2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/vmalloc.h>
21 #include <linux/swap_slots.h>
23 #include <asm/pgtable.h>
26 * swapper_space is a fiction, retained to simplify the path through
27 * vmscan's shrink_page_list.
29 static const struct address_space_operations swap_aops = {
30 .writepage = swap_writepage,
31 .set_page_dirty = swap_set_page_dirty,
32 #ifdef CONFIG_MIGRATION
33 .migratepage = migrate_page,
37 struct address_space *swapper_spaces[MAX_SWAPFILES];
38 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
40 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
43 unsigned long add_total;
44 unsigned long del_total;
45 unsigned long find_success;
46 unsigned long find_total;
49 unsigned long total_swapcache_pages(void)
51 unsigned int i, j, nr;
52 unsigned long ret = 0;
53 struct address_space *spaces;
56 for (i = 0; i < MAX_SWAPFILES; i++) {
58 * The corresponding entries in nr_swapper_spaces and
59 * swapper_spaces will be reused only after at least
60 * one grace period. So it is impossible for them
61 * belongs to different usage.
63 nr = nr_swapper_spaces[i];
64 spaces = rcu_dereference(swapper_spaces[i]);
67 for (j = 0; j < nr; j++)
68 ret += spaces[j].nrpages;
74 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
76 void show_swap_cache_info(void)
78 printk("%lu pages in swap cache\n", total_swapcache_pages());
79 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
80 swap_cache_info.add_total, swap_cache_info.del_total,
81 swap_cache_info.find_success, swap_cache_info.find_total);
82 printk("Free swap = %ldkB\n",
83 get_nr_swap_pages() << (PAGE_SHIFT - 10));
84 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
88 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
89 * but sets SwapCache flag and private instead of mapping and index.
91 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
94 struct address_space *address_space;
96 VM_BUG_ON_PAGE(!PageLocked(page), page);
97 VM_BUG_ON_PAGE(PageSwapCache(page), page);
98 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
101 SetPageSwapCache(page);
102 set_page_private(page, entry.val);
104 address_space = swap_address_space(entry);
105 spin_lock_irq(&address_space->tree_lock);
106 error = radix_tree_insert(&address_space->page_tree,
107 swp_offset(entry), page);
108 if (likely(!error)) {
109 address_space->nrpages++;
110 __inc_node_page_state(page, NR_FILE_PAGES);
111 INC_CACHE_INFO(add_total);
113 spin_unlock_irq(&address_space->tree_lock);
115 if (unlikely(error)) {
117 * Only the context which have set SWAP_HAS_CACHE flag
118 * would call add_to_swap_cache().
119 * So add_to_swap_cache() doesn't returns -EEXIST.
121 VM_BUG_ON(error == -EEXIST);
122 set_page_private(page, 0UL);
123 ClearPageSwapCache(page);
131 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
135 error = radix_tree_maybe_preload(gfp_mask);
137 error = __add_to_swap_cache(page, entry);
138 radix_tree_preload_end();
144 * This must be called only on pages that have
145 * been verified to be in the swap cache.
147 void __delete_from_swap_cache(struct page *page)
150 struct address_space *address_space;
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
154 VM_BUG_ON_PAGE(PageWriteback(page), page);
156 entry.val = page_private(page);
157 address_space = swap_address_space(entry);
158 radix_tree_delete(&address_space->page_tree, swp_offset(entry));
159 set_page_private(page, 0);
160 ClearPageSwapCache(page);
161 address_space->nrpages--;
162 __dec_node_page_state(page, NR_FILE_PAGES);
163 INC_CACHE_INFO(del_total);
167 * add_to_swap - allocate swap space for a page
168 * @page: page we want to move to swap
170 * Allocate swap space for the page and add the page to the
171 * swap cache. Caller needs to hold the page lock.
173 int add_to_swap(struct page *page, struct list_head *list)
178 VM_BUG_ON_PAGE(!PageLocked(page), page);
179 VM_BUG_ON_PAGE(!PageUptodate(page), page);
181 entry = get_swap_page();
185 if (mem_cgroup_try_charge_swap(page, entry)) {
186 swapcache_free(entry);
190 if (unlikely(PageTransHuge(page)))
191 if (unlikely(split_huge_page_to_list(page, list))) {
192 swapcache_free(entry);
197 * Radix-tree node allocations from PF_MEMALLOC contexts could
198 * completely exhaust the page allocator. __GFP_NOMEMALLOC
199 * stops emergency reserves from being allocated.
