]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/swapfile.c
mm, swap: Fix a race in free_swap_and_cache()
[karo-tx-linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43 #include <linux/swapops.h>
44 #include <linux/swap_cgroup.h>
45
46 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
47                                  unsigned char);
48 static void free_swap_count_continuations(struct swap_info_struct *);
49 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
50
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /*
55  * Some modules use swappable objects and may try to swap them out under
56  * memory pressure (via the shrinker). Before doing so, they may wish to
57  * check to see if any swap space is available.
58  */
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority;
63
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
68
69 /*
70  * all active swap_info_structs
71  * protected with swap_lock, and ordered by priority.
72  */
73 PLIST_HEAD(swap_active_head);
74
75 /*
76  * all available (active, not full) swap_info_structs
77  * protected with swap_avail_lock, ordered by priority.
78  * This is used by get_swap_page() instead of swap_active_head
79  * because swap_active_head includes all swap_info_structs,
80  * but get_swap_page() doesn't need to look at full ones.
81  * This uses its own lock instead of swap_lock because when a
82  * swap_info_struct changes between not-full/full, it needs to
83  * add/remove itself to/from this list, but the swap_info_struct->lock
84  * is held and the locking order requires swap_lock to be taken
85  * before any swap_info_struct->lock.
86  */
87 static PLIST_HEAD(swap_avail_head);
88 static DEFINE_SPINLOCK(swap_avail_lock);
89
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
91
92 static DEFINE_MUTEX(swapon_mutex);
93
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
97
98 static inline unsigned char swap_count(unsigned char ent)
99 {
100         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
101 }
102
103 /* returns 1 if swap entry is freed */
104 static int
105 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
106 {
107         swp_entry_t entry = swp_entry(si->type, offset);
108         struct page *page;
109         int ret = 0;
110
111         page = find_get_page(swap_address_space(entry), swp_offset(entry));
112         if (!page)
113                 return 0;
114         /*
115          * This function is called from scan_swap_map() and it's called
116          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
117          * We have to use trylock for avoiding deadlock. This is a special
118          * case and you should use try_to_free_swap() with explicit lock_page()
119          * in usual operations.
120          */
121         if (trylock_page(page)) {
122                 ret = try_to_free_swap(page);
123                 unlock_page(page);
124         }
125         put_page(page);
126         return ret;
127 }
128
129 /*
130  * swapon tell device that all the old swap contents can be discarded,
131  * to allow the swap device to optimize its wear-levelling.
132  */
133 static int discard_swap(struct swap_info_struct *si)
134 {
135         struct swap_extent *se;
136         sector_t start_block;
137         sector_t nr_blocks;
138         int err = 0;
139
140         /* Do not discard the swap header page! */
141         se = &si->first_swap_extent;
142         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
143         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
144         if (nr_blocks) {
145                 err = blkdev_issue_discard(si->bdev, start_block,
146                                 nr_blocks, GFP_KERNEL, 0);
147                 if (err)
148                         return err;
149                 cond_resched();
150         }
151
152         list_for_each_entry(se, &si->first_swap_extent.list, list) {
153                 start_block = se->start_block << (PAGE_SHIFT - 9);
154                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
155
156                 err = blkdev_issue_discard(si->bdev, start_block,
157                                 nr_blocks, GFP_KERNEL, 0);
158                 if (err)
159                         break;
160
161                 cond_resched();
162         }
163         return err;             /* That will often be -EOPNOTSUPP */
164 }
165
166 /*
167  * swap allocation tell device that a cluster of swap can now be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static void discard_swap_cluster(struct swap_info_struct *si,
171                                  pgoff_t start_page, pgoff_t nr_pages)
172 {
173         struct swap_extent *se = si->curr_swap_extent;
174         int found_extent = 0;
175
176         while (nr_pages) {
177                 if (se->start_page <= start_page &&
178                     start_page < se->start_page + se->nr_pages) {
179                         pgoff_t offset = start_page - se->start_page;
180                         sector_t start_block = se->start_block + offset;
181                         sector_t nr_blocks = se->nr_pages - offset;
182
183                         if (nr_blocks > nr_pages)
184                                 nr_blocks = nr_pages;
185                         start_page += nr_blocks;
186                         nr_pages -= nr_blocks;
187
188                         if (!found_extent++)
189                                 si->curr_swap_extent = se;
190
191                         start_block <<= PAGE_SHIFT - 9;
192                         nr_blocks <<= PAGE_SHIFT - 9;
193                         if (blkdev_issue_discard(si->bdev, start_block,
194                                     nr_blocks, GFP_NOIO, 0))
195                                 break;
196                 }
197
198                 se = list_next_entry(se, list);
199         }
200 }
201
202 #define SWAPFILE_CLUSTER        256
203 #define LATENCY_LIMIT           256
204
205 static inline void cluster_set_flag(struct swap_cluster_info *info,
206         unsigned int flag)
207 {
208         info->flags = flag;
209 }
210
211 static inline unsigned int cluster_count(struct swap_cluster_info *info)
212 {
213         return info->data;
214 }
215
216 static inline void cluster_set_count(struct swap_cluster_info *info,
217                                      unsigned int c)
218 {
219         info->data = c;
220 }
221
222 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
223                                          unsigned int c, unsigned int f)
224 {
225         info->flags = f;
226         info->data = c;
227 }
228
229 static inline unsigned int cluster_next(struct swap_cluster_info *info)
230 {
231         return info->data;
232 }
233
234 static inline void cluster_set_next(struct swap_cluster_info *info,
235                                     unsigned int n)
236 {
237         info->data = n;
238 }
239
240 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
241                                          unsigned int n, unsigned int f)
242 {
243         info->flags = f;
244         info->data = n;
245 }
246
247 static inline bool cluster_is_free(struct swap_cluster_info *info)
248 {
249         return info->flags & CLUSTER_FLAG_FREE;
250 }
251
252 static inline bool cluster_is_null(struct swap_cluster_info *info)
253 {
254         return info->flags & CLUSTER_FLAG_NEXT_NULL;
255 }
256
257 static inline void cluster_set_null(struct swap_cluster_info *info)
258 {
259         info->flags = CLUSTER_FLAG_NEXT_NULL;
260         info->data = 0;
261 }
262
263 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
264                                                      unsigned long offset)
265 {
266         struct swap_cluster_info *ci;
267
268         ci = si->cluster_info;
269         if (ci) {
270                 ci += offset / SWAPFILE_CLUSTER;
271                 spin_lock(&ci->lock);
272         }
273         return ci;
274 }
275
276 static inline void unlock_cluster(struct swap_cluster_info *ci)
277 {
278         if (ci)
279                 spin_unlock(&ci->lock);
280 }
281
282 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
283         struct swap_info_struct *si,
284         unsigned long offset)
285 {
286         struct swap_cluster_info *ci;
287
288         ci = lock_cluster(si, offset);
289         if (!ci)
290                 spin_lock(&si->lock);
291
292         return ci;
293 }
294
295 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
296                                                struct swap_cluster_info *ci)
297 {
298         if (ci)
299                 unlock_cluster(ci);
300         else
301                 spin_unlock(&si->lock);
302 }
303
304 static inline bool cluster_list_empty(struct swap_cluster_list *list)
305 {
306         return cluster_is_null(&list->head);
307 }
308
309 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
310 {
311         return cluster_next(&list->head);
312 }
313
314 static void cluster_list_init(struct swap_cluster_list *list)
315 {
316         cluster_set_null(&list->head);
317         cluster_set_null(&list->tail);
318 }
319
320 static void cluster_list_add_tail(struct swap_cluster_list *list,
321                                   struct swap_cluster_info *ci,
322                                   unsigned int idx)
323 {
324         if (cluster_list_empty(list)) {
325                 cluster_set_next_flag(&list->head, idx, 0);
326                 cluster_set_next_flag(&list->tail, idx, 0);
327         } else {
328                 struct swap_cluster_info *ci_tail;
329                 unsigned int tail = cluster_next(&list->tail);
330
331                 /*
332                  * Nested cluster lock, but both cluster locks are
333                  * only acquired when we held swap_info_struct->lock
334                  */
335                 ci_tail = ci + tail;
336                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
337                 cluster_set_next(ci_tail, idx);
338                 unlock_cluster(ci_tail);
339                 cluster_set_next_flag(&list->tail, idx, 0);
340         }
341 }
342
343 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
344                                            struct swap_cluster_info *ci)
345 {
346         unsigned int idx;
347
348         idx = cluster_next(&list->head);
349         if (cluster_next(&list->tail) == idx) {
350                 cluster_set_null(&list->head);
351                 cluster_set_null(&list->tail);
352         } else
353                 cluster_set_next_flag(&list->head,
354                                       cluster_next(&ci[idx]), 0);
355
356         return idx;
357 }
358
359 /* Add a cluster to discard list and schedule it to do discard */
360 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
361                 unsigned int idx)
362 {
363         /*
364          * If scan_swap_map() can't find a free cluster, it will check
365          * si->swap_map directly. To make sure the discarding cluster isn't
366          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
367          * will be cleared after discard
368          */
369         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
370                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
371
372         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
373
374         schedule_work(&si->discard_work);
375 }
376
377 /*
378  * Doing discard actually. After a cluster discard is finished, the cluster
379  * will be added to free cluster list. caller should hold si->lock.
380 */
381 static void swap_do_scheduled_discard(struct swap_info_struct *si)
382 {
383         struct swap_cluster_info *info, *ci;
384         unsigned int idx;
385
386         info = si->cluster_info;
387
388         while (!cluster_list_empty(&si->discard_clusters)) {
389                 idx = cluster_list_del_first(&si->discard_clusters, info);
390                 spin_unlock(&si->lock);
391
392                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
393                                 SWAPFILE_CLUSTER);
394
395                 spin_lock(&si->lock);
396                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
397                 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
398                 unlock_cluster(ci);
399                 cluster_list_add_tail(&si->free_clusters, info, idx);
400                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
401                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
402                                 0, SWAPFILE_CLUSTER);
403                 unlock_cluster(ci);
404         }
405 }
406
407 static void swap_discard_work(struct work_struct *work)
408 {
409         struct swap_info_struct *si;
410
411         si = container_of(work, struct swap_info_struct, discard_work);
412
413         spin_lock(&si->lock);
414         swap_do_scheduled_discard(si);
415         spin_unlock(&si->lock);
416 }
417
418 /*
419  * The cluster corresponding to page_nr will be used. The cluster will be
420  * removed from free cluster list and its usage counter will be increased.
421  */
422 static void inc_cluster_info_page(struct swap_info_struct *p,
423         struct swap_cluster_info *cluster_info, unsigned long page_nr)
424 {
425         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
426
427         if (!cluster_info)
428                 return;
429         if (cluster_is_free(&cluster_info[idx])) {
430                 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
431                 cluster_list_del_first(&p->free_clusters, cluster_info);
432                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
433         }
434
435         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
436         cluster_set_count(&cluster_info[idx],
437                 cluster_count(&cluster_info[idx]) + 1);
438 }
439
440 /*
441  * The cluster corresponding to page_nr decreases one usage. If the usage
442  * counter becomes 0, which means no page in the cluster is in using, we can
443  * optionally discard the cluster and add it to free cluster list.
444  */
445 static void dec_cluster_info_page(struct swap_info_struct *p,
446         struct swap_cluster_info *cluster_info, unsigned long page_nr)
447 {
448         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
449
450         if (!cluster_info)
451                 return;
452
453         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
454         cluster_set_count(&cluster_info[idx],
455                 cluster_count(&cluster_info[idx]) - 1);
456
457         if (cluster_count(&cluster_info[idx]) == 0) {
458                 /*
459                  * If the swap is discardable, prepare discard the cluster
460                  * instead of free it immediately. The cluster will be freed
461                  * after discard.
462                  */
463                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
464                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
465                         swap_cluster_schedule_discard(p, idx);
466                         return;
467                 }
468
469                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
470                 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
471         }
472 }
473
474 /*
475  * It's possible scan_swap_map() uses a free cluster in the middle of free
476  * cluster list. Avoiding such abuse to avoid list corruption.
477  */
478 static bool
479 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
480         unsigned long offset)
481 {
482         struct percpu_cluster *percpu_cluster;
483         bool conflict;
484
485         offset /= SWAPFILE_CLUSTER;
486         conflict = !cluster_list_empty(&si->free_clusters) &&
487                 offset != cluster_list_first(&si->free_clusters) &&
488                 cluster_is_free(&si->cluster_info[offset]);
489
490         if (!conflict)
491                 return false;
492
493         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
494         cluster_set_null(&percpu_cluster->index);
495         return true;
496 }
497
498 /*
499  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
500  * might involve allocating a new cluster for current CPU too.
