2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache *s)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
127 void *fixup_red_left(struct kmem_cache *s, void *p)
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
145 * Issues still to be resolved:
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 * - Variable sizing of the per node arrays
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 #define MIN_PARTIAL 5
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
169 #define MAX_PARTIAL 10
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON 0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
198 * Tracking user of a slab.
200 #define TRACK_ADDRS_COUNT 16
202 unsigned long addr; /* Called from address */
203 #ifdef CONFIG_STACKTRACE
204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206 int cpu; /* Was running on cpu */
207 int pid; /* Pid context */
208 unsigned long when; /* When did the operation occur */
211 enum track_item { TRACK_ALLOC, TRACK_FREE };
214 static int sysfs_slab_add(struct kmem_cache *);
215 static int sysfs_slab_alias(struct kmem_cache *, const char *);
216 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
226 #ifdef CONFIG_SLUB_STATS
228 * The rmw is racy on a preemptible kernel but this is acceptable, so
229 * avoid this_cpu_add()'s irq-disable overhead.
231 raw_cpu_inc(s->cpu_slab->stat[si]);
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 static inline void *get_freepointer(struct kmem_cache *s, void *object)
241 return *(void **)(object + s->offset);
244 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
246 prefetch(object + s->offset);
249 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
253 if (!debug_pagealloc_enabled())
254 return get_freepointer(s, object);
256 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
262 *(void **)(object + s->offset) = fp;
265 /* Loop over all objects in a slab */
266 #define for_each_object(__p, __s, __addr, __objects) \
267 for (__p = fixup_red_left(__s, __addr); \
268 __p < (__addr) + (__objects) * (__s)->size; \
271 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
272 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
273 __idx <= __objects; \
274 __p += (__s)->size, __idx++)
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
279 return (p - addr) / s->size;
282 static inline int order_objects(int order, unsigned long size, int reserved)
284 return ((PAGE_SIZE << order) - reserved) / size;
287 static inline struct kmem_cache_order_objects oo_make(int order,
288 unsigned long size, int reserved)
290 struct kmem_cache_order_objects x = {
291 (order << OO_SHIFT) + order_objects(order, size, reserved)
297 static inline int oo_order(struct kmem_cache_order_objects x)
299 return x.x >> OO_SHIFT;
302 static inline int oo_objects(struct kmem_cache_order_objects x)
304 return x.x & OO_MASK;
308 * Per slab locking using the pagelock
310 static __always_inline void slab_lock(struct page *page)
312 VM_BUG_ON_PAGE(PageTail(page), page);
313 bit_spin_lock(PG_locked, &page->flags);
316 static __always_inline void slab_unlock(struct page *page)
318 VM_BUG_ON_PAGE(PageTail(page), page);
319 __bit_spin_unlock(PG_locked, &page->flags);
322 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
325 tmp.counters = counters_new;
327 * page->counters can cover frozen/inuse/objects as well
328 * as page->_refcount. If we assign to ->counters directly
329 * we run the risk of losing updates to page->_refcount, so
330 * be careful and only assign to the fields we need.
332 page->frozen = tmp.frozen;
333 page->inuse = tmp.inuse;
334 page->objects = tmp.objects;
337 /* Interrupts must be disabled (for the fallback code to work right) */
338 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
339 void *freelist_old, unsigned long counters_old,
340 void *freelist_new, unsigned long counters_new,
343 VM_BUG_ON(!irqs_disabled());
344 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
345 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
346 if (s->flags & __CMPXCHG_DOUBLE) {
347 if (cmpxchg_double(&page->freelist, &page->counters,
348 freelist_old, counters_old,
349 freelist_new, counters_new))
355 if (page->freelist == freelist_old &&
356 page->counters == counters_old) {
357 page->freelist = freelist_new;
358 set_page_slub_counters(page, counters_new);
366 stat(s, CMPXCHG_DOUBLE_FAIL);
368 #ifdef SLUB_DEBUG_CMPXCHG
369 pr_info("%s %s: cmpxchg double redo ", n, s->name);
375 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s->flags & __CMPXCHG_DOUBLE) {
383 if (cmpxchg_double(&page->freelist, &page->counters,
384 freelist_old, counters_old,
385 freelist_new, counters_new))
392 local_irq_save(flags);
394 if (page->freelist == freelist_old &&
395 page->counters == counters_old) {
396 page->freelist = freelist_new;
397 set_page_slub_counters(page, counters_new);
399 local_irq_restore(flags);
403 local_irq_restore(flags);
407 stat(s, CMPXCHG_DOUBLE_FAIL);
409 #ifdef SLUB_DEBUG_CMPXCHG
410 pr_info("%s %s: cmpxchg double redo ", n, s->name);
416 #ifdef CONFIG_SLUB_DEBUG
418 * Determine a map of object in use on a page.
420 * Node listlock must be held to guarantee that the page does
421 * not vanish from under us.
423 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
426 void *addr = page_address(page);
428 for (p = page->freelist; p; p = get_freepointer(s, p))
429 set_bit(slab_index(p, s, addr), map);
432 static inline int size_from_object(struct kmem_cache *s)
434 if (s->flags & SLAB_RED_ZONE)
435 return s->size - s->red_left_pad;
440 static inline void *restore_red_left(struct kmem_cache *s, void *p)
442 if (s->flags & SLAB_RED_ZONE)
443 p -= s->red_left_pad;
451 #if defined(CONFIG_SLUB_DEBUG_ON)
452 static int slub_debug = DEBUG_DEFAULT_FLAGS;
454 static int slub_debug;
457 static char *slub_debug_slabs;
458 static int disable_higher_order_debug;
461 * slub is about to manipulate internal object metadata. This memory lies
462 * outside the range of the allocated object, so accessing it would normally
463 * be reported by kasan as a bounds error. metadata_access_enable() is used
464 * to tell kasan that these accesses are OK.
466 static inline void metadata_access_enable(void)
468 kasan_disable_current();
471 static inline void metadata_access_disable(void)
473 kasan_enable_current();
480 /* Verify that a pointer has an address that is valid within a slab page */
481 static inline int check_valid_pointer(struct kmem_cache *s,
482 struct page *page, void *object)
489 base = page_address(page);
490 object = restore_red_left(s, object);
491 if (object < base || object >= base + page->objects * s->size ||
492 (object - base) % s->size) {
499 static void print_section(char *level, char *text, u8 *addr,
502 metadata_access_enable();
503 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
505 metadata_access_disable();
508 static struct track *get_track(struct kmem_cache *s, void *object,
509 enum track_item alloc)
514 p = object + s->offset + sizeof(void *);
516 p = object + s->inuse;
521 static void set_track(struct kmem_cache *s, void *object,
522 enum track_item alloc, unsigned long addr)
524 struct track *p = get_track(s, object, alloc);
527 #ifdef CONFIG_STACKTRACE
528 struct stack_trace trace;
531 trace.nr_entries = 0;
532 trace.max_entries = TRACK_ADDRS_COUNT;
533 trace.entries = p->addrs;
535 metadata_access_enable();
536 save_stack_trace(&trace);
537 metadata_access_disable();
539 /* See rant in lockdep.c */
540 if (trace.nr_entries != 0 &&
541 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
544 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
548 p->cpu = smp_processor_id();
549 p->pid = current->pid;
552 memset(p, 0, sizeof(struct track));
555 static void init_tracking(struct kmem_cache *s, void *object)
557 if (!(s->flags & SLAB_STORE_USER))
560 set_track(s, object, TRACK_FREE, 0UL);
561 set_track(s, object, TRACK_ALLOC, 0UL);
564 static void print_track(const char *s, struct track *t)
569 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
570 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
571 #ifdef CONFIG_STACKTRACE
574 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
576 pr_err("\t%pS\n", (void *)t->addrs[i]);
583 static void print_tracking(struct kmem_cache *s, void *object)
585 if (!(s->flags & SLAB_STORE_USER))
588 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
589 print_track("Freed", get_track(s, object, TRACK_FREE));
592 static void print_page_info(struct page *page)
594 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
595 page, page->objects, page->inuse, page->freelist, page->flags);
599 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
601 struct va_format vaf;
607 pr_err("=============================================================================\n");
608 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
609 pr_err("-----------------------------------------------------------------------------\n\n");
611 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
615 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
617 struct va_format vaf;
623 pr_err("FIX %s: %pV\n", s->name, &vaf);
627 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
629 unsigned int off; /* Offset of last byte */
630 u8 *addr = page_address(page);
632 print_tracking(s, p);
634 print_page_info(page);
636 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
637 p, p - addr, get_freepointer(s, p));
639 if (s->flags & SLAB_RED_ZONE)
640 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
642 else if (p > addr + 16)
643 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
645 print_section(KERN_ERR, "Object ", p,
646 min_t(unsigned long, s->object_size, PAGE_SIZE));
647 if (s->flags & SLAB_RED_ZONE)
648 print_section(KERN_ERR, "Redzone ", p + s->object_size,
649 s->inuse - s->object_size);
652 off = s->offset + sizeof(void *);
656 if (s->flags & SLAB_STORE_USER)
657 off += 2 * sizeof(struct track);
659 off += kasan_metadata_size(s);
661 if (off != size_from_object(s))
662 /* Beginning of the filler is the free pointer */
663 print_section(KERN_ERR, "Padding ", p + off,
664 size_from_object(s) - off);
669 void object_err(struct kmem_cache *s, struct page *page,
670 u8 *object, char *reason)
672 slab_bug(s, "%s", reason);
673 print_trailer(s, page, object);
676 static void slab_err(struct kmem_cache *s, struct page *page,
677 const char *fmt, ...)
683 vsnprintf(buf, sizeof(buf), fmt, args);
685 slab_bug(s, "%s", buf);
686 print_page_info(page);
690 static void init_object(struct kmem_cache *s, void *object, u8 val)
694 if (s->flags & SLAB_RED_ZONE)
695 memset(p - s->red_left_pad, val, s->red_left_pad);
697 if (s->flags & __OBJECT_POISON) {
698 memset(p, POISON_FREE, s->object_size - 1);
699 p[s->object_size - 1] = POISON_END;
702 if (s->flags & SLAB_RED_ZONE)
703 memset(p + s->object_size, val, s->inuse - s->object_size);
706 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
707 void *from, void *to)
709 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
710 memset(from, data, to - from);
713 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
714 u8 *object, char *what,
715 u8 *start, unsigned int value, unsigned int bytes)
720 metadata_access_enable();
721 fault = memchr_inv(start, value, bytes);
722 metadata_access_disable();
727 while (end > fault && end[-1] == value)
730 slab_bug(s, "%s overwritten", what);
731 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
732 fault, end - 1, fault[0], value);
733 print_trailer(s, page, object);
735 restore_bytes(s, what, value, fault, end);
743 * Bytes of the object to be managed.
744 * If the freepointer may overlay the object then the free
745 * pointer is the first word of the object.
747 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
750 * object + s->object_size
751 * Padding to reach word boundary. This is also used for Redzoning.
752 * Padding is extended by another word if Redzoning is enabled and
753 * object_size == inuse.
755 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
756 * 0xcc (RED_ACTIVE) for objects in use.
759 * Meta data starts here.
761 * A. Free pointer (if we cannot overwrite object on free)
762 * B. Tracking data for SLAB_STORE_USER
763 * C. Padding to reach required alignment boundary or at mininum
764 * one word if debugging is on to be able to detect writes
765 * before the word boundary.
767 * Padding is done using 0x5a (POISON_INUSE)
770 * Nothing is used beyond s->size.
772 * If slabcaches are merged then the object_size and inuse boundaries are mostly
773 * ignored. And therefore no slab options that rely on these boundaries
774 * may be used with merged slabcaches.
777 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
779 unsigned long off = s->inuse; /* The end of info */
782 /* Freepointer is placed after the object. */
783 off += sizeof(void *);
785 if (s->flags & SLAB_STORE_USER)
786 /* We also have user information there */
787 off += 2 * sizeof(struct track);
789 off += kasan_metadata_size(s);
791 if (size_from_object(s) == off)
794 return check_bytes_and_report(s, page, p, "Object padding",
795 p + off, POISON_INUSE, size_from_object(s) - off);
798 /* Check the pad bytes at the end of a slab page */
799 static int slab_pad_check(struct kmem_cache *s, struct page *page)
807 if (!(s->flags & SLAB_POISON))
810 start = page_address(page);
811 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
812 end = start + length;
813 remainder = length % s->size;
817 metadata_access_enable();
818 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
819 metadata_access_disable();
822 while (end > fault && end[-1] == POISON_INUSE)
825 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
826 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
828 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
832 static int check_object(struct kmem_cache *s, struct page *page,
833 void *object, u8 val)
836 u8 *endobject = object + s->object_size;
838 if (s->flags & SLAB_RED_ZONE) {
839 if (!check_bytes_and_report(s, page, object, "Redzone",
840 object - s->red_left_pad, val, s->red_left_pad))
843 if (!check_bytes_and_report(s, page, object, "Redzone",
844 endobject, val, s->inuse - s->object_size))
847 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
848 check_bytes_and_report(s, page, p, "Alignment padding",
849 endobject, POISON_INUSE,
850 s->inuse - s->object_size);
854 if (s->flags & SLAB_POISON) {
855 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
856 (!check_bytes_and_report(s, page, p, "Poison", p,
857 POISON_FREE, s->object_size - 1) ||
858 !check_bytes_and_report(s, page, p, "Poison",
859 p + s->object_size - 1, POISON_END, 1)))
862 * check_pad_bytes cleans up on its own.
864 check_pad_bytes(s, page, p);
867 if (!s->offset && val == SLUB_RED_ACTIVE)
869 * Object and freepointer overlap. Cannot check
870 * freepointer while object is allocated.
874 /* Check free pointer validity */
875 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
876 object_err(s, page, p, "Freepointer corrupt");
878 * No choice but to zap it and thus lose the remainder
879 * of the free objects in this slab. May cause
880 * another error because the object count is now wrong.
882 set_freepointer(s, p, NULL);
888 static int check_slab(struct kmem_cache *s, struct page *page)
892 VM_BUG_ON(!irqs_disabled());
894 if (!PageSlab(page)) {
895 slab_err(s, page, "Not a valid slab page");
899 maxobj = order_objects(compound_order(page), s->size, s->reserved);
900 if (page->objects > maxobj) {
901 slab_err(s, page, "objects %u > max %u",
902 page->objects, maxobj);
905 if (page->inuse > page->objects) {
906 slab_err(s, page, "inuse %u > max %u",
907 page->inuse, page->objects);
910 /* Slab_pad_check fixes things up after itself */
911 slab_pad_check(s, page);
916 * Determine if a certain object on a page is on the freelist. Must hold the
917 * slab lock to guarantee that the chains are in a consistent state.