201 * TODO: this could cause a theoretical memory reclaim
202 * deadlock in the swap out path.
205 * Add it to the swap cache.
207 err = add_to_swap_cache(page, entry,
208 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
212 } else { /* -ENOMEM radix-tree allocation failure */
214 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 * clear SWAP_HAS_CACHE flag.
217 swapcache_free(entry);
223 * This must be called only on pages that have
224 * been verified to be in the swap cache and locked.
225 * It will never put the page into the free list,
226 * the caller has a reference on the page.
228 void delete_from_swap_cache(struct page *page)
231 struct address_space *address_space;
233 entry.val = page_private(page);
235 address_space = swap_address_space(entry);
236 spin_lock_irq(&address_space->tree_lock);
237 __delete_from_swap_cache(page);
238 spin_unlock_irq(&address_space->tree_lock);
240 swapcache_free(entry);
245 * If we are the only user, then try to free up the swap cache.
247 * Its ok to check for PageSwapCache without the page lock
248 * here because we are going to recheck again inside
249 * try_to_free_swap() _with_ the lock.
252 static inline void free_swap_cache(struct page *page)
254 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
255 try_to_free_swap(page);
261 * Perform a free_page(), also freeing any swap cache associated with
262 * this page if it is the last user of the page.
264 void free_page_and_swap_cache(struct page *page)
266 free_swap_cache(page);
267 if (!is_huge_zero_page(page))
272 * Passed an array of pages, drop them all from swapcache and then release
273 * them. They are removed from the LRU and freed if this is their last use.
275 void free_pages_and_swap_cache(struct page **pages, int nr)
277 struct page **pagep = pages;
281 for (i = 0; i < nr; i++)
282 free_swap_cache(pagep[i]);
283 release_pages(pagep, nr, false);
287 * Lookup a swap entry in the swap cache. A found page will be returned
288 * unlocked and with its refcount incremented - we rely on the kernel
289 * lock getting page table operations atomic even if we drop the page
290 * lock before returning.
292 struct page * lookup_swap_cache(swp_entry_t entry)
296 page = find_get_page(swap_address_space(entry), swp_offset(entry));
299 INC_CACHE_INFO(find_success);
300 if (TestClearPageReadahead(page))
301 atomic_inc(&swapin_readahead_hits);
304 INC_CACHE_INFO(find_total);
308 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
309 struct vm_area_struct *vma, unsigned long addr,
310 bool *new_page_allocated)
312 struct page *found_page, *new_page = NULL;
313 struct address_space *swapper_space = swap_address_space(entry);
315 *new_page_allocated = false;
319 * First check the swap cache. Since this is normally
320 * called after lookup_swap_cache() failed, re-calling
321 * that would confuse statistics.
323 found_page = find_get_page(swapper_space, swp_offset(entry));
328 * Just skip read ahead for unused swap slot.
329 * During swap_off when swap_slot_cache is disabled,
330 * we have to handle the race between putting
331 * swap entry in swap cache and marking swap slot
332 * as SWAP_HAS_CACHE. That's done in later part of code or
333 * else swap_off will be aborted if we return NULL.
335 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
339 * Get a new page to read into from swap.
342 new_page = alloc_page_vma(gfp_mask, vma, addr);
344 break; /* Out of memory */
348 * call radix_tree_preload() while we can wait.
350 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
355 * Swap entry may have been freed since our caller observed it.
357 err = swapcache_prepare(entry);
358 if (err == -EEXIST) {
359 radix_tree_preload_end();
361 * We might race against get_swap_page() and stumble
362 * across a SWAP_HAS_CACHE swap_map entry whose page
363 * has not been brought into the swapcache yet.
368 if (err) { /* swp entry is obsolete ? */
369 radix_tree_preload_end();
373 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
374 __SetPageLocked(new_page);
375 __SetPageSwapBacked(new_page);
376 err = __add_to_swap_cache(new_page, entry);
378 radix_tree_preload_end();
380 * Initiate read into locked page and return.
