]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/swapfile.c
mm/swap: allocate swap slots in batches
[karo-tx-linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /*
52  * Some modules use swappable objects and may try to swap them out under
53  * memory pressure (via the shrinker). Before doing so, they may wish to
54  * check to see if any swap space is available.
55  */
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
60
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
65
66 /*
67  * all active swap_info_structs
68  * protected with swap_lock, and ordered by priority.
69  */
70 PLIST_HEAD(swap_active_head);
71
72 /*
73  * all available (active, not full) swap_info_structs
74  * protected with swap_avail_lock, ordered by priority.
75  * This is used by get_swap_page() instead of swap_active_head
76  * because swap_active_head includes all swap_info_structs,
77  * but get_swap_page() doesn't need to look at full ones.
78  * This uses its own lock instead of swap_lock because when a
79  * swap_info_struct changes between not-full/full, it needs to
80  * add/remove itself to/from this list, but the swap_info_struct->lock
81  * is held and the locking order requires swap_lock to be taken
82  * before any swap_info_struct->lock.
83  */
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
86
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
88
89 static DEFINE_MUTEX(swapon_mutex);
90
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
94
95 static inline unsigned char swap_count(unsigned char ent)
96 {
97         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
98 }
99
100 /* returns 1 if swap entry is freed */
101 static int
102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103 {
104         swp_entry_t entry = swp_entry(si->type, offset);
105         struct page *page;
106         int ret = 0;
107
108         page = find_get_page(swap_address_space(entry), swp_offset(entry));
109         if (!page)
110                 return 0;
111         /*
112          * This function is called from scan_swap_map() and it's called
113          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114          * We have to use trylock for avoiding deadlock. This is a special
115          * case and you should use try_to_free_swap() with explicit lock_page()
116          * in usual operations.
117          */
118         if (trylock_page(page)) {
119                 ret = try_to_free_swap(page);
120                 unlock_page(page);
121         }
122         put_page(page);
123         return ret;
124 }
125
126 /*
127  * swapon tell device that all the old swap contents can be discarded,
128  * to allow the swap device to optimize its wear-levelling.
129  */
130 static int discard_swap(struct swap_info_struct *si)
131 {
132         struct swap_extent *se;
133         sector_t start_block;
134         sector_t nr_blocks;
135         int err = 0;
136
137         /* Do not discard the swap header page! */
138         se = &si->first_swap_extent;
139         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141         if (nr_blocks) {
142                 err = blkdev_issue_discard(si->bdev, start_block,
143                                 nr_blocks, GFP_KERNEL, 0);
144                 if (err)
145                         return err;
146                 cond_resched();
147         }
148
149         list_for_each_entry(se, &si->first_swap_extent.list, list) {
150                 start_block = se->start_block << (PAGE_SHIFT - 9);
151                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152
153                 err = blkdev_issue_discard(si->bdev, start_block,
154                                 nr_blocks, GFP_KERNEL, 0);
155                 if (err)
156                         break;
157
158                 cond_resched();
159         }
160         return err;             /* That will often be -EOPNOTSUPP */
161 }
162
163 /*
164  * swap allocation tell device that a cluster of swap can now be discarded,
165  * to allow the swap device to optimize its wear-levelling.
166  */
167 static void discard_swap_cluster(struct swap_info_struct *si,
168                                  pgoff_t start_page, pgoff_t nr_pages)
169 {
170         struct swap_extent *se = si->curr_swap_extent;
171         int found_extent = 0;
172
173         while (nr_pages) {
174                 if (se->start_page <= start_page &&
175                     start_page < se->start_page + se->nr_pages) {
176                         pgoff_t offset = start_page - se->start_page;
177                         sector_t start_block = se->start_block + offset;
178                         sector_t nr_blocks = se->nr_pages - offset;
179
180                         if (nr_blocks > nr_pages)
181                                 nr_blocks = nr_pages;
182                         start_page += nr_blocks;
183                         nr_pages -= nr_blocks;
184
185                         if (!found_extent++)
186                                 si->curr_swap_extent = se;
187
188                         start_block <<= PAGE_SHIFT - 9;
189                         nr_blocks <<= PAGE_SHIFT - 9;
190                         if (blkdev_issue_discard(si->bdev, start_block,
191                                     nr_blocks, GFP_NOIO, 0))
192                                 break;
193                 }
194
195                 se = list_next_entry(se, list);
196         }
197 }
198
199 #define SWAPFILE_CLUSTER        256
200 #define LATENCY_LIMIT           256
201
202 static inline void cluster_set_flag(struct swap_cluster_info *info,
203         unsigned int flag)
204 {
205         info->flags = flag;
206 }
207
208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
209 {
210         return info->data;
211 }
212
213 static inline void cluster_set_count(struct swap_cluster_info *info,
214                                      unsigned int c)
215 {
216         info->data = c;
217 }
218
219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220                                          unsigned int c, unsigned int f)
221 {
222         info->flags = f;
223         info->data = c;
224 }
225
226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
227 {
228         return info->data;
229 }
230
231 static inline void cluster_set_next(struct swap_cluster_info *info,
232                                     unsigned int n)
233 {
234         info->data = n;
235 }
236
237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238                                          unsigned int n, unsigned int f)
239 {
240         info->flags = f;
241         info->data = n;
242 }
243
244 static inline bool cluster_is_free(struct swap_cluster_info *info)
245 {
246         return info->flags & CLUSTER_FLAG_FREE;
247 }
248
249 static inline bool cluster_is_null(struct swap_cluster_info *info)
250 {
251         return info->flags & CLUSTER_FLAG_NEXT_NULL;
252 }
253
254 static inline void cluster_set_null(struct swap_cluster_info *info)
255 {
256         info->flags = CLUSTER_FLAG_NEXT_NULL;
257         info->data = 0;
258 }
259
260 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
261                                                      unsigned long offset)
262 {
263         struct swap_cluster_info *ci;
264
265         ci = si->cluster_info;
266         if (ci) {
267                 ci += offset / SWAPFILE_CLUSTER;
268                 spin_lock(&ci->lock);
269         }
270         return ci;
271 }
272
273 static inline void unlock_cluster(struct swap_cluster_info *ci)
274 {
275         if (ci)
276                 spin_unlock(&ci->lock);
277 }
278
279 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
280         struct swap_info_struct *si,
281         unsigned long offset)
282 {
283         struct swap_cluster_info *ci;
284
285         ci = lock_cluster(si, offset);
286         if (!ci)
287                 spin_lock(&si->lock);
288
289         return ci;
290 }
291
292 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
293                                                struct swap_cluster_info *ci)
294 {
295         if (ci)
296                 unlock_cluster(ci);
297         else
298                 spin_unlock(&si->lock);
299 }
300
301 static inline bool cluster_list_empty(struct swap_cluster_list *list)
302 {
303         return cluster_is_null(&list->head);
304 }
305
306 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
307 {
308         return cluster_next(&list->head);
309 }
310
311 static void cluster_list_init(struct swap_cluster_list *list)
312 {
313         cluster_set_null(&list->head);
314         cluster_set_null(&list->tail);
315 }
316
317 static void cluster_list_add_tail(struct swap_cluster_list *list,
318                                   struct swap_cluster_info *ci,
319                                   unsigned int idx)
320 {
321         if (cluster_list_empty(list)) {
322                 cluster_set_next_flag(&list->head, idx, 0);
323                 cluster_set_next_flag(&list->tail, idx, 0);
324         } else {
325                 struct swap_cluster_info *ci_tail;
326                 unsigned int tail = cluster_next(&list->tail);
327
328                 /*
329                  * Nested cluster lock, but both cluster locks are
330                  * only acquired when we held swap_info_struct->lock
331                  */
332                 ci_tail = ci + tail;
333                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
334                 cluster_set_next(ci_tail, idx);
335                 unlock_cluster(ci_tail);
336                 cluster_set_next_flag(&list->tail, idx, 0);
337         }
338 }
339
340 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
341                                            struct swap_cluster_info *ci)
342 {
343         unsigned int idx;
344
345         idx = cluster_next(&list->head);
346         if (cluster_next(&list->tail) == idx) {
347                 cluster_set_null(&list->head);
348                 cluster_set_null(&list->tail);
349         } else
350                 cluster_set_next_flag(&list->head,
351                                       cluster_next(&ci[idx]), 0);
352
353         return idx;
354 }
355
356 /* Add a cluster to discard list and schedule it to do discard */
357 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
358                 unsigned int idx)
359 {
360         /*
361          * If scan_swap_map() can't find a free cluster, it will check
362          * si->swap_map directly. To make sure the discarding cluster isn't
363          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
364          * will be cleared after discard
365          */
366         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
367                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
368
369         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
370
371         schedule_work(&si->discard_work);
372 }
373
374 /*
375  * Doing discard actually. After a cluster discard is finished, the cluster
376  * will be added to free cluster list. caller should hold si->lock.
377 */
378 static void swap_do_scheduled_discard(struct swap_info_struct *si)
379 {
380         struct swap_cluster_info *info, *ci;
381         unsigned int idx;
382
383         info = si->cluster_info;
384
385         while (!cluster_list_empty(&si->discard_clusters)) {
386                 idx = cluster_list_del_first(&si->discard_clusters, info);
387                 spin_unlock(&si->lock);
388
389                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
390                                 SWAPFILE_CLUSTER);
391
392                 spin_lock(&si->lock);
393                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
394                 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
395                 unlock_cluster(ci);
396                 cluster_list_add_tail(&si->free_clusters, info, idx);
397                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
398                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
399                                 0, SWAPFILE_CLUSTER);
400                 unlock_cluster(ci);
401         }
402 }
403
404 static void swap_discard_work(struct work_struct *work)
405 {
406         struct swap_info_struct *si;
407
408         si = container_of(work, struct swap_info_struct, discard_work);
409
410         spin_lock(&si->lock);
411         swap_do_scheduled_discard(si);
412         spin_unlock(&si->lock);
413 }
414
415 /*
416  * The cluster corresponding to page_nr will be used. The cluster will be
417  * removed from free cluster list and its usage counter will be increased.
418  */
419 static void inc_cluster_info_page(struct swap_info_struct *p,
420         struct swap_cluster_info *cluster_info, unsigned long page_nr)
421 {
422         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
423
424         if (!cluster_info)
425                 return;
426         if (cluster_is_free(&cluster_info[idx])) {
427                 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
428                 cluster_list_del_first(&p->free_clusters, cluster_info);
429                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
430         }
431
432         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
433         cluster_set_count(&cluster_info[idx],
434                 cluster_count(&cluster_info[idx]) + 1);
435 }
436
437 /*
438  * The cluster corresponding to page_nr decreases one usage. If the usage
439  * counter becomes 0, which means no page in the cluster is in using, we can
440  * optionally discard the cluster and add it to free cluster list.
441  */
442 static void dec_cluster_info_page(struct swap_info_struct *p,
443         struct swap_cluster_info *cluster_info, unsigned long page_nr)
444 {
445         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
446
447         if (!cluster_info)
448                 return;
449
450         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
451         cluster_set_count(&cluster_info[idx],
452                 cluster_count(&cluster_info[idx]) - 1);
453
454         if (cluster_count(&cluster_info[idx]) == 0) {
455                 /*
456                  * If the swap is discardable, prepare discard the cluster
457                  * instead of free it immediately. The cluster will be freed
458                  * after discard.
459                  */
460                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
461                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
462                         swap_cluster_schedule_discard(p, idx);
463                         return;
464                 }
465
466                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
467                 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
468         }
469 }
470
471 /*
472  * It's possible scan_swap_map() uses a free cluster in the middle of free
473  * cluster list. Avoiding such abuse to avoid list corruption.
474  */
475 static bool
476 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
477         unsigned long offset)
478 {
479         struct percpu_cluster *percpu_cluster;
480         bool conflict;
481
482         offset /= SWAPFILE_CLUSTER;
483         conflict = !cluster_list_empty(&si->free_clusters) &&
484                 offset != cluster_list_first(&si->free_clusters) &&
485                 cluster_is_free(&si->cluster_info[offset]);
486
487         if (!conflict)
488                 return false;
489
490         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
491         cluster_set_null(&percpu_cluster->index);
492         return true;
493 }
494
495 /*
496  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
497  * might involve allocating a new cluster for current CPU too.
