;
591 ac = kmalloc_node(memsize, gfp, node);
592 init_arraycache(ac, entries, batchcount);
596 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
599 struct page *page = virt_to_head_page(objp);
600 struct kmem_cache_node *n;
604 if (unlikely(PageSlabPfmemalloc(page))) {
605 page_node = page_to_nid(page);
606 n = get_node(cachep, page_node);
608 spin_lock(&n->list_lock);
609 free_block(cachep, &objp, 1, page_node, &list);
610 spin_unlock(&n->list_lock);
612 slabs_destroy(cachep, &list);
617 * Transfer objects in one arraycache to another.
618 * Locking must be handled by the caller.
620 * Return the number of entries transferred.
622 static int transfer_objects(struct array_cache *to,
623 struct array_cache *from, unsigned int max)
625 /* Figure out how many entries to transfer */
626 int nr = min3(from->avail, max, to->limit - to->avail);
631 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
641 #define drain_alien_cache(cachep, alien) do { } while (0)
642 #define reap_alien(cachep, n) do { } while (0)
644 static inline struct alien_cache **alloc_alien_cache(int node,
645 int limit, gfp_t gfp)
647 return (struct alien_cache **)BAD_ALIEN_MAGIC;
650 static inline void free_alien_cache(struct alien_cache **ac_ptr)
654 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
659 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
665 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
666 gfp_t flags, int nodeid)
671 static inline gfp_t gfp_exact_node(gfp_t flags)
676 #else /* CONFIG_NUMA */
678 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
679 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
681 static struct alien_cache *__alloc_alien_cache(int node, int entries,
682 int batch, gfp_t gfp)
684 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
685 struct alien_cache *alc = NULL;
687 alc = kmalloc_node(memsize, gfp, node);
688 init_arraycache(&alc->ac, entries, batch);
689 spin_lock_init(&alc->lock);
693 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
695 struct alien_cache **alc_ptr;
696 size_t memsize = sizeof(void *) * nr_node_ids;
701 alc_ptr = kzalloc_node(memsize, gfp, node);
706 if (i == node || !node_online(i))
708 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
710 for (i--; i >= 0; i--)
719 static void free_alien_cache(struct alien_cache **alc_ptr)
730 static void __drain_alien_cache(struct kmem_cache *cachep,
731 struct array_cache *ac, int node,
732 struct list_head *list)
734 struct kmem_cache_node *n = get_node(cachep, node);
737 spin_lock(&n->list_lock);
739 * Stuff objects into the remote nodes shared array first.
740 * That way we could avoid the overhead of putting the objects
741 * into the free lists and getting them back later.
744 transfer_objects(n->shared, ac, ac->limit);
746 free_block(cachep, ac->entry, ac->avail, node, list);
748 spin_unlock(&n->list_lock);
753 * Called from cache_reap() to regularly drain alien caches round robin.
755 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
757 int node = __this_cpu_read(slab_reap_node);
760 struct alien_cache *alc = n->alien[node];
761 struct array_cache *ac;
765 if (ac->avail && spin_trylock_irq(&alc->lock)) {
768 __drain_alien_cache(cachep, ac, node, &list);
769 spin_unlock_irq(&alc->lock);
770 slabs_destroy(cachep, &list);
776 static void drain_alien_cache(struct kmem_cache *cachep,
777 struct alien_cache **alien)
780 struct alien_cache *alc;
781 struct array_cache *ac;
784 for_each_online_node(i) {
790 spin_lock_irqsave(&alc->lock, flags);
791 __drain_alien_cache(cachep, ac, i, &list);
792 spin_unlock_irqrestore(&alc->lock, flags);
793 slabs_destroy(cachep, &list);
798 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
799 int node, int page_node)
801 struct kmem_cache_node *n;
802 struct alien_cache *alien = NULL;
803 struct array_cache *ac;
806 n = get_node(cachep, node);
807 STATS_INC_NODEFREES(cachep);
808 if (n->alien && n->alien[page_node]) {
809 alien = n->alien[page_node];
811 spin_lock(&alien->lock);
812 if (unlikely(ac->avail == ac->limit)) {
813 STATS_INC_ACOVERFLOW(cachep);
814 __drain_alien_cache(cachep, ac, page_node, &list);
816 ac->entry[ac->avail++] = objp;
817 spin_unlock(&alien->lock);
818 slabs_destroy(cachep, &list);
820 n = get_node(cachep, page_node);
821 spin_lock(&n->list_lock);
822 free_block(cachep, &objp, 1, page_node, &list);
823 spin_unlock(&n->list_lock);
824 slabs_destroy(cachep, &list);
829 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
831 int page_node = page_to_nid(virt_to_page(objp));
832 int node = numa_mem_id();
834 * Make sure we are not freeing a object from another node to the array
837 if (likely(node == page_node))
840 return __cache_free_alien(cachep, objp, node, page_node);
844 * Construct gfp mask to allocate from a specific node but do not direct reclaim
845 * or warn about failures. kswapd may still wake to reclaim in the background.
847 static inline gfp_t gfp_exact_node(gfp_t flags)
849 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
854 * Allocates and initializes node for a node on each slab cache, used for
855 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
856 * will be allocated off-node since memory is not yet online for the new node.
857 * When hotplugging memory or a cpu, existing node are not replaced if
860 * Must hold slab_mutex.
862 static int init_cache_node_node(int node)
864 struct kmem_cache *cachep;
865 struct kmem_cache_node *n;
866 const size_t memsize = sizeof(struct kmem_cache_node);
868 list_for_each_entry(cachep, &slab_caches, list) {
870 * Set up the kmem_cache_node for cpu before we can
871 * begin anything. Make sure some other cpu on this
872 * node has not already allocated this
874 n = get_node(cachep, node);
876 n = kmalloc_node(memsize, GFP_KERNEL, node);
879 kmem_cache_node_init(n);
880 n->next_reap = jiffies + REAPTIMEOUT_NODE +
881 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
884 * The kmem_cache_nodes don't come and go as CPUs
885 * come and go. slab_mutex is sufficient
888 cachep->node[node] = n;
891 spin_lock_irq(&n->list_lock);
893 (1 + nr_cpus_node(node)) *
894 cachep->batchcount + cachep->num;
895 spin_unlock_irq(&n->list_lock);
900 static inline int slabs_tofree(struct kmem_cache *cachep,
901 struct kmem_cache_node *n)
903 return (n->free_objects + cachep->num - 1) / cachep->num;
906 static void cpuup_canceled(long cpu)
908 struct kmem_cache *cachep;
909 struct kmem_cache_node *n = NULL;
910 int node = cpu_to_mem(cpu);
911 const struct cpumask *mask = cpumask_of_node(node);
913 list_for_each_entry(cachep, &slab_caches, list) {
914 struct array_cache *nc;
915 struct array_cache *shared;
916 struct alien_cache **alien;
919 n = get_node(cachep, node);
923 spin_lock_irq(&n->list_lock);
925 /* Free limit for this kmem_cache_node */
926 n->free_limit -= cachep->batchcount;
928 /* cpu is dead; no one can alloc from it. */
929 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
931 free_block(cachep, nc->entry, nc->avail, node, &list);
935 if (!cpumask_empty(mask)) {
936 spin_unlock_irq(&n->list_lock);
942 free_block(cachep, shared->entry,
943 shared->avail, node, &list);
950 spin_unlock_irq(&n->list_lock);
954 drain_alien_cache(cachep, alien);
955 free_alien_cache(alien);
959 slabs_destroy(cachep, &list);
962 * In the previous loop, all the objects were freed to
963 * the respective cache's slabs, now we can go ahead and
964 * shrink each nodelist to its limit.
966 list_for_each_entry(cachep, &slab_caches, list) {
967 n = get_node(cachep, node);
970 drain_freelist(cachep, n, slabs_tofree(cachep, n));
974 static int cpuup_prepare(long cpu)
976 struct kmem_cache *cachep;
977 struct kmem_cache_node *n = NULL;
978 int node = cpu_to_mem(cpu);
982 * We need to do this right in the beginning since
983 * alloc_arraycache's are going to use this list.
984 * kmalloc_node allows us to add the slab to the right
985 * kmem_cache_node and not this cpu's kmem_cache_node
987 err = init_cache_node_node(node);
992 * Now we can go ahead with allocating the shared arrays and
995 list_for_each_entry(cachep, &slab_caches, list) {
996 struct array_cache *shared = NULL;
997 struct alien_cache **alien = NULL;
999 if (cachep->shared) {
1000 shared = alloc_arraycache(node,
1001 cachep->shared * cachep->batchcount,
1002 0xbaadf00d, GFP_KERNEL);
1006 if (use_alien_caches) {
1007 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1013 n = get_node(cachep, node);
1016 spin_lock_irq(&n->list_lock);
1019 * We are serialised from CPU_DEAD or
1020 * CPU_UP_CANCELLED by the cpucontrol lock
1031 spin_unlock_irq(&n->list_lock);
1033 free_alien_cache(alien);
1038 cpuup_canceled(cpu);
1042 static int cpuup_callback(struct notifier_block *nfb,
1043 unsigned long action, void *hcpu)
1045 long cpu = (long)hcpu;
1049 case CPU_UP_PREPARE:
1050 case CPU_UP_PREPARE_FROZEN:
1051 mutex_lock(&slab_mutex);
1052 err = cpuup_prepare(cpu);
1053 mutex_unlock(&slab_mutex);
1056 case CPU_ONLINE_FROZEN:
1057 start_cpu_timer(cpu);
1059 #ifdef CONFIG_HOTPLUG_CPU
1060 case CPU_DOWN_PREPARE:
1061 case CPU_DOWN_PREPARE_FROZEN:
1063 * Shutdown cache reaper. Note that the slab_mutex is
1064 * held so that if cache_reap() is invoked it cannot do
1065 * anything expensive but will only modify reap_work
1066 * and reschedule the timer.