919 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
927 while (fp && nr <= page->objects) {
930 if (!check_valid_pointer(s, page, fp)) {
932 object_err(s, page, object,
933 "Freechain corrupt");
934 set_freepointer(s, object, NULL);
936 slab_err(s, page, "Freepointer corrupt");
937 page->freelist = NULL;
938 page->inuse = page->objects;
939 slab_fix(s, "Freelist cleared");
945 fp = get_freepointer(s, object);
949 max_objects = order_objects(compound_order(page), s->size, s->reserved);
950 if (max_objects > MAX_OBJS_PER_PAGE)
951 max_objects = MAX_OBJS_PER_PAGE;
953 if (page->objects != max_objects) {
954 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
955 page->objects, max_objects);
956 page->objects = max_objects;
957 slab_fix(s, "Number of objects adjusted.");
959 if (page->inuse != page->objects - nr) {
960 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
961 page->inuse, page->objects - nr);
962 page->inuse = page->objects - nr;
963 slab_fix(s, "Object count adjusted.");
965 return search == NULL;
968 static void trace(struct kmem_cache *s, struct page *page, void *object,
971 if (s->flags & SLAB_TRACE) {
972 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
974 alloc ? "alloc" : "free",
979 print_section(KERN_INFO, "Object ", (void *)object,
987 * Tracking of fully allocated slabs for debugging purposes.
989 static void add_full(struct kmem_cache *s,
990 struct kmem_cache_node *n, struct page *page)
992 if (!(s->flags & SLAB_STORE_USER))
995 lockdep_assert_held(&n->list_lock);
996 list_add(&page->lru, &n->full);
999 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1001 if (!(s->flags & SLAB_STORE_USER))
1004 lockdep_assert_held(&n->list_lock);
1005 list_del(&page->lru);
1008 /* Tracking of the number of slabs for debugging purposes */
1009 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1011 struct kmem_cache_node *n = get_node(s, node);
1013 return atomic_long_read(&n->nr_slabs);
1016 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1018 return atomic_long_read(&n->nr_slabs);
1021 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1023 struct kmem_cache_node *n = get_node(s, node);
1026 * May be called early in order to allocate a slab for the
1027 * kmem_cache_node structure. Solve the chicken-egg
1028 * dilemma by deferring the increment of the count during
1029 * bootstrap (see early_kmem_cache_node_alloc).
1032 atomic_long_inc(&n->nr_slabs);
1033 atomic_long_add(objects, &n->total_objects);
1036 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1038 struct kmem_cache_node *n = get_node(s, node);
1040 atomic_long_dec(&n->nr_slabs);
1041 atomic_long_sub(objects, &n->total_objects);
1044 /* Object debug checks for alloc/free paths */
1045 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1048 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1051 init_object(s, object, SLUB_RED_INACTIVE);
1052 init_tracking(s, object);
1055 static inline int alloc_consistency_checks(struct kmem_cache *s,
1057 void *object, unsigned long addr)
1059 if (!check_slab(s, page))
1062 if (!check_valid_pointer(s, page, object)) {
1063 object_err(s, page, object, "Freelist Pointer check fails");
1067 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1073 static noinline int alloc_debug_processing(struct kmem_cache *s,
1075 void *object, unsigned long addr)
1077 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1078 if (!alloc_consistency_checks(s, page, object, addr))
1082 /* Success perform special debug activities for allocs */
1083 if (s->flags & SLAB_STORE_USER)
1084 set_track(s, object, TRACK_ALLOC, addr);
1085 trace(s, page, object, 1);
1086 init_object(s, object, SLUB_RED_ACTIVE);
1090 if (PageSlab(page)) {
1092 * If this is a slab page then lets do the best we can
1093 * to avoid issues in the future. Marking all objects
1094 * as used avoids touching the remaining objects.
1096 slab_fix(s, "Marking all objects used");
1097 page->inuse = page->objects;
1098 page->freelist = NULL;
1103 static inline int free_consistency_checks(struct kmem_cache *s,
1104 struct page *page, void *object, unsigned long addr)
1106 if (!check_valid_pointer(s, page, object)) {
1107 slab_err(s, page, "Invalid object pointer 0x%p", object);
1111 if (on_freelist(s, page, object)) {
1112 object_err(s, page, object, "Object already free");
1116 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1119 if (unlikely(s != page->slab_cache)) {
1120 if (!PageSlab(page)) {
1121 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1123 } else if (!page->slab_cache) {
1124 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1128 object_err(s, page, object,
1129 "page slab pointer corrupt.");
1135 /* Supports checking bulk free of a constructed freelist */
1136 static noinline int free_debug_processing(
1137 struct kmem_cache *s, struct page *page,
1138 void *head, void *tail, int bulk_cnt,
1141 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1142 void *object = head;
1144 unsigned long uninitialized_var(flags);
1147 spin_lock_irqsave(&n->list_lock, flags);
1150 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1151 if (!check_slab(s, page))
1158 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1159 if (!free_consistency_checks(s, page, object, addr))
1163 if (s->flags & SLAB_STORE_USER)
1164 set_track(s, object, TRACK_FREE, addr);
1165 trace(s, page, object, 0);
1166 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1167 init_object(s, object, SLUB_RED_INACTIVE);
1169 /* Reached end of constructed freelist yet? */
1170 if (object != tail) {
1171 object = get_freepointer(s, object);
1177 if (cnt != bulk_cnt)
1178 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1182 spin_unlock_irqrestore(&n->list_lock, flags);
1184 slab_fix(s, "Object at 0x%p not freed", object);
1188 static int __init setup_slub_debug(char *str)
1190 slub_debug = DEBUG_DEFAULT_FLAGS;
1191 if (*str++ != '=' || !*str)
1193 * No options specified. Switch on full debugging.
1199 * No options but restriction on slabs. This means full
1200 * debugging for slabs matching a pattern.
1207 * Switch off all debugging measures.
1212 * Determine which debug features should be switched on
1214 for (; *str && *str != ','; str++) {
1215 switch (tolower(*str)) {
1217 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1220 slub_debug |= SLAB_RED_ZONE;
1223 slub_debug |= SLAB_POISON;
1226 slub_debug |= SLAB_STORE_USER;
1229 slub_debug |= SLAB_TRACE;
1232 slub_debug |= SLAB_FAILSLAB;
1236 * Avoid enabling debugging on caches if its minimum
1237 * order would increase as a result.
1239 disable_higher_order_debug = 1;
1242 pr_err("slub_debug option '%c' unknown. skipped\n",
1249 slub_debug_slabs = str + 1;
1254 __setup("slub_debug", setup_slub_debug);
1256 unsigned long kmem_cache_flags(unsigned long object_size,
1257 unsigned long flags, const char *name,
1258 void (*ctor)(void *))
1261 * Enable debugging if selected on the kernel commandline.
1263 if (slub_debug && (!slub_debug_slabs || (name &&
1264 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1265 flags |= slub_debug;
1269 #else /* !CONFIG_SLUB_DEBUG */
1270 static inline void setup_object_debug(struct kmem_cache *s,
1271 struct page *page, void *object) {}
1273 static inline int alloc_debug_processing(struct kmem_cache *s,
1274 struct page *page, void *object, unsigned long addr) { return 0; }
1276 static inline int free_debug_processing(
1277 struct kmem_cache *s, struct page *page,
1278 void *head, void *tail, int bulk_cnt,
1279 unsigned long addr) { return 0; }
1281 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1283 static inline int check_object(struct kmem_cache *s, struct page *page,
1284 void *object, u8 val) { return 1; }
1285 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1286 struct page *page) {}
1287 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288 struct page *page) {}
1289 unsigned long kmem_cache_flags(unsigned long object_size,
1290 unsigned long flags, const char *name,
1291 void (*ctor)(void *))
1295 #define slub_debug 0
1297 #define disable_higher_order_debug 0
1299 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1301 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1303 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1305 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1308 #endif /* CONFIG_SLUB_DEBUG */
1311 * Hooks for other subsystems that check memory allocations. In a typical
1312 * production configuration these hooks all should produce no code at all.
1314 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1316 kmemleak_alloc(ptr, size, 1, flags);
1317 kasan_kmalloc_large(ptr, size, flags);
1320 static inline void kfree_hook(const void *x)
1323 kasan_kfree_large(x);
1326 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1330 kmemleak_free_recursive(x, s->flags);
1333 * Trouble is that we may no longer disable interrupts in the fast path
1334 * So in order to make the debug calls that expect irqs to be
1335 * disabled we need to disable interrupts temporarily.
1337 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1339 unsigned long flags;
1341 local_irq_save(flags);
1342 kmemcheck_slab_free(s, x, s->object_size);
1343 debug_check_no_locks_freed(x, s->object_size);
1344 local_irq_restore(flags);
1347 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1348 debug_check_no_obj_freed(x, s->object_size);
1350 freeptr = get_freepointer(s, x);
1352 * kasan_slab_free() may put x into memory quarantine, delaying its
1353 * reuse. In this case the object's freelist pointer is changed.
1355 kasan_slab_free(s, x);
1359 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1360 void *head, void *tail)
1363 * Compiler cannot detect this function can be removed if slab_free_hook()
1364 * evaluates to nothing. Thus, catch all relevant config debug options here.
1366 #if defined(CONFIG_KMEMCHECK) || \
1367 defined(CONFIG_LOCKDEP) || \
1368 defined(CONFIG_DEBUG_KMEMLEAK) || \
1369 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1370 defined(CONFIG_KASAN)
1372 void *object = head;
1373 void *tail_obj = tail ? : head;
1377 freeptr = slab_free_hook(s, object);
1378 } while ((object != tail_obj) && (object = freeptr));
1382 static void setup_object(struct kmem_cache *s, struct page *page,
1385 setup_object_debug(s, page, object);
1386 kasan_init_slab_obj(s, object);
1387 if (unlikely(s->ctor)) {
1388 kasan_unpoison_object_data(s, object);
1390 kasan_poison_object_data(s, object);
1395 * Slab allocation and freeing
1397 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1398 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1401 int order = oo_order(oo);
1403 flags |= __GFP_NOTRACK;
1405 if (node == NUMA_NO_NODE)
1406 page = alloc_pages(flags, order);
1408 page = __alloc_pages_node(node, flags, order);
1410 if (page && memcg_charge_slab(page, flags, order, s)) {
1411 __free_pages(page, order);
1418 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1419 /* Pre-initialize the random sequence cache */
1420 static int init_cache_random_seq(struct kmem_cache *s)
1423 unsigned long i, count = oo_objects(s->oo);
1425 /* Bailout if already initialised */
1429 err = cache_random_seq_create(s, count, GFP_KERNEL);
1431 pr_err("SLUB: Unable to initialize free list for %s\n",
1436 /* Transform to an offset on the set of pages */
1437 if (s->random_seq) {
1438 for (i = 0; i < count; i++)
1439 s->random_seq[i] *= s->size;
1444 /* Initialize each random sequence freelist per cache */
1445 static void __init init_freelist_randomization(void)
1447 struct kmem_cache *s;
1449 mutex_lock(&slab_mutex);
1451 list_for_each_entry(s, &slab_caches, list)
1452 init_cache_random_seq(s);
1454 mutex_unlock(&slab_mutex);
1457 /* Get the next entry on the pre-computed freelist randomized */
1458 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1459 unsigned long *pos, void *start,
1460 unsigned long page_limit,
1461 unsigned long freelist_count)
1466 * If the target page allocation failed, the number of objects on the
1467 * page might be smaller than the usual size defined by the cache.
1470 idx = s->random_seq[*pos];
1472 if (*pos >= freelist_count)
1474 } while (unlikely(idx >= page_limit));
1476 return (char *)start + idx;
1479 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1480 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1485 unsigned long idx, pos, page_limit, freelist_count;
1487 if (page->objects < 2 || !s->random_seq)
1490 freelist_count = oo_objects(s->oo);
1491 pos = get_random_int() % freelist_count;
1493 page_limit = page->objects * s->size;
1494 start = fixup_red_left(s, page_address(page));
1496 /* First entry is used as the base of the freelist */
1497 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1499 page->freelist = cur;
1501 for (idx = 1; idx < page->objects; idx++) {
1502 setup_object(s, page, cur);
1503 next = next_freelist_entry(s, page, &pos, start, page_limit,
1505 set_freepointer(s, cur, next);
1508 setup_object(s, page, cur);
1509 set_freepointer(s, cur, NULL);
1514 static inline int init_cache_random_seq(struct kmem_cache *s)
1518 static inline void init_freelist_randomization(void) { }
1519 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1523 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1525 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1528 struct kmem_cache_order_objects oo = s->oo;
1534 flags &= gfp_allowed_mask;
1536 if (gfpflags_allow_blocking(flags))
1539 flags |= s->allocflags;
1542 * Let the initial higher-order allocation fail under memory pressure
1543 * so we fall-back to the minimum order allocation.
1545 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1546 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1547 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1549 page = alloc_slab_page(s, alloc_gfp, node, oo);
1550 if (unlikely(!page)) {
1554 * Allocation may have failed due to fragmentation.
1555 * Try a lower order alloc if possible
1557 page = alloc_slab_page(s, alloc_gfp, node, oo);
1558 if (unlikely(!page))
1560 stat(s, ORDER_FALLBACK);
1563 if (kmemcheck_enabled &&
1564 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1565 int pages = 1 << oo_order(oo);
1567 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1570 * Objects from caches that have a constructor don't get
1571 * cleared when they're allocated, so we need to do it here.
