]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/swapfile.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 #include <linux/swap_slots.h>
38
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <linux/swapops.h>
42 #include <linux/swap_cgroup.h>
43
44 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
45                                  unsigned char);
46 static void free_swap_count_continuations(struct swap_info_struct *);
47 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
48
49 DEFINE_SPINLOCK(swap_lock);
50 static unsigned int nr_swapfiles;
51 atomic_long_t nr_swap_pages;
52 /*
53  * Some modules use swappable objects and may try to swap them out under
54  * memory pressure (via the shrinker). Before doing so, they may wish to
55  * check to see if any swap space is available.
56  */
57 EXPORT_SYMBOL_GPL(nr_swap_pages);
58 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
59 long total_swap_pages;
60 static int least_priority;
61
62 static const char Bad_file[] = "Bad swap file entry ";
63 static const char Unused_file[] = "Unused swap file entry ";
64 static const char Bad_offset[] = "Bad swap offset entry ";
65 static const char Unused_offset[] = "Unused swap offset entry ";
66
67 /*
68  * all active swap_info_structs
69  * protected with swap_lock, and ordered by priority.
70  */
71 PLIST_HEAD(swap_active_head);
72
73 /*
74  * all available (active, not full) swap_info_structs
75  * protected with swap_avail_lock, ordered by priority.
76  * This is used by get_swap_page() instead of swap_active_head
77  * because swap_active_head includes all swap_info_structs,
78  * but get_swap_page() doesn't need to look at full ones.
79  * This uses its own lock instead of swap_lock because when a
80  * swap_info_struct changes between not-full/full, it needs to
81  * add/remove itself to/from this list, but the swap_info_struct->lock
82  * is held and the locking order requires swap_lock to be taken
83  * before any swap_info_struct->lock.
84  */
85 static PLIST_HEAD(swap_avail_head);
86 static DEFINE_SPINLOCK(swap_avail_lock);
87
88 struct swap_info_struct *swap_info[MAX_SWAPFILES];
89
90 static DEFINE_MUTEX(swapon_mutex);
91
92 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
93 /* Activity counter to indicate that a swapon or swapoff has occurred */
94 static atomic_t proc_poll_event = ATOMIC_INIT(0);
95
96 static inline unsigned char swap_count(unsigned char ent)
97 {
98         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
99 }
100
101 /* returns 1 if swap entry is freed */
102 static int
103 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
104 {
105         swp_entry_t entry = swp_entry(si->type, offset);
106         struct page *page;
107         int ret = 0;
108
109         page = find_get_page(swap_address_space(entry), swp_offset(entry));
110         if (!page)
111                 return 0;
112         /*
113          * This function is called from scan_swap_map() and it's called
114          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
115          * We have to use trylock for avoiding deadlock. This is a special
116          * case and you should use try_to_free_swap() with explicit lock_page()
117          * in usual operations.
118          */
119         if (trylock_page(page)) {
120                 ret = try_to_free_swap(page);
121                 unlock_page(page);
122         }
123         put_page(page);
124         return ret;
125 }
126
127 /*
128  * swapon tell device that all the old swap contents can be discarded,
129  * to allow the swap device to optimize its wear-levelling.
130  */
131 static int discard_swap(struct swap_info_struct *si)
132 {
133         struct swap_extent *se;
134         sector_t start_block;
135         sector_t nr_blocks;
136         int err = 0;
137
138         /* Do not discard the swap header page! */
139         se = &si->first_swap_extent;
140         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
141         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
142         if (nr_blocks) {
143                 err = blkdev_issue_discard(si->bdev, start_block,
144                                 nr_blocks, GFP_KERNEL, 0);
145                 if (err)
146                         return err;
147                 cond_resched();
148         }
149
150         list_for_each_entry(se, &si->first_swap_extent.list, list) {
151                 start_block = se->start_block << (PAGE_SHIFT - 9);
152                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
153
154                 err = blkdev_issue_discard(si->bdev, start_block,
155                                 nr_blocks, GFP_KERNEL, 0);
156                 if (err)
157                         break;
158
159                 cond_resched();
160         }
161         return err;             /* That will often be -EOPNOTSUPP */
162 }
163
164 /*
165  * swap allocation tell device that a cluster of swap can now be discarded,
166  * to allow the swap device to optimize its wear-levelling.
167  */
168 static void discard_swap_cluster(struct swap_info_struct *si,
169                                  pgoff_t start_page, pgoff_t nr_pages)
170 {
171         struct swap_extent *se = si->curr_swap_extent;
172         int found_extent = 0;
173
174         while (nr_pages) {
175                 if (se->start_page <= start_page &&
176                     start_page < se->start_page + se->nr_pages) {
177                         pgoff_t offset = start_page - se->start_page;
178                         sector_t start_block = se->start_block + offset;
179                         sector_t nr_blocks = se->nr_pages - offset;
180
181                         if (nr_blocks > nr_pages)
182                                 nr_blocks = nr_pages;
183                         start_page += nr_blocks;
184                         nr_pages -= nr_blocks;
185
186                         if (!found_extent++)
187                                 si->curr_swap_extent = se;
188
189                         start_block <<= PAGE_SHIFT - 9;
190                         nr_blocks <<= PAGE_SHIFT - 9;
191                         if (blkdev_issue_discard(si->bdev, start_block,
192                                     nr_blocks, GFP_NOIO, 0))
193                                 break;
194                 }
195
196                 se = list_next_entry(se, list);
197         }
198 }
199
200 #define SWAPFILE_CLUSTER        256
201 #define LATENCY_LIMIT           256
202
203 static inline void cluster_set_flag(struct swap_cluster_info *info,
204         unsigned int flag)
205 {
206         info->flags = flag;
207 }
208
209 static inline unsigned int cluster_count(struct swap_cluster_info *info)
210 {
211         return info->data;
212 }
213
214 static inline void cluster_set_count(struct swap_cluster_info *info,
215                                      unsigned int c)
216 {
217         info->data = c;
218 }
219
220 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
221                                          unsigned int c, unsigned int f)
222 {
223         info->flags = f;
224         info->data = c;
225 }
226
227 static inline unsigned int cluster_next(struct swap_cluster_info *info)
228 {
229         return info->data;
230 }
231
232 static inline void cluster_set_next(struct swap_cluster_info *info,
233                                     unsigned int n)
234 {
235         info->data = n;
236 }
237
238 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
239                                          unsigned int n, unsigned int f)
240 {
241         info->flags = f;
242         info->data = n;
243 }
244
245 static inline bool cluster_is_free(struct swap_cluster_info *info)
246 {
247         return info->flags & CLUSTER_FLAG_FREE;
248 }
249
250 static inline bool cluster_is_null(struct swap_cluster_info *info)
251 {
252         return info->flags & CLUSTER_FLAG_NEXT_NULL;
253 }
254
255 static inline void cluster_set_null(struct swap_cluster_info *info)
256 {
257         info->flags = CLUSTER_FLAG_NEXT_NULL;
258         info->data = 0;
259 }
260
261 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
262                                                      unsigned long offset)
263 {
264         struct swap_cluster_info *ci;
265
266         ci = si->cluster_info;
267         if (ci) {
268                 ci += offset / SWAPFILE_CLUSTER;
269                 spin_lock(&ci->lock);
270         }
271         return ci;
272 }
273
274 static inline void unlock_cluster(struct swap_cluster_info *ci)
275 {
276         if (ci)
277                 spin_unlock(&ci->lock);
278 }
279
280 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
281         struct swap_info_struct *si,
282         unsigned long offset)
283 {
284         struct swap_cluster_info *ci;
285
286         ci = lock_cluster(si, offset);
287         if (!ci)
288                 spin_lock(&si->lock);
289
290         return ci;
291 }
292
293 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
294                                                struct swap_cluster_info *ci)
295 {
296         if (ci)
297                 unlock_cluster(ci);
298         else
299                 spin_unlock(&si->lock);
300 }
301
302 static inline bool cluster_list_empty(struct swap_cluster_list *list)
303 {
304         return cluster_is_null(&list->head);
305 }
306
307 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
308 {
309         return cluster_next(&list->head);
310 }
311
312 static void cluster_list_init(struct swap_cluster_list *list)
313 {
314         cluster_set_null(&list->head);
315         cluster_set_null(&list->tail);
316 }
317
318 static void cluster_list_add_tail(struct swap_cluster_list *list,
319                                   struct swap_cluster_info *ci,
320                                   unsigned int idx)
321 {
322         if (cluster_list_empty(list)) {
323                 cluster_set_next_flag(&list->head, idx, 0);
324                 cluster_set_next_flag(&list->tail, idx, 0);
325         } else {
326                 struct swap_cluster_info *ci_tail;
327                 unsigned int tail = cluster_next(&list->tail);
328
329                 /*
330                  * Nested cluster lock, but both cluster locks are
331                  * only acquired when we held swap_info_struct->lock
332                  */
333                 ci_tail = ci + tail;
334                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
335                 cluster_set_next(ci_tail, idx);
336                 unlock_cluster(ci_tail);
337                 cluster_set_next_flag(&list->tail, idx, 0);
338         }
339 }
340
341 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
342                                            struct swap_cluster_info *ci)
343 {
344         unsigned int idx;
345
346         idx = cluster_next(&list->head);
347         if (cluster_next(&list->tail) == idx) {
348                 cluster_set_null(&list->head);
349                 cluster_set_null(&list->tail);
350         } else
351                 cluster_set_next_flag(&list->head,
352                                       cluster_next(&ci[idx]), 0);
353
354         return idx;
355 }
356
357 /* Add a cluster to discard list and schedule it to do discard */
358 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
359                 unsigned int idx)
360 {
361         /*
362          * If scan_swap_map() can't find a free cluster, it will check
363          * si->swap_map directly. To make sure the discarding cluster isn't
364          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
365          * will be cleared after discard
366          */
367         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
368                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
369
370         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
371
372         schedule_work(&si->discard_work);
373 }
374
375 /*
376  * Doing discard actually. After a cluster discard is finished, the cluster
377  * will be added to free cluster list. caller should hold si->lock.
378 */
379 static void swap_do_scheduled_discard(struct swap_info_struct *si)
380 {
381         struct swap_cluster_info *info, *ci;
382         unsigned int idx;
383
384         info = si->cluster_info;
385
386         while (!cluster_list_empty(&si->discard_clusters)) {
387                 idx = cluster_list_del_first(&si->discard_clusters, info);
388                 spin_unlock(&si->lock);
389
390                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
391                                 SWAPFILE_CLUSTER);
392
393                 spin_lock(&si->lock);
394                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
395                 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
396                 unlock_cluster(ci);
397                 cluster_list_add_tail(&si->free_clusters, info, idx);
398                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
399                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
400                                 0, SWAPFILE_CLUSTER);
401                 unlock_cluster(ci);
402         }
403 }
404
405 static void swap_discard_work(struct work_struct *work)
406 {
407         struct swap_info_struct *si;
408
409         si = container_of(work, struct swap_info_struct, discard_work);
410
411         spin_lock(&si->lock);
412         swap_do_scheduled_discard(si);
413         spin_unlock(&si->lock);
414 }
415
416 /*
417  * The cluster corresponding to page_nr will be used. The cluster will be
418  * removed from free cluster list and its usage counter will be increased.
419  */
420 static void inc_cluster_info_page(struct swap_info_struct *p,
421         struct swap_cluster_info *cluster_info, unsigned long page_nr)
422 {
423         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
424
425         if (!cluster_info)
426                 return;
427         if (cluster_is_free(&cluster_info[idx])) {
428                 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
429                 cluster_list_del_first(&p->free_clusters, cluster_info);
430                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
431         }
432
433         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
434         cluster_set_count(&cluster_info[idx],
435                 cluster_count(&cluster_info[idx]) + 1);
436 }
437
438 /*
439  * The cluster corresponding to page_nr decreases one usage. If the usage
440  * counter becomes 0, which means no page in the cluster is in using, we can
441  * optionally discard the cluster and add it to free cluster list.
442  */
443 static void dec_cluster_info_page(struct swap_info_struct *p,
444         struct swap_cluster_info *cluster_info, unsigned long page_nr)
445 {
446         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
447
448         if (!cluster_info)
449                 return;
450
451         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
452         cluster_set_count(&cluster_info[idx],
453                 cluster_count(&cluster_info[idx]) - 1);
454
455         if (cluster_count(&cluster_info[idx]) == 0) {
456                 /*
457                  * If the swap is discardable, prepare discard the cluster
458                  * instead of free it immediately. The cluster will be freed
459                  * after discard.