1068 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1069 /* Now the cache_reaper is guaranteed to be not running. */
1070 per_cpu(slab_reap_work, cpu).work.func = NULL;
1072 case CPU_DOWN_FAILED:
1073 case CPU_DOWN_FAILED_FROZEN:
1074 start_cpu_timer(cpu);
1077 case CPU_DEAD_FROZEN:
1079 * Even if all the cpus of a node are down, we don't free the
1080 * kmem_cache_node of any cache. This to avoid a race between
1081 * cpu_down, and a kmalloc allocation from another cpu for
1082 * memory from the node of the cpu going down. The node
1083 * structure is usually allocated from kmem_cache_create() and
1084 * gets destroyed at kmem_cache_destroy().
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 mutex_lock(&slab_mutex);
1091 cpuup_canceled(cpu);
1092 mutex_unlock(&slab_mutex);
1095 return notifier_from_errno(err);
1098 static struct notifier_block cpucache_notifier = {
1099 &cpuup_callback, NULL, 0
1102 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1104 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1105 * Returns -EBUSY if all objects cannot be drained so that the node is not
1108 * Must hold slab_mutex.
1110 static int __meminit drain_cache_node_node(int node)
1112 struct kmem_cache *cachep;
1115 list_for_each_entry(cachep, &slab_caches, list) {
1116 struct kmem_cache_node *n;
1118 n = get_node(cachep, node);
1122 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1124 if (!list_empty(&n->slabs_full) ||
1125 !list_empty(&n->slabs_partial)) {
1133 static int __meminit slab_memory_callback(struct notifier_block *self,
1134 unsigned long action, void *arg)
1136 struct memory_notify *mnb = arg;
1140 nid = mnb->status_change_nid;
1145 case MEM_GOING_ONLINE:
1146 mutex_lock(&slab_mutex);
1147 ret = init_cache_node_node(nid);
1148 mutex_unlock(&slab_mutex);
1150 case MEM_GOING_OFFLINE:
1151 mutex_lock(&slab_mutex);
1152 ret = drain_cache_node_node(nid);
1153 mutex_unlock(&slab_mutex);
1157 case MEM_CANCEL_ONLINE:
1158 case MEM_CANCEL_OFFLINE:
1162 return notifier_from_errno(ret);
1164 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1167 * swap the static kmem_cache_node with kmalloced memory
1169 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1172 struct kmem_cache_node *ptr;
1174 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1177 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1179 * Do not assume that spinlocks can be initialized via memcpy:
1181 spin_lock_init(&ptr->list_lock);
1183 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1184 cachep->node[nodeid] = ptr;
1188 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1189 * size of kmem_cache_node.
1191 static void __init set_up_node(struct kmem_cache *cachep, int index)
1195 for_each_online_node(node) {
1196 cachep->node[node] = &init_kmem_cache_node[index + node];
1197 cachep->node[node]->next_reap = jiffies +
1199 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1204 * Initialisation. Called after the page allocator have been initialised and
1205 * before smp_init().
1207 void __init kmem_cache_init(void)
1211 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1212 sizeof(struct rcu_head));
1213 kmem_cache = &kmem_cache_boot;
1215 if (num_possible_nodes() == 1)
1216 use_alien_caches = 0;
1218 for (i = 0; i < NUM_INIT_LISTS; i++)
1219 kmem_cache_node_init(&init_kmem_cache_node[i]);
1222 * Fragmentation resistance on low memory - only use bigger
1223 * page orders on machines with more than 32MB of memory if
1224 * not overridden on the command line.
1226 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1227 slab_max_order = SLAB_MAX_ORDER_HI;
1229 /* Bootstrap is tricky, because several objects are allocated
1230 * from caches that do not exist yet:
1231 * 1) initialize the kmem_cache cache: it contains the struct
1232 * kmem_cache structures of all caches, except kmem_cache itself:
1233 * kmem_cache is statically allocated.
1234 * Initially an __init data area is used for the head array and the
1235 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1236 * array at the end of the bootstrap.
1237 * 2) Create the first kmalloc cache.
1238 * The struct kmem_cache for the new cache is allocated normally.
1239 * An __init data area is used for the head array.
1240 * 3) Create the remaining kmalloc caches, with minimally sized
1242 * 4) Replace the __init data head arrays for kmem_cache and the first
1243 * kmalloc cache with kmalloc allocated arrays.
1244 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1245 * the other cache's with kmalloc allocated memory.
1246 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1249 /* 1) create the kmem_cache */
1252 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1254 create_boot_cache(kmem_cache, "kmem_cache",
1255 offsetof(struct kmem_cache, node) +
1256 nr_node_ids * sizeof(struct kmem_cache_node *),
1257 SLAB_HWCACHE_ALIGN);
1258 list_add(&kmem_cache->list, &slab_caches);
1259 slab_state = PARTIAL;
1262 * Initialize the caches that provide memory for the kmem_cache_node
1263 * structures first. Without this, further allocations will bug.
1265 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1266 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1267 slab_state = PARTIAL_NODE;
1268 setup_kmalloc_cache_index_table();
1270 slab_early_init = 0;
1272 /* 5) Replace the bootstrap kmem_cache_node */
1276 for_each_online_node(nid) {
1277 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1279 init_list(kmalloc_caches[INDEX_NODE],
1280 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1284 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1287 void __init kmem_cache_init_late(void)
1289 struct kmem_cache *cachep;
1293 /* 6) resize the head arrays to their final sizes */
1294 mutex_lock(&slab_mutex);
1295 list_for_each_entry(cachep, &slab_caches, list)
1296 if (enable_cpucache(cachep, GFP_NOWAIT))
1298 mutex_unlock(&slab_mutex);
1304 * Register a cpu startup notifier callback that initializes
1305 * cpu_cache_get for all new cpus
1307 register_cpu_notifier(&cpucache_notifier);
1311 * Register a memory hotplug callback that initializes and frees
1314 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1318 * The reap timers are started later, with a module init call: That part
1319 * of the kernel is not yet operational.
1323 static int __init cpucache_init(void)
1328 * Register the timers that return unneeded pages to the page allocator
1330 for_each_online_cpu(cpu)
1331 start_cpu_timer(cpu);
1337 __initcall(cpucache_init);
1339 static noinline void
1340 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1343 struct kmem_cache_node *n;
1345 unsigned long flags;
1347 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1348 DEFAULT_RATELIMIT_BURST);
1350 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1354 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1356 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1357 cachep->name, cachep->size, cachep->gfporder);
1359 for_each_kmem_cache_node(cachep, node, n) {
1360 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1361 unsigned long active_slabs = 0, num_slabs = 0;
1363 spin_lock_irqsave(&n->list_lock, flags);
1364 list_for_each_entry(page, &n->slabs_full, lru) {
1365 active_objs += cachep->num;
1368 list_for_each_entry(page, &n->slabs_partial, lru) {
1369 active_objs += page->active;
1372 list_for_each_entry(page, &n->slabs_free, lru)
1375 free_objects += n->free_objects;
1376 spin_unlock_irqrestore(&n->list_lock, flags);
1378 num_slabs += active_slabs;
1379 num_objs = num_slabs * cachep->num;
1381 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1382 node, active_slabs, num_slabs, active_objs, num_objs,
1389 * Interface to system's page allocator. No need to hold the
1390 * kmem_cache_node ->list_lock.
1392 * If we requested dmaable memory, we will get it. Even if we
1393 * did not request dmaable memory, we might get it, but that
1394 * would be relatively rare and ignorable.
1396 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1402 flags |= cachep->allocflags;
1403 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1404 flags |= __GFP_RECLAIMABLE;
1406 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1408 slab_out_of_memory(cachep, flags, nodeid);
1412 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1413 __free_pages(page, cachep->gfporder);
1417 nr_pages = (1 << cachep->gfporder);
1418 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1419 add_zone_page_state(page_zone(page),
1420 NR_SLAB_RECLAIMABLE, nr_pages);
1422 add_zone_page_state(page_zone(page),
1423 NR_SLAB_UNRECLAIMABLE, nr_pages);
1425 __SetPageSlab(page);
1426 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1427 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1428 SetPageSlabPfmemalloc(page);
1430 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1431 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1434 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1436 kmemcheck_mark_unallocated_pages(page, nr_pages);
1443 * Interface to system's page release.