1574 kmemcheck_mark_uninitialized_pages(page, pages);
1576 kmemcheck_mark_unallocated_pages(page, pages);
1579 page->objects = oo_objects(oo);
1581 order = compound_order(page);
1582 page->slab_cache = s;
1583 __SetPageSlab(page);
1584 if (page_is_pfmemalloc(page))
1585 SetPageSlabPfmemalloc(page);
1587 start = page_address(page);
1589 if (unlikely(s->flags & SLAB_POISON))
1590 memset(start, POISON_INUSE, PAGE_SIZE << order);
1592 kasan_poison_slab(page);
1594 shuffle = shuffle_freelist(s, page);
1597 for_each_object_idx(p, idx, s, start, page->objects) {
1598 setup_object(s, page, p);
1599 if (likely(idx < page->objects))
1600 set_freepointer(s, p, p + s->size);
1602 set_freepointer(s, p, NULL);
1604 page->freelist = fixup_red_left(s, start);
1607 page->inuse = page->objects;
1611 if (gfpflags_allow_blocking(flags))
1612 local_irq_disable();
1616 mod_zone_page_state(page_zone(page),
1617 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1618 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1621 inc_slabs_node(s, page_to_nid(page), page->objects);
1626 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1628 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1629 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1630 flags &= ~GFP_SLAB_BUG_MASK;
1631 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1632 invalid_mask, &invalid_mask, flags, &flags);
1636 return allocate_slab(s,
1637 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1640 static void __free_slab(struct kmem_cache *s, struct page *page)
1642 int order = compound_order(page);
1643 int pages = 1 << order;
1645 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1648 slab_pad_check(s, page);
1649 for_each_object(p, s, page_address(page),
1651 check_object(s, page, p, SLUB_RED_INACTIVE);
1654 kmemcheck_free_shadow(page, compound_order(page));
1656 mod_zone_page_state(page_zone(page),
1657 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1658 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1661 __ClearPageSlabPfmemalloc(page);
1662 __ClearPageSlab(page);
1664 page_mapcount_reset(page);
1665 if (current->reclaim_state)
1666 current->reclaim_state->reclaimed_slab += pages;
1667 memcg_uncharge_slab(page, order, s);
1668 __free_pages(page, order);
1671 #define need_reserve_slab_rcu \
1672 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1674 static void rcu_free_slab(struct rcu_head *h)
1678 if (need_reserve_slab_rcu)
1679 page = virt_to_head_page(h);
1681 page = container_of((struct list_head *)h, struct page, lru);
1683 __free_slab(page->slab_cache, page);
1686 static void free_slab(struct kmem_cache *s, struct page *page)
1688 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1689 struct rcu_head *head;
1691 if (need_reserve_slab_rcu) {
1692 int order = compound_order(page);
1693 int offset = (PAGE_SIZE << order) - s->reserved;
1695 VM_BUG_ON(s->reserved != sizeof(*head));
1696 head = page_address(page) + offset;
1698 head = &page->rcu_head;
1701 call_rcu(head, rcu_free_slab);
1703 __free_slab(s, page);
1706 static void discard_slab(struct kmem_cache *s, struct page *page)
1708 dec_slabs_node(s, page_to_nid(page), page->objects);
1713 * Management of partially allocated slabs.
1716 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1719 if (tail == DEACTIVATE_TO_TAIL)
1720 list_add_tail(&page->lru, &n->partial);
1722 list_add(&page->lru, &n->partial);
1725 static inline void add_partial(struct kmem_cache_node *n,
1726 struct page *page, int tail)
1728 lockdep_assert_held(&n->list_lock);
1729 __add_partial(n, page, tail);
1732 static inline void remove_partial(struct kmem_cache_node *n,
1735 lockdep_assert_held(&n->list_lock);
1736 list_del(&page->lru);
1741 * Remove slab from the partial list, freeze it and
1742 * return the pointer to the freelist.
1744 * Returns a list of objects or NULL if it fails.
1746 static inline void *acquire_slab(struct kmem_cache *s,
1747 struct kmem_cache_node *n, struct page *page,
1748 int mode, int *objects)
1751 unsigned long counters;
1754 lockdep_assert_held(&n->list_lock);
1757 * Zap the freelist and set the frozen bit.
1758 * The old freelist is the list of objects for the
1759 * per cpu allocation list.
1761 freelist = page->freelist;
1762 counters = page->counters;
1763 new.counters = counters;
1764 *objects = new.objects - new.inuse;
1766 new.inuse = page->objects;
1767 new.freelist = NULL;
1769 new.freelist = freelist;
1772 VM_BUG_ON(new.frozen);
1775 if (!__cmpxchg_double_slab(s, page,
1777 new.freelist, new.counters,
1781 remove_partial(n, page);
1786 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1787 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1790 * Try to allocate a partial slab from a specific node.
1792 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1793 struct kmem_cache_cpu *c, gfp_t flags)
1795 struct page *page, *page2;
1796 void *object = NULL;
1801 * Racy check. If we mistakenly see no partial slabs then we
1802 * just allocate an empty slab. If we mistakenly try to get a
1803 * partial slab and there is none available then get_partials()
1806 if (!n || !n->nr_partial)
1809 spin_lock(&n->list_lock);
1810 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1813 if (!pfmemalloc_match(page, flags))
1816 t = acquire_slab(s, n, page, object == NULL, &objects);
1820 available += objects;
1823 stat(s, ALLOC_FROM_PARTIAL);
1826 put_cpu_partial(s, page, 0);
1827 stat(s, CPU_PARTIAL_NODE);
1829 if (!kmem_cache_has_cpu_partial(s)
1830 || available > s->cpu_partial / 2)
1834 spin_unlock(&n->list_lock);
1839 * Get a page from somewhere. Search in increasing NUMA distances.
1841 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1842 struct kmem_cache_cpu *c)
1845 struct zonelist *zonelist;
1848 enum zone_type high_zoneidx = gfp_zone(flags);
1850 unsigned int cpuset_mems_cookie;
1853 * The defrag ratio allows a configuration of the tradeoffs between
1854 * inter node defragmentation and node local allocations. A lower
1855 * defrag_ratio increases the tendency to do local allocations
1856 * instead of attempting to obtain partial slabs from other nodes.
1858 * If the defrag_ratio is set to 0 then kmalloc() always
1859 * returns node local objects. If the ratio is higher then kmalloc()
1860 * may return off node objects because partial slabs are obtained
1861 * from other nodes and filled up.
1863 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1864 * (which makes defrag_ratio = 1000) then every (well almost)
1865 * allocation will first attempt to defrag slab caches on other nodes.
1866 * This means scanning over all nodes to look for partial slabs which
1867 * may be expensive if we do it every time we are trying to find a slab
1868 * with available objects.
1870 if (!s->remote_node_defrag_ratio ||
1871 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1875 cpuset_mems_cookie = read_mems_allowed_begin();
1876 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1877 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1878 struct kmem_cache_node *n;
1880 n = get_node(s, zone_to_nid(zone));
1882 if (n && cpuset_zone_allowed(zone, flags) &&
1883 n->nr_partial > s->min_partial) {
1884 object = get_partial_node(s, n, c, flags);
1887 * Don't check read_mems_allowed_retry()
1888 * here - if mems_allowed was updated in
1889 * parallel, that was a harmless race
1890 * between allocation and the cpuset
1897 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1903 * Get a partial page, lock it and return it.
1905 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1906 struct kmem_cache_cpu *c)
1909 int searchnode = node;
1911 if (node == NUMA_NO_NODE)
1912 searchnode = numa_mem_id();
1913 else if (!node_present_pages(node))
1914 searchnode = node_to_mem_node(node);
1916 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1917 if (object || node != NUMA_NO_NODE)
1920 return get_any_partial(s, flags, c);
1923 #ifdef CONFIG_PREEMPT
1925 * Calculate the next globally unique transaction for disambiguiation
1926 * during cmpxchg. The transactions start with the cpu number and are then
1927 * incremented by CONFIG_NR_CPUS.
1929 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1932 * No preemption supported therefore also no need to check for
1938 static inline unsigned long next_tid(unsigned long tid)
1940 return tid + TID_STEP;
1943 static inline unsigned int tid_to_cpu(unsigned long tid)
1945 return tid % TID_STEP;
1948 static inline unsigned long tid_to_event(unsigned long tid)
1950 return tid / TID_STEP;
1953 static inline unsigned int init_tid(int cpu)
1958 static inline void note_cmpxchg_failure(const char *n,
1959 const struct kmem_cache *s, unsigned long tid)
1961 #ifdef SLUB_DEBUG_CMPXCHG
1962 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1964 pr_info("%s %s: cmpxchg redo ", n, s->name);
1966 #ifdef CONFIG_PREEMPT
1967 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1968 pr_warn("due to cpu change %d -> %d\n",
1969 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1972 if (tid_to_event(tid) != tid_to_event(actual_tid))
1973 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1974 tid_to_event(tid), tid_to_event(actual_tid));
1976 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1977 actual_tid, tid, next_tid(tid));
1979 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1982 static void init_kmem_cache_cpus(struct kmem_cache *s)
1986 for_each_possible_cpu(cpu)
1987 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1991 * Remove the cpu slab
1993 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1996 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1997 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1999 enum slab_modes l = M_NONE, m = M_NONE;
2001 int tail = DEACTIVATE_TO_HEAD;
2005 if (page->freelist) {
2006 stat(s, DEACTIVATE_REMOTE_FREES);
2007 tail = DEACTIVATE_TO_TAIL;
2011 * Stage one: Free all available per cpu objects back
2012 * to the page freelist while it is still frozen. Leave the
2015 * There is no need to take the list->lock because the page
2018 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2020 unsigned long counters;
2023 prior = page->freelist;
2024 counters = page->counters;
2025 set_freepointer(s, freelist, prior);
2026 new.counters = counters;
2028 VM_BUG_ON(!new.frozen);
2030 } while (!__cmpxchg_double_slab(s, page,
2032 freelist, new.counters,
2033 "drain percpu freelist"));
2035 freelist = nextfree;
2039 * Stage two: Ensure that the page is unfrozen while the
2040 * list presence reflects the actual number of objects
2043 * We setup the list membership and then perform a cmpxchg
2044 * with the count. If there is a mismatch then the page
2045 * is not unfrozen but the page is on the wrong list.
2047 * Then we restart the process which may have to remove
2048 * the page from the list that we just put it on again
2049 * because the number of objects in the slab may have
2054 old.freelist = page->freelist;
2055 old.counters = page->counters;
2056 VM_BUG_ON(!old.frozen);
2058 /* Determine target state of the slab */
2059 new.counters = old.counters;
2062 set_freepointer(s, freelist, old.freelist);
2063 new.freelist = freelist;
2065 new.freelist = old.freelist;
2069 if (!new.inuse && n->nr_partial >= s->min_partial)
2071 else if (new.freelist) {
2076 * Taking the spinlock removes the possiblity
2077 * that acquire_slab() will see a slab page that
2080 spin_lock(&n->list_lock);
2084 if (kmem_cache_debug(s) && !lock) {
2087 * This also ensures that the scanning of full
2088 * slabs from diagnostic functions will not see
2091 spin_lock(&n->list_lock);
2099 remove_partial(n, page);
2101 else if (l == M_FULL)
2103 remove_full(s, n, page);
2105 if (m == M_PARTIAL) {
2107 add_partial(n, page, tail);
2110 } else if (m == M_FULL) {
2112 stat(s, DEACTIVATE_FULL);
2113 add_full(s, n, page);
2119 if (!__cmpxchg_double_slab(s, page,
2120 old.freelist, old.counters,
2121 new.freelist, new.counters,
2126 spin_unlock(&n->list_lock);
2129 stat(s, DEACTIVATE_EMPTY);
2130 discard_slab(s, page);
2136 * Unfreeze all the cpu partial slabs.
2138 * This function must be called with interrupts disabled
2139 * for the cpu using c (or some other guarantee must be there
2140 * to guarantee no concurrent accesses).
2142 static void unfreeze_partials(struct kmem_cache *s,
2143 struct kmem_cache_cpu *c)
2145 #ifdef CONFIG_SLUB_CPU_PARTIAL
2146 struct kmem_cache_node *n = NULL, *n2 = NULL;
2147 struct page *page, *discard_page = NULL;
2149 while ((page = c->partial)) {
2153 c->partial = page->next;
2155 n2 = get_node(s, page_to_nid(page));
2158 spin_unlock(&n->list_lock);
2161 spin_lock(&n->list_lock);
2166 old.freelist = page->freelist;
2167 old.counters = page->counters;
2168 VM_BUG_ON(!old.frozen);
2170 new.counters = old.counters;
2171 new.freelist = old.freelist;
2175 } while (!__cmpxchg_double_slab(s, page,
2176 old.freelist, old.counters,
2177 new.freelist, new.counters,
2178 "unfreezing slab"));
2180 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2181 page->next = discard_page;
2182 discard_page = page;
2184 add_partial(n, page, DEACTIVATE_TO_TAIL);
2185 stat(s, FREE_ADD_PARTIAL);
2190 spin_unlock(&n->list_lock);
2192 while (discard_page) {
2193 page = discard_page;
2194 discard_page = discard_page->next;
2196 stat(s, DEACTIVATE_EMPTY);
2197 discard_slab(s, page);
2204 * Put a page that was just frozen (in __slab_free) into a partial page
2205 * slot if available. This is done without interrupts disabled and without
2206 * preemption disabled. The cmpxchg is racy and may put the partial page
2207 * onto a random cpus partial slot.
2209 * If we did not find a slot then simply move all the partials to the
2210 * per node partial list.
2212 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2214 #ifdef CONFIG_SLUB_CPU_PARTIAL
2215 struct page *oldpage;
2223 oldpage = this_cpu_read(s->cpu_slab->partial);
2226 pobjects = oldpage->pobjects;
2227 pages = oldpage->pages;
2228 if (drain && pobjects > s->cpu_partial) {
2229 unsigned long flags;
2231 * partial array is full. Move the existing
2232 * set to the per node partial list.
2234 local_irq_save(flags);
2235 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2236 local_irq_restore(flags);
2240 stat(s, CPU_PARTIAL_DRAIN);
2245 pobjects += page->objects - page->inuse;
2247 page->pages = pages;
2248 page->pobjects = pobjects;
2249 page->next = oldpage;
2251 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2253 if (unlikely(!s->cpu_partial)) {
2254 unsigned long flags;
2256 local_irq_save(flags);
2257 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2258 local_irq_restore(flags);
2264 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2266 stat(s, CPUSLAB_FLUSH);
2267 deactivate_slab(s, c->page, c->freelist);
2269 c->tid = next_tid(c->tid);
2277 * Called from IPI handler with interrupts disabled.
