2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache *s)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
127 void *fixup_red_left(struct kmem_cache *s, void *p)
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
145 * Issues still to be resolved:
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 * - Variable sizing of the per node arrays
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 #define MIN_PARTIAL 5
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
169 #define MAX_PARTIAL 10
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON 0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
198 * Tracking user of a slab.
200 #define TRACK_ADDRS_COUNT 16
202 unsigned long addr; /* Called from address */
203 #ifdef CONFIG_STACKTRACE
204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206 int cpu; /* Was running on cpu */
207 int pid; /* Pid context */
208 unsigned long when; /* When did the operation occur */
211 enum track_item { TRACK_ALLOC, TRACK_FREE };
214 static int sysfs_slab_add(struct kmem_cache *);
215 static int sysfs_slab_alias(struct kmem_cache *, const char *);
216 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
226 #ifdef CONFIG_SLUB_STATS
228 * The rmw is racy on a preemptible kernel but this is acceptable, so
229 * avoid this_cpu_add()'s irq-disable overhead.
231 raw_cpu_inc(s->cpu_slab->stat[si]);
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 static inline void *get_freepointer(struct kmem_cache *s, void *object)
241 return *(void **)(object + s->offset);
244 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
246 prefetch(object + s->offset);
249 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
253 if (!debug_pagealloc_enabled())
254 return get_freepointer(s, object);
256 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
262 *(void **)(object + s->offset) = fp;
265 /* Loop over all objects in a slab */
266 #define for_each_object(__p, __s, __addr, __objects) \
267 for (__p = fixup_red_left(__s, __addr); \
268 __p < (__addr) + (__objects) * (__s)->size; \
271 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
272 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
273 __idx <= __objects; \
274 __p += (__s)->size, __idx++)
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
279 return (p - addr) / s->size;
282 static inline int order_objects(int order, unsigned long size, int reserved)
284 return ((PAGE_SIZE << order) - reserved) / size;
287 static inline struct kmem_cache_order_objects oo_make(int order,
288 unsigned long size, int reserved)
290 struct kmem_cache_order_objects x = {
291 (order << OO_SHIFT) + order_objects(order, size, reserved)
297 static inline int oo_order(struct kmem_cache_order_objects x)
299 return x.x >> OO_SHIFT;
302 static inline int oo_objects(struct kmem_cache_order_objects x)
304 return x.x & OO_MASK;
308 * Per slab locking using the pagelock
310 static __always_inline void slab_lock(struct page *page)
312 VM_BUG_ON_PAGE(PageTail(page), page);
313 bit_spin_lock(PG_locked, &page->flags);
316 static __always_inline void slab_unlock(struct page *page)
318 VM_BUG_ON_PAGE(PageTail(page), page);
319 __bit_spin_unlock(PG_locked, &page->flags);
322 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
325 tmp.counters = counters_new;
327 * page->counters can cover frozen/inuse/objects as well
328 * as page->_refcount. If we assign to ->counters directly
329 * we run the risk of losing updates to page->_refcount, so
330 * be careful and only assign to the fields we need.
332 page->frozen = tmp.frozen;
333 page->inuse = tmp.inuse;
334 page->objects = tmp.objects;
337 /* Interrupts must be disabled (for the fallback code to work right) */
338 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
339 void *freelist_old, unsigned long counters_old,
340 void *freelist_new, unsigned long counters_new,
343 VM_BUG_ON(!irqs_disabled());
344 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
345 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
346 if (s->flags & __CMPXCHG_DOUBLE) {
347 if (cmpxchg_double(&page->freelist, &page->counters,
348 freelist_old, counters_old,
349 freelist_new, counters_new))
355 if (page->freelist == freelist_old &&
356 page->counters == counters_old) {
357 page->freelist = freelist_new;
358 set_page_slub_counters(page, counters_new);
366 stat(s, CMPXCHG_DOUBLE_FAIL);
368 #ifdef SLUB_DEBUG_CMPXCHG
369 pr_info("%s %s: cmpxchg double redo ", n, s->name);
375 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s->flags & __CMPXCHG_DOUBLE) {
383 if (cmpxchg_double(&page->freelist, &page->counters,
384 freelist_old, counters_old,
385 freelist_new, counters_new))
392 local_irq_save(flags);
394 if (page->freelist == freelist_old &&
395 page->counters == counters_old) {
396 page->freelist = freelist_new;
397 set_page_slub_counters(page, counters_new);
399 local_irq_restore(flags);
403 local_irq_restore(flags);
407 stat(s, CMPXCHG_DOUBLE_FAIL);
409 #ifdef SLUB_DEBUG_CMPXCHG
410 pr_info("%s %s: cmpxchg double redo ", n, s->name);
416 #ifdef CONFIG_SLUB_DEBUG
418 * Determine a map of object in use on a page.
420 * Node listlock must be held to guarantee that the page does
421 * not vanish from under us.
423 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
426 void *addr = page_address(page);
428 for (p = page->freelist; p; p = get_freepointer(s, p))
429 set_bit(slab_index(p, s, addr), map);
432 static inline int size_from_object(struct kmem_cache *s)
434 if (s->flags & SLAB_RED_ZONE)
435 return s->size - s->red_left_pad;
440 static inline void *restore_red_left(struct kmem_cache *s, void *p)
442 if (s->flags & SLAB_RED_ZONE)
443 p -= s->red_left_pad;
451 #if defined(CONFIG_SLUB_DEBUG_ON)
452 static int slub_debug = DEBUG_DEFAULT_FLAGS;
454 static int slub_debug;
457 static char *slub_debug_slabs;
458 static int disable_higher_order_debug;
461 * slub is about to manipulate internal object metadata. This memory lies
462 * outside the range of the allocated object, so accessing it would normally
463 * be reported by kasan as a bounds error. metadata_access_enable() is used
464 * to tell kasan that these accesses are OK.
466 static inline void metadata_access_enable(void)
468 kasan_disable_current();
471 static inline void metadata_access_disable(void)
473 kasan_enable_current();
480 /* Verify that a pointer has an address that is valid within a slab page */
481 static inline int check_valid_pointer(struct kmem_cache *s,
482 struct page *page, void *object)
489 base = page_address(page);
490 object = restore_red_left(s, object);
491 if (object < base || object >= base + page->objects * s->size ||
492 (object - base) % s->size) {
499 static void print_section(char *level, char *text, u8 *addr,
502 metadata_access_enable();
503 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
505 metadata_access_disable();
508 static struct track *get_track(struct kmem_cache *s, void *object,
509 enum track_item alloc)
514 p = object + s->offset + sizeof(void *);
516 p = object + s->inuse;
521 static void set_track(struct kmem_cache *s, void *object,
522 enum track_item alloc, unsigned long addr)
524 struct track *p = get_track(s, object, alloc);
527 #ifdef CONFIG_STACKTRACE
528 struct stack_trace trace;
531 trace.nr_entries = 0;
532 trace.max_entries = TRACK_ADDRS_COUNT;
533 trace.entries = p->addrs;
535 metadata_access_enable();
536 save_stack_trace(&trace);
537 metadata_access_disable();
539 /* See rant in lockdep.c */
540 if (trace.nr_entries != 0 &&
541 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
544 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
548 p->cpu = smp_processor_id();
549 p->pid = current->pid;
552 memset(p, 0, sizeof(struct track));
555 static void init_tracking(struct kmem_cache *s, void *object)
557 if (!(s->flags & SLAB_STORE_USER))
560 set_track(s, object, TRACK_FREE, 0UL);
561 set_track(s, object, TRACK_ALLOC, 0UL);
564 static void print_track(const char *s, struct track *t)
569 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
570 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
571 #ifdef CONFIG_STACKTRACE
574 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
576 pr_err("\t%pS\n", (void *)t->addrs[i]);
583 static void print_tracking(struct kmem_cache *s, void *object)
585 if (!(s->flags & SLAB_STORE_USER))
588 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
589 print_track("Freed", get_track(s, object, TRACK_FREE));
592 static void print_page_info(struct page *page)
594 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
595 page, page->objects, page->inuse, page->freelist, page->flags);
599 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
601 struct va_format vaf;
607 pr_err("=============================================================================\n");
608 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
609 pr_err("-----------------------------------------------------------------------------\n\n");
611 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
615 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
617 struct va_format vaf;
623 pr_err("FIX %s: %pV\n", s->name, &vaf);
627 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
629 unsigned int off; /* Offset of last byte */
630 u8 *addr = page_address(page);
632 print_tracking(s, p);
634 print_page_info(page);
636 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
637 p, p - addr, get_freepointer(s, p));
639 if (s->flags & SLAB_RED_ZONE)
640 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
642 else if (p > addr + 16)
643 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
645 print_section(KERN_ERR, "Object ", p,
646 min_t(unsigned long, s->object_size, PAGE_SIZE));
647 if (s->flags & SLAB_RED_ZONE)
648 print_section(KERN_ERR, "Redzone ", p + s->object_size,
649 s->inuse - s->object_size);
652 off = s->offset + sizeof(void *);
656 if (s->flags & SLAB_STORE_USER)
657 off += 2 * sizeof(struct track);
659 off += kasan_metadata_size(s);
661 if (off != size_from_object(s))
662 /* Beginning of the filler is the free pointer */
663 print_section(KERN_ERR, "Padding ", p + off,
664 size_from_object(s) - off);
669 void object_err(struct kmem_cache *s, struct page *page,
670 u8 *object, char *reason)
672 slab_bug(s, "%s", reason);
673 print_trailer(s, page, object);
676 static void slab_err(struct kmem_cache *s, struct page *page,
677 const char *fmt, ...)
683 vsnprintf(buf, sizeof(buf), fmt, args);
685 slab_bug(s, "%s", buf);
686 print_page_info(page);
690 static void init_object(struct kmem_cache *s, void *object, u8 val)
694 if (s->flags & SLAB_RED_ZONE)
695 memset(p - s->red_left_pad, val, s->red_left_pad);
697 if (s->flags & __OBJECT_POISON) {
698 memset(p, POISON_FREE, s->object_size - 1);
699 p[s->object_size - 1] = POISON_END;
702 if (s->flags & SLAB_RED_ZONE)
703 memset(p + s->object_size, val, s->inuse - s->object_size);
706 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
707 void *from, void *to)
709 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
710 memset(from, data, to - from);
713 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
714 u8 *object, char *what,
715 u8 *start, unsigned int value, unsigned int bytes)
720 metadata_access_enable();
721 fault = memchr_inv(start, value, bytes);
722 metadata_access_disable();
727 while (end > fault && end[-1] == value)
730 slab_bug(s, "%s overwritten", what);
731 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
732 fault, end - 1, fault[0], value);
733 print_trailer(s, page, object);
735 restore_bytes(s, what, value, fault, end);
743 * Bytes of the object to be managed.
744 * If the freepointer may overlay the object then the free
745 * pointer is the first word of the object.
747 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
750 * object + s->object_size
751 * Padding to reach word boundary. This is also used for Redzoning.
752 * Padding is extended by another word if Redzoning is enabled and
753 * object_size == inuse.
755 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
756 * 0xcc (RED_ACTIVE) for objects in use.
759 * Meta data starts here.
761 * A. Free pointer (if we cannot overwrite object on free)
762 * B. Tracking data for SLAB_STORE_USER
763 * C. Padding to reach required alignment boundary or at mininum
764 * one word if debugging is on to be able to detect writes
765 * before the word boundary.
767 * Padding is done using 0x5a (POISON_INUSE)
770 * Nothing is used beyond s->size.
772 * If slabcaches are merged then the object_size and inuse boundaries are mostly
773 * ignored. And therefore no slab options that rely on these boundaries
774 * may be used with merged slabcaches.
777 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
779 unsigned long off = s->inuse; /* The end of info */
782 /* Freepointer is placed after the object. */
783 off += sizeof(void *);
785 if (s->flags & SLAB_STORE_USER)
786 /* We also have user information there */
787 off += 2 * sizeof(struct track);
789 off += kasan_metadata_size(s);
791 if (size_from_object(s) == off)
794 return check_bytes_and_report(s, page, p, "Object padding",
795 p + off, POISON_INUSE, size_from_object(s) - off);
798 /* Check the pad bytes at the end of a slab page */
799 static int slab_pad_check(struct kmem_cache *s, struct page *page)
807 if (!(s->flags & SLAB_POISON))
810 start = page_address(page);
811 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
812 end = start + length;
813 remainder = length % s->size;
817 metadata_access_enable();
818 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
819 metadata_access_disable();
822 while (end > fault && end[-1] == POISON_INUSE)
825 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
826 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
828 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
832 static int check_object(struct kmem_cache *s, struct page *page,
833 void *object, u8 val)
836 u8 *endobject = object + s->object_size;
838 if (s->flags & SLAB_RED_ZONE) {
839 if (!check_bytes_and_report(s, page, object, "Redzone",
840 object - s->red_left_pad, val, s->red_left_pad))
843 if (!check_bytes_and_report(s, page, object, "Redzone",
844 endobject, val, s->inuse - s->object_size))
847 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
848 check_bytes_and_report(s, page, p, "Alignment padding",
849 endobject, POISON_INUSE,
850 s->inuse - s->object_size);
854 if (s->flags & SLAB_POISON) {
855 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
856 (!check_bytes_and_report(s, page, p, "Poison", p,
857 POISON_FREE, s->object_size - 1) ||
858 !check_bytes_and_report(s, page, p, "Poison",
859 p + s->object_size - 1, POISON_END, 1)))
862 * check_pad_bytes cleans up on its own.
864 check_pad_bytes(s, page, p);
867 if (!s->offset && val == SLUB_RED_ACTIVE)
869 * Object and freepointer overlap. Cannot check
870 * freepointer while object is allocated.
874 /* Check free pointer validity */
875 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
876 object_err(s, page, p, "Freepointer corrupt");
878 * No choice but to zap it and thus lose the remainder
879 * of the free objects in this slab. May cause
880 * another error because the object count is now wrong.
882 set_freepointer(s, p, NULL);
888 static int check_slab(struct kmem_cache *s, struct page *page)
892 VM_BUG_ON(!irqs_disabled());
894 if (!PageSlab(page)) {
895 slab_err(s, page, "Not a valid slab page");
899 maxobj = order_objects(compound_order(page), s->size, s->reserved);
900 if (page->objects > maxobj) {
901 slab_err(s, page, "objects %u > max %u",
902 page->objects, maxobj);
905 if (page->inuse > page->objects) {
906 slab_err(s, page, "inuse %u > max %u",
907 page->inuse, page->objects);
910 /* Slab_pad_check fixes things up after itself */
911 slab_pad_check(s, page);
916 * Determine if a certain object on a page is on the freelist. Must hold the
917 * slab lock to guarantee that the chains are in a consistent state.