460                  */
461                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
462                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
463                         swap_cluster_schedule_discard(p, idx);
464                         return;
465                 }
466
467                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
468                 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
469         }
470 }
471
472 /*
473  * It's possible scan_swap_map() uses a free cluster in the middle of free
474  * cluster list. Avoiding such abuse to avoid list corruption.
475  */
476 static bool
477 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
478         unsigned long offset)
479 {
480         struct percpu_cluster *percpu_cluster;
481         bool conflict;
482
483         offset /= SWAPFILE_CLUSTER;
484         conflict = !cluster_list_empty(&si->free_clusters) &&
485                 offset != cluster_list_first(&si->free_clusters) &&
486                 cluster_is_free(&si->cluster_info[offset]);
487
488         if (!conflict)
489                 return false;
490
491         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
492         cluster_set_null(&percpu_cluster->index);
493         return true;
494 }
495
496 /*
497  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
498  * might involve allocating a new cluster for current CPU too.
499  */
500 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
501         unsigned long *offset, unsigned long *scan_base)
502 {
503         struct percpu_cluster *cluster;
504         struct swap_cluster_info *ci;
505         bool found_free;
506         unsigned long tmp, max;
507
508 new_cluster:
509         cluster = this_cpu_ptr(si->percpu_cluster);
510         if (cluster_is_null(&cluster->index)) {
511                 if (!cluster_list_empty(&si->free_clusters)) {
512                         cluster->index = si->free_clusters.head;
513                         cluster->next = cluster_next(&cluster->index) *
514                                         SWAPFILE_CLUSTER;
515                 } else if (!cluster_list_empty(&si->discard_clusters)) {
516                         /*
517                          * we don't have free cluster but have some clusters in
518                          * discarding, do discard now and reclaim them
519                          */
520                         swap_do_scheduled_discard(si);
521                         *scan_base = *offset = si->cluster_next;
522                         goto new_cluster;
523                 } else
524                         return false;
525         }
526
527         found_free = false;
528
529         /*
530          * Other CPUs can use our cluster if they can't find a free cluster,
531          * check if there is still free entry in the cluster
532          */
533         tmp = cluster->next;
534         max = min_t(unsigned long, si->max,
535                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
536         if (tmp >= max) {
537                 cluster_set_null(&cluster->index);
538                 goto new_cluster;
539         }
540         ci = lock_cluster(si, tmp);
541         while (tmp < max) {
542                 if (!si->swap_map[tmp]) {
543                         found_free = true;
544                         break;
545                 }
546                 tmp++;
547         }
548         unlock_cluster(ci);
549         if (!found_free) {
550                 cluster_set_null(&cluster->index);
551                 goto new_cluster;
552         }
553         cluster->next = tmp + 1;
554         *offset = tmp;
555         *scan_base = tmp;
556         return found_free;
557 }
558
559 static int scan_swap_map_slots(struct swap_info_struct *si,
560                                unsigned char usage, int nr,
561                                swp_entry_t slots[])
562 {
563         struct swap_cluster_info *ci;
564         unsigned long offset;
565         unsigned long scan_base;
566         unsigned long last_in_cluster = 0;
567         int latency_ration = LATENCY_LIMIT;
568         int n_ret = 0;
569
570         if (nr > SWAP_BATCH)
571                 nr = SWAP_BATCH;
572
573         /*
574          * We try to cluster swap pages by allocating them sequentially
575          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
576          * way, however, we resort to first-free allocation, starting
577          * a new cluster.  This prevents us from scattering swap pages
578          * all over the entire swap partition, so that we reduce
579          * overall disk seek times between swap pages.  -- sct
580          * But we do now try to find an empty cluster.  -Andrea
581          * And we let swap pages go all over an SSD partition.  Hugh
582          */
583
584         si->flags += SWP_SCANNING;
585         scan_base = offset = si->cluster_next;
586
587         /* SSD algorithm */
588         if (si->cluster_info) {
589                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
590                         goto checks;
591                 else
592                         goto scan;
593         }
594
595         if (unlikely(!si->cluster_nr--)) {
596                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
597                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
598                         goto checks;
599                 }
600
601                 spin_unlock(&si->lock);
602
603                 /*
604                  * If seek is expensive, start searching for new cluster from
605                  * start of partition, to minimize the span of allocated swap.
606                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
607                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
608                  */
609                 scan_base = offset = si->lowest_bit;
610                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
611
612                 /* Locate the first empty (unaligned) cluster */
613                 for (; last_in_cluster <= si->highest_bit; offset++) {
614                         if (si->swap_map[offset])
615                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
616                         else if (offset == last_in_cluster) {
617                                 spin_lock(&si->lock);
618                                 offset -= SWAPFILE_CLUSTER - 1;
619                                 si->cluster_next = offset;
620                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
621                                 goto checks;
622                         }
623                         if (unlikely(--latency_ration < 0)) {
624                                 cond_resched();
625                                 latency_ration = LATENCY_LIMIT;
626                         }
627                 }
628
629                 offset = scan_base;
630                 spin_lock(&si->lock);
631                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
632         }
633
634 checks:
635         if (si->cluster_info) {
636                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
637                 /* take a break if we already got some slots */
638                         if (n_ret)
639                                 goto done;
640                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
641                                                         &scan_base))
642                                 goto scan;
643                 }
644         }
645         if (!(si->flags & SWP_WRITEOK))
646                 goto no_page;
647         if (!si->highest_bit)
648                 goto no_page;
649         if (offset > si->highest_bit)
650                 scan_base = offset = si->lowest_bit;
651
652         ci = lock_cluster(si, offset);
653         /* reuse swap entry of cache-only swap if not busy. */
654         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
655                 int swap_was_freed;
656                 unlock_cluster(ci);
657                 spin_unlock(&si->lock);
658                 swap_was_freed = __try_to_reclaim_swap(si, offset);
659                 spin_lock(&si->lock);
660                 /* entry was freed successfully, try to use this again */
661                 if (swap_was_freed)
662                         goto checks;
663                 goto scan; /* check next one */
664         }
665
666         if (si->swap_map[offset]) {
667                 unlock_cluster(ci);
668                 if (!n_ret)
669                         goto scan;
670                 else
671                         goto done;
672         }
673
674         if (offset == si->lowest_bit)
675                 si->lowest_bit++;
676         if (offset == si->highest_bit)
677                 si->highest_bit--;
678         si->inuse_pages++;
679         if (si->inuse_pages == si->pages) {
680                 si->lowest_bit = si->max;
681                 si->highest_bit = 0;
682                 spin_lock(&swap_avail_lock);
683                 plist_del(&si->avail_list, &swap_avail_head);
684                 spin_unlock(&swap_avail_lock);
685         }
686         si->swap_map[offset] = usage;
687         inc_cluster_info_page(si, si->cluster_info, offset);
688         unlock_cluster(ci);
689         si->cluster_next = offset + 1;
690         slots[n_ret++] = swp_entry(si->type, offset);
691
692         /* got enough slots or reach max slots? */
693         if ((n_ret == nr) || (offset >= si->highest_bit))
694                 goto done;
695
696         /* search for next available slot */
697
698         /* time to take a break? */
699         if (unlikely(--latency_ration < 0)) {
700                 if (n_ret)
701                         goto done;
702                 spin_unlock(&si->lock);
703                 cond_resched();
704                 spin_lock(&si->lock);
705                 latency_ration = LATENCY_LIMIT;
706         }
707
708         /* try to get more slots in cluster */
709         if (si->cluster_info) {
710                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
711                         goto checks;
712                 else
713                         goto done;
714         }
715         /* non-ssd case */
716         ++offset;
717
718         /* non-ssd case, still more slots in cluster? */
719         if (si->cluster_nr && !si->swap_map[offset]) {
720                 --si->cluster_nr;
721                 goto checks;
722         }
723
724 done:
725         si->flags -= SWP_SCANNING;
726         return n_ret;
727
728 scan:
729         spin_unlock(&si->lock);
730         while (++offset <= si->highest_bit) {
731                 if (!si->swap_map[offset]) {
732                         spin_lock(&si->lock);
733                         goto checks;
734                 }
735                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
736                         spin_lock(&si->lock);
737                         goto checks;
738                 }
739                 if (unlikely(--latency_ration < 0)) {
740                         cond_resched();
741                         latency_ration = LATENCY_LIMIT;
742                 }
743         }
744         offset = si->lowest_bit;
745         while (offset < scan_base) {
746                 if (!si->swap_map[offset]) {
747                         spin_lock(&si->lock);
748                         goto checks;
749                 }
750                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
751                         spin_lock(&si->lock);
752                         goto checks;
753                 }
754                 if (unlikely(--latency_ration < 0)) {
755                         cond_resched();
756                         latency_ration = LATENCY_LIMIT;
757                 }
758                 offset++;
759         }
760         spin_lock(&si->lock);
761
762 no_page:
763         si->flags -= SWP_SCANNING;
764         return n_ret;
765 }
766
767 static unsigned long scan_swap_map(struct swap_info_struct *si,
768                                    unsigned char usage)
769 {
770         swp_entry_t entry;
771         int n_ret;
772
773         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
774
775         if (n_ret)
776                 return swp_offset(entry);
777         else
778                 return 0;
779
780 }
781
782 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
783 {
784         struct swap_info_struct *si, *next;
785         long avail_pgs;
786         int n_ret = 0;
787
788         avail_pgs = atomic_long_read(&nr_swap_pages);
789         if (avail_pgs <= 0)
790                 goto noswap;
791
792         if (n_goal > SWAP_BATCH)
793                 n_goal = SWAP_BATCH;
794
795         if (n_goal > avail_pgs)
796                 n_goal = avail_pgs;
797
798         atomic_long_sub(n_goal, &nr_swap_pages);
799
800         spin_lock(&swap_avail_lock);
801
802 start_over:
803         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
804                 /* requeue si to after same-priority siblings */
805                 plist_requeue(&si->avail_list, &swap_avail_head);
806                 spin_unlock(&swap_avail_lock);
807                 spin_lock(&si->lock);
808                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
809                         spin_lock(&swap_avail_lock);
810                         if (plist_node_empty(&si->avail_list)) {
811                                 spin_unlock(&si->lock);
812                                 goto nextsi;
813                         }
814                         WARN(!si->highest_bit,
815                              "swap_info %d in list but !highest_bit\n",
816                              si->type);
817                         WARN(!(si->flags & SWP_WRITEOK),
818                              "swap_info %d in list but !SWP_WRITEOK\n",
819                              si->type);
820                         plist_del(&si->avail_list, &swap_avail_head);
821                         spin_unlock(&si->lock);
822                         goto nextsi;
823                 }
824                 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
825                                             n_goal, swp_entries);
826                 spin_unlock(&si->lock);
827                 if (n_ret)
828                         goto check_out;
829                 pr_debug("scan_swap_map of si %d failed to find offset\n",
830                         si->type);
831
832                 spin_lock(&swap_avail_lock);
833 nextsi:
834                 /*
835                  * if we got here, it's likely that si was almost full before,
836                  * and since scan_swap_map() can drop the si->lock, multiple
837                  * callers probably all tried to get a page from the same si
838                  * and it filled up before we could get one; or, the si filled
839                  * up between us dropping swap_avail_lock and taking si->lock.
840                  * Since we dropped the swap_avail_lock, the swap_avail_head
841                  * list may have been modified; so if next is still in the
842                  * swap_avail_head list then try it, otherwise start over
843                  * if we have not gotten any slots.