2279 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2281 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2287 unfreeze_partials(s, c);
2291 static void flush_cpu_slab(void *d)
2293 struct kmem_cache *s = d;
2295 __flush_cpu_slab(s, smp_processor_id());
2298 static bool has_cpu_slab(int cpu, void *info)
2300 struct kmem_cache *s = info;
2301 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2303 return c->page || c->partial;
2306 static void flush_all(struct kmem_cache *s)
2308 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2312 * Use the cpu notifier to insure that the cpu slabs are flushed when
2315 static int slub_cpu_dead(unsigned int cpu)
2317 struct kmem_cache *s;
2318 unsigned long flags;
2320 mutex_lock(&slab_mutex);
2321 list_for_each_entry(s, &slab_caches, list) {
2322 local_irq_save(flags);
2323 __flush_cpu_slab(s, cpu);
2324 local_irq_restore(flags);
2326 mutex_unlock(&slab_mutex);
2331 * Check if the objects in a per cpu structure fit numa
2332 * locality expectations.
2334 static inline int node_match(struct page *page, int node)
2337 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2343 #ifdef CONFIG_SLUB_DEBUG
2344 static int count_free(struct page *page)
2346 return page->objects - page->inuse;
2349 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2351 return atomic_long_read(&n->total_objects);
2353 #endif /* CONFIG_SLUB_DEBUG */
2355 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2356 static unsigned long count_partial(struct kmem_cache_node *n,
2357 int (*get_count)(struct page *))
2359 unsigned long flags;
2360 unsigned long x = 0;
2363 spin_lock_irqsave(&n->list_lock, flags);
2364 list_for_each_entry(page, &n->partial, lru)
2365 x += get_count(page);
2366 spin_unlock_irqrestore(&n->list_lock, flags);
2369 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2371 static noinline void
2372 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2374 #ifdef CONFIG_SLUB_DEBUG
2375 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2376 DEFAULT_RATELIMIT_BURST);
2378 struct kmem_cache_node *n;
2380 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2383 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2384 nid, gfpflags, &gfpflags);
2385 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2386 s->name, s->object_size, s->size, oo_order(s->oo),
2389 if (oo_order(s->min) > get_order(s->object_size))
2390 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2393 for_each_kmem_cache_node(s, node, n) {
2394 unsigned long nr_slabs;
2395 unsigned long nr_objs;
2396 unsigned long nr_free;
2398 nr_free = count_partial(n, count_free);
2399 nr_slabs = node_nr_slabs(n);
2400 nr_objs = node_nr_objs(n);
2402 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2403 node, nr_slabs, nr_objs, nr_free);
2408 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2409 int node, struct kmem_cache_cpu **pc)
2412 struct kmem_cache_cpu *c = *pc;
2415 freelist = get_partial(s, flags, node, c);
2420 page = new_slab(s, flags, node);
2422 c = raw_cpu_ptr(s->cpu_slab);
2427 * No other reference to the page yet so we can
2428 * muck around with it freely without cmpxchg
2430 freelist = page->freelist;
2431 page->freelist = NULL;
2433 stat(s, ALLOC_SLAB);
2442 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2444 if (unlikely(PageSlabPfmemalloc(page)))
2445 return gfp_pfmemalloc_allowed(gfpflags);
2451 * Check the page->freelist of a page and either transfer the freelist to the
2452 * per cpu freelist or deactivate the page.
2454 * The page is still frozen if the return value is not NULL.
2456 * If this function returns NULL then the page has been unfrozen.
2458 * This function must be called with interrupt disabled.
2460 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2463 unsigned long counters;
2467 freelist = page->freelist;
2468 counters = page->counters;
2470 new.counters = counters;
2471 VM_BUG_ON(!new.frozen);
2473 new.inuse = page->objects;
2474 new.frozen = freelist != NULL;
2476 } while (!__cmpxchg_double_slab(s, page,
2485 * Slow path. The lockless freelist is empty or we need to perform
2488 * Processing is still very fast if new objects have been freed to the
2489 * regular freelist. In that case we simply take over the regular freelist
2490 * as the lockless freelist and zap the regular freelist.
2492 * If that is not working then we fall back to the partial lists. We take the
2493 * first element of the freelist as the object to allocate now and move the
2494 * rest of the freelist to the lockless freelist.
2496 * And if we were unable to get a new slab from the partial slab lists then
2497 * we need to allocate a new slab. This is the slowest path since it involves
2498 * a call to the page allocator and the setup of a new slab.
2500 * Version of __slab_alloc to use when we know that interrupts are
2501 * already disabled (which is the case for bulk allocation).
2503 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2504 unsigned long addr, struct kmem_cache_cpu *c)
2514 if (unlikely(!node_match(page, node))) {
2515 int searchnode = node;
2517 if (node != NUMA_NO_NODE && !node_present_pages(node))
2518 searchnode = node_to_mem_node(node);
2520 if (unlikely(!node_match(page, searchnode))) {
2521 stat(s, ALLOC_NODE_MISMATCH);
2522 deactivate_slab(s, page, c->freelist);
2530 * By rights, we should be searching for a slab page that was
2531 * PFMEMALLOC but right now, we are losing the pfmemalloc
2532 * information when the page leaves the per-cpu allocator
2534 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2535 deactivate_slab(s, page, c->freelist);
2541 /* must check again c->freelist in case of cpu migration or IRQ */
2542 freelist = c->freelist;
2546 freelist = get_freelist(s, page);
2550 stat(s, DEACTIVATE_BYPASS);
2554 stat(s, ALLOC_REFILL);
2558 * freelist is pointing to the list of objects to be used.
2559 * page is pointing to the page from which the objects are obtained.
2560 * That page must be frozen for per cpu allocations to work.
2562 VM_BUG_ON(!c->page->frozen);
2563 c->freelist = get_freepointer(s, freelist);
2564 c->tid = next_tid(c->tid);
2570 page = c->page = c->partial;
2571 c->partial = page->next;
2572 stat(s, CPU_PARTIAL_ALLOC);
2577 freelist = new_slab_objects(s, gfpflags, node, &c);
2579 if (unlikely(!freelist)) {
2580 slab_out_of_memory(s, gfpflags, node);
2585 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2588 /* Only entered in the debug case */
2589 if (kmem_cache_debug(s) &&
2590 !alloc_debug_processing(s, page, freelist, addr))
2591 goto new_slab; /* Slab failed checks. Next slab needed */
2593 deactivate_slab(s, page, get_freepointer(s, freelist));
2600 * Another one that disabled interrupt and compensates for possible
2601 * cpu changes by refetching the per cpu area pointer.
2603 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2604 unsigned long addr, struct kmem_cache_cpu *c)
2607 unsigned long flags;
2609 local_irq_save(flags);
2610 #ifdef CONFIG_PREEMPT
2612 * We may have been preempted and rescheduled on a different
2613 * cpu before disabling interrupts. Need to reload cpu area
2616 c = this_cpu_ptr(s->cpu_slab);
2619 p = ___slab_alloc(s, gfpflags, node, addr, c);
2620 local_irq_restore(flags);
2625 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2626 * have the fastpath folded into their functions. So no function call
2627 * overhead for requests that can be satisfied on the fastpath.
2629 * The fastpath works by first checking if the lockless freelist can be used.
2630 * If not then __slab_alloc is called for slow processing.
2632 * Otherwise we can simply pick the next object from the lockless free list.
2634 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2635 gfp_t gfpflags, int node, unsigned long addr)
2638 struct kmem_cache_cpu *c;
2642 s = slab_pre_alloc_hook(s, gfpflags);
2647 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2648 * enabled. We may switch back and forth between cpus while
2649 * reading from one cpu area. That does not matter as long
2650 * as we end up on the original cpu again when doing the cmpxchg.
2652 * We should guarantee that tid and kmem_cache are retrieved on
2653 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2654 * to check if it is matched or not.
2657 tid = this_cpu_read(s->cpu_slab->tid);
2658 c = raw_cpu_ptr(s->cpu_slab);
2659 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2660 unlikely(tid != READ_ONCE(c->tid)));
2663 * Irqless object alloc/free algorithm used here depends on sequence
2664 * of fetching cpu_slab's data. tid should be fetched before anything
2665 * on c to guarantee that object and page associated with previous tid
2666 * won't be used with current tid. If we fetch tid first, object and
2667 * page could be one associated with next tid and our alloc/free
2668 * request will be failed. In this case, we will retry. So, no problem.
2673 * The transaction ids are globally unique per cpu and per operation on
2674 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2675 * occurs on the right processor and that there was no operation on the
2676 * linked list in between.
2679 object = c->freelist;
2681 if (unlikely(!object || !node_match(page, node))) {
2682 object = __slab_alloc(s, gfpflags, node, addr, c);
2683 stat(s, ALLOC_SLOWPATH);
2685 void *next_object = get_freepointer_safe(s, object);
2688 * The cmpxchg will only match if there was no additional
2689 * operation and if we are on the right processor.
2691 * The cmpxchg does the following atomically (without lock
2693 * 1. Relocate first pointer to the current per cpu area.
2694 * 2. Verify that tid and freelist have not been changed
2695 * 3. If they were not changed replace tid and freelist
2697 * Since this is without lock semantics the protection is only
2698 * against code executing on this cpu *not* from access by
2701 if (unlikely(!this_cpu_cmpxchg_double(
2702 s->cpu_slab->freelist, s->cpu_slab->tid,
2704 next_object, next_tid(tid)))) {
2706 note_cmpxchg_failure("slab_alloc", s, tid);
2709 prefetch_freepointer(s, next_object);
2710 stat(s, ALLOC_FASTPATH);
2713 if (unlikely(gfpflags & __GFP_ZERO) && object)
2714 memset(object, 0, s->object_size);
2716 slab_post_alloc_hook(s, gfpflags, 1, &object);
2721 static __always_inline void *slab_alloc(struct kmem_cache *s,
2722 gfp_t gfpflags, unsigned long addr)
2724 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2727 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2729 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2731 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2736 EXPORT_SYMBOL(kmem_cache_alloc);
2738 #ifdef CONFIG_TRACING
2739 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2741 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2742 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2743 kasan_kmalloc(s, ret, size, gfpflags);
2746 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2750 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2752 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2754 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2755 s->object_size, s->size, gfpflags, node);
2759 EXPORT_SYMBOL(kmem_cache_alloc_node);
2761 #ifdef CONFIG_TRACING
2762 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2764 int node, size_t size)
2766 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2768 trace_kmalloc_node(_RET_IP_, ret,
2769 size, s->size, gfpflags, node);
2771 kasan_kmalloc(s, ret, size, gfpflags);
2774 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2779 * Slow path handling. This may still be called frequently since objects
2780 * have a longer lifetime than the cpu slabs in most processing loads.
2782 * So we still attempt to reduce cache line usage. Just take the slab
2783 * lock and free the item. If there is no additional partial page
2784 * handling required then we can return immediately.
2786 static void __slab_free(struct kmem_cache *s, struct page *page,
2787 void *head, void *tail, int cnt,
2794 unsigned long counters;
2795 struct kmem_cache_node *n = NULL;
2796 unsigned long uninitialized_var(flags);
2798 stat(s, FREE_SLOWPATH);
2800 if (kmem_cache_debug(s) &&
2801 !free_debug_processing(s, page, head, tail, cnt, addr))
2806 spin_unlock_irqrestore(&n->list_lock, flags);
2809 prior = page->freelist;
2810 counters = page->counters;
2811 set_freepointer(s, tail, prior);
2812 new.counters = counters;
2813 was_frozen = new.frozen;
2815 if ((!new.inuse || !prior) && !was_frozen) {
2817 if (kmem_cache_has_cpu_partial(s) && !prior) {
2820 * Slab was on no list before and will be
2822 * We can defer the list move and instead
2827 } else { /* Needs to be taken off a list */
2829 n = get_node(s, page_to_nid(page));
2831 * Speculatively acquire the list_lock.
2832 * If the cmpxchg does not succeed then we may
2833 * drop the list_lock without any processing.
2835 * Otherwise the list_lock will synchronize with
2836 * other processors updating the list of slabs.
2838 spin_lock_irqsave(&n->list_lock, flags);
2843 } while (!cmpxchg_double_slab(s, page,
2851 * If we just froze the page then put it onto the
2852 * per cpu partial list.
2854 if (new.frozen && !was_frozen) {
2855 put_cpu_partial(s, page, 1);
2856 stat(s, CPU_PARTIAL_FREE);
2859 * The list lock was not taken therefore no list
2860 * activity can be necessary.
2863 stat(s, FREE_FROZEN);
2867 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2871 * Objects left in the slab. If it was not on the partial list before
2874 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2875 if (kmem_cache_debug(s))
2876 remove_full(s, n, page);
2877 add_partial(n, page, DEACTIVATE_TO_TAIL);
2878 stat(s, FREE_ADD_PARTIAL);
2880 spin_unlock_irqrestore(&n->list_lock, flags);
2886 * Slab on the partial list.
2888 remove_partial(n, page);
2889 stat(s, FREE_REMOVE_PARTIAL);
2891 /* Slab must be on the full list */
2892 remove_full(s, n, page);
2895 spin_unlock_irqrestore(&n->list_lock, flags);
2897 discard_slab(s, page);
2901 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2902 * can perform fastpath freeing without additional function calls.
2904 * The fastpath is only possible if we are freeing to the current cpu slab
2905 * of this processor. This typically the case if we have just allocated
2908 * If fastpath is not possible then fall back to __slab_free where we deal
2909 * with all sorts of special processing.
2911 * Bulk free of a freelist with several objects (all pointing to the
2912 * same page) possible by specifying head and tail ptr, plus objects
2913 * count (cnt). Bulk free indicated by tail pointer being set.
2915 static __always_inline void do_slab_free(struct kmem_cache *s,
2916 struct page *page, void *head, void *tail,
2917 int cnt, unsigned long addr)
2919 void *tail_obj = tail ? : head;
2920 struct kmem_cache_cpu *c;
2924 * Determine the currently cpus per cpu slab.
2925 * The cpu may change afterward. However that does not matter since
2926 * data is retrieved via this pointer. If we are on the same cpu
2927 * during the cmpxchg then the free will succeed.