919 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
927 while (fp && nr <= page->objects) {
930 if (!check_valid_pointer(s, page, fp)) {
932 object_err(s, page, object,
933 "Freechain corrupt");
934 set_freepointer(s, object, NULL);
936 slab_err(s, page, "Freepointer corrupt");
937 page->freelist = NULL;
938 page->inuse = page->objects;
939 slab_fix(s, "Freelist cleared");
945 fp = get_freepointer(s, object);
949 max_objects = order_objects(compound_order(page), s->size, s->reserved);
950 if (max_objects > MAX_OBJS_PER_PAGE)
951 max_objects = MAX_OBJS_PER_PAGE;
953 if (page->objects != max_objects) {
954 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
955 page->objects, max_objects);
956 page->objects = max_objects;
957 slab_fix(s, "Number of objects adjusted.");
959 if (page->inuse != page->objects - nr) {
960 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
961 page->inuse, page->objects - nr);
962 page->inuse = page->objects - nr;
963 slab_fix(s, "Object count adjusted.");
965 return search == NULL;
968 static void trace(struct kmem_cache *s, struct page *page, void *object,
971 if (s->flags & SLAB_TRACE) {
972 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
974 alloc ? "alloc" : "free",
979 print_section(KERN_INFO, "Object ", (void *)object,
987 * Tracking of fully allocated slabs for debugging purposes.
989 static void add_full(struct kmem_cache *s,
990 struct kmem_cache_node *n, struct page *page)
992 if (!(s->flags & SLAB_STORE_USER))
995 lockdep_assert_held(&n->list_lock);
996 list_add(&page->lru, &n->full);
999 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1001 if (!(s->flags & SLAB_STORE_USER))
1004 lockdep_assert_held(&n->list_lock);
1005 list_del(&page->lru);
1008 /* Tracking of the number of slabs for debugging purposes */
1009 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1011 struct kmem_cache_node *n = get_node(s, node);
1013 return atomic_long_read(&n->nr_slabs);
1016 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1018 return atomic_long_read(&n->nr_slabs);
1021 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1023 struct kmem_cache_node *n = get_node(s, node);
1026 * May be called early in order to allocate a slab for the
1027 * kmem_cache_node structure. Solve the chicken-egg
1028 * dilemma by deferring the increment of the count during
1029 * bootstrap (see early_kmem_cache_node_alloc).
1032 atomic_long_inc(&n->nr_slabs);
1033 atomic_long_add(objects, &n->total_objects);
1036 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1038 struct kmem_cache_node *n = get_node(s, node);
1040 atomic_long_dec(&n->nr_slabs);
1041 atomic_long_sub(objects, &n->total_objects);
1044 /* Object debug checks for alloc/free paths */
1045 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1048 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1051 init_object(s, object, SLUB_RED_INACTIVE);
1052 init_tracking(s, object);
1055 static inline int alloc_consistency_checks(struct kmem_cache *s,
1057 void *object, unsigned long addr)
1059 if (!check_slab(s, page))
1062 if (!check_valid_pointer(s, page, object)) {
1063 object_err(s, page, object, "Freelist Pointer check fails");
1067 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1073 static noinline int alloc_debug_processing(struct kmem_cache *s,
1075 void *object, unsigned long addr)
1077 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1078 if (!alloc_consistency_checks(s, page, object, addr))
1082 /* Success perform special debug activities for allocs */
1083 if (s->flags & SLAB_STORE_USER)
1084 set_track(s, object, TRACK_ALLOC, addr);
1085 trace(s, page, object, 1);
1086 init_object(s, object, SLUB_RED_ACTIVE);
1090 if (PageSlab(page)) {
1092 * If this is a slab page then lets do the best we can
1093 * to avoid issues in the future. Marking all objects
1094 * as used avoids touching the remaining objects.
1096 slab_fix(s, "Marking all objects used");
1097 page->inuse = page->objects;
1098 page->freelist = NULL;
1103 static inline int free_consistency_checks(struct kmem_cache *s,
1104 struct page *page, void *object, unsigned long addr)
1106 if (!check_valid_pointer(s, page, object)) {
1107 slab_err(s, page, "Invalid object pointer 0x%p", object);
1111 if (on_freelist(s, page, object)) {
1112 object_err(s, page, object, "Object already free");
1116 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1119 if (unlikely(s != page->slab_cache)) {
1120 if (!PageSlab(page)) {
1121 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1123 } else if (!page->slab_cache) {
1124 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1128 object_err(s, page, object,
1129 "page slab pointer corrupt.");
1135 /* Supports checking bulk free of a constructed freelist */
1136 static noinline int free_debug_processing(
1137 struct kmem_cache *s, struct page *page,
1138 void *head, void *tail, int bulk_cnt,
1141 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1142 void *object = head;
1144 unsigned long uninitialized_var(flags);
1147 spin_lock_irqsave(&n->list_lock, flags);
1150 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1151 if (!check_slab(s, page))
1158 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1159 if (!free_consistency_checks(s, page, object, addr))
1163 if (s->flags & SLAB_STORE_USER)
1164 set_track(s, object, TRACK_FREE, addr);
1165 trace(s, page, object, 0);
1166 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1167 init_object(s, object, SLUB_RED_INACTIVE);
1169 /* Reached end of constructed freelist yet? */
1170 if (object != tail) {
1171 object = get_freepointer(s, object);
1177 if (cnt != bulk_cnt)
1178 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1182 spin_unlock_irqrestore(&n->list_lock, flags);
1184 slab_fix(s, "Object at 0x%p not freed", object);
1188 static int __init setup_slub_debug(char *str)
1190 slub_debug = DEBUG_DEFAULT_FLAGS;
1191 if (*str++ != '=' || !*str)
1193 * No options specified. Switch on full debugging.
1199 * No options but restriction on slabs. This means full
1200 * debugging for slabs matching a pattern.
1207 * Switch off all debugging measures.
1212 * Determine which debug features should be switched on
1214 for (; *str && *str != ','; str++) {
1215 switch (tolower(*str)) {
1217 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1220 slub_debug |= SLAB_RED_ZONE;
1223 slub_debug |= SLAB_POISON;
1226 slub_debug |= SLAB_STORE_USER;
1229 slub_debug |= SLAB_TRACE;
1232 slub_debug |= SLAB_FAILSLAB;
1236 * Avoid enabling debugging on caches if its minimum
1237 * order would increase as a result.
1239 disable_higher_order_debug = 1;
1242 pr_err("slub_debug option '%c' unknown. skipped\n",
1249 slub_debug_slabs = str + 1;
1254 __setup("slub_debug", setup_slub_debug);
1256 unsigned long kmem_cache_flags(unsigned long object_size,
1257 unsigned long flags, const char *name,
1258 void (*ctor)(void *))
1261 * Enable debugging if selected on the kernel commandline.
1263 if (slub_debug && (!slub_debug_slabs || (name &&
1264 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1265 flags |= slub_debug;
1269 #else /* !CONFIG_SLUB_DEBUG */
1270 static inline void setup_object_debug(struct kmem_cache *s,
1271 struct page *page, void *object) {}
1273 static inline int alloc_debug_processing(struct kmem_cache *s,
1274 struct page *page, void *object, unsigned long addr) { return 0; }
1276 static inline int free_debug_processing(
1277 struct kmem_cache *s, struct page *page,
1278 void *head, void *tail, int bulk_cnt,
1279 unsigned long addr) { return 0; }
1281 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1283 static inline int check_object(struct kmem_cache *s, struct page *page,
1284 void *object, u8 val) { return 1; }
1285 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1286 struct page *page) {}
1287 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288 struct page *page) {}
1289 unsigned long kmem_cache_flags(unsigned long object_size,
1290 unsigned long flags, const char *name,
1291 void (*ctor)(void *))
1295 #define slub_debug 0
1297 #define disable_higher_order_debug 0
1299 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1301 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1303 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1305 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1308 #endif /* CONFIG_SLUB_DEBUG */
1311 * Hooks for other subsystems that check memory allocations. In a typical
1312 * production configuration these hooks all should produce no code at all.
1314 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1316 kmemleak_alloc(ptr, size, 1, flags);
1317 kasan_kmalloc_large(ptr, size, flags);
1320 static inline void kfree_hook(const void *x)
1323 kasan_kfree_large(x);
1326 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1330 kmemleak_free_recursive(x, s->flags);
1333 * Trouble is that we may no longer disable interrupts in the fast path
1334 * So in order to make the debug calls that expect irqs to be
1335 * disabled we need to disable interrupts temporarily.
1337 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1339 unsigned long flags;
1341 local_irq_save(flags);
1342 kmemcheck_slab_free(s, x, s->object_size);
1343 debug_check_no_locks_freed(x, s->object_size);
1344 local_irq_restore(flags);
1347 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1348 debug_check_no_obj_freed(x, s->object_size);
1350 freeptr = get_freepointer(s, x);
1352 * kasan_slab_free() may put x into memory quarantine, delaying its
1353 * reuse. In this case the object's freelist pointer is changed.
1355 kasan_slab_free(s, x);
1359 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1360 void *head, void *tail)
1363 * Compiler cannot detect this function can be removed if slab_free_hook()
1364 * evaluates to nothing. Thus, catch all relevant config debug options here.
1366 #if defined(CONFIG_KMEMCHECK) || \
1367 defined(CONFIG_LOCKDEP) || \
1368 defined(CONFIG_DEBUG_KMEMLEAK) || \
1369 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1370 defined(CONFIG_KASAN)
1372 void *object = head;
1373 void *tail_obj = tail ? : head;
1377 freeptr = slab_free_hook(s, object);
1378 } while ((object != tail_obj) && (object = freeptr));
1382 static void setup_object(struct kmem_cache *s, struct page *page,
1385 setup_object_debug(s, page, object);
1386 kasan_init_slab_obj(s, object);
1387 if (unlikely(s->ctor)) {
1388 kasan_unpoison_object_data(s, object);
1390 kasan_poison_object_data(s, object);
1395 * Slab allocation and freeing
1397 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1398 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1401 int order = oo_order(oo);
1403 flags |= __GFP_NOTRACK;
1405 if (node == NUMA_NO_NODE)
1406 page = alloc_pages(flags, order);
1408 page = __alloc_pages_node(node, flags, order);
1410 if (page && memcg_charge_slab(page, flags, order, s)) {
1411 __free_pages(page, order);
1418 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1419 /* Pre-initialize the random sequence cache */
1420 static int init_cache_random_seq(struct kmem_cache *s)
1423 unsigned long i, count = oo_objects(s->oo);
1425 /* Bailout if already initialised */
1429 err = cache_random_seq_create(s, count, GFP_KERNEL);
1431 pr_err("SLUB: Unable to initialize free list for %s\n",
1436 /* Transform to an offset on the set of pages */
1437 if (s->random_seq) {
1438 for (i = 0; i < count; i++)
1439 s->random_seq[i] *= s->size;
1444 /* Initialize each random sequence freelist per cache */
1445 static void __init init_freelist_randomization(void)
1447 struct kmem_cache *s;
1449 mutex_lock(&slab_mutex);
1451 list_for_each_entry(s, &slab_caches, list)
1452 init_cache_random_seq(s);
1454 mutex_unlock(&slab_mutex);
1457 /* Get the next entry on the pre-computed freelist randomized */
1458 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1459 unsigned long *pos, void *start,
1460 unsigned long page_limit,
1461 unsigned long freelist_count)
1466 * If the target page allocation failed, the number of objects on the
1467 * page might be smaller than the usual size defined by the cache.
1470 idx = s->random_seq[*pos];
1472 if (*pos >= freelist_count)
1474 } while (unlikely(idx >= page_limit));
1476 return (char *)start + idx;
1479 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1480 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1485 unsigned long idx, pos, page_limit, freelist_count;
1487 if (page->objects < 2 || !s->random_seq)
1490 freelist_count = oo_objects(s->oo);
1491 pos = get_random_int() % freelist_count;
1493 page_limit = page->objects * s->size;
1494 start = fixup_red_left(s, page_address(page));
1496 /* First entry is used as the base of the freelist */
1497 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1499 page->freelist = cur;
1501 for (idx = 1; idx < page->objects; idx++) {
1502 setup_object(s, page, cur);
1503 next = next_freelist_entry(s, page, &pos, start, page_limit,
1505 set_freepointer(s, cur, next);
1508 setup_object(s, page, cur);
1509 set_freepointer(s, cur, NULL);
1514 static inline int init_cache_random_seq(struct kmem_cache *s)
1518 static inline void init_freelist_randomization(void) { }
1519 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1523 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1525 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1528 struct kmem_cache_order_objects oo = s->oo;
1534 flags &= gfp_allowed_mask;
1536 if (gfpflags_allow_blocking(flags))
1539 flags |= s->allocflags;
1542 * Let the initial higher-order allocation fail under memory pressure
1543 * so we fall-back to the minimum order allocation.
1545 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1546 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1547 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1549 page = alloc_slab_page(s, alloc_gfp, node, oo);
1550 if (unlikely(!page)) {
1554 * Allocation may have failed due to fragmentation.
1555 * Try a lower order alloc if possible
1557 page = alloc_slab_page(s, alloc_gfp, node, oo);
1558 if (unlikely(!page))
1560 stat(s, ORDER_FALLBACK);
1563 if (kmemcheck_enabled &&
1564 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1565 int pages = 1 << oo_order(oo);
1567 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1570 * Objects from caches that have a constructor don't get
1571 * cleared when they're allocated, so we need to do it here.