501  */
502 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
503         unsigned long *offset, unsigned long *scan_base)
504 {
505         struct percpu_cluster *cluster;
506         struct swap_cluster_info *ci;
507         bool found_free;
508         unsigned long tmp, max;
509
510 new_cluster:
511         cluster = this_cpu_ptr(si->percpu_cluster);
512         if (cluster_is_null(&cluster->index)) {
513                 if (!cluster_list_empty(&si->free_clusters)) {
514                         cluster->index = si->free_clusters.head;
515                         cluster->next = cluster_next(&cluster->index) *
516                                         SWAPFILE_CLUSTER;
517                 } else if (!cluster_list_empty(&si->discard_clusters)) {
518                         /*
519                          * we don't have free cluster but have some clusters in
520                          * discarding, do discard now and reclaim them
521                          */
522                         swap_do_scheduled_discard(si);
523                         *scan_base = *offset = si->cluster_next;
524                         goto new_cluster;
525                 } else
526                         return false;
527         }
528
529         found_free = false;
530
531         /*
532          * Other CPUs can use our cluster if they can't find a free cluster,
533          * check if there is still free entry in the cluster
534          */
535         tmp = cluster->next;
536         max = min_t(unsigned long, si->max,
537                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
538         if (tmp >= max) {
539                 cluster_set_null(&cluster->index);
540                 goto new_cluster;
541         }
542         ci = lock_cluster(si, tmp);
543         while (tmp < max) {
544                 if (!si->swap_map[tmp]) {
545                         found_free = true;
546                         break;
547                 }
548                 tmp++;
549         }
550         unlock_cluster(ci);
551         if (!found_free) {
552                 cluster_set_null(&cluster->index);
553                 goto new_cluster;
554         }
555         cluster->next = tmp + 1;
556         *offset = tmp;
557         *scan_base = tmp;
558         return found_free;
559 }
560
561 static int scan_swap_map_slots(struct swap_info_struct *si,
562                                unsigned char usage, int nr,
563                                swp_entry_t slots[])
564 {
565         struct swap_cluster_info *ci;
566         unsigned long offset;
567         unsigned long scan_base;
568         unsigned long last_in_cluster = 0;
569         int latency_ration = LATENCY_LIMIT;
570         int n_ret = 0;
571
572         if (nr > SWAP_BATCH)
573                 nr = SWAP_BATCH;
574
575         /*
576          * We try to cluster swap pages by allocating them sequentially
577          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
578          * way, however, we resort to first-free allocation, starting
579          * a new cluster.  This prevents us from scattering swap pages
580          * all over the entire swap partition, so that we reduce
581          * overall disk seek times between swap pages.  -- sct
582          * But we do now try to find an empty cluster.  -Andrea
583          * And we let swap pages go all over an SSD partition.  Hugh
584          */
585
586         si->flags += SWP_SCANNING;
587         scan_base = offset = si->cluster_next;
588
589         /* SSD algorithm */
590         if (si->cluster_info) {
591                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
592                         goto checks;
593                 else
594                         goto scan;
595         }
596
597         if (unlikely(!si->cluster_nr--)) {
598                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
599                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
600                         goto checks;
601                 }
602
603                 spin_unlock(&si->lock);
604
605                 /*
606                  * If seek is expensive, start searching for new cluster from
607                  * start of partition, to minimize the span of allocated swap.
608                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
609                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
610                  */
611                 scan_base = offset = si->lowest_bit;
612                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
613
614                 /* Locate the first empty (unaligned) cluster */
615                 for (; last_in_cluster <= si->highest_bit; offset++) {
616                         if (si->swap_map[offset])
617                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
618                         else if (offset == last_in_cluster) {
619                                 spin_lock(&si->lock);
620                                 offset -= SWAPFILE_CLUSTER - 1;
621                                 si->cluster_next = offset;
622                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
623                                 goto checks;
624                         }
625                         if (unlikely(--latency_ration < 0)) {
626                                 cond_resched();
627                                 latency_ration = LATENCY_LIMIT;
628                         }
629                 }
630
631                 offset = scan_base;
632                 spin_lock(&si->lock);
633                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
634         }
635
636 checks:
637         if (si->cluster_info) {
638                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
639                 /* take a break if we already got some slots */
640                         if (n_ret)
641                                 goto done;
642                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
643                                                         &scan_base))
644                                 goto scan;
645                 }
646         }
647         if (!(si->flags & SWP_WRITEOK))
648                 goto no_page;
649         if (!si->highest_bit)
650                 goto no_page;
651         if (offset > si->highest_bit)
652                 scan_base = offset = si->lowest_bit;
653
654         ci = lock_cluster(si, offset);
655         /* reuse swap entry of cache-only swap if not busy. */
656         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
657                 int swap_was_freed;
658                 unlock_cluster(ci);
659                 spin_unlock(&si->lock);
660                 swap_was_freed = __try_to_reclaim_swap(si, offset);
661                 spin_lock(&si->lock);
662                 /* entry was freed successfully, try to use this again */
663                 if (swap_was_freed)
664                         goto checks;
665                 goto scan; /* check next one */
666         }
667
668         if (si->swap_map[offset]) {
669                 unlock_cluster(ci);
670                 if (!n_ret)
671                         goto scan;
672                 else
673                         goto done;
674         }
675
676         if (offset == si->lowest_bit)
677                 si->lowest_bit++;
678         if (offset == si->highest_bit)
679                 si->highest_bit--;
680         si->inuse_pages++;
681         if (si->inuse_pages == si->pages) {
682                 si->lowest_bit = si->max;
683                 si->highest_bit = 0;
684                 spin_lock(&swap_avail_lock);
685                 plist_del(&si->avail_list, &swap_avail_head);
686                 spin_unlock(&swap_avail_lock);
687         }
688         si->swap_map[offset] = usage;
689         inc_cluster_info_page(si, si->cluster_info, offset);
690         unlock_cluster(ci);
691         si->cluster_next = offset + 1;
692         slots[n_ret++] = swp_entry(si->type, offset);
693
694         /* got enough slots or reach max slots? */
695         if ((n_ret == nr) || (offset >= si->highest_bit))
696                 goto done;
697
698         /* search for next available slot */
699
700         /* time to take a break? */
701         if (unlikely(--latency_ration < 0)) {
702                 if (n_ret)
703                         goto done;
704                 spin_unlock(&si->lock);
705                 cond_resched();
706                 spin_lock(&si->lock);
707                 latency_ration = LATENCY_LIMIT;
708         }
709
710         /* try to get more slots in cluster */
711         if (si->cluster_info) {
712                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
713                         goto checks;
714                 else
715                         goto done;
716         }
717         /* non-ssd case */
718         ++offset;
719
720         /* non-ssd case, still more slots in cluster? */
721         if (si->cluster_nr && !si->swap_map[offset]) {
722                 --si->cluster_nr;
723                 goto checks;
724         }
725
726 done:
727         si->flags -= SWP_SCANNING;
728         return n_ret;
729
730 scan:
731         spin_unlock(&si->lock);
732         while (++offset <= si->highest_bit) {
733                 if (!si->swap_map[offset]) {
734                         spin_lock(&si->lock);
735                         goto checks;
736                 }
737                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
738                         spin_lock(&si->lock);
739                         goto checks;
740                 }
741                 if (unlikely(--latency_ration < 0)) {
742                         cond_resched();
743                         latency_ration = LATENCY_LIMIT;
744                 }
745         }
746         offset = si->lowest_bit;
747         while (offset < scan_base) {
748                 if (!si->swap_map[offset]) {
749                         spin_lock(&si->lock);
750                         goto checks;
751                 }
752                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
753                         spin_lock(&si->lock);
754                         goto checks;
755                 }
756                 if (unlikely(--latency_ration < 0)) {
757                         cond_resched();
758                         latency_ration = LATENCY_LIMIT;
759                 }
760                 offset++;
761         }
762         spin_lock(&si->lock);
763
764 no_page:
765         si->flags -= SWP_SCANNING;
766         return n_ret;
767 }
768
769 static unsigned long scan_swap_map(struct swap_info_struct *si,
770                                    unsigned char usage)
771 {
772         swp_entry_t entry;
773         int n_ret;
774
775         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
776
777         if (n_ret)
778                 return swp_offset(entry);
779         else
780                 return 0;
781
782 }
783
784 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
785 {
786         struct swap_info_struct *si, *next;
787         long avail_pgs;
788         int n_ret = 0;
789
790         avail_pgs = atomic_long_read(&nr_swap_pages);
791         if (avail_pgs <= 0)
792                 goto noswap;
793
794         if (n_goal > SWAP_BATCH)
795                 n_goal = SWAP_BATCH;
796
797         if (n_goal > avail_pgs)
798                 n_goal = avail_pgs;
799
800         atomic_long_sub(n_goal, &nr_swap_pages);
801
802         spin_lock(&swap_avail_lock);
803
804 start_over:
805         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
806                 /* requeue si to after same-priority siblings */
807                 plist_requeue(&si->avail_list, &swap_avail_head);
808                 spin_unlock(&swap_avail_lock);
809                 spin_lock(&si->lock);
810                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
811                         spin_lock(&swap_avail_lock);
812                         if (plist_node_empty(&si->avail_list)) {
813                                 spin_unlock(&si->lock);
814                                 goto nextsi;
815                         }
816                         WARN(!si->highest_bit,
817                              "swap_info %d in list but !highest_bit\n",
818                              si->type);
819                         WARN(!(si->flags & SWP_WRITEOK),
820                              "swap_info %d in list but !SWP_WRITEOK\n",
821                              si->type);
822                         plist_del(&si->avail_list, &swap_avail_head);
823                         spin_unlock(&si->lock);
824                         goto nextsi;
825                 }
826                 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
827                                             n_goal, swp_entries);
828                 spin_unlock(&si->lock);
829                 if (n_ret)
830                         goto check_out;
831                 pr_debug("scan_swap_map of si %d failed to find offset\n",
832                         si->type);
833
834                 spin_lock(&swap_avail_lock);
835 nextsi:
836                 /*
837                  * if we got here, it's likely that si was almost full before,
838                  * and since scan_swap_map() can drop the si->lock, multiple
839                  * callers probably all tried to get a page from the same si
840                  * and it filled up before we could get one; or, the si filled
841                  * up between us dropping swap_avail_lock and taking si->lock.
842                  * Since we dropped the swap_avail_lock, the swap_avail_head
843                  * list may have been modified; so if next is still in the
844                  * swap_avail_head list then try it, otherwise start over
845                  * if we have not gotten any slots.
846                  */
847                 if (plist_node_empty(&next->avail_list))
848                         goto start_over;
849         }
850
851         spin_unlock(&swap_avail_lock);
852
853 check_out:
854         if (n_ret < n_goal)
855                 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
856 noswap:
857         return n_ret;
858 }
859
860 /* The only caller of this function is now suspend routine */
861 swp_entry_t get_swap_page_of_type(int type)
862 {
863         struct swap_info_struct *si;
864         pgoff_t offset;
865
866         si = swap_info[type];
867         spin_lock(&si->lock);
868         if (si && (si->flags & SWP_WRITEOK)) {
869                 atomic_long_dec(&nr_swap_pages);
870                 /* This is called for allocating swap entry, not cache */
871                 offset = scan_swap_map(si, 1);
872                 if (offset) {
873                         spin_unlock(&si->lock);
874                         return swp_entry(type, offset);
875                 }
876                 atomic_long_inc(&nr_swap_pages);
877         }
878         spin_unlock(&si->lock);
879         return (swp_entry_t) {0};
880 }
881
882 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
883 {
884         struct swap_info_struct *p;
885         unsigned long offset, type;
886
887         if (!entry.val)
888                 goto out;
889         type = swp_type(entry);
890         if (type >= nr_swapfiles)
891                 goto bad_nofile;
892         p = swap_info[type];
893         if (!(p->flags & SWP_USED))
894                 goto bad_device;
895         offset = swp_offset(entry);
896         if (offset >= p->max)
897                 goto bad_offset;
898         return p;
899
900 bad_offset:
901         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
902         goto out;
903 bad_device:
904         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
905         goto out;
906 bad_nofile:
907         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
908 out:
909         return NULL;
910 }
911
912 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
913 {
914         struct swap_info_struct *p;
915
916         p = __swap_info_get(entry);
917         if (!p)
918                 goto out;
919         if (!p->swap_map[swp_offset(entry)])
920                 goto bad_free;
921         return p;
922
923 bad_free:
924         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
925         goto out;
926 out:
927         return NULL;
928 }
929
930 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
931 {
932         struct swap_info_struct *p;
933
934         p = _swap_info_get(entry);
935         if (p)
936                 spin_lock(&p->lock);
937         return p;
938 }
939
940 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
941                                         struct swap_info_struct *q)
942 {
943         struct swap_info_struct *p;
944
945         p = _swap_info_get(entry);
946
947         if (p != q) {
948                 if (q != NULL)
949                         spin_unlock(&q->lock);
950                 if (p != NULL)
951                         spin_lock(&p->lock);
952         }
953         return p;
954 }
955
956 static unsigned char __swap_entry_free(struct swap_info_struct *p,
957                                        swp_entry_t entry, unsigned char usage)
958 {
959         struct swap_cluster_info *ci;
960         unsigned long offset = swp_offset(entry);
961         unsigned char count;
962         unsigned char has_cache;
963
964         ci = lock_cluster_or_swap_info(p, offset);
965
966         count = p->swap_map[offset];
967
968         has_cache = count & SWAP_HAS_CACHE;
969         count &= ~SWAP_HAS_CACHE;
970
971         if (usage == SWAP_HAS_CACHE) {
972                 VM_BUG_ON(!has_cache);
973                 has_cache = 0;
974         } else if (count == SWAP_MAP_SHMEM) {
975                 /*
976                  * Or we could insist on shmem.c using a special
977                  * swap_shmem_free() and free_shmem_swap_and_cache()...