844                  */
845                 if (plist_node_empty(&next->avail_list))
846                         goto start_over;
847         }
848
849         spin_unlock(&swap_avail_lock);
850
851 check_out:
852         if (n_ret < n_goal)
853                 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
854 noswap:
855         return n_ret;
856 }
857
858 /* The only caller of this function is now suspend routine */
859 swp_entry_t get_swap_page_of_type(int type)
860 {
861         struct swap_info_struct *si;
862         pgoff_t offset;
863
864         si = swap_info[type];
865         spin_lock(&si->lock);
866         if (si && (si->flags & SWP_WRITEOK)) {
867                 atomic_long_dec(&nr_swap_pages);
868                 /* This is called for allocating swap entry, not cache */
869                 offset = scan_swap_map(si, 1);
870                 if (offset) {
871                         spin_unlock(&si->lock);
872                         return swp_entry(type, offset);
873                 }
874                 atomic_long_inc(&nr_swap_pages);
875         }
876         spin_unlock(&si->lock);
877         return (swp_entry_t) {0};
878 }
879
880 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
881 {
882         struct swap_info_struct *p;
883         unsigned long offset, type;
884
885         if (!entry.val)
886                 goto out;
887         type = swp_type(entry);
888         if (type >= nr_swapfiles)
889                 goto bad_nofile;
890         p = swap_info[type];
891         if (!(p->flags & SWP_USED))
892                 goto bad_device;
893         offset = swp_offset(entry);
894         if (offset >= p->max)
895                 goto bad_offset;
896         return p;
897
898 bad_offset:
899         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
900         goto out;
901 bad_device:
902         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
903         goto out;
904 bad_nofile:
905         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
906 out:
907         return NULL;
908 }
909
910 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
911 {
912         struct swap_info_struct *p;
913
914         p = __swap_info_get(entry);
915         if (!p)
916                 goto out;
917         if (!p->swap_map[swp_offset(entry)])
918                 goto bad_free;
919         return p;
920
921 bad_free:
922         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
923         goto out;
924 out:
925         return NULL;
926 }
927
928 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
929 {
930         struct swap_info_struct *p;
931
932         p = _swap_info_get(entry);
933         if (p)
934                 spin_lock(&p->lock);
935         return p;
936 }
937
938 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
939                                         struct swap_info_struct *q)
940 {
941         struct swap_info_struct *p;
942
943         p = _swap_info_get(entry);
944
945         if (p != q) {
946                 if (q != NULL)
947                         spin_unlock(&q->lock);
948                 if (p != NULL)
949                         spin_lock(&p->lock);
950         }
951         return p;
952 }
953
954 static unsigned char __swap_entry_free(struct swap_info_struct *p,
955                                        swp_entry_t entry, unsigned char usage)
956 {
957         struct swap_cluster_info *ci;
958         unsigned long offset = swp_offset(entry);
959         unsigned char count;
960         unsigned char has_cache;
961
962         ci = lock_cluster_or_swap_info(p, offset);
963
964         count = p->swap_map[offset];
965
966         has_cache = count & SWAP_HAS_CACHE;
967         count &= ~SWAP_HAS_CACHE;
968
969         if (usage == SWAP_HAS_CACHE) {
970                 VM_BUG_ON(!has_cache);
971                 has_cache = 0;
972         } else if (count == SWAP_MAP_SHMEM) {
973                 /*
974                  * Or we could insist on shmem.c using a special
975                  * swap_shmem_free() and free_shmem_swap_and_cache()...
976                  */
977                 count = 0;
978         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
979                 if (count == COUNT_CONTINUED) {
980                         if (swap_count_continued(p, offset, count))
981                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
982                         else
983                                 count = SWAP_MAP_MAX;
984                 } else
985                         count--;
986         }
987
988         usage = count | has_cache;
989         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
990
991         unlock_cluster_or_swap_info(p, ci);
992
993         return usage;
994 }
995
996 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
997 {
998         struct swap_cluster_info *ci;
999         unsigned long offset = swp_offset(entry);
1000         unsigned char count;
1001
1002         ci = lock_cluster(p, offset);
1003         count = p->swap_map[offset];
1004         VM_BUG_ON(count != SWAP_HAS_CACHE);
1005         p->swap_map[offset] = 0;
1006         dec_cluster_info_page(p, p->cluster_info, offset);
1007         unlock_cluster(ci);
1008
1009         mem_cgroup_uncharge_swap(entry);
1010         if (offset < p->lowest_bit)
1011                 p->lowest_bit = offset;
1012         if (offset > p->highest_bit) {
1013                 bool was_full = !p->highest_bit;
1014
1015                 p->highest_bit = offset;
1016                 if (was_full && (p->flags & SWP_WRITEOK)) {
1017                         spin_lock(&swap_avail_lock);
1018                         WARN_ON(!plist_node_empty(&p->avail_list));
1019                         if (plist_node_empty(&p->avail_list))
1020                                 plist_add(&p->avail_list,
1021                                           &swap_avail_head);
1022                         spin_unlock(&swap_avail_lock);
1023                 }
1024         }
1025         atomic_long_inc(&nr_swap_pages);
1026         p->inuse_pages--;
1027         frontswap_invalidate_page(p->type, offset);
1028         if (p->flags & SWP_BLKDEV) {
1029                 struct gendisk *disk = p->bdev->bd_disk;
1030
1031                 if (disk->fops->swap_slot_free_notify)
1032                         disk->fops->swap_slot_free_notify(p->bdev,
1033                                                           offset);
1034         }
1035 }
1036
1037 /*
1038  * Caller has made sure that the swap device corresponding to entry
1039  * is still around or has not been recycled.
1040  */
1041 void swap_free(swp_entry_t entry)
1042 {
1043         struct swap_info_struct *p;
1044
1045         p = _swap_info_get(entry);
1046         if (p) {
1047                 if (!__swap_entry_free(p, entry, 1))
1048                         free_swap_slot(entry);
1049         }
1050 }
1051
1052 /*
1053  * Called after dropping swapcache to decrease refcnt to swap entries.
1054  */
1055 void swapcache_free(swp_entry_t entry)
1056 {
1057         struct swap_info_struct *p;
1058
1059         p = _swap_info_get(entry);
1060         if (p) {
1061                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1062                         free_swap_slot(entry);
1063         }
1064 }
1065
1066 void swapcache_free_entries(swp_entry_t *entries, int n)
1067 {
1068         struct swap_info_struct *p, *prev;
1069         int i;
1070
1071         if (n <= 0)
1072                 return;
1073
1074         prev = NULL;
1075         p = NULL;
1076         for (i = 0; i < n; ++i) {
1077                 p = swap_info_get_cont(entries[i], prev);
1078                 if (p)
1079                         swap_entry_free(p, entries[i]);
1080                 else
1081                         break;
1082                 prev = p;
1083         }
1084         if (p)
1085                 spin_unlock(&p->lock);
1086 }
1087
1088 /*
1089  * How many references to page are currently swapped out?
1090  * This does not give an exact answer when swap count is continued,
1091  * but does include the high COUNT_CONTINUED flag to allow for that.
1092  */
1093 int page_swapcount(struct page *page)
1094 {
1095         int count = 0;
1096         struct swap_info_struct *p;
1097         struct swap_cluster_info *ci;
1098         swp_entry_t entry;
1099         unsigned long offset;
1100
1101         entry.val = page_private(page);
1102         p = _swap_info_get(entry);
1103         if (p) {
1104                 offset = swp_offset(entry);
1105                 ci = lock_cluster_or_swap_info(p, offset);
1106                 count = swap_count(p->swap_map[offset]);
1107                 unlock_cluster_or_swap_info(p, ci);
1108         }
1109         return count;
1110 }
1111
1112 /*
1113  * How many references to @entry are currently swapped out?
1114  * This does not give an exact answer when swap count is continued,
1115  * but does include the high COUNT_CONTINUED flag to allow for that.
1116  */
1117 int __swp_swapcount(swp_entry_t entry)
1118 {
1119         int count = 0;
1120         pgoff_t offset;
1121         struct swap_info_struct *si;
1122         struct swap_cluster_info *ci;
1123
1124         si = __swap_info_get(entry);
1125         if (si) {
1126                 offset = swp_offset(entry);
1127                 ci = lock_cluster_or_swap_info(si, offset);
1128                 count = swap_count(si->swap_map[offset]);
1129                 unlock_cluster_or_swap_info(si, ci);
1130         }
1131         return count;
1132 }
1133
1134 /*
1135  * How many references to @entry are currently swapped out?
1136  * This considers COUNT_CONTINUED so it returns exact answer.
1137  */
1138 int swp_swapcount(swp_entry_t entry)
1139 {
1140         int count, tmp_count, n;
1141         struct swap_info_struct *p;
1142         struct swap_cluster_info *ci;
1143         struct page *page;
1144         pgoff_t offset;
1145         unsigned char *map;
1146
1147         p = _swap_info_get(entry);
1148         if (!p)
1149                 return 0;
1150
1151         offset = swp_offset(entry);
1152
1153         ci = lock_cluster_or_swap_info(p, offset);
1154
1155         count = swap_count(p->swap_map[offset]);
1156         if (!(count & COUNT_CONTINUED))
1157                 goto out;
1158
1159         count &= ~COUNT_CONTINUED;
1160         n = SWAP_MAP_MAX + 1;
1161
1162         page = vmalloc_to_page(p->swap_map + offset);
1163         offset &= ~PAGE_MASK;
1164         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1165
1166         do {
1167                 page = list_next_entry(page, lru);
1168                 map = kmap_atomic(page);
1169                 tmp_count = map[offset];
1170                 kunmap_atomic(map);
1171
1172                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1173                 n *= (SWAP_CONT_MAX + 1);
1174         } while (tmp_count & COUNT_CONTINUED);
1175 out:
1176         unlock_cluster_or_swap_info(p, ci);
1177         return count;
1178 }
1179
1180 /*
1181  * We can write to an anon page without COW if there are no other references
1182  * to it.  And as a side-effect, free up its swap: because the old content
1183  * on disk will never be read, and seeking back there to write new content
1184  * later would only waste time away from clustering.
1185  *
1186  * NOTE: total_mapcount should not be relied upon by the caller if
1187  * reuse_swap_page() returns false, but it may be always overwritten
1188  * (see the other implementation for CONFIG_SWAP=n).
1189  */
1190 bool reuse_swap_page(struct page *page, int *total_mapcount)
1191 {
1192         int count;
1193
1194         VM_BUG_ON_PAGE(!PageLocked(page), page);
1195         if (unlikely(PageKsm(page)))
1196                 return false;
1197         count = page_trans_huge_mapcount(page, total_mapcount);
1198         if (count <= 1 && PageSwapCache(page)) {
1199                 count += page_swapcount(page);
1200                 if (count != 1)
1201                         goto out;
1202                 if (!PageWriteback(page)) {
1203                         delete_from_swap_cache(page);
1204                         SetPageDirty(page);
1205                 } else {
1206                         swp_entry_t entry;
1207                         struct swap_info_struct *p;
1208
1209                         entry.val = page_private(page);
1210                         p = swap_info_get(entry);
1211                         if (p->flags & SWP_STABLE_WRITES) {
1212                                 spin_unlock(&p->lock);
1213                                 return false;
1214                         }
1215                         spin_unlock(&p->lock);
1216                 }
1217         }
1218 out:
1219         return count <= 1;
1220 }
1221
1222 /*
1223  * If swap is getting full, or if there are no more mappings of this page,
1224  * then try_to_free_swap is called to free its swap space.
1225  */
1226 int try_to_free_swap(struct page *page)
1227 {
1228         VM_BUG_ON_PAGE(!PageLocked(page), page);
1229
1230         if (!PageSwapCache(page))
1231                 return 0;
1232         if (PageWriteback(page))
1233                 return 0;
1234         if (page_swapcount(page))
1235                 return 0;
1236
1237         /*
1238          * Once hibernation has begun to create its image of memory,
1239          * there's a danger that one of the calls to try_to_free_swap()
1240          * - most probably a call from __try_to_reclaim_swap() while
1241          * hibernation is allocating its own swap pages for the image,
1242          * but conceivably even a call from memory reclaim - will free
1243          * the swap from a page which has already been recorded in the
1244          * image as a clean swapcache page, and then reuse its swap for
1245          * another page of the image.  On waking from hibernation, the
1246          * original page might be freed under memory pressure, then
1247          * later read back in from swap, now with the wrong data.
1248          *
1249          * Hibernation suspends storage while it is writing the image
1250          * to disk so check that here.
1251          */
1252         if (pm_suspended_storage())
1253                 return 0;
1254
1255         delete_from_swap_cache(page);
1256         SetPageDirty(page);
1257         return 1;
1258 }
1259
1260 /*
1261  * Free the swap entry like above, but also try to
1262  * free the page cache entry if it is the last user.
1263  */
1264 int free_swap_and_cache(swp_entry_t entry)
1265 {
1266         struct swap_info_struct *p;
1267         struct page *page = NULL;
1268         unsigned char count;
1269
1270         if (non_swap_entry(entry))
1271                 return 1;
1272
1273         p = _swap_info_get(entry);
1274         if (p) {
1275                 count = __swap_entry_free(p, entry, 1);
1276                 if (count == SWAP_HAS_CACHE) {
1277                         page = find_get_page(swap_address_space(entry),
1278                                              swp_offset(entry));
1279                         if (page && !trylock_page(page)) {
1280                                 put_page(page);
1281                                 page = NULL;
1282                         }
1283                 } else if (!count)
1284                         free_swap_slot(entry);
1285         }
1286         if (page) {
1287                 /*
1288                  * Not mapped elsewhere, or swap space full? Free it!
1289                  * Also recheck PageSwapCache now page is locked (above).