498  */
499 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
500         unsigned long *offset, unsigned long *scan_base)
501 {
502         struct percpu_cluster *cluster;
503         struct swap_cluster_info *ci;
504         bool found_free;
505         unsigned long tmp, max;
506
507 new_cluster:
508         cluster = this_cpu_ptr(si->percpu_cluster);
509         if (cluster_is_null(&cluster->index)) {
510                 if (!cluster_list_empty(&si->free_clusters)) {
511                         cluster->index = si->free_clusters.head;
512                         cluster->next = cluster_next(&cluster->index) *
513                                         SWAPFILE_CLUSTER;
514                 } else if (!cluster_list_empty(&si->discard_clusters)) {
515                         /*
516                          * we don't have free cluster but have some clusters in
517                          * discarding, do discard now and reclaim them
518                          */
519                         swap_do_scheduled_discard(si);
520                         *scan_base = *offset = si->cluster_next;
521                         goto new_cluster;
522                 } else
523                         return false;
524         }
525
526         found_free = false;
527
528         /*
529          * Other CPUs can use our cluster if they can't find a free cluster,
530          * check if there is still free entry in the cluster
531          */
532         tmp = cluster->next;
533         max = min_t(unsigned long, si->max,
534                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
535         if (tmp >= max) {
536                 cluster_set_null(&cluster->index);
537                 goto new_cluster;
538         }
539         ci = lock_cluster(si, tmp);
540         while (tmp < max) {
541                 if (!si->swap_map[tmp]) {
542                         found_free = true;
543                         break;
544                 }
545                 tmp++;
546         }
547         unlock_cluster(ci);
548         if (!found_free) {
549                 cluster_set_null(&cluster->index);
550                 goto new_cluster;
551         }
552         cluster->next = tmp + 1;
553         *offset = tmp;
554         *scan_base = tmp;
555         return found_free;
556 }
557
558 static int scan_swap_map_slots(struct swap_info_struct *si,
559                                unsigned char usage, int nr,
560                                swp_entry_t slots[])
561 {
562         struct swap_cluster_info *ci;
563         unsigned long offset;
564         unsigned long scan_base;
565         unsigned long last_in_cluster = 0;
566         int latency_ration = LATENCY_LIMIT;
567         int n_ret = 0;
568
569         if (nr > SWAP_BATCH)
570                 nr = SWAP_BATCH;
571
572         /*
573          * We try to cluster swap pages by allocating them sequentially
574          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
575          * way, however, we resort to first-free allocation, starting
576          * a new cluster.  This prevents us from scattering swap pages
577          * all over the entire swap partition, so that we reduce
578          * overall disk seek times between swap pages.  -- sct
579          * But we do now try to find an empty cluster.  -Andrea
580          * And we let swap pages go all over an SSD partition.  Hugh
581          */
582
583         si->flags += SWP_SCANNING;
584         scan_base = offset = si->cluster_next;
585
586         /* SSD algorithm */
587         if (si->cluster_info) {
588                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
589                         goto checks;
590                 else
591                         goto scan;
592         }
593
594         if (unlikely(!si->cluster_nr--)) {
595                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
596                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
597                         goto checks;
598                 }
599
600                 spin_unlock(&si->lock);
601
602                 /*
603                  * If seek is expensive, start searching for new cluster from
604                  * start of partition, to minimize the span of allocated swap.
605                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
606                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
607                  */
608                 scan_base = offset = si->lowest_bit;
609                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
610
611                 /* Locate the first empty (unaligned) cluster */
612                 for (; last_in_cluster <= si->highest_bit; offset++) {
613                         if (si->swap_map[offset])
614                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
615                         else if (offset == last_in_cluster) {
616                                 spin_lock(&si->lock);
617                                 offset -= SWAPFILE_CLUSTER - 1;
618                                 si->cluster_next = offset;
619                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
620                                 goto checks;
621                         }
622                         if (unlikely(--latency_ration < 0)) {
623                                 cond_resched();
624                                 latency_ration = LATENCY_LIMIT;
625                         }
626                 }
627
628                 offset = scan_base;
629                 spin_lock(&si->lock);
630                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
631         }
632
633 checks:
634         if (si->cluster_info) {
635                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
636                 /* take a break if we already got some slots */
637                         if (n_ret)
638                                 goto done;
639                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
640                                                         &scan_base))
641                                 goto scan;
642                 }
643         }
644         if (!(si->flags & SWP_WRITEOK))
645                 goto no_page;
646         if (!si->highest_bit)
647                 goto no_page;
648         if (offset > si->highest_bit)
649                 scan_base = offset = si->lowest_bit;
650
651         ci = lock_cluster(si, offset);
652         /* reuse swap entry of cache-only swap if not busy. */
653         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
654                 int swap_was_freed;
655                 unlock_cluster(ci);
656                 spin_unlock(&si->lock);
657                 swap_was_freed = __try_to_reclaim_swap(si, offset);
658                 spin_lock(&si->lock);
659                 /* entry was freed successfully, try to use this again */
660                 if (swap_was_freed)
661                         goto checks;
662                 goto scan; /* check next one */
663         }
664
665         if (si->swap_map[offset]) {
666                 unlock_cluster(ci);
667                 if (!n_ret)
668                         goto scan;
669                 else
670                         goto done;
671         }
672
673         if (offset == si->lowest_bit)
674                 si->lowest_bit++;
675         if (offset == si->highest_bit)
676                 si->highest_bit--;
677         si->inuse_pages++;
678         if (si->inuse_pages == si->pages) {
679                 si->lowest_bit = si->max;
680                 si->highest_bit = 0;
681                 spin_lock(&swap_avail_lock);
682                 plist_del(&si->avail_list, &swap_avail_head);
683                 spin_unlock(&swap_avail_lock);
684         }
685         si->swap_map[offset] = usage;
686         inc_cluster_info_page(si, si->cluster_info, offset);
687         unlock_cluster(ci);
688         si->cluster_next = offset + 1;
689         slots[n_ret++] = swp_entry(si->type, offset);
690
691         /* got enough slots or reach max slots? */
692         if ((n_ret == nr) || (offset >= si->highest_bit))
693                 goto done;
694
695         /* search for next available slot */
696
697         /* time to take a break? */
698         if (unlikely(--latency_ration < 0)) {
699                 if (n_ret)
700                         goto done;
701                 spin_unlock(&si->lock);
702                 cond_resched();
703                 spin_lock(&si->lock);
704                 latency_ration = LATENCY_LIMIT;
705         }
706
707         /* try to get more slots in cluster */
708         if (si->cluster_info) {
709                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
710                         goto checks;
711                 else
712                         goto done;
713         }
714         /* non-ssd case */
715         ++offset;
716
717         /* non-ssd case, still more slots in cluster? */
718         if (si->cluster_nr && !si->swap_map[offset]) {
719                 --si->cluster_nr;
720                 goto checks;
721         }
722
723 done:
724         si->flags -= SWP_SCANNING;
725         return n_ret;
726
727 scan:
728         spin_unlock(&si->lock);
729         while (++offset <= si->highest_bit) {
730                 if (!si->swap_map[offset]) {
731                         spin_lock(&si->lock);
732                         goto checks;
733                 }
734                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
735                         spin_lock(&si->lock);
736                         goto checks;
737                 }
738                 if (unlikely(--latency_ration < 0)) {
739                         cond_resched();
740                         latency_ration = LATENCY_LIMIT;
741                 }
742         }
743         offset = si->lowest_bit;
744         while (offset < scan_base) {
745                 if (!si->swap_map[offset]) {
746                         spin_lock(&si->lock);
747                         goto checks;
748                 }
749                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
750                         spin_lock(&si->lock);
751                         goto checks;
752                 }
753                 if (unlikely(--latency_ration < 0)) {
754                         cond_resched();
755                         latency_ration = LATENCY_LIMIT;
756                 }
757                 offset++;
758         }
759         spin_lock(&si->lock);
760
761 no_page:
762         si->flags -= SWP_SCANNING;
763         return n_ret;
764 }
765
766 static unsigned long scan_swap_map(struct swap_info_struct *si,
767                                    unsigned char usage)
768 {
769         swp_entry_t entry;
770         int n_ret;
771
772         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
773
774         if (n_ret)
775                 return swp_offset(entry);
776         else
777                 return 0;
778
779 }
780
781 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
782 {
783         struct swap_info_struct *si, *next;
784         long avail_pgs;
785         int n_ret = 0;
786
787         avail_pgs = atomic_long_read(&nr_swap_pages);
788         if (avail_pgs <= 0)
789                 goto noswap;
790
791         if (n_goal > SWAP_BATCH)
792                 n_goal = SWAP_BATCH;
793
794         if (n_goal > avail_pgs)
795                 n_goal = avail_pgs;
796
797         atomic_long_sub(n_goal, &nr_swap_pages);
798
799         spin_lock(&swap_avail_lock);
800
801 start_over:
802         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
803                 /* requeue si to after same-priority siblings */
804                 plist_requeue(&si->avail_list, &swap_avail_head);
805                 spin_unlock(&swap_avail_lock);
806                 spin_lock(&si->lock);
807                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
808                         spin_lock(&swap_avail_lock);
809                         if (plist_node_empty(&si->avail_list)) {
810                                 spin_unlock(&si->lock);
811                                 goto nextsi;
812                         }
813                         WARN(!si->highest_bit,
814                              "swap_info %d in list but !highest_bit\n",
815                              si->type);
816                         WARN(!(si->flags & SWP_WRITEOK),
817                              "swap_info %d in list but !SWP_WRITEOK\n",
818                              si->type);
819                         plist_del(&si->avail_list, &swap_avail_head);
820                         spin_unlock(&si->lock);
821                         goto nextsi;
822                 }
823                 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
824                                             n_goal, swp_entries);
825                 spin_unlock(&si->lock);
826                 if (n_ret)
827                         goto check_out;
828                 pr_debug("scan_swap_map of si %d failed to find offset\n",
829                         si->type);
830
831                 spin_lock(&swap_avail_lock);
832 nextsi:
833                 /*
834                  * if we got here, it's likely that si was almost full before,
835                  * and since scan_swap_map() can drop the si->lock, multiple
836                  * callers probably all tried to get a page from the same si
837                  * and it filled up before we could get one; or, the si filled
838                  * up between us dropping swap_avail_lock and taking si->lock.
839                  * Since we dropped the swap_avail_lock, the swap_avail_head
840                  * list may have been modified; so if next is still in the
841                  * swap_avail_head list then try it, otherwise start over
842                  * if we have not gotten any slots.
843                  */
844                 if (plist_node_empty(&next->avail_list))
845                         goto start_over;
846         }
847
848         spin_unlock(&swap_avail_lock);
849
850 check_out:
851         if (n_ret < n_goal)
852                 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
853 noswap:
854         return n_ret;
855 }
856
857 swp_entry_t get_swap_page(void)
858 {
859         swp_entry_t entry;
860
861         get_swap_pages(1, &entry);
862         return entry;
863 }
864
865 /* The only caller of this function is now suspend routine */
866 swp_entry_t get_swap_page_of_type(int type)
867 {
868         struct swap_info_struct *si;
869         pgoff_t offset;
870
871         si = swap_info[type];
872         spin_lock(&si->lock);
873         if (si && (si->flags & SWP_WRITEOK)) {
874                 atomic_long_dec(&nr_swap_pages);
875                 /* This is called for allocating swap entry, not cache */
876                 offset = scan_swap_map(si, 1);
877                 if (offset) {
878                         spin_unlock(&si->lock);
879                         return swp_entry(type, offset);
880                 }
881                 atomic_long_inc(&nr_swap_pages);
882         }
883         spin_unlock(&si->lock);
884         return (swp_entry_t) {0};
885 }
886
887 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
888 {
889         struct swap_info_struct *p;
890         unsigned long offset, type;
891
892         if (!entry.val)
893                 goto out;
894         type = swp_type(entry);
895         if (type >= nr_swapfiles)
896                 goto bad_nofile;
897         p = swap_info[type];
898         if (!(p->flags & SWP_USED))
899                 goto bad_device;
900         offset = swp_offset(entry);
901         if (offset >= p->max)
902                 goto bad_offset;
903         return p;
904
905 bad_offset:
906         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
907         goto out;
908 bad_device:
909         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
910         goto out;
911 bad_nofile:
912         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
913 out:
914         return NULL;
915 }
916
917 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
918 {
919         struct swap_info_struct *p;
920
921         p = __swap_info_get(entry);
922         if (!p)
923                 goto out;
924         if (!p->swap_map[swp_offset(entry)])
925                 goto bad_free;
926         return p;
927
928 bad_free:
929         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
930         goto out;
931 out:
932         return NULL;
933 }
934
935 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
936 {
937         struct swap_info_struct *p;
938
939         p = _swap_info_get(entry);
940         if (p)
941                 spin_lock(&p->lock);
942         return p;
943 }
944
945 static unsigned char swap_entry_free(struct swap_info_struct *p,
946                                      swp_entry_t entry, unsigned char usage,
947                                      bool swap_info_locked)
948 {
949         struct swap_cluster_info *ci;
950         unsigned long offset = swp_offset(entry);
951         unsigned char count;
952         unsigned char has_cache;
953         bool lock_swap_info = false;
954
955         if (!swap_info_locked) {
956                 count = p->swap_map[offset];
957                 if (!p->cluster_info || count == usage || count == SWAP_MAP_SHMEM) {
958 lock_swap_info:
959                         swap_info_locked = true;
960                         lock_swap_info = true;
961                         spin_lock(&p->lock);
962                 }
963         }
964
965         ci = lock_cluster(p, offset);
966
967         count = p->swap_map[offset];
968
969         if (!swap_info_locked && (count == usage || count == SWAP_MAP_SHMEM)) {
970                 unlock_cluster(ci);
971                 goto lock_swap_info;
972         }
973
974         has_cache = count & SWAP_HAS_CACHE;
975         count &= ~SWAP_HAS_CACHE;
976
977         if (usage == SWAP_HAS_CACHE) {
978                 VM_BUG_ON(!has_cache);
979                 has_cache = 0;
980         } else if (count == SWAP_MAP_SHMEM) {
981                 /*
982                  * Or we could insist on shmem.c using a special
983                  * swap_shmem_free() and free_shmem_swap_and_cache()...