1445 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1447 int order = cachep->gfporder;
1448 unsigned long nr_freed = (1 << order);
1450 kmemcheck_free_shadow(page, order);
1452 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1453 sub_zone_page_state(page_zone(page),
1454 NR_SLAB_RECLAIMABLE, nr_freed);
1456 sub_zone_page_state(page_zone(page),
1457 NR_SLAB_UNRECLAIMABLE, nr_freed);
1459 BUG_ON(!PageSlab(page));
1460 __ClearPageSlabPfmemalloc(page);
1461 __ClearPageSlab(page);
1462 page_mapcount_reset(page);
1463 page->mapping = NULL;
1465 if (current->reclaim_state)
1466 current->reclaim_state->reclaimed_slab += nr_freed;
1467 memcg_uncharge_slab(page, order, cachep);
1468 __free_pages(page, order);
1471 static void kmem_rcu_free(struct rcu_head *head)
1473 struct kmem_cache *cachep;
1476 page = container_of(head, struct page, rcu_head);
1477 cachep = page->slab_cache;
1479 kmem_freepages(cachep, page);
1483 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1485 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1486 (cachep->size % PAGE_SIZE) == 0)
1492 #ifdef CONFIG_DEBUG_PAGEALLOC
1493 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1494 unsigned long caller)
1496 int size = cachep->object_size;
1498 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1500 if (size < 5 * sizeof(unsigned long))
1503 *addr++ = 0x12345678;
1505 *addr++ = smp_processor_id();
1506 size -= 3 * sizeof(unsigned long);
1508 unsigned long *sptr = &caller;
1509 unsigned long svalue;
1511 while (!kstack_end(sptr)) {
1513 if (kernel_text_address(svalue)) {
1515 size -= sizeof(unsigned long);
1516 if (size <= sizeof(unsigned long))
1522 *addr++ = 0x87654321;
1525 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1526 int map, unsigned long caller)
1528 if (!is_debug_pagealloc_cache(cachep))
1532 store_stackinfo(cachep, objp, caller);
1534 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1538 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1539 int map, unsigned long caller) {}
1543 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1545 int size = cachep->object_size;
1546 addr = &((char *)addr)[obj_offset(cachep)];
1548 memset(addr, val, size);
1549 *(unsigned char *)(addr + size - 1) = POISON_END;
1552 static void dump_line(char *data, int offset, int limit)
1555 unsigned char error = 0;
1558 printk(KERN_ERR "%03x: ", offset);
1559 for (i = 0; i < limit; i++) {
1560 if (data[offset + i] != POISON_FREE) {
1561 error = data[offset + i];
1565 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1566 &data[offset], limit, 1);
1568 if (bad_count == 1) {
1569 error ^= POISON_FREE;
1570 if (!(error & (error - 1))) {
1571 printk(KERN_ERR "Single bit error detected. Probably "
1574 printk(KERN_ERR "Run memtest86+ or a similar memory "
1577 printk(KERN_ERR "Run a memory test tool.\n");
1586 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1591 if (cachep->flags & SLAB_RED_ZONE) {
1592 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1593 *dbg_redzone1(cachep, objp),
1594 *dbg_redzone2(cachep, objp));
1597 if (cachep->flags & SLAB_STORE_USER) {
1598 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1599 *dbg_userword(cachep, objp),
1600 *dbg_userword(cachep, objp));
1602 realobj = (char *)objp + obj_offset(cachep);
1603 size = cachep->object_size;
1604 for (i = 0; i < size && lines; i += 16, lines--) {
1607 if (i + limit > size)
1609 dump_line(realobj, i, limit);
1613 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1619 if (is_debug_pagealloc_cache(cachep))
1622 realobj = (char *)objp + obj_offset(cachep);
1623 size = cachep->object_size;
1625 for (i = 0; i < size; i++) {
1626 char exp = POISON_FREE;
1629 if (realobj[i] != exp) {
1635 "Slab corruption (%s): %s start=%p, len=%d\n",
1636 print_tainted(), cachep->name, realobj, size);
1637 print_objinfo(cachep, objp, 0);
1639 /* Hexdump the affected line */
1642 if (i + limit > size)
1644 dump_line(realobj, i, limit);
1647 /* Limit to 5 lines */
1653 /* Print some data about the neighboring objects, if they
1656 struct page *page = virt_to_head_page(objp);
1659 objnr = obj_to_index(cachep, page, objp);
1661 objp = index_to_obj(cachep, page, objnr - 1);
1662 realobj = (char *)objp + obj_offset(cachep);
1663 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1665 print_objinfo(cachep, objp, 2);
1667 if (objnr + 1 < cachep->num) {
1668 objp = index_to_obj(cachep, page, objnr + 1);
1669 realobj = (char *)objp + obj_offset(cachep);
1670 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1672 print_objinfo(cachep, objp, 2);
1679 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1684 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1685 poison_obj(cachep, page->freelist - obj_offset(cachep),
1689 for (i = 0; i < cachep->num; i++) {
1690 void *objp = index_to_obj(cachep, page, i);
1692 if (cachep->flags & SLAB_POISON) {
1693 check_poison_obj(cachep, objp);
1694 slab_kernel_map(cachep, objp, 1, 0);
1696 if (cachep->flags & SLAB_RED_ZONE) {
1697 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1698 slab_error(cachep, "start of a freed object "
1700 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1701 slab_error(cachep, "end of a freed object "
1707 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1714 * slab_destroy - destroy and release all objects in a slab
1715 * @cachep: cache pointer being destroyed
1716 * @page: page pointer being destroyed
1718 * Destroy all the objs in a slab page, and release the mem back to the system.
1719 * Before calling the slab page must have been unlinked from the cache. The
1720 * kmem_cache_node ->list_lock is not held/needed.
1722 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1726 freelist = page->freelist;
1727 slab_destroy_debugcheck(cachep, page);
1728 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1729 call_rcu(&page->rcu_head, kmem_rcu_free);
1731 kmem_freepages(cachep, page);
1734 * From now on, we don't use freelist
1735 * although actual page can be freed in rcu context
1737 if (OFF_SLAB(cachep))
1738 kmem_cache_free(cachep->freelist_cache, freelist);
1741 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1743 struct page *page, *n;
1745 list_for_each_entry_safe(page, n, list, lru) {
1746 list_del(&page->lru);
1747 slab_destroy(cachep, page);
1752 * calculate_slab_order - calculate size (page order) of slabs
1753 * @cachep: pointer to the cache that is being created
1754 * @size: size of objects to be created in this cache.
1755 * @flags: slab allocation flags
1757 * Also calculates the number of objects per slab.
1759 * This could be made much more intelligent. For now, try to avoid using
1760 * high order pages for slabs. When the gfp() functions are more friendly
1761 * towards high-order requests, this should be changed.
1763 static size_t calculate_slab_order(struct kmem_cache *cachep,
1764 size_t size, unsigned long flags)
1766 size_t left_over = 0;
1769 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1773 cache_estimate(gfporder, size, flags, &remainder, &num);
1777 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1778 if (num > SLAB_OBJ_MAX_NUM)
1781 if (flags & CFLGS_OFF_SLAB) {
1782 struct kmem_cache *freelist_cache;
1783 size_t freelist_size;
1785 freelist_size = num * sizeof(freelist_idx_t);
1786 freelist_cache = kmalloc_slab(freelist_size, 0u);
1787 if (!freelist_cache)
1791 * Needed to avoid possible looping condition
1794 if (OFF_SLAB(freelist_cache))
1797 /* check if off slab has enough benefit */
1798 if (freelist_cache->size > cachep->size / 2)
1802 /* Found something acceptable - save it away */
1804 cachep->gfporder = gfporder;
1805 left_over = remainder;
1808 * A VFS-reclaimable slab tends to have most allocations
1809 * as GFP_NOFS and we really don't want to have to be allocating
1810 * higher-order pages when we are unable to shrink dcache.
1812 if (flags & SLAB_RECLAIM_ACCOUNT)
1816 * Large number of objects is good, but very large slabs are
1817 * currently bad for the gfp()s.
1819 if (gfporder >= slab_max_order)
1823 * Acceptable internal fragmentation?
1825 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1831 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1832 struct kmem_cache *cachep, int entries, int batchcount)
1836 struct array_cache __percpu *cpu_cache;
1838 size = sizeof(void *) * entries + sizeof(struct array_cache);
1839 cpu_cache = __alloc_percpu(size, sizeof(void *));
1844 for_each_possible_cpu(cpu) {
1845 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1846 entries, batchcount);
1852 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1854 if (slab_state >= FULL)
1855 return enable_cpucache(cachep, gfp);
1857 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1858 if (!cachep->cpu_cache)
1861 if (slab_state == DOWN) {
1862 /* Creation of first cache (kmem_cache). */
1863 set_up_node(kmem_cache, CACHE_CACHE);
1864 } else if (slab_state == PARTIAL) {
1865 /* For kmem_cache_node */
1866 set_up_node(cachep, SIZE_NODE);
1870 for_each_online_node(node) {
1871 cachep->node[node] = kmalloc_node(
1872 sizeof(struct kmem_cache_node), gfp, node);
1873 BUG_ON(!cachep->node[node]);
1874 kmem_cache_node_init(cachep->node[node]);
1878 cachep->node[numa_mem_id()]->next_reap =
1879 jiffies + REAPTIMEOUT_NODE +
1880 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1882 cpu_cache_get(cachep)->avail = 0;
1883 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1884 cpu_cache_get(cachep)->batchcount = 1;
1885 cpu_cache_get(cachep)->touched = 0;
1886 cachep->batchcount = 1;
1887 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1891 unsigned long kmem_cache_flags(unsigned long object_size,
1892 unsigned long flags, const char *name,
1893 void (*ctor)(void *))
1899 __kmem_cache_alias(const char *name, size_t size, size_t align,
1900 unsigned long flags, void (*ctor)(void *))
1902 struct kmem_cache *cachep;
1904 cachep = find_mergeable(size, align, flags, name, ctor);
1909 * Adjust the object sizes so that we clear
1910 * the complete object on kzalloc.
1912 cachep->object_size = max_t(int, cachep->object_size, size);
1917 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1918 size_t size, unsigned long flags)
1924 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1927 left = calculate_slab_order(cachep, size,
1928 flags | CFLGS_OBJFREELIST_SLAB);
1932 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1935 cachep->colour = left / cachep->colour_off;
1940 static bool set_off_slab_cache(struct kmem_cache *cachep,
1941 size_t size, unsigned long flags)
1948 * Always use on-slab management when SLAB_NOLEAKTRACE
1949 * to avoid recursive calls into kmemleak.
1951 if (flags & SLAB_NOLEAKTRACE)
1955 * Size is large, assume best to place the slab management obj
1956 * off-slab (should allow better packing of objs).
1958 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1963 * If the slab has been placed off-slab, and we have enough space then
1964 * move it on-slab. This is at the expense of any extra colouring.
1966 if (left >= cachep->num * sizeof(freelist_idx_t))
1969 cachep->colour = left / cachep->colour_off;
1974 static bool set_on_slab_cache(struct kmem_cache *cachep,
1975 size_t size, unsigned long flags)
1981 left = calculate_slab_order(cachep, size, flags);
1985 cachep->colour = left / cachep->colour_off;
1991 * __kmem_cache_create - Create a cache.
1992 * @cachep: cache management descriptor
1993 * @flags: SLAB flags
1995 * Returns a ptr to the cache on success, NULL on failure.
