]> git.karo-electronics.de Git - linux-beck.git/blob - mm/sparse-vmemmap.c
arm64: dts: Reserve the memory used for secondary CPU release address
[linux-beck.git] / mm / sparse-vmemmap.c
1 /*
2  * Virtual Memory Map support
3  *
4  * (C) 2007 sgi. Christoph Lameter.
5  *
6  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
7  * virt_to_page, page_address() to be implemented as a base offset
8  * calculation without memory access.
9  *
10  * However, virtual mappings need a page table and TLBs. Many Linux
11  * architectures already map their physical space using 1-1 mappings
12  * via TLBs. For those arches the virtual memory map is essentially
13  * for free if we use the same page size as the 1-1 mappings. In that
14  * case the overhead consists of a few additional pages that are
15  * allocated to create a view of memory for vmemmap.
16  *
17  * The architecture is expected to provide a vmemmap_populate() function
18  * to instantiate the mapping.
19  */
20 #include <linux/mm.h>
21 #include <linux/mmzone.h>
22 #include <linux/bootmem.h>
23 #include <linux/highmem.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sched.h>
28 #include <asm/dma.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31
32 /*
33  * Allocate a block of memory to be used to back the virtual memory map
34  * or to back the page tables that are used to create the mapping.
35  * Uses the main allocators if they are available, else bootmem.
36  */
37
38 static void * __init_refok __earlyonly_bootmem_alloc(int node,
39                                 unsigned long size,
40                                 unsigned long align,
41                                 unsigned long goal)
42 {
43         return __alloc_bootmem_node_high(NODE_DATA(node), size, align, goal);
44 }
45
46 static void *vmemmap_buf;
47 static void *vmemmap_buf_end;
48
49 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
50 {
51         /* If the main allocator is up use that, fallback to bootmem. */
52         if (slab_is_available()) {
53                 struct page *page;
54
55                 if (node_state(node, N_HIGH_MEMORY))
56                         page = alloc_pages_node(
57                                 node, GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT,
58                                 get_order(size));
59                 else
60                         page = alloc_pages(
61                                 GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT,
62                                 get_order(size));
63                 if (page)
64                         return page_address(page);
65                 return NULL;
66         } else
67                 return __earlyonly_bootmem_alloc(node, size, size,
68                                 __pa(MAX_DMA_ADDRESS));
69 }
70
71 /* need to make sure size is all the same during early stage */
72 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
73 {
74         void *ptr;
75
76         if (!vmemmap_buf)
77                 return vmemmap_alloc_block(size, node);
78
79         /* take the from buf */
80         ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
81         if (ptr + size > vmemmap_buf_end)
82                 return vmemmap_alloc_block(size, node);
83
84         vmemmap_buf = ptr + size;
85
86         return ptr;
87 }
88
89 void __meminit vmemmap_verify(pte_t *pte, int node,
90                                 unsigned long start, unsigned long end)
91 {
92         unsigned long pfn = pte_pfn(*pte);
93         int actual_node = early_pfn_to_nid(pfn);
94
95         if (node_distance(actual_node, node) > LOCAL_DISTANCE)
96                 printk(KERN_WARNING "[%lx-%lx] potential offnode "
97                         "page_structs\n", start, end - 1);
98 }
99
100 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
101 {
102         pte_t *pte = pte_offset_kernel(pmd, addr);
103         if (pte_none(*pte)) {
104                 pte_t entry;
105                 void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
106                 if (!p)
107                         return NULL;
108                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
109                 set_pte_at(&init_mm, addr, pte, entry);
110         }
111         return pte;
112 }
113
114 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
115 {
116         pmd_t *pmd = pmd_offset(pud, addr);
117         if (pmd_none(*pmd)) {
118                 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
119                 if (!p)
120                         return NULL;
121                 pmd_populate_kernel(&init_mm, pmd, p);
122         }
123         return pmd;
124 }
125
126 pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
127 {
128         pud_t *pud = pud_offset(pgd, addr);
129         if (pud_none(*pud)) {
130                 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
131                 if (!p)
132                         return NULL;
133                 pud_populate(&init_mm, pud, p);
134         }
135         return pud;
136 }
137
138 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
139 {
140         pgd_t *pgd = pgd_offset_k(addr);
141         if (pgd_none(*pgd)) {
142                 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
143                 if (!p)
144                         return NULL;
145                 pgd_populate(&init_mm, pgd, p);
146         }
147         return pgd;
148 }
149
150 int __meminit vmemmap_populate_basepages(unsigned long start,
151                                          unsigned long end, int node)
152 {
153         unsigned long addr = start;
154         pgd_t *pgd;
155         pud_t *pud;
156         pmd_t *pmd;
157         pte_t *pte;
158
159         for (; addr < end; addr += PAGE_SIZE) {
160                 pgd = vmemmap_pgd_populate(addr, node);
161                 if (!pgd)
162                         return -ENOMEM;
163                 pud = vmemmap_pud_populate(pgd, addr, node);
164                 if (!pud)
165                         return -ENOMEM;
166                 pmd = vmemmap_pmd_populate(pud, addr, node);
167                 if (!pmd)
168                         return -ENOMEM;
169                 pte = vmemmap_pte_populate(pmd, addr, node);
170                 if (!pte)
171                         return -ENOMEM;
172                 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
173         }
174
175         return 0;
176 }
177
178 struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
179 {
180         unsigned long start;
181         unsigned long end;
182         struct page *map;
183
184         map = pfn_to_page(pnum * PAGES_PER_SECTION);
185         start = (unsigned long)map;
186         end = (unsigned long)(map + PAGES_PER_SECTION);
187
188         if (vmemmap_populate(start, end, nid))
189                 return NULL;
190
191         return map;
192 }
193
194 void __init sparse_mem_maps_populate_node(struct page **map_map,
195                                           unsigned long pnum_begin,
196                                           unsigned long pnum_end,
197                                           unsigned long map_count, int nodeid)
198 {
199         unsigned long pnum;
200         unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
201         void *vmemmap_buf_start;
202
203         size = ALIGN(size, PMD_SIZE);
204         vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
205                          PMD_SIZE, __pa(MAX_DMA_ADDRESS));
206
207         if (vmemmap_buf_start) {
208                 vmemmap_buf = vmemmap_buf_start;
209                 vmemmap_buf_end = vmemmap_buf_start + size * map_count;
210         }
211
212         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
213                 struct mem_section *ms;
214
215                 if (!present_section_nr(pnum))
216                         continue;
217
218                 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
219                 if (map_map[pnum])
220                         continue;
221                 ms = __nr_to_section(pnum);
222                 printk(KERN_ERR "%s: sparsemem memory map backing failed "
223                         "some memory will not be available.\n", __func__);
224                 ms->section_mem_map = 0;
225         }
226
227         if (vmemmap_buf_start) {
228                 /* need to free left buf */
229                 free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf);
230                 vmemmap_buf = NULL;
231                 vmemmap_buf_end = NULL;
232         }
233 }