978                  */
979                 count = 0;
980         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
981                 if (count == COUNT_CONTINUED) {
982                         if (swap_count_continued(p, offset, count))
983                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
984                         else
985                                 count = SWAP_MAP_MAX;
986                 } else
987                         count--;
988         }
989
990         usage = count | has_cache;
991         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
992
993         unlock_cluster_or_swap_info(p, ci);
994
995         return usage;
996 }
997
998 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
999 {
1000         struct swap_cluster_info *ci;
1001         unsigned long offset = swp_offset(entry);
1002         unsigned char count;
1003
1004         ci = lock_cluster(p, offset);
1005         count = p->swap_map[offset];
1006         VM_BUG_ON(count != SWAP_HAS_CACHE);
1007         p->swap_map[offset] = 0;
1008         dec_cluster_info_page(p, p->cluster_info, offset);
1009         unlock_cluster(ci);
1010
1011         mem_cgroup_uncharge_swap(entry);
1012         if (offset < p->lowest_bit)
1013                 p->lowest_bit = offset;
1014         if (offset > p->highest_bit) {
1015                 bool was_full = !p->highest_bit;
1016
1017                 p->highest_bit = offset;
1018                 if (was_full && (p->flags & SWP_WRITEOK)) {
1019                         spin_lock(&swap_avail_lock);
1020                         WARN_ON(!plist_node_empty(&p->avail_list));
1021                         if (plist_node_empty(&p->avail_list))
1022                                 plist_add(&p->avail_list,
1023                                           &swap_avail_head);
1024                         spin_unlock(&swap_avail_lock);
1025                 }
1026         }
1027         atomic_long_inc(&nr_swap_pages);
1028         p->inuse_pages--;
1029         frontswap_invalidate_page(p->type, offset);
1030         if (p->flags & SWP_BLKDEV) {
1031                 struct gendisk *disk = p->bdev->bd_disk;
1032
1033                 if (disk->fops->swap_slot_free_notify)
1034                         disk->fops->swap_slot_free_notify(p->bdev,
1035                                                           offset);
1036         }
1037 }
1038
1039 /*
1040  * Caller has made sure that the swap device corresponding to entry
1041  * is still around or has not been recycled.
1042  */
1043 void swap_free(swp_entry_t entry)
1044 {
1045         struct swap_info_struct *p;
1046
1047         p = _swap_info_get(entry);
1048         if (p) {
1049                 if (!__swap_entry_free(p, entry, 1))
1050                         free_swap_slot(entry);
1051         }
1052 }
1053
1054 /*
1055  * Called after dropping swapcache to decrease refcnt to swap entries.
1056  */
1057 void swapcache_free(swp_entry_t entry)
1058 {
1059         struct swap_info_struct *p;
1060
1061         p = _swap_info_get(entry);
1062         if (p) {
1063                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1064                         free_swap_slot(entry);
1065         }
1066 }
1067
1068 void swapcache_free_entries(swp_entry_t *entries, int n)
1069 {
1070         struct swap_info_struct *p, *prev;
1071         int i;
1072
1073         if (n <= 0)
1074                 return;
1075
1076         prev = NULL;
1077         p = NULL;
1078         for (i = 0; i < n; ++i) {
1079                 p = swap_info_get_cont(entries[i], prev);
1080                 if (p)
1081                         swap_entry_free(p, entries[i]);
1082                 else
1083                         break;
1084                 prev = p;
1085         }
1086         if (p)
1087                 spin_unlock(&p->lock);
1088 }
1089
1090 /*
1091  * How many references to page are currently swapped out?
1092  * This does not give an exact answer when swap count is continued,
1093  * but does include the high COUNT_CONTINUED flag to allow for that.
1094  */
1095 int page_swapcount(struct page *page)
1096 {
1097         int count = 0;
1098         struct swap_info_struct *p;
1099         struct swap_cluster_info *ci;
1100         swp_entry_t entry;
1101         unsigned long offset;
1102
1103         entry.val = page_private(page);
1104         p = _swap_info_get(entry);
1105         if (p) {
1106                 offset = swp_offset(entry);
1107                 ci = lock_cluster_or_swap_info(p, offset);
1108                 count = swap_count(p->swap_map[offset]);
1109                 unlock_cluster_or_swap_info(p, ci);
1110         }
1111         return count;
1112 }
1113
1114 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1115 {
1116         int count = 0;
1117         pgoff_t offset = swp_offset(entry);
1118         struct swap_cluster_info *ci;
1119
1120         ci = lock_cluster_or_swap_info(si, offset);
1121         count = swap_count(si->swap_map[offset]);
1122         unlock_cluster_or_swap_info(si, ci);
1123         return count;
1124 }
1125
1126 /*
1127  * How many references to @entry are currently swapped out?
1128  * This does not give an exact answer when swap count is continued,
1129  * but does include the high COUNT_CONTINUED flag to allow for that.
1130  */
1131 int __swp_swapcount(swp_entry_t entry)
1132 {
1133         int count = 0;
1134         struct swap_info_struct *si;
1135
1136         si = __swap_info_get(entry);
1137         if (si)
1138                 count = swap_swapcount(si, entry);
1139         return count;
1140 }
1141
1142 /*
1143  * How many references to @entry are currently swapped out?
1144  * This considers COUNT_CONTINUED so it returns exact answer.
1145  */
1146 int swp_swapcount(swp_entry_t entry)
1147 {
1148         int count, tmp_count, n;
1149         struct swap_info_struct *p;
1150         struct swap_cluster_info *ci;
1151         struct page *page;
1152         pgoff_t offset;
1153         unsigned char *map;
1154
1155         p = _swap_info_get(entry);
1156         if (!p)
1157                 return 0;
1158
1159         offset = swp_offset(entry);
1160
1161         ci = lock_cluster_or_swap_info(p, offset);
1162
1163         count = swap_count(p->swap_map[offset]);
1164         if (!(count & COUNT_CONTINUED))
1165                 goto out;
1166
1167         count &= ~COUNT_CONTINUED;
1168         n = SWAP_MAP_MAX + 1;
1169
1170         page = vmalloc_to_page(p->swap_map + offset);
1171         offset &= ~PAGE_MASK;
1172         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1173
1174         do {
1175                 page = list_next_entry(page, lru);
1176                 map = kmap_atomic(page);
1177                 tmp_count = map[offset];
1178                 kunmap_atomic(map);
1179
1180                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1181                 n *= (SWAP_CONT_MAX + 1);
1182         } while (tmp_count & COUNT_CONTINUED);
1183 out:
1184         unlock_cluster_or_swap_info(p, ci);
1185         return count;
1186 }
1187
1188 /*
1189  * We can write to an anon page without COW if there are no other references
1190  * to it.  And as a side-effect, free up its swap: because the old content
1191  * on disk will never be read, and seeking back there to write new content
1192  * later would only waste time away from clustering.
1193  *
1194  * NOTE: total_mapcount should not be relied upon by the caller if
1195  * reuse_swap_page() returns false, but it may be always overwritten
1196  * (see the other implementation for CONFIG_SWAP=n).
1197  */
1198 bool reuse_swap_page(struct page *page, int *total_mapcount)
1199 {
1200         int count;
1201
1202         VM_BUG_ON_PAGE(!PageLocked(page), page);
1203         if (unlikely(PageKsm(page)))
1204                 return false;
1205         count = page_trans_huge_mapcount(page, total_mapcount);
1206         if (count <= 1 && PageSwapCache(page)) {
1207                 count += page_swapcount(page);
1208                 if (count != 1)
1209                         goto out;
1210                 if (!PageWriteback(page)) {
1211                         delete_from_swap_cache(page);
1212                         SetPageDirty(page);
1213                 } else {
1214                         swp_entry_t entry;
1215                         struct swap_info_struct *p;
1216
1217                         entry.val = page_private(page);
1218                         p = swap_info_get(entry);
1219                         if (p->flags & SWP_STABLE_WRITES) {
1220                                 spin_unlock(&p->lock);
1221                                 return false;
1222                         }
1223                         spin_unlock(&p->lock);
1224                 }
1225         }
1226 out:
1227         return count <= 1;
1228 }
1229
1230 /*
1231  * If swap is getting full, or if there are no more mappings of this page,
1232  * then try_to_free_swap is called to free its swap space.
1233  */
1234 int try_to_free_swap(struct page *page)
1235 {
1236         VM_BUG_ON_PAGE(!PageLocked(page), page);
1237
1238         if (!PageSwapCache(page))
1239                 return 0;
1240         if (PageWriteback(page))
1241                 return 0;
1242         if (page_swapcount(page))
1243                 return 0;
1244
1245         /*
1246          * Once hibernation has begun to create its image of memory,
1247          * there's a danger that one of the calls to try_to_free_swap()
1248          * - most probably a call from __try_to_reclaim_swap() while
1249          * hibernation is allocating its own swap pages for the image,
1250          * but conceivably even a call from memory reclaim - will free
1251          * the swap from a page which has already been recorded in the
1252          * image as a clean swapcache page, and then reuse its swap for
1253          * another page of the image.  On waking from hibernation, the
1254          * original page might be freed under memory pressure, then
1255          * later read back in from swap, now with the wrong data.
1256          *
1257          * Hibernation suspends storage while it is writing the image
1258          * to disk so check that here.
1259          */
1260         if (pm_suspended_storage())
1261                 return 0;
1262
1263         delete_from_swap_cache(page);
1264         SetPageDirty(page);
1265         return 1;
1266 }
1267
1268 /*
1269  * Free the swap entry like above, but also try to
1270  * free the page cache entry if it is the last user.
1271  */
1272 int free_swap_and_cache(swp_entry_t entry)
1273 {
1274         struct swap_info_struct *p;
1275         struct page *page = NULL;
1276         unsigned char count;
1277
1278         if (non_swap_entry(entry))
1279                 return 1;
1280
1281         p = _swap_info_get(entry);
1282         if (p) {
1283                 count = __swap_entry_free(p, entry, 1);
1284                 if (count == SWAP_HAS_CACHE) {
1285                         page = find_get_page(swap_address_space(entry),
1286                                              swp_offset(entry));
1287                         if (page && !trylock_page(page)) {
1288                                 put_page(page);
1289                                 page = NULL;
1290                         }
1291                 } else if (!count)
1292                         free_swap_slot(entry);
1293         }
1294         if (page) {
1295                 /*
1296                  * Not mapped elsewhere, or swap space full? Free it!
1297                  * Also recheck PageSwapCache now page is locked (above).
1298                  */
1299                 if (PageSwapCache(page) && !PageWriteback(page) &&
1300                     (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1301                     !swap_swapcount(p, entry)) {
1302                         delete_from_swap_cache(page);
1303                         SetPageDirty(page);
1304                 }
1305                 unlock_page(page);
1306                 put_page(page);
1307         }
1308         return p != NULL;
1309 }
1310
1311 #ifdef CONFIG_HIBERNATION
1312 /*
1313  * Find the swap type that corresponds to given device (if any).
1314  *
1315  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1316  * from 0, in which the swap header is expected to be located.
1317  *
1318  * This is needed for the suspend to disk (aka swsusp).