1996 * Cannot be called within a int, but can be interrupted.
1997 * The @ctor is run when new pages are allocated by the cache.
2001 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2002 * to catch references to uninitialised memory.
2004 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2005 * for buffer overruns.
2007 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2008 * cacheline. This can be beneficial if you're counting cycles as closely
2012 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2014 size_t ralign = BYTES_PER_WORD;
2017 size_t size = cachep->size;
2022 * Enable redzoning and last user accounting, except for caches with
2023 * large objects, if the increased size would increase the object size
2024 * above the next power of two: caches with object sizes just above a
2025 * power of two have a significant amount of internal fragmentation.
2027 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2028 2 * sizeof(unsigned long long)))
2029 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2030 if (!(flags & SLAB_DESTROY_BY_RCU))
2031 flags |= SLAB_POISON;
2036 * Check that size is in terms of words. This is needed to avoid
2037 * unaligned accesses for some archs when redzoning is used, and makes
2038 * sure any on-slab bufctl's are also correctly aligned.
2040 if (size & (BYTES_PER_WORD - 1)) {
2041 size += (BYTES_PER_WORD - 1);
2042 size &= ~(BYTES_PER_WORD - 1);
2045 if (flags & SLAB_RED_ZONE) {
2046 ralign = REDZONE_ALIGN;
2047 /* If redzoning, ensure that the second redzone is suitably
2048 * aligned, by adjusting the object size accordingly. */
2049 size += REDZONE_ALIGN - 1;
2050 size &= ~(REDZONE_ALIGN - 1);
2053 /* 3) caller mandated alignment */
2054 if (ralign < cachep->align) {
2055 ralign = cachep->align;
2057 /* disable debug if necessary */
2058 if (ralign > __alignof__(unsigned long long))
2059 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2063 cachep->align = ralign;
2064 cachep->colour_off = cache_line_size();
2065 /* Offset must be a multiple of the alignment. */
2066 if (cachep->colour_off < cachep->align)
2067 cachep->colour_off = cachep->align;
2069 if (slab_is_available())
2077 * Both debugging options require word-alignment which is calculated
2080 if (flags & SLAB_RED_ZONE) {
2081 /* add space for red zone words */
2082 cachep->obj_offset += sizeof(unsigned long long);
2083 size += 2 * sizeof(unsigned long long);
2085 if (flags & SLAB_STORE_USER) {
2086 /* user store requires one word storage behind the end of
2087 * the real object. But if the second red zone needs to be
2088 * aligned to 64 bits, we must allow that much space.
2090 if (flags & SLAB_RED_ZONE)
2091 size += REDZONE_ALIGN;
2093 size += BYTES_PER_WORD;
2097 size = ALIGN(size, cachep->align);
2099 * We should restrict the number of objects in a slab to implement
2100 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2102 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2103 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2107 * To activate debug pagealloc, off-slab management is necessary
2108 * requirement. In early phase of initialization, small sized slab
2109 * doesn't get initialized so it would not be possible. So, we need
2110 * to check size >= 256. It guarantees that all necessary small
2111 * sized slab is initialized in current slab initialization sequence.
2113 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2114 size >= 256 && cachep->object_size > cache_line_size()) {
2115 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2116 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2118 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2119 flags |= CFLGS_OFF_SLAB;
2120 cachep->obj_offset += tmp_size - size;
2128 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2129 flags |= CFLGS_OBJFREELIST_SLAB;
2133 if (set_off_slab_cache(cachep, size, flags)) {
2134 flags |= CFLGS_OFF_SLAB;
2138 if (set_on_slab_cache(cachep, size, flags))
2144 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2145 cachep->flags = flags;
2146 cachep->allocflags = __GFP_COMP;
2147 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2148 cachep->allocflags |= GFP_DMA;
2149 cachep->size = size;
2150 cachep->reciprocal_buffer_size = reciprocal_value(size);
2154 * If we're going to use the generic kernel_map_pages()
2155 * poisoning, then it's going to smash the contents of
2156 * the redzone and userword anyhow, so switch them off.
2158 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2159 (cachep->flags & SLAB_POISON) &&
2160 is_debug_pagealloc_cache(cachep))
2161 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2164 if (OFF_SLAB(cachep)) {
2165 cachep->freelist_cache =
2166 kmalloc_slab(cachep->freelist_size, 0u);
2169 err = setup_cpu_cache(cachep, gfp);
2171 __kmem_cache_release(cachep);
2179 static void check_irq_off(void)
2181 BUG_ON(!irqs_disabled());
2184 static void check_irq_on(void)
2186 BUG_ON(irqs_disabled());
2189 static void check_spinlock_acquired(struct kmem_cache *cachep)
2193 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2197 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2201 assert_spin_locked(&get_node(cachep, node)->list_lock);
2206 #define check_irq_off() do { } while(0)
2207 #define check_irq_on() do { } while(0)
2208 #define check_spinlock_acquired(x) do { } while(0)
2209 #define check_spinlock_acquired_node(x, y) do { } while(0)
2212 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2213 struct array_cache *ac,
2214 int force, int node);
2216 static void do_drain(void *arg)
2218 struct kmem_cache *cachep = arg;
2219 struct array_cache *ac;
2220 int node = numa_mem_id();
2221 struct kmem_cache_node *n;
2225 ac = cpu_cache_get(cachep);
2226 n = get_node(cachep, node);
2227 spin_lock(&n->list_lock);
2228 free_block(cachep, ac->entry, ac->avail, node, &list);
2229 spin_unlock(&n->list_lock);
2230 slabs_destroy(cachep, &list);
2234 static void drain_cpu_caches(struct kmem_cache *cachep)
2236 struct kmem_cache_node *n;
2239 on_each_cpu(do_drain, cachep, 1);
2241 for_each_kmem_cache_node(cachep, node, n)
2243 drain_alien_cache(cachep, n->alien);
2245 for_each_kmem_cache_node(cachep, node, n)
2246 drain_array(cachep, n, n->shared, 1, node);
2250 * Remove slabs from the list of free slabs.
2251 * Specify the number of slabs to drain in tofree.
2253 * Returns the actual number of slabs released.
2255 static int drain_freelist(struct kmem_cache *cache,
2256 struct kmem_cache_node *n, int tofree)
2258 struct list_head *p;
2263 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2265 spin_lock_irq(&n->list_lock);
2266 p = n->slabs_free.prev;
2267 if (p == &n->slabs_free) {
2268 spin_unlock_irq(&n->list_lock);
2272 page = list_entry(p, struct page, lru);
2273 list_del(&page->lru);
2275 * Safe to drop the lock. The slab is no longer linked
2278 n->free_objects -= cache->num;
2279 spin_unlock_irq(&n->list_lock);
2280 slab_destroy(cache, page);
2287 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2291 struct kmem_cache_node *n;
2293 drain_cpu_caches(cachep);
2296 for_each_kmem_cache_node(cachep, node, n) {
2297 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2299 ret += !list_empty(&n->slabs_full) ||
2300 !list_empty(&n->slabs_partial);
2302 return (ret ? 1 : 0);
2305 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2307 return __kmem_cache_shrink(cachep, false);
2310 void __kmem_cache_release(struct kmem_cache *cachep)
2313 struct kmem_cache_node *n;
2315 free_percpu(cachep->cpu_cache);
2317 /* NUMA: free the node structures */
2318 for_each_kmem_cache_node(cachep, i, n) {
2320 free_alien_cache(n->alien);
2322 cachep->node[i] = NULL;
2327 * Get the memory for a slab management obj.
2329 * For a slab cache when the slab descriptor is off-slab, the
2330 * slab descriptor can't come from the same cache which is being created,
2331 * Because if it is the case, that means we defer the creation of
2332 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2333 * And we eventually call down to __kmem_cache_create(), which
2334 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2335 * This is a "chicken-and-egg" problem.
2337 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2338 * which are all initialized during kmem_cache_init().
2340 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2341 struct page *page, int colour_off,
2342 gfp_t local_flags, int nodeid)
2345 void *addr = page_address(page);
2347 page->s_mem = addr + colour_off;
2350 if (OBJFREELIST_SLAB(cachep))
2352 else if (OFF_SLAB(cachep)) {
2353 /* Slab management obj is off-slab. */
2354 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2355 local_flags, nodeid);
2359 /* We will use last bytes at the slab for freelist */
2360 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2361 cachep->freelist_size;
2367 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2369 return ((freelist_idx_t *)page->freelist)[idx];
2372 static inline void set_free_obj(struct page *page,
2373 unsigned int idx, freelist_idx_t val)
2375 ((freelist_idx_t *)(page->freelist))[idx] = val;
2378 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2383 for (i = 0; i < cachep->num; i++) {
2384 void *objp = index_to_obj(cachep, page, i);
2386 if (cachep->flags & SLAB_STORE_USER)
2387 *dbg_userword(cachep, objp) = NULL;
2389 if (cachep->flags & SLAB_RED_ZONE) {
2390 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2391 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2394 * Constructors are not allowed to allocate memory from the same
2395 * cache which they are a constructor for. Otherwise, deadlock.
2396 * They must also be threaded.