1574 kmemcheck_mark_uninitialized_pages(page, pages);
1576 kmemcheck_mark_unallocated_pages(page, pages);
1579 page->objects = oo_objects(oo);
1581 order = compound_order(page);
1582 page->slab_cache = s;
1583 __SetPageSlab(page);
1584 if (page_is_pfmemalloc(page))
1585 SetPageSlabPfmemalloc(page);
1587 start = page_address(page);
1589 if (unlikely(s->flags & SLAB_POISON))
1590 memset(start, POISON_INUSE, PAGE_SIZE << order);
1592 kasan_poison_slab(page);
1594 shuffle = shuffle_freelist(s, page);
1597 for_each_object_idx(p, idx, s, start, page->objects) {
1598 setup_object(s, page, p);
1599 if (likely(idx < page->objects))
1600 set_freepointer(s, p, p + s->size);
1602 set_freepointer(s, p, NULL);
1604 page->freelist = fixup_red_left(s, start);
1607 page->inuse = page->objects;
1611 if (gfpflags_allow_blocking(flags))
1612 local_irq_disable();
1616 mod_zone_page_state(page_zone(page),
1617 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1618 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1621 inc_slabs_node(s, page_to_nid(page), page->objects);
1626 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1628 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1629 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1630 flags &= ~GFP_SLAB_BUG_MASK;
1631 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1632 invalid_mask, &invalid_mask, flags, &flags);
1635 return allocate_slab(s,
1636 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1639 static void __free_slab(struct kmem_cache *s, struct page *page)
1641 int order = compound_order(page);
1642 int pages = 1 << order;
1644 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1647 slab_pad_check(s, page);
1648 for_each_object(p, s, page_address(page),
1650 check_object(s, page, p, SLUB_RED_INACTIVE);
1653 kmemcheck_free_shadow(page, compound_order(page));
1655 mod_zone_page_state(page_zone(page),
1656 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1657 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1660 __ClearPageSlabPfmemalloc(page);
1661 __ClearPageSlab(page);
1663 page_mapcount_reset(page);
1664 if (current->reclaim_state)
1665 current->reclaim_state->reclaimed_slab += pages;
1666 memcg_uncharge_slab(page, order, s);
1667 __free_pages(page, order);
1670 #define need_reserve_slab_rcu \
1671 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1673 static void rcu_free_slab(struct rcu_head *h)
1677 if (need_reserve_slab_rcu)
1678 page = virt_to_head_page(h);
1680 page = container_of((struct list_head *)h, struct page, lru);
1682 __free_slab(page->slab_cache, page);
1685 static void free_slab(struct kmem_cache *s, struct page *page)
1687 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1688 struct rcu_head *head;
1690 if (need_reserve_slab_rcu) {
1691 int order = compound_order(page);
1692 int offset = (PAGE_SIZE << order) - s->reserved;
1694 VM_BUG_ON(s->reserved != sizeof(*head));
1695 head = page_address(page) + offset;
1697 head = &page->rcu_head;
1700 call_rcu(head, rcu_free_slab);
1702 __free_slab(s, page);
1705 static void discard_slab(struct kmem_cache *s, struct page *page)
1707 dec_slabs_node(s, page_to_nid(page), page->objects);
1712 * Management of partially allocated slabs.
1715 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1718 if (tail == DEACTIVATE_TO_TAIL)
1719 list_add_tail(&page->lru, &n->partial);
1721 list_add(&page->lru, &n->partial);
1724 static inline void add_partial(struct kmem_cache_node *n,
1725 struct page *page, int tail)
1727 lockdep_assert_held(&n->list_lock);
1728 __add_partial(n, page, tail);
1731 static inline void remove_partial(struct kmem_cache_node *n,
1734 lockdep_assert_held(&n->list_lock);
1735 list_del(&page->lru);
1740 * Remove slab from the partial list, freeze it and
1741 * return the pointer to the freelist.
1743 * Returns a list of objects or NULL if it fails.
1745 static inline void *acquire_slab(struct kmem_cache *s,
1746 struct kmem_cache_node *n, struct page *page,
1747 int mode, int *objects)
1750 unsigned long counters;
1753 lockdep_assert_held(&n->list_lock);
1756 * Zap the freelist and set the frozen bit.
1757 * The old freelist is the list of objects for the
1758 * per cpu allocation list.
1760 freelist = page->freelist;
1761 counters = page->counters;
1762 new.counters = counters;
1763 *objects = new.objects - new.inuse;
1765 new.inuse = page->objects;
1766 new.freelist = NULL;
1768 new.freelist = freelist;
1771 VM_BUG_ON(new.frozen);
1774 if (!__cmpxchg_double_slab(s, page,
1776 new.freelist, new.counters,
1780 remove_partial(n, page);
1785 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1786 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1789 * Try to allocate a partial slab from a specific node.
1791 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1792 struct kmem_cache_cpu *c, gfp_t flags)
1794 struct page *page, *page2;
1795 void *object = NULL;
1800 * Racy check. If we mistakenly see no partial slabs then we
1801 * just allocate an empty slab. If we mistakenly try to get a
1802 * partial slab and there is none available then get_partials()
1805 if (!n || !n->nr_partial)
1808 spin_lock(&n->list_lock);
1809 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1812 if (!pfmemalloc_match(page, flags))
1815 t = acquire_slab(s, n, page, object == NULL, &objects);
1819 available += objects;
1822 stat(s, ALLOC_FROM_PARTIAL);
1825 put_cpu_partial(s, page, 0);
1826 stat(s, CPU_PARTIAL_NODE);
1828 if (!kmem_cache_has_cpu_partial(s)
1829 || available > s->cpu_partial / 2)
1833 spin_unlock(&n->list_lock);
1838 * Get a page from somewhere. Search in increasing NUMA distances.
1840 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1841 struct kmem_cache_cpu *c)
1844 struct zonelist *zonelist;
1847 enum zone_type high_zoneidx = gfp_zone(flags);
1849 unsigned int cpuset_mems_cookie;
1852 * The defrag ratio allows a configuration of the tradeoffs between
1853 * inter node defragmentation and node local allocations. A lower
1854 * defrag_ratio increases the tendency to do local allocations
1855 * instead of attempting to obtain partial slabs from other nodes.
1857 * If the defrag_ratio is set to 0 then kmalloc() always
1858 * returns node local objects. If the ratio is higher then kmalloc()
1859 * may return off node objects because partial slabs are obtained
1860 * from other nodes and filled up.
1862 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1863 * (which makes defrag_ratio = 1000) then every (well almost)
1864 * allocation will first attempt to defrag slab caches on other nodes.
1865 * This means scanning over all nodes to look for partial slabs which
1866 * may be expensive if we do it every time we are trying to find a slab
1867 * with available objects.
1869 if (!s->remote_node_defrag_ratio ||
1870 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1874 cpuset_mems_cookie = read_mems_allowed_begin();
1875 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1876 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1877 struct kmem_cache_node *n;
1879 n = get_node(s, zone_to_nid(zone));
1881 if (n && cpuset_zone_allowed(zone, flags) &&
1882 n->nr_partial > s->min_partial) {
1883 object = get_partial_node(s, n, c, flags);
1886 * Don't check read_mems_allowed_retry()
1887 * here - if mems_allowed was updated in
1888 * parallel, that was a harmless race
1889 * between allocation and the cpuset
1896 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1902 * Get a partial page, lock it and return it.
1904 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1905 struct kmem_cache_cpu *c)
1908 int searchnode = node;
1910 if (node == NUMA_NO_NODE)
1911 searchnode = numa_mem_id();
1912 else if (!node_present_pages(node))
1913 searchnode = node_to_mem_node(node);
1915 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1916 if (object || node != NUMA_NO_NODE)
1919 return get_any_partial(s, flags, c);
1922 #ifdef CONFIG_PREEMPT
1924 * Calculate the next globally unique transaction for disambiguiation
1925 * during cmpxchg. The transactions start with the cpu number and are then
1926 * incremented by CONFIG_NR_CPUS.
1928 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1931 * No preemption supported therefore also no need to check for
1937 static inline unsigned long next_tid(unsigned long tid)
1939 return tid + TID_STEP;
1942 static inline unsigned int tid_to_cpu(unsigned long tid)
1944 return tid % TID_STEP;
1947 static inline unsigned long tid_to_event(unsigned long tid)
1949 return tid / TID_STEP;
1952 static inline unsigned int init_tid(int cpu)
1957 static inline void note_cmpxchg_failure(const char *n,
1958 const struct kmem_cache *s, unsigned long tid)
1960 #ifdef SLUB_DEBUG_CMPXCHG
1961 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1963 pr_info("%s %s: cmpxchg redo ", n, s->name);
1965 #ifdef CONFIG_PREEMPT
1966 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1967 pr_warn("due to cpu change %d -> %d\n",
1968 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1971 if (tid_to_event(tid) != tid_to_event(actual_tid))
1972 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1973 tid_to_event(tid), tid_to_event(actual_tid));
1975 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1976 actual_tid, tid, next_tid(tid));
1978 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1981 static void init_kmem_cache_cpus(struct kmem_cache *s)
1985 for_each_possible_cpu(cpu)
1986 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1990 * Remove the cpu slab
1992 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1995 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1996 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1998 enum slab_modes l = M_NONE, m = M_NONE;
2000 int tail = DEACTIVATE_TO_HEAD;
2004 if (page->freelist) {
2005 stat(s, DEACTIVATE_REMOTE_FREES);
2006 tail = DEACTIVATE_TO_TAIL;
2010 * Stage one: Free all available per cpu objects back
2011 * to the page freelist while it is still frozen. Leave the
2014 * There is no need to take the list->lock because the page
2017 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2019 unsigned long counters;
2022 prior = page->freelist;
2023 counters = page->counters;
2024 set_freepointer(s, freelist, prior);
2025 new.counters = counters;
2027 VM_BUG_ON(!new.frozen);
2029 } while (!__cmpxchg_double_slab(s, page,
2031 freelist, new.counters,
2032 "drain percpu freelist"));
2034 freelist = nextfree;
2038 * Stage two: Ensure that the page is unfrozen while the
2039 * list presence reflects the actual number of objects
2042 * We setup the list membership and then perform a cmpxchg
2043 * with the count. If there is a mismatch then the page
2044 * is not unfrozen but the page is on the wrong list.
2046 * Then we restart the process which may have to remove
2047 * the page from the list that we just put it on again
2048 * because the number of objects in the slab may have
2053 old.freelist = page->freelist;
2054 old.counters = page->counters;
2055 VM_BUG_ON(!old.frozen);
2057 /* Determine target state of the slab */
2058 new.counters = old.counters;
2061 set_freepointer(s, freelist, old.freelist);
2062 new.freelist = freelist;
2064 new.freelist = old.freelist;
2068 if (!new.inuse && n->nr_partial >= s->min_partial)
2070 else if (new.freelist) {
2075 * Taking the spinlock removes the possiblity
2076 * that acquire_slab() will see a slab page that
2079 spin_lock(&n->list_lock);
2083 if (kmem_cache_debug(s) && !lock) {
2086 * This also ensures that the scanning of full
2087 * slabs from diagnostic functions will not see
2090 spin_lock(&n->list_lock);
2098 remove_partial(n, page);
2100 else if (l == M_FULL)
2102 remove_full(s, n, page);
2104 if (m == M_PARTIAL) {
2106 add_partial(n, page, tail);
2109 } else if (m == M_FULL) {
2111 stat(s, DEACTIVATE_FULL);
2112 add_full(s, n, page);
2118 if (!__cmpxchg_double_slab(s, page,
2119 old.freelist, old.counters,
2120 new.freelist, new.counters,
2125 spin_unlock(&n->list_lock);
2128 stat(s, DEACTIVATE_EMPTY);
2129 discard_slab(s, page);
2135 * Unfreeze all the cpu partial slabs.
2137 * This function must be called with interrupts disabled
2138 * for the cpu using c (or some other guarantee must be there
2139 * to guarantee no concurrent accesses).
2141 static void unfreeze_partials(struct kmem_cache *s,
2142 struct kmem_cache_cpu *c)
2144 #ifdef CONFIG_SLUB_CPU_PARTIAL
2145 struct kmem_cache_node *n = NULL, *n2 = NULL;
2146 struct page *page, *discard_page = NULL;
2148 while ((page = c->partial)) {
2152 c->partial = page->next;
2154 n2 = get_node(s, page_to_nid(page));
2157 spin_unlock(&n->list_lock);
2160 spin_lock(&n->list_lock);
2165 old.freelist = page->freelist;
2166 old.counters = page->counters;
2167 VM_BUG_ON(!old.frozen);
2169 new.counters = old.counters;
2170 new.freelist = old.freelist;
2174 } while (!__cmpxchg_double_slab(s, page,
2175 old.freelist, old.counters,
2176 new.freelist, new.counters,
2177 "unfreezing slab"));
2179 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2180 page->next = discard_page;
2181 discard_page = page;
2183 add_partial(n, page, DEACTIVATE_TO_TAIL);
2184 stat(s, FREE_ADD_PARTIAL);
2189 spin_unlock(&n->list_lock);
2191 while (discard_page) {
2192 page = discard_page;
2193 discard_page = discard_page->next;
2195 stat(s, DEACTIVATE_EMPTY);
2196 discard_slab(s, page);
2203 * Put a page that was just frozen (in __slab_free) into a partial page
2204 * slot if available. This is done without interrupts disabled and without
2205 * preemption disabled. The cmpxchg is racy and may put the partial page
2206 * onto a random cpus partial slot.
2208 * If we did not find a slot then simply move all the partials to the
2209 * per node partial list.
2211 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2213 #ifdef CONFIG_SLUB_CPU_PARTIAL
2214 struct page *oldpage;
2222 oldpage = this_cpu_read(s->cpu_slab->partial);
2225 pobjects = oldpage->pobjects;
2226 pages = oldpage->pages;
2227 if (drain && pobjects > s->cpu_partial) {
2228 unsigned long flags;
2230 * partial array is full. Move the existing
2231 * set to the per node partial list.
2233 local_irq_save(flags);
2234 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2235 local_irq_restore(flags);
2239 stat(s, CPU_PARTIAL_DRAIN);
2244 pobjects += page->objects - page->inuse;
2246 page->pages = pages;
2247 page->pobjects = pobjects;
2248 page->next = oldpage;
2250 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2252 if (unlikely(!s->cpu_partial)) {
2253 unsigned long flags;
2255 local_irq_save(flags);
2256 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2257 local_irq_restore(flags);
2263 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2265 stat(s, CPUSLAB_FLUSH);
2266 deactivate_slab(s, c->page, c->freelist);
2268 c->tid = next_tid(c->tid);
2276 * Called from IPI handler with interrupts disabled.
