4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
70 PLIST_HEAD(swap_active_head);
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
89 static DEFINE_MUTEX(swapon_mutex);
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
95 static inline unsigned char swap_count(unsigned char ent)
97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
100 /* returns 1 if swap entry is freed */
102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
104 swp_entry_t entry = swp_entry(si->type, offset);
108 page = find_get_page(swap_address_space(entry), swp_offset(entry));
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
118 if (trylock_page(page)) {
119 ret = try_to_free_swap(page);
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
130 static int discard_swap(struct swap_info_struct *si)
132 struct swap_extent *se;
133 sector_t start_block;
137 /* Do not discard the swap header page! */
138 se = &si->first_swap_extent;
139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
142 err = blkdev_issue_discard(si->bdev, start_block,
143 nr_blocks, GFP_KERNEL, 0);
149 list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 start_block = se->start_block << (PAGE_SHIFT - 9);
151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
153 err = blkdev_issue_discard(si->bdev, start_block,
154 nr_blocks, GFP_KERNEL, 0);
160 return err; /* That will often be -EOPNOTSUPP */
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
167 static void discard_swap_cluster(struct swap_info_struct *si,
168 pgoff_t start_page, pgoff_t nr_pages)
170 struct swap_extent *se = si->curr_swap_extent;
171 int found_extent = 0;
174 if (se->start_page <= start_page &&
175 start_page < se->start_page + se->nr_pages) {
176 pgoff_t offset = start_page - se->start_page;
177 sector_t start_block = se->start_block + offset;
178 sector_t nr_blocks = se->nr_pages - offset;
180 if (nr_blocks > nr_pages)
181 nr_blocks = nr_pages;
182 start_page += nr_blocks;
183 nr_pages -= nr_blocks;
186 si->curr_swap_extent = se;
188 start_block <<= PAGE_SHIFT - 9;
189 nr_blocks <<= PAGE_SHIFT - 9;
190 if (blkdev_issue_discard(si->bdev, start_block,
191 nr_blocks, GFP_NOIO, 0))
195 se = list_next_entry(se, list);
199 #define SWAPFILE_CLUSTER 256
200 #define LATENCY_LIMIT 256
202 static inline void cluster_set_flag(struct swap_cluster_info *info,
208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
213 static inline void cluster_set_count(struct swap_cluster_info *info,
219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 unsigned int c, unsigned int f)
226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
231 static inline void cluster_set_next(struct swap_cluster_info *info,
237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 unsigned int n, unsigned int f)
244 static inline bool cluster_is_free(struct swap_cluster_info *info)
246 return info->flags & CLUSTER_FLAG_FREE;
249 static inline bool cluster_is_null(struct swap_cluster_info *info)
251 return info->flags & CLUSTER_FLAG_NEXT_NULL;
254 static inline void cluster_set_null(struct swap_cluster_info *info)
256 info->flags = CLUSTER_FLAG_NEXT_NULL;
260 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
261 unsigned long offset)
263 struct swap_cluster_info *ci;
265 ci = si->cluster_info;
267 ci += offset / SWAPFILE_CLUSTER;
268 spin_lock(&ci->lock);
273 static inline void unlock_cluster(struct swap_cluster_info *ci)
276 spin_unlock(&ci->lock);
279 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
280 struct swap_info_struct *si,
281 unsigned long offset)
283 struct swap_cluster_info *ci;
285 ci = lock_cluster(si, offset);
287 spin_lock(&si->lock);
292 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
293 struct swap_cluster_info *ci)
298 spin_unlock(&si->lock);
301 static inline bool cluster_list_empty(struct swap_cluster_list *list)
303 return cluster_is_null(&list->head);
306 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
308 return cluster_next(&list->head);
311 static void cluster_list_init(struct swap_cluster_list *list)
313 cluster_set_null(&list->head);
314 cluster_set_null(&list->tail);
317 static void cluster_list_add_tail(struct swap_cluster_list *list,
318 struct swap_cluster_info *ci,
321 if (cluster_list_empty(list)) {
322 cluster_set_next_flag(&list->head, idx, 0);
323 cluster_set_next_flag(&list->tail, idx, 0);
325 struct swap_cluster_info *ci_tail;
326 unsigned int tail = cluster_next(&list->tail);
329 * Nested cluster lock, but both cluster locks are
330 * only acquired when we held swap_info_struct->lock