2398 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2399 cachep->ctor(objp + obj_offset(cachep));
2401 if (cachep->flags & SLAB_RED_ZONE) {
2402 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2403 slab_error(cachep, "constructor overwrote the"
2404 " end of an object");
2405 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2406 slab_error(cachep, "constructor overwrote the"
2407 " start of an object");
2409 /* need to poison the objs? */
2410 if (cachep->flags & SLAB_POISON) {
2411 poison_obj(cachep, objp, POISON_FREE);
2412 slab_kernel_map(cachep, objp, 0, 0);
2418 static void cache_init_objs(struct kmem_cache *cachep,
2423 cache_init_objs_debug(cachep, page);
2425 if (OBJFREELIST_SLAB(cachep)) {
2426 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2430 for (i = 0; i < cachep->num; i++) {
2431 /* constructor could break poison info */
2432 if (DEBUG == 0 && cachep->ctor)
2433 cachep->ctor(index_to_obj(cachep, page, i));
2435 set_free_obj(page, i, i);
2439 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2441 if (CONFIG_ZONE_DMA_FLAG) {
2442 if (flags & GFP_DMA)
2443 BUG_ON(!(cachep->allocflags & GFP_DMA));
2445 BUG_ON(cachep->allocflags & GFP_DMA);
2449 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2453 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2457 if (cachep->flags & SLAB_STORE_USER)
2458 set_store_user_dirty(cachep);
2464 static void slab_put_obj(struct kmem_cache *cachep,
2465 struct page *page, void *objp)
2467 unsigned int objnr = obj_to_index(cachep, page, objp);
2471 /* Verify double free bug */
2472 for (i = page->active; i < cachep->num; i++) {
2473 if (get_free_obj(page, i) == objnr) {
2474 printk(KERN_ERR "slab: double free detected in cache "
2475 "'%s', objp %p\n", cachep->name, objp);
2481 if (!page->freelist)
2482 page->freelist = objp + obj_offset(cachep);
2484 set_free_obj(page, page->active, objnr);
2488 * Map pages beginning at addr to the given cache and slab. This is required
2489 * for the slab allocator to be able to lookup the cache and slab of a
2490 * virtual address for kfree, ksize, and slab debugging.
2492 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2495 page->slab_cache = cache;
2496 page->freelist = freelist;
2500 * Grow (by 1) the number of slabs within a cache. This is called by
2501 * kmem_cache_alloc() when there are no active objs left in a cache.
2503 static int cache_grow(struct kmem_cache *cachep,
2504 gfp_t flags, int nodeid, struct page *page)
2509 struct kmem_cache_node *n;
2512 * Be lazy and only check for valid flags here, keeping it out of the
2513 * critical path in kmem_cache_alloc().
2515 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2516 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2519 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2521 /* Take the node list lock to change the colour_next on this node */
2523 n = get_node(cachep, nodeid);
2524 spin_lock(&n->list_lock);
2526 /* Get colour for the slab, and cal the next value. */
2527 offset = n->colour_next;
2529 if (n->colour_next >= cachep->colour)
2531 spin_unlock(&n->list_lock);
2533 offset *= cachep->colour_off;
2535 if (gfpflags_allow_blocking(local_flags))
2539 * The test for missing atomic flag is performed here, rather than
2540 * the more obvious place, simply to reduce the critical path length
2541 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2542 * will eventually be caught here (where it matters).
2544 kmem_flagcheck(cachep, flags);
2547 * Get mem for the objs. Attempt to allocate a physical page from
2551 page = kmem_getpages(cachep, local_flags, nodeid);
2555 /* Get slab management. */
2556 freelist = alloc_slabmgmt(cachep, page, offset,
2557 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2558 if (OFF_SLAB(cachep) && !freelist)
2561 slab_map_pages(cachep, page, freelist);
2563 cache_init_objs(cachep, page);
2565 if (gfpflags_allow_blocking(local_flags))
2566 local_irq_disable();
2568 spin_lock(&n->list_lock);
2570 /* Make slab active. */
2571 list_add_tail(&page->lru, &(n->slabs_free));
2572 STATS_INC_GROWN(cachep);
2573 n->free_objects += cachep->num;
2574 spin_unlock(&n->list_lock);
2577 kmem_freepages(cachep, page);
2579 if (gfpflags_allow_blocking(local_flags))
2580 local_irq_disable();
2587 * Perform extra freeing checks:
2588 * - detect bad pointers.
2589 * - POISON/RED_ZONE checking
2591 static void kfree_debugcheck(const void *objp)
2593 if (!virt_addr_valid(objp)) {
2594 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2595 (unsigned long)objp);
2600 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2602 unsigned long long redzone1, redzone2;
2604 redzone1 = *dbg_redzone1(cache, obj);
2605 redzone2 = *dbg_redzone2(cache, obj);
2610 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2613 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2614 slab_error(cache, "double free detected");
2616 slab_error(cache, "memory outside object was overwritten");
2618 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2619 obj, redzone1, redzone2);
2622 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2623 unsigned long caller)
2628 BUG_ON(virt_to_cache(objp) != cachep);
2630 objp -= obj_offset(cachep);
2631 kfree_debugcheck(objp);
2632 page = virt_to_head_page(objp);
2634 if (cachep->flags & SLAB_RED_ZONE) {
2635 verify_redzone_free(cachep, objp);
2636 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2637 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2639 if (cachep->flags & SLAB_STORE_USER) {
2640 set_store_user_dirty(cachep);
2641 *dbg_userword(cachep, objp) = (void *)caller;
2644 objnr = obj_to_index(cachep, page, objp);
2646 BUG_ON(objnr >= cachep->num);
2647 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2649 if (cachep->flags & SLAB_POISON) {
2650 poison_obj(cachep, objp, POISON_FREE);
2651 slab_kernel_map(cachep, objp, 0, caller);
2657 #define kfree_debugcheck(x) do { } while(0)
2658 #define cache_free_debugcheck(x,objp,z) (objp)
2661 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2669 objp = next - obj_offset(cachep);
2670 next = *(void **)next;
2671 poison_obj(cachep, objp, POISON_FREE);
2676 static inline void fixup_slab_list(struct kmem_cache *cachep,
2677 struct kmem_cache_node *n, struct page *page,
2680 /* move slabp to correct slabp list: */
2681 list_del(&page->lru);
2682 if (page->active == cachep->num) {
2683 list_add(&page->lru, &n->slabs_full);
2684 if (OBJFREELIST_SLAB(cachep)) {
2686 /* Poisoning will be done without holding the lock */
2687 if (cachep->flags & SLAB_POISON) {
2688 void **objp = page->freelist;
2694 page->freelist = NULL;
2697 list_add(&page->lru, &n->slabs_partial);
2700 /* Try to find non-pfmemalloc slab if needed */
2701 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2702 struct page *page, bool pfmemalloc)
2710 if (!PageSlabPfmemalloc(page))
2713 /* No need to keep pfmemalloc slab if we have enough free objects */
2714 if (n->free_objects > n->free_limit) {
2715 ClearPageSlabPfmemalloc(page);
2719 /* Move pfmemalloc slab to the end of list to speed up next search */
2720 list_del(&page->lru);
2722 list_add_tail(&page->lru, &n->slabs_free);
2724 list_add_tail(&page->lru, &n->slabs_partial);
2726 list_for_each_entry(page, &n->slabs_partial, lru) {
2727 if (!PageSlabPfmemalloc(page))
2731 list_for_each_entry(page, &n->slabs_free, lru) {
2732 if (!PageSlabPfmemalloc(page))
2739 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2743 page = list_first_entry_or_null(&n->slabs_partial,
2746 n->free_touched = 1;
2747 page = list_first_entry_or_null(&n->slabs_free,
2751 if (sk_memalloc_socks())
2752 return get_valid_first_slab(n, page, pfmemalloc);
2757 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2758 struct kmem_cache_node *n, gfp_t flags)
2764 if (!gfp_pfmemalloc_allowed(flags))
2767 /* Racy check if there is free objects */
2768 if (!n->free_objects)
2771 spin_lock(&n->list_lock);
2772 page = get_first_slab(n, true);
2774 spin_unlock(&n->list_lock);
2778 obj = slab_get_obj(cachep, page);
2781 fixup_slab_list(cachep, n, page, &list);
2783 spin_unlock(&n->list_lock);
2784 fixup_objfreelist_debug(cachep, &list);
2789 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2792 struct kmem_cache_node *n;
2793 struct array_cache *ac;
2798 node = numa_mem_id();
2801 ac = cpu_cache_get(cachep);
2802 batchcount = ac->batchcount;
2803 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2805 * If there was little recent activity on this cache, then
2806 * perform only a partial refill. Otherwise we could generate
2809 batchcount = BATCHREFILL_LIMIT;
2811 n = get_node(cachep, node);
2813 BUG_ON(ac->avail > 0 || !n);
2814 spin_lock(&n->list_lock);
2816 /* See if we can refill from the shared array */
2817 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2818 n->shared->touched = 1;
2822 while (batchcount > 0) {
2824 /* Get slab alloc is to come from. */
2825 page = get_first_slab(n, false);
2829 check_spinlock_acquired(cachep);
2832 * The slab was either on partial or free list so
2833 * there must be at least one object available for
2836 BUG_ON(page->active >= cachep->num);
2838 while (page->active < cachep->num && batchcount--) {
2839 STATS_INC_ALLOCED(cachep);
2840 STATS_INC_ACTIVE(cachep);
2841 STATS_SET_HIGH(cachep);
2843 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2846 fixup_slab_list(cachep, n, page, &list);
2850 n->free_objects -= ac->avail;
2852 spin_unlock(&n->list_lock);
2853 fixup_objfreelist_debug(cachep, &list);
2855 if (unlikely(!ac->avail)) {
2858 /* Check if we can use obj in pfmemalloc slab */
2859 if (sk_memalloc_socks()) {
2860 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2866 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2868 /* cache_grow can reenable interrupts, then ac could change. */
2869 ac = cpu_cache_get(cachep);
2870 node = numa_mem_id();
2872 /* no objects in sight? abort */
2873 if (!x && ac->avail == 0)
2876 if (!ac->avail) /* objects refilled by interrupt? */
2881 return ac->entry[--ac->avail];
2884 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2887 might_sleep_if(gfpflags_allow_blocking(flags));
2889 kmem_flagcheck(cachep, flags);
2894 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2895 gfp_t flags, void *objp, unsigned long caller)
2899 if (cachep->flags & SLAB_POISON) {
2900 check_poison_obj(cachep, objp);
2901 slab_kernel_map(cachep, objp, 1, 0);
2902 poison_obj(cachep, objp, POISON_INUSE);
2904 if (cachep->flags & SLAB_STORE_USER)
2905 *dbg_userword(cachep, objp) = (void *)caller;
2907 if (cachep->flags & SLAB_RED_ZONE) {
2908 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2909 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2910 slab_error(cachep, "double free, or memory outside"
2911 " object was overwritten");
2913 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2914 objp, *dbg_redzone1(cachep, objp),
2915 *dbg_redzone2(cachep, objp));
2917 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2918 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2921 objp += obj_offset(cachep);
2922 if (cachep->ctor && cachep->flags & SLAB_POISON)
2924 if (ARCH_SLAB_MINALIGN &&
2925 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2926 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2927 objp, (int)ARCH_SLAB_MINALIGN);
2932 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2935 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2938 struct array_cache *ac;
2942 ac = cpu_cache_get(cachep);
2943 if (likely(ac->avail)) {
2945 objp = ac->entry[--ac->avail];
2947 STATS_INC_ALLOCHIT(cachep);
2951 STATS_INC_ALLOCMISS(cachep);
2952 objp = cache_alloc_refill(cachep, flags);
2954 * the 'ac' may be updated by cache_alloc_refill(),
2955 * and kmemleak_erase() requires its correct value.