2278 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2280 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2286 unfreeze_partials(s, c);
2290 static void flush_cpu_slab(void *d)
2292 struct kmem_cache *s = d;
2294 __flush_cpu_slab(s, smp_processor_id());
2297 static bool has_cpu_slab(int cpu, void *info)
2299 struct kmem_cache *s = info;
2300 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2302 return c->page || c->partial;
2305 static void flush_all(struct kmem_cache *s)
2307 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2311 * Use the cpu notifier to insure that the cpu slabs are flushed when
2314 static int slub_cpu_dead(unsigned int cpu)
2316 struct kmem_cache *s;
2317 unsigned long flags;
2319 mutex_lock(&slab_mutex);
2320 list_for_each_entry(s, &slab_caches, list) {
2321 local_irq_save(flags);
2322 __flush_cpu_slab(s, cpu);
2323 local_irq_restore(flags);
2325 mutex_unlock(&slab_mutex);
2330 * Check if the objects in a per cpu structure fit numa
2331 * locality expectations.
2333 static inline int node_match(struct page *page, int node)
2336 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2342 #ifdef CONFIG_SLUB_DEBUG
2343 static int count_free(struct page *page)
2345 return page->objects - page->inuse;
2348 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2350 return atomic_long_read(&n->total_objects);
2352 #endif /* CONFIG_SLUB_DEBUG */
2354 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2355 static unsigned long count_partial(struct kmem_cache_node *n,
2356 int (*get_count)(struct page *))
2358 unsigned long flags;
2359 unsigned long x = 0;
2362 spin_lock_irqsave(&n->list_lock, flags);
2363 list_for_each_entry(page, &n->partial, lru)
2364 x += get_count(page);
2365 spin_unlock_irqrestore(&n->list_lock, flags);
2368 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2370 static noinline void
2371 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2373 #ifdef CONFIG_SLUB_DEBUG
2374 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2375 DEFAULT_RATELIMIT_BURST);
2377 struct kmem_cache_node *n;
2379 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2382 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2383 nid, gfpflags, &gfpflags);
2384 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2385 s->name, s->object_size, s->size, oo_order(s->oo),
2388 if (oo_order(s->min) > get_order(s->object_size))
2389 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2392 for_each_kmem_cache_node(s, node, n) {
2393 unsigned long nr_slabs;
2394 unsigned long nr_objs;
2395 unsigned long nr_free;
2397 nr_free = count_partial(n, count_free);
2398 nr_slabs = node_nr_slabs(n);
2399 nr_objs = node_nr_objs(n);
2401 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2402 node, nr_slabs, nr_objs, nr_free);
2407 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2408 int node, struct kmem_cache_cpu **pc)
2411 struct kmem_cache_cpu *c = *pc;
2414 freelist = get_partial(s, flags, node, c);
2419 page = new_slab(s, flags, node);
2421 c = raw_cpu_ptr(s->cpu_slab);
2426 * No other reference to the page yet so we can
2427 * muck around with it freely without cmpxchg
2429 freelist = page->freelist;
2430 page->freelist = NULL;
2432 stat(s, ALLOC_SLAB);
2441 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2443 if (unlikely(PageSlabPfmemalloc(page)))
2444 return gfp_pfmemalloc_allowed(gfpflags);
2450 * Check the page->freelist of a page and either transfer the freelist to the
2451 * per cpu freelist or deactivate the page.
2453 * The page is still frozen if the return value is not NULL.
2455 * If this function returns NULL then the page has been unfrozen.
2457 * This function must be called with interrupt disabled.
2459 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2462 unsigned long counters;
2466 freelist = page->freelist;
2467 counters = page->counters;
2469 new.counters = counters;
2470 VM_BUG_ON(!new.frozen);
2472 new.inuse = page->objects;
2473 new.frozen = freelist != NULL;
2475 } while (!__cmpxchg_double_slab(s, page,
2484 * Slow path. The lockless freelist is empty or we need to perform
2487 * Processing is still very fast if new objects have been freed to the
2488 * regular freelist. In that case we simply take over the regular freelist
2489 * as the lockless freelist and zap the regular freelist.
2491 * If that is not working then we fall back to the partial lists. We take the
2492 * first element of the freelist as the object to allocate now and move the
2493 * rest of the freelist to the lockless freelist.
2495 * And if we were unable to get a new slab from the partial slab lists then
2496 * we need to allocate a new slab. This is the slowest path since it involves
2497 * a call to the page allocator and the setup of a new slab.
2499 * Version of __slab_alloc to use when we know that interrupts are
2500 * already disabled (which is the case for bulk allocation).
2502 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2503 unsigned long addr, struct kmem_cache_cpu *c)
2513 if (unlikely(!node_match(page, node))) {
2514 int searchnode = node;
2516 if (node != NUMA_NO_NODE && !node_present_pages(node))
2517 searchnode = node_to_mem_node(node);
2519 if (unlikely(!node_match(page, searchnode))) {
2520 stat(s, ALLOC_NODE_MISMATCH);
2521 deactivate_slab(s, page, c->freelist);
2529 * By rights, we should be searching for a slab page that was
2530 * PFMEMALLOC but right now, we are losing the pfmemalloc
2531 * information when the page leaves the per-cpu allocator
2533 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2534 deactivate_slab(s, page, c->freelist);
2540 /* must check again c->freelist in case of cpu migration or IRQ */
2541 freelist = c->freelist;
2545 freelist = get_freelist(s, page);
2549 stat(s, DEACTIVATE_BYPASS);
2553 stat(s, ALLOC_REFILL);
2557 * freelist is pointing to the list of objects to be used.
2558 * page is pointing to the page from which the objects are obtained.
2559 * That page must be frozen for per cpu allocations to work.
2561 VM_BUG_ON(!c->page->frozen);
2562 c->freelist = get_freepointer(s, freelist);
2563 c->tid = next_tid(c->tid);
2569 page = c->page = c->partial;
2570 c->partial = page->next;
2571 stat(s, CPU_PARTIAL_ALLOC);
2576 freelist = new_slab_objects(s, gfpflags, node, &c);
2578 if (unlikely(!freelist)) {
2579 slab_out_of_memory(s, gfpflags, node);
2584 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2587 /* Only entered in the debug case */
2588 if (kmem_cache_debug(s) &&
2589 !alloc_debug_processing(s, page, freelist, addr))
2590 goto new_slab; /* Slab failed checks. Next slab needed */
2592 deactivate_slab(s, page, get_freepointer(s, freelist));
2599 * Another one that disabled interrupt and compensates for possible
2600 * cpu changes by refetching the per cpu area pointer.
2602 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2603 unsigned long addr, struct kmem_cache_cpu *c)
2606 unsigned long flags;
2608 local_irq_save(flags);
2609 #ifdef CONFIG_PREEMPT
2611 * We may have been preempted and rescheduled on a different
2612 * cpu before disabling interrupts. Need to reload cpu area
2615 c = this_cpu_ptr(s->cpu_slab);
2618 p = ___slab_alloc(s, gfpflags, node, addr, c);
2619 local_irq_restore(flags);
2624 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2625 * have the fastpath folded into their functions. So no function call
2626 * overhead for requests that can be satisfied on the fastpath.
2628 * The fastpath works by first checking if the lockless freelist can be used.
2629 * If not then __slab_alloc is called for slow processing.
2631 * Otherwise we can simply pick the next object from the lockless free list.
2633 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2634 gfp_t gfpflags, int node, unsigned long addr)
2637 struct kmem_cache_cpu *c;
2641 s = slab_pre_alloc_hook(s, gfpflags);
2646 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2647 * enabled. We may switch back and forth between cpus while
2648 * reading from one cpu area. That does not matter as long
2649 * as we end up on the original cpu again when doing the cmpxchg.
2651 * We should guarantee that tid and kmem_cache are retrieved on
2652 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2653 * to check if it is matched or not.
2656 tid = this_cpu_read(s->cpu_slab->tid);
2657 c = raw_cpu_ptr(s->cpu_slab);
2658 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2659 unlikely(tid != READ_ONCE(c->tid)));
2662 * Irqless object alloc/free algorithm used here depends on sequence
2663 * of fetching cpu_slab's data. tid should be fetched before anything
2664 * on c to guarantee that object and page associated with previous tid
2665 * won't be used with current tid. If we fetch tid first, object and
2666 * page could be one associated with next tid and our alloc/free
2667 * request will be failed. In this case, we will retry. So, no problem.
2672 * The transaction ids are globally unique per cpu and per operation on
2673 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2674 * occurs on the right processor and that there was no operation on the
2675 * linked list in between.
2678 object = c->freelist;
2680 if (unlikely(!object || !node_match(page, node))) {
2681 object = __slab_alloc(s, gfpflags, node, addr, c);
2682 stat(s, ALLOC_SLOWPATH);
2684 void *next_object = get_freepointer_safe(s, object);
2687 * The cmpxchg will only match if there was no additional
2688 * operation and if we are on the right processor.
2690 * The cmpxchg does the following atomically (without lock
2692 * 1. Relocate first pointer to the current per cpu area.
2693 * 2. Verify that tid and freelist have not been changed
2694 * 3. If they were not changed replace tid and freelist
2696 * Since this is without lock semantics the protection is only
2697 * against code executing on this cpu *not* from access by
2700 if (unlikely(!this_cpu_cmpxchg_double(
2701 s->cpu_slab->freelist, s->cpu_slab->tid,
2703 next_object, next_tid(tid)))) {
2705 note_cmpxchg_failure("slab_alloc", s, tid);
2708 prefetch_freepointer(s, next_object);
2709 stat(s, ALLOC_FASTPATH);
2712 if (unlikely(gfpflags & __GFP_ZERO) && object)
2713 memset(object, 0, s->object_size);
2715 slab_post_alloc_hook(s, gfpflags, 1, &object);
2720 static __always_inline void *slab_alloc(struct kmem_cache *s,
2721 gfp_t gfpflags, unsigned long addr)
2723 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2726 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2728 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2730 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2735 EXPORT_SYMBOL(kmem_cache_alloc);
2737 #ifdef CONFIG_TRACING
2738 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2740 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2741 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2742 kasan_kmalloc(s, ret, size, gfpflags);
2745 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2749 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2751 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2753 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2754 s->object_size, s->size, gfpflags, node);
2758 EXPORT_SYMBOL(kmem_cache_alloc_node);
2760 #ifdef CONFIG_TRACING
2761 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2763 int node, size_t size)
2765 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2767 trace_kmalloc_node(_RET_IP_, ret,
2768 size, s->size, gfpflags, node);
2770 kasan_kmalloc(s, ret, size, gfpflags);
2773 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2778 * Slow path handling. This may still be called frequently since objects
2779 * have a longer lifetime than the cpu slabs in most processing loads.
2781 * So we still attempt to reduce cache line usage. Just take the slab
2782 * lock and free the item. If there is no additional partial page
2783 * handling required then we can return immediately.
2785 static void __slab_free(struct kmem_cache *s, struct page *page,
2786 void *head, void *tail, int cnt,
2793 unsigned long counters;
2794 struct kmem_cache_node *n = NULL;
2795 unsigned long uninitialized_var(flags);
2797 stat(s, FREE_SLOWPATH);
2799 if (kmem_cache_debug(s) &&
2800 !free_debug_processing(s, page, head, tail, cnt, addr))
2805 spin_unlock_irqrestore(&n->list_lock, flags);
2808 prior = page->freelist;
2809 counters = page->counters;
2810 set_freepointer(s, tail, prior);
2811 new.counters = counters;
2812 was_frozen = new.frozen;
2814 if ((!new.inuse || !prior) && !was_frozen) {
2816 if (kmem_cache_has_cpu_partial(s) && !prior) {
2819 * Slab was on no list before and will be
2821 * We can defer the list move and instead
2826 } else { /* Needs to be taken off a list */
2828 n = get_node(s, page_to_nid(page));
2830 * Speculatively acquire the list_lock.
2831 * If the cmpxchg does not succeed then we may
2832 * drop the list_lock without any processing.
2834 * Otherwise the list_lock will synchronize with
2835 * other processors updating the list of slabs.
2837 spin_lock_irqsave(&n->list_lock, flags);
2842 } while (!cmpxchg_double_slab(s, page,
2850 * If we just froze the page then put it onto the
2851 * per cpu partial list.
2853 if (new.frozen && !was_frozen) {
2854 put_cpu_partial(s, page, 1);
2855 stat(s, CPU_PARTIAL_FREE);
2858 * The list lock was not taken therefore no list
2859 * activity can be necessary.
2862 stat(s, FREE_FROZEN);
2866 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2870 * Objects left in the slab. If it was not on the partial list before
2873 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2874 if (kmem_cache_debug(s))
2875 remove_full(s, n, page);
2876 add_partial(n, page, DEACTIVATE_TO_TAIL);
2877 stat(s, FREE_ADD_PARTIAL);
2879 spin_unlock_irqrestore(&n->list_lock, flags);
2885 * Slab on the partial list.
2887 remove_partial(n, page);
2888 stat(s, FREE_REMOVE_PARTIAL);
2890 /* Slab must be on the full list */
2891 remove_full(s, n, page);
2894 spin_unlock_irqrestore(&n->list_lock, flags);
2896 discard_slab(s, page);
2900 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2901 * can perform fastpath freeing without additional function calls.
2903 * The fastpath is only possible if we are freeing to the current cpu slab
2904 * of this processor. This typically the case if we have just allocated
2907 * If fastpath is not possible then fall back to __slab_free where we deal
2908 * with all sorts of special processing.
2910 * Bulk free of a freelist with several objects (all pointing to the
2911 * same page) possible by specifying head and tail ptr, plus objects
2912 * count (cnt). Bulk free indicated by tail pointer being set.
2914 static __always_inline void do_slab_free(struct kmem_cache *s,
2915 struct page *page, void *head, void *tail,
2916 int cnt, unsigned long addr)
2918 void *tail_obj = tail ? : head;
2919 struct kmem_cache_cpu *c;
2923 * Determine the currently cpus per cpu slab.
2924 * The cpu may change afterward. However that does not matter since
2925 * data is retrieved via this pointer. If we are on the same cpu
2926 * during the cmpxchg then the free will succeed.