333 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
334 cluster_set_next(ci_tail, idx);
335 unlock_cluster(ci_tail);
336 cluster_set_next_flag(&list->tail, idx, 0);
340 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
341 struct swap_cluster_info *ci)
345 idx = cluster_next(&list->head);
346 if (cluster_next(&list->tail) == idx) {
347 cluster_set_null(&list->head);
348 cluster_set_null(&list->tail);
350 cluster_set_next_flag(&list->head,
351 cluster_next(&ci[idx]), 0);
356 /* Add a cluster to discard list and schedule it to do discard */
357 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
361 * If scan_swap_map() can't find a free cluster, it will check
362 * si->swap_map directly. To make sure the discarding cluster isn't
363 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
364 * will be cleared after discard
366 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
367 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
369 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
371 schedule_work(&si->discard_work);
375 * Doing discard actually. After a cluster discard is finished, the cluster
376 * will be added to free cluster list. caller should hold si->lock.
378 static void swap_do_scheduled_discard(struct swap_info_struct *si)
380 struct swap_cluster_info *info, *ci;
383 info = si->cluster_info;
385 while (!cluster_list_empty(&si->discard_clusters)) {
386 idx = cluster_list_del_first(&si->discard_clusters, info);
387 spin_unlock(&si->lock);
389 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
392 spin_lock(&si->lock);
393 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
394 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
396 cluster_list_add_tail(&si->free_clusters, info, idx);
397 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
398 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
399 0, SWAPFILE_CLUSTER);
404 static void swap_discard_work(struct work_struct *work)
406 struct swap_info_struct *si;
408 si = container_of(work, struct swap_info_struct, discard_work);
410 spin_lock(&si->lock);
411 swap_do_scheduled_discard(si);
412 spin_unlock(&si->lock);
416 * The cluster corresponding to page_nr will be used. The cluster will be
417 * removed from free cluster list and its usage counter will be increased.
419 static void inc_cluster_info_page(struct swap_info_struct *p,
420 struct swap_cluster_info *cluster_info, unsigned long page_nr)
422 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
426 if (cluster_is_free(&cluster_info[idx])) {
427 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
428 cluster_list_del_first(&p->free_clusters, cluster_info);
429 cluster_set_count_flag(&cluster_info[idx], 0, 0);
432 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
433 cluster_set_count(&cluster_info[idx],
434 cluster_count(&cluster_info[idx]) + 1);
438 * The cluster corresponding to page_nr decreases one usage. If the usage
439 * counter becomes 0, which means no page in the cluster is in using, we can
440 * optionally discard the cluster and add it to free cluster list.
442 static void dec_cluster_info_page(struct swap_info_struct *p,
443 struct swap_cluster_info *cluster_info, unsigned long page_nr)
445 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
450 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
451 cluster_set_count(&cluster_info[idx],
452 cluster_count(&cluster_info[idx]) - 1);
454 if (cluster_count(&cluster_info[idx]) == 0) {
456 * If the swap is discardable, prepare discard the cluster
457 * instead of free it immediately. The cluster will be freed
460 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
461 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
462 swap_cluster_schedule_discard(p, idx);
466 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
467 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
472 * It's possible scan_swap_map() uses a free cluster in the middle of free
473 * cluster list. Avoiding such abuse to avoid list corruption.
476 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
477 unsigned long offset)
479 struct percpu_cluster *percpu_cluster;
482 offset /= SWAPFILE_CLUSTER;
483 conflict = !cluster_list_empty(&si->free_clusters) &&
484 offset != cluster_list_first(&si->free_clusters) &&
485 cluster_is_free(&si->cluster_info[offset]);
490 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
491 cluster_set_null(&percpu_cluster->index);
496 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
497 * might involve allocating a new cluster for current CPU too.