1290                  */
1291                 if (PageSwapCache(page) && !PageWriteback(page) &&
1292                     (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1293                         delete_from_swap_cache(page);
1294                         SetPageDirty(page);
1295                 }
1296                 unlock_page(page);
1297                 put_page(page);
1298         }
1299         return p != NULL;
1300 }
1301
1302 #ifdef CONFIG_HIBERNATION
1303 /*
1304  * Find the swap type that corresponds to given device (if any).
1305  *
1306  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1307  * from 0, in which the swap header is expected to be located.
1308  *
1309  * This is needed for the suspend to disk (aka swsusp).
1310  */
1311 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1312 {
1313         struct block_device *bdev = NULL;
1314         int type;
1315
1316         if (device)
1317                 bdev = bdget(device);
1318
1319         spin_lock(&swap_lock);
1320         for (type = 0; type < nr_swapfiles; type++) {
1321                 struct swap_info_struct *sis = swap_info[type];
1322
1323                 if (!(sis->flags & SWP_WRITEOK))
1324                         continue;
1325
1326                 if (!bdev) {
1327                         if (bdev_p)
1328                                 *bdev_p = bdgrab(sis->bdev);
1329
1330                         spin_unlock(&swap_lock);
1331                         return type;
1332                 }
1333                 if (bdev == sis->bdev) {
1334                         struct swap_extent *se = &sis->first_swap_extent;
1335
1336                         if (se->start_block == offset) {
1337                                 if (bdev_p)
1338                                         *bdev_p = bdgrab(sis->bdev);
1339
1340                                 spin_unlock(&swap_lock);
1341                                 bdput(bdev);
1342                                 return type;
1343                         }
1344                 }
1345         }
1346         spin_unlock(&swap_lock);
1347         if (bdev)
1348                 bdput(bdev);
1349
1350         return -ENODEV;
1351 }
1352
1353 /*
1354  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1355  * corresponding to given index in swap_info (swap type).
1356  */
1357 sector_t swapdev_block(int type, pgoff_t offset)
1358 {
1359         struct block_device *bdev;
1360
1361         if ((unsigned int)type >= nr_swapfiles)
1362                 return 0;
1363         if (!(swap_info[type]->flags & SWP_WRITEOK))
1364                 return 0;
1365         return map_swap_entry(swp_entry(type, offset), &bdev);
1366 }
1367
1368 /*
1369  * Return either the total number of swap pages of given type, or the number
1370  * of free pages of that type (depending on @free)
1371  *
1372  * This is needed for software suspend
1373  */
1374 unsigned int count_swap_pages(int type, int free)
1375 {
1376         unsigned int n = 0;
1377
1378         spin_lock(&swap_lock);
1379         if ((unsigned int)type < nr_swapfiles) {
1380                 struct swap_info_struct *sis = swap_info[type];
1381
1382                 spin_lock(&sis->lock);
1383                 if (sis->flags & SWP_WRITEOK) {
1384                         n = sis->pages;
1385                         if (free)
1386                                 n -= sis->inuse_pages;
1387                 }
1388                 spin_unlock(&sis->lock);
1389         }
1390         spin_unlock(&swap_lock);
1391         return n;
1392 }
1393 #endif /* CONFIG_HIBERNATION */
1394
1395 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1396 {
1397         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1398 }
1399
1400 /*
1401  * No need to decide whether this PTE shares the swap entry with others,
1402  * just let do_wp_page work it out if a write is requested later - to
1403  * force COW, vm_page_prot omits write permission from any private vma.
1404  */
1405 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1406                 unsigned long addr, swp_entry_t entry, struct page *page)
1407 {
1408         struct page *swapcache;
1409         struct mem_cgroup *memcg;
1410         spinlock_t *ptl;
1411         pte_t *pte;
1412         int ret = 1;
1413
1414         swapcache = page;
1415         page = ksm_might_need_to_copy(page, vma, addr);
1416         if (unlikely(!page))
1417                 return -ENOMEM;
1418
1419         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1420                                 &memcg, false)) {
1421                 ret = -ENOMEM;
1422                 goto out_nolock;
1423         }
1424
1425         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1426         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1427                 mem_cgroup_cancel_charge(page, memcg, false);
1428                 ret = 0;
1429                 goto out;
1430         }
1431
1432         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1433         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1434         get_page(page);
1435         set_pte_at(vma->vm_mm, addr, pte,
1436                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1437         if (page == swapcache) {
1438                 page_add_anon_rmap(page, vma, addr, false);
1439                 mem_cgroup_commit_charge(page, memcg, true, false);
1440         } else { /* ksm created a completely new copy */
1441                 page_add_new_anon_rmap(page, vma, addr, false);
1442                 mem_cgroup_commit_charge(page, memcg, false, false);
1443                 lru_cache_add_active_or_unevictable(page, vma);
1444         }
1445         swap_free(entry);
1446         /*
1447          * Move the page to the active list so it is not
1448          * immediately swapped out again after swapon.
1449          */
1450         activate_page(page);
1451 out:
1452         pte_unmap_unlock(pte, ptl);
1453 out_nolock:
1454         if (page != swapcache) {
1455                 unlock_page(page);
1456                 put_page(page);
1457         }
1458         return ret;
1459 }
1460
1461 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1462                                 unsigned long addr, unsigned long end,
1463                                 swp_entry_t entry, struct page *page)
1464 {
1465         pte_t swp_pte = swp_entry_to_pte(entry);
1466         pte_t *pte;
1467         int ret = 0;
1468
1469         /*
1470          * We don't actually need pte lock while scanning for swp_pte: since
1471          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1472          * page table while we're scanning; though it could get zapped, and on
1473          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1474          * of unmatched parts which look like swp_pte, so unuse_pte must
1475          * recheck under pte lock.  Scanning without pte lock lets it be
1476          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1477          */
1478         pte = pte_offset_map(pmd, addr);
1479         do {
1480                 /*
1481                  * swapoff spends a _lot_ of time in this loop!
1482                  * Test inline before going to call unuse_pte.
1483                  */
1484                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1485                         pte_unmap(pte);
1486                         ret = unuse_pte(vma, pmd, addr, entry, page);
1487                         if (ret)
1488                                 goto out;
1489                         pte = pte_offset_map(pmd, addr);
1490                 }
1491         } while (pte++, addr += PAGE_SIZE, addr != end);
1492         pte_unmap(pte - 1);
1493 out:
1494         return ret;
1495 }
1496
1497 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1498                                 unsigned long addr, unsigned long end,
1499                                 swp_entry_t entry, struct page *page)
1500 {
1501         pmd_t *pmd;
1502         unsigned long next;
1503         int ret;
1504
1505         pmd = pmd_offset(pud, addr);
1506         do {
1507                 cond_resched();
1508                 next = pmd_addr_end(addr, end);
1509                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1510                         continue;
1511                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1512                 if (ret)
1513                         return ret;
1514         } while (pmd++, addr = next, addr != end);
1515         return 0;
1516 }
1517
1518 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1519                                 unsigned long addr, unsigned long end,
1520                                 swp_entry_t entry, struct page *page)
1521 {
1522         pud_t *pud;
1523         unsigned long next;
1524         int ret;
1525
1526         pud = pud_offset(pgd, addr);
1527         do {
1528                 next = pud_addr_end(addr, end);
1529                 if (pud_none_or_clear_bad(pud))
1530                         continue;
1531                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1532                 if (ret)
1533                         return ret;
1534         } while (pud++, addr = next, addr != end);
1535         return 0;
1536 }
1537
1538 static int unuse_vma(struct vm_area_struct *vma,
1539                                 swp_entry_t entry, struct page *page)
1540 {
1541         pgd_t *pgd;
1542         unsigned long addr, end, next;
1543         int ret;
1544
1545         if (page_anon_vma(page)) {
1546                 addr = page_address_in_vma(page, vma);
1547                 if (addr == -EFAULT)
1548                         return 0;
1549                 else
1550                         end = addr + PAGE_SIZE;
1551         } else {
1552                 addr = vma->vm_start;
1553                 end = vma->vm_end;
1554         }
1555
1556         pgd = pgd_offset(vma->vm_mm, addr);
1557         do {
1558                 next = pgd_addr_end(addr, end);
1559                 if (pgd_none_or_clear_bad(pgd))
1560                         continue;
1561                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1562                 if (ret)
1563                         return ret;
1564         } while (pgd++, addr = next, addr != end);
1565         return 0;
1566 }
1567
1568 static int unuse_mm(struct mm_struct *mm,
1569                                 swp_entry_t entry, struct page *page)
1570 {
1571         struct vm_area_struct *vma;
1572         int ret = 0;
1573
1574         if (!down_read_trylock(&mm->mmap_sem)) {
1575                 /*
1576                  * Activate page so shrink_inactive_list is unlikely to unmap
1577                  * its ptes while lock is dropped, so swapoff can make progress.
1578                  */
1579                 activate_page(page);
1580                 unlock_page(page);
1581                 down_read(&mm->mmap_sem);
1582                 lock_page(page);
1583         }
1584         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1585                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1586                         break;
1587                 cond_resched();
1588         }
1589         up_read(&mm->mmap_sem);
1590         return (ret < 0)? ret: 0;
1591 }
1592
1593 /*
1594  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1595  * from current position to next entry still in use.
1596  * Recycle to start on reaching the end, returning 0 when empty.
1597  */
1598 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1599                                         unsigned int prev, bool frontswap)
1600 {
1601         unsigned int max = si->max;
1602         unsigned int i = prev;
1603         unsigned char count;
1604
1605         /*
1606          * No need for swap_lock here: we're just looking
1607          * for whether an entry is in use, not modifying it; false
1608          * hits are okay, and sys_swapoff() has already prevented new
1609          * allocations from this area (while holding swap_lock).
1610          */
1611         for (;;) {
1612                 if (++i >= max) {
1613                         if (!prev) {
1614                                 i = 0;
1615                                 break;
1616                         }
1617                         /*
1618                          * No entries in use at top of swap_map,
1619                          * loop back to start and recheck there.
1620                          */
1621                         max = prev + 1;
1622                         prev = 0;
1623                         i = 1;
1624                 }
1625                 count = READ_ONCE(si->swap_map[i]);
1626                 if (count && swap_count(count) != SWAP_MAP_BAD)
1627                         if (!frontswap || frontswap_test(si, i))
1628                                 break;
1629                 if ((i % LATENCY_LIMIT) == 0)
1630                         cond_resched();
1631         }
1632         return i;
1633 }
1634
1635 /*
1636  * We completely avoid races by reading each swap page in advance,
1637  * and then search for the process using it.  All the necessary
1638  * page table adjustments can then be made atomically.
1639  *
1640  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1641  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1642  */
1643 int try_to_unuse(unsigned int type, bool frontswap,
1644                  unsigned long pages_to_unuse)
1645 {
1646         struct swap_info_struct *si = swap_info[type];
1647         struct mm_struct *start_mm;
1648         volatile unsigned char *swap_map; /* swap_map is accessed without
1649                                            * locking. Mark it as volatile
1650                                            * to prevent compiler doing
1651                                            * something odd.
1652                                            */
1653         unsigned char swcount;
1654         struct page *page;
1655         swp_entry_t entry;
1656         unsigned int i = 0;
1657         int retval = 0;
1658
1659         /*
1660          * When searching mms for an entry, a good strategy is to
1661          * start at the first mm we freed the previous entry from
1662          * (though actually we don't notice whether we or coincidence
1663          * freed the entry).  Initialize this start_mm with a hold.
1664          *
1665          * A simpler strategy would be to start at the last mm we
1666          * freed the previous entry from; but that would take less
1667          * advantage of mmlist ordering, which clusters forked mms
1668          * together, child after parent.  If we race with dup_mmap(), we
1669          * prefer to resolve parent before child, lest we miss entries
1670          * duplicated after we scanned child: using last mm would invert
1671          * that.
1672          */
1673         start_mm = &init_mm;
1674         mmget(&init_mm);
1675
1676         /*
1677          * Keep on scanning until all entries have gone.  Usually,
1678          * one pass through swap_map is enough, but not necessarily:
1679          * there are races when an instance of an entry might be missed.
1680          */
1681         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1682                 if (signal_pending(current)) {
1683                         retval = -EINTR;
1684                         break;
1685                 }
1686
1687                 /*
1688                  * Get a page for the entry, using the existing swap
1689                  * cache page if there is one.  Otherwise, get a clean
1690                  * page and read the swap into it.
1691                  */
1692                 swap_map = &si->swap_map[i];
1693                 entry = swp_entry(type, i);
1694                 page = read_swap_cache_async(entry,
1695                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1696                 if (!page) {
1697                         /*
1698                          * Either swap_duplicate() failed because entry
1699                          * has been freed independently, and will not be
1700                          * reused since sys_swapoff() already disabled
1701                          * allocation from here, or alloc_page() failed.