984                  */
985                 count = 0;
986         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
987                 if (count == COUNT_CONTINUED) {
988                         if (swap_count_continued(p, offset, count))
989                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
990                         else
991                                 count = SWAP_MAP_MAX;
992                 } else
993                         count--;
994         }
995
996         usage = count | has_cache;
997         p->swap_map[offset] = usage;
998
999         unlock_cluster(ci);
1000
1001         /* free if no reference */
1002         if (!usage) {
1003                 VM_BUG_ON(!swap_info_locked);
1004                 mem_cgroup_uncharge_swap(entry);
1005                 ci = lock_cluster(p, offset);
1006                 dec_cluster_info_page(p, p->cluster_info, offset);
1007                 unlock_cluster(ci);
1008                 if (offset < p->lowest_bit)
1009                         p->lowest_bit = offset;
1010                 if (offset > p->highest_bit) {
1011                         bool was_full = !p->highest_bit;
1012                         p->highest_bit = offset;
1013                         if (was_full && (p->flags & SWP_WRITEOK)) {
1014                                 spin_lock(&swap_avail_lock);
1015                                 WARN_ON(!plist_node_empty(&p->avail_list));
1016                                 if (plist_node_empty(&p->avail_list))
1017                                         plist_add(&p->avail_list,
1018                                                   &swap_avail_head);
1019                                 spin_unlock(&swap_avail_lock);
1020                         }
1021                 }
1022                 atomic_long_inc(&nr_swap_pages);
1023                 p->inuse_pages--;
1024                 frontswap_invalidate_page(p->type, offset);
1025                 if (p->flags & SWP_BLKDEV) {
1026                         struct gendisk *disk = p->bdev->bd_disk;
1027                         if (disk->fops->swap_slot_free_notify)
1028                                 disk->fops->swap_slot_free_notify(p->bdev,
1029                                                                   offset);
1030                 }
1031         }
1032
1033         if (lock_swap_info)
1034                 spin_unlock(&p->lock);
1035
1036         return usage;
1037 }
1038
1039 /*
1040  * Caller has made sure that the swap device corresponding to entry
1041  * is still around or has not been recycled.
1042  */
1043 void swap_free(swp_entry_t entry)
1044 {
1045         struct swap_info_struct *p;
1046
1047         p = _swap_info_get(entry);
1048         if (p)
1049                 swap_entry_free(p, entry, 1, false);
1050 }
1051
1052 /*
1053  * Called after dropping swapcache to decrease refcnt to swap entries.
1054  */
1055 void swapcache_free(swp_entry_t entry)
1056 {
1057         struct swap_info_struct *p;
1058
1059         p = _swap_info_get(entry);
1060         if (p)
1061                 swap_entry_free(p, entry, SWAP_HAS_CACHE, false);
1062 }
1063
1064 /*
1065  * How many references to page are currently swapped out?
1066  * This does not give an exact answer when swap count is continued,
1067  * but does include the high COUNT_CONTINUED flag to allow for that.
1068  */
1069 int page_swapcount(struct page *page)
1070 {
1071         int count = 0;
1072         struct swap_info_struct *p;
1073         struct swap_cluster_info *ci;
1074         swp_entry_t entry;
1075         unsigned long offset;
1076
1077         entry.val = page_private(page);
1078         p = _swap_info_get(entry);
1079         if (p) {
1080                 offset = swp_offset(entry);
1081                 ci = lock_cluster_or_swap_info(p, offset);
1082                 count = swap_count(p->swap_map[offset]);
1083                 unlock_cluster_or_swap_info(p, ci);
1084         }
1085         return count;
1086 }
1087
1088 /*
1089  * How many references to @entry are currently swapped out?
1090  * This does not give an exact answer when swap count is continued,
1091  * but does include the high COUNT_CONTINUED flag to allow for that.
1092  */
1093 int __swp_swapcount(swp_entry_t entry)
1094 {
1095         int count = 0;
1096         pgoff_t offset;
1097         struct swap_info_struct *si;
1098         struct swap_cluster_info *ci;
1099
1100         si = __swap_info_get(entry);
1101         if (si) {
1102                 offset = swp_offset(entry);
1103                 ci = lock_cluster_or_swap_info(si, offset);
1104                 count = swap_count(si->swap_map[offset]);
1105                 unlock_cluster_or_swap_info(si, ci);
1106         }
1107         return count;
1108 }
1109
1110 /*
1111  * How many references to @entry are currently swapped out?
1112  * This considers COUNT_CONTINUED so it returns exact answer.
1113  */
1114 int swp_swapcount(swp_entry_t entry)
1115 {
1116         int count, tmp_count, n;
1117         struct swap_info_struct *p;
1118         struct swap_cluster_info *ci;
1119         struct page *page;
1120         pgoff_t offset;
1121         unsigned char *map;
1122
1123         p = _swap_info_get(entry);
1124         if (!p)
1125                 return 0;
1126
1127         offset = swp_offset(entry);
1128
1129         ci = lock_cluster_or_swap_info(p, offset);
1130
1131         count = swap_count(p->swap_map[offset]);
1132         if (!(count & COUNT_CONTINUED))
1133                 goto out;
1134
1135         count &= ~COUNT_CONTINUED;
1136         n = SWAP_MAP_MAX + 1;
1137
1138         page = vmalloc_to_page(p->swap_map + offset);
1139         offset &= ~PAGE_MASK;
1140         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1141
1142         do {
1143                 page = list_next_entry(page, lru);
1144                 map = kmap_atomic(page);
1145                 tmp_count = map[offset];
1146                 kunmap_atomic(map);
1147
1148                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1149                 n *= (SWAP_CONT_MAX + 1);
1150         } while (tmp_count & COUNT_CONTINUED);
1151 out:
1152         unlock_cluster_or_swap_info(p, ci);
1153         return count;
1154 }
1155
1156 /*
1157  * We can write to an anon page without COW if there are no other references
1158  * to it.  And as a side-effect, free up its swap: because the old content
1159  * on disk will never be read, and seeking back there to write new content
1160  * later would only waste time away from clustering.
1161  *
1162  * NOTE: total_mapcount should not be relied upon by the caller if
1163  * reuse_swap_page() returns false, but it may be always overwritten
1164  * (see the other implementation for CONFIG_SWAP=n).
1165  */
1166 bool reuse_swap_page(struct page *page, int *total_mapcount)
1167 {
1168         int count;
1169
1170         VM_BUG_ON_PAGE(!PageLocked(page), page);
1171         if (unlikely(PageKsm(page)))
1172                 return false;
1173         count = page_trans_huge_mapcount(page, total_mapcount);
1174         if (count <= 1 && PageSwapCache(page)) {
1175                 count += page_swapcount(page);
1176                 if (count != 1)
1177                         goto out;
1178                 if (!PageWriteback(page)) {
1179                         delete_from_swap_cache(page);
1180                         SetPageDirty(page);
1181                 } else {
1182                         swp_entry_t entry;
1183                         struct swap_info_struct *p;
1184
1185                         entry.val = page_private(page);
1186                         p = swap_info_get(entry);
1187                         if (p->flags & SWP_STABLE_WRITES) {
1188                                 spin_unlock(&p->lock);
1189                                 return false;
1190                         }
1191                         spin_unlock(&p->lock);
1192                 }
1193         }
1194 out:
1195         return count <= 1;
1196 }
1197
1198 /*
1199  * If swap is getting full, or if there are no more mappings of this page,
1200  * then try_to_free_swap is called to free its swap space.
1201  */
1202 int try_to_free_swap(struct page *page)
1203 {
1204         VM_BUG_ON_PAGE(!PageLocked(page), page);
1205
1206         if (!PageSwapCache(page))
1207                 return 0;
1208         if (PageWriteback(page))
1209                 return 0;
1210         if (page_swapcount(page))
1211                 return 0;
1212
1213         /*
1214          * Once hibernation has begun to create its image of memory,
1215          * there's a danger that one of the calls to try_to_free_swap()
1216          * - most probably a call from __try_to_reclaim_swap() while
1217          * hibernation is allocating its own swap pages for the image,
1218          * but conceivably even a call from memory reclaim - will free
1219          * the swap from a page which has already been recorded in the
1220          * image as a clean swapcache page, and then reuse its swap for
1221          * another page of the image.  On waking from hibernation, the
1222          * original page might be freed under memory pressure, then
1223          * later read back in from swap, now with the wrong data.
1224          *
1225          * Hibernation suspends storage while it is writing the image
1226          * to disk so check that here.
1227          */
1228         if (pm_suspended_storage())
1229                 return 0;
1230
1231         delete_from_swap_cache(page);
1232         SetPageDirty(page);
1233         return 1;
1234 }
1235
1236 /*
1237  * Free the swap entry like above, but also try to
1238  * free the page cache entry if it is the last user.
1239  */
1240 int free_swap_and_cache(swp_entry_t entry)
1241 {
1242         struct swap_info_struct *p;
1243         struct page *page = NULL;
1244
1245         if (non_swap_entry(entry))
1246                 return 1;
1247
1248         p = swap_info_get(entry);
1249         if (p) {
1250                 if (swap_entry_free(p, entry, 1, true) == SWAP_HAS_CACHE) {
1251                         page = find_get_page(swap_address_space(entry),
1252                                              swp_offset(entry));
1253                         if (page && !trylock_page(page)) {
1254                                 put_page(page);
1255                                 page = NULL;
1256                         }
1257                 }
1258                 spin_unlock(&p->lock);
1259         }
1260         if (page) {
1261                 /*
1262                  * Not mapped elsewhere, or swap space full? Free it!
1263                  * Also recheck PageSwapCache now page is locked (above).
1264                  */
1265                 if (PageSwapCache(page) && !PageWriteback(page) &&
1266                     (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1267                         delete_from_swap_cache(page);
1268                         SetPageDirty(page);
1269                 }
1270                 unlock_page(page);
1271                 put_page(page);
1272         }
1273         return p != NULL;
1274 }
1275
1276 #ifdef CONFIG_HIBERNATION
1277 /*
1278  * Find the swap type that corresponds to given device (if any).
1279  *
1280  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1281  * from 0, in which the swap header is expected to be located.
1282  *
1283  * This is needed for the suspend to disk (aka swsusp).