2929 tid = this_cpu_read(s->cpu_slab->tid);
2930 c = raw_cpu_ptr(s->cpu_slab);
2931 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2932 unlikely(tid != READ_ONCE(c->tid)));
2934 /* Same with comment on barrier() in slab_alloc_node() */
2937 if (likely(page == c->page)) {
2938 set_freepointer(s, tail_obj, c->freelist);
2940 if (unlikely(!this_cpu_cmpxchg_double(
2941 s->cpu_slab->freelist, s->cpu_slab->tid,
2943 head, next_tid(tid)))) {
2945 note_cmpxchg_failure("slab_free", s, tid);
2948 stat(s, FREE_FASTPATH);
2950 __slab_free(s, page, head, tail_obj, cnt, addr);
2954 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2955 void *head, void *tail, int cnt,
2958 slab_free_freelist_hook(s, head, tail);
2960 * slab_free_freelist_hook() could have put the items into quarantine.
2961 * If so, no need to free them.
2963 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2965 do_slab_free(s, page, head, tail, cnt, addr);
2969 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2971 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2975 void kmem_cache_free(struct kmem_cache *s, void *x)
2977 s = cache_from_obj(s, x);
2980 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2981 trace_kmem_cache_free(_RET_IP_, x);
2983 EXPORT_SYMBOL(kmem_cache_free);
2985 struct detached_freelist {
2990 struct kmem_cache *s;
2994 * This function progressively scans the array with free objects (with
2995 * a limited look ahead) and extract objects belonging to the same
2996 * page. It builds a detached freelist directly within the given
2997 * page/objects. This can happen without any need for
2998 * synchronization, because the objects are owned by running process.
2999 * The freelist is build up as a single linked list in the objects.
3000 * The idea is, that this detached freelist can then be bulk
3001 * transferred to the real freelist(s), but only requiring a single
3002 * synchronization primitive. Look ahead in the array is limited due
3003 * to performance reasons.
3006 int build_detached_freelist(struct kmem_cache *s, size_t size,
3007 void **p, struct detached_freelist *df)
3009 size_t first_skipped_index = 0;
3014 /* Always re-init detached_freelist */
3019 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3020 } while (!object && size);
3025 page = virt_to_head_page(object);
3027 /* Handle kalloc'ed objects */
3028 if (unlikely(!PageSlab(page))) {
3029 BUG_ON(!PageCompound(page));
3031 __free_pages(page, compound_order(page));
3032 p[size] = NULL; /* mark object processed */
3035 /* Derive kmem_cache from object */
3036 df->s = page->slab_cache;
3038 df->s = cache_from_obj(s, object); /* Support for memcg */
3041 /* Start new detached freelist */
3043 set_freepointer(df->s, object, NULL);
3045 df->freelist = object;
3046 p[size] = NULL; /* mark object processed */
3052 continue; /* Skip processed objects */
3054 /* df->page is always set at this point */
3055 if (df->page == virt_to_head_page(object)) {
3056 /* Opportunity build freelist */
3057 set_freepointer(df->s, object, df->freelist);
3058 df->freelist = object;
3060 p[size] = NULL; /* mark object processed */
3065 /* Limit look ahead search */
3069 if (!first_skipped_index)
3070 first_skipped_index = size + 1;
3073 return first_skipped_index;
3076 /* Note that interrupts must be enabled when calling this function. */
3077 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3083 struct detached_freelist df;
3085 size = build_detached_freelist(s, size, p, &df);
3089 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3090 } while (likely(size));
3092 EXPORT_SYMBOL(kmem_cache_free_bulk);
3094 /* Note that interrupts must be enabled when calling this function. */
3095 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3098 struct kmem_cache_cpu *c;
3101 /* memcg and kmem_cache debug support */
3102 s = slab_pre_alloc_hook(s, flags);
3106 * Drain objects in the per cpu slab, while disabling local
3107 * IRQs, which protects against PREEMPT and interrupts
3108 * handlers invoking normal fastpath.
3110 local_irq_disable();
3111 c = this_cpu_ptr(s->cpu_slab);
3113 for (i = 0; i < size; i++) {
3114 void *object = c->freelist;
3116 if (unlikely(!object)) {
3118 * Invoking slow path likely have side-effect
3119 * of re-populating per CPU c->freelist
3121 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3123 if (unlikely(!p[i]))
3126 c = this_cpu_ptr(s->cpu_slab);
3127 continue; /* goto for-loop */
3129 c->freelist = get_freepointer(s, object);
3132 c->tid = next_tid(c->tid);
3135 /* Clear memory outside IRQ disabled fastpath loop */
3136 if (unlikely(flags & __GFP_ZERO)) {
3139 for (j = 0; j < i; j++)
3140 memset(p[j], 0, s->object_size);
3143 /* memcg and kmem_cache debug support */
3144 slab_post_alloc_hook(s, flags, size, p);
3148 slab_post_alloc_hook(s, flags, i, p);
3149 __kmem_cache_free_bulk(s, i, p);
3152 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3156 * Object placement in a slab is made very easy because we always start at
3157 * offset 0. If we tune the size of the object to the alignment then we can
3158 * get the required alignment by putting one properly sized object after
3161 * Notice that the allocation order determines the sizes of the per cpu
3162 * caches. Each processor has always one slab available for allocations.
3163 * Increasing the allocation order reduces the number of times that slabs
3164 * must be moved on and off the partial lists and is therefore a factor in
3169 * Mininum / Maximum order of slab pages. This influences locking overhead
3170 * and slab fragmentation. A higher order reduces the number of partial slabs
3171 * and increases the number of allocations possible without having to
3172 * take the list_lock.
3174 static int slub_min_order;
3175 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3176 static int slub_min_objects;
3179 * Calculate the order of allocation given an slab object size.
3181 * The order of allocation has significant impact on performance and other
3182 * system components. Generally order 0 allocations should be preferred since
3183 * order 0 does not cause fragmentation in the page allocator. Larger objects
3184 * be problematic to put into order 0 slabs because there may be too much
3185 * unused space left. We go to a higher order if more than 1/16th of the slab
3188 * In order to reach satisfactory performance we must ensure that a minimum
3189 * number of objects is in one slab. Otherwise we may generate too much
3190 * activity on the partial lists which requires taking the list_lock. This is
3191 * less a concern for large slabs though which are rarely used.
3193 * slub_max_order specifies the order where we begin to stop considering the
3194 * number of objects in a slab as critical. If we reach slub_max_order then
3195 * we try to keep the page order as low as possible. So we accept more waste
3196 * of space in favor of a small page order.
3198 * Higher order allocations also allow the placement of more objects in a
3199 * slab and thereby reduce object handling overhead. If the user has
3200 * requested a higher mininum order then we start with that one instead of
3201 * the smallest order which will fit the object.
3203 static inline int slab_order(int size, int min_objects,
3204 int max_order, int fract_leftover, int reserved)
3208 int min_order = slub_min_order;
3210 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3211 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3213 for (order = max(min_order, get_order(min_objects * size + reserved));
3214 order <= max_order; order++) {
3216 unsigned long slab_size = PAGE_SIZE << order;
3218 rem = (slab_size - reserved) % size;
3220 if (rem <= slab_size / fract_leftover)
3227 static inline int calculate_order(int size, int reserved)
3235 * Attempt to find best configuration for a slab. This
3236 * works by first attempting to generate a layout with
3237 * the best configuration and backing off gradually.
3239 * First we increase the acceptable waste in a slab. Then
3240 * we reduce the minimum objects required in a slab.
3242 min_objects = slub_min_objects;
3244 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3245 max_objects = order_objects(slub_max_order, size, reserved);
3246 min_objects = min(min_objects, max_objects);
3248 while (min_objects > 1) {
3250 while (fraction >= 4) {
3251 order = slab_order(size, min_objects,
3252 slub_max_order, fraction, reserved);
3253 if (order <= slub_max_order)
3261 * We were unable to place multiple objects in a slab. Now
3262 * lets see if we can place a single object there.
3264 order = slab_order(size, 1, slub_max_order, 1, reserved);
3265 if (order <= slub_max_order)
3269 * Doh this slab cannot be placed using slub_max_order.
3271 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3272 if (order < MAX_ORDER)
3278 init_kmem_cache_node(struct kmem_cache_node *n)
3281 spin_lock_init(&n->list_lock);
3282 INIT_LIST_HEAD(&n->partial);
3283 #ifdef CONFIG_SLUB_DEBUG
3284 atomic_long_set(&n->nr_slabs, 0);
3285 atomic_long_set(&n->total_objects, 0);
3286 INIT_LIST_HEAD(&n->full);
3290 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3292 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3293 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3296 * Must align to double word boundary for the double cmpxchg
3297 * instructions to work; see __pcpu_double_call_return_bool().
3299 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3300 2 * sizeof(void *));
3305 init_kmem_cache_cpus(s);
3310 static struct kmem_cache *kmem_cache_node;
3313 * No kmalloc_node yet so do it by hand. We know that this is the first
3314 * slab on the node for this slabcache. There are no concurrent accesses
3317 * Note that this function only works on the kmem_cache_node
3318 * when allocating for the kmem_cache_node. This is used for bootstrapping
3319 * memory on a fresh node that has no slab structures yet.
3321 static void early_kmem_cache_node_alloc(int node)
3324 struct kmem_cache_node *n;
3326 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3328 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3331 if (page_to_nid(page) != node) {
3332 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3333 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3338 page->freelist = get_freepointer(kmem_cache_node, n);
3341 kmem_cache_node->node[node] = n;
3342 #ifdef CONFIG_SLUB_DEBUG
3343 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3344 init_tracking(kmem_cache_node, n);
3346 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3348 init_kmem_cache_node(n);
3349 inc_slabs_node(kmem_cache_node, node, page->objects);
3352 * No locks need to be taken here as it has just been
3353 * initialized and there is no concurrent access.
3355 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3358 static void free_kmem_cache_nodes(struct kmem_cache *s)
3361 struct kmem_cache_node *n;
3363 for_each_kmem_cache_node(s, node, n) {
3364 kmem_cache_free(kmem_cache_node, n);
3365 s->node[node] = NULL;
3369 void __kmem_cache_release(struct kmem_cache *s)
3371 cache_random_seq_destroy(s);
3372 free_percpu(s->cpu_slab);
3373 free_kmem_cache_nodes(s);
3376 static int init_kmem_cache_nodes(struct kmem_cache *s)
3380 for_each_node_state(node, N_NORMAL_MEMORY) {
3381 struct kmem_cache_node *n;
3383 if (slab_state == DOWN) {
3384 early_kmem_cache_node_alloc(node);
3387 n = kmem_cache_alloc_node(kmem_cache_node,
3391 free_kmem_cache_nodes(s);
3396 init_kmem_cache_node(n);
3401 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3403 if (min < MIN_PARTIAL)
3405 else if (min > MAX_PARTIAL)
3407 s->min_partial = min;
3411 * calculate_sizes() determines the order and the distribution of data within
3414 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3416 unsigned long flags = s->flags;
3417 size_t size = s->object_size;
3421 * Round up object size to the next word boundary. We can only
3422 * place the free pointer at word boundaries and this determines
3423 * the possible location of the free pointer.
3425 size = ALIGN(size, sizeof(void *));
3427 #ifdef CONFIG_SLUB_DEBUG
3429 * Determine if we can poison the object itself. If the user of
3430 * the slab may touch the object after free or before allocation
3431 * then we should never poison the object itself.
3433 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3435 s->flags |= __OBJECT_POISON;
3437 s->flags &= ~__OBJECT_POISON;
3441 * If we are Redzoning then check if there is some space between the
3442 * end of the object and the free pointer. If not then add an
3443 * additional word to have some bytes to store Redzone information.
3445 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3446 size += sizeof(void *);
3450 * With that we have determined the number of bytes in actual use
3451 * by the object. This is the potential offset to the free pointer.
3455 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3458 * Relocate free pointer after the object if it is not
3459 * permitted to overwrite the first word of the object on
3462 * This is the case if we do RCU, have a constructor or
3463 * destructor or are poisoning the objects.
3466 size += sizeof(void *);
3469 #ifdef CONFIG_SLUB_DEBUG
3470 if (flags & SLAB_STORE_USER)
3472 * Need to store information about allocs and frees after
3475 size += 2 * sizeof(struct track);
3478 kasan_cache_create(s, &size, &s->flags);
3479 #ifdef CONFIG_SLUB_DEBUG
3480 if (flags & SLAB_RED_ZONE) {
3482 * Add some empty padding so that we can catch
3483 * overwrites from earlier objects rather than let
3484 * tracking information or the free pointer be
3485 * corrupted if a user writes before the start
3488 size += sizeof(void *);
3490 s->red_left_pad = sizeof(void *);
3491 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3492 size += s->red_left_pad;
3497 * SLUB stores one object immediately after another beginning from
3498 * offset 0. In order to align the objects we have to simply size
3499 * each object to conform to the alignment.
3501 size = ALIGN(size, s->align);
3503 if (forced_order >= 0)
3504 order = forced_order;
3506 order = calculate_order(size, s->reserved);
3513 s->allocflags |= __GFP_COMP;
3515 if (s->flags & SLAB_CACHE_DMA)
3516 s->allocflags |= GFP_DMA;
3518 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3519 s->allocflags |= __GFP_RECLAIMABLE;
3522 * Determine the number of objects per slab
3524 s->oo = oo_make(order, size, s->reserved);
3525 s->min = oo_make(get_order(size), size, s->reserved);
3526 if (oo_objects(s->oo) > oo_objects(s->max))
3529 return !!oo_objects(s->oo);
3532 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3534 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3537 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3538 s->reserved = sizeof(struct rcu_head);
3540 if (!calculate_sizes(s, -1))
3542 if (disable_higher_order_debug) {
3544 * Disable debugging flags that store metadata if the min slab
3547 if (get_order(s->size) > get_order(s->object_size)) {
3548 s->flags &= ~DEBUG_METADATA_FLAGS;
3550 if (!calculate_sizes(s, -1))
3555 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3556 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3557 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3558 /* Enable fast mode */
3559 s->flags |= __CMPXCHG_DOUBLE;
3563 * The larger the object size is, the more pages we want on the partial
3564 * list to avoid pounding the page allocator excessively.
3566 set_min_partial(s, ilog2(s->size) / 2);
3569 * cpu_partial determined the maximum number of objects kept in the
3570 * per cpu partial lists of a processor.
3572 * Per cpu partial lists mainly contain slabs that just have one
3573 * object freed. If they are used for allocation then they can be
3574 * filled up again with minimal effort. The slab will never hit the
3575 * per node partial lists and therefore no locking will be required.
3577 * This setting also determines
3579 * A) The number of objects from per cpu partial slabs dumped to the
3580 * per node list when we reach the limit.