1319  */
1320 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1321 {
1322         struct block_device *bdev = NULL;
1323         int type;
1324
1325         if (device)
1326                 bdev = bdget(device);
1327
1328         spin_lock(&swap_lock);
1329         for (type = 0; type < nr_swapfiles; type++) {
1330                 struct swap_info_struct *sis = swap_info[type];
1331
1332                 if (!(sis->flags & SWP_WRITEOK))
1333                         continue;
1334
1335                 if (!bdev) {
1336                         if (bdev_p)
1337                                 *bdev_p = bdgrab(sis->bdev);
1338
1339                         spin_unlock(&swap_lock);
1340                         return type;
1341                 }
1342                 if (bdev == sis->bdev) {
1343                         struct swap_extent *se = &sis->first_swap_extent;
1344
1345                         if (se->start_block == offset) {
1346                                 if (bdev_p)
1347                                         *bdev_p = bdgrab(sis->bdev);
1348
1349                                 spin_unlock(&swap_lock);
1350                                 bdput(bdev);
1351                                 return type;
1352                         }
1353                 }
1354         }
1355         spin_unlock(&swap_lock);
1356         if (bdev)
1357                 bdput(bdev);
1358
1359         return -ENODEV;
1360 }
1361
1362 /*
1363  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1364  * corresponding to given index in swap_info (swap type).
1365  */
1366 sector_t swapdev_block(int type, pgoff_t offset)
1367 {
1368         struct block_device *bdev;
1369
1370         if ((unsigned int)type >= nr_swapfiles)
1371                 return 0;
1372         if (!(swap_info[type]->flags & SWP_WRITEOK))
1373                 return 0;
1374         return map_swap_entry(swp_entry(type, offset), &bdev);
1375 }
1376
1377 /*
1378  * Return either the total number of swap pages of given type, or the number
1379  * of free pages of that type (depending on @free)
1380  *
1381  * This is needed for software suspend
1382  */
1383 unsigned int count_swap_pages(int type, int free)
1384 {
1385         unsigned int n = 0;
1386
1387         spin_lock(&swap_lock);
1388         if ((unsigned int)type < nr_swapfiles) {
1389                 struct swap_info_struct *sis = swap_info[type];
1390
1391                 spin_lock(&sis->lock);
1392                 if (sis->flags & SWP_WRITEOK) {
1393                         n = sis->pages;
1394                         if (free)
1395                                 n -= sis->inuse_pages;
1396                 }
1397                 spin_unlock(&sis->lock);
1398         }
1399         spin_unlock(&swap_lock);
1400         return n;
1401 }
1402 #endif /* CONFIG_HIBERNATION */
1403
1404 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1405 {
1406         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1407 }
1408
1409 /*
1410  * No need to decide whether this PTE shares the swap entry with others,
1411  * just let do_wp_page work it out if a write is requested later - to
1412  * force COW, vm_page_prot omits write permission from any private vma.
1413  */
1414 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1415                 unsigned long addr, swp_entry_t entry, struct page *page)
1416 {
1417         struct page *swapcache;
1418         struct mem_cgroup *memcg;
1419         spinlock_t *ptl;
1420         pte_t *pte;
1421         int ret = 1;
1422
1423         swapcache = page;
1424         page = ksm_might_need_to_copy(page, vma, addr);
1425         if (unlikely(!page))
1426                 return -ENOMEM;
1427
1428         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1429                                 &memcg, false)) {
1430                 ret = -ENOMEM;
1431                 goto out_nolock;
1432         }
1433
1434         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1435         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1436                 mem_cgroup_cancel_charge(page, memcg, false);
1437                 ret = 0;
1438                 goto out;
1439         }
1440
1441         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1442         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1443         get_page(page);
1444         set_pte_at(vma->vm_mm, addr, pte,
1445                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1446         if (page == swapcache) {
1447                 page_add_anon_rmap(page, vma, addr, false);
1448                 mem_cgroup_commit_charge(page, memcg, true, false);
1449         } else { /* ksm created a completely new copy */
1450                 page_add_new_anon_rmap(page, vma, addr, false);
1451                 mem_cgroup_commit_charge(page, memcg, false, false);
1452                 lru_cache_add_active_or_unevictable(page, vma);
1453         }
1454         swap_free(entry);
1455         /*
1456          * Move the page to the active list so it is not
1457          * immediately swapped out again after swapon.
1458          */
1459         activate_page(page);
1460 out:
1461         pte_unmap_unlock(pte, ptl);
1462 out_nolock:
1463         if (page != swapcache) {
1464                 unlock_page(page);
1465                 put_page(page);
1466         }
1467         return ret;
1468 }
1469
1470 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1471                                 unsigned long addr, unsigned long end,
1472                                 swp_entry_t entry, struct page *page)
1473 {
1474         pte_t swp_pte = swp_entry_to_pte(entry);
1475         pte_t *pte;
1476         int ret = 0;
1477
1478         /*
1479          * We don't actually need pte lock while scanning for swp_pte: since
1480          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1481          * page table while we're scanning; though it could get zapped, and on
1482          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1483          * of unmatched parts which look like swp_pte, so unuse_pte must
1484          * recheck under pte lock.  Scanning without pte lock lets it be
1485          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1486          */
1487         pte = pte_offset_map(pmd, addr);
1488         do {
1489                 /*
1490                  * swapoff spends a _lot_ of time in this loop!
1491                  * Test inline before going to call unuse_pte.
1492                  */
1493                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1494                         pte_unmap(pte);
1495                         ret = unuse_pte(vma, pmd, addr, entry, page);
1496                         if (ret)
1497                                 goto out;
1498                         pte = pte_offset_map(pmd, addr);
1499                 }
1500         } while (pte++, addr += PAGE_SIZE, addr != end);
1501         pte_unmap(pte - 1);
1502 out:
1503         return ret;
1504 }
1505
1506 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1507                                 unsigned long addr, unsigned long end,
1508                                 swp_entry_t entry, struct page *page)
1509 {
1510         pmd_t *pmd;
1511         unsigned long next;
1512         int ret;
1513
1514         pmd = pmd_offset(pud, addr);
1515         do {
1516                 cond_resched();
1517                 next = pmd_addr_end(addr, end);
1518                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1519                         continue;
1520                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1521                 if (ret)
1522                         return ret;
1523         } while (pmd++, addr = next, addr != end);
1524         return 0;
1525 }
1526
1527 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1528                                 unsigned long addr, unsigned long end,
1529                                 swp_entry_t entry, struct page *page)
1530 {
1531         pud_t *pud;
1532         unsigned long next;
1533         int ret;
1534
1535         pud = pud_offset(p4d, addr);
1536         do {
1537                 next = pud_addr_end(addr, end);
1538                 if (pud_none_or_clear_bad(pud))
1539                         continue;
1540                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1541                 if (ret)
1542                         return ret;
1543         } while (pud++, addr = next, addr != end);
1544         return 0;
1545 }
1546
1547 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1548                                 unsigned long addr, unsigned long end,
1549                                 swp_entry_t entry, struct page *page)
1550 {
1551         p4d_t *p4d;
1552         unsigned long next;
1553         int ret;
1554
1555         p4d = p4d_offset(pgd, addr);
1556         do {
1557                 next = p4d_addr_end(addr, end);
1558                 if (p4d_none_or_clear_bad(p4d))
1559                         continue;
1560                 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1561                 if (ret)
1562                         return ret;
1563         } while (p4d++, addr = next, addr != end);
1564         return 0;
1565 }
1566
1567 static int unuse_vma(struct vm_area_struct *vma,
1568                                 swp_entry_t entry, struct page *page)
1569 {
1570         pgd_t *pgd;
1571         unsigned long addr, end, next;
1572         int ret;
1573
1574         if (page_anon_vma(page)) {
1575                 addr = page_address_in_vma(page, vma);
1576                 if (addr == -EFAULT)
1577                         return 0;
1578                 else
1579                         end = addr + PAGE_SIZE;
1580         } else {
1581                 addr = vma->vm_start;
1582                 end = vma->vm_end;
1583         }
1584
1585         pgd = pgd_offset(vma->vm_mm, addr);
1586         do {
1587                 next = pgd_addr_end(addr, end);
1588                 if (pgd_none_or_clear_bad(pgd))
1589                         continue;
1590                 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1591                 if (ret)
1592                         return ret;
1593         } while (pgd++, addr = next, addr != end);
1594         return 0;
1595 }
1596
1597 static int unuse_mm(struct mm_struct *mm,
1598                                 swp_entry_t entry, struct page *page)
1599 {
1600         struct vm_area_struct *vma;
1601         int ret = 0;
1602
1603         if (!down_read_trylock(&mm->mmap_sem)) {
1604                 /*
1605                  * Activate page so shrink_inactive_list is unlikely to unmap
1606                  * its ptes while lock is dropped, so swapoff can make progress.
1607                  */
1608                 activate_page(page);
1609                 unlock_page(page);
1610                 down_read(&mm->mmap_sem);
1611                 lock_page(page);
1612         }
1613         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1614                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1615                         break;
1616                 cond_resched();
1617         }
1618         up_read(&mm->mmap_sem);
1619         return (ret < 0)? ret: 0;
1620 }
1621
1622 /*
1623  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1624  * from current position to next entry still in use.
1625  * Recycle to start on reaching the end, returning 0 when empty.
1626  */
1627 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1628                                         unsigned int prev, bool frontswap)
1629 {
1630         unsigned int max = si->max;
1631         unsigned int i = prev;
1632         unsigned char count;
1633
1634         /*
1635          * No need for swap_lock here: we're just looking
1636          * for whether an entry is in use, not modifying it; false
1637          * hits are okay, and sys_swapoff() has already prevented new
1638          * allocations from this area (while holding swap_lock).
1639          */
1640         for (;;) {
1641                 if (++i >= max) {
1642                         if (!prev) {
1643                                 i = 0;
1644                                 break;
1645                         }
1646                         /*
1647                          * No entries in use at top of swap_map,
1648                          * loop back to start and recheck there.
1649                          */
1650                         max = prev + 1;
1651                         prev = 0;
1652                         i = 1;
1653                 }
1654                 count = READ_ONCE(si->swap_map[i]);
1655                 if (count && swap_count(count) != SWAP_MAP_BAD)
1656                         if (!frontswap || frontswap_test(si, i))
1657                                 break;
1658                 if ((i % LATENCY_LIMIT) == 0)
1659                         cond_resched();
1660         }
1661         return i;
1662 }
1663
1664 /*
1665  * We completely avoid races by reading each swap page in advance,
1666  * and then search for the process using it.  All the necessary
1667  * page table adjustments can then be made atomically.
1668  *
1669  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1670  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1671  */
1672 int try_to_unuse(unsigned int type, bool frontswap,
1673                  unsigned long pages_to_unuse)
1674 {
1675         struct swap_info_struct *si = swap_info[type];
1676         struct mm_struct *start_mm;
1677         volatile unsigned char *swap_map; /* swap_map is accessed without
1678                                            * locking. Mark it as volatile
1679                                            * to prevent compiler doing
1680                                            * something odd.
1681                                            */
1682         unsigned char swcount;
1683         struct page *page;
1684         swp_entry_t entry;
1685         unsigned int i = 0;
1686         int retval = 0;
1687
1688         /*
1689          * When searching mms for an entry, a good strategy is to
1690          * start at the first mm we freed the previous entry from
1691          * (though actually we don't notice whether we or coincidence
1692          * freed the entry).  Initialize this start_mm with a hold.
1693          *
1694          * A simpler strategy would be to start at the last mm we
1695          * freed the previous entry from; but that would take less
1696          * advantage of mmlist ordering, which clusters forked mms
1697          * together, child after parent.  If we race with dup_mmap(), we
1698          * prefer to resolve parent before child, lest we miss entries
1699          * duplicated after we scanned child: using last mm would invert
1700          * that.
1701          */
1702         start_mm = &init_mm;
1703         mmget(&init_mm);
1704
1705         /*
1706          * Keep on scanning until all entries have gone.  Usually,
1707          * one pass through swap_map is enough, but not necessarily:
1708          * there are races when an instance of an entry might be missed.
1709          */
1710         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1711                 if (signal_pending(current)) {
1712                         retval = -EINTR;
1713                         break;
1714                 }
1715
1716                 /*
1717                  * Get a page for the entry, using the existing swap
1718                  * cache page if there is one.  Otherwise, get a clean
1719                  * page and read the swap into it.
1720                  */
1721                 swap_map = &si->swap_map[i];
1722                 entry = swp_entry(type, i);
1723                 page = read_swap_cache_async(entry,
1724                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1725                 if (!page) {
1726                         /*
1727                          * Either swap_duplicate() failed because entry
1728                          * has been freed independently, and will not be
1729                          * reused since sys_swapoff() already disabled
1730                          * allocation from here, or alloc_page() failed.