1284  */
1285 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1286 {
1287         struct block_device *bdev = NULL;
1288         int type;
1289
1290         if (device)
1291                 bdev = bdget(device);
1292
1293         spin_lock(&swap_lock);
1294         for (type = 0; type < nr_swapfiles; type++) {
1295                 struct swap_info_struct *sis = swap_info[type];
1296
1297                 if (!(sis->flags & SWP_WRITEOK))
1298                         continue;
1299
1300                 if (!bdev) {
1301                         if (bdev_p)
1302                                 *bdev_p = bdgrab(sis->bdev);
1303
1304                         spin_unlock(&swap_lock);
1305                         return type;
1306                 }
1307                 if (bdev == sis->bdev) {
1308                         struct swap_extent *se = &sis->first_swap_extent;
1309
1310                         if (se->start_block == offset) {
1311                                 if (bdev_p)
1312                                         *bdev_p = bdgrab(sis->bdev);
1313
1314                                 spin_unlock(&swap_lock);
1315                                 bdput(bdev);
1316                                 return type;
1317                         }
1318                 }
1319         }
1320         spin_unlock(&swap_lock);
1321         if (bdev)
1322                 bdput(bdev);
1323
1324         return -ENODEV;
1325 }
1326
1327 /*
1328  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1329  * corresponding to given index in swap_info (swap type).
1330  */
1331 sector_t swapdev_block(int type, pgoff_t offset)
1332 {
1333         struct block_device *bdev;
1334
1335         if ((unsigned int)type >= nr_swapfiles)
1336                 return 0;
1337         if (!(swap_info[type]->flags & SWP_WRITEOK))
1338                 return 0;
1339         return map_swap_entry(swp_entry(type, offset), &bdev);
1340 }
1341
1342 /*
1343  * Return either the total number of swap pages of given type, or the number
1344  * of free pages of that type (depending on @free)
1345  *
1346  * This is needed for software suspend
1347  */
1348 unsigned int count_swap_pages(int type, int free)
1349 {
1350         unsigned int n = 0;
1351
1352         spin_lock(&swap_lock);
1353         if ((unsigned int)type < nr_swapfiles) {
1354                 struct swap_info_struct *sis = swap_info[type];
1355
1356                 spin_lock(&sis->lock);
1357                 if (sis->flags & SWP_WRITEOK) {
1358                         n = sis->pages;
1359                         if (free)
1360                                 n -= sis->inuse_pages;
1361                 }
1362                 spin_unlock(&sis->lock);
1363         }
1364         spin_unlock(&swap_lock);
1365         return n;
1366 }
1367 #endif /* CONFIG_HIBERNATION */
1368
1369 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1370 {
1371         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1372 }
1373
1374 /*
1375  * No need to decide whether this PTE shares the swap entry with others,
1376  * just let do_wp_page work it out if a write is requested later - to
1377  * force COW, vm_page_prot omits write permission from any private vma.
1378  */
1379 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1380                 unsigned long addr, swp_entry_t entry, struct page *page)
1381 {
1382         struct page *swapcache;
1383         struct mem_cgroup *memcg;
1384         spinlock_t *ptl;
1385         pte_t *pte;
1386         int ret = 1;
1387
1388         swapcache = page;
1389         page = ksm_might_need_to_copy(page, vma, addr);
1390         if (unlikely(!page))
1391                 return -ENOMEM;
1392
1393         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1394                                 &memcg, false)) {
1395                 ret = -ENOMEM;
1396                 goto out_nolock;
1397         }
1398
1399         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1400         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1401                 mem_cgroup_cancel_charge(page, memcg, false);
1402                 ret = 0;
1403                 goto out;
1404         }
1405
1406         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1407         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1408         get_page(page);
1409         set_pte_at(vma->vm_mm, addr, pte,
1410                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1411         if (page == swapcache) {
1412                 page_add_anon_rmap(page, vma, addr, false);
1413                 mem_cgroup_commit_charge(page, memcg, true, false);
1414         } else { /* ksm created a completely new copy */
1415                 page_add_new_anon_rmap(page, vma, addr, false);
1416                 mem_cgroup_commit_charge(page, memcg, false, false);
1417                 lru_cache_add_active_or_unevictable(page, vma);
1418         }
1419         swap_free(entry);
1420         /*
1421          * Move the page to the active list so it is not
1422          * immediately swapped out again after swapon.
1423          */
1424         activate_page(page);
1425 out:
1426         pte_unmap_unlock(pte, ptl);
1427 out_nolock:
1428         if (page != swapcache) {
1429                 unlock_page(page);
1430                 put_page(page);
1431         }
1432         return ret;
1433 }
1434
1435 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1436                                 unsigned long addr, unsigned long end,
1437                                 swp_entry_t entry, struct page *page)
1438 {
1439         pte_t swp_pte = swp_entry_to_pte(entry);
1440         pte_t *pte;
1441         int ret = 0;
1442
1443         /*
1444          * We don't actually need pte lock while scanning for swp_pte: since
1445          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1446          * page table while we're scanning; though it could get zapped, and on
1447          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1448          * of unmatched parts which look like swp_pte, so unuse_pte must
1449          * recheck under pte lock.  Scanning without pte lock lets it be
1450          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1451          */
1452         pte = pte_offset_map(pmd, addr);
1453         do {
1454                 /*
1455                  * swapoff spends a _lot_ of time in this loop!
1456                  * Test inline before going to call unuse_pte.
1457                  */
1458                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1459                         pte_unmap(pte);
1460                         ret = unuse_pte(vma, pmd, addr, entry, page);
1461                         if (ret)
1462                                 goto out;
1463                         pte = pte_offset_map(pmd, addr);
1464                 }
1465         } while (pte++, addr += PAGE_SIZE, addr != end);
1466         pte_unmap(pte - 1);
1467 out:
1468         return ret;
1469 }
1470
1471 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1472                                 unsigned long addr, unsigned long end,
1473                                 swp_entry_t entry, struct page *page)
1474 {
1475         pmd_t *pmd;
1476         unsigned long next;
1477         int ret;
1478
1479         pmd = pmd_offset(pud, addr);
1480         do {
1481                 cond_resched();
1482                 next = pmd_addr_end(addr, end);
1483                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1484                         continue;
1485                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1486                 if (ret)
1487                         return ret;
1488         } while (pmd++, addr = next, addr != end);
1489         return 0;
1490 }
1491
1492 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1493                                 unsigned long addr, unsigned long end,
1494                                 swp_entry_t entry, struct page *page)
1495 {
1496         pud_t *pud;
1497         unsigned long next;
1498         int ret;
1499
1500         pud = pud_offset(pgd, addr);
1501         do {
1502                 next = pud_addr_end(addr, end);
1503                 if (pud_none_or_clear_bad(pud))
1504                         continue;
1505                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1506                 if (ret)
1507                         return ret;
1508         } while (pud++, addr = next, addr != end);
1509         return 0;
1510 }
1511
1512 static int unuse_vma(struct vm_area_struct *vma,
1513                                 swp_entry_t entry, struct page *page)
1514 {
1515         pgd_t *pgd;
1516         unsigned long addr, end, next;
1517         int ret;
1518
1519         if (page_anon_vma(page)) {
1520                 addr = page_address_in_vma(page, vma);
1521                 if (addr == -EFAULT)
1522                         return 0;
1523                 else
1524                         end = addr + PAGE_SIZE;
1525         } else {
1526                 addr = vma->vm_start;
1527                 end = vma->vm_end;
1528         }
1529
1530         pgd = pgd_offset(vma->vm_mm, addr);
1531         do {
1532                 next = pgd_addr_end(addr, end);
1533                 if (pgd_none_or_clear_bad(pgd))
1534                         continue;
1535                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1536                 if (ret)
1537                         return ret;
1538         } while (pgd++, addr = next, addr != end);
1539         return 0;
1540 }
1541
1542 static int unuse_mm(struct mm_struct *mm,
1543                                 swp_entry_t entry, struct page *page)
1544 {
1545         struct vm_area_struct *vma;
1546         int ret = 0;
1547
1548         if (!down_read_trylock(&mm->mmap_sem)) {
1549                 /*
1550                  * Activate page so shrink_inactive_list is unlikely to unmap
1551                  * its ptes while lock is dropped, so swapoff can make progress.
1552                  */
1553                 activate_page(page);
1554                 unlock_page(page);
1555                 down_read(&mm->mmap_sem);
1556                 lock_page(page);
1557         }
1558         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1559                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1560                         break;
1561                 cond_resched();
1562         }
1563         up_read(&mm->mmap_sem);
1564         return (ret < 0)? ret: 0;
1565 }
1566
1567 /*
1568  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1569  * from current position to next entry still in use.
1570  * Recycle to start on reaching the end, returning 0 when empty.
1571  */
1572 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1573                                         unsigned int prev, bool frontswap)
1574 {
1575         unsigned int max = si->max;
1576         unsigned int i = prev;
1577         unsigned char count;
1578
1579         /*
1580          * No need for swap_lock here: we're just looking
1581          * for whether an entry is in use, not modifying it; false
1582          * hits are okay, and sys_swapoff() has already prevented new
1583          * allocations from this area (while holding swap_lock).
1584          */
1585         for (;;) {
1586                 if (++i >= max) {
1587                         if (!prev) {
1588                                 i = 0;
1589                                 break;
1590                         }
1591                         /*
1592                          * No entries in use at top of swap_map,
1593                          * loop back to start and recheck there.
1594                          */
1595                         max = prev + 1;
1596                         prev = 0;
1597                         i = 1;
1598                 }
1599                 count = READ_ONCE(si->swap_map[i]);
1600                 if (count && swap_count(count) != SWAP_MAP_BAD)
1601                         if (!frontswap || frontswap_test(si, i))
1602                                 break;
1603                 if ((i % LATENCY_LIMIT) == 0)
1604                         cond_resched();
1605         }
1606         return i;
1607 }
1608
1609 /*
1610  * We completely avoid races by reading each swap page in advance,
1611  * and then search for the process using it.  All the necessary
1612  * page table adjustments can then be made atomically.
1613  *
1614  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1615  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1616  */
1617 int try_to_unuse(unsigned int type, bool frontswap,
1618                  unsigned long pages_to_unuse)
1619 {
1620         struct swap_info_struct *si = swap_info[type];
1621         struct mm_struct *start_mm;
1622         volatile unsigned char *swap_map; /* swap_map is accessed without
1623                                            * locking. Mark it as volatile
1624                                            * to prevent compiler doing
1625                                            * something odd.
1626                                            */
1627         unsigned char swcount;
1628         struct page *page;
1629         swp_entry_t entry;
1630         unsigned int i = 0;
1631         int retval = 0;
1632
1633         /*
1634          * When searching mms for an entry, a good strategy is to
1635          * start at the first mm we freed the previous entry from
1636          * (though actually we don't notice whether we or coincidence
1637          * freed the entry).  Initialize this start_mm with a hold.
1638          *
1639          * A simpler strategy would be to start at the last mm we
1640          * freed the previous entry from; but that would take less
1641          * advantage of mmlist ordering, which clusters forked mms
1642          * together, child after parent.  If we race with dup_mmap(), we
1643          * prefer to resolve parent before child, lest we miss entries
1644          * duplicated after we scanned child: using last mm would invert
1645          * that.
1646          */
1647         start_mm = &init_mm;
1648         atomic_inc(&init_mm.mm_users);
1649
1650         /*
1651          * Keep on scanning until all entries have gone.  Usually,
1652          * one pass through swap_map is enough, but not necessarily:
1653          * there are races when an instance of an entry might be missed.
1654          */
1655         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1656                 if (signal_pending(current)) {
1657                         retval = -EINTR;
1658                         break;
1659                 }
1660
1661                 /*
1662                  * Get a page for the entry, using the existing swap
1663                  * cache page if there is one.  Otherwise, get a clean
1664                  * page and read the swap into it.
1665                  */
1666                 swap_map = &si->swap_map[i];
1667                 entry = swp_entry(type, i);
1668                 page = read_swap_cache_async(entry,
1669                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1670                 if (!page) {
1671                         /*
1672                          * Either swap_duplicate() failed because entry
1673                          * has been freed independently, and will not be
1674                          * reused since sys_swapoff() already disabled
1675                          * allocation from here, or alloc_page() failed.
1676                          */
1677                         swcount = *swap_map;
1678                         /*
1679                          * We don't hold lock here, so the swap entry could be
1680                          * SWAP_MAP_BAD (when the cluster is discarding).
1681                          * Instead of fail out, We can just skip the swap
1682                          * entry because swapoff will wait for discarding
1683                          * finish anyway.
1684                          */
1685                         if (!swcount || swcount == SWAP_MAP_BAD)
1686                                 continue;
1687                         retval = -ENOMEM;
1688                         break;
1689                 }
1690
1691                 /*
1692                  * Don't hold on to start_mm if it looks like exiting.