2957 ac = cpu_cache_get(cachep);
2961 * To avoid a false negative, if an object that is in one of the
2962 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2963 * treat the array pointers as a reference to the object.
2966 kmemleak_erase(&ac->entry[ac->avail]);
2972 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2974 * If we are in_interrupt, then process context, including cpusets and
2975 * mempolicy, may not apply and should not be used for allocation policy.
2977 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2979 int nid_alloc, nid_here;
2981 if (in_interrupt() || (flags & __GFP_THISNODE))
2983 nid_alloc = nid_here = numa_mem_id();
2984 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2985 nid_alloc = cpuset_slab_spread_node();
2986 else if (current->mempolicy)
2987 nid_alloc = mempolicy_slab_node();
2988 if (nid_alloc != nid_here)
2989 return ____cache_alloc_node(cachep, flags, nid_alloc);
2994 * Fallback function if there was no memory available and no objects on a
2995 * certain node and fall back is permitted. First we scan all the
2996 * available node for available objects. If that fails then we
2997 * perform an allocation without specifying a node. This allows the page
2998 * allocator to do its reclaim / fallback magic. We then insert the
2999 * slab into the proper nodelist and then allocate from it.
3001 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3003 struct zonelist *zonelist;
3007 enum zone_type high_zoneidx = gfp_zone(flags);
3010 unsigned int cpuset_mems_cookie;
3012 if (flags & __GFP_THISNODE)
3015 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3018 cpuset_mems_cookie = read_mems_allowed_begin();
3019 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3023 * Look through allowed nodes for objects available
3024 * from existing per node queues.
3026 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3027 nid = zone_to_nid(zone);
3029 if (cpuset_zone_allowed(zone, flags) &&
3030 get_node(cache, nid) &&
3031 get_node(cache, nid)->free_objects) {
3032 obj = ____cache_alloc_node(cache,
3033 gfp_exact_node(flags), nid);
3041 * This allocation will be performed within the constraints
3042 * of the current cpuset / memory policy requirements.
3043 * We may trigger various forms of reclaim on the allowed
3044 * set and go into memory reserves if necessary.
3048 if (gfpflags_allow_blocking(local_flags))
3050 kmem_flagcheck(cache, flags);
3051 page = kmem_getpages(cache, local_flags, numa_mem_id());
3052 if (gfpflags_allow_blocking(local_flags))
3053 local_irq_disable();
3056 * Insert into the appropriate per node queues
3058 nid = page_to_nid(page);
3059 if (cache_grow(cache, flags, nid, page)) {
3060 obj = ____cache_alloc_node(cache,
3061 gfp_exact_node(flags), nid);
3064 * Another processor may allocate the
3065 * objects in the slab since we are
3066 * not holding any locks.
3070 /* cache_grow already freed obj */
3076 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3082 * A interface to enable slab creation on nodeid
3084 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3088 struct kmem_cache_node *n;
3093 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3094 n = get_node(cachep, nodeid);
3099 spin_lock(&n->list_lock);
3100 page = get_first_slab(n, false);
3104 check_spinlock_acquired_node(cachep, nodeid);
3106 STATS_INC_NODEALLOCS(cachep);
3107 STATS_INC_ACTIVE(cachep);
3108 STATS_SET_HIGH(cachep);
3110 BUG_ON(page->active == cachep->num);
3112 obj = slab_get_obj(cachep, page);
3115 fixup_slab_list(cachep, n, page, &list);
3117 spin_unlock(&n->list_lock);
3118 fixup_objfreelist_debug(cachep, &list);
3122 spin_unlock(&n->list_lock);
3123 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3127 return fallback_alloc(cachep, flags);
3133 static __always_inline void *
3134 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3135 unsigned long caller)
3137 unsigned long save_flags;
3139 int slab_node = numa_mem_id();
3141 flags &= gfp_allowed_mask;
3142 cachep = slab_pre_alloc_hook(cachep, flags);
3143 if (unlikely(!cachep))
3146 cache_alloc_debugcheck_before(cachep, flags);
3147 local_irq_save(save_flags);
3149 if (nodeid == NUMA_NO_NODE)
3152 if (unlikely(!get_node(cachep, nodeid))) {
3153 /* Node not bootstrapped yet */
3154 ptr = fallback_alloc(cachep, flags);
3158 if (nodeid == slab_node) {
3160 * Use the locally cached objects if possible.
3161 * However ____cache_alloc does not allow fallback
3162 * to other nodes. It may fail while we still have
3163 * objects on other nodes available.
3165 ptr = ____cache_alloc(cachep, flags);
3169 /* ___cache_alloc_node can fall back to other nodes */
3170 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3172 local_irq_restore(save_flags);
3173 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3175 if (unlikely(flags & __GFP_ZERO) && ptr)
3176 memset(ptr, 0, cachep->object_size);
3178 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3182 static __always_inline void *
3183 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3187 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3188 objp = alternate_node_alloc(cache, flags);
3192 objp = ____cache_alloc(cache, flags);
3195 * We may just have run out of memory on the local node.
3196 * ____cache_alloc_node() knows how to locate memory on other nodes
3199 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3206 static __always_inline void *
3207 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3209 return ____cache_alloc(cachep, flags);
3212 #endif /* CONFIG_NUMA */
3214 static __always_inline void *
3215 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3217 unsigned long save_flags;
3220 flags &= gfp_allowed_mask;
3221 cachep = slab_pre_alloc_hook(cachep, flags);
3222 if (unlikely(!cachep))
3225 cache_alloc_debugcheck_before(cachep, flags);
3226 local_irq_save(save_flags);
3227 objp = __do_cache_alloc(cachep, flags);
3228 local_irq_restore(save_flags);
3229 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3232 if (unlikely(flags & __GFP_ZERO) && objp)
3233 memset(objp, 0, cachep->object_size);
3235 slab_post_alloc_hook(cachep, flags, 1, &objp);
3240 * Caller needs to acquire correct kmem_cache_node's list_lock
3241 * @list: List of detached free slabs should be freed by caller
3243 static void free_block(struct kmem_cache *cachep, void **objpp,
3244 int nr_objects, int node, struct list_head *list)
3247 struct kmem_cache_node *n = get_node(cachep, node);
3249 for (i = 0; i < nr_objects; i++) {
3255 page = virt_to_head_page(objp);
3256 list_del(&page->lru);
3257 check_spinlock_acquired_node(cachep, node);
3258 slab_put_obj(cachep, page, objp);
3259 STATS_DEC_ACTIVE(cachep);
3262 /* fixup slab chains */
3263 if (page->active == 0) {
3264 if (n->free_objects > n->free_limit) {
3265 n->free_objects -= cachep->num;
3266 list_add_tail(&page->lru, list);
3268 list_add(&page->lru, &n->slabs_free);
3271 /* Unconditionally move a slab to the end of the
3272 * partial list on free - maximum time for the
3273 * other objects to be freed, too.
3275 list_add_tail(&page->lru, &n->slabs_partial);
3280 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3283 struct kmem_cache_node *n;
3284 int node = numa_mem_id();
3287 batchcount = ac->batchcount;
3290 n = get_node(cachep, node);
3291 spin_lock(&n->list_lock);
3293 struct array_cache *shared_array = n->shared;
3294 int max = shared_array->limit - shared_array->avail;
3296 if (batchcount > max)
3298 memcpy(&(shared_array->entry[shared_array->avail]),
3299 ac->entry, sizeof(void *) * batchcount);
3300 shared_array->avail += batchcount;
3305 free_block(cachep, ac->entry, batchcount, node, &list);
3312 list_for_each_entry(page, &n->slabs_free, lru) {
3313 BUG_ON(page->active);
3317 STATS_SET_FREEABLE(cachep, i);
3320 spin_unlock(&n->list_lock);
3321 slabs_destroy(cachep, &list);
3322 ac->avail -= batchcount;
3323 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3327 * Release an obj back to its cache. If the obj has a constructed state, it must
3328 * be in this state _before_ it is released. Called with disabled ints.
3330 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3331 unsigned long caller)
3333 struct array_cache *ac = cpu_cache_get(cachep);
3336 kmemleak_free_recursive(objp, cachep->flags);
3337 objp = cache_free_debugcheck(cachep, objp, caller);
3339 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3342 * Skip calling cache_free_alien() when the platform is not numa.
3343 * This will avoid cache misses that happen while accessing slabp (which
3344 * is per page memory reference) to get nodeid. Instead use a global
3345 * variable to skip the call, which is mostly likely to be present in
3348 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3351 if (ac->avail < ac->limit) {
3352 STATS_INC_FREEHIT(cachep);
3354 STATS_INC_FREEMISS(cachep);
3355 cache_flusharray(cachep, ac);
3358 if (sk_memalloc_socks()) {
3359 cache_free_pfmemalloc(cachep, objp);
3363 ac->entry[ac->avail++] = objp;
3367 * kmem_cache_alloc - Allocate an object
3368 * @cachep: The cache to allocate from.