1731                          */
1732                         swcount = *swap_map;
1733                         /*
1734                          * We don't hold lock here, so the swap entry could be
1735                          * SWAP_MAP_BAD (when the cluster is discarding).
1736                          * Instead of fail out, We can just skip the swap
1737                          * entry because swapoff will wait for discarding
1738                          * finish anyway.
1739                          */
1740                         if (!swcount || swcount == SWAP_MAP_BAD)
1741                                 continue;
1742                         retval = -ENOMEM;
1743                         break;
1744                 }
1745
1746                 /*
1747                  * Don't hold on to start_mm if it looks like exiting.
1748                  */
1749                 if (atomic_read(&start_mm->mm_users) == 1) {
1750                         mmput(start_mm);
1751                         start_mm = &init_mm;
1752                         mmget(&init_mm);
1753                 }
1754
1755                 /*
1756                  * Wait for and lock page.  When do_swap_page races with
1757                  * try_to_unuse, do_swap_page can handle the fault much
1758                  * faster than try_to_unuse can locate the entry.  This
1759                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1760                  * defer to do_swap_page in such a case - in some tests,
1761                  * do_swap_page and try_to_unuse repeatedly compete.
1762                  */
1763                 wait_on_page_locked(page);
1764                 wait_on_page_writeback(page);
1765                 lock_page(page);
1766                 wait_on_page_writeback(page);
1767
1768                 /*
1769                  * Remove all references to entry.
1770                  */
1771                 swcount = *swap_map;
1772                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1773                         retval = shmem_unuse(entry, page);
1774                         /* page has already been unlocked and released */
1775                         if (retval < 0)
1776                                 break;
1777                         continue;
1778                 }
1779                 if (swap_count(swcount) && start_mm != &init_mm)
1780                         retval = unuse_mm(start_mm, entry, page);
1781
1782                 if (swap_count(*swap_map)) {
1783                         int set_start_mm = (*swap_map >= swcount);
1784                         struct list_head *p = &start_mm->mmlist;
1785                         struct mm_struct *new_start_mm = start_mm;
1786                         struct mm_struct *prev_mm = start_mm;
1787                         struct mm_struct *mm;
1788
1789                         mmget(new_start_mm);
1790                         mmget(prev_mm);
1791                         spin_lock(&mmlist_lock);
1792                         while (swap_count(*swap_map) && !retval &&
1793                                         (p = p->next) != &start_mm->mmlist) {
1794                                 mm = list_entry(p, struct mm_struct, mmlist);
1795                                 if (!mmget_not_zero(mm))
1796                                         continue;
1797                                 spin_unlock(&mmlist_lock);
1798                                 mmput(prev_mm);
1799                                 prev_mm = mm;
1800
1801                                 cond_resched();
1802
1803                                 swcount = *swap_map;
1804                                 if (!swap_count(swcount)) /* any usage ? */
1805                                         ;
1806                                 else if (mm == &init_mm)
1807                                         set_start_mm = 1;
1808                                 else
1809                                         retval = unuse_mm(mm, entry, page);
1810
1811                                 if (set_start_mm && *swap_map < swcount) {
1812                                         mmput(new_start_mm);
1813                                         mmget(mm);
1814                                         new_start_mm = mm;
1815                                         set_start_mm = 0;
1816                                 }
1817                                 spin_lock(&mmlist_lock);
1818                         }
1819                         spin_unlock(&mmlist_lock);
1820                         mmput(prev_mm);
1821                         mmput(start_mm);
1822                         start_mm = new_start_mm;
1823                 }
1824                 if (retval) {
1825                         unlock_page(page);
1826                         put_page(page);
1827                         break;
1828                 }
1829
1830                 /*
1831                  * If a reference remains (rare), we would like to leave
1832                  * the page in the swap cache; but try_to_unmap could
1833                  * then re-duplicate the entry once we drop page lock,
1834                  * so we might loop indefinitely; also, that page could
1835                  * not be swapped out to other storage meanwhile.  So:
1836                  * delete from cache even if there's another reference,
1837                  * after ensuring that the data has been saved to disk -
1838                  * since if the reference remains (rarer), it will be
1839                  * read from disk into another page.  Splitting into two
1840                  * pages would be incorrect if swap supported "shared
1841                  * private" pages, but they are handled by tmpfs files.
1842                  *
1843                  * Given how unuse_vma() targets one particular offset
1844                  * in an anon_vma, once the anon_vma has been determined,
1845                  * this splitting happens to be just what is needed to
1846                  * handle where KSM pages have been swapped out: re-reading
1847                  * is unnecessarily slow, but we can fix that later on.
1848                  */
1849                 if (swap_count(*swap_map) &&
1850                      PageDirty(page) && PageSwapCache(page)) {
1851                         struct writeback_control wbc = {
1852                                 .sync_mode = WB_SYNC_NONE,
1853                         };
1854
1855                         swap_writepage(page, &wbc);
1856                         lock_page(page);
1857                         wait_on_page_writeback(page);
1858                 }
1859
1860                 /*
1861                  * It is conceivable that a racing task removed this page from
1862                  * swap cache just before we acquired the page lock at the top,
1863                  * or while we dropped it in unuse_mm().  The page might even
1864                  * be back in swap cache on another swap area: that we must not
1865                  * delete, since it may not have been written out to swap yet.
1866                  */
1867                 if (PageSwapCache(page) &&
1868                     likely(page_private(page) == entry.val))
1869                         delete_from_swap_cache(page);
1870
1871                 /*
1872                  * So we could skip searching mms once swap count went
1873                  * to 1, we did not mark any present ptes as dirty: must
1874                  * mark page dirty so shrink_page_list will preserve it.
1875                  */
1876                 SetPageDirty(page);
1877                 unlock_page(page);
1878                 put_page(page);
1879
1880                 /*
1881                  * Make sure that we aren't completely killing
1882                  * interactive performance.
1883                  */
1884                 cond_resched();
1885                 if (frontswap && pages_to_unuse > 0) {
1886                         if (!--pages_to_unuse)
1887                                 break;
1888                 }
1889         }
1890
1891         mmput(start_mm);
1892         return retval;
1893 }
1894
1895 /*
1896  * After a successful try_to_unuse, if no swap is now in use, we know
1897  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1898  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1899  * added to the mmlist just after page_duplicate - before would be racy.
1900  */
1901 static void drain_mmlist(void)
1902 {
1903         struct list_head *p, *next;
1904         unsigned int type;
1905
1906         for (type = 0; type < nr_swapfiles; type++)
1907                 if (swap_info[type]->inuse_pages)
1908                         return;
1909         spin_lock(&mmlist_lock);
1910         list_for_each_safe(p, next, &init_mm.mmlist)
1911                 list_del_init(p);
1912         spin_unlock(&mmlist_lock);
1913 }
1914
1915 /*
1916  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1917  * corresponds to page offset for the specified swap entry.
1918  * Note that the type of this function is sector_t, but it returns page offset
1919  * into the bdev, not sector offset.
1920  */
1921 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1922 {
1923         struct swap_info_struct *sis;
1924         struct swap_extent *start_se;
1925         struct swap_extent *se;
1926         pgoff_t offset;
1927
1928         sis = swap_info[swp_type(entry)];
1929         *bdev = sis->bdev;
1930
1931         offset = swp_offset(entry);
1932         start_se = sis->curr_swap_extent;
1933         se = start_se;
1934
1935         for ( ; ; ) {
1936                 if (se->start_page <= offset &&
1937                                 offset < (se->start_page + se->nr_pages)) {
1938                         return se->start_block + (offset - se->start_page);
1939                 }
1940                 se = list_next_entry(se, list);
1941                 sis->curr_swap_extent = se;
1942                 BUG_ON(se == start_se);         /* It *must* be present */
1943         }
1944 }
1945
1946 /*
1947  * Returns the page offset into bdev for the specified page's swap entry.
1948  */
1949 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1950 {
1951         swp_entry_t entry;
1952         entry.val = page_private(page);
1953         return map_swap_entry(entry, bdev);
1954 }
1955
1956 /*
1957  * Free all of a swapdev's extent information
1958  */
1959 static void destroy_swap_extents(struct swap_info_struct *sis)
1960 {
1961         while (!list_empty(&sis->first_swap_extent.list)) {
1962                 struct swap_extent *se;
1963
1964                 se = list_first_entry(&sis->first_swap_extent.list,
1965                                 struct swap_extent, list);
1966                 list_del(&se->list);
1967                 kfree(se);
1968         }
1969
1970         if (sis->flags & SWP_FILE) {
1971                 struct file *swap_file = sis->swap_file;
1972                 struct address_space *mapping = swap_file->f_mapping;
1973
1974                 sis->flags &= ~SWP_FILE;
1975                 mapping->a_ops->swap_deactivate(swap_file);
1976         }
1977 }
1978
1979 /*
1980  * Add a block range (and the corresponding page range) into this swapdev's
1981  * extent list.  The extent list is kept sorted in page order.
1982  *
1983  * This function rather assumes that it is called in ascending page order.
1984  */
1985 int
1986 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1987                 unsigned long nr_pages, sector_t start_block)
1988 {
1989         struct swap_extent *se;
1990         struct swap_extent *new_se;
1991         struct list_head *lh;
1992
1993         if (start_page == 0) {
1994                 se = &sis->first_swap_extent;
1995                 sis->curr_swap_extent = se;
1996                 se->start_page = 0;
1997                 se->nr_pages = nr_pages;
1998                 se->start_block = start_block;
1999                 return 1;
2000         } else {
2001                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2002                 se = list_entry(lh, struct swap_extent, list);
2003                 BUG_ON(se->start_page + se->nr_pages != start_page);
2004                 if (se->start_block + se->nr_pages == start_block) {
2005                         /* Merge it */
2006                         se->nr_pages += nr_pages;
2007                         return 0;
2008                 }
2009         }
2010
2011         /*
2012          * No merge.  Insert a new extent, preserving ordering.
2013          */
2014         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2015         if (new_se == NULL)
2016                 return -ENOMEM;
2017         new_se->start_page = start_page;
2018         new_se->nr_pages = nr_pages;
2019         new_se->start_block = start_block;
2020
2021         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2022         return 1;
2023 }
2024
2025 /*
2026  * A `swap extent' is a simple thing which maps a contiguous range of pages
2027  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2028  * is built at swapon time and is then used at swap_writepage/swap_readpage
2029  * time for locating where on disk a page belongs.
2030  *
2031  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2032  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2033  * swap files identically.
2034  *
2035  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2036  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2037  * swapfiles are handled *identically* after swapon time.
2038  *
2039  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2040  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2041  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2042  * requirements, they are simply tossed out - we will never use those blocks
2043  * for swapping.
2044  *
2045  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2046  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2047  * which will scribble on the fs.
2048  *
2049  * The amount of disk space which a single swap extent represents varies.
2050  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2051  * extents in the list.  To avoid much list walking, we cache the previous
2052  * search location in `curr_swap_extent', and start new searches from there.
2053  * This is extremely effective.  The average number of iterations in
2054  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2055  */
2056 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2057 {
2058         struct file *swap_file = sis->swap_file;
2059         struct address_space *mapping = swap_file->f_mapping;
2060         struct inode *inode = mapping->host;
2061         int ret;
2062
2063         if (S_ISBLK(inode->i_mode)) {
2064                 ret = add_swap_extent(sis, 0, sis->max, 0);
2065                 *span = sis->pages;
2066                 return ret;
2067         }
2068
2069         if (mapping->a_ops->swap_activate) {
2070                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2071                 if (!ret) {
2072                         sis->flags |= SWP_FILE;
2073                         ret = add_swap_extent(sis, 0, sis->max, 0);
2074                         *span = sis->pages;
2075                 }
2076                 return ret;
2077         }
2078
2079         return generic_swapfile_activate(sis, swap_file, span);
2080 }
2081
2082 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2083                                 unsigned char *swap_map,
2084                                 struct swap_cluster_info *cluster_info)
2085 {
2086         if (prio >= 0)
2087                 p->prio = prio;
2088         else
2089                 p->prio = --least_priority;
2090         /*
2091          * the plist prio is negated because plist ordering is
2092          * low-to-high, while swap ordering is high-to-low
2093          */
2094         p->list.prio = -p->prio;
2095         p->avail_list.prio = -p->prio;
2096         p->swap_map = swap_map;
2097         p->cluster_info = cluster_info;
2098         p->flags |= SWP_WRITEOK;
2099         atomic_long_add(p->pages, &nr_swap_pages);
2100         total_swap_pages += p->pages;
2101
2102         assert_spin_locked(&swap_lock);
2103         /*
2104          * both lists are plists, and thus priority ordered.