1693                  */
1694                 if (atomic_read(&start_mm->mm_users) == 1) {
1695                         mmput(start_mm);
1696                         start_mm = &init_mm;
1697                         atomic_inc(&init_mm.mm_users);
1698                 }
1699
1700                 /*
1701                  * Wait for and lock page.  When do_swap_page races with
1702                  * try_to_unuse, do_swap_page can handle the fault much
1703                  * faster than try_to_unuse can locate the entry.  This
1704                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1705                  * defer to do_swap_page in such a case - in some tests,
1706                  * do_swap_page and try_to_unuse repeatedly compete.
1707                  */
1708                 wait_on_page_locked(page);
1709                 wait_on_page_writeback(page);
1710                 lock_page(page);
1711                 wait_on_page_writeback(page);
1712
1713                 /*
1714                  * Remove all references to entry.
1715                  */
1716                 swcount = *swap_map;
1717                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1718                         retval = shmem_unuse(entry, page);
1719                         /* page has already been unlocked and released */
1720                         if (retval < 0)
1721                                 break;
1722                         continue;
1723                 }
1724                 if (swap_count(swcount) && start_mm != &init_mm)
1725                         retval = unuse_mm(start_mm, entry, page);
1726
1727                 if (swap_count(*swap_map)) {
1728                         int set_start_mm = (*swap_map >= swcount);
1729                         struct list_head *p = &start_mm->mmlist;
1730                         struct mm_struct *new_start_mm = start_mm;
1731                         struct mm_struct *prev_mm = start_mm;
1732                         struct mm_struct *mm;
1733
1734                         atomic_inc(&new_start_mm->mm_users);
1735                         atomic_inc(&prev_mm->mm_users);
1736                         spin_lock(&mmlist_lock);
1737                         while (swap_count(*swap_map) && !retval &&
1738                                         (p = p->next) != &start_mm->mmlist) {
1739                                 mm = list_entry(p, struct mm_struct, mmlist);
1740                                 if (!atomic_inc_not_zero(&mm->mm_users))
1741                                         continue;
1742                                 spin_unlock(&mmlist_lock);
1743                                 mmput(prev_mm);
1744                                 prev_mm = mm;
1745
1746                                 cond_resched();
1747
1748                                 swcount = *swap_map;
1749                                 if (!swap_count(swcount)) /* any usage ? */
1750                                         ;
1751                                 else if (mm == &init_mm)
1752                                         set_start_mm = 1;
1753                                 else
1754                                         retval = unuse_mm(mm, entry, page);
1755
1756                                 if (set_start_mm && *swap_map < swcount) {
1757                                         mmput(new_start_mm);
1758                                         atomic_inc(&mm->mm_users);
1759                                         new_start_mm = mm;
1760                                         set_start_mm = 0;
1761                                 }
1762                                 spin_lock(&mmlist_lock);
1763                         }
1764                         spin_unlock(&mmlist_lock);
1765                         mmput(prev_mm);
1766                         mmput(start_mm);
1767                         start_mm = new_start_mm;
1768                 }
1769                 if (retval) {
1770                         unlock_page(page);
1771                         put_page(page);
1772                         break;
1773                 }
1774
1775                 /*
1776                  * If a reference remains (rare), we would like to leave
1777                  * the page in the swap cache; but try_to_unmap could
1778                  * then re-duplicate the entry once we drop page lock,
1779                  * so we might loop indefinitely; also, that page could
1780                  * not be swapped out to other storage meanwhile.  So:
1781                  * delete from cache even if there's another reference,
1782                  * after ensuring that the data has been saved to disk -
1783                  * since if the reference remains (rarer), it will be
1784                  * read from disk into another page.  Splitting into two
1785                  * pages would be incorrect if swap supported "shared
1786                  * private" pages, but they are handled by tmpfs files.
1787                  *
1788                  * Given how unuse_vma() targets one particular offset
1789                  * in an anon_vma, once the anon_vma has been determined,
1790                  * this splitting happens to be just what is needed to
1791                  * handle where KSM pages have been swapped out: re-reading
1792                  * is unnecessarily slow, but we can fix that later on.
1793                  */
1794                 if (swap_count(*swap_map) &&
1795                      PageDirty(page) && PageSwapCache(page)) {
1796                         struct writeback_control wbc = {
1797                                 .sync_mode = WB_SYNC_NONE,
1798                         };
1799
1800                         swap_writepage(page, &wbc);
1801                         lock_page(page);
1802                         wait_on_page_writeback(page);
1803                 }
1804
1805                 /*
1806                  * It is conceivable that a racing task removed this page from
1807                  * swap cache just before we acquired the page lock at the top,
1808                  * or while we dropped it in unuse_mm().  The page might even
1809                  * be back in swap cache on another swap area: that we must not
1810                  * delete, since it may not have been written out to swap yet.
1811                  */
1812                 if (PageSwapCache(page) &&
1813                     likely(page_private(page) == entry.val))
1814                         delete_from_swap_cache(page);
1815
1816                 /*
1817                  * So we could skip searching mms once swap count went
1818                  * to 1, we did not mark any present ptes as dirty: must
1819                  * mark page dirty so shrink_page_list will preserve it.
1820                  */
1821                 SetPageDirty(page);
1822                 unlock_page(page);
1823                 put_page(page);
1824
1825                 /*
1826                  * Make sure that we aren't completely killing
1827                  * interactive performance.
1828                  */
1829                 cond_resched();
1830                 if (frontswap && pages_to_unuse > 0) {
1831                         if (!--pages_to_unuse)
1832                                 break;
1833                 }
1834         }
1835
1836         mmput(start_mm);
1837         return retval;
1838 }
1839
1840 /*
1841  * After a successful try_to_unuse, if no swap is now in use, we know
1842  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1843  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1844  * added to the mmlist just after page_duplicate - before would be racy.
1845  */
1846 static void drain_mmlist(void)
1847 {
1848         struct list_head *p, *next;
1849         unsigned int type;
1850
1851         for (type = 0; type < nr_swapfiles; type++)
1852                 if (swap_info[type]->inuse_pages)
1853                         return;
1854         spin_lock(&mmlist_lock);
1855         list_for_each_safe(p, next, &init_mm.mmlist)
1856                 list_del_init(p);
1857         spin_unlock(&mmlist_lock);
1858 }
1859
1860 /*
1861  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1862  * corresponds to page offset for the specified swap entry.
1863  * Note that the type of this function is sector_t, but it returns page offset
1864  * into the bdev, not sector offset.
1865  */
1866 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1867 {
1868         struct swap_info_struct *sis;
1869         struct swap_extent *start_se;
1870         struct swap_extent *se;
1871         pgoff_t offset;
1872
1873         sis = swap_info[swp_type(entry)];
1874         *bdev = sis->bdev;
1875
1876         offset = swp_offset(entry);
1877         start_se = sis->curr_swap_extent;
1878         se = start_se;
1879
1880         for ( ; ; ) {
1881                 if (se->start_page <= offset &&
1882                                 offset < (se->start_page + se->nr_pages)) {
1883                         return se->start_block + (offset - se->start_page);
1884                 }
1885                 se = list_next_entry(se, list);
1886                 sis->curr_swap_extent = se;
1887                 BUG_ON(se == start_se);         /* It *must* be present */
1888         }
1889 }
1890
1891 /*
1892  * Returns the page offset into bdev for the specified page's swap entry.
1893  */
1894 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1895 {
1896         swp_entry_t entry;
1897         entry.val = page_private(page);
1898         return map_swap_entry(entry, bdev);
1899 }
1900
1901 /*
1902  * Free all of a swapdev's extent information
1903  */
1904 static void destroy_swap_extents(struct swap_info_struct *sis)
1905 {
1906         while (!list_empty(&sis->first_swap_extent.list)) {
1907                 struct swap_extent *se;
1908
1909                 se = list_first_entry(&sis->first_swap_extent.list,
1910                                 struct swap_extent, list);
1911                 list_del(&se->list);
1912                 kfree(se);
1913         }
1914
1915         if (sis->flags & SWP_FILE) {
1916                 struct file *swap_file = sis->swap_file;
1917                 struct address_space *mapping = swap_file->f_mapping;
1918
1919                 sis->flags &= ~SWP_FILE;
1920                 mapping->a_ops->swap_deactivate(swap_file);
1921         }
1922 }
1923
1924 /*
1925  * Add a block range (and the corresponding page range) into this swapdev's
1926  * extent list.  The extent list is kept sorted in page order.
1927  *
1928  * This function rather assumes that it is called in ascending page order.
1929  */
1930 int
1931 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1932                 unsigned long nr_pages, sector_t start_block)
1933 {
1934         struct swap_extent *se;
1935         struct swap_extent *new_se;
1936         struct list_head *lh;
1937
1938         if (start_page == 0) {
1939                 se = &sis->first_swap_extent;
1940                 sis->curr_swap_extent = se;
1941                 se->start_page = 0;
1942                 se->nr_pages = nr_pages;
1943                 se->start_block = start_block;
1944                 return 1;
1945         } else {
1946                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1947                 se = list_entry(lh, struct swap_extent, list);
1948                 BUG_ON(se->start_page + se->nr_pages != start_page);
1949                 if (se->start_block + se->nr_pages == start_block) {
1950                         /* Merge it */
1951                         se->nr_pages += nr_pages;
1952                         return 0;
1953                 }
1954         }
1955
1956         /*
1957          * No merge.  Insert a new extent, preserving ordering.
1958          */
1959         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1960         if (new_se == NULL)
1961                 return -ENOMEM;
1962         new_se->start_page = start_page;
1963         new_se->nr_pages = nr_pages;
1964         new_se->start_block = start_block;
1965
1966         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1967         return 1;
1968 }
1969
1970 /*
1971  * A `swap extent' is a simple thing which maps a contiguous range of pages
1972  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1973  * is built at swapon time and is then used at swap_writepage/swap_readpage
1974  * time for locating where on disk a page belongs.
1975  *
1976  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1977  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1978  * swap files identically.
1979  *
1980  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1981  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1982  * swapfiles are handled *identically* after swapon time.
1983  *
1984  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1985  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1986  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1987  * requirements, they are simply tossed out - we will never use those blocks
1988  * for swapping.
1989  *
1990  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1991  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1992  * which will scribble on the fs.
1993  *
1994  * The amount of disk space which a single swap extent represents varies.
1995  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1996  * extents in the list.  To avoid much list walking, we cache the previous
1997  * search location in `curr_swap_extent', and start new searches from there.
1998  * This is extremely effective.  The average number of iterations in
1999  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2000  */
2001 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2002 {
2003         struct file *swap_file = sis->swap_file;
2004         struct address_space *mapping = swap_file->f_mapping;
2005         struct inode *inode = mapping->host;
2006         int ret;
2007
2008         if (S_ISBLK(inode->i_mode)) {
2009                 ret = add_swap_extent(sis, 0, sis->max, 0);
2010                 *span = sis->pages;
2011                 return ret;
2012         }
2013
2014         if (mapping->a_ops->swap_activate) {
2015                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2016                 if (!ret) {
2017                         sis->flags |= SWP_FILE;
2018                         ret = add_swap_extent(sis, 0, sis->max, 0);
2019                         *span = sis->pages;
2020                 }
2021                 return ret;
2022         }
2023
2024         return generic_swapfile_activate(sis, swap_file, span);
2025 }
2026
2027 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2028                                 unsigned char *swap_map,
2029                                 struct swap_cluster_info *cluster_info)
2030 {
2031         if (prio >= 0)
2032                 p->prio = prio;
2033         else
2034                 p->prio = --least_priority;
2035         /*
2036          * the plist prio is negated because plist ordering is
2037          * low-to-high, while swap ordering is high-to-low
2038          */
2039         p->list.prio = -p->prio;
2040         p->avail_list.prio = -p->prio;
2041         p->swap_map = swap_map;
2042         p->cluster_info = cluster_info;
2043         p->flags |= SWP_WRITEOK;
2044         atomic_long_add(p->pages, &nr_swap_pages);
2045         total_swap_pages += p->pages;
2046
2047         assert_spin_locked(&swap_lock);
2048         /*
2049          * both lists are plists, and thus priority ordered.
2050          * swap_active_head needs to be priority ordered for swapoff(),
2051          * which on removal of any swap_info_struct with an auto-assigned
2052          * (i.e. negative) priority increments the auto-assigned priority
2053          * of any lower-priority swap_info_structs.