1702                          */
1703                         swcount = *swap_map;
1704                         /*
1705                          * We don't hold lock here, so the swap entry could be
1706                          * SWAP_MAP_BAD (when the cluster is discarding).
1707                          * Instead of fail out, We can just skip the swap
1708                          * entry because swapoff will wait for discarding
1709                          * finish anyway.
1710                          */
1711                         if (!swcount || swcount == SWAP_MAP_BAD)
1712                                 continue;
1713                         retval = -ENOMEM;
1714                         break;
1715                 }
1716
1717                 /*
1718                  * Don't hold on to start_mm if it looks like exiting.
1719                  */
1720                 if (atomic_read(&start_mm->mm_users) == 1) {
1721                         mmput(start_mm);
1722                         start_mm = &init_mm;
1723                         mmget(&init_mm);
1724                 }
1725
1726                 /*
1727                  * Wait for and lock page.  When do_swap_page races with
1728                  * try_to_unuse, do_swap_page can handle the fault much
1729                  * faster than try_to_unuse can locate the entry.  This
1730                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1731                  * defer to do_swap_page in such a case - in some tests,
1732                  * do_swap_page and try_to_unuse repeatedly compete.
1733                  */
1734                 wait_on_page_locked(page);
1735                 wait_on_page_writeback(page);
1736                 lock_page(page);
1737                 wait_on_page_writeback(page);
1738
1739                 /*
1740                  * Remove all references to entry.
1741                  */
1742                 swcount = *swap_map;
1743                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1744                         retval = shmem_unuse(entry, page);
1745                         /* page has already been unlocked and released */
1746                         if (retval < 0)
1747                                 break;
1748                         continue;
1749                 }
1750                 if (swap_count(swcount) && start_mm != &init_mm)
1751                         retval = unuse_mm(start_mm, entry, page);
1752
1753                 if (swap_count(*swap_map)) {
1754                         int set_start_mm = (*swap_map >= swcount);
1755                         struct list_head *p = &start_mm->mmlist;
1756                         struct mm_struct *new_start_mm = start_mm;
1757                         struct mm_struct *prev_mm = start_mm;
1758                         struct mm_struct *mm;
1759
1760                         mmget(new_start_mm);
1761                         mmget(prev_mm);
1762                         spin_lock(&mmlist_lock);
1763                         while (swap_count(*swap_map) && !retval &&
1764                                         (p = p->next) != &start_mm->mmlist) {
1765                                 mm = list_entry(p, struct mm_struct, mmlist);
1766                                 if (!mmget_not_zero(mm))
1767                                         continue;
1768                                 spin_unlock(&mmlist_lock);
1769                                 mmput(prev_mm);
1770                                 prev_mm = mm;
1771
1772                                 cond_resched();
1773
1774                                 swcount = *swap_map;
1775                                 if (!swap_count(swcount)) /* any usage ? */
1776                                         ;
1777                                 else if (mm == &init_mm)
1778                                         set_start_mm = 1;
1779                                 else
1780                                         retval = unuse_mm(mm, entry, page);
1781
1782                                 if (set_start_mm && *swap_map < swcount) {
1783                                         mmput(new_start_mm);
1784                                         mmget(mm);
1785                                         new_start_mm = mm;
1786                                         set_start_mm = 0;
1787                                 }
1788                                 spin_lock(&mmlist_lock);
1789                         }
1790                         spin_unlock(&mmlist_lock);
1791                         mmput(prev_mm);
1792                         mmput(start_mm);
1793                         start_mm = new_start_mm;
1794                 }
1795                 if (retval) {
1796                         unlock_page(page);
1797                         put_page(page);
1798                         break;
1799                 }
1800
1801                 /*
1802                  * If a reference remains (rare), we would like to leave
1803                  * the page in the swap cache; but try_to_unmap could
1804                  * then re-duplicate the entry once we drop page lock,
1805                  * so we might loop indefinitely; also, that page could
1806                  * not be swapped out to other storage meanwhile.  So:
1807                  * delete from cache even if there's another reference,
1808                  * after ensuring that the data has been saved to disk -
1809                  * since if the reference remains (rarer), it will be
1810                  * read from disk into another page.  Splitting into two
1811                  * pages would be incorrect if swap supported "shared
1812                  * private" pages, but they are handled by tmpfs files.
1813                  *
1814                  * Given how unuse_vma() targets one particular offset
1815                  * in an anon_vma, once the anon_vma has been determined,
1816                  * this splitting happens to be just what is needed to
1817                  * handle where KSM pages have been swapped out: re-reading
1818                  * is unnecessarily slow, but we can fix that later on.
1819                  */
1820                 if (swap_count(*swap_map) &&
1821                      PageDirty(page) && PageSwapCache(page)) {
1822                         struct writeback_control wbc = {
1823                                 .sync_mode = WB_SYNC_NONE,
1824                         };
1825
1826                         swap_writepage(page, &wbc);
1827                         lock_page(page);
1828                         wait_on_page_writeback(page);
1829                 }
1830
1831                 /*
1832                  * It is conceivable that a racing task removed this page from
1833                  * swap cache just before we acquired the page lock at the top,
1834                  * or while we dropped it in unuse_mm().  The page might even
1835                  * be back in swap cache on another swap area: that we must not
1836                  * delete, since it may not have been written out to swap yet.
1837                  */
1838                 if (PageSwapCache(page) &&
1839                     likely(page_private(page) == entry.val))
1840                         delete_from_swap_cache(page);
1841
1842                 /*
1843                  * So we could skip searching mms once swap count went
1844                  * to 1, we did not mark any present ptes as dirty: must
1845                  * mark page dirty so shrink_page_list will preserve it.
1846                  */
1847                 SetPageDirty(page);
1848                 unlock_page(page);
1849                 put_page(page);
1850
1851                 /*
1852                  * Make sure that we aren't completely killing
1853                  * interactive performance.
1854                  */
1855                 cond_resched();
1856                 if (frontswap && pages_to_unuse > 0) {
1857                         if (!--pages_to_unuse)
1858                                 break;
1859                 }
1860         }
1861
1862         mmput(start_mm);
1863         return retval;
1864 }
1865
1866 /*
1867  * After a successful try_to_unuse, if no swap is now in use, we know
1868  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1869  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1870  * added to the mmlist just after page_duplicate - before would be racy.
1871  */
1872 static void drain_mmlist(void)
1873 {
1874         struct list_head *p, *next;
1875         unsigned int type;
1876
1877         for (type = 0; type < nr_swapfiles; type++)
1878                 if (swap_info[type]->inuse_pages)
1879                         return;
1880         spin_lock(&mmlist_lock);
1881         list_for_each_safe(p, next, &init_mm.mmlist)
1882                 list_del_init(p);
1883         spin_unlock(&mmlist_lock);
1884 }
1885
1886 /*
1887  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1888  * corresponds to page offset for the specified swap entry.
1889  * Note that the type of this function is sector_t, but it returns page offset
1890  * into the bdev, not sector offset.
1891  */
1892 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1893 {
1894         struct swap_info_struct *sis;
1895         struct swap_extent *start_se;
1896         struct swap_extent *se;
1897         pgoff_t offset;
1898
1899         sis = swap_info[swp_type(entry)];
1900         *bdev = sis->bdev;
1901
1902         offset = swp_offset(entry);
1903         start_se = sis->curr_swap_extent;
1904         se = start_se;
1905
1906         for ( ; ; ) {
1907                 if (se->start_page <= offset &&
1908                                 offset < (se->start_page + se->nr_pages)) {
1909                         return se->start_block + (offset - se->start_page);
1910                 }
1911                 se = list_next_entry(se, list);
1912                 sis->curr_swap_extent = se;
1913                 BUG_ON(se == start_se);         /* It *must* be present */
1914         }
1915 }
1916
1917 /*
1918  * Returns the page offset into bdev for the specified page's swap entry.
1919  */
1920 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1921 {
1922         swp_entry_t entry;
1923         entry.val = page_private(page);
1924         return map_swap_entry(entry, bdev);
1925 }
1926
1927 /*
1928  * Free all of a swapdev's extent information
1929  */
1930 static void destroy_swap_extents(struct swap_info_struct *sis)
1931 {
1932         while (!list_empty(&sis->first_swap_extent.list)) {
1933                 struct swap_extent *se;
1934
1935                 se = list_first_entry(&sis->first_swap_extent.list,
1936                                 struct swap_extent, list);
1937                 list_del(&se->list);
1938                 kfree(se);
1939         }
1940
1941         if (sis->flags & SWP_FILE) {
1942                 struct file *swap_file = sis->swap_file;
1943                 struct address_space *mapping = swap_file->f_mapping;
1944
1945                 sis->flags &= ~SWP_FILE;
1946                 mapping->a_ops->swap_deactivate(swap_file);
1947         }
1948 }
1949
1950 /*
1951  * Add a block range (and the corresponding page range) into this swapdev's
1952  * extent list.  The extent list is kept sorted in page order.
1953  *
1954  * This function rather assumes that it is called in ascending page order.
1955  */
1956 int
1957 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1958                 unsigned long nr_pages, sector_t start_block)
1959 {
1960         struct swap_extent *se;
1961         struct swap_extent *new_se;
1962         struct list_head *lh;
1963
1964         if (start_page == 0) {
1965                 se = &sis->first_swap_extent;
1966                 sis->curr_swap_extent = se;
1967                 se->start_page = 0;
1968                 se->nr_pages = nr_pages;
1969                 se->start_block = start_block;
1970                 return 1;
1971         } else {
1972                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1973                 se = list_entry(lh, struct swap_extent, list);
1974                 BUG_ON(se->start_page + se->nr_pages != start_page);
1975                 if (se->start_block + se->nr_pages == start_block) {
1976                         /* Merge it */
1977                         se->nr_pages += nr_pages;
1978                         return 0;
1979                 }
1980         }
1981
1982         /*
1983          * No merge.  Insert a new extent, preserving ordering.
1984          */
1985         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1986         if (new_se == NULL)
1987                 return -ENOMEM;
1988         new_se->start_page = start_page;
1989         new_se->nr_pages = nr_pages;
1990         new_se->start_block = start_block;
1991
1992         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1993         return 1;
1994 }
1995
1996 /*
1997  * A `swap extent' is a simple thing which maps a contiguous range of pages
1998  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1999  * is built at swapon time and is then used at swap_writepage/swap_readpage
2000  * time for locating where on disk a page belongs.
2001  *
2002  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2003  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2004  * swap files identically.
2005  *
2006  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2007  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2008  * swapfiles are handled *identically* after swapon time.
2009  *
2010  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2011  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2012  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2013  * requirements, they are simply tossed out - we will never use those blocks
2014  * for swapping.
2015  *
2016  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2017  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2018  * which will scribble on the fs.
2019  *
2020  * The amount of disk space which a single swap extent represents varies.
2021  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2022  * extents in the list.  To avoid much list walking, we cache the previous
2023  * search location in `curr_swap_extent', and start new searches from there.
2024  * This is extremely effective.  The average number of iterations in
2025  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2026  */
2027 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2028 {
2029         struct file *swap_file = sis->swap_file;
2030         struct address_space *mapping = swap_file->f_mapping;
2031         struct inode *inode = mapping->host;
2032         int ret;
2033
2034         if (S_ISBLK(inode->i_mode)) {
2035                 ret = add_swap_extent(sis, 0, sis->max, 0);
2036                 *span = sis->pages;
2037                 return ret;
2038         }
2039
2040         if (mapping->a_ops->swap_activate) {
2041                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2042                 if (!ret) {
2043                         sis->flags |= SWP_FILE;
2044                         ret = add_swap_extent(sis, 0, sis->max, 0);
2045                         *span = sis->pages;
2046                 }
2047                 return ret;
2048         }
2049
2050         return generic_swapfile_activate(sis, swap_file, span);
2051 }
2052
2053 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2054                                 unsigned char *swap_map,
2055                                 struct swap_cluster_info *cluster_info)
2056 {
2057         if (prio >= 0)
2058                 p->prio = prio;
2059         else
2060                 p->prio = --least_priority;
2061         /*
2062          * the plist prio is negated because plist ordering is
2063          * low-to-high, while swap ordering is high-to-low
2064          */
2065         p->list.prio = -p->prio;
2066         p->avail_list.prio = -p->prio;
2067         p->swap_map = swap_map;
2068         p->cluster_info = cluster_info;
2069         p->flags |= SWP_WRITEOK;
2070         atomic_long_add(p->pages, &nr_swap_pages);
2071         total_swap_pages += p->pages;
2072
2073         assert_spin_locked(&swap_lock);
2074         /*
2075          * both lists are plists, and thus priority ordered.