2105          * swap_active_head needs to be priority ordered for swapoff(),
2106          * which on removal of any swap_info_struct with an auto-assigned
2107          * (i.e. negative) priority increments the auto-assigned priority
2108          * of any lower-priority swap_info_structs.
2109          * swap_avail_head needs to be priority ordered for get_swap_page(),
2110          * which allocates swap pages from the highest available priority
2111          * swap_info_struct.
2112          */
2113         plist_add(&p->list, &swap_active_head);
2114         spin_lock(&swap_avail_lock);
2115         plist_add(&p->avail_list, &swap_avail_head);
2116         spin_unlock(&swap_avail_lock);
2117 }
2118
2119 static void enable_swap_info(struct swap_info_struct *p, int prio,
2120                                 unsigned char *swap_map,
2121                                 struct swap_cluster_info *cluster_info,
2122                                 unsigned long *frontswap_map)
2123 {
2124         frontswap_init(p->type, frontswap_map);
2125         spin_lock(&swap_lock);
2126         spin_lock(&p->lock);
2127          _enable_swap_info(p, prio, swap_map, cluster_info);
2128         spin_unlock(&p->lock);
2129         spin_unlock(&swap_lock);
2130 }
2131
2132 static void reinsert_swap_info(struct swap_info_struct *p)
2133 {
2134         spin_lock(&swap_lock);
2135         spin_lock(&p->lock);
2136         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2137         spin_unlock(&p->lock);
2138         spin_unlock(&swap_lock);
2139 }
2140
2141 bool has_usable_swap(void)
2142 {
2143         bool ret = true;
2144
2145         spin_lock(&swap_lock);
2146         if (plist_head_empty(&swap_active_head))
2147                 ret = false;
2148         spin_unlock(&swap_lock);
2149         return ret;
2150 }
2151
2152 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2153 {
2154         struct swap_info_struct *p = NULL;
2155         unsigned char *swap_map;
2156         struct swap_cluster_info *cluster_info;
2157         unsigned long *frontswap_map;
2158         struct file *swap_file, *victim;
2159         struct address_space *mapping;
2160         struct inode *inode;
2161         struct filename *pathname;
2162         int err, found = 0;
2163         unsigned int old_block_size;
2164
2165         if (!capable(CAP_SYS_ADMIN))
2166                 return -EPERM;
2167
2168         BUG_ON(!current->mm);
2169
2170         pathname = getname(specialfile);
2171         if (IS_ERR(pathname))
2172                 return PTR_ERR(pathname);
2173
2174         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2175         err = PTR_ERR(victim);
2176         if (IS_ERR(victim))
2177                 goto out;
2178
2179         mapping = victim->f_mapping;
2180         spin_lock(&swap_lock);
2181         plist_for_each_entry(p, &swap_active_head, list) {
2182                 if (p->flags & SWP_WRITEOK) {
2183                         if (p->swap_file->f_mapping == mapping) {
2184                                 found = 1;
2185                                 break;
2186                         }
2187                 }
2188         }
2189         if (!found) {
2190                 err = -EINVAL;
2191                 spin_unlock(&swap_lock);
2192                 goto out_dput;
2193         }
2194         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2195                 vm_unacct_memory(p->pages);
2196         else {
2197                 err = -ENOMEM;
2198                 spin_unlock(&swap_lock);
2199                 goto out_dput;
2200         }
2201         spin_lock(&swap_avail_lock);
2202         plist_del(&p->avail_list, &swap_avail_head);
2203         spin_unlock(&swap_avail_lock);
2204         spin_lock(&p->lock);
2205         if (p->prio < 0) {
2206                 struct swap_info_struct *si = p;
2207
2208                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2209                         si->prio++;
2210                         si->list.prio--;
2211                         si->avail_list.prio--;
2212                 }
2213                 least_priority++;
2214         }
2215         plist_del(&p->list, &swap_active_head);
2216         atomic_long_sub(p->pages, &nr_swap_pages);
2217         total_swap_pages -= p->pages;
2218         p->flags &= ~SWP_WRITEOK;
2219         spin_unlock(&p->lock);
2220         spin_unlock(&swap_lock);
2221
2222         disable_swap_slots_cache_lock();
2223
2224         set_current_oom_origin();
2225         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2226         clear_current_oom_origin();
2227
2228         if (err) {
2229                 /* re-insert swap space back into swap_list */
2230                 reinsert_swap_info(p);
2231                 reenable_swap_slots_cache_unlock();
2232                 goto out_dput;
2233         }
2234
2235         reenable_swap_slots_cache_unlock();
2236
2237         flush_work(&p->discard_work);
2238
2239         destroy_swap_extents(p);
2240         if (p->flags & SWP_CONTINUED)
2241                 free_swap_count_continuations(p);
2242
2243         mutex_lock(&swapon_mutex);
2244         spin_lock(&swap_lock);
2245         spin_lock(&p->lock);
2246         drain_mmlist();
2247
2248         /* wait for anyone still in scan_swap_map */
2249         p->highest_bit = 0;             /* cuts scans short */
2250         while (p->flags >= SWP_SCANNING) {
2251                 spin_unlock(&p->lock);
2252                 spin_unlock(&swap_lock);
2253                 schedule_timeout_uninterruptible(1);
2254                 spin_lock(&swap_lock);
2255                 spin_lock(&p->lock);
2256         }
2257
2258         swap_file = p->swap_file;
2259         old_block_size = p->old_block_size;
2260         p->swap_file = NULL;
2261         p->max = 0;
2262         swap_map = p->swap_map;
2263         p->swap_map = NULL;
2264         cluster_info = p->cluster_info;
2265         p->cluster_info = NULL;
2266         frontswap_map = frontswap_map_get(p);
2267         spin_unlock(&p->lock);
2268         spin_unlock(&swap_lock);
2269         frontswap_invalidate_area(p->type);
2270         frontswap_map_set(p, NULL);
2271         mutex_unlock(&swapon_mutex);
2272         free_percpu(p->percpu_cluster);
2273         p->percpu_cluster = NULL;
2274         vfree(swap_map);
2275         vfree(cluster_info);
2276         vfree(frontswap_map);
2277         /* Destroy swap account information */
2278         swap_cgroup_swapoff(p->type);
2279         exit_swap_address_space(p->type);
2280
2281         inode = mapping->host;
2282         if (S_ISBLK(inode->i_mode)) {
2283                 struct block_device *bdev = I_BDEV(inode);
2284                 set_blocksize(bdev, old_block_size);
2285                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2286         } else {
2287                 inode_lock(inode);
2288                 inode->i_flags &= ~S_SWAPFILE;
2289                 inode_unlock(inode);
2290         }
2291         filp_close(swap_file, NULL);
2292
2293         /*
2294          * Clear the SWP_USED flag after all resources are freed so that swapon
2295          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2296          * not hold p->lock after we cleared its SWP_WRITEOK.
2297          */
2298         spin_lock(&swap_lock);
2299         p->flags = 0;
2300         spin_unlock(&swap_lock);
2301
2302         err = 0;
2303         atomic_inc(&proc_poll_event);
2304         wake_up_interruptible(&proc_poll_wait);
2305
2306 out_dput:
2307         filp_close(victim, NULL);
2308 out:
2309         putname(pathname);
2310         return err;
2311 }
2312
2313 #ifdef CONFIG_PROC_FS
2314 static unsigned swaps_poll(struct file *file, poll_table *wait)
2315 {
2316         struct seq_file *seq = file->private_data;
2317
2318         poll_wait(file, &proc_poll_wait, wait);
2319
2320         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2321                 seq->poll_event = atomic_read(&proc_poll_event);
2322                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2323         }
2324
2325         return POLLIN | POLLRDNORM;
2326 }
2327
2328 /* iterator */
2329 static void *swap_start(struct seq_file *swap, loff_t *pos)
2330 {
2331         struct swap_info_struct *si;
2332         int type;
2333         loff_t l = *pos;
2334
2335         mutex_lock(&swapon_mutex);
2336
2337         if (!l)
2338                 return SEQ_START_TOKEN;
2339
2340         for (type = 0; type < nr_swapfiles; type++) {
2341                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2342                 si = swap_info[type];
2343                 if (!(si->flags & SWP_USED) || !si->swap_map)
2344                         continue;
2345                 if (!--l)
2346                         return si;
2347         }
2348
2349         return NULL;
2350 }
2351
2352 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2353 {
2354         struct swap_info_struct *si = v;
2355         int type;
2356
2357         if (v == SEQ_START_TOKEN)
2358                 type = 0;
2359         else
2360                 type = si->type + 1;
2361
2362         for (; type < nr_swapfiles; type++) {
2363                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2364                 si = swap_info[type];
2365                 if (!(si->flags & SWP_USED) || !si->swap_map)
2366                         continue;
2367                 ++*pos;
2368                 return si;
2369         }
2370
2371         return NULL;
2372 }
2373
2374 static void swap_stop(struct seq_file *swap, void *v)
2375 {
2376         mutex_unlock(&swapon_mutex);
2377 }
2378
2379 static int swap_show(struct seq_file *swap, void *v)
2380 {
2381         struct swap_info_struct *si = v;
2382         struct file *file;
2383         int len;
2384
2385         if (si == SEQ_START_TOKEN) {
2386                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2387                 return 0;
2388         }
2389
2390         file = si->swap_file;
2391         len = seq_file_path(swap, file, " \t\n\\");
2392         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2393                         len < 40 ? 40 - len : 1, " ",
2394                         S_ISBLK(file_inode(file)->i_mode) ?
2395                                 "partition" : "file\t",
2396                         si->pages << (PAGE_SHIFT - 10),
2397                         si->inuse_pages << (PAGE_SHIFT - 10),
2398                         si->prio);
2399         return 0;
2400 }
2401
2402 static const struct seq_operations swaps_op = {
2403         .start =        swap_start,
2404         .next =         swap_next,
2405         .stop =         swap_stop,
2406         .show =         swap_show
2407 };
2408
2409 static int swaps_open(struct inode *inode, struct file *file)
2410 {
2411         struct seq_file *seq;
2412         int ret;
2413
2414         ret = seq_open(file, &swaps_op);
2415         if (ret)
2416                 return ret;
2417
2418         seq = file->private_data;
2419         seq->poll_event = atomic_read(&proc_poll_event);
2420         return 0;
2421 }
2422
2423 static const struct file_operations proc_swaps_operations = {
2424         .open           = swaps_open,
2425         .read           = seq_read,
2426         .llseek         = seq_lseek,
2427         .release        = seq_release,
2428         .poll           = swaps_poll,
2429 };
2430
2431 static int __init procswaps_init(void)
2432 {
2433         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2434         return 0;
2435 }
2436 __initcall(procswaps_init);
2437 #endif /* CONFIG_PROC_FS */
2438
2439 #ifdef MAX_SWAPFILES_CHECK
2440 static int __init max_swapfiles_check(void)
2441 {
2442         MAX_SWAPFILES_CHECK();
2443         return 0;
2444 }
2445 late_initcall(max_swapfiles_check);
2446 #endif
2447
2448 static struct swap_info_struct *alloc_swap_info(void)
2449 {
2450         struct swap_info_struct *p;
2451         unsigned int type;
2452
2453         p = kzalloc(sizeof(*p), GFP_KERNEL);
2454         if (!p)
2455                 return ERR_PTR(-ENOMEM);
2456
2457         spin_lock(&swap_lock);
2458         for (type = 0; type < nr_swapfiles; type++) {
2459                 if (!(swap_info[type]->flags & SWP_USED))
2460                         break;
2461         }
2462         if (type >= MAX_SWAPFILES) {
2463                 spin_unlock(&swap_lock);
2464                 kfree(p);
2465                 return ERR_PTR(-EPERM);
2466         }
2467         if (type >= nr_swapfiles) {
2468                 p->type = type;
2469                 swap_info[type] = p;
2470                 /*
2471                  * Write swap_info[type] before nr_swapfiles, in case a
2472                  * racing procfs swap_start() or swap_next() is reading them.
2473                  * (We never shrink nr_swapfiles, we never free this entry.)
2474                  */
2475                 smp_wmb();
2476                 nr_swapfiles++;
2477         } else {
2478                 kfree(p);
2479                 p = swap_info[type];
2480                 /*
2481                  * Do not memset this entry: a racing procfs swap_next()
2482                  * would be relying on p->type to remain valid.