2930 tid = this_cpu_read(s->cpu_slab->tid);
2931 c = raw_cpu_ptr(s->cpu_slab);
2932 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2933 unlikely(tid != READ_ONCE(c->tid)));
2935 /* Same with comment on barrier() in slab_alloc_node() */
2938 if (likely(page == c->page)) {
2939 set_freepointer(s, tail_obj, c->freelist);
2941 if (unlikely(!this_cpu_cmpxchg_double(
2942 s->cpu_slab->freelist, s->cpu_slab->tid,
2944 head, next_tid(tid)))) {
2946 note_cmpxchg_failure("slab_free", s, tid);
2949 stat(s, FREE_FASTPATH);
2951 __slab_free(s, page, head, tail_obj, cnt, addr);
2955 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2956 void *head, void *tail, int cnt,
2959 slab_free_freelist_hook(s, head, tail);
2961 * slab_free_freelist_hook() could have put the items into quarantine.
2962 * If so, no need to free them.
2964 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2966 do_slab_free(s, page, head, tail, cnt, addr);
2970 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2972 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2976 void kmem_cache_free(struct kmem_cache *s, void *x)
2978 s = cache_from_obj(s, x);
2981 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2982 trace_kmem_cache_free(_RET_IP_, x);
2984 EXPORT_SYMBOL(kmem_cache_free);
2986 struct detached_freelist {
2991 struct kmem_cache *s;
2995 * This function progressively scans the array with free objects (with
2996 * a limited look ahead) and extract objects belonging to the same
2997 * page. It builds a detached freelist directly within the given
2998 * page/objects. This can happen without any need for
2999 * synchronization, because the objects are owned by running process.
3000 * The freelist is build up as a single linked list in the objects.
3001 * The idea is, that this detached freelist can then be bulk
3002 * transferred to the real freelist(s), but only requiring a single
3003 * synchronization primitive. Look ahead in the array is limited due
3004 * to performance reasons.
3007 int build_detached_freelist(struct kmem_cache *s, size_t size,
3008 void **p, struct detached_freelist *df)
3010 size_t first_skipped_index = 0;
3015 /* Always re-init detached_freelist */
3020 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3021 } while (!object && size);
3026 page = virt_to_head_page(object);
3028 /* Handle kalloc'ed objects */
3029 if (unlikely(!PageSlab(page))) {
3030 BUG_ON(!PageCompound(page));
3032 __free_pages(page, compound_order(page));
3033 p[size] = NULL; /* mark object processed */
3036 /* Derive kmem_cache from object */
3037 df->s = page->slab_cache;
3039 df->s = cache_from_obj(s, object); /* Support for memcg */
3042 /* Start new detached freelist */
3044 set_freepointer(df->s, object, NULL);
3046 df->freelist = object;
3047 p[size] = NULL; /* mark object processed */
3053 continue; /* Skip processed objects */
3055 /* df->page is always set at this point */
3056 if (df->page == virt_to_head_page(object)) {
3057 /* Opportunity build freelist */
3058 set_freepointer(df->s, object, df->freelist);
3059 df->freelist = object;
3061 p[size] = NULL; /* mark object processed */
3066 /* Limit look ahead search */
3070 if (!first_skipped_index)
3071 first_skipped_index = size + 1;
3074 return first_skipped_index;
3077 /* Note that interrupts must be enabled when calling this function. */
3078 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3084 struct detached_freelist df;
3086 size = build_detached_freelist(s, size, p, &df);
3090 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3091 } while (likely(size));
3093 EXPORT_SYMBOL(kmem_cache_free_bulk);
3095 /* Note that interrupts must be enabled when calling this function. */
3096 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3099 struct kmem_cache_cpu *c;
3102 /* memcg and kmem_cache debug support */
3103 s = slab_pre_alloc_hook(s, flags);
3107 * Drain objects in the per cpu slab, while disabling local
3108 * IRQs, which protects against PREEMPT and interrupts
3109 * handlers invoking normal fastpath.
3111 local_irq_disable();
3112 c = this_cpu_ptr(s->cpu_slab);
3114 for (i = 0; i < size; i++) {
3115 void *object = c->freelist;
3117 if (unlikely(!object)) {
3119 * Invoking slow path likely have side-effect
3120 * of re-populating per CPU c->freelist
3122 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3124 if (unlikely(!p[i]))
3127 c = this_cpu_ptr(s->cpu_slab);
3128 continue; /* goto for-loop */
3130 c->freelist = get_freepointer(s, object);
3133 c->tid = next_tid(c->tid);
3136 /* Clear memory outside IRQ disabled fastpath loop */
3137 if (unlikely(flags & __GFP_ZERO)) {
3140 for (j = 0; j < i; j++)
3141 memset(p[j], 0, s->object_size);
3144 /* memcg and kmem_cache debug support */
3145 slab_post_alloc_hook(s, flags, size, p);
3149 slab_post_alloc_hook(s, flags, i, p);
3150 __kmem_cache_free_bulk(s, i, p);
3153 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3157 * Object placement in a slab is made very easy because we always start at
3158 * offset 0. If we tune the size of the object to the alignment then we can
3159 * get the required alignment by putting one properly sized object after
3162 * Notice that the allocation order determines the sizes of the per cpu
3163 * caches. Each processor has always one slab available for allocations.
3164 * Increasing the allocation order reduces the number of times that slabs
3165 * must be moved on and off the partial lists and is therefore a factor in
3170 * Mininum / Maximum order of slab pages. This influences locking overhead
3171 * and slab fragmentation. A higher order reduces the number of partial slabs
3172 * and increases the number of allocations possible without having to
3173 * take the list_lock.
3175 static int slub_min_order;
3176 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3177 static int slub_min_objects;
3180 * Calculate the order of allocation given an slab object size.
3182 * The order of allocation has significant impact on performance and other
3183 * system components. Generally order 0 allocations should be preferred since
3184 * order 0 does not cause fragmentation in the page allocator. Larger objects
3185 * be problematic to put into order 0 slabs because there may be too much
3186 * unused space left. We go to a higher order if more than 1/16th of the slab
3189 * In order to reach satisfactory performance we must ensure that a minimum
3190 * number of objects is in one slab. Otherwise we may generate too much
3191 * activity on the partial lists which requires taking the list_lock. This is
3192 * less a concern for large slabs though which are rarely used.
3194 * slub_max_order specifies the order where we begin to stop considering the
3195 * number of objects in a slab as critical. If we reach slub_max_order then
3196 * we try to keep the page order as low as possible. So we accept more waste
3197 * of space in favor of a small page order.
3199 * Higher order allocations also allow the placement of more objects in a
3200 * slab and thereby reduce object handling overhead. If the user has
3201 * requested a higher mininum order then we start with that one instead of
3202 * the smallest order which will fit the object.
3204 static inline int slab_order(int size, int min_objects,
3205 int max_order, int fract_leftover, int reserved)
3209 int min_order = slub_min_order;
3211 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3212 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3214 for (order = max(min_order, get_order(min_objects * size + reserved));
3215 order <= max_order; order++) {
3217 unsigned long slab_size = PAGE_SIZE << order;
3219 rem = (slab_size - reserved) % size;
3221 if (rem <= slab_size / fract_leftover)
3228 static inline int calculate_order(int size, int reserved)
3236 * Attempt to find best configuration for a slab. This
3237 * works by first attempting to generate a layout with
3238 * the best configuration and backing off gradually.
3240 * First we increase the acceptable waste in a slab. Then
3241 * we reduce the minimum objects required in a slab.
3243 min_objects = slub_min_objects;
3245 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3246 max_objects = order_objects(slub_max_order, size, reserved);
3247 min_objects = min(min_objects, max_objects);
3249 while (min_objects > 1) {
3251 while (fraction >= 4) {
3252 order = slab_order(size, min_objects,
3253 slub_max_order, fraction, reserved);
3254 if (order <= slub_max_order)
3262 * We were unable to place multiple objects in a slab. Now
3263 * lets see if we can place a single object there.
3265 order = slab_order(size, 1, slub_max_order, 1, reserved);
3266 if (order <= slub_max_order)
3270 * Doh this slab cannot be placed using slub_max_order.
3272 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3273 if (order < MAX_ORDER)
3279 init_kmem_cache_node(struct kmem_cache_node *n)
3282 spin_lock_init(&n->list_lock);
3283 INIT_LIST_HEAD(&n->partial);
3284 #ifdef CONFIG_SLUB_DEBUG
3285 atomic_long_set(&n->nr_slabs, 0);
3286 atomic_long_set(&n->total_objects, 0);
3287 INIT_LIST_HEAD(&n->full);
3291 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3293 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3294 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3297 * Must align to double word boundary for the double cmpxchg
3298 * instructions to work; see __pcpu_double_call_return_bool().
3300 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3301 2 * sizeof(void *));
3306 init_kmem_cache_cpus(s);
3311 static struct kmem_cache *kmem_cache_node;
3314 * No kmalloc_node yet so do it by hand. We know that this is the first
3315 * slab on the node for this slabcache. There are no concurrent accesses
3318 * Note that this function only works on the kmem_cache_node
3319 * when allocating for the kmem_cache_node. This is used for bootstrapping
3320 * memory on a fresh node that has no slab structures yet.
3322 static void early_kmem_cache_node_alloc(int node)
3325 struct kmem_cache_node *n;
3327 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3329 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3332 if (page_to_nid(page) != node) {
3333 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3334 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3339 page->freelist = get_freepointer(kmem_cache_node, n);
3342 kmem_cache_node->node[node] = n;
3343 #ifdef CONFIG_SLUB_DEBUG
3344 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3345 init_tracking(kmem_cache_node, n);
3347 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3349 init_kmem_cache_node(n);
3350 inc_slabs_node(kmem_cache_node, node, page->objects);
3353 * No locks need to be taken here as it has just been
3354 * initialized and there is no concurrent access.
3356 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3359 static void free_kmem_cache_nodes(struct kmem_cache *s)
3362 struct kmem_cache_node *n;
3364 for_each_kmem_cache_node(s, node, n) {
3365 kmem_cache_free(kmem_cache_node, n);
3366 s->node[node] = NULL;
3370 void __kmem_cache_release(struct kmem_cache *s)
3372 cache_random_seq_destroy(s);
3373 free_percpu(s->cpu_slab);
3374 free_kmem_cache_nodes(s);
3377 static int init_kmem_cache_nodes(struct kmem_cache *s)
3381 for_each_node_state(node, N_NORMAL_MEMORY) {
3382 struct kmem_cache_node *n;
3384 if (slab_state == DOWN) {
3385 early_kmem_cache_node_alloc(node);
3388 n = kmem_cache_alloc_node(kmem_cache_node,
3392 free_kmem_cache_nodes(s);
3397 init_kmem_cache_node(n);
3402 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3404 if (min < MIN_PARTIAL)
3406 else if (min > MAX_PARTIAL)
3408 s->min_partial = min;
3412 * calculate_sizes() determines the order and the distribution of data within
3415 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3417 unsigned long flags = s->flags;
3418 size_t size = s->object_size;
3422 * Round up object size to the next word boundary. We can only
3423 * place the free pointer at word boundaries and this determines
3424 * the possible location of the free pointer.
3426 size = ALIGN(size, sizeof(void *));
3428 #ifdef CONFIG_SLUB_DEBUG
3430 * Determine if we can poison the object itself. If the user of
3431 * the slab may touch the object after free or before allocation
3432 * then we should never poison the object itself.
3434 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3436 s->flags |= __OBJECT_POISON;
3438 s->flags &= ~__OBJECT_POISON;
3442 * If we are Redzoning then check if there is some space between the
3443 * end of the object and the free pointer. If not then add an
3444 * additional word to have some bytes to store Redzone information.
3446 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3447 size += sizeof(void *);
3451 * With that we have determined the number of bytes in actual use
3452 * by the object. This is the potential offset to the free pointer.
3456 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3459 * Relocate free pointer after the object if it is not
3460 * permitted to overwrite the first word of the object on
3463 * This is the case if we do RCU, have a constructor or
3464 * destructor or are poisoning the objects.
3467 size += sizeof(void *);
3470 #ifdef CONFIG_SLUB_DEBUG
3471 if (flags & SLAB_STORE_USER)
3473 * Need to store information about allocs and frees after
3476 size += 2 * sizeof(struct track);
3479 kasan_cache_create(s, &size, &s->flags);
3480 #ifdef CONFIG_SLUB_DEBUG
3481 if (flags & SLAB_RED_ZONE) {
3483 * Add some empty padding so that we can catch
3484 * overwrites from earlier objects rather than let
3485 * tracking information or the free pointer be
3486 * corrupted if a user writes before the start
3489 size += sizeof(void *);
3491 s->red_left_pad = sizeof(void *);
3492 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3493 size += s->red_left_pad;
3498 * SLUB stores one object immediately after another beginning from
3499 * offset 0. In order to align the objects we have to simply size
3500 * each object to conform to the alignment.
3502 size = ALIGN(size, s->align);
3504 if (forced_order >= 0)
3505 order = forced_order;
3507 order = calculate_order(size, s->reserved);
3514 s->allocflags |= __GFP_COMP;
3516 if (s->flags & SLAB_CACHE_DMA)
3517 s->allocflags |= GFP_DMA;
3519 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3520 s->allocflags |= __GFP_RECLAIMABLE;
3523 * Determine the number of objects per slab
3525 s->oo = oo_make(order, size, s->reserved);
3526 s->min = oo_make(get_order(size), size, s->reserved);
3527 if (oo_objects(s->oo) > oo_objects(s->max))
3530 return !!oo_objects(s->oo);
3533 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3535 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3538 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3539 s->reserved = sizeof(struct rcu_head);
3541 if (!calculate_sizes(s, -1))
3543 if (disable_higher_order_debug) {
3545 * Disable debugging flags that store metadata if the min slab
3548 if (get_order(s->size) > get_order(s->object_size)) {
3549 s->flags &= ~DEBUG_METADATA_FLAGS;
3551 if (!calculate_sizes(s, -1))
3556 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3557 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3558 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3559 /* Enable fast mode */
3560 s->flags |= __CMPXCHG_DOUBLE;
3564 * The larger the object size is, the more pages we want on the partial
3565 * list to avoid pounding the page allocator excessively.
3567 set_min_partial(s, ilog2(s->size) / 2);
3570 * cpu_partial determined the maximum number of objects kept in the
3571 * per cpu partial lists of a processor.
3573 * Per cpu partial lists mainly contain slabs that just have one
3574 * object freed. If they are used for allocation then they can be
3575 * filled up again with minimal effort. The slab will never hit the
3576 * per node partial lists and therefore no locking will be required.
3578 * This setting also determines
3580 * A) The number of objects from per cpu partial slabs dumped to the
3581 * per node list when we reach the limit.