2054          * swap_avail_head needs to be priority ordered for get_swap_page(),
2055          * which allocates swap pages from the highest available priority
2056          * swap_info_struct.
2057          */
2058         plist_add(&p->list, &swap_active_head);
2059         spin_lock(&swap_avail_lock);
2060         plist_add(&p->avail_list, &swap_avail_head);
2061         spin_unlock(&swap_avail_lock);
2062 }
2063
2064 static void enable_swap_info(struct swap_info_struct *p, int prio,
2065                                 unsigned char *swap_map,
2066                                 struct swap_cluster_info *cluster_info,
2067                                 unsigned long *frontswap_map)
2068 {
2069         frontswap_init(p->type, frontswap_map);
2070         spin_lock(&swap_lock);
2071         spin_lock(&p->lock);
2072          _enable_swap_info(p, prio, swap_map, cluster_info);
2073         spin_unlock(&p->lock);
2074         spin_unlock(&swap_lock);
2075 }
2076
2077 static void reinsert_swap_info(struct swap_info_struct *p)
2078 {
2079         spin_lock(&swap_lock);
2080         spin_lock(&p->lock);
2081         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2082         spin_unlock(&p->lock);
2083         spin_unlock(&swap_lock);
2084 }
2085
2086 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2087 {
2088         struct swap_info_struct *p = NULL;
2089         unsigned char *swap_map;
2090         struct swap_cluster_info *cluster_info;
2091         unsigned long *frontswap_map;
2092         struct file *swap_file, *victim;
2093         struct address_space *mapping;
2094         struct inode *inode;
2095         struct filename *pathname;
2096         int err, found = 0;
2097         unsigned int old_block_size;
2098
2099         if (!capable(CAP_SYS_ADMIN))
2100                 return -EPERM;
2101
2102         BUG_ON(!current->mm);
2103
2104         pathname = getname(specialfile);
2105         if (IS_ERR(pathname))
2106                 return PTR_ERR(pathname);
2107
2108         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2109         err = PTR_ERR(victim);
2110         if (IS_ERR(victim))
2111                 goto out;
2112
2113         mapping = victim->f_mapping;
2114         spin_lock(&swap_lock);
2115         plist_for_each_entry(p, &swap_active_head, list) {
2116                 if (p->flags & SWP_WRITEOK) {
2117                         if (p->swap_file->f_mapping == mapping) {
2118                                 found = 1;
2119                                 break;
2120                         }
2121                 }
2122         }
2123         if (!found) {
2124                 err = -EINVAL;
2125                 spin_unlock(&swap_lock);
2126                 goto out_dput;
2127         }
2128         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2129                 vm_unacct_memory(p->pages);
2130         else {
2131                 err = -ENOMEM;
2132                 spin_unlock(&swap_lock);
2133                 goto out_dput;
2134         }
2135         spin_lock(&swap_avail_lock);
2136         plist_del(&p->avail_list, &swap_avail_head);
2137         spin_unlock(&swap_avail_lock);
2138         spin_lock(&p->lock);
2139         if (p->prio < 0) {
2140                 struct swap_info_struct *si = p;
2141
2142                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2143                         si->prio++;
2144                         si->list.prio--;
2145                         si->avail_list.prio--;
2146                 }
2147                 least_priority++;
2148         }
2149         plist_del(&p->list, &swap_active_head);
2150         atomic_long_sub(p->pages, &nr_swap_pages);
2151         total_swap_pages -= p->pages;
2152         p->flags &= ~SWP_WRITEOK;
2153         spin_unlock(&p->lock);
2154         spin_unlock(&swap_lock);
2155
2156         set_current_oom_origin();
2157         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2158         clear_current_oom_origin();
2159
2160         if (err) {
2161                 /* re-insert swap space back into swap_list */
2162                 reinsert_swap_info(p);
2163                 goto out_dput;
2164         }
2165
2166         flush_work(&p->discard_work);
2167
2168         destroy_swap_extents(p);
2169         if (p->flags & SWP_CONTINUED)
2170                 free_swap_count_continuations(p);
2171
2172         mutex_lock(&swapon_mutex);
2173         spin_lock(&swap_lock);
2174         spin_lock(&p->lock);
2175         drain_mmlist();
2176
2177         /* wait for anyone still in scan_swap_map */
2178         p->highest_bit = 0;             /* cuts scans short */
2179         while (p->flags >= SWP_SCANNING) {
2180                 spin_unlock(&p->lock);
2181                 spin_unlock(&swap_lock);
2182                 schedule_timeout_uninterruptible(1);
2183                 spin_lock(&swap_lock);
2184                 spin_lock(&p->lock);
2185         }
2186
2187         swap_file = p->swap_file;
2188         old_block_size = p->old_block_size;
2189         p->swap_file = NULL;
2190         p->max = 0;
2191         swap_map = p->swap_map;
2192         p->swap_map = NULL;
2193         cluster_info = p->cluster_info;
2194         p->cluster_info = NULL;
2195         frontswap_map = frontswap_map_get(p);
2196         spin_unlock(&p->lock);
2197         spin_unlock(&swap_lock);
2198         frontswap_invalidate_area(p->type);
2199         frontswap_map_set(p, NULL);
2200         mutex_unlock(&swapon_mutex);
2201         free_percpu(p->percpu_cluster);
2202         p->percpu_cluster = NULL;
2203         vfree(swap_map);
2204         vfree(cluster_info);
2205         vfree(frontswap_map);
2206         /* Destroy swap account information */
2207         swap_cgroup_swapoff(p->type);
2208         exit_swap_address_space(p->type);
2209
2210         inode = mapping->host;
2211         if (S_ISBLK(inode->i_mode)) {
2212                 struct block_device *bdev = I_BDEV(inode);
2213                 set_blocksize(bdev, old_block_size);
2214                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2215         } else {
2216                 inode_lock(inode);
2217                 inode->i_flags &= ~S_SWAPFILE;
2218                 inode_unlock(inode);
2219         }
2220         filp_close(swap_file, NULL);
2221
2222         /*
2223          * Clear the SWP_USED flag after all resources are freed so that swapon
2224          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2225          * not hold p->lock after we cleared its SWP_WRITEOK.
2226          */
2227         spin_lock(&swap_lock);
2228         p->flags = 0;
2229         spin_unlock(&swap_lock);
2230
2231         err = 0;
2232         atomic_inc(&proc_poll_event);
2233         wake_up_interruptible(&proc_poll_wait);
2234
2235 out_dput:
2236         filp_close(victim, NULL);
2237 out:
2238         putname(pathname);
2239         return err;
2240 }
2241
2242 #ifdef CONFIG_PROC_FS
2243 static unsigned swaps_poll(struct file *file, poll_table *wait)
2244 {
2245         struct seq_file *seq = file->private_data;
2246
2247         poll_wait(file, &proc_poll_wait, wait);
2248
2249         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2250                 seq->poll_event = atomic_read(&proc_poll_event);
2251                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2252         }
2253
2254         return POLLIN | POLLRDNORM;
2255 }
2256
2257 /* iterator */
2258 static void *swap_start(struct seq_file *swap, loff_t *pos)
2259 {
2260         struct swap_info_struct *si;
2261         int type;
2262         loff_t l = *pos;
2263
2264         mutex_lock(&swapon_mutex);
2265
2266         if (!l)
2267                 return SEQ_START_TOKEN;
2268
2269         for (type = 0; type < nr_swapfiles; type++) {
2270                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2271                 si = swap_info[type];
2272                 if (!(si->flags & SWP_USED) || !si->swap_map)
2273                         continue;
2274                 if (!--l)
2275                         return si;
2276         }
2277
2278         return NULL;
2279 }
2280
2281 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2282 {
2283         struct swap_info_struct *si = v;
2284         int type;
2285
2286         if (v == SEQ_START_TOKEN)
2287                 type = 0;
2288         else
2289                 type = si->type + 1;
2290
2291         for (; type < nr_swapfiles; type++) {
2292                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2293                 si = swap_info[type];
2294                 if (!(si->flags & SWP_USED) || !si->swap_map)
2295                         continue;
2296                 ++*pos;
2297                 return si;
2298         }
2299
2300         return NULL;
2301 }
2302
2303 static void swap_stop(struct seq_file *swap, void *v)
2304 {
2305         mutex_unlock(&swapon_mutex);
2306 }
2307
2308 static int swap_show(struct seq_file *swap, void *v)
2309 {
2310         struct swap_info_struct *si = v;
2311         struct file *file;
2312         int len;
2313
2314         if (si == SEQ_START_TOKEN) {
2315                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2316                 return 0;
2317         }
2318
2319         file = si->swap_file;
2320         len = seq_file_path(swap, file, " \t\n\\");
2321         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2322                         len < 40 ? 40 - len : 1, " ",
2323                         S_ISBLK(file_inode(file)->i_mode) ?
2324                                 "partition" : "file\t",
2325                         si->pages << (PAGE_SHIFT - 10),
2326                         si->inuse_pages << (PAGE_SHIFT - 10),
2327                         si->prio);
2328         return 0;
2329 }
2330
2331 static const struct seq_operations swaps_op = {
2332         .start =        swap_start,
2333         .next =         swap_next,
2334         .stop =         swap_stop,
2335         .show =         swap_show
2336 };
2337
2338 static int swaps_open(struct inode *inode, struct file *file)
2339 {
2340         struct seq_file *seq;
2341         int ret;
2342
2343         ret = seq_open(file, &swaps_op);
2344         if (ret)
2345                 return ret;
2346
2347         seq = file->private_data;
2348         seq->poll_event = atomic_read(&proc_poll_event);
2349         return 0;
2350 }
2351
2352 static const struct file_operations proc_swaps_operations = {
2353         .open           = swaps_open,
2354         .read           = seq_read,
2355         .llseek         = seq_lseek,
2356         .release        = seq_release,
2357         .poll           = swaps_poll,
2358 };
2359
2360 static int __init procswaps_init(void)
2361 {
2362         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2363         return 0;
2364 }
2365 __initcall(procswaps_init);
2366 #endif /* CONFIG_PROC_FS */
2367
2368 #ifdef MAX_SWAPFILES_CHECK
2369 static int __init max_swapfiles_check(void)
2370 {
2371         MAX_SWAPFILES_CHECK();
2372         return 0;
2373 }
2374 late_initcall(max_swapfiles_check);
2375 #endif
2376
2377 static struct swap_info_struct *alloc_swap_info(void)
2378 {
2379         struct swap_info_struct *p;
2380         unsigned int type;
2381
2382         p = kzalloc(sizeof(*p), GFP_KERNEL);
2383         if (!p)
2384                 return ERR_PTR(-ENOMEM);
2385
2386         spin_lock(&swap_lock);
2387         for (type = 0; type < nr_swapfiles; type++) {
2388                 if (!(swap_info[type]->flags & SWP_USED))
2389                         break;
2390         }
2391         if (type >= MAX_SWAPFILES) {
2392                 spin_unlock(&swap_lock);
2393                 kfree(p);
2394                 return ERR_PTR(-EPERM);
2395         }
2396         if (type >= nr_swapfiles) {
2397                 p->type = type;
2398                 swap_info[type] = p;
2399                 /*
2400                  * Write swap_info[type] before nr_swapfiles, in case a
2401                  * racing procfs swap_start() or swap_next() is reading them.
2402                  * (We never shrink nr_swapfiles, we never free this entry.)
2403                  */
2404                 smp_wmb();
2405                 nr_swapfiles++;
2406         } else {
2407                 kfree(p);
2408                 p = swap_info[type];
2409                 /*
2410                  * Do not memset this entry: a racing procfs swap_next()
2411                  * would be relying on p->type to remain valid.