499 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
500 unsigned long *offset, unsigned long *scan_base)
502 struct percpu_cluster *cluster;
503 struct swap_cluster_info *ci;
505 unsigned long tmp, max;
508 cluster = this_cpu_ptr(si->percpu_cluster);
509 if (cluster_is_null(&cluster->index)) {
510 if (!cluster_list_empty(&si->free_clusters)) {
511 cluster->index = si->free_clusters.head;
512 cluster->next = cluster_next(&cluster->index) *
514 } else if (!cluster_list_empty(&si->discard_clusters)) {
516 * we don't have free cluster but have some clusters in
517 * discarding, do discard now and reclaim them
519 swap_do_scheduled_discard(si);
520 *scan_base = *offset = si->cluster_next;
529 * Other CPUs can use our cluster if they can't find a free cluster,
530 * check if there is still free entry in the cluster
533 max = min_t(unsigned long, si->max,
534 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
536 cluster_set_null(&cluster->index);
539 ci = lock_cluster(si, tmp);
541 if (!si->swap_map[tmp]) {
549 cluster_set_null(&cluster->index);
552 cluster->next = tmp + 1;
558 static int scan_swap_map_slots(struct swap_info_struct *si,
559 unsigned char usage, int nr,
562 struct swap_cluster_info *ci;
563 unsigned long offset;
564 unsigned long scan_base;
565 unsigned long last_in_cluster = 0;
566 int latency_ration = LATENCY_LIMIT;
573 * We try to cluster swap pages by allocating them sequentially
574 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
575 * way, however, we resort to first-free allocation, starting
576 * a new cluster. This prevents us from scattering swap pages
577 * all over the entire swap partition, so that we reduce
578 * overall disk seek times between swap pages. -- sct
579 * But we do now try to find an empty cluster. -Andrea
580 * And we let swap pages go all over an SSD partition. Hugh
583 si->flags += SWP_SCANNING;
584 scan_base = offset = si->cluster_next;
587 if (si->cluster_info) {
588 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
594 if (unlikely(!si->cluster_nr--)) {
595 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
596 si->cluster_nr = SWAPFILE_CLUSTER - 1;
600 spin_unlock(&si->lock);
603 * If seek is expensive, start searching for new cluster from
604 * start of partition, to minimize the span of allocated swap.
605 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
606 * case, just handled by scan_swap_map_try_ssd_cluster() above.
608 scan_base = offset = si->lowest_bit;
609 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
611 /* Locate the first empty (unaligned) cluster */
612 for (; last_in_cluster <= si->highest_bit; offset++) {
613 if (si->swap_map[offset])
614 last_in_cluster = offset + SWAPFILE_CLUSTER;
615 else if (offset == last_in_cluster) {
616 spin_lock(&si->lock);
617 offset -= SWAPFILE_CLUSTER - 1;
618 si->cluster_next = offset;
619 si->cluster_nr = SWAPFILE_CLUSTER - 1;
622 if (unlikely(--latency_ration < 0)) {
624 latency_ration = LATENCY_LIMIT;
629 spin_lock(&si->lock);
630 si->cluster_nr = SWAPFILE_CLUSTER - 1;
634 if (si->cluster_info) {
635 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
636 /* take a break if we already got some slots */
639 if (!scan_swap_map_try_ssd_cluster(si, &offset,
644 if (!(si->flags & SWP_WRITEOK))
646 if (!si->highest_bit)
648 if (offset > si->highest_bit)
649 scan_base = offset = si->lowest_bit;
651 ci = lock_cluster(si, offset);
652 /* reuse swap entry of cache-only swap if not busy. */
653 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
656 spin_unlock(&si->lock);
657 swap_was_freed = __try_to_reclaim_swap(si, offset);
658 spin_lock(&si->lock);