3582 * B) The number of objects in cpu partial slabs to extract from the
3583 * per node list when we run out of per cpu objects. We only fetch
3584 * 50% to keep some capacity around for frees.
3586 if (!kmem_cache_has_cpu_partial(s))
3588 else if (s->size >= PAGE_SIZE)
3590 else if (s->size >= 1024)
3592 else if (s->size >= 256)
3593 s->cpu_partial = 13;
3595 s->cpu_partial = 30;
3598 s->remote_node_defrag_ratio = 1000;
3601 /* Initialize the pre-computed randomized freelist if slab is up */
3602 if (slab_state >= UP) {
3603 if (init_cache_random_seq(s))
3607 if (!init_kmem_cache_nodes(s))
3610 if (alloc_kmem_cache_cpus(s))
3613 free_kmem_cache_nodes(s);
3615 if (flags & SLAB_PANIC)
3616 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3617 s->name, (unsigned long)s->size, s->size,
3618 oo_order(s->oo), s->offset, flags);
3622 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3625 #ifdef CONFIG_SLUB_DEBUG
3626 void *addr = page_address(page);
3628 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3629 sizeof(long), GFP_ATOMIC);
3632 slab_err(s, page, text, s->name);
3635 get_map(s, page, map);
3636 for_each_object(p, s, addr, page->objects) {
3638 if (!test_bit(slab_index(p, s, addr), map)) {
3639 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3640 print_tracking(s, p);
3649 * Attempt to free all partial slabs on a node.
3650 * This is called from __kmem_cache_shutdown(). We must take list_lock
3651 * because sysfs file might still access partial list after the shutdowning.
3653 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3656 struct page *page, *h;
3658 BUG_ON(irqs_disabled());
3659 spin_lock_irq(&n->list_lock);
3660 list_for_each_entry_safe(page, h, &n->partial, lru) {
3662 remove_partial(n, page);
3663 list_add(&page->lru, &discard);
3665 list_slab_objects(s, page,
3666 "Objects remaining in %s on __kmem_cache_shutdown()");
3669 spin_unlock_irq(&n->list_lock);
3671 list_for_each_entry_safe(page, h, &discard, lru)
3672 discard_slab(s, page);
3676 * Release all resources used by a slab cache.
3678 int __kmem_cache_shutdown(struct kmem_cache *s)
3681 struct kmem_cache_node *n;
3684 /* Attempt to free all objects */
3685 for_each_kmem_cache_node(s, node, n) {
3687 if (n->nr_partial || slabs_node(s, node))
3693 /********************************************************************
3695 *******************************************************************/
3697 static int __init setup_slub_min_order(char *str)
3699 get_option(&str, &slub_min_order);
3704 __setup("slub_min_order=", setup_slub_min_order);
3706 static int __init setup_slub_max_order(char *str)
3708 get_option(&str, &slub_max_order);
3709 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3714 __setup("slub_max_order=", setup_slub_max_order);
3716 static int __init setup_slub_min_objects(char *str)
3718 get_option(&str, &slub_min_objects);
3723 __setup("slub_min_objects=", setup_slub_min_objects);
3725 void *__kmalloc(size_t size, gfp_t flags)
3727 struct kmem_cache *s;
3730 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3731 return kmalloc_large(size, flags);
3733 s = kmalloc_slab(size, flags);
3735 if (unlikely(ZERO_OR_NULL_PTR(s)))
3738 ret = slab_alloc(s, flags, _RET_IP_);
3740 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3742 kasan_kmalloc(s, ret, size, flags);
3746 EXPORT_SYMBOL(__kmalloc);
3749 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3754 flags |= __GFP_COMP | __GFP_NOTRACK;
3755 page = alloc_pages_node(node, flags, get_order(size));
3757 ptr = page_address(page);
3759 kmalloc_large_node_hook(ptr, size, flags);
3763 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3765 struct kmem_cache *s;
3768 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3769 ret = kmalloc_large_node(size, flags, node);
3771 trace_kmalloc_node(_RET_IP_, ret,
3772 size, PAGE_SIZE << get_order(size),
3778 s = kmalloc_slab(size, flags);
3780 if (unlikely(ZERO_OR_NULL_PTR(s)))
3783 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3785 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3787 kasan_kmalloc(s, ret, size, flags);
3791 EXPORT_SYMBOL(__kmalloc_node);
3794 #ifdef CONFIG_HARDENED_USERCOPY
3796 * Rejects objects that are incorrectly sized.
3798 * Returns NULL if check passes, otherwise const char * to name of cache
3799 * to indicate an error.
3801 const char *__check_heap_object(const void *ptr, unsigned long n,
3804 struct kmem_cache *s;
3805 unsigned long offset;
3808 /* Find object and usable object size. */
3809 s = page->slab_cache;
3810 object_size = slab_ksize(s);
3812 /* Reject impossible pointers. */
3813 if (ptr < page_address(page))
3816 /* Find offset within object. */
3817 offset = (ptr - page_address(page)) % s->size;
3819 /* Adjust for redzone and reject if within the redzone. */
3820 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3821 if (offset < s->red_left_pad)
3823 offset -= s->red_left_pad;
3826 /* Allow address range falling entirely within object size. */
3827 if (offset <= object_size && n <= object_size - offset)
3832 #endif /* CONFIG_HARDENED_USERCOPY */
3834 static size_t __ksize(const void *object)
3838 if (unlikely(object == ZERO_SIZE_PTR))
3841 page = virt_to_head_page(object);
3843 if (unlikely(!PageSlab(page))) {
3844 WARN_ON(!PageCompound(page));
3845 return PAGE_SIZE << compound_order(page);
3848 return slab_ksize(page->slab_cache);
3851 size_t ksize(const void *object)
3853 size_t size = __ksize(object);
3854 /* We assume that ksize callers could use whole allocated area,
3855 * so we need to unpoison this area.
3857 kasan_unpoison_shadow(object, size);
3860 EXPORT_SYMBOL(ksize);
3862 void kfree(const void *x)
3865 void *object = (void *)x;
3867 trace_kfree(_RET_IP_, x);
3869 if (unlikely(ZERO_OR_NULL_PTR(x)))
3872 page = virt_to_head_page(x);
3873 if (unlikely(!PageSlab(page))) {
3874 BUG_ON(!PageCompound(page));
3876 __free_pages(page, compound_order(page));
3879 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3881 EXPORT_SYMBOL(kfree);
3883 #define SHRINK_PROMOTE_MAX 32
3886 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3887 * up most to the head of the partial lists. New allocations will then
3888 * fill those up and thus they can be removed from the partial lists.
3890 * The slabs with the least items are placed last. This results in them
3891 * being allocated from last increasing the chance that the last objects
3892 * are freed in them.
3894 int __kmem_cache_shrink(struct kmem_cache *s)
3898 struct kmem_cache_node *n;
3901 struct list_head discard;
3902 struct list_head promote[SHRINK_PROMOTE_MAX];
3903 unsigned long flags;
3907 for_each_kmem_cache_node(s, node, n) {
3908 INIT_LIST_HEAD(&discard);
3909 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3910 INIT_LIST_HEAD(promote + i);
3912 spin_lock_irqsave(&n->list_lock, flags);
3915 * Build lists of slabs to discard or promote.
3917 * Note that concurrent frees may occur while we hold the
3918 * list_lock. page->inuse here is the upper limit.
3920 list_for_each_entry_safe(page, t, &n->partial, lru) {
3921 int free = page->objects - page->inuse;
3923 /* Do not reread page->inuse */
3926 /* We do not keep full slabs on the list */
3929 if (free == page->objects) {
3930 list_move(&page->lru, &discard);
3932 } else if (free <= SHRINK_PROMOTE_MAX)
3933 list_move(&page->lru, promote + free - 1);
3937 * Promote the slabs filled up most to the head of the
3940 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3941 list_splice(promote + i, &n->partial);
3943 spin_unlock_irqrestore(&n->list_lock, flags);
3945 /* Release empty slabs */
3946 list_for_each_entry_safe(page, t, &discard, lru)
3947 discard_slab(s, page);
3949 if (slabs_node(s, node))
3956 static int slab_mem_going_offline_callback(void *arg)
3958 struct kmem_cache *s;
3960 mutex_lock(&slab_mutex);
3961 list_for_each_entry(s, &slab_caches, list)
3962 __kmem_cache_shrink(s);
3963 mutex_unlock(&slab_mutex);
3968 static void slab_mem_offline_callback(void *arg)
3970 struct kmem_cache_node *n;
3971 struct kmem_cache *s;
3972 struct memory_notify *marg = arg;
3975 offline_node = marg->status_change_nid_normal;
3978 * If the node still has available memory. we need kmem_cache_node
3981 if (offline_node < 0)
3984 mutex_lock(&slab_mutex);
3985 list_for_each_entry(s, &slab_caches, list) {
3986 n = get_node(s, offline_node);
3989 * if n->nr_slabs > 0, slabs still exist on the node
3990 * that is going down. We were unable to free them,
3991 * and offline_pages() function shouldn't call this
3992 * callback. So, we must fail.
3994 BUG_ON(slabs_node(s, offline_node));
3996 s->node[offline_node] = NULL;
3997 kmem_cache_free(kmem_cache_node, n);
4000 mutex_unlock(&slab_mutex);
4003 static int slab_mem_going_online_callback(void *arg)
4005 struct kmem_cache_node *n;
4006 struct kmem_cache *s;
4007 struct memory_notify *marg = arg;
4008 int nid = marg->status_change_nid_normal;
4012 * If the node's memory is already available, then kmem_cache_node is
4013 * already created. Nothing to do.
4019 * We are bringing a node online. No memory is available yet. We must
4020 * allocate a kmem_cache_node structure in order to bring the node
4023 mutex_lock(&slab_mutex);
4024 list_for_each_entry(s, &slab_caches, list) {
4026 * XXX: kmem_cache_alloc_node will fallback to other nodes
4027 * since memory is not yet available from the node that
4030 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4035 init_kmem_cache_node(n);
4039 mutex_unlock(&slab_mutex);
4043 static int slab_memory_callback(struct notifier_block *self,
4044 unsigned long action, void *arg)
4049 case MEM_GOING_ONLINE:
4050 ret = slab_mem_going_online_callback(arg);
4052 case MEM_GOING_OFFLINE:
4053 ret = slab_mem_going_offline_callback(arg);
4056 case MEM_CANCEL_ONLINE:
4057 slab_mem_offline_callback(arg);
4060 case MEM_CANCEL_OFFLINE:
4064 ret = notifier_from_errno(ret);
4070 static struct notifier_block slab_memory_callback_nb = {
4071 .notifier_call = slab_memory_callback,
4072 .priority = SLAB_CALLBACK_PRI,
4075 /********************************************************************
4076 * Basic setup of slabs
4077 *******************************************************************/
4080 * Used for early kmem_cache structures that were allocated using
4081 * the page allocator. Allocate them properly then fix up the pointers
4082 * that may be pointing to the wrong kmem_cache structure.
4085 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4088 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4089 struct kmem_cache_node *n;
4091 memcpy(s, static_cache, kmem_cache->object_size);
4094 * This runs very early, and only the boot processor is supposed to be
4095 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4098 __flush_cpu_slab(s, smp_processor_id());
4099 for_each_kmem_cache_node(s, node, n) {
4102 list_for_each_entry(p, &n->partial, lru)
4105 #ifdef CONFIG_SLUB_DEBUG
4106 list_for_each_entry(p, &n->full, lru)
4110 slab_init_memcg_params(s);
4111 list_add(&s->list, &slab_caches);
4115 void __init kmem_cache_init(void)
4117 static __initdata struct kmem_cache boot_kmem_cache,
4118 boot_kmem_cache_node;
4120 if (debug_guardpage_minorder())
4123 kmem_cache_node = &boot_kmem_cache_node;
4124 kmem_cache = &boot_kmem_cache;
4126 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4127 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4129 register_hotmemory_notifier(&slab_memory_callback_nb);
4131 /* Able to allocate the per node structures */
4132 slab_state = PARTIAL;
4134 create_boot_cache(kmem_cache, "kmem_cache",
4135 offsetof(struct kmem_cache, node) +
4136 nr_node_ids * sizeof(struct kmem_cache_node *),
4137 SLAB_HWCACHE_ALIGN);
4139 kmem_cache = bootstrap(&boot_kmem_cache);
4142 * Allocate kmem_cache_node properly from the kmem_cache slab.
4143 * kmem_cache_node is separately allocated so no need to
4144 * update any list pointers.
4146 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4148 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4149 setup_kmalloc_cache_index_table();
4150 create_kmalloc_caches(0);
4152 /* Setup random freelists for each cache */
4153 init_freelist_randomization();
4155 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4158 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4160 slub_min_order, slub_max_order, slub_min_objects,
4161 nr_cpu_ids, nr_node_ids);
4164 void __init kmem_cache_init_late(void)
4169 __kmem_cache_alias(const char *name, size_t size, size_t align,
4170 unsigned long flags, void (*ctor)(void *))
4172 struct kmem_cache *s, *c;
4174 s = find_mergeable(size, align, flags, name, ctor);
4179 * Adjust the object sizes so that we clear
4180 * the complete object on kzalloc.