2412                  */
2413         }
2414         INIT_LIST_HEAD(&p->first_swap_extent.list);
2415         plist_node_init(&p->list, 0);
2416         plist_node_init(&p->avail_list, 0);
2417         p->flags = SWP_USED;
2418         spin_unlock(&swap_lock);
2419         spin_lock_init(&p->lock);
2420
2421         return p;
2422 }
2423
2424 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2425 {
2426         int error;
2427
2428         if (S_ISBLK(inode->i_mode)) {
2429                 p->bdev = bdgrab(I_BDEV(inode));
2430                 error = blkdev_get(p->bdev,
2431                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2432                 if (error < 0) {
2433                         p->bdev = NULL;
2434                         return error;
2435                 }
2436                 p->old_block_size = block_size(p->bdev);
2437                 error = set_blocksize(p->bdev, PAGE_SIZE);
2438                 if (error < 0)
2439                         return error;
2440                 p->flags |= SWP_BLKDEV;
2441         } else if (S_ISREG(inode->i_mode)) {
2442                 p->bdev = inode->i_sb->s_bdev;
2443                 inode_lock(inode);
2444                 if (IS_SWAPFILE(inode))
2445                         return -EBUSY;
2446         } else
2447                 return -EINVAL;
2448
2449         return 0;
2450 }
2451
2452 static unsigned long read_swap_header(struct swap_info_struct *p,
2453                                         union swap_header *swap_header,
2454                                         struct inode *inode)
2455 {
2456         int i;
2457         unsigned long maxpages;
2458         unsigned long swapfilepages;
2459         unsigned long last_page;
2460
2461         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2462                 pr_err("Unable to find swap-space signature\n");
2463                 return 0;
2464         }
2465
2466         /* swap partition endianess hack... */
2467         if (swab32(swap_header->info.version) == 1) {
2468                 swab32s(&swap_header->info.version);
2469                 swab32s(&swap_header->info.last_page);
2470                 swab32s(&swap_header->info.nr_badpages);
2471                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2472                         return 0;
2473                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2474                         swab32s(&swap_header->info.badpages[i]);
2475         }
2476         /* Check the swap header's sub-version */
2477         if (swap_header->info.version != 1) {
2478                 pr_warn("Unable to handle swap header version %d\n",
2479                         swap_header->info.version);
2480                 return 0;
2481         }
2482
2483         p->lowest_bit  = 1;
2484         p->cluster_next = 1;
2485         p->cluster_nr = 0;
2486
2487         /*
2488          * Find out how many pages are allowed for a single swap
2489          * device. There are two limiting factors: 1) the number
2490          * of bits for the swap offset in the swp_entry_t type, and
2491          * 2) the number of bits in the swap pte as defined by the
2492          * different architectures. In order to find the
2493          * largest possible bit mask, a swap entry with swap type 0
2494          * and swap offset ~0UL is created, encoded to a swap pte,
2495          * decoded to a swp_entry_t again, and finally the swap
2496          * offset is extracted. This will mask all the bits from
2497          * the initial ~0UL mask that can't be encoded in either
2498          * the swp_entry_t or the architecture definition of a
2499          * swap pte.
2500          */
2501         maxpages = swp_offset(pte_to_swp_entry(
2502                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2503         last_page = swap_header->info.last_page;
2504         if (last_page > maxpages) {
2505                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2506                         maxpages << (PAGE_SHIFT - 10),
2507                         last_page << (PAGE_SHIFT - 10));
2508         }
2509         if (maxpages > last_page) {
2510                 maxpages = last_page + 1;
2511                 /* p->max is an unsigned int: don't overflow it */
2512                 if ((unsigned int)maxpages == 0)
2513                         maxpages = UINT_MAX;
2514         }
2515         p->highest_bit = maxpages - 1;
2516
2517         if (!maxpages)
2518                 return 0;
2519         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2520         if (swapfilepages && maxpages > swapfilepages) {
2521                 pr_warn("Swap area shorter than signature indicates\n");
2522                 return 0;
2523         }
2524         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2525                 return 0;
2526         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2527                 return 0;
2528
2529         return maxpages;
2530 }
2531
2532 #define SWAP_CLUSTER_INFO_COLS                                          \
2533         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2534 #define SWAP_CLUSTER_SPACE_COLS                                         \
2535         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2536 #define SWAP_CLUSTER_COLS                                               \
2537         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2538
2539 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2540                                         union swap_header *swap_header,
2541                                         unsigned char *swap_map,
2542                                         struct swap_cluster_info *cluster_info,
2543                                         unsigned long maxpages,
2544                                         sector_t *span)
2545 {
2546         unsigned int j, k;
2547         unsigned int nr_good_pages;
2548         int nr_extents;
2549         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2550         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2551         unsigned long i, idx;
2552
2553         nr_good_pages = maxpages - 1;   /* omit header page */
2554
2555         cluster_list_init(&p->free_clusters);
2556         cluster_list_init(&p->discard_clusters);
2557
2558         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2559                 unsigned int page_nr = swap_header->info.badpages[i];
2560                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2561                         return -EINVAL;
2562                 if (page_nr < maxpages) {
2563                         swap_map[page_nr] = SWAP_MAP_BAD;
2564                         nr_good_pages--;
2565                         /*
2566                          * Haven't marked the cluster free yet, no list
2567                          * operation involved
2568                          */
2569                         inc_cluster_info_page(p, cluster_info, page_nr);
2570                 }
2571         }
2572
2573         /* Haven't marked the cluster free yet, no list operation involved */
2574         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2575                 inc_cluster_info_page(p, cluster_info, i);
2576
2577         if (nr_good_pages) {
2578                 swap_map[0] = SWAP_MAP_BAD;
2579                 /*
2580                  * Not mark the cluster free yet, no list
2581                  * operation involved
2582                  */
2583                 inc_cluster_info_page(p, cluster_info, 0);
2584                 p->max = maxpages;
2585                 p->pages = nr_good_pages;
2586                 nr_extents = setup_swap_extents(p, span);
2587                 if (nr_extents < 0)
2588                         return nr_extents;
2589                 nr_good_pages = p->pages;
2590         }
2591         if (!nr_good_pages) {
2592                 pr_warn("Empty swap-file\n");
2593                 return -EINVAL;
2594         }
2595
2596         if (!cluster_info)
2597                 return nr_extents;
2598
2599
2600         /*
2601          * Reduce false cache line sharing between cluster_info and
2602          * sharing same address space.
2603          */
2604         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2605                 j = (k + col) % SWAP_CLUSTER_COLS;
2606                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2607                         idx = i * SWAP_CLUSTER_COLS + j;
2608                         if (idx >= nr_clusters)
2609                                 continue;
2610                         if (cluster_count(&cluster_info[idx]))
2611                                 continue;
2612                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2613                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2614                                               idx);
2615                 }
2616         }
2617         return nr_extents;
2618 }
2619
2620 /*
2621  * Helper to sys_swapon determining if a given swap
2622  * backing device queue supports DISCARD operations.
2623  */
2624 static bool swap_discardable(struct swap_info_struct *si)
2625 {
2626         struct request_queue *q = bdev_get_queue(si->bdev);
2627
2628         if (!q || !blk_queue_discard(q))
2629                 return false;
2630
2631         return true;
2632 }
2633
2634 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2635 {
2636         struct swap_info_struct *p;
2637         struct filename *name;
2638         struct file *swap_file = NULL;
2639         struct address_space *mapping;
2640         int prio;
2641         int error;
2642         union swap_header *swap_header;
2643         int nr_extents;
2644         sector_t span;
2645         unsigned long maxpages;
2646         unsigned char *swap_map = NULL;
2647         struct swap_cluster_info *cluster_info = NULL;
2648         unsigned long *frontswap_map = NULL;
2649         struct page *page = NULL;
2650         struct inode *inode = NULL;
2651
2652         if (swap_flags & ~SWAP_FLAGS_VALID)
2653                 return -EINVAL;
2654
2655         if (!capable(CAP_SYS_ADMIN))
2656                 return -EPERM;
2657
2658         p = alloc_swap_info();
2659         if (IS_ERR(p))
2660                 return PTR_ERR(p);
2661
2662         INIT_WORK(&p->discard_work, swap_discard_work);
2663
2664         name = getname(specialfile);
2665         if (IS_ERR(name)) {
2666                 error = PTR_ERR(name);
2667                 name = NULL;
2668                 goto bad_swap;
2669         }
2670         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2671         if (IS_ERR(swap_file)) {
2672                 error = PTR_ERR(swap_file);
2673                 swap_file = NULL;
2674                 goto bad_swap;
2675         }
2676
2677         p->swap_file = swap_file;
2678         mapping = swap_file->f_mapping;
2679         inode = mapping->host;
2680
2681         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2682         error = claim_swapfile(p, inode);
2683         if (unlikely(error))
2684                 goto bad_swap;
2685
2686         /*
2687          * Read the swap header.
2688          */
2689         if (!mapping->a_ops->readpage) {
2690                 error = -EINVAL;
2691                 goto bad_swap;
2692         }
2693         page = read_mapping_page(mapping, 0, swap_file);
2694         if (IS_ERR(page)) {
2695                 error = PTR_ERR(page);
2696                 goto bad_swap;
2697         }
2698         swap_header = kmap(page);
2699
2700         maxpages = read_swap_header(p, swap_header, inode);
2701         if (unlikely(!maxpages)) {
2702                 error = -EINVAL;
2703                 goto bad_swap;
2704         }
2705
2706         /* OK, set up the swap map and apply the bad block list */
2707         swap_map = vzalloc(maxpages);
2708         if (!swap_map) {
2709                 error = -ENOMEM;
2710                 goto bad_swap;
2711         }
2712
2713         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2714                 p->flags |= SWP_STABLE_WRITES;
2715
2716         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2717                 int cpu;
2718                 unsigned long ci, nr_cluster;
2719
2720                 p->flags |= SWP_SOLIDSTATE;
2721                 /*
2722                  * select a random position to start with to help wear leveling
2723                  * SSD
2724                  */
2725                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2726                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2727
2728                 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2729                 if (!cluster_info) {
2730                         error = -ENOMEM;
2731                         goto bad_swap;
2732                 }
2733
2734                 for (ci = 0; ci < nr_cluster; ci++)
2735                         spin_lock_init(&((cluster_info + ci)->lock));
2736
2737                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2738                 if (!p->percpu_cluster) {
2739                         error = -ENOMEM;
2740                         goto bad_swap;
2741                 }
2742                 for_each_possible_cpu(cpu) {
2743                         struct percpu_cluster *cluster;
2744                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2745                         cluster_set_null(&cluster->index);
2746                 }
2747         }
2748
2749         error = swap_cgroup_swapon(p->type, maxpages);
2750         if (error)
2751                 goto bad_swap;
2752
2753         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2754                 cluster_info, maxpages, &span);
2755         if (unlikely(nr_extents < 0)) {
2756                 error = nr_extents;
2757                 goto bad_swap;
2758         }
2759         /* frontswap enabled? set up bit-per-page map for frontswap */
2760         if (IS_ENABLED(CONFIG_FRONTSWAP))
2761                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2762
2763         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2764                 /*
2765                  * When discard is enabled for swap with no particular
2766                  * policy flagged, we set all swap discard flags here in
2767                  * order to sustain backward compatibility with older
2768                  * swapon(8) releases.
2769                  */
2770                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2771                              SWP_PAGE_DISCARD);
2772
2773                 /*
2774                  * By flagging sys_swapon, a sysadmin can tell us to
2775                  * either do single-time area discards only, or to just
2776                  * perform discards for released swap page-clusters.
2777                  * Now it's time to adjust the p->flags accordingly.