659 /* entry was freed successfully, try to use this again */
662 goto scan; /* check next one */
665 if (si->swap_map[offset]) {
673 if (offset == si->lowest_bit)
675 if (offset == si->highest_bit)
678 if (si->inuse_pages == si->pages) {
679 si->lowest_bit = si->max;
681 spin_lock(&swap_avail_lock);
682 plist_del(&si->avail_list, &swap_avail_head);
683 spin_unlock(&swap_avail_lock);
685 si->swap_map[offset] = usage;
686 inc_cluster_info_page(si, si->cluster_info, offset);
688 si->cluster_next = offset + 1;
689 slots[n_ret++] = swp_entry(si->type, offset);
691 /* got enough slots or reach max slots? */
692 if ((n_ret == nr) || (offset >= si->highest_bit))
695 /* search for next available slot */
697 /* time to take a break? */
698 if (unlikely(--latency_ration < 0)) {
701 spin_unlock(&si->lock);
703 spin_lock(&si->lock);
704 latency_ration = LATENCY_LIMIT;
707 /* try to get more slots in cluster */
708 if (si->cluster_info) {
709 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
717 /* non-ssd case, still more slots in cluster? */
718 if (si->cluster_nr && !si->swap_map[offset]) {
724 si->flags -= SWP_SCANNING;
728 spin_unlock(&si->lock);
729 while (++offset <= si->highest_bit) {
730 if (!si->swap_map[offset]) {
731 spin_lock(&si->lock);
734 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
735 spin_lock(&si->lock);
738 if (unlikely(--latency_ration < 0)) {
740 latency_ration = LATENCY_LIMIT;
743 offset = si->lowest_bit;
744 while (offset < scan_base) {
745 if (!si->swap_map[offset]) {
746 spin_lock(&si->lock);
749 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
750 spin_lock(&si->lock);
753 if (unlikely(--latency_ration < 0)) {
755 latency_ration = LATENCY_LIMIT;
759 spin_lock(&si->lock);
762 si->flags -= SWP_SCANNING;
766 static unsigned long scan_swap_map(struct swap_info_struct *si,
772 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
775 return swp_offset(entry);
781 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
783 struct swap_info_struct *si, *next;
787 avail_pgs = atomic_long_read(&nr_swap_pages);
791 if (n_goal > SWAP_BATCH)
794 if (n_goal > avail_pgs)
797 atomic_long_sub(n_goal, &nr_swap_pages);
799 spin_lock(&swap_avail_lock);
802 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
803 /* requeue si to after same-priority siblings */
804 plist_requeue(&si->avail_list, &swap_avail_head);
805 spin_unlock(&swap_avail_lock);
806 spin_lock(&si->lock);
807 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
808 spin_lock(&swap_avail_lock);
809 if (plist_node_empty(&si->avail_list)) {
810 spin_unlock(&si->lock);
813 WARN(!si->highest_bit,
814 "swap_info %d in list but !highest_bit\n",
816 WARN(!(si->flags & SWP_WRITEOK),
817 "swap_info %d in list but !SWP_WRITEOK\n",
819 plist_del(&si->avail_list, &swap_avail_head);
820 spin_unlock(&si->lock);
823 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
824 n_goal, swp_entries);
825 spin_unlock(&si->lock);
828 pr_debug("scan_swap_map of si %d failed to find offset\n",
831 spin_lock(&swap_avail_lock);
834 * if we got here, it's likely that si was almost full before,
835 * and since scan_swap_map() can drop the si->lock, multiple
836 * callers probably all tried to get a page from the same si
837 * and it filled up before we could get one; or, the si filled
838 * up between us dropping swap_avail_lock and taking si->lock.
839 * Since we dropped the swap_avail_lock, the swap_avail_head
840 * list may have been modified; so if next is still in the
841 * swap_avail_head list then try it, otherwise start over
842 * if we have not gotten any slots.
844 if (plist_node_empty(&next->avail_