4182 s->object_size = max(s->object_size, (int)size);
4183 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4185 for_each_memcg_cache(c, s) {
4186 c->object_size = s->object_size;
4187 c->inuse = max_t(int, c->inuse,
4188 ALIGN(size, sizeof(void *)));
4191 if (sysfs_slab_alias(s, name)) {
4200 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4204 err = kmem_cache_open(s, flags);
4208 /* Mutex is not taken during early boot */
4209 if (slab_state <= UP)
4212 memcg_propagate_slab_attrs(s);
4213 err = sysfs_slab_add(s);
4215 __kmem_cache_release(s);
4220 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4222 struct kmem_cache *s;
4225 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4226 return kmalloc_large(size, gfpflags);
4228 s = kmalloc_slab(size, gfpflags);
4230 if (unlikely(ZERO_OR_NULL_PTR(s)))
4233 ret = slab_alloc(s, gfpflags, caller);
4235 /* Honor the call site pointer we received. */
4236 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4242 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4243 int node, unsigned long caller)
4245 struct kmem_cache *s;
4248 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4249 ret = kmalloc_large_node(size, gfpflags, node);
4251 trace_kmalloc_node(caller, ret,
4252 size, PAGE_SIZE << get_order(size),
4258 s = kmalloc_slab(size, gfpflags);
4260 if (unlikely(ZERO_OR_NULL_PTR(s)))
4263 ret = slab_alloc_node(s, gfpflags, node, caller);
4265 /* Honor the call site pointer we received. */
4266 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4273 static int count_inuse(struct page *page)
4278 static int count_total(struct page *page)
4280 return page->objects;
4284 #ifdef CONFIG_SLUB_DEBUG
4285 static int validate_slab(struct kmem_cache *s, struct page *page,
4289 void *addr = page_address(page);
4291 if (!check_slab(s, page) ||
4292 !on_freelist(s, page, NULL))
4295 /* Now we know that a valid freelist exists */
4296 bitmap_zero(map, page->objects);
4298 get_map(s, page, map);
4299 for_each_object(p, s, addr, page->objects) {
4300 if (test_bit(slab_index(p, s, addr), map))
4301 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4305 for_each_object(p, s, addr, page->objects)
4306 if (!test_bit(slab_index(p, s, addr), map))
4307 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4312 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4316 validate_slab(s, page, map);
4320 static int validate_slab_node(struct kmem_cache *s,
4321 struct kmem_cache_node *n, unsigned long *map)
4323 unsigned long count = 0;
4325 unsigned long flags;
4327 spin_lock_irqsave(&n->list_lock, flags);
4329 list_for_each_entry(page, &n->partial, lru) {
4330 validate_slab_slab(s, page, map);
4333 if (count != n->nr_partial)
4334 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4335 s->name, count, n->nr_partial);
4337 if (!(s->flags & SLAB_STORE_USER))
4340 list_for_each_entry(page, &n->full, lru) {
4341 validate_slab_slab(s, page, map);
4344 if (count != atomic_long_read(&n->nr_slabs))
4345 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4346 s->name, count, atomic_long_read(&n->nr_slabs));
4349 spin_unlock_irqrestore(&n->list_lock, flags);
4353 static long validate_slab_cache(struct kmem_cache *s)
4356 unsigned long count = 0;
4357 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4358 sizeof(unsigned long), GFP_KERNEL);
4359 struct kmem_cache_node *n;
4365 for_each_kmem_cache_node(s, node, n)
4366 count += validate_slab_node(s, n, map);
4371 * Generate lists of code addresses where slabcache objects are allocated
4376 unsigned long count;
4383 DECLARE_BITMAP(cpus, NR_CPUS);
4389 unsigned long count;
4390 struct location *loc;
4393 static void free_loc_track(struct loc_track *t)
4396 free_pages((unsigned long)t->loc,
4397 get_order(sizeof(struct location) * t->max));
4400 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4405 order = get_order(sizeof(struct location) * max);
4407 l = (void *)__get_free_pages(flags, order);
4412 memcpy(l, t->loc, sizeof(struct location) * t->count);
4420 static int add_location(struct loc_track *t, struct kmem_cache *s,
4421 const struct track *track)
4423 long start, end, pos;
4425 unsigned long caddr;
4426 unsigned long age = jiffies - track->when;
4432 pos = start + (end - start + 1) / 2;
4435 * There is nothing at "end". If we end up there
4436 * we need to add something to before end.
4441 caddr = t->loc[pos].addr;
4442 if (track->addr == caddr) {
4448 if (age < l->min_time)
4450 if (age > l->max_time)
4453 if (track->pid < l->min_pid)
4454 l->min_pid = track->pid;
4455 if (track->pid > l->max_pid)
4456 l->max_pid = track->pid;
4458 cpumask_set_cpu(track->cpu,
4459 to_cpumask(l->cpus));
4461 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4465 if (track->addr < caddr)
4472 * Not found. Insert new tracking element.
4474 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4480 (t->count - pos) * sizeof(struct location));
4483 l->addr = track->addr;
4487 l->min_pid = track->pid;
4488 l->max_pid = track->pid;
4489 cpumask_clear(to_cpumask(l->cpus));
4490 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4491 nodes_clear(l->nodes);
4492 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4496 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4497 struct page *page, enum track_item alloc,
4500 void *addr = page_address(page);
4503 bitmap_zero(map, page->objects);
4504 get_map(s, page, map);
4506 for_each_object(p, s, addr, page->objects)
4507 if (!test_bit(slab_index(p, s, addr), map))
4508 add_location(t, s, get_track(s, p, alloc));
4511 static int list_locations(struct kmem_cache *s, char *buf,
4512 enum track_item alloc)
4516 struct loc_track t = { 0, 0, NULL };
4518 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4519 sizeof(unsigned long), GFP_KERNEL);
4520 struct kmem_cache_node *n;
4522 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4525 return sprintf(buf, "Out of memory\n");
4527 /* Push back cpu slabs */
4530 for_each_kmem_cache_node(s, node, n) {
4531 unsigned long flags;
4534 if (!atomic_long_read(&n->nr_slabs))
4537 spin_lock_irqsave(&n->list_lock, flags);
4538 list_for_each_entry(page, &n->partial, lru)
4539 process_slab(&t, s, page, alloc, map);
4540 list_for_each_entry(page, &n->full, lru)
4541 process_slab(&t, s, page, alloc, map);
4542 spin_unlock_irqrestore(&n->list_lock, flags);
4545 for (i = 0; i < t.count; i++) {
4546 struct location *l = &t.loc[i];
4548 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4550 len += sprintf(buf + len, "%7ld ", l->count);
4553 len += sprintf(buf + len, "%pS", (void *)l->addr);
4555 len += sprintf(buf + len, "<not-available>");
4557 if (l->sum_time != l->min_time) {
4558 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4560 (long)div_u64(l->sum_time, l->count),
4563 len += sprintf(buf + len, " age=%ld",
4566 if (l->min_pid != l->max_pid)
4567 len += sprintf(buf + len, " pid=%ld-%ld",
4568 l->min_pid, l->max_pid);
4570 len += sprintf(buf + len, " pid=%ld",
4573 if (num_online_cpus() > 1 &&
4574 !cpumask_empty(to_cpumask(l->cpus)) &&
4575 len < PAGE_SIZE - 60)
4576 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4578 cpumask_pr_args(to_cpumask(l->cpus)));
4580 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4581 len < PAGE_SIZE - 60)
4582 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4584 nodemask_pr_args(&l->nodes));
4586 len += sprintf(buf + len, "\n");
4592 len += sprintf(buf, "No data\n");
4597 #ifdef SLUB_RESILIENCY_TEST
4598 static void __init resiliency_test(void)
4602 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4604 pr_err("SLUB resiliency testing\n");
4605 pr_err("-----------------------\n");
4606 pr_err("A. Corruption after allocation\n");
4608 p = kzalloc(16, GFP_KERNEL);
4610 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4613 validate_slab_cache(kmalloc_caches[4]);
4615 /* Hmmm... The next two are dangerous */
4616 p = kzalloc(32, GFP_KERNEL);
4617 p[32 + sizeof(void *)] = 0x34;
4618 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4620 pr_err("If allocated object is overwritten then not detectable\n\n");
4622 validate_slab_cache(kmalloc_caches[5]);
4623 p = kzalloc(64, GFP_KERNEL);
4624 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4626 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4628 pr_err("If allocated object is overwritten then not detectable\n\n");
4629 validate_slab_cache(kmalloc_caches[6]);
4631 pr_err("\nB. Corruption after free\n");
4632 p = kzalloc(128, GFP_KERNEL);
4635 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4636 validate_slab_cache(kmalloc_caches[7]);
4638 p = kzalloc(256, GFP_KERNEL);
4641 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4642 validate_slab_cache(kmalloc_caches[8]);
4644 p = kzalloc(512, GFP_KERNEL);
4647 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4648 validate_slab_cache(kmalloc_caches[9]);
4652 static void resiliency_test(void) {};
4657 enum slab_stat_type {
4658 SL_ALL, /* All slabs */
4659 SL_PARTIAL, /* Only partially allocated slabs */
4660 SL_CPU, /* Only slabs used for cpu caches */
4661 SL_OBJECTS, /* Determine allocated objects not slabs */
4662 SL_TOTAL /* Determine object capacity not slabs */
4665 #define SO_ALL (1 << SL_ALL)
4666 #define SO_PARTIAL (1 << SL_PARTIAL)
4667 #define SO_CPU (1 << SL_CPU)
4668 #define SO_OBJECTS (1 << SL_OBJECTS)
4669 #define SO_TOTAL (1 << SL_TOTAL)
4671 static ssize_t show_slab_objects(struct kmem_cache *s,
4672 char *buf, unsigned long flags)
4674 unsigned long total = 0;
4677 unsigned long *nodes;
4679 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4683 if (flags & SO_CPU) {
4686 for_each_possible_cpu(cpu) {
4687 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4692 page = READ_ONCE(c->page);
4696 node = page_to_nid(page);
4697 if (flags & SO_TOTAL)
4699 else if (flags & SO_OBJECTS)
4707 page = READ_ONCE(c->partial);
4709 node = page_to_nid(page);
4710 if (flags & SO_TOTAL)
4712 else if (flags & SO_OBJECTS)
4723 #ifdef CONFIG_SLUB_DEBUG
4724 if (flags & SO_ALL) {
4725 struct kmem_cache_node *n;
4727 for_each_kmem_cache_node(s, node, n) {
4729 if (flags & SO_TOTAL)
4730 x = atomic_long_read(&n->total_objects);
4731 else if (flags & SO_OBJECTS)
4732 x = atomic_long_read(&n->total_objects) -
4733 count_partial(n, count_free);
4735 x = atomic_long_read(&n->nr_slabs);
4742 if (flags & SO_PARTIAL) {
4743 struct kmem_cache_node *n;
4745 for_each_kmem_cache_node(s, node, n) {
4746 if (flags & SO_TOTAL)
4747 x = count_partial(n, count_total);
4748 else if (flags & SO_OBJECTS)
4749 x = count_partial(n, count_inuse);
4756 x = sprintf(buf, "%lu", total);
4758 for (node = 0; node < nr_node_ids; node++)
4760 x += sprintf(buf + x, " N%d=%lu",
4765 return x + sprintf(buf + x, "\n");
4768 #ifdef CONFIG_SLUB_DEBUG
4769 static int any_slab_objects(struct kmem_cache *s)
4772 struct kmem_cache_node *n;
4774 for_each_kmem_cache_node(s, node, n)
4775 if (atomic_long_read(&n->total_objects))
4782 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4783 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4785 struct slab_attribute {
4786 struct attribute attr;
4787 ssize_t (*show)(struct kmem_cache *s, char *buf);
4788 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4791 #define SLAB_ATTR_RO(_name) \
4792 static struct slab_attribute _name##_attr = \
4793 __ATTR(_name, 0400, _name##_show, NULL)
4795 #define SLAB_ATTR(_name) \
4796 static struct slab_attribute _name##_attr = \
4797 __ATTR(_name, 0600, _name##_show, _name##_store)
4799 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4801 return sprintf(buf, "%d\n", s->size);
4803 SLAB_ATTR_RO(slab_size);
4805 static ssize_t align_show(struct kmem_cache *s, char *buf)
4807 return sprintf(buf, "%d\n", s->align);
4809 SLAB_ATTR_RO(align);
4811 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4813 return sprintf(buf, "%d\n", s->object_size);
4815 SLAB_ATTR_RO(object_size);
4817 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4819 return sprintf(buf, "%d\n", oo_objects(s->oo));
4821 SLAB_ATTR_RO(objs_per_slab);
4823 static ssize_t order_store(struct kmem_cache *s,
4824 const char *buf, size_t length)
4826 unsigned long order;
4829 err = kstrtoul(buf, 10, &order);
4833 if (order > slub_max_order || order < slub_min_order)
4836 calculate_sizes(s, order);
4840 static ssize_t order_show(struct kmem_cache *s, char *buf)
4842 return sprintf(buf, "%d\n", oo_order(s->oo));
4846 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4848 return sprintf(buf, "%lu\n", s->min_partial);
4851 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4857 err = kstrtoul(buf, 10, &min);
4861 set_min_partial(s, min);
4864 SLAB_ATTR(min_partial);
4866 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4868 return sprintf(buf, "%u\n", s->cpu_partial);
4871 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4874 unsigned long objects;
4877 err = kstrtoul(buf, 10, &objects);
4880 if (objects && !kmem_cache_has_cpu_partial(s))
4883 s->cpu_partial = objects;
4887 SLAB_ATTR(cpu_partial);
4889 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4893 return sprintf(buf, "%pS\n", s->ctor);
4897 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4899 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4901 SLAB_ATTR_RO(aliases);
4903 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4905 return show_slab_objects(s, buf, SO_PARTIAL);
4907 SLAB_ATTR_RO(partial);
4909 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4911 return show_slab_objects(s, buf, SO_CPU);
4913 SLAB_ATTR_RO(cpu_slabs);
4915 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4917 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4919 SLAB_ATTR_RO(objects);
4921 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4923 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4925 SLAB_ATTR_RO(objects_partial);
4927 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4934 for_each_online_cpu(cpu) {
4935 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4938 pages += page->pages;
4939 objects += page->pobjects;
4943 len = sprintf(buf, "%d(%d)", objects, pages);
4946 for_each_online_cpu(cpu) {
4947 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4949 if (page && len < PAGE_SIZE - 20)
4950 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4951 page->pobjects, page->pages);
4954 return len + sprintf(buf + len, "\n");
4956 SLAB_ATTR_RO(slabs_cpu_partial);
4958 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4960 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4963 static ssize_t reclaim_account_store(struct kmem_cache *s,
4964 const char *buf, size_t length)
4966 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4968 s->flags |= SLAB_RECLAIM_ACCOUNT;
4971 SLAB_ATTR(reclaim_account);
4973 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4975 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4977 SLAB_ATTR_RO(hwcache_align);
4979 #ifdef CONFIG_ZONE_DMA
4980 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4982 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4984 SLAB_ATTR_RO(cache_dma);
4987 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4989 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4991 SLAB_ATTR_RO(destroy_by_rcu);
4993 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4995 return sprintf(buf, "%d\n", s->reserved);
4997 SLAB_ATTR_RO(reserved);
4999 #ifdef CONFIG_SLUB_DEBUG
5000 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5002 return show_slab_objects(s, buf, SO_ALL);
5004 SLAB_ATTR_RO(slabs);
5006 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5008 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5010 SLAB_ATTR_RO(total_objects);
5012 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5014 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5017 static ssize_t sanity_checks_store(struct kmem_cache *s,
5018 const char *buf, size_t length)
5020 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5021 if (buf[0] == '1') {
5022 s->flags &= ~__CMPXCHG_DOUBLE;
5023 s->flags |= SLAB_CONSISTENCY_CHECKS;
5027 SLAB_ATTR(sanity_checks);
5029 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5031 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5034 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5038 * Tracing a merged cache is going to give confusing results
5039 * as well as cause other issues like converting a mergeable
5040 * cache into an umergeable one.