2778                  */
2779                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2780                         p->flags &= ~SWP_PAGE_DISCARD;
2781                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2782                         p->flags &= ~SWP_AREA_DISCARD;
2783
2784                 /* issue a swapon-time discard if it's still required */
2785                 if (p->flags & SWP_AREA_DISCARD) {
2786                         int err = discard_swap(p);
2787                         if (unlikely(err))
2788                                 pr_err("swapon: discard_swap(%p): %d\n",
2789                                         p, err);
2790                 }
2791         }
2792
2793         error = init_swap_address_space(p->type, maxpages);
2794         if (error)
2795                 goto bad_swap;
2796
2797         mutex_lock(&swapon_mutex);
2798         prio = -1;
2799         if (swap_flags & SWAP_FLAG_PREFER)
2800                 prio =
2801                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2802         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2803
2804         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2805                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2806                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2807                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2808                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2809                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2810                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2811                 (frontswap_map) ? "FS" : "");
2812
2813         mutex_unlock(&swapon_mutex);
2814         atomic_inc(&proc_poll_event);
2815         wake_up_interruptible(&proc_poll_wait);
2816
2817         if (S_ISREG(inode->i_mode))
2818                 inode->i_flags |= S_SWAPFILE;
2819         error = 0;
2820         goto out;
2821 bad_swap:
2822         free_percpu(p->percpu_cluster);
2823         p->percpu_cluster = NULL;
2824         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2825                 set_blocksize(p->bdev, p->old_block_size);
2826                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2827         }
2828         destroy_swap_extents(p);
2829         swap_cgroup_swapoff(p->type);
2830         spin_lock(&swap_lock);
2831         p->swap_file = NULL;
2832         p->flags = 0;
2833         spin_unlock(&swap_lock);
2834         vfree(swap_map);
2835         vfree(cluster_info);
2836         if (swap_file) {
2837                 if (inode && S_ISREG(inode->i_mode)) {
2838                         inode_unlock(inode);
2839                         inode = NULL;
2840                 }
2841                 filp_close(swap_file, NULL);
2842         }
2843 out:
2844         if (page && !IS_ERR(page)) {
2845                 kunmap(page);
2846                 put_page(page);
2847         }
2848         if (name)
2849                 putname(name);
2850         if (inode && S_ISREG(inode->i_mode))
2851                 inode_unlock(inode);
2852         return error;
2853 }
2854
2855 void si_swapinfo(struct sysinfo *val)
2856 {
2857         unsigned int type;
2858         unsigned long nr_to_be_unused = 0;
2859
2860         spin_lock(&swap_lock);
2861         for (type = 0; type < nr_swapfiles; type++) {
2862                 struct swap_info_struct *si = swap_info[type];
2863
2864                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2865                         nr_to_be_unused += si->inuse_pages;
2866         }
2867         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2868         val->totalswap = total_swap_pages + nr_to_be_unused;
2869         spin_unlock(&swap_lock);
2870 }
2871
2872 /*
2873  * Verify that a swap entry is valid and increment its swap map count.
2874  *
2875  * Returns error code in following case.
2876  * - success -> 0
2877  * - swp_entry is invalid -> EINVAL
2878  * - swp_entry is migration entry -> EINVAL
2879  * - swap-cache reference is requested but there is already one. -> EEXIST
2880  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2881  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2882  */
2883 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2884 {
2885         struct swap_info_struct *p;
2886         struct swap_cluster_info *ci;
2887         unsigned long offset, type;
2888         unsigned char count;
2889         unsigned char has_cache;
2890         int err = -EINVAL;
2891
2892         if (non_swap_entry(entry))
2893                 goto out;
2894
2895         type = swp_type(entry);
2896         if (type >= nr_swapfiles)
2897                 goto bad_file;
2898         p = swap_info[type];
2899         offset = swp_offset(entry);
2900         if (unlikely(offset >= p->max))
2901                 goto out;
2902
2903         ci = lock_cluster_or_swap_info(p, offset);
2904
2905         count = p->swap_map[offset];
2906
2907         /*
2908          * swapin_readahead() doesn't check if a swap entry is valid, so the
2909          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2910          */
2911         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2912                 err = -ENOENT;
2913                 goto unlock_out;
2914         }
2915
2916         has_cache = count & SWAP_HAS_CACHE;
2917         count &= ~SWAP_HAS_CACHE;
2918         err = 0;
2919
2920         if (usage == SWAP_HAS_CACHE) {
2921
2922                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2923                 if (!has_cache && count)
2924                         has_cache = SWAP_HAS_CACHE;
2925                 else if (has_cache)             /* someone else added cache */
2926                         err = -EEXIST;
2927                 else                            /* no users remaining */
2928                         err = -ENOENT;
2929
2930         } else if (count || has_cache) {
2931
2932                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2933                         count += usage;
2934                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2935                         err = -EINVAL;
2936                 else if (swap_count_continued(p, offset, count))
2937                         count = COUNT_CONTINUED;
2938                 else
2939                         err = -ENOMEM;
2940         } else
2941                 err = -ENOENT;                  /* unused swap entry */
2942
2943         p->swap_map[offset] = count | has_cache;
2944
2945 unlock_out:
2946         unlock_cluster_or_swap_info(p, ci);
2947 out:
2948         return err;
2949
2950 bad_file:
2951         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2952         goto out;
2953 }
2954
2955 /*
2956  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2957  * (in which case its reference count is never incremented).
2958  */
2959 void swap_shmem_alloc(swp_entry_t entry)
2960 {
2961         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2962 }
2963
2964 /*
2965  * Increase reference count of swap entry by 1.
2966  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2967  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2968  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2969  * might occur if a page table entry has got corrupted.
2970  */
2971 int swap_duplicate(swp_entry_t entry)
2972 {
2973         int err = 0;
2974
2975         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2976                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2977         return err;
2978 }
2979
2980 /*
2981  * @entry: swap entry for which we allocate swap cache.
2982  *
2983  * Called when allocating swap cache for existing swap entry,
2984  * This can return error codes. Returns 0 at success.
2985  * -EBUSY means there is a swap cache.
2986  * Note: return code is different from swap_duplicate().
2987  */
2988 int swapcache_prepare(swp_entry_t entry)
2989 {
2990         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2991 }
2992
2993 struct swap_info_struct *page_swap_info(struct page *page)
2994 {
2995         swp_entry_t swap = { .val = page_private(page) };
2996         return swap_info[swp_type(swap)];
2997 }
2998
2999 /*
3000  * out-of-line __page_file_ methods to avoid include hell.
3001  */
3002 struct address_space *__page_file_mapping(struct page *page)
3003 {
3004         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3005         return page_swap_info(page)->swap_file->f_mapping;
3006 }
3007 EXPORT_SYMBOL_GPL(__page_file_mapping);
3008
3009 pgoff_t __page_file_index(struct page *page)
3010 {
3011         swp_entry_t swap = { .val = page_private(page) };
3012         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3013         return swp_offset(swap);
3014 }
3015 EXPORT_SYMBOL_GPL(__page_file_index);
3016
3017 /*
3018  * add_swap_count_continuation - called when a swap count is duplicated
3019  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3020  * page of the original vmalloc'ed swap_map, to hold the continuation count
3021  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3022  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3023  *
3024  * These continuation pages are seldom referenced: the common paths all work
3025  * on the original swap_map, only referring to a continuation page when the
3026  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3027  *
3028  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3029  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3030  * can be called after dropping locks.
3031  */
3032 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3033 {
3034         struct swap_info_struct *si;
3035         struct swap_cluster_info *ci;
3036         struct page *head;
3037         struct page *page;
3038         struct page *list_page;
3039         pgoff_t offset;
3040         unsigned char count;
3041
3042         /*
3043          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3044          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3045          */
3046         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3047
3048         si = swap_info_get(entry);
3049         if (!si) {
3050                 /*
3051                  * An acceptable race has occurred since the failing
3052                  * __swap_duplicate(): the swap entry has been freed,
3053                  * perhaps even the whole swap_map cleared for swapoff.
3054                  */
3055                 goto outer;
3056         }
3057
3058         offset = swp_offset(entry);
3059
3060         ci = lock_cluster(si, offset);
3061
3062         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3063
3064         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3065                 /*
3066                  * The higher the swap count, the more likely it is that tasks
3067                  * will race to add swap count continuation: we need to avoid
3068                  * over-provisioning.
3069                  */
3070                 goto out;
3071         }
3072
3073         if (!page) {
3074                 unlock_cluster(ci);
3075                 spin_unlock(&si->lock);
3076                 return -ENOMEM;
3077         }
3078
3079         /*
3080          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3081          * no architecture is using highmem pages for kernel page tables: so it
3082          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3083          */
3084         head = vmalloc_to_page(si->swap_map + offset);
3085         offset &= ~PAGE_MASK;
3086
3087         /*
3088          * Page allocation does not initialize the page's lru field,
3089          * but it does always reset its private field.
3090          */
3091         if (!page_private(head)) {
3092                 BUG_ON(count & COUNT_CONTINUED);
3093                 INIT_LIST_HEAD(&head->lru);
3094                 set_page_private(head, SWP_CONTINUED);
3095                 si->flags |= SWP_CONTINUED;
3096         }
3097
3098         list_for_each_entry(list_page, &head->lru, lru) {
3099                 unsigned char *map;
3100
3101                 /*
3102                  * If the previous map said no continuation, but we've found
3103                  * a continuation page, free our allocation and use this one.
3104                  */
3105                 if (!(count & COUNT_CONTINUED))
3106                         goto out;
3107
3108                 map = kmap_atomic(list_page) + offset;
3109                 count = *map;
3110                 kunmap_atomic(map);
3111
3112                 /*
3113                  * If this continuation count now has some space in it,
3114                  * free our allocation and use this one.
3115                  */
3116                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3117                         goto out;
3118         }
3119
3120         list_add_tail(&page->lru, &head->lru);
3121         page = NULL;                    /* now it's attached, don't free it */
3122 out:
3123         unlock_cluster(ci);
3124         spin_unlock(&si->lock);
3125 outer:
3126         if (page)
3127                 __free_page(page);
3128         return 0;
3129 }
3130
3131 /*
3132  * swap_count_continued - when the original swap_map count is incremented
3133  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3134  * into, carry if so, or else fail until a new continuation page is allocated;
3135  * when the original swap_map count is decremented from 0 with continuation,
3136  * borrow from the continuation and report whether it still holds more.
3137  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3138  * lock.
3139  */
3140 static bool swap_count_continued(struct swap_info_struct *si,
3141                                  pgoff_t offset, unsigned char count)
3142 {
3143         struct page *head;
3144         struct page *page;
3145         unsigned char *map;
3146
3147         head = vmalloc_to_page(si->swap_map + offset);
3148         if (page_private(head) != SWP_CONTINUED) {
3149                 BUG_ON(count & COUNT_CONTINUED);
3150                 return false;           /* need to add count continuation */
3151         }
3152
3153         offset &= ~PAGE_MASK;
3154         page = list_entry(head->lru.next, struct page, lru);
3155         map = kmap_atomic(page) + offset;
3156
3157         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3158                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3159
3160         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3161                 /*
3162                  * Think of how you add 1 to 999
3163                  */
3164                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3165                         kunmap_atomic(map);
3166                         page = list_entry(page->lru.next, struct page, lru);
3167                         BUG_ON(page == head);
3168                         map = kmap_atomic(page) + offset;
3169                 }
3170                 if (*map == SWAP_CONT_MAX) {
3171                         kunmap_atomic(map);
3172                         page = list_entry(page->lru.next, struct page, lru);
3173                         if (page == head)
3174                                 return false;   /* add count continuation */
3175                         map = kmap_atomic(page) + offset;
3176 init_map:               *map = 0;               /* we didn't zero the page */
3177                 }
3178                 *map += 1;
3179                 kunmap_atomic(map);
3180                 page = list_entry(page->lru.prev, struct page, lru);
3181                 while (page != head) {
3182                         map = kmap_atomic(page) + offset;
3183                         *map = COUNT_CONTINUED;
3184                         kunmap_atomic(map);
3185                         page = list_entry(page->lru.prev, struct page, lru);
3186                 }
3187                 return true;                    /* incremented */
3188
3189         } else {                                /* decrementing */
3190                 /*
3191                  * Think of how you subtract 1 from 1000
3192                  */
3193                 BUG_ON(count != COUNT_CONTINUED);
3194                 while (*map == COUNT_CONTINUED) {
3195                         kunmap_atomic(map);
3196                         page = list_entry(page->lru.next, struct page, lru);
3197                         BUG_ON(page == head);
3198                         map = kmap_atomic(page) + offset;
3199                 }
3200                 BUG_ON(*map == 0);
3201                 *map -= 1;
3202                 if (*map == 0)
3203                         count = 0;
3204                 kunmap_atomic(map);
3205                 page = list_entry(page->lru.prev, struct page, lru);
3206                 while (page != head) {
3207                         map = kmap_atomic(page) + offset;
3208                         *map = SWAP_CONT_MAX | count;
3209                         count = COUNT_CONTINUED;
3210                         kunmap_atomic(map);
3211                         page = list_entry(page->lru.prev, struct page, lru);
3212                 }
3213                 return count == COUNT_CONTINUED;
3214         }
3215 }
3216
3217 /*
3218  * free_swap_count_continuations - swapoff free all the continuation pages
3219  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3220  */
3221 static void free_swap_count_continuations(struct swap_info_struct *si)
3222 {
3223         pgoff_t offset;
3224
3225         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3226                 struct page *head;
3227                 head = vmalloc_to_page(si->swap_map + offset);
3228                 if (page_private(head)) {
3229                         struct page *page, *next;
3230
3231                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3232                                 list_del(&page->lru);
3233                                 __free_page(page);
3234                         }
3235                 }
3236         }
3237 }