3581 * B) The number of objects in cpu partial slabs to extract from the
3582 * per node list when we run out of per cpu objects. We only fetch
3583 * 50% to keep some capacity around for frees.
3585 if (!kmem_cache_has_cpu_partial(s))
3587 else if (s->size >= PAGE_SIZE)
3589 else if (s->size >= 1024)
3591 else if (s->size >= 256)
3592 s->cpu_partial = 13;
3594 s->cpu_partial = 30;
3597 s->remote_node_defrag_ratio = 1000;
3600 /* Initialize the pre-computed randomized freelist if slab is up */
3601 if (slab_state >= UP) {
3602 if (init_cache_random_seq(s))
3606 if (!init_kmem_cache_nodes(s))
3609 if (alloc_kmem_cache_cpus(s))
3612 free_kmem_cache_nodes(s);
3614 if (flags & SLAB_PANIC)
3615 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3616 s->name, (unsigned long)s->size, s->size,
3617 oo_order(s->oo), s->offset, flags);
3621 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3624 #ifdef CONFIG_SLUB_DEBUG
3625 void *addr = page_address(page);
3627 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3628 sizeof(long), GFP_ATOMIC);
3631 slab_err(s, page, text, s->name);
3634 get_map(s, page, map);
3635 for_each_object(p, s, addr, page->objects) {
3637 if (!test_bit(slab_index(p, s, addr), map)) {
3638 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3639 print_tracking(s, p);
3648 * Attempt to free all partial slabs on a node.
3649 * This is called from __kmem_cache_shutdown(). We must take list_lock
3650 * because sysfs file might still access partial list after the shutdowning.
3652 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3655 struct page *page, *h;
3657 BUG_ON(irqs_disabled());
3658 spin_lock_irq(&n->list_lock);
3659 list_for_each_entry_safe(page, h, &n->partial, lru) {
3661 remove_partial(n, page);
3662 list_add(&page->lru, &discard);
3664 list_slab_objects(s, page,
3665 "Objects remaining in %s on __kmem_cache_shutdown()");
3668 spin_unlock_irq(&n->list_lock);
3670 list_for_each_entry_safe(page, h, &discard, lru)
3671 discard_slab(s, page);
3675 * Release all resources used by a slab cache.
3677 int __kmem_cache_shutdown(struct kmem_cache *s)
3680 struct kmem_cache_node *n;
3683 /* Attempt to free all objects */
3684 for_each_kmem_cache_node(s, node, n) {
3686 if (n->nr_partial || slabs_node(s, node))
3692 /********************************************************************
3694 *******************************************************************/
3696 static int __init setup_slub_min_order(char *str)
3698 get_option(&str, &slub_min_order);
3703 __setup("slub_min_order=", setup_slub_min_order);
3705 static int __init setup_slub_max_order(char *str)
3707 get_option(&str, &slub_max_order);
3708 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3713 __setup("slub_max_order=", setup_slub_max_order);
3715 static int __init setup_slub_min_objects(char *str)
3717 get_option(&str, &slub_min_objects);
3722 __setup("slub_min_objects=", setup_slub_min_objects);
3724 void *__kmalloc(size_t size, gfp_t flags)
3726 struct kmem_cache *s;
3729 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3730 return kmalloc_large(size, flags);
3732 s = kmalloc_slab(size, flags);
3734 if (unlikely(ZERO_OR_NULL_PTR(s)))
3737 ret = slab_alloc(s, flags, _RET_IP_);
3739 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3741 kasan_kmalloc(s, ret, size, flags);
3745 EXPORT_SYMBOL(__kmalloc);
3748 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3753 flags |= __GFP_COMP | __GFP_NOTRACK;
3754 page = alloc_pages_node(node, flags, get_order(size));
3756 ptr = page_address(page);
3758 kmalloc_large_node_hook(ptr, size, flags);
3762 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3764 struct kmem_cache *s;
3767 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3768 ret = kmalloc_large_node(size, flags, node);
3770 trace_kmalloc_node(_RET_IP_, ret,
3771 size, PAGE_SIZE << get_order(size),
3777 s = kmalloc_slab(size, flags);
3779 if (unlikely(ZERO_OR_NULL_PTR(s)))
3782 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3784 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3786 kasan_kmalloc(s, ret, size, flags);
3790 EXPORT_SYMBOL(__kmalloc_node);
3793 #ifdef CONFIG_HARDENED_USERCOPY
3795 * Rejects objects that are incorrectly sized.
3797 * Returns NULL if check passes, otherwise const char * to name of cache
3798 * to indicate an error.
3800 const char *__check_heap_object(const void *ptr, unsigned long n,
3803 struct kmem_cache *s;
3804 unsigned long offset;
3807 /* Find object and usable object size. */
3808 s = page->slab_cache;
3809 object_size = slab_ksize(s);
3811 /* Reject impossible pointers. */
3812 if (ptr < page_address(page))
3815 /* Find offset within object. */
3816 offset = (ptr - page_address(page)) % s->size;
3818 /* Adjust for redzone and reject if within the redzone. */
3819 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3820 if (offset < s->red_left_pad)
3822 offset -= s->red_left_pad;
3825 /* Allow address range falling entirely within object size. */
3826 if (offset <= object_size && n <= object_size - offset)
3831 #endif /* CONFIG_HARDENED_USERCOPY */
3833 static size_t __ksize(const void *object)
3837 if (unlikely(object == ZERO_SIZE_PTR))
3840 page = virt_to_head_page(object);
3842 if (unlikely(!PageSlab(page))) {
3843 WARN_ON(!PageCompound(page));
3844 return PAGE_SIZE << compound_order(page);
3847 return slab_ksize(page->slab_cache);
3850 size_t ksize(const void *object)
3852 size_t size = __ksize(object);
3853 /* We assume that ksize callers could use whole allocated area,
3854 * so we need to unpoison this area.
3856 kasan_unpoison_shadow(object, size);
3859 EXPORT_SYMBOL(ksize);
3861 void kfree(const void *x)
3864 void *object = (void *)x;
3866 trace_kfree(_RET_IP_, x);
3868 if (unlikely(ZERO_OR_NULL_PTR(x)))
3871 page = virt_to_head_page(x);
3872 if (unlikely(!PageSlab(page))) {
3873 BUG_ON(!PageCompound(page));
3875 __free_pages(page, compound_order(page));
3878 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3880 EXPORT_SYMBOL(kfree);
3882 #define SHRINK_PROMOTE_MAX 32
3885 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3886 * up most to the head of the partial lists. New allocations will then
3887 * fill those up and thus they can be removed from the partial lists.
3889 * The slabs with the least items are placed last. This results in them
3890 * being allocated from last increasing the chance that the last objects
3891 * are freed in them.
3893 int __kmem_cache_shrink(struct kmem_cache *s)
3897 struct kmem_cache_node *n;
3900 struct list_head discard;
3901 struct list_head promote[SHRINK_PROMOTE_MAX];
3902 unsigned long flags;
3906 for_each_kmem_cache_node(s, node, n) {
3907 INIT_LIST_HEAD(&discard);
3908 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3909 INIT_LIST_HEAD(promote + i);
3911 spin_lock_irqsave(&n->list_lock, flags);
3914 * Build lists of slabs to discard or promote.
3916 * Note that concurrent frees may occur while we hold the
3917 * list_lock. page->inuse here is the upper limit.
3919 list_for_each_entry_safe(page, t, &n->partial, lru) {
3920 int free = page->objects - page->inuse;
3922 /* Do not reread page->inuse */
3925 /* We do not keep full slabs on the list */
3928 if (free == page->objects) {
3929 list_move(&page->lru, &discard);
3931 } else if (free <= SHRINK_PROMOTE_MAX)
3932 list_move(&page->lru, promote + free - 1);
3936 * Promote the slabs filled up most to the head of the
3939 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3940 list_splice(promote + i, &n->partial);
3942 spin_unlock_irqrestore(&n->list_lock, flags);
3944 /* Release empty slabs */
3945 list_for_each_entry_safe(page, t, &discard, lru)
3946 discard_slab(s, page);
3948 if (slabs_node(s, node))
3955 static int slab_mem_going_offline_callback(void *arg)
3957 struct kmem_cache *s;
3959 mutex_lock(&slab_mutex);
3960 list_for_each_entry(s, &slab_caches, list)
3961 __kmem_cache_shrink(s);
3962 mutex_unlock(&slab_mutex);
3967 static void slab_mem_offline_callback(void *arg)
3969 struct kmem_cache_node *n;
3970 struct kmem_cache *s;
3971 struct memory_notify *marg = arg;
3974 offline_node = marg->status_change_nid_normal;
3977 * If the node still has available memory. we need kmem_cache_node
3980 if (offline_node < 0)
3983 mutex_lock(&slab_mutex);
3984 list_for_each_entry(s, &slab_caches, list) {
3985 n = get_node(s, offline_node);
3988 * if n->nr_slabs > 0, slabs still exist on the node
3989 * that is going down. We were unable to free them,
3990 * and offline_pages() function shouldn't call this
3991 * callback. So, we must fail.
3993 BUG_ON(slabs_node(s, offline_node));
3995 s->node[offline_node] = NULL;
3996 kmem_cache_free(kmem_cache_node, n);
3999 mutex_unlock(&slab_mutex);
4002 static int slab_mem_going_online_callback(void *arg)
4004 struct kmem_cache_node *n;
4005 struct kmem_cache *s;
4006 struct memory_notify *marg = arg;
4007 int nid = marg->status_change_nid_normal;
4011 * If the node's memory is already available, then kmem_cache_node is
4012 * already created. Nothing to do.
4018 * We are bringing a node online. No memory is available yet. We must
4019 * allocate a kmem_cache_node structure in order to bring the node
4022 mutex_lock(&slab_mutex);
4023 list_for_each_entry(s, &slab_caches, list) {
4025 * XXX: kmem_cache_alloc_node will fallback to other nodes
4026 * since memory is not yet available from the node that
4029 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4034 init_kmem_cache_node(n);
4038 mutex_unlock(&slab_mutex);
4042 static int slab_memory_callback(struct notifier_block *self,
4043 unsigned long action, void *arg)
4048 case MEM_GOING_ONLINE:
4049 ret = slab_mem_going_online_callback(arg);
4051 case MEM_GOING_OFFLINE:
4052 ret = slab_mem_going_offline_callback(arg);
4055 case MEM_CANCEL_ONLINE:
4056 slab_mem_offline_callback(arg);
4059 case MEM_CANCEL_OFFLINE:
4063 ret = notifier_from_errno(ret);
4069 static struct notifier_block slab_memory_callback_nb = {
4070 .notifier_call = slab_memory_callback,
4071 .priority = SLAB_CALLBACK_PRI,
4074 /********************************************************************
4075 * Basic setup of slabs
4076 *******************************************************************/
4079 * Used for early kmem_cache structures that were allocated using
4080 * the page allocator. Allocate them properly then fix up the pointers
4081 * that may be pointing to the wrong kmem_cache structure.
4084 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4087 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4088 struct kmem_cache_node *n;
4090 memcpy(s, static_cache, kmem_cache->object_size);
4093 * This runs very early, and only the boot processor is supposed to be
4094 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4097 __flush_cpu_slab(s, smp_processor_id());
4098 for_each_kmem_cache_node(s, node, n) {
4101 list_for_each_entry(p, &n->partial, lru)
4104 #ifdef CONFIG_SLUB_DEBUG
4105 list_for_each_entry(p, &n->full, lru)
4109 slab_init_memcg_params(s);
4110 list_add(&s->list, &slab_caches);
4114 void __init kmem_cache_init(void)
4116 static __initdata struct kmem_cache boot_kmem_cache,
4117 boot_kmem_cache_node;
4119 if (debug_guardpage_minorder())
4122 kmem_cache_node = &boot_kmem_cache_node;
4123 kmem_cache = &boot_kmem_cache;
4125 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4126 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4128 register_hotmemory_notifier(&slab_memory_callback_nb);
4130 /* Able to allocate the per node structures */
4131 slab_state = PARTIAL;
4133 create_boot_cache(kmem_cache, "kmem_cache",
4134 offsetof(struct kmem_cache, node) +
4135 nr_node_ids * sizeof(struct kmem_cache_node *),
4136 SLAB_HWCACHE_ALIGN);
4138 kmem_cache = bootstrap(&boot_kmem_cache);
4141 * Allocate kmem_cache_node properly from the kmem_cache slab.
4142 * kmem_cache_node is separately allocated so no need to
4143 * update any list pointers.
4145 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4147 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4148 setup_kmalloc_cache_index_table();
4149 create_kmalloc_caches(0);
4151 /* Setup random freelists for each cache */
4152 init_freelist_randomization();
4154 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4157 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4159 slub_min_order, slub_max_order, slub_min_objects,
4160 nr_cpu_ids, nr_node_ids);
4163 void __init kmem_cache_init_late(void)
4168 __kmem_cache_alias(const char *name, size_t size, size_t align,
4169 unsigned long flags, void (*ctor)(void *))
4171 struct kmem_cache *s, *c;
4173 s = find_mergeable(size, align, flags, name, ctor);
4178 * Adjust the object sizes so that we clear
4179 * the complete object on kzalloc.