2076          * swap_active_head needs to be priority ordered for swapoff(),
2077          * which on removal of any swap_info_struct with an auto-assigned
2078          * (i.e. negative) priority increments the auto-assigned priority
2079          * of any lower-priority swap_info_structs.
2080          * swap_avail_head needs to be priority ordered for get_swap_page(),
2081          * which allocates swap pages from the highest available priority
2082          * swap_info_struct.
2083          */
2084         plist_add(&p->list, &swap_active_head);
2085         spin_lock(&swap_avail_lock);
2086         plist_add(&p->avail_list, &swap_avail_head);
2087         spin_unlock(&swap_avail_lock);
2088 }
2089
2090 static void enable_swap_info(struct swap_info_struct *p, int prio,
2091                                 unsigned char *swap_map,
2092                                 struct swap_cluster_info *cluster_info,
2093                                 unsigned long *frontswap_map)
2094 {
2095         frontswap_init(p->type, frontswap_map);
2096         spin_lock(&swap_lock);
2097         spin_lock(&p->lock);
2098          _enable_swap_info(p, prio, swap_map, cluster_info);
2099         spin_unlock(&p->lock);
2100         spin_unlock(&swap_lock);
2101 }
2102
2103 static void reinsert_swap_info(struct swap_info_struct *p)
2104 {
2105         spin_lock(&swap_lock);
2106         spin_lock(&p->lock);
2107         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2108         spin_unlock(&p->lock);
2109         spin_unlock(&swap_lock);
2110 }
2111
2112 bool has_usable_swap(void)
2113 {
2114         bool ret = true;
2115
2116         spin_lock(&swap_lock);
2117         if (plist_head_empty(&swap_active_head))
2118                 ret = false;
2119         spin_unlock(&swap_lock);
2120         return ret;
2121 }
2122
2123 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2124 {
2125         struct swap_info_struct *p = NULL;
2126         unsigned char *swap_map;
2127         struct swap_cluster_info *cluster_info;
2128         unsigned long *frontswap_map;
2129         struct file *swap_file, *victim;
2130         struct address_space *mapping;
2131         struct inode *inode;
2132         struct filename *pathname;
2133         int err, found = 0;
2134         unsigned int old_block_size;
2135
2136         if (!capable(CAP_SYS_ADMIN))
2137                 return -EPERM;
2138
2139         BUG_ON(!current->mm);
2140
2141         pathname = getname(specialfile);
2142         if (IS_ERR(pathname))
2143                 return PTR_ERR(pathname);
2144
2145         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2146         err = PTR_ERR(victim);
2147         if (IS_ERR(victim))
2148                 goto out;
2149
2150         mapping = victim->f_mapping;
2151         spin_lock(&swap_lock);
2152         plist_for_each_entry(p, &swap_active_head, list) {
2153                 if (p->flags & SWP_WRITEOK) {
2154                         if (p->swap_file->f_mapping == mapping) {
2155                                 found = 1;
2156                                 break;
2157                         }
2158                 }
2159         }
2160         if (!found) {
2161                 err = -EINVAL;
2162                 spin_unlock(&swap_lock);
2163                 goto out_dput;
2164         }
2165         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2166                 vm_unacct_memory(p->pages);
2167         else {
2168                 err = -ENOMEM;
2169                 spin_unlock(&swap_lock);
2170                 goto out_dput;
2171         }
2172         spin_lock(&swap_avail_lock);
2173         plist_del(&p->avail_list, &swap_avail_head);
2174         spin_unlock(&swap_avail_lock);
2175         spin_lock(&p->lock);
2176         if (p->prio < 0) {
2177                 struct swap_info_struct *si = p;
2178
2179                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2180                         si->prio++;
2181                         si->list.prio--;
2182                         si->avail_list.prio--;
2183                 }
2184                 least_priority++;
2185         }
2186         plist_del(&p->list, &swap_active_head);
2187         atomic_long_sub(p->pages, &nr_swap_pages);
2188         total_swap_pages -= p->pages;
2189         p->flags &= ~SWP_WRITEOK;
2190         spin_unlock(&p->lock);
2191         spin_unlock(&swap_lock);
2192
2193         disable_swap_slots_cache_lock();
2194
2195         set_current_oom_origin();
2196         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2197         clear_current_oom_origin();
2198
2199         if (err) {
2200                 /* re-insert swap space back into swap_list */
2201                 reinsert_swap_info(p);
2202                 reenable_swap_slots_cache_unlock();
2203                 goto out_dput;
2204         }
2205
2206         reenable_swap_slots_cache_unlock();
2207
2208         flush_work(&p->discard_work);
2209
2210         destroy_swap_extents(p);
2211         if (p->flags & SWP_CONTINUED)
2212                 free_swap_count_continuations(p);
2213
2214         mutex_lock(&swapon_mutex);
2215         spin_lock(&swap_lock);
2216         spin_lock(&p->lock);
2217         drain_mmlist();
2218
2219         /* wait for anyone still in scan_swap_map */
2220         p->highest_bit = 0;             /* cuts scans short */
2221         while (p->flags >= SWP_SCANNING) {
2222                 spin_unlock(&p->lock);
2223                 spin_unlock(&swap_lock);
2224                 schedule_timeout_uninterruptible(1);
2225                 spin_lock(&swap_lock);
2226                 spin_lock(&p->lock);
2227         }
2228
2229         swap_file = p->swap_file;
2230         old_block_size = p->old_block_size;
2231         p->swap_file = NULL;
2232         p->max = 0;
2233         swap_map = p->swap_map;
2234         p->swap_map = NULL;
2235         cluster_info = p->cluster_info;
2236         p->cluster_info = NULL;
2237         frontswap_map = frontswap_map_get(p);
2238         spin_unlock(&p->lock);
2239         spin_unlock(&swap_lock);
2240         frontswap_invalidate_area(p->type);
2241         frontswap_map_set(p, NULL);
2242         mutex_unlock(&swapon_mutex);
2243         free_percpu(p->percpu_cluster);
2244         p->percpu_cluster = NULL;
2245         vfree(swap_map);
2246         vfree(cluster_info);
2247         vfree(frontswap_map);
2248         /* Destroy swap account information */
2249         swap_cgroup_swapoff(p->type);
2250         exit_swap_address_space(p->type);
2251
2252         inode = mapping->host;
2253         if (S_ISBLK(inode->i_mode)) {
2254                 struct block_device *bdev = I_BDEV(inode);
2255                 set_blocksize(bdev, old_block_size);
2256                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2257         } else {
2258                 inode_lock(inode);
2259                 inode->i_flags &= ~S_SWAPFILE;
2260                 inode_unlock(inode);
2261         }
2262         filp_close(swap_file, NULL);
2263
2264         /*
2265          * Clear the SWP_USED flag after all resources are freed so that swapon
2266          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2267          * not hold p->lock after we cleared its SWP_WRITEOK.
2268          */
2269         spin_lock(&swap_lock);
2270         p->flags = 0;
2271         spin_unlock(&swap_lock);
2272
2273         err = 0;
2274         atomic_inc(&proc_poll_event);
2275         wake_up_interruptible(&proc_poll_wait);
2276
2277 out_dput:
2278         filp_close(victim, NULL);
2279 out:
2280         putname(pathname);
2281         return err;
2282 }
2283
2284 #ifdef CONFIG_PROC_FS
2285 static unsigned swaps_poll(struct file *file, poll_table *wait)
2286 {
2287         struct seq_file *seq = file->private_data;
2288
2289         poll_wait(file, &proc_poll_wait, wait);
2290
2291         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2292                 seq->poll_event = atomic_read(&proc_poll_event);
2293                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2294         }
2295
2296         return POLLIN | POLLRDNORM;
2297 }
2298
2299 /* iterator */
2300 static void *swap_start(struct seq_file *swap, loff_t *pos)
2301 {
2302         struct swap_info_struct *si;
2303         int type;
2304         loff_t l = *pos;
2305
2306         mutex_lock(&swapon_mutex);
2307
2308         if (!l)
2309                 return SEQ_START_TOKEN;
2310
2311         for (type = 0; type < nr_swapfiles; type++) {
2312                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2313                 si = swap_info[type];
2314                 if (!(si->flags & SWP_USED) || !si->swap_map)
2315                         continue;
2316                 if (!--l)
2317                         return si;
2318         }
2319
2320         return NULL;
2321 }
2322
2323 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2324 {
2325         struct swap_info_struct *si = v;
2326         int type;
2327
2328         if (v == SEQ_START_TOKEN)
2329                 type = 0;
2330         else
2331                 type = si->type + 1;
2332
2333         for (; type < nr_swapfiles; type++) {
2334                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2335                 si = swap_info[type];
2336                 if (!(si->flags & SWP_USED) || !si->swap_map)
2337                         continue;
2338                 ++*pos;
2339                 return si;
2340         }
2341
2342         return NULL;
2343 }
2344
2345 static void swap_stop(struct seq_file *swap, void *v)
2346 {
2347         mutex_unlock(&swapon_mutex);
2348 }
2349
2350 static int swap_show(struct seq_file *swap, void *v)
2351 {
2352         struct swap_info_struct *si = v;
2353         struct file *file;
2354         int len;
2355
2356         if (si == SEQ_START_TOKEN) {
2357                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2358                 return 0;
2359         }
2360
2361         file = si->swap_file;
2362         len = seq_file_path(swap, file, " \t\n\\");
2363         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2364                         len < 40 ? 40 - len : 1, " ",
2365                         S_ISBLK(file_inode(file)->i_mode) ?
2366                                 "partition" : "file\t",
2367                         si->pages << (PAGE_SHIFT - 10),
2368                         si->inuse_pages << (PAGE_SHIFT - 10),
2369                         si->prio);
2370         return 0;
2371 }
2372
2373 static const struct seq_operations swaps_op = {
2374         .start =        swap_start,
2375         .next =         swap_next,
2376         .stop =         swap_stop,
2377         .show =         swap_show
2378 };
2379
2380 static int swaps_open(struct inode *inode, struct file *file)
2381 {
2382         struct seq_file *seq;
2383         int ret;
2384
2385         ret = seq_open(file, &swaps_op);
2386         if (ret)
2387                 return ret;
2388
2389         seq = file->private_data;
2390         seq->poll_event = atomic_read(&proc_poll_event);
2391         return 0;
2392 }
2393
2394 static const struct file_operations proc_swaps_operations = {
2395         .open           = swaps_open,
2396         .read           = seq_read,
2397         .llseek         = seq_lseek,
2398         .release        = seq_release,
2399         .poll           = swaps_poll,
2400 };
2401
2402 static int __init procswaps_init(void)
2403 {
2404         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2405         return 0;
2406 }
2407 __initcall(procswaps_init);
2408 #endif /* CONFIG_PROC_FS */
2409
2410 #ifdef MAX_SWAPFILES_CHECK
2411 static int __init max_swapfiles_check(void)
2412 {
2413         MAX_SWAPFILES_CHECK();
2414         return 0;
2415 }
2416 late_initcall(max_swapfiles_check);
2417 #endif
2418
2419 static struct swap_info_struct *alloc_swap_info(void)
2420 {
2421         struct swap_info_struct *p;
2422         unsigned int type;
2423
2424         p = kzalloc(sizeof(*p), GFP_KERNEL);
2425         if (!p)
2426                 return ERR_PTR(-ENOMEM);
2427
2428         spin_lock(&swap_lock);
2429         for (type = 0; type < nr_swapfiles; type++) {
2430                 if (!(swap_info[type]->flags & SWP_USED))
2431                         break;
2432         }
2433         if (type >= MAX_SWAPFILES) {
2434                 spin_unlock(&swap_lock);
2435                 kfree(p);
2436                 return ERR_PTR(-EPERM);
2437         }
2438         if (type >= nr_swapfiles) {
2439                 p->type = type;
2440                 swap_info[type] = p;
2441                 /*
2442                  * Write swap_info[type] before nr_swapfiles, in case a
2443                  * racing procfs swap_start() or swap_next() is reading them.
2444                  * (We never shrink nr_swapfiles, we never free this entry.)
2445                  */
2446                 smp_wmb();
2447                 nr_swapfiles++;
2448         } else {
2449                 kfree(p);
2450                 p = swap_info[type];
2451                 /*
2452                  * Do not memset this entry: a racing procfs swap_next()
2453                  * would be relying on p->type to remain valid.