3369 * @flags: See kmalloc().
3371 * Allocate an object from this cache. The flags are only relevant
3372 * if the cache has no available objects.
3374 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3376 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3378 trace_kmem_cache_alloc(_RET_IP_, ret,
3379 cachep->object_size, cachep->size, flags);
3383 EXPORT_SYMBOL(kmem_cache_alloc);
3385 static __always_inline void
3386 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3387 size_t size, void **p, unsigned long caller)
3391 for (i = 0; i < size; i++)
3392 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3395 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3400 s = slab_pre_alloc_hook(s, flags);
3404 cache_alloc_debugcheck_before(s, flags);
3406 local_irq_disable();
3407 for (i = 0; i < size; i++) {
3408 void *objp = __do_cache_alloc(s, flags);
3410 if (unlikely(!objp))
3416 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3418 /* Clear memory outside IRQ disabled section */
3419 if (unlikely(flags & __GFP_ZERO))
3420 for (i = 0; i < size; i++)
3421 memset(p[i], 0, s->object_size);
3423 slab_post_alloc_hook(s, flags, size, p);
3424 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3428 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3429 slab_post_alloc_hook(s, flags, i, p);
3430 __kmem_cache_free_bulk(s, i, p);
3433 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3435 #ifdef CONFIG_TRACING
3437 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3441 ret = slab_alloc(cachep, flags, _RET_IP_);
3443 trace_kmalloc(_RET_IP_, ret,
3444 size, cachep->size, flags);
3447 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3452 * kmem_cache_alloc_node - Allocate an object on the specified node
3453 * @cachep: The cache to allocate from.
3454 * @flags: See kmalloc().
3455 * @nodeid: node number of the target node.
3457 * Identical to kmem_cache_alloc but it will allocate memory on the given
3458 * node, which can improve the performance for cpu bound structures.
3460 * Fallback to other node is possible if __GFP_THISNODE is not set.
3462 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3464 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3466 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3467 cachep->object_size, cachep->size,
3472 EXPORT_SYMBOL(kmem_cache_alloc_node);
3474 #ifdef CONFIG_TRACING
3475 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3482 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3484 trace_kmalloc_node(_RET_IP_, ret,
3489 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3492 static __always_inline void *
3493 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3495 struct kmem_cache *cachep;
3497 cachep = kmalloc_slab(size, flags);
3498 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3500 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3503 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3505 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3507 EXPORT_SYMBOL(__kmalloc_node);
3509 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3510 int node, unsigned long caller)
3512 return __do_kmalloc_node(size, flags, node, caller);
3514 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3515 #endif /* CONFIG_NUMA */
3518 * __do_kmalloc - allocate memory
3519 * @size: how many bytes of memory are required.
3520 * @flags: the type of memory to allocate (see kmalloc).
3521 * @caller: function caller for debug tracking of the caller
3523 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3524 unsigned long caller)
3526 struct kmem_cache *cachep;
3529 cachep = kmalloc_slab(size, flags);
3530 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3532 ret = slab_alloc(cachep, flags, caller);
3534 trace_kmalloc(caller, ret,
3535 size, cachep->size, flags);
3540 void *__kmalloc(size_t size, gfp_t flags)
3542 return __do_kmalloc(size, flags, _RET_IP_);
3544 EXPORT_SYMBOL(__kmalloc);
3546 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3548 return __do_kmalloc(size, flags, caller);
3550 EXPORT_SYMBOL(__kmalloc_track_caller);
3553 * kmem_cache_free - Deallocate an object
3554 * @cachep: The cache the allocation was from.
3555 * @objp: The previously allocated object.
3557 * Free an object which was previously allocated from this
3560 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3562 unsigned long flags;
3563 cachep = cache_from_obj(cachep, objp);
3567 local_irq_save(flags);
3568 debug_check_no_locks_freed(objp, cachep->object_size);
3569 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3570 debug_check_no_obj_freed(objp, cachep->object_size);
3571 __cache_free(cachep, objp, _RET_IP_);
3572 local_irq_restore(flags);
3574 trace_kmem_cache_free(_RET_IP_, objp);
3576 EXPORT_SYMBOL(kmem_cache_free);
3578 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3580 struct kmem_cache *s;
3583 local_irq_disable();
3584 for (i = 0; i < size; i++) {
3587 if (!orig_s) /* called via kfree_bulk */
3588 s = virt_to_cache(objp);
3590 s = cache_from_obj(orig_s, objp);
3592 debug_check_no_locks_freed(objp, s->object_size);
3593 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3594 debug_check_no_obj_freed(objp, s->object_size);
3596 __cache_free(s, objp, _RET_IP_);
3600 /* FIXME: add tracing */
3602 EXPORT_SYMBOL(kmem_cache_free_bulk);
3605 * kfree - free previously allocated memory
3606 * @objp: pointer returned by kmalloc.
3608 * If @objp is NULL, no operation is performed.
3610 * Don't free memory not originally allocated by kmalloc()
3611 * or you will run into trouble.
3613 void kfree(const void *objp)
3615 struct kmem_cache *c;
3616 unsigned long flags;
3618 trace_kfree(_RET_IP_, objp);
3620 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3622 local_irq_save(flags);
3623 kfree_debugcheck(objp);
3624 c = virt_to_cache(objp);
3625 debug_check_no_locks_freed(objp, c->object_size);
3627 debug_check_no_obj_freed(objp, c->object_size);
3628 __cache_free(c, (void *)objp, _RET_IP_);
3629 local_irq_restore(flags);
3631 EXPORT_SYMBOL(kfree);
3634 * This initializes kmem_cache_node or resizes various caches for all nodes.
3636 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3639 struct kmem_cache_node *n;
3640 struct array_cache *new_shared;
3641 struct alien_cache **new_alien = NULL;
3643 for_each_online_node(node) {
3645 if (use_alien_caches) {
3646 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3652 if (cachep->shared) {
3653 new_shared = alloc_arraycache(node,
3654 cachep->shared*cachep->batchcount,
3657 free_alien_cache(new_alien);
3662 n = get_node(cachep, node);
3664 struct array_cache *shared = n->shared;
3667 spin_lock_irq(&n->list_lock);
3670 free_block(cachep, shared->entry,
3671 shared->avail, node, &list);
3673 n->shared = new_shared;
3675 n->alien = new_alien;
3678 n->free_limit = (1 + nr_cpus_node(node)) *
3679 cachep->batchcount + cachep->num;
3680 spin_unlock_irq(&n->list_lock);
3681 slabs_destroy(cachep, &list);
3683 free_alien_cache(new_alien);
3686 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3688 free_alien_cache(new_alien);
3693 kmem_cache_node_init(n);
3694 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3695 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3696 n->shared = new_shared;
3697 n->alien = new_alien;
3698 n->free_limit = (1 + nr_cpus_node(node)) *
3699 cachep->batchcount + cachep->num;
3700 cachep->node[node] = n;
3705 if (!cachep->list.next) {
3706 /* Cache is not active yet. Roll back what we did */
3709 n = get_node(cachep, node);
3712 free_alien_cache(n->alien);
3714 cachep->node[node] = NULL;
3722 /* Always called with the slab_mutex held */
3723 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3724 int batchcount, int shared, gfp_t gfp)
3726 struct array_cache __percpu *cpu_cache, *prev;
3729 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3733 prev = cachep->cpu_cache;
3734 cachep->cpu_cache = cpu_cache;
3735 kick_all_cpus_sync();
3738 cachep->batchcount = batchcount;
3739 cachep->limit = limit;
3740 cachep->shared = shared;
3745 for_each_online_cpu(cpu) {
3748 struct kmem_cache_node *n;
3749 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3751 node = cpu_to_mem(cpu);
3752 n = get_node(cachep, node);
3753 spin_lock_irq(&n->list_lock);
3754 free_block(cachep, ac->entry, ac->avail, node, &list);
3755 spin_unlock_irq(&n->list_lock);
3756 slabs_destroy(cachep, &list);
3761 return alloc_kmem_cache_node(cachep, gfp);
3764 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3765 int batchcount, int shared, gfp_t gfp)
3768 struct kmem_cache *c;
3770 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3772 if (slab_state < FULL)
3775 if ((ret < 0) || !is_root_cache(cachep))
3778 lockdep_assert_held(&slab_mutex);
3779 for_each_memcg_cache(c, cachep) {
3780 /* return value determined by the root cache only */
3781 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3787 /* Called with slab_mutex held always */
3788 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3795 if (!is_root_cache(cachep)) {
3796 struct kmem_cache *root = memcg_root_cache(cachep);
3797 limit = root->limit;
3798 shared = root->shared;
3799 batchcount = root->batchcount;
3802 if (limit && shared && batchcount)
3805 * The head array serves three purposes:
3806 * - create a LIFO ordering, i.e. return objects that are cache-warm
3807 * - reduce the number of spinlock operations.
3808 * - reduce the number of linked list operations on the slab and
3809 * bufctl chains: array operations are cheaper.
3810 * The numbers are guessed, we should auto-tune as described by
3813 if (cachep->size > 131072)
3815 else if (cachep->size > PAGE_SIZE)
3817 else if (cachep->size > 1024)
3819 else if (cachep->size > 256)
3825 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3826 * allocation behaviour: Most allocs on one cpu, most free operations
3827 * on another cpu. For these cases, an efficient object passing between
3828 * cpus is necessary. This is provided by a shared array. The array
3829 * replaces Bonwick's magazine layer.
3830 * On uniprocessor, it's functionally equivalent (but less efficient)
3831 * to a larger limit. Thus disabled by default.