4181 s->object_size = max(s->object_size, (int)size);
4182 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4184 for_each_memcg_cache(c, s) {
4185 c->object_size = s->object_size;
4186 c->inuse = max_t(int, c->inuse,
4187 ALIGN(size, sizeof(void *)));
4190 if (sysfs_slab_alias(s, name)) {
4199 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4203 err = kmem_cache_open(s, flags);
4207 /* Mutex is not taken during early boot */
4208 if (slab_state <= UP)
4211 memcg_propagate_slab_attrs(s);
4212 err = sysfs_slab_add(s);
4214 __kmem_cache_release(s);
4219 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4221 struct kmem_cache *s;
4224 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4225 return kmalloc_large(size, gfpflags);
4227 s = kmalloc_slab(size, gfpflags);
4229 if (unlikely(ZERO_OR_NULL_PTR(s)))
4232 ret = slab_alloc(s, gfpflags, caller);
4234 /* Honor the call site pointer we received. */
4235 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4241 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4242 int node, unsigned long caller)
4244 struct kmem_cache *s;
4247 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4248 ret = kmalloc_large_node(size, gfpflags, node);
4250 trace_kmalloc_node(caller, ret,
4251 size, PAGE_SIZE << get_order(size),
4257 s = kmalloc_slab(size, gfpflags);
4259 if (unlikely(ZERO_OR_NULL_PTR(s)))
4262 ret = slab_alloc_node(s, gfpflags, node, caller);
4264 /* Honor the call site pointer we received. */
4265 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4272 static int count_inuse(struct page *page)
4277 static int count_total(struct page *page)
4279 return page->objects;
4283 #ifdef CONFIG_SLUB_DEBUG
4284 static int validate_slab(struct kmem_cache *s, struct page *page,
4288 void *addr = page_address(page);
4290 if (!check_slab(s, page) ||
4291 !on_freelist(s, page, NULL))
4294 /* Now we know that a valid freelist exists */
4295 bitmap_zero(map, page->objects);
4297 get_map(s, page, map);
4298 for_each_object(p, s, addr, page->objects) {
4299 if (test_bit(slab_index(p, s, addr), map))
4300 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4304 for_each_object(p, s, addr, page->objects)
4305 if (!test_bit(slab_index(p, s, addr), map))
4306 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4311 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4315 validate_slab(s, page, map);
4319 static int validate_slab_node(struct kmem_cache *s,
4320 struct kmem_cache_node *n, unsigned long *map)
4322 unsigned long count = 0;
4324 unsigned long flags;
4326 spin_lock_irqsave(&n->list_lock, flags);
4328 list_for_each_entry(page, &n->partial, lru) {
4329 validate_slab_slab(s, page, map);
4332 if (count != n->nr_partial)
4333 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4334 s->name, count, n->nr_partial);
4336 if (!(s->flags & SLAB_STORE_USER))
4339 list_for_each_entry(page, &n->full, lru) {
4340 validate_slab_slab(s, page, map);
4343 if (count != atomic_long_read(&n->nr_slabs))
4344 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4345 s->name, count, atomic_long_read(&n->nr_slabs));
4348 spin_unlock_irqrestore(&n->list_lock, flags);
4352 static long validate_slab_cache(struct kmem_cache *s)
4355 unsigned long count = 0;
4356 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4357 sizeof(unsigned long), GFP_KERNEL);
4358 struct kmem_cache_node *n;
4364 for_each_kmem_cache_node(s, node, n)
4365 count += validate_slab_node(s, n, map);
4370 * Generate lists of code addresses where slabcache objects are allocated
4375 unsigned long count;
4382 DECLARE_BITMAP(cpus, NR_CPUS);
4388 unsigned long count;
4389 struct location *loc;
4392 static void free_loc_track(struct loc_track *t)
4395 free_pages((unsigned long)t->loc,
4396 get_order(sizeof(struct location) * t->max));
4399 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4404 order = get_order(sizeof(struct location) * max);
4406 l = (void *)__get_free_pages(flags, order);
4411 memcpy(l, t->loc, sizeof(struct location) * t->count);
4419 static int add_location(struct loc_track *t, struct kmem_cache *s,
4420 const struct track *track)
4422 long start, end, pos;
4424 unsigned long caddr;
4425 unsigned long age = jiffies - track->when;
4431 pos = start + (end - start + 1) / 2;
4434 * There is nothing at "end". If we end up there
4435 * we need to add something to before end.
4440 caddr = t->loc[pos].addr;
4441 if (track->addr == caddr) {
4447 if (age < l->min_time)
4449 if (age > l->max_time)
4452 if (track->pid < l->min_pid)
4453 l->min_pid = track->pid;
4454 if (track->pid > l->max_pid)
4455 l->max_pid = track->pid;
4457 cpumask_set_cpu(track->cpu,
4458 to_cpumask(l->cpus));
4460 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4464 if (track->addr < caddr)
4471 * Not found. Insert new tracking element.
4473 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4479 (t->count - pos) * sizeof(struct location));
4482 l->addr = track->addr;
4486 l->min_pid = track->pid;
4487 l->max_pid = track->pid;
4488 cpumask_clear(to_cpumask(l->cpus));
4489 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4490 nodes_clear(l->nodes);
4491 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4495 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4496 struct page *page, enum track_item alloc,
4499 void *addr = page_address(page);
4502 bitmap_zero(map, page->objects);
4503 get_map(s, page, map);
4505 for_each_object(p, s, addr, page->objects)
4506 if (!test_bit(slab_index(p, s, addr), map))
4507 add_location(t, s, get_track(s, p, alloc));
4510 static int list_locations(struct kmem_cache *s, char *buf,
4511 enum track_item alloc)
4515 struct loc_track t = { 0, 0, NULL };
4517 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4518 sizeof(unsigned long), GFP_KERNEL);
4519 struct kmem_cache_node *n;
4521 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4524 return sprintf(buf, "Out of memory\n");
4526 /* Push back cpu slabs */
4529 for_each_kmem_cache_node(s, node, n) {
4530 unsigned long flags;
4533 if (!atomic_long_read(&n->nr_slabs))
4536 spin_lock_irqsave(&n->list_lock, flags);
4537 list_for_each_entry(page, &n->partial, lru)
4538 process_slab(&t, s, page, alloc, map);
4539 list_for_each_entry(page, &n->full, lru)
4540 process_slab(&t, s, page, alloc, map);
4541 spin_unlock_irqrestore(&n->list_lock, flags);
4544 for (i = 0; i < t.count; i++) {
4545 struct location *l = &t.loc[i];
4547 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4549 len += sprintf(buf + len, "%7ld ", l->count);
4552 len += sprintf(buf + len, "%pS", (void *)l->addr);
4554 len += sprintf(buf + len, "<not-available>");
4556 if (l->sum_time != l->min_time) {
4557 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4559 (long)div_u64(l->sum_time, l->count),
4562 len += sprintf(buf + len, " age=%ld",
4565 if (l->min_pid != l->max_pid)
4566 len += sprintf(buf + len, " pid=%ld-%ld",
4567 l->min_pid, l->max_pid);
4569 len += sprintf(buf + len, " pid=%ld",
4572 if (num_online_cpus() > 1 &&
4573 !cpumask_empty(to_cpumask(l->cpus)) &&
4574 len < PAGE_SIZE - 60)
4575 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4577 cpumask_pr_args(to_cpumask(l->cpus)));
4579 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4580 len < PAGE_SIZE - 60)
4581 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4583 nodemask_pr_args(&l->nodes));
4585 len += sprintf(buf + len, "\n");
4591 len += sprintf(buf, "No data\n");
4596 #ifdef SLUB_RESILIENCY_TEST
4597 static void __init resiliency_test(void)
4601 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4603 pr_err("SLUB resiliency testing\n");
4604 pr_err("-----------------------\n");
4605 pr_err("A. Corruption after allocation\n");
4607 p = kzalloc(16, GFP_KERNEL);
4609 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4612 validate_slab_cache(kmalloc_caches[4]);
4614 /* Hmmm... The next two are dangerous */
4615 p = kzalloc(32, GFP_KERNEL);
4616 p[32 + sizeof(void *)] = 0x34;
4617 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4619 pr_err("If allocated object is overwritten then not detectable\n\n");
4621 validate_slab_cache(kmalloc_caches[5]);
4622 p = kzalloc(64, GFP_KERNEL);
4623 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4625 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4627 pr_err("If allocated object is overwritten then not detectable\n\n");
4628 validate_slab_cache(kmalloc_caches[6]);
4630 pr_err("\nB. Corruption after free\n");
4631 p = kzalloc(128, GFP_KERNEL);
4634 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4635 validate_slab_cache(kmalloc_caches[7]);
4637 p = kzalloc(256, GFP_KERNEL);
4640 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4641 validate_slab_cache(kmalloc_caches[8]);
4643 p = kzalloc(512, GFP_KERNEL);
4646 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4647 validate_slab_cache(kmalloc_caches[9]);
4651 static void resiliency_test(void) {};
4656 enum slab_stat_type {
4657 SL_ALL, /* All slabs */
4658 SL_PARTIAL, /* Only partially allocated slabs */
4659 SL_CPU, /* Only slabs used for cpu caches */
4660 SL_OBJECTS, /* Determine allocated objects not slabs */
4661 SL_TOTAL /* Determine object capacity not slabs */
4664 #define SO_ALL (1 << SL_ALL)
4665 #define SO_PARTIAL (1 << SL_PARTIAL)
4666 #define SO_CPU (1 << SL_CPU)
4667 #define SO_OBJECTS (1 << SL_OBJECTS)
4668 #define SO_TOTAL (1 << SL_TOTAL)
4670 static ssize_t show_slab_objects(struct kmem_cache *s,
4671 char *buf, unsigned long flags)
4673 unsigned long total = 0;
4676 unsigned long *nodes;
4678 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4682 if (flags & SO_CPU) {
4685 for_each_possible_cpu(cpu) {
4686 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4691 page = READ_ONCE(c->page);
4695 node = page_to_nid(page);
4696 if (flags & SO_TOTAL)
4698 else if (flags & SO_OBJECTS)
4706 page = READ_ONCE(c->partial);
4708 node = page_to_nid(page);
4709 if (flags & SO_TOTAL)
4711 else if (flags & SO_OBJECTS)
4722 #ifdef CONFIG_SLUB_DEBUG
4723 if (flags & SO_ALL) {
4724 struct kmem_cache_node *n;
4726 for_each_kmem_cache_node(s, node, n) {
4728 if (flags & SO_TOTAL)
4729 x = atomic_long_read(&n->total_objects);
4730 else if (flags & SO_OBJECTS)
4731 x = atomic_long_read(&n->total_objects) -
4732 count_partial(n, count_free);
4734 x = atomic_long_read(&n->nr_slabs);
4741 if (flags & SO_PARTIAL) {
4742 struct kmem_cache_node *n;
4744 for_each_kmem_cache_node(s, node, n) {
4745 if (flags & SO_TOTAL)
4746 x = count_partial(n, count_total);
4747 else if (flags & SO_OBJECTS)
4748 x = count_partial(n, count_inuse);
4755 x = sprintf(buf, "%lu", total);
4757 for (node = 0; node < nr_node_ids; node++)
4759 x += sprintf(buf + x, " N%d=%lu",
4764 return x + sprintf(buf + x, "\n");
4767 #ifdef CONFIG_SLUB_DEBUG
4768 static int any_slab_objects(struct kmem_cache *s)
4771 struct kmem_cache_node *n;
4773 for_each_kmem_cache_node(s, node, n)
4774 if (atomic_long_read(&n->total_objects))
4781 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4782 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4784 struct slab_attribute {
4785 struct attribute attr;
4786 ssize_t (*show)(struct kmem_cache *s, char *buf);
4787 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4790 #define SLAB_ATTR_RO(_name) \
4791 static struct slab_attribute _name##_attr = \
4792 __ATTR(_name, 0400, _name##_show, NULL)
4794 #define SLAB_ATTR(_name) \
4795 static struct slab_attribute _name##_attr = \
4796 __ATTR(_name, 0600, _name##_show, _name##_store)
4798 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4800 return sprintf(buf, "%d\n", s->size);
4802 SLAB_ATTR_RO(slab_size);
4804 static ssize_t align_show(struct kmem_cache *s, char *buf)
4806 return sprintf(buf, "%d\n", s->align);
4808 SLAB_ATTR_RO(align);
4810 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4812 return sprintf(buf, "%d\n", s->object_size);
4814 SLAB_ATTR_RO(object_size);
4816 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4818 return sprintf(buf, "%d\n", oo_objects(s->oo));
4820 SLAB_ATTR_RO(objs_per_slab);
4822 static ssize_t order_store(struct kmem_cache *s,
4823 const char *buf, size_t length)
4825 unsigned long order;
4828 err = kstrtoul(buf, 10, &order);
4832 if (order > slub_max_order || order < slub_min_order)
4835 calculate_sizes(s, order);
4839 static ssize_t order_show(struct kmem_cache *s, char *buf)
4841 return sprintf(buf, "%d\n", oo_order(s->oo));
4845 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4847 return sprintf(buf, "%lu\n", s->min_partial);
4850 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4856 err = kstrtoul(buf, 10, &min);
4860 set_min_partial(s, min);
4863 SLAB_ATTR(min_partial);
4865 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4867 return sprintf(buf, "%u\n", s->cpu_partial);
4870 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4873 unsigned long objects;
4876 err = kstrtoul(buf, 10, &objects);
4879 if (objects && !kmem_cache_has_cpu_partial(s))
4882 s->cpu_partial = objects;
4886 SLAB_ATTR(cpu_partial);
4888 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4892 return sprintf(buf, "%pS\n", s->ctor);
4896 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4898 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4900 SLAB_ATTR_RO(aliases);
4902 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4904 return show_slab_objects(s, buf, SO_PARTIAL);
4906 SLAB_ATTR_RO(partial);
4908 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4910 return show_slab_objects(s, buf, SO_CPU);
4912 SLAB_ATTR_RO(cpu_slabs);
4914 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4916 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4918 SLAB_ATTR_RO(objects);
4920 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4922 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4924 SLAB_ATTR_RO(objects_partial);
4926 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4933 for_each_online_cpu(cpu) {
4934 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4937 pages += page->pages;
4938 objects += page->pobjects;
4942 len = sprintf(buf, "%d(%d)", objects, pages);
4945 for_each_online_cpu(cpu) {
4946 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4948 if (page && len < PAGE_SIZE - 20)
4949 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4950 page->pobjects, page->pages);
4953 return len + sprintf(buf + len, "\n");
4955 SLAB_ATTR_RO(slabs_cpu_partial);
4957 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4959 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4962 static ssize_t reclaim_account_store(struct kmem_cache *s,
4963 const char *buf, size_t length)
4965 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4967 s->flags |= SLAB_RECLAIM_ACCOUNT;
4970 SLAB_ATTR(reclaim_account);
4972 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4974 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4976 SLAB_ATTR_RO(hwcache_align);
4978 #ifdef CONFIG_ZONE_DMA
4979 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4981 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4983 SLAB_ATTR_RO(cache_dma);
4986 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4988 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4990 SLAB_ATTR_RO(destroy_by_rcu);
4992 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4994 return sprintf(buf, "%d\n", s->reserved);
4996 SLAB_ATTR_RO(reserved);
4998 #ifdef CONFIG_SLUB_DEBUG
4999 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5001 return show_slab_objects(s, buf, SO_ALL);
5003 SLAB_ATTR_RO(slabs);
5005 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5007 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5009 SLAB_ATTR_RO(total_objects);
5011 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5013 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5016 static ssize_t sanity_checks_store(struct kmem_cache *s,
5017 const char *buf, size_t length)
5019 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5020 if (buf[0] == '1') {
5021 s->flags &= ~__CMPXCHG_DOUBLE;
5022 s->flags |= SLAB_CONSISTENCY_CHECKS;
5026 SLAB_ATTR(sanity_checks);
5028 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5030 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5033 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5037 * Tracing a merged cache is going to give confusing results
5038 * as well as cause other issues like converting a mergeable
5039 * cache into an umergeable one.