2454                  */
2455         }
2456         INIT_LIST_HEAD(&p->first_swap_extent.list);
2457         plist_node_init(&p->list, 0);
2458         plist_node_init(&p->avail_list, 0);
2459         p->flags = SWP_USED;
2460         spin_unlock(&swap_lock);
2461         spin_lock_init(&p->lock);
2462
2463         return p;
2464 }
2465
2466 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2467 {
2468         int error;
2469
2470         if (S_ISBLK(inode->i_mode)) {
2471                 p->bdev = bdgrab(I_BDEV(inode));
2472                 error = blkdev_get(p->bdev,
2473                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2474                 if (error < 0) {
2475                         p->bdev = NULL;
2476                         return error;
2477                 }
2478                 p->old_block_size = block_size(p->bdev);
2479                 error = set_blocksize(p->bdev, PAGE_SIZE);
2480                 if (error < 0)
2481                         return error;
2482                 p->flags |= SWP_BLKDEV;
2483         } else if (S_ISREG(inode->i_mode)) {
2484                 p->bdev = inode->i_sb->s_bdev;
2485                 inode_lock(inode);
2486                 if (IS_SWAPFILE(inode))
2487                         return -EBUSY;
2488         } else
2489                 return -EINVAL;
2490
2491         return 0;
2492 }
2493
2494 static unsigned long read_swap_header(struct swap_info_struct *p,
2495                                         union swap_header *swap_header,
2496                                         struct inode *inode)
2497 {
2498         int i;
2499         unsigned long maxpages;
2500         unsigned long swapfilepages;
2501         unsigned long last_page;
2502
2503         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2504                 pr_err("Unable to find swap-space signature\n");
2505                 return 0;
2506         }
2507
2508         /* swap partition endianess hack... */
2509         if (swab32(swap_header->info.version) == 1) {
2510                 swab32s(&swap_header->info.version);
2511                 swab32s(&swap_header->info.last_page);
2512                 swab32s(&swap_header->info.nr_badpages);
2513                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2514                         return 0;
2515                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2516                         swab32s(&swap_header->info.badpages[i]);
2517         }
2518         /* Check the swap header's sub-version */
2519         if (swap_header->info.version != 1) {
2520                 pr_warn("Unable to handle swap header version %d\n",
2521                         swap_header->info.version);
2522                 return 0;
2523         }
2524
2525         p->lowest_bit  = 1;
2526         p->cluster_next = 1;
2527         p->cluster_nr = 0;
2528
2529         /*
2530          * Find out how many pages are allowed for a single swap
2531          * device. There are two limiting factors: 1) the number
2532          * of bits for the swap offset in the swp_entry_t type, and
2533          * 2) the number of bits in the swap pte as defined by the
2534          * different architectures. In order to find the
2535          * largest possible bit mask, a swap entry with swap type 0
2536          * and swap offset ~0UL is created, encoded to a swap pte,
2537          * decoded to a swp_entry_t again, and finally the swap
2538          * offset is extracted. This will mask all the bits from
2539          * the initial ~0UL mask that can't be encoded in either
2540          * the swp_entry_t or the architecture definition of a
2541          * swap pte.
2542          */
2543         maxpages = swp_offset(pte_to_swp_entry(
2544                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2545         last_page = swap_header->info.last_page;
2546         if (last_page > maxpages) {
2547                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2548                         maxpages << (PAGE_SHIFT - 10),
2549                         last_page << (PAGE_SHIFT - 10));
2550         }
2551         if (maxpages > last_page) {
2552                 maxpages = last_page + 1;
2553                 /* p->max is an unsigned int: don't overflow it */
2554                 if ((unsigned int)maxpages == 0)
2555                         maxpages = UINT_MAX;
2556         }
2557         p->highest_bit = maxpages - 1;
2558
2559         if (!maxpages)
2560                 return 0;
2561         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2562         if (swapfilepages && maxpages > swapfilepages) {
2563                 pr_warn("Swap area shorter than signature indicates\n");
2564                 return 0;
2565         }
2566         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2567                 return 0;
2568         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2569                 return 0;
2570
2571         return maxpages;
2572 }
2573
2574 #define SWAP_CLUSTER_INFO_COLS                                          \
2575         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2576 #define SWAP_CLUSTER_SPACE_COLS                                         \
2577         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2578 #define SWAP_CLUSTER_COLS                                               \
2579         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2580
2581 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2582                                         union swap_header *swap_header,
2583                                         unsigned char *swap_map,
2584                                         struct swap_cluster_info *cluster_info,
2585                                         unsigned long maxpages,
2586                                         sector_t *span)
2587 {
2588         unsigned int j, k;
2589         unsigned int nr_good_pages;
2590         int nr_extents;
2591         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2592         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2593         unsigned long i, idx;
2594
2595         nr_good_pages = maxpages - 1;   /* omit header page */
2596
2597         cluster_list_init(&p->free_clusters);
2598         cluster_list_init(&p->discard_clusters);
2599
2600         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2601                 unsigned int page_nr = swap_header->info.badpages[i];
2602                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2603                         return -EINVAL;
2604                 if (page_nr < maxpages) {
2605                         swap_map[page_nr] = SWAP_MAP_BAD;
2606                         nr_good_pages--;
2607                         /*
2608                          * Haven't marked the cluster free yet, no list
2609                          * operation involved
2610                          */
2611                         inc_cluster_info_page(p, cluster_info, page_nr);
2612                 }
2613         }
2614
2615         /* Haven't marked the cluster free yet, no list operation involved */
2616         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2617                 inc_cluster_info_page(p, cluster_info, i);
2618
2619         if (nr_good_pages) {
2620                 swap_map[0] = SWAP_MAP_BAD;
2621                 /*
2622                  * Not mark the cluster free yet, no list
2623                  * operation involved
2624                  */
2625                 inc_cluster_info_page(p, cluster_info, 0);
2626                 p->max = maxpages;
2627                 p->pages = nr_good_pages;
2628                 nr_extents = setup_swap_extents(p, span);
2629                 if (nr_extents < 0)
2630                         return nr_extents;
2631                 nr_good_pages = p->pages;
2632         }
2633         if (!nr_good_pages) {
2634                 pr_warn("Empty swap-file\n");
2635                 return -EINVAL;
2636         }
2637
2638         if (!cluster_info)
2639                 return nr_extents;
2640
2641
2642         /*
2643          * Reduce false cache line sharing between cluster_info and
2644          * sharing same address space.
2645          */
2646         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2647                 j = (k + col) % SWAP_CLUSTER_COLS;
2648                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2649                         idx = i * SWAP_CLUSTER_COLS + j;
2650                         if (idx >= nr_clusters)
2651                                 continue;
2652                         if (cluster_count(&cluster_info[idx]))
2653                                 continue;
2654                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2655                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2656                                               idx);
2657                 }
2658         }
2659         return nr_extents;
2660 }
2661
2662 /*
2663  * Helper to sys_swapon determining if a given swap
2664  * backing device queue supports DISCARD operations.
2665  */
2666 static bool swap_discardable(struct swap_info_struct *si)
2667 {
2668         struct request_queue *q = bdev_get_queue(si->bdev);
2669
2670         if (!q || !blk_queue_discard(q))
2671                 return false;
2672
2673         return true;
2674 }
2675
2676 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2677 {
2678         struct swap_info_struct *p;
2679         struct filename *name;
2680         struct file *swap_file = NULL;
2681         struct address_space *mapping;
2682         int prio;
2683         int error;
2684         union swap_header *swap_header;
2685         int nr_extents;
2686         sector_t span;
2687         unsigned long maxpages;
2688         unsigned char *swap_map = NULL;
2689         struct swap_cluster_info *cluster_info = NULL;
2690         unsigned long *frontswap_map = NULL;
2691         struct page *page = NULL;
2692         struct inode *inode = NULL;
2693
2694         if (swap_flags & ~SWAP_FLAGS_VALID)
2695                 return -EINVAL;
2696
2697         if (!capable(CAP_SYS_ADMIN))
2698                 return -EPERM;
2699
2700         p = alloc_swap_info();
2701         if (IS_ERR(p))
2702                 return PTR_ERR(p);
2703
2704         INIT_WORK(&p->discard_work, swap_discard_work);
2705
2706         name = getname(specialfile);
2707         if (IS_ERR(name)) {
2708                 error = PTR_ERR(name);
2709                 name = NULL;
2710                 goto bad_swap;
2711         }
2712         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2713         if (IS_ERR(swap_file)) {
2714                 error = PTR_ERR(swap_file);
2715                 swap_file = NULL;
2716                 goto bad_swap;
2717         }
2718
2719         p->swap_file = swap_file;
2720         mapping = swap_file->f_mapping;
2721         inode = mapping->host;
2722
2723         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2724         error = claim_swapfile(p, inode);
2725         if (unlikely(error))
2726                 goto bad_swap;
2727
2728         /*
2729          * Read the swap header.
2730          */
2731         if (!mapping->a_ops->readpage) {
2732                 error = -EINVAL;
2733                 goto bad_swap;
2734         }
2735         page = read_mapping_page(mapping, 0, swap_file);
2736         if (IS_ERR(page)) {
2737                 error = PTR_ERR(page);
2738                 goto bad_swap;
2739         }
2740         swap_header = kmap(page);
2741
2742         maxpages = read_swap_header(p, swap_header, inode);
2743         if (unlikely(!maxpages)) {
2744                 error = -EINVAL;
2745                 goto bad_swap;
2746         }
2747
2748         /* OK, set up the swap map and apply the bad block list */
2749         swap_map = vzalloc(maxpages);
2750         if (!swap_map) {
2751                 error = -ENOMEM;
2752                 goto bad_swap;
2753         }
2754
2755         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2756                 p->flags |= SWP_STABLE_WRITES;
2757
2758         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2759                 int cpu;
2760                 unsigned long ci, nr_cluster;
2761
2762                 p->flags |= SWP_SOLIDSTATE;
2763                 /*
2764                  * select a random position to start with to help wear leveling
2765                  * SSD
2766                  */
2767                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2768                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2769
2770                 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2771                 if (!cluster_info) {
2772                         error = -ENOMEM;
2773                         goto bad_swap;
2774                 }
2775
2776                 for (ci = 0; ci < nr_cluster; ci++)
2777                         spin_lock_init(&((cluster_info + ci)->lock));
2778
2779                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2780                 if (!p->percpu_cluster) {
2781                         error = -ENOMEM;
2782                         goto bad_swap;
2783                 }
2784                 for_each_possible_cpu(cpu) {
2785                         struct percpu_cluster *cluster;
2786                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2787                         cluster_set_null(&cluster->index);
2788                 }
2789         }
2790
2791         error = swap_cgroup_swapon(p->type, maxpages);
2792         if (error)
2793                 goto bad_swap;
2794
2795         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2796                 cluster_info, maxpages, &span);
2797         if (unlikely(nr_extents < 0)) {
2798                 error = nr_extents;
2799                 goto bad_swap;
2800         }
2801         /* frontswap enabled? set up bit-per-page map for frontswap */
2802         if (IS_ENABLED(CONFIG_FRONTSWAP))
2803                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2804
2805         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2806                 /*
2807                  * When discard is enabled for swap with no particular
2808                  * policy flagged, we set all swap discard flags here in
2809                  * order to sustain backward compatibility with older
2810                  * swapon(8) releases.
2811                  */
2812                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2813                              SWP_PAGE_DISCARD);
2814
2815                 /*
2816                  * By flagging sys_swapon, a sysadmin can tell us to
2817                  * either do single-time area discards only, or to just
2818                  * perform discards for released swap page-clusters.
2819                  * Now it's time to adjust the p->flags accordingly.