3834 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3839 * With debugging enabled, large batchcount lead to excessively long
3840 * periods with disabled local interrupts. Limit the batchcount
3845 batchcount = (limit + 1) / 2;
3847 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3849 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3850 cachep->name, -err);
3855 * Drain an array if it contains any elements taking the node lock only if
3856 * necessary. Note that the node listlock also protects the array_cache
3857 * if drain_array() is used on the shared array.
3859 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3860 struct array_cache *ac, int force, int node)
3865 if (!ac || !ac->avail)
3867 if (ac->touched && !force) {
3870 spin_lock_irq(&n->list_lock);
3872 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3873 if (tofree > ac->avail)
3874 tofree = (ac->avail + 1) / 2;
3875 free_block(cachep, ac->entry, tofree, node, &list);
3876 ac->avail -= tofree;
3877 memmove(ac->entry, &(ac->entry[tofree]),
3878 sizeof(void *) * ac->avail);
3880 spin_unlock_irq(&n->list_lock);
3881 slabs_destroy(cachep, &list);
3886 * cache_reap - Reclaim memory from caches.
3887 * @w: work descriptor
3889 * Called from workqueue/eventd every few seconds.
3891 * - clear the per-cpu caches for this CPU.
3892 * - return freeable pages to the main free memory pool.
3894 * If we cannot acquire the cache chain mutex then just give up - we'll try
3895 * again on the next iteration.
3897 static void cache_reap(struct work_struct *w)
3899 struct kmem_cache *searchp;
3900 struct kmem_cache_node *n;
3901 int node = numa_mem_id();
3902 struct delayed_work *work = to_delayed_work(w);
3904 if (!mutex_trylock(&slab_mutex))
3905 /* Give up. Setup the next iteration. */
3908 list_for_each_entry(searchp, &slab_caches, list) {
3912 * We only take the node lock if absolutely necessary and we
3913 * have established with reasonable certainty that
3914 * we can do some work if the lock was obtained.
3916 n = get_node(searchp, node);
3918 reap_alien(searchp, n);
3920 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3923 * These are racy checks but it does not matter
3924 * if we skip one check or scan twice.
3926 if (time_after(n->next_reap, jiffies))
3929 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3931 drain_array(searchp, n, n->shared, 0, node);
3933 if (n->free_touched)
3934 n->free_touched = 0;
3938 freed = drain_freelist(searchp, n, (n->free_limit +
3939 5 * searchp->num - 1) / (5 * searchp->num));
3940 STATS_ADD_REAPED(searchp, freed);
3946 mutex_unlock(&slab_mutex);
3949 /* Set up the next iteration */
3950 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3953 #ifdef CONFIG_SLABINFO
3954 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3957 unsigned long active_objs;
3958 unsigned long num_objs;
3959 unsigned long active_slabs = 0;
3960 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3964 struct kmem_cache_node *n;
3968 for_each_kmem_cache_node(cachep, node, n) {
3971 spin_lock_irq(&n->list_lock);
3973 list_for_each_entry(page, &n->slabs_full, lru) {
3974 if (page->active != cachep->num && !error)
3975 error = "slabs_full accounting error";
3976 active_objs += cachep->num;
3979 list_for_each_entry(page, &n->slabs_partial, lru) {
3980 if (page->active == cachep->num && !error)
3981 error = "slabs_partial accounting error";
3982 if (!page->active && !error)
3983 error = "slabs_partial accounting error";
3984 active_objs += page->active;
3987 list_for_each_entry(page, &n->slabs_free, lru) {
3988 if (page->active && !error)
3989 error = "slabs_free accounting error";
3992 free_objects += n->free_objects;
3994 shared_avail += n->shared->avail;
3996 spin_unlock_irq(&n->list_lock);
3998 num_slabs += active_slabs;
3999 num_objs = num_slabs * cachep->num;
4000 if (num_objs - active_objs != free_objects && !error)
4001 error = "free_objects accounting error";
4003 name = cachep->name;
4005 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4007 sinfo->active_objs = active_objs;
4008 sinfo->num_objs = num_objs;
4009 sinfo->active_slabs = active_slabs;
4010 sinfo->num_slabs = num_slabs;
4011 sinfo->shared_avail = shared_avail;
4012 sinfo->limit = cachep->limit;
4013 sinfo->batchcount = cachep->batchcount;
4014 sinfo->shared = cachep->shared;
4015 sinfo->objects_per_slab = cachep->num;
4016 sinfo->cache_order = cachep->gfporder;
4019 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4023 unsigned long high = cachep->high_mark;
4024 unsigned long allocs = cachep->num_allocations;
4025 unsigned long grown = cachep->grown;
4026 unsigned long reaped = cachep->reaped;
4027 unsigned long errors = cachep->errors;
4028 unsigned long max_freeable = cachep->max_freeable;
4029 unsigned long node_allocs = cachep->node_allocs;
4030 unsigned long node_frees = cachep->node_frees;
4031 unsigned long overflows = cachep->node_overflow;
4033 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4034 "%4lu %4lu %4lu %4lu %4lu",
4035 allocs, high, grown,
4036 reaped, errors, max_freeable, node_allocs,
4037 node_frees, overflows);
4041 unsigned long allochit = atomic_read(&cachep->allochit);
4042 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4043 unsigned long freehit = atomic_read(&cachep->freehit);
4044 unsigned long freemiss = atomic_read(&cachep->freemiss);
4046 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4047 allochit, allocmiss, freehit, freemiss);
4052 #define MAX_SLABINFO_WRITE 128
4054 * slabinfo_write - Tuning for the slab allocator
4056 * @buffer: user buffer
4057 * @count: data length
4060 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4061 size_t count, loff_t *ppos)
4063 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4064 int limit, batchcount, shared, res;
4065 struct kmem_cache *cachep;
4067 if (count > MAX_SLABINFO_WRITE)
4069 if (copy_from_user(&kbuf, buffer, count))
4071 kbuf[MAX_SLABINFO_WRITE] = '\0';
4073 tmp = strchr(kbuf, ' ');
4078 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4081 /* Find the cache in the chain of caches. */
4082 mutex_lock(&slab_mutex);
4084 list_for_each_entry(cachep, &slab_caches, list) {
4085 if (!strcmp(cachep->name, kbuf)) {
4086 if (limit < 1 || batchcount < 1 ||
4087 batchcount > limit || shared < 0) {
4090 res = do_tune_cpucache(cachep, limit,
4097 mutex_unlock(&slab_mutex);
4103 #ifdef CONFIG_DEBUG_SLAB_LEAK
4105 static inline int add_caller(unsigned long *n, unsigned long v)
4115 unsigned long *q = p + 2 * i;
4129 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4135 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4144 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4147 for (j = page->active; j < c->num; j++) {
4148 if (get_free_obj(page, j) == i) {
4158 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4159 * mapping is established when actual object allocation and
4160 * we could mistakenly access the unmapped object in the cpu
4163 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4166 if (!add_caller(n, v))
4171 static void show_symbol(struct seq_file *m, unsigned long address)
4173 #ifdef CONFIG_KALLSYMS
4174 unsigned long offset, size;
4175 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4177 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4178 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4180 seq_printf(m, " [%s]", modname);
4184 seq_printf(m, "%p", (void *)address);
4187 static int leaks_show(struct seq_file *m, void *p)
4189 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4191 struct kmem_cache_node *n;
4193 unsigned long *x = m->private;
4197 if (!(cachep->flags & SLAB_STORE_USER))
4199 if (!(cachep->flags & SLAB_RED_ZONE))
4203 * Set store_user_clean and start to grab stored user information
4204 * for all objects on this cache. If some alloc/free requests comes
4205 * during the processing, information would be wrong so restart
4209 set_store_user_clean(cachep);
4210 drain_cpu_caches(cachep);
4214 for_each_kmem_cache_node(cachep, node, n) {
4217 spin_lock_irq(&n->list_lock);
4219 list_for_each_entry(page, &n->slabs_full, lru)
4220 handle_slab(x, cachep, page);
4221 list_for_each_entry(page, &n->slabs_partial, lru)
4222 handle_slab(x, cachep, page);
4223 spin_unlock_irq(&n->list_lock);
4225 } while (!is_store_user_clean(cachep));
4227 name = cachep->name;
4229 /* Increase the buffer size */
4230 mutex_unlock(&slab_mutex);
4231 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4233 /* Too bad, we are really out */
4235 mutex_lock(&slab_mutex);
4238 *(unsigned long *)m->private = x[0] * 2;
4240 mutex_lock(&slab_mutex);
4241 /* Now make sure this entry will be retried */
4245 for (i = 0; i < x[1]; i++) {
4246 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4247 show_symbol(m, x[2*i+2]);
4254 static const struct seq_operations slabstats_op = {
4255 .start = slab_start,
4261 static int slabstats_open(struct inode *inode, struct file *file)
4265 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4269 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4274 static const struct file_operations proc_slabstats_operations = {
4275 .open = slabstats_open,
4277 .llseek = seq_lseek,
4278 .release = seq_release_private,
4282 static int __init slab_proc_init(void)
4284 #ifdef CONFIG_DEBUG_SLAB_LEAK
4285 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4289 module_init(slab_proc_init);
4293 * ksize - get the actual amount of memory allocated for a given object
4294 * @objp: Pointer to the object
4296 * kmalloc may internally round up allocations and return more memory
4297 * than requested. ksize() can be used to determine the actual amount of
4298 * memory allocated. The caller may use this additional memory, even though
4299 * a smaller amount of memory was initially specified with the kmalloc call.
4300 * The caller must guarantee that objp points to a valid object previously
4301 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4302 * must not be freed during the duration of the call.
4304 size_t ksize(const void *objp)
4307 if (unlikely(objp == ZERO_SIZE_PTR))
4310 return virt_to_cache(objp)->object_size;
4312 EXPORT_SYMBOL(ksize);