2483                  */
2484         }
2485         INIT_LIST_HEAD(&p->first_swap_extent.list);
2486         plist_node_init(&p->list, 0);
2487         plist_node_init(&p->avail_list, 0);
2488         p->flags = SWP_USED;
2489         spin_unlock(&swap_lock);
2490         spin_lock_init(&p->lock);
2491
2492         return p;
2493 }
2494
2495 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2496 {
2497         int error;
2498
2499         if (S_ISBLK(inode->i_mode)) {
2500                 p->bdev = bdgrab(I_BDEV(inode));
2501                 error = blkdev_get(p->bdev,
2502                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2503                 if (error < 0) {
2504                         p->bdev = NULL;
2505                         return error;
2506                 }
2507                 p->old_block_size = block_size(p->bdev);
2508                 error = set_blocksize(p->bdev, PAGE_SIZE);
2509                 if (error < 0)
2510                         return error;
2511                 p->flags |= SWP_BLKDEV;
2512         } else if (S_ISREG(inode->i_mode)) {
2513                 p->bdev = inode->i_sb->s_bdev;
2514                 inode_lock(inode);
2515                 if (IS_SWAPFILE(inode))
2516                         return -EBUSY;
2517         } else
2518                 return -EINVAL;
2519
2520         return 0;
2521 }
2522
2523 static unsigned long read_swap_header(struct swap_info_struct *p,
2524                                         union swap_header *swap_header,
2525                                         struct inode *inode)
2526 {
2527         int i;
2528         unsigned long maxpages;
2529         unsigned long swapfilepages;
2530         unsigned long last_page;
2531
2532         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2533                 pr_err("Unable to find swap-space signature\n");
2534                 return 0;
2535         }
2536
2537         /* swap partition endianess hack... */
2538         if (swab32(swap_header->info.version) == 1) {
2539                 swab32s(&swap_header->info.version);
2540                 swab32s(&swap_header->info.last_page);
2541                 swab32s(&swap_header->info.nr_badpages);
2542                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2543                         return 0;
2544                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2545                         swab32s(&swap_header->info.badpages[i]);
2546         }
2547         /* Check the swap header's sub-version */
2548         if (swap_header->info.version != 1) {
2549                 pr_warn("Unable to handle swap header version %d\n",
2550                         swap_header->info.version);
2551                 return 0;
2552         }
2553
2554         p->lowest_bit  = 1;
2555         p->cluster_next = 1;
2556         p->cluster_nr = 0;
2557
2558         /*
2559          * Find out how many pages are allowed for a single swap
2560          * device. There are two limiting factors: 1) the number
2561          * of bits for the swap offset in the swp_entry_t type, and
2562          * 2) the number of bits in the swap pte as defined by the
2563          * different architectures. In order to find the
2564          * largest possible bit mask, a swap entry with swap type 0
2565          * and swap offset ~0UL is created, encoded to a swap pte,
2566          * decoded to a swp_entry_t again, and finally the swap
2567          * offset is extracted. This will mask all the bits from
2568          * the initial ~0UL mask that can't be encoded in either
2569          * the swp_entry_t or the architecture definition of a
2570          * swap pte.
2571          */
2572         maxpages = swp_offset(pte_to_swp_entry(
2573                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2574         last_page = swap_header->info.last_page;
2575         if (last_page > maxpages) {
2576                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2577                         maxpages << (PAGE_SHIFT - 10),
2578                         last_page << (PAGE_SHIFT - 10));
2579         }
2580         if (maxpages > last_page) {
2581                 maxpages = last_page + 1;
2582                 /* p->max is an unsigned int: don't overflow it */
2583                 if ((unsigned int)maxpages == 0)
2584                         maxpages = UINT_MAX;
2585         }
2586         p->highest_bit = maxpages - 1;
2587
2588         if (!maxpages)
2589                 return 0;
2590         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2591         if (swapfilepages && maxpages > swapfilepages) {
2592                 pr_warn("Swap area shorter than signature indicates\n");
2593                 return 0;
2594         }
2595         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2596                 return 0;
2597         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2598                 return 0;
2599
2600         return maxpages;
2601 }
2602
2603 #define SWAP_CLUSTER_INFO_COLS                                          \
2604         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2605 #define SWAP_CLUSTER_SPACE_COLS                                         \
2606         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2607 #define SWAP_CLUSTER_COLS                                               \
2608         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2609
2610 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2611                                         union swap_header *swap_header,
2612                                         unsigned char *swap_map,
2613                                         struct swap_cluster_info *cluster_info,
2614                                         unsigned long maxpages,
2615                                         sector_t *span)
2616 {
2617         unsigned int j, k;
2618         unsigned int nr_good_pages;
2619         int nr_extents;
2620         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2621         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2622         unsigned long i, idx;
2623
2624         nr_good_pages = maxpages - 1;   /* omit header page */
2625
2626         cluster_list_init(&p->free_clusters);
2627         cluster_list_init(&p->discard_clusters);
2628
2629         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2630                 unsigned int page_nr = swap_header->info.badpages[i];
2631                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2632                         return -EINVAL;
2633                 if (page_nr < maxpages) {
2634                         swap_map[page_nr] = SWAP_MAP_BAD;
2635                         nr_good_pages--;
2636                         /*
2637                          * Haven't marked the cluster free yet, no list
2638                          * operation involved
2639                          */
2640                         inc_cluster_info_page(p, cluster_info, page_nr);
2641                 }
2642         }
2643
2644         /* Haven't marked the cluster free yet, no list operation involved */
2645         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2646                 inc_cluster_info_page(p, cluster_info, i);
2647
2648         if (nr_good_pages) {
2649                 swap_map[0] = SWAP_MAP_BAD;
2650                 /*
2651                  * Not mark the cluster free yet, no list
2652                  * operation involved
2653                  */
2654                 inc_cluster_info_page(p, cluster_info, 0);
2655                 p->max = maxpages;
2656                 p->pages = nr_good_pages;
2657                 nr_extents = setup_swap_extents(p, span);
2658                 if (nr_extents < 0)
2659                         return nr_extents;
2660                 nr_good_pages = p->pages;
2661         }
2662         if (!nr_good_pages) {
2663                 pr_warn("Empty swap-file\n");
2664                 return -EINVAL;
2665         }
2666
2667         if (!cluster_info)
2668                 return nr_extents;
2669
2670
2671         /*
2672          * Reduce false cache line sharing between cluster_info and
2673          * sharing same address space.
2674          */
2675         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2676                 j = (k + col) % SWAP_CLUSTER_COLS;
2677                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2678                         idx = i * SWAP_CLUSTER_COLS + j;
2679                         if (idx >= nr_clusters)
2680                                 continue;
2681                         if (cluster_count(&cluster_info[idx]))
2682                                 continue;
2683                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2684                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2685                                               idx);
2686                 }
2687         }
2688         return nr_extents;
2689 }
2690
2691 /*
2692  * Helper to sys_swapon determining if a given swap
2693  * backing device queue supports DISCARD operations.
2694  */
2695 static bool swap_discardable(struct swap_info_struct *si)
2696 {
2697         struct request_queue *q = bdev_get_queue(si->bdev);
2698
2699         if (!q || !blk_queue_discard(q))
2700                 return false;
2701
2702         return true;
2703 }
2704
2705 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2706 {
2707         struct swap_info_struct *p;
2708         struct filename *name;
2709         struct file *swap_file = NULL;
2710         struct address_space *mapping;
2711         int prio;
2712         int error;
2713         union swap_header *swap_header;
2714         int nr_extents;
2715         sector_t span;
2716         unsigned long maxpages;
2717         unsigned char *swap_map = NULL;
2718         struct swap_cluster_info *cluster_info = NULL;
2719         unsigned long *frontswap_map = NULL;
2720         struct page *page = NULL;
2721         struct inode *inode = NULL;
2722
2723         if (swap_flags & ~SWAP_FLAGS_VALID)
2724                 return -EINVAL;
2725
2726         if (!capable(CAP_SYS_ADMIN))
2727                 return -EPERM;
2728
2729         p = alloc_swap_info();
2730         if (IS_ERR(p))
2731                 return PTR_ERR(p);
2732
2733         INIT_WORK(&p->discard_work, swap_discard_work);
2734
2735         name = getname(specialfile);
2736         if (IS_ERR(name)) {
2737                 error = PTR_ERR(name);
2738                 name = NULL;
2739                 goto bad_swap;
2740         }
2741         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2742         if (IS_ERR(swap_file)) {
2743                 error = PTR_ERR(swap_file);
2744                 swap_file = NULL;
2745                 goto bad_swap;
2746         }
2747
2748         p->swap_file = swap_file;
2749         mapping = swap_file->f_mapping;
2750         inode = mapping->host;
2751
2752         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2753         error = claim_swapfile(p, inode);
2754         if (unlikely(error))
2755                 goto bad_swap;
2756
2757         /*
2758          * Read the swap header.
2759          */
2760         if (!mapping->a_ops->readpage) {
2761                 error = -EINVAL;
2762                 goto bad_swap;
2763         }
2764         page = read_mapping_page(mapping, 0, swap_file);
2765         if (IS_ERR(page)) {
2766                 error = PTR_ERR(page);
2767                 goto bad_swap;
2768         }
2769         swap_header = kmap(page);
2770
2771         maxpages = read_swap_header(p, swap_header, inode);
2772         if (unlikely(!maxpages)) {
2773                 error = -EINVAL;
2774                 goto bad_swap;
2775         }
2776
2777         /* OK, set up the swap map and apply the bad block list */
2778         swap_map = vzalloc(maxpages);
2779         if (!swap_map) {
2780                 error = -ENOMEM;
2781                 goto bad_swap;
2782         }
2783
2784         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2785                 p->flags |= SWP_STABLE_WRITES;
2786
2787         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2788                 int cpu;
2789                 unsigned long ci, nr_cluster;
2790
2791                 p->flags |= SWP_SOLIDSTATE;
2792                 /*
2793                  * select a random position to start with to help wear leveling
2794                  * SSD
2795                  */
2796                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2797                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2798
2799                 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2800                 if (!cluster_info) {
2801                         error = -ENOMEM;
2802                         goto bad_swap;
2803                 }
2804
2805                 for (ci = 0; ci < nr_cluster; ci++)
2806                         spin_lock_init(&((cluster_info + ci)->lock));
2807
2808                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2809                 if (!p->percpu_cluster) {
2810                         error = -ENOMEM;
2811                         goto bad_swap;
2812                 }
2813                 for_each_possible_cpu(cpu) {
2814                         struct percpu_cluster *cluster;
2815                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2816                         cluster_set_null(&cluster->index);
2817                 }
2818         }
2819
2820         error = swap_cgroup_swapon(p->type, maxpages);
2821         if (error)
2822                 goto bad_swap;
2823
2824         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2825                 cluster_info, maxpages, &span);
2826         if (unlikely(nr_extents < 0)) {
2827                 error = nr_extents;
2828                 goto bad_swap;
2829         }
2830         /* frontswap enabled? set up bit-per-page map for frontswap */
2831         if (IS_ENABLED(CONFIG_FRONTSWAP))
2832                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2833
2834         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2835                 /*
2836                  * When discard is enabled for swap with no particular
2837                  * policy flagged, we set all swap discard flags here in
2838                  * order to sustain backward compatibility with older
2839                  * swapon(8) releases.
2840                  */
2841                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2842                              SWP_PAGE_DISCARD);
2843
2844                 /*
2845                  * By flagging sys_swapon, a sysadmin can tell us to
2846                  * either do single-time area discards only, or to just
2847                  * perform discards for released swap page-clusters.
2848                  * Now it's time to adjust the p->flags accordingly.