2820                  */
2821                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2822                         p->flags &= ~SWP_PAGE_DISCARD;
2823                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2824                         p->flags &= ~SWP_AREA_DISCARD;
2825
2826                 /* issue a swapon-time discard if it's still required */
2827                 if (p->flags & SWP_AREA_DISCARD) {
2828                         int err = discard_swap(p);
2829                         if (unlikely(err))
2830                                 pr_err("swapon: discard_swap(%p): %d\n",
2831                                         p, err);
2832                 }
2833         }
2834
2835         error = init_swap_address_space(p->type, maxpages);
2836         if (error)
2837                 goto bad_swap;
2838
2839         mutex_lock(&swapon_mutex);
2840         prio = -1;
2841         if (swap_flags & SWAP_FLAG_PREFER)
2842                 prio =
2843                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2844         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2845
2846         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2847                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2848                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2849                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2850                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2851                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2852                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2853                 (frontswap_map) ? "FS" : "");
2854
2855         mutex_unlock(&swapon_mutex);
2856         atomic_inc(&proc_poll_event);
2857         wake_up_interruptible(&proc_poll_wait);
2858
2859         if (S_ISREG(inode->i_mode))
2860                 inode->i_flags |= S_SWAPFILE;
2861         error = 0;
2862         goto out;
2863 bad_swap:
2864         free_percpu(p->percpu_cluster);
2865         p->percpu_cluster = NULL;
2866         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2867                 set_blocksize(p->bdev, p->old_block_size);
2868                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2869         }
2870         destroy_swap_extents(p);
2871         swap_cgroup_swapoff(p->type);
2872         spin_lock(&swap_lock);
2873         p->swap_file = NULL;
2874         p->flags = 0;
2875         spin_unlock(&swap_lock);
2876         vfree(swap_map);
2877         vfree(cluster_info);
2878         if (swap_file) {
2879                 if (inode && S_ISREG(inode->i_mode)) {
2880                         inode_unlock(inode);
2881                         inode = NULL;
2882                 }
2883                 filp_close(swap_file, NULL);
2884         }
2885 out:
2886         if (page && !IS_ERR(page)) {
2887                 kunmap(page);
2888                 put_page(page);
2889         }
2890         if (name)
2891                 putname(name);
2892         if (inode && S_ISREG(inode->i_mode))
2893                 inode_unlock(inode);
2894         if (!error)
2895                 enable_swap_slots_cache();
2896         return error;
2897 }
2898
2899 void si_swapinfo(struct sysinfo *val)
2900 {
2901         unsigned int type;
2902         unsigned long nr_to_be_unused = 0;
2903
2904         spin_lock(&swap_lock);
2905         for (type = 0; type < nr_swapfiles; type++) {
2906                 struct swap_info_struct *si = swap_info[type];
2907
2908                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2909                         nr_to_be_unused += si->inuse_pages;
2910         }
2911         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2912         val->totalswap = total_swap_pages + nr_to_be_unused;
2913         spin_unlock(&swap_lock);
2914 }
2915
2916 /*
2917  * Verify that a swap entry is valid and increment its swap map count.
2918  *
2919  * Returns error code in following case.
2920  * - success -> 0
2921  * - swp_entry is invalid -> EINVAL
2922  * - swp_entry is migration entry -> EINVAL
2923  * - swap-cache reference is requested but there is already one. -> EEXIST
2924  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2925  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2926  */
2927 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2928 {
2929         struct swap_info_struct *p;
2930         struct swap_cluster_info *ci;
2931         unsigned long offset, type;
2932         unsigned char count;
2933         unsigned char has_cache;
2934         int err = -EINVAL;
2935
2936         if (non_swap_entry(entry))
2937                 goto out;
2938
2939         type = swp_type(entry);
2940         if (type >= nr_swapfiles)
2941                 goto bad_file;
2942         p = swap_info[type];
2943         offset = swp_offset(entry);
2944         if (unlikely(offset >= p->max))
2945                 goto out;
2946
2947         ci = lock_cluster_or_swap_info(p, offset);
2948
2949         count = p->swap_map[offset];
2950
2951         /*
2952          * swapin_readahead() doesn't check if a swap entry is valid, so the
2953          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2954          */
2955         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2956                 err = -ENOENT;
2957                 goto unlock_out;
2958         }
2959
2960         has_cache = count & SWAP_HAS_CACHE;
2961         count &= ~SWAP_HAS_CACHE;
2962         err = 0;
2963
2964         if (usage == SWAP_HAS_CACHE) {
2965
2966                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2967                 if (!has_cache && count)
2968                         has_cache = SWAP_HAS_CACHE;
2969                 else if (has_cache)             /* someone else added cache */
2970                         err = -EEXIST;
2971                 else                            /* no users remaining */
2972                         err = -ENOENT;
2973
2974         } else if (count || has_cache) {
2975
2976                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2977                         count += usage;
2978                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2979                         err = -EINVAL;
2980                 else if (swap_count_continued(p, offset, count))
2981                         count = COUNT_CONTINUED;
2982                 else
2983                         err = -ENOMEM;
2984         } else
2985                 err = -ENOENT;                  /* unused swap entry */
2986
2987         p->swap_map[offset] = count | has_cache;
2988
2989 unlock_out:
2990         unlock_cluster_or_swap_info(p, ci);
2991 out:
2992         return err;
2993
2994 bad_file:
2995         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2996         goto out;
2997 }
2998
2999 /*
3000  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3001  * (in which case its reference count is never incremented).
3002  */
3003 void swap_shmem_alloc(swp_entry_t entry)
3004 {
3005         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3006 }
3007
3008 /*
3009  * Increase reference count of swap entry by 1.
3010  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3011  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3012  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3013  * might occur if a page table entry has got corrupted.
3014  */
3015 int swap_duplicate(swp_entry_t entry)
3016 {
3017         int err = 0;
3018
3019         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3020                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3021         return err;
3022 }
3023
3024 /*
3025  * @entry: swap entry for which we allocate swap cache.
3026  *
3027  * Called when allocating swap cache for existing swap entry,
3028  * This can return error codes. Returns 0 at success.
3029  * -EBUSY means there is a swap cache.
3030  * Note: return code is different from swap_duplicate().
3031  */
3032 int swapcache_prepare(swp_entry_t entry)
3033 {
3034         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3035 }
3036
3037 struct swap_info_struct *page_swap_info(struct page *page)
3038 {
3039         swp_entry_t swap = { .val = page_private(page) };
3040         return swap_info[swp_type(swap)];
3041 }
3042
3043 /*
3044  * out-of-line __page_file_ methods to avoid include hell.
3045  */
3046 struct address_space *__page_file_mapping(struct page *page)
3047 {
3048         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3049         return page_swap_info(page)->swap_file->f_mapping;
3050 }
3051 EXPORT_SYMBOL_GPL(__page_file_mapping);
3052
3053 pgoff_t __page_file_index(struct page *page)
3054 {
3055         swp_entry_t swap = { .val = page_private(page) };
3056         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3057         return swp_offset(swap);
3058 }
3059 EXPORT_SYMBOL_GPL(__page_file_index);
3060
3061 /*
3062  * add_swap_count_continuation - called when a swap count is duplicated
3063  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3064  * page of the original vmalloc'ed swap_map, to hold the continuation count
3065  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3066  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3067  *
3068  * These continuation pages are seldom referenced: the common paths all work
3069  * on the original swap_map, only referring to a continuation page when the
3070  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3071  *
3072  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3073  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3074  * can be called after dropping locks.
3075  */
3076 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3077 {
3078         struct swap_info_struct *si;
3079         struct swap_cluster_info *ci;
3080         struct page *head;
3081         struct page *page;
3082         struct page *list_page;
3083         pgoff_t offset;
3084         unsigned char count;
3085
3086         /*
3087          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3088          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3089          */
3090         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3091
3092         si = swap_info_get(entry);
3093         if (!si) {
3094                 /*
3095                  * An acceptable race has occurred since the failing
3096                  * __swap_duplicate(): the swap entry has been freed,
3097                  * perhaps even the whole swap_map cleared for swapoff.
3098                  */
3099                 goto outer;
3100         }
3101
3102         offset = swp_offset(entry);
3103
3104         ci = lock_cluster(si, offset);
3105
3106         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3107
3108         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3109                 /*
3110                  * The higher the swap count, the more likely it is that tasks
3111                  * will race to add swap count continuation: we need to avoid
3112                  * over-provisioning.
3113                  */
3114                 goto out;
3115         }
3116
3117         if (!page) {
3118                 unlock_cluster(ci);
3119                 spin_unlock(&si->lock);
3120                 return -ENOMEM;
3121         }
3122
3123         /*
3124          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3125          * no architecture is using highmem pages for kernel page tables: so it
3126          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3127          */
3128         head = vmalloc_to_page(si->swap_map + offset);
3129         offset &= ~PAGE_MASK;
3130
3131         /*
3132          * Page allocation does not initialize the page's lru field,
3133          * but it does always reset its private field.
3134          */
3135         if (!page_private(head)) {
3136                 BUG_ON(count & COUNT_CONTINUED);
3137                 INIT_LIST_HEAD(&head->lru);
3138                 set_page_private(head, SWP_CONTINUED);
3139                 si->flags |= SWP_CONTINUED;
3140         }
3141
3142         list_for_each_entry(list_page, &head->lru, lru) {
3143                 unsigned char *map;
3144
3145                 /*
3146                  * If the previous map said no continuation, but we've found
3147                  * a continuation page, free our allocation and use this one.
3148                  */
3149                 if (!(count & COUNT_CONTINUED))
3150                         goto out;
3151
3152                 map = kmap_atomic(list_page) + offset;
3153                 count = *map;
3154                 kunmap_atomic(map);
3155
3156                 /*
3157                  * If this continuation count now has some space in it,
3158                  * free our allocation and use this one.
3159                  */
3160                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3161                         goto out;
3162         }
3163
3164         list_add_tail(&page->lru, &head->lru);
3165         page = NULL;                    /* now it's attached, don't free it */
3166 out:
3167         unlock_cluster(ci);
3168         spin_unlock(&si->lock);
3169 outer:
3170         if (page)
3171                 __free_page(page);
3172         return 0;
3173 }
3174
3175 /*
3176  * swap_count_continued - when the original swap_map count is incremented
3177  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3178  * into, carry if so, or else fail until a new continuation page is allocated;
3179  * when the original swap_map count is decremented from 0 with continuation,
3180  * borrow from the continuation and report whether it still holds more.
3181  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3182  * lock.
3183  */
3184 static bool swap_count_continued(struct swap_info_struct *si,
3185                                  pgoff_t offset, unsigned char count)
3186 {
3187         struct page *head;
3188         struct page *page;
3189         unsigned char *map;
3190
3191         head = vmalloc_to_page(si->swap_map + offset);
3192         if (page_private(head) != SWP_CONTINUED) {
3193                 BUG_ON(count & COUNT_CONTINUED);
3194                 return false;           /* need to add count continuation */
3195         }
3196
3197         offset &= ~PAGE_MASK;
3198         page = list_entry(head->lru.next, struct page, lru);
3199         map = kmap_atomic(page) + offset;
3200
3201         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3202                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3203
3204         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3205                 /*
3206                  * Think of how you add 1 to 999
3207                  */
3208                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3209                         kunmap_atomic(map);
3210                         page = list_entry(page->lru.next, struct page, lru);
3211                         BUG_ON(page == head);
3212                         map = kmap_atomic(page) + offset;
3213                 }
3214                 if (*map == SWAP_CONT_MAX) {
3215                         kunmap_atomic(map);
3216                         page = list_entry(page->lru.next, struct page, lru);
3217                         if (page == head)
3218                                 return false;   /* add count continuation */
3219                         map = kmap_atomic(page) + offset;
3220 init_map:               *map = 0;               /* we didn't zero the page */
3221                 }
3222                 *map += 1;
3223                 kunmap_atomic(map);
3224                 page = list_entry(page->lru.prev, struct page, lru);
3225                 while (page != head) {
3226                         map = kmap_atomic(page) + offset;
3227                         *map = COUNT_CONTINUED;
3228                         kunmap_atomic(map);
3229                         page = list_entry(page->lru.prev, struct page, lru);
3230                 }
3231                 return true;                    /* incremented */
3232
3233         } else {                                /* decrementing */
3234                 /*
3235                  * Think of how you subtract 1 from 1000
3236                  */
3237                 BUG_ON(count != COUNT_CONTINUED);
3238                 while (*map == COUNT_CONTINUED) {
3239                         kunmap_atomic(map);
3240                         page = list_entry(page->lru.next, struct page, lru);
3241                         BUG_ON(page == head);
3242                         map = kmap_atomic(page) + offset;
3243                 }
3244                 BUG_ON(*map == 0);
3245                 *map -= 1;
3246                 if (*map == 0)
3247                         count = 0;
3248                 kunmap_atomic(map);
3249                 page = list_entry(page->lru.prev, struct page, lru);
3250                 while (page != head) {
3251                         map = kmap_atomic(page) + offset;
3252                         *map = SWAP_CONT_MAX | count;
3253                         count = COUNT_CONTINUED;
3254                         kunmap_atomic(map);
3255                         page = list_entry(page->lru.prev, struct page, lru);
3256                 }
3257                 return count == COUNT_CONTINUED;
3258         }
3259 }
3260
3261 /*
3262  * free_swap_count_continuations - swapoff free all the continuation pages
3263  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3264  */
3265 static void free_swap_count_continuations(struct swap_info_struct *si)
3266 {
3267         pgoff_t offset;
3268
3269         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3270                 struct page *head;
3271                 head = vmalloc_to_page(si->swap_map + offset);
3272                 if (page_private(head)) {
3273                         struct page *page, *next;
3274
3275                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3276                                 list_del(&page->lru);
3277                                 __free_page(page);
3278                         }
3279                 }
3280         }
3281 }