382 lru_cache_add_anon(new_page);
383 *new_page_allocated = true;
386 radix_tree_preload_end();
387 __ClearPageLocked(new_page);
389 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
390 * clear SWAP_HAS_CACHE flag.
392 swapcache_free(entry);
393 } while (err != -ENOMEM);
401 * Locate a page of swap in physical memory, reserving swap cache space
402 * and reading the disk if it is not already cached.
403 * A failure return means that either the page allocation failed or that
404 * the swap entry is no longer in use.
406 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
407 struct vm_area_struct *vma, unsigned long addr)
409 bool page_was_allocated;
410 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
411 vma, addr, &page_was_allocated);
413 if (page_was_allocated)
414 swap_readpage(retpage);
419 static unsigned long swapin_nr_pages(unsigned long offset)
421 static unsigned long prev_offset;
422 unsigned int pages, max_pages, last_ra;
423 static atomic_t last_readahead_pages;
425 max_pages = 1 << READ_ONCE(page_cluster);
430 * This heuristic has been found to work well on both sequential and
431 * random loads, swapping to hard disk or to SSD: please don't ask
432 * what the "+ 2" means, it just happens to work well, that's all.
434 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
437 * We can have no readahead hits to judge by: but must not get
438 * stuck here forever, so check for an adjacent offset instead
439 * (and don't even bother to check whether swap type is same).
441 if (offset != prev_offset + 1 && offset != prev_offset - 1)
443 prev_offset = offset;
445 unsigned int roundup = 4;
446 while (roundup < pages)
451 if (pages > max_pages)
454 /* Don't shrink readahead too fast */
455 last_ra = atomic_read(&last_readahead_pages) / 2;
458 atomic_set(&last_readahead_pages, pages);
464 * swapin_readahead - swap in pages in hope we need them soon
465 * @entry: swap entry of this memory
466 * @gfp_mask: memory allocation flags
467 * @vma: user vma this address belongs to
468 * @addr: target address for mempolicy
470 * Returns the struct page for entry and addr, after queueing swapin.
472 * Primitive swap readahead code. We simply read an aligned block of
473 * (1 << page_cluster) entries in the swap area. This method is chosen
474 * because it doesn't cost us any seek time. We also make sure to queue
475 * the 'original' request together with the readahead ones...
477 * This has been extended to use the NUMA policies from the mm triggering
480 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
482 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
483 struct vm_area_struct *vma, unsigned long addr)
486 unsigned long entry_offset = swp_offset(entry);
487 unsigned long offset = entry_offset;
488 unsigned long start_offset, end_offset;
490 struct blk_plug plug;
492 mask = swapin_nr_pages(offset) - 1;
496 /* Read a page_cluster sized and aligned cluster around offset. */
497 start_offset = offset & ~mask;
498 end_offset = offset | mask;
499 if (!start_offset) /* First page is swap header. */
502 blk_start_plug(&plug);
503 for (offset = start_offset; offset <= end_offset ; offset++) {
504 /* Ok, do the async read-ahead now */
505 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
506 gfp_mask, vma, addr);
509 if (offset != entry_offset)
510 SetPageReadahead(page);
513 blk_finish_plug(&plug);
515 lru_add_drain(); /* Push any new pages onto the LRU now */
517 return read_swap_cache_async(entry, gfp_mask, vma, addr);
520 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
522 struct address_space *spaces, *space;
525 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
526 spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
529 for (i = 0; i < nr; i++) {
531 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
532 atomic_set(&space->i_mmap_writable, 0);
533 space->a_ops = &swap_aops;
534 /* swap cache doesn't use writeback related tags */
535 mapping_set_no_writeback_tags(space);
536 spin_lock_init(&space->tree_lock);
538 nr_swapper_spaces[type] = nr;
539 rcu_assign_pointer(swapper_spaces[type], spaces);
544 void exit_swap_address_space(unsigned int type)
546 struct address_space *spaces;
548 spaces = swapper_spaces[type];
549 nr_swapper_spaces[type] = 0;
550 rcu_assign_pointer(swapper_spaces[type], NULL);