2849                  */
2850                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2851                         p->flags &= ~SWP_PAGE_DISCARD;
2852                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2853                         p->flags &= ~SWP_AREA_DISCARD;
2854
2855                 /* issue a swapon-time discard if it's still required */
2856                 if (p->flags & SWP_AREA_DISCARD) {
2857                         int err = discard_swap(p);
2858                         if (unlikely(err))
2859                                 pr_err("swapon: discard_swap(%p): %d\n",
2860                                         p, err);
2861                 }
2862         }
2863
2864         error = init_swap_address_space(p->type, maxpages);
2865         if (error)
2866                 goto bad_swap;
2867
2868         mutex_lock(&swapon_mutex);
2869         prio = -1;
2870         if (swap_flags & SWAP_FLAG_PREFER)
2871                 prio =
2872                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2873         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2874
2875         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2876                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2877                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2878                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2879                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2880                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2881                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2882                 (frontswap_map) ? "FS" : "");
2883
2884         mutex_unlock(&swapon_mutex);
2885         atomic_inc(&proc_poll_event);
2886         wake_up_interruptible(&proc_poll_wait);
2887
2888         if (S_ISREG(inode->i_mode))
2889                 inode->i_flags |= S_SWAPFILE;
2890         error = 0;
2891         goto out;
2892 bad_swap:
2893         free_percpu(p->percpu_cluster);
2894         p->percpu_cluster = NULL;
2895         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2896                 set_blocksize(p->bdev, p->old_block_size);
2897                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2898         }
2899         destroy_swap_extents(p);
2900         swap_cgroup_swapoff(p->type);
2901         spin_lock(&swap_lock);
2902         p->swap_file = NULL;
2903         p->flags = 0;
2904         spin_unlock(&swap_lock);
2905         vfree(swap_map);
2906         vfree(cluster_info);
2907         if (swap_file) {
2908                 if (inode && S_ISREG(inode->i_mode)) {
2909                         inode_unlock(inode);
2910                         inode = NULL;
2911                 }
2912                 filp_close(swap_file, NULL);
2913         }
2914 out:
2915         if (page && !IS_ERR(page)) {
2916                 kunmap(page);
2917                 put_page(page);
2918         }
2919         if (name)
2920                 putname(name);
2921         if (inode && S_ISREG(inode->i_mode))
2922                 inode_unlock(inode);
2923         if (!error)
2924                 enable_swap_slots_cache();
2925         return error;
2926 }
2927
2928 void si_swapinfo(struct sysinfo *val)
2929 {
2930         unsigned int type;
2931         unsigned long nr_to_be_unused = 0;
2932
2933         spin_lock(&swap_lock);
2934         for (type = 0; type < nr_swapfiles; type++) {
2935                 struct swap_info_struct *si = swap_info[type];
2936
2937                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2938                         nr_to_be_unused += si->inuse_pages;
2939         }
2940         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2941         val->totalswap = total_swap_pages + nr_to_be_unused;
2942         spin_unlock(&swap_lock);
2943 }
2944
2945 /*
2946  * Verify that a swap entry is valid and increment its swap map count.
2947  *
2948  * Returns error code in following case.
2949  * - success -> 0
2950  * - swp_entry is invalid -> EINVAL
2951  * - swp_entry is migration entry -> EINVAL
2952  * - swap-cache reference is requested but there is already one. -> EEXIST
2953  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2954  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2955  */
2956 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2957 {
2958         struct swap_info_struct *p;
2959         struct swap_cluster_info *ci;
2960         unsigned long offset, type;
2961         unsigned char count;
2962         unsigned char has_cache;
2963         int err = -EINVAL;
2964
2965         if (non_swap_entry(entry))
2966                 goto out;
2967
2968         type = swp_type(entry);
2969         if (type >= nr_swapfiles)
2970                 goto bad_file;
2971         p = swap_info[type];
2972         offset = swp_offset(entry);
2973         if (unlikely(offset >= p->max))
2974                 goto out;
2975
2976         ci = lock_cluster_or_swap_info(p, offset);
2977
2978         count = p->swap_map[offset];
2979
2980         /*
2981          * swapin_readahead() doesn't check if a swap entry is valid, so the
2982          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2983          */
2984         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2985                 err = -ENOENT;
2986                 goto unlock_out;
2987         }
2988
2989         has_cache = count & SWAP_HAS_CACHE;
2990         count &= ~SWAP_HAS_CACHE;
2991         err = 0;
2992
2993         if (usage == SWAP_HAS_CACHE) {
2994
2995                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2996                 if (!has_cache && count)
2997                         has_cache = SWAP_HAS_CACHE;
2998                 else if (has_cache)             /* someone else added cache */
2999                         err = -EEXIST;
3000                 else                            /* no users remaining */
3001                         err = -ENOENT;
3002
3003         } else if (count || has_cache) {
3004
3005                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3006                         count += usage;
3007                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3008                         err = -EINVAL;
3009                 else if (swap_count_continued(p, offset, count))
3010                         count = COUNT_CONTINUED;
3011                 else
3012                         err = -ENOMEM;
3013         } else
3014                 err = -ENOENT;                  /* unused swap entry */
3015
3016         p->swap_map[offset] = count | has_cache;
3017
3018 unlock_out:
3019         unlock_cluster_or_swap_info(p, ci);
3020 out:
3021         return err;
3022
3023 bad_file:
3024         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3025         goto out;
3026 }
3027
3028 /*
3029  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3030  * (in which case its reference count is never incremented).
3031  */
3032 void swap_shmem_alloc(swp_entry_t entry)
3033 {
3034         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3035 }
3036
3037 /*
3038  * Increase reference count of swap entry by 1.
3039  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3040  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3041  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3042  * might occur if a page table entry has got corrupted.
3043  */
3044 int swap_duplicate(swp_entry_t entry)
3045 {
3046         int err = 0;
3047
3048         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3049                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3050         return err;
3051 }
3052
3053 /*
3054  * @entry: swap entry for which we allocate swap cache.
3055  *
3056  * Called when allocating swap cache for existing swap entry,
3057  * This can return error codes. Returns 0 at success.
3058  * -EBUSY means there is a swap cache.
3059  * Note: return code is different from swap_duplicate().
3060  */
3061 int swapcache_prepare(swp_entry_t entry)
3062 {
3063         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3064 }
3065
3066 struct swap_info_struct *page_swap_info(struct page *page)
3067 {
3068         swp_entry_t swap = { .val = page_private(page) };
3069         return swap_info[swp_type(swap)];
3070 }
3071
3072 /*
3073  * out-of-line __page_file_ methods to avoid include hell.
3074  */
3075 struct address_space *__page_file_mapping(struct page *page)
3076 {
3077         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3078         return page_swap_info(page)->swap_file->f_mapping;
3079 }
3080 EXPORT_SYMBOL_GPL(__page_file_mapping);
3081
3082 pgoff_t __page_file_index(struct page *page)
3083 {
3084         swp_entry_t swap = { .val = page_private(page) };
3085         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3086         return swp_offset(swap);
3087 }
3088 EXPORT_SYMBOL_GPL(__page_file_index);
3089
3090 /*
3091  * add_swap_count_continuation - called when a swap count is duplicated
3092  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3093  * page of the original vmalloc'ed swap_map, to hold the continuation count
3094  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3095  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3096  *
3097  * These continuation pages are seldom referenced: the common paths all work
3098  * on the original swap_map, only referring to a continuation page when the
3099  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3100  *
3101  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3102  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3103  * can be called after dropping locks.
3104  */
3105 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3106 {
3107         struct swap_info_struct *si;
3108         struct swap_cluster_info *ci;
3109         struct page *head;
3110         struct page *page;
3111         struct page *list_page;
3112         pgoff_t offset;
3113         unsigned char count;
3114
3115         /*
3116          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3117          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3118          */
3119         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3120
3121         si = swap_info_get(entry);
3122         if (!si) {
3123                 /*
3124                  * An acceptable race has occurred since the failing
3125                  * __swap_duplicate(): the swap entry has been freed,
3126                  * perhaps even the whole swap_map cleared for swapoff.
3127                  */
3128                 goto outer;
3129         }
3130
3131         offset = swp_offset(entry);
3132
3133         ci = lock_cluster(si, offset);
3134
3135         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3136
3137         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3138                 /*
3139                  * The higher the swap count, the more likely it is that tasks
3140                  * will race to add swap count continuation: we need to avoid
3141                  * over-provisioning.
3142                  */
3143                 goto out;
3144         }
3145
3146         if (!page) {
3147                 unlock_cluster(ci);
3148                 spin_unlock(&si->lock);
3149                 return -ENOMEM;
3150         }
3151
3152         /*
3153          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3154          * no architecture is using highmem pages for kernel page tables: so it
3155          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3156          */
3157         head = vmalloc_to_page(si->swap_map + offset);
3158         offset &= ~PAGE_MASK;
3159
3160         /*
3161          * Page allocation does not initialize the page's lru field,
3162          * but it does always reset its private field.
3163          */
3164         if (!page_private(head)) {
3165                 BUG_ON(count & COUNT_CONTINUED);
3166                 INIT_LIST_HEAD(&head->lru);
3167                 set_page_private(head, SWP_CONTINUED);
3168                 si->flags |= SWP_CONTINUED;
3169         }
3170
3171         list_for_each_entry(list_page, &head->lru, lru) {
3172                 unsigned char *map;
3173
3174                 /*
3175                  * If the previous map said no continuation, but we've found
3176                  * a continuation page, free our allocation and use this one.
3177                  */
3178                 if (!(count & COUNT_CONTINUED))
3179                         goto out;
3180
3181                 map = kmap_atomic(list_page) + offset;
3182                 count = *map;
3183                 kunmap_atomic(map);
3184
3185                 /*
3186                  * If this continuation count now has some space in it,
3187                  * free our allocation and use this one.
3188                  */
3189                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3190                         goto out;
3191         }
3192
3193         list_add_tail(&page->lru, &head->lru);
3194         page = NULL;                    /* now it's attached, don't free it */
3195 out:
3196         unlock_cluster(ci);
3197         spin_unlock(&si->lock);
3198 outer:
3199         if (page)
3200                 __free_page(page);
3201         return 0;
3202 }
3203
3204 /*
3205  * swap_count_continued - when the original swap_map count is incremented
3206  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3207  * into, carry if so, or else fail until a new continuation page is allocated;
3208  * when the original swap_map count is decremented from 0 with continuation,
3209  * borrow from the continuation and report whether it still holds more.
3210  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3211  * lock.
3212  */
3213 static bool swap_count_continued(struct swap_info_struct *si,
3214                                  pgoff_t offset, unsigned char count)
3215 {
3216         struct page *head;
3217         struct page *page;
3218         unsigned char *map;
3219
3220         head = vmalloc_to_page(si->swap_map + offset);
3221         if (page_private(head) != SWP_CONTINUED) {
3222                 BUG_ON(count & COUNT_CONTINUED);
3223                 return false;           /* need to add count continuation */
3224         }
3225
3226         offset &= ~PAGE_MASK;
3227         page = list_entry(head->lru.next, struct page, lru);
3228         map = kmap_atomic(page) + offset;
3229
3230         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3231                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3232
3233         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3234                 /*
3235                  * Think of how you add 1 to 999
3236                  */
3237                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3238                         kunmap_atomic(map);
3239                         page = list_entry(page->lru.next, struct page, lru);
3240                         BUG_ON(page == head);
3241                         map = kmap_atomic(page) + offset;
3242                 }
3243                 if (*map == SWAP_CONT_MAX) {
3244                         kunmap_atomic(map);
3245                         page = list_entry(page->lru.next, struct page, lru);
3246                         if (page == head)
3247                                 return false;   /* add count continuation */
3248                         map = kmap_atomic(page) + offset;
3249 init_map:               *map = 0;               /* we didn't zero the page */
3250                 }
3251                 *map += 1;
3252                 kunmap_atomic(map);
3253                 page = list_entry(page->lru.prev, struct page, lru);
3254                 while (page != head) {
3255                         map = kmap_atomic(page) + offset;
3256                         *map = COUNT_CONTINUED;
3257                         kunmap_atomic(map);
3258                         page = list_entry(page->lru.prev, struct page, lru);
3259                 }
3260                 return true;                    /* incremented */
3261
3262         } else {                                /* decrementing */
3263                 /*
3264                  * Think of how you subtract 1 from 1000
3265                  */
3266                 BUG_ON(count != COUNT_CONTINUED);
3267                 while (*map == COUNT_CONTINUED) {
3268                         kunmap_atomic(map);
3269                         page = list_entry(page->lru.next, struct page, lru);
3270                         BUG_ON(page == head);
3271                         map = kmap_atomic(page) + offset;
3272                 }
3273                 BUG_ON(*map == 0);
3274                 *map -= 1;
3275                 if (*map == 0)
3276                         count = 0;
3277                 kunmap_atomic(map);
3278                 page = list_entry(page->lru.prev, struct page, lru);
3279                 while (page != head) {
3280                         map = kmap_atomic(page) + offset;
3281                         *map = SWAP_CONT_MAX | count;
3282                         count = COUNT_CONTINUED;
3283                         kunmap_atomic(map);
3284                         page = list_entry(page->lru.prev, struct page, lru);
3285                 }
3286                 return count == COUNT_CONTINUED;
3287         }
3288 }
3289
3290 /*
3291  * free_swap_count_continuations - swapoff free all the continuation pages
3292  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3293  */
3294 static void free_swap_count_continuations(struct swap_info_struct *si)
3295 {
3296         pgoff_t offset;
3297
3298         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3299                 struct page *head;
3300                 head = vmalloc_to_page(si->swap_map + offset);
3301                 if (page_private(head)) {
3302                         struct page *page, *next;
3303
3304                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3305                                 list_del(&page->lru);
3306                                 __free_page(page);
3307                         }
3308                 }
3309         }
3310 }