5042 if (s->refcount > 1)
5045 s->flags &= ~SLAB_TRACE;
5046 if (buf[0] == '1') {
5047 s->flags &= ~__CMPXCHG_DOUBLE;
5048 s->flags |= SLAB_TRACE;
5054 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5056 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5059 static ssize_t red_zone_store(struct kmem_cache *s,
5060 const char *buf, size_t length)
5062 if (any_slab_objects(s))
5065 s->flags &= ~SLAB_RED_ZONE;
5066 if (buf[0] == '1') {
5067 s->flags |= SLAB_RED_ZONE;
5069 calculate_sizes(s, -1);
5072 SLAB_ATTR(red_zone);
5074 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5076 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5079 static ssize_t poison_store(struct kmem_cache *s,
5080 const char *buf, size_t length)
5082 if (any_slab_objects(s))
5085 s->flags &= ~SLAB_POISON;
5086 if (buf[0] == '1') {
5087 s->flags |= SLAB_POISON;
5089 calculate_sizes(s, -1);
5094 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5096 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5099 static ssize_t store_user_store(struct kmem_cache *s,
5100 const char *buf, size_t length)
5102 if (any_slab_objects(s))
5105 s->flags &= ~SLAB_STORE_USER;
5106 if (buf[0] == '1') {
5107 s->flags &= ~__CMPXCHG_DOUBLE;
5108 s->flags |= SLAB_STORE_USER;
5110 calculate_sizes(s, -1);
5113 SLAB_ATTR(store_user);
5115 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5120 static ssize_t validate_store(struct kmem_cache *s,
5121 const char *buf, size_t length)
5125 if (buf[0] == '1') {
5126 ret = validate_slab_cache(s);
5132 SLAB_ATTR(validate);
5134 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5136 if (!(s->flags & SLAB_STORE_USER))
5138 return list_locations(s, buf, TRACK_ALLOC);
5140 SLAB_ATTR_RO(alloc_calls);
5142 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5144 if (!(s->flags & SLAB_STORE_USER))
5146 return list_locations(s, buf, TRACK_FREE);
5148 SLAB_ATTR_RO(free_calls);
5149 #endif /* CONFIG_SLUB_DEBUG */
5151 #ifdef CONFIG_FAILSLAB
5152 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5154 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5157 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5160 if (s->refcount > 1)
5163 s->flags &= ~SLAB_FAILSLAB;
5165 s->flags |= SLAB_FAILSLAB;
5168 SLAB_ATTR(failslab);
5171 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5176 static ssize_t shrink_store(struct kmem_cache *s,
5177 const char *buf, size_t length)
5180 kmem_cache_shrink(s);
5188 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5190 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5193 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5194 const char *buf, size_t length)
5196 unsigned long ratio;
5199 err = kstrtoul(buf, 10, &ratio);
5204 s->remote_node_defrag_ratio = ratio * 10;
5208 SLAB_ATTR(remote_node_defrag_ratio);
5211 #ifdef CONFIG_SLUB_STATS
5212 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5214 unsigned long sum = 0;
5217 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5222 for_each_online_cpu(cpu) {
5223 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5229 len = sprintf(buf, "%lu", sum);
5232 for_each_online_cpu(cpu) {
5233 if (data[cpu] && len < PAGE_SIZE - 20)
5234 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5238 return len + sprintf(buf + len, "\n");
5241 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5245 for_each_online_cpu(cpu)
5246 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5249 #define STAT_ATTR(si, text) \
5250 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5252 return show_stat(s, buf, si); \
5254 static ssize_t text##_store(struct kmem_cache *s, \
5255 const char *buf, size_t length) \
5257 if (buf[0] != '0') \
5259 clear_stat(s, si); \
5264 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5265 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5266 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5267 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5268 STAT_ATTR(FREE_FROZEN, free_frozen);
5269 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5270 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5271 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5272 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5273 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5274 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5275 STAT_ATTR(FREE_SLAB, free_slab);
5276 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5277 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5278 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5279 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5280 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5281 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5282 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5283 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5284 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5285 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5286 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5287 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5288 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5289 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5292 static struct attribute *slab_attrs[] = {
5293 &slab_size_attr.attr,
5294 &object_size_attr.attr,
5295 &objs_per_slab_attr.attr,
5297 &min_partial_attr.attr,
5298 &cpu_partial_attr.attr,
5300 &objects_partial_attr.attr,
5302 &cpu_slabs_attr.attr,
5306 &hwcache_align_attr.attr,
5307 &reclaim_account_attr.attr,
5308 &destroy_by_rcu_attr.attr,
5310 &reserved_attr.attr,
5311 &slabs_cpu_partial_attr.attr,
5312 #ifdef CONFIG_SLUB_DEBUG
5313 &total_objects_attr.attr,
5315 &sanity_checks_attr.attr,
5317 &red_zone_attr.attr,
5319 &store_user_attr.attr,
5320 &validate_attr.attr,
5321 &alloc_calls_attr.attr,
5322 &free_calls_attr.attr,
5324 #ifdef CONFIG_ZONE_DMA
5325 &cache_dma_attr.attr,
5328 &remote_node_defrag_ratio_attr.attr,
5330 #ifdef CONFIG_SLUB_STATS
5331 &alloc_fastpath_attr.attr,
5332 &alloc_slowpath_attr.attr,
5333 &free_fastpath_attr.attr,
5334 &free_slowpath_attr.attr,
5335 &free_frozen_attr.attr,
5336 &free_add_partial_attr.attr,
5337 &free_remove_partial_attr.attr,
5338 &alloc_from_partial_attr.attr,
5339 &alloc_slab_attr.attr,
5340 &alloc_refill_attr.attr,
5341 &alloc_node_mismatch_attr.attr,
5342 &free_slab_attr.attr,
5343 &cpuslab_flush_attr.attr,
5344 &deactivate_full_attr.attr,
5345 &deactivate_empty_attr.attr,
5346 &deactivate_to_head_attr.attr,
5347 &deactivate_to_tail_attr.attr,
5348 &deactivate_remote_frees_attr.attr,
5349 &deactivate_bypass_attr.attr,
5350 &order_fallback_attr.attr,
5351 &cmpxchg_double_fail_attr.attr,
5352 &cmpxchg_double_cpu_fail_attr.attr,
5353 &cpu_partial_alloc_attr.attr,
5354 &cpu_partial_free_attr.attr,
5355 &cpu_partial_node_attr.attr,
5356 &cpu_partial_drain_attr.attr,
5358 #ifdef CONFIG_FAILSLAB
5359 &failslab_attr.attr,
5365 static struct attribute_group slab_attr_group = {
5366 .attrs = slab_attrs,
5369 static ssize_t slab_attr_show(struct kobject *kobj,
5370 struct attribute *attr,
5373 struct slab_attribute *attribute;
5374 struct kmem_cache *s;
5377 attribute = to_slab_attr(attr);
5380 if (!attribute->show)
5383 err = attribute->show(s, buf);
5388 static ssize_t slab_attr_store(struct kobject *kobj,
5389 struct attribute *attr,
5390 const char *buf, size_t len)
5392 struct slab_attribute *attribute;
5393 struct kmem_cache *s;
5396 attribute = to_slab_attr(attr);
5399 if (!attribute->store)
5402 err = attribute->store(s, buf, len);
5404 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5405 struct kmem_cache *c;
5407 mutex_lock(&slab_mutex);
5408 if (s->max_attr_size < len)
5409 s->max_attr_size = len;
5412 * This is a best effort propagation, so this function's return
5413 * value will be determined by the parent cache only. This is
5414 * basically because not all attributes will have a well
5415 * defined semantics for rollbacks - most of the actions will
5416 * have permanent effects.
5418 * Returning the error value of any of the children that fail
5419 * is not 100 % defined, in the sense that users seeing the
5420 * error code won't be able to know anything about the state of
5423 * Only returning the error code for the parent cache at least
5424 * has well defined semantics. The cache being written to
5425 * directly either failed or succeeded, in which case we loop
5426 * through the descendants with best-effort propagation.
5428 for_each_memcg_cache(c, s)
5429 attribute->store(c, buf, len);
5430 mutex_unlock(&slab_mutex);
5436 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5440 char *buffer = NULL;
5441 struct kmem_cache *root_cache;
5443 if (is_root_cache(s))
5446 root_cache = s->memcg_params.root_cache;
5449 * This mean this cache had no attribute written. Therefore, no point
5450 * in copying default values around
5452 if (!root_cache->max_attr_size)
5455 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5458 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5460 if (!attr || !attr->store || !attr->show)
5464 * It is really bad that we have to allocate here, so we will
5465 * do it only as a fallback. If we actually allocate, though,
5466 * we can just use the allocated buffer until the end.
5468 * Most of the slub attributes will tend to be very small in
5469 * size, but sysfs allows buffers up to a page, so they can
5470 * theoretically happen.
5474 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5477 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5478 if (WARN_ON(!buffer))
5483 attr->show(root_cache, buf);
5484 attr->store(s, buf, strlen(buf));
5488 free_page((unsigned long)buffer);
5492 static void kmem_cache_release(struct kobject *k)
5494 slab_kmem_cache_release(to_slab(k));
5497 static const struct sysfs_ops slab_sysfs_ops = {
5498 .show = slab_attr_show,
5499 .store = slab_attr_store,
5502 static struct kobj_type slab_ktype = {
5503 .sysfs_ops = &slab_sysfs_ops,
5504 .release = kmem_cache_release,
5507 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5509 struct kobj_type *ktype = get_ktype(kobj);
5511 if (ktype == &slab_ktype)
5516 static const struct kset_uevent_ops slab_uevent_ops = {
5517 .filter = uevent_filter,
5520 static struct kset *slab_kset;
5522 static inline struct kset *cache_kset(struct kmem_cache *s)
5525 if (!is_root_cache(s))
5526 return s->memcg_params.root_cache->memcg_kset;
5531 #define ID_STR_LENGTH 64
5533 /* Create a unique string id for a slab cache:
5535 * Format :[flags-]size
5537 static char *create_unique_id(struct kmem_cache *s)
5539 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5546 * First flags affecting slabcache operations. We will only
5547 * get here for aliasable slabs so we do not need to support
5548 * too many flags. The flags here must cover all flags that
5549 * are matched during merging to guarantee that the id is
5552 if (s->flags & SLAB_CACHE_DMA)
5554 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5556 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5558 if (!(s->flags & SLAB_NOTRACK))
5560 if (s->flags & SLAB_ACCOUNT)
5564 p += sprintf(p, "%07d", s->size);
5566 BUG_ON(p > name + ID_STR_LENGTH - 1);
5570 static int sysfs_slab_add(struct kmem_cache *s)
5574 int unmergeable = slab_unmergeable(s);
5578 * Slabcache can never be merged so we can use the name proper.
5579 * This is typically the case for debug situations. In that
5580 * case we can catch duplicate names easily.
5582 sysfs_remove_link(&slab_kset->kobj, s->name);
5586 * Create a unique name for the slab as a target
5589 name = create_unique_id(s);
5592 s->kobj.kset = cache_kset(s);
5593 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5597 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5602 if (is_root_cache(s)) {
5603 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5604 if (!s->memcg_kset) {
5611 kobject_uevent(&s->kobj, KOBJ_ADD);
5613 /* Setup first alias */
5614 sysfs_slab_alias(s, s->name);
5621 kobject_del(&s->kobj);
5625 void sysfs_slab_remove(struct kmem_cache *s)
5627 if (slab_state < FULL)
5629 * Sysfs has not been setup yet so no need to remove the
5635 kset_unregister(s->memcg_kset);
5637 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5638 kobject_del(&s->kobj);
5639 kobject_put(&s->kobj);
5643 * Need to buffer aliases during bootup until sysfs becomes
5644 * available lest we lose that information.
5646 struct saved_alias {
5647 struct kmem_cache *s;
5649 struct saved_alias *next;
5652 static struct saved_alias *alias_list;
5654 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5656 struct saved_alias *al;
5658 if (slab_state == FULL) {
5660 * If we have a leftover link then remove it.
5662 sysfs_remove_link(&slab_kset->kobj, name);
5663 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5666 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5672 al->next = alias_list;
5677 static int __init slab_sysfs_init(void)
5679 struct kmem_cache *s;
5682 mutex_lock(&slab_mutex);
5684 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5686 mutex_unlock(&slab_mutex);
5687 pr_err("Cannot register slab subsystem.\n");
5693 list_for_each_entry(s, &slab_caches, list) {
5694 err = sysfs_slab_add(s);
5696 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5700 while (alias_list) {
5701 struct saved_alias *al = alias_list;
5703 alias_list = alias_list->next;
5704 err = sysfs_slab_alias(al->s, al->name);
5706 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5711 mutex_unlock(&slab_mutex);
5716 __initcall(slab_sysfs_init);
5717 #endif /* CONFIG_SYSFS */
5720 * The /proc/slabinfo ABI
5722 #ifdef CONFIG_SLABINFO
5723 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5725 unsigned long nr_slabs = 0;
5726 unsigned long nr_objs = 0;
5727 unsigned long nr_free = 0;
5729 struct kmem_cache_node *n;
5731 for_each_kmem_cache_node(s, node, n) {
5732 nr_slabs += node_nr_slabs(n);
5733 nr_objs += node_nr_objs(n);
5734 nr_free += count_partial(n, count_free);
5737 sinfo->active_objs = nr_objs - nr_free;
5738 sinfo->num_objs = nr_objs;
5739 sinfo->active_slabs = nr_slabs;
5740 sinfo->num_slabs = nr_slabs;
5741 sinfo->objects_per_slab = oo_objects(s->oo);
5742 sinfo->cache_order = oo_order(s->oo);
5745 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5749 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5750 size_t count, loff_t *ppos)
5754 #endif /* CONFIG_SLABINFO */