5041 if (s->refcount > 1)
5044 s->flags &= ~SLAB_TRACE;
5045 if (buf[0] == '1') {
5046 s->flags &= ~__CMPXCHG_DOUBLE;
5047 s->flags |= SLAB_TRACE;
5053 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5058 static ssize_t red_zone_store(struct kmem_cache *s,
5059 const char *buf, size_t length)
5061 if (any_slab_objects(s))
5064 s->flags &= ~SLAB_RED_ZONE;
5065 if (buf[0] == '1') {
5066 s->flags |= SLAB_RED_ZONE;
5068 calculate_sizes(s, -1);
5071 SLAB_ATTR(red_zone);
5073 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5078 static ssize_t poison_store(struct kmem_cache *s,
5079 const char *buf, size_t length)
5081 if (any_slab_objects(s))
5084 s->flags &= ~SLAB_POISON;
5085 if (buf[0] == '1') {
5086 s->flags |= SLAB_POISON;
5088 calculate_sizes(s, -1);
5093 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5095 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5098 static ssize_t store_user_store(struct kmem_cache *s,
5099 const char *buf, size_t length)
5101 if (any_slab_objects(s))
5104 s->flags &= ~SLAB_STORE_USER;
5105 if (buf[0] == '1') {
5106 s->flags &= ~__CMPXCHG_DOUBLE;
5107 s->flags |= SLAB_STORE_USER;
5109 calculate_sizes(s, -1);
5112 SLAB_ATTR(store_user);
5114 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5119 static ssize_t validate_store(struct kmem_cache *s,
5120 const char *buf, size_t length)
5124 if (buf[0] == '1') {
5125 ret = validate_slab_cache(s);
5131 SLAB_ATTR(validate);
5133 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5135 if (!(s->flags & SLAB_STORE_USER))
5137 return list_locations(s, buf, TRACK_ALLOC);
5139 SLAB_ATTR_RO(alloc_calls);
5141 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5143 if (!(s->flags & SLAB_STORE_USER))
5145 return list_locations(s, buf, TRACK_FREE);
5147 SLAB_ATTR_RO(free_calls);
5148 #endif /* CONFIG_SLUB_DEBUG */
5150 #ifdef CONFIG_FAILSLAB
5151 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5153 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5156 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5159 if (s->refcount > 1)
5162 s->flags &= ~SLAB_FAILSLAB;
5164 s->flags |= SLAB_FAILSLAB;
5167 SLAB_ATTR(failslab);
5170 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5175 static ssize_t shrink_store(struct kmem_cache *s,
5176 const char *buf, size_t length)
5179 kmem_cache_shrink(s);
5187 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5189 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5192 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5193 const char *buf, size_t length)
5195 unsigned long ratio;
5198 err = kstrtoul(buf, 10, &ratio);
5203 s->remote_node_defrag_ratio = ratio * 10;
5207 SLAB_ATTR(remote_node_defrag_ratio);
5210 #ifdef CONFIG_SLUB_STATS
5211 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5213 unsigned long sum = 0;
5216 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5221 for_each_online_cpu(cpu) {
5222 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5228 len = sprintf(buf, "%lu", sum);
5231 for_each_online_cpu(cpu) {
5232 if (data[cpu] && len < PAGE_SIZE - 20)
5233 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5237 return len + sprintf(buf + len, "\n");
5240 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5244 for_each_online_cpu(cpu)
5245 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5248 #define STAT_ATTR(si, text) \
5249 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5251 return show_stat(s, buf, si); \
5253 static ssize_t text##_store(struct kmem_cache *s, \
5254 const char *buf, size_t length) \
5256 if (buf[0] != '0') \
5258 clear_stat(s, si); \
5263 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5264 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5265 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5266 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5267 STAT_ATTR(FREE_FROZEN, free_frozen);
5268 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5269 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5270 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5271 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5272 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5273 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5274 STAT_ATTR(FREE_SLAB, free_slab);
5275 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5276 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5277 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5278 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5279 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5280 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5281 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5282 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5283 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5284 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5285 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5286 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5287 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5288 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5291 static struct attribute *slab_attrs[] = {
5292 &slab_size_attr.attr,
5293 &object_size_attr.attr,
5294 &objs_per_slab_attr.attr,
5296 &min_partial_attr.attr,
5297 &cpu_partial_attr.attr,
5299 &objects_partial_attr.attr,
5301 &cpu_slabs_attr.attr,
5305 &hwcache_align_attr.attr,
5306 &reclaim_account_attr.attr,
5307 &destroy_by_rcu_attr.attr,
5309 &reserved_attr.attr,
5310 &slabs_cpu_partial_attr.attr,
5311 #ifdef CONFIG_SLUB_DEBUG
5312 &total_objects_attr.attr,
5314 &sanity_checks_attr.attr,
5316 &red_zone_attr.attr,
5318 &store_user_attr.attr,
5319 &validate_attr.attr,
5320 &alloc_calls_attr.attr,
5321 &free_calls_attr.attr,
5323 #ifdef CONFIG_ZONE_DMA
5324 &cache_dma_attr.attr,
5327 &remote_node_defrag_ratio_attr.attr,
5329 #ifdef CONFIG_SLUB_STATS
5330 &alloc_fastpath_attr.attr,
5331 &alloc_slowpath_attr.attr,
5332 &free_fastpath_attr.attr,
5333 &free_slowpath_attr.attr,
5334 &free_frozen_attr.attr,
5335 &free_add_partial_attr.attr,
5336 &free_remove_partial_attr.attr,
5337 &alloc_from_partial_attr.attr,
5338 &alloc_slab_attr.attr,
5339 &alloc_refill_attr.attr,
5340 &alloc_node_mismatch_attr.attr,
5341 &free_slab_attr.attr,
5342 &cpuslab_flush_attr.attr,
5343 &deactivate_full_attr.attr,
5344 &deactivate_empty_attr.attr,
5345 &deactivate_to_head_attr.attr,
5346 &deactivate_to_tail_attr.attr,
5347 &deactivate_remote_frees_attr.attr,
5348 &deactivate_bypass_attr.attr,
5349 &order_fallback_attr.attr,
5350 &cmpxchg_double_fail_attr.attr,
5351 &cmpxchg_double_cpu_fail_attr.attr,
5352 &cpu_partial_alloc_attr.attr,
5353 &cpu_partial_free_attr.attr,
5354 &cpu_partial_node_attr.attr,
5355 &cpu_partial_drain_attr.attr,
5357 #ifdef CONFIG_FAILSLAB
5358 &failslab_attr.attr,
5364 static struct attribute_group slab_attr_group = {
5365 .attrs = slab_attrs,
5368 static ssize_t slab_attr_show(struct kobject *kobj,
5369 struct attribute *attr,
5372 struct slab_attribute *attribute;
5373 struct kmem_cache *s;
5376 attribute = to_slab_attr(attr);
5379 if (!attribute->show)
5382 err = attribute->show(s, buf);
5387 static ssize_t slab_attr_store(struct kobject *kobj,
5388 struct attribute *attr,
5389 const char *buf, size_t len)
5391 struct slab_attribute *attribute;
5392 struct kmem_cache *s;
5395 attribute = to_slab_attr(attr);
5398 if (!attribute->store)
5401 err = attribute->store(s, buf, len);
5403 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5404 struct kmem_cache *c;
5406 mutex_lock(&slab_mutex);
5407 if (s->max_attr_size < len)
5408 s->max_attr_size = len;
5411 * This is a best effort propagation, so this function's return
5412 * value will be determined by the parent cache only. This is
5413 * basically because not all attributes will have a well
5414 * defined semantics for rollbacks - most of the actions will
5415 * have permanent effects.
5417 * Returning the error value of any of the children that fail
5418 * is not 100 % defined, in the sense that users seeing the
5419 * error code won't be able to know anything about the state of
5422 * Only returning the error code for the parent cache at least
5423 * has well defined semantics. The cache being written to
5424 * directly either failed or succeeded, in which case we loop
5425 * through the descendants with best-effort propagation.
5427 for_each_memcg_cache(c, s)
5428 attribute->store(c, buf, len);
5429 mutex_unlock(&slab_mutex);
5435 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5439 char *buffer = NULL;
5440 struct kmem_cache *root_cache;
5442 if (is_root_cache(s))
5445 root_cache = s->memcg_params.root_cache;
5448 * This mean this cache had no attribute written. Therefore, no point
5449 * in copying default values around
5451 if (!root_cache->max_attr_size)
5454 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5457 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5459 if (!attr || !attr->store || !attr->show)
5463 * It is really bad that we have to allocate here, so we will
5464 * do it only as a fallback. If we actually allocate, though,
5465 * we can just use the allocated buffer until the end.
5467 * Most of the slub attributes will tend to be very small in
5468 * size, but sysfs allows buffers up to a page, so they can
5469 * theoretically happen.
5473 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5476 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5477 if (WARN_ON(!buffer))
5482 attr->show(root_cache, buf);
5483 attr->store(s, buf, strlen(buf));
5487 free_page((unsigned long)buffer);
5491 static void kmem_cache_release(struct kobject *k)
5493 slab_kmem_cache_release(to_slab(k));
5496 static const struct sysfs_ops slab_sysfs_ops = {
5497 .show = slab_attr_show,
5498 .store = slab_attr_store,
5501 static struct kobj_type slab_ktype = {
5502 .sysfs_ops = &slab_sysfs_ops,
5503 .release = kmem_cache_release,
5506 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5508 struct kobj_type *ktype = get_ktype(kobj);
5510 if (ktype == &slab_ktype)
5515 static const struct kset_uevent_ops slab_uevent_ops = {
5516 .filter = uevent_filter,
5519 static struct kset *slab_kset;
5521 static inline struct kset *cache_kset(struct kmem_cache *s)
5524 if (!is_root_cache(s))
5525 return s->memcg_params.root_cache->memcg_kset;
5530 #define ID_STR_LENGTH 64
5532 /* Create a unique string id for a slab cache:
5534 * Format :[flags-]size
5536 static char *create_unique_id(struct kmem_cache *s)
5538 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5545 * First flags affecting slabcache operations. We will only
5546 * get here for aliasable slabs so we do not need to support
5547 * too many flags. The flags here must cover all flags that
5548 * are matched during merging to guarantee that the id is
5551 if (s->flags & SLAB_CACHE_DMA)
5553 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5555 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5557 if (!(s->flags & SLAB_NOTRACK))
5559 if (s->flags & SLAB_ACCOUNT)
5563 p += sprintf(p, "%07d", s->size);
5565 BUG_ON(p > name + ID_STR_LENGTH - 1);
5569 static int sysfs_slab_add(struct kmem_cache *s)
5573 int unmergeable = slab_unmergeable(s);
5577 * Slabcache can never be merged so we can use the name proper.
5578 * This is typically the case for debug situations. In that
5579 * case we can catch duplicate names easily.
5581 sysfs_remove_link(&slab_kset->kobj, s->name);
5585 * Create a unique name for the slab as a target
5588 name = create_unique_id(s);
5591 s->kobj.kset = cache_kset(s);
5592 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5596 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5601 if (is_root_cache(s)) {
5602 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5603 if (!s->memcg_kset) {
5610 kobject_uevent(&s->kobj, KOBJ_ADD);
5612 /* Setup first alias */
5613 sysfs_slab_alias(s, s->name);
5620 kobject_del(&s->kobj);
5624 void sysfs_slab_remove(struct kmem_cache *s)
5626 if (slab_state < FULL)
5628 * Sysfs has not been setup yet so no need to remove the
5634 kset_unregister(s->memcg_kset);
5636 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5637 kobject_del(&s->kobj);
5638 kobject_put(&s->kobj);
5642 * Need to buffer aliases during bootup until sysfs becomes
5643 * available lest we lose that information.
5645 struct saved_alias {
5646 struct kmem_cache *s;
5648 struct saved_alias *next;
5651 static struct saved_alias *alias_list;
5653 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5655 struct saved_alias *al;
5657 if (slab_state == FULL) {
5659 * If we have a leftover link then remove it.
5661 sysfs_remove_link(&slab_kset->kobj, name);
5662 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5665 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5671 al->next = alias_list;
5676 static int __init slab_sysfs_init(void)
5678 struct kmem_cache *s;
5681 mutex_lock(&slab_mutex);
5683 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5685 mutex_unlock(&slab_mutex);
5686 pr_err("Cannot register slab subsystem.\n");
5692 list_for_each_entry(s, &slab_caches, list) {
5693 err = sysfs_slab_add(s);
5695 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5699 while (alias_list) {
5700 struct saved_alias *al = alias_list;
5702 alias_list = alias_list->next;
5703 err = sysfs_slab_alias(al->s, al->name);
5705 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5710 mutex_unlock(&slab_mutex);
5715 __initcall(slab_sysfs_init);
5716 #endif /* CONFIG_SYSFS */
5719 * The /proc/slabinfo ABI
5721 #ifdef CONFIG_SLABINFO
5722 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5724 unsigned long nr_slabs = 0;
5725 unsigned long nr_objs = 0;
5726 unsigned long nr_free = 0;
5728 struct kmem_cache_node *n;
5730 for_each_kmem_cache_node(s, node, n) {
5731 nr_slabs += node_nr_slabs(n);
5732 nr_objs += node_nr_objs(n);
5733 nr_free += count_partial(n, count_free);
5736 sinfo->active_objs = nr_objs - nr_free;
5737 sinfo->num_objs = nr_objs;
5738 sinfo->active_slabs = nr_slabs;
5739 sinfo->num_slabs = nr_slabs;
5740 sinfo->objects_per_slab = oo_objects(s->oo);
5741 sinfo->cache_order = oo_order(s->oo);
5744 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5748 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5749 size_t count, loff_t *ppos)
5753 #endif /* CONFIG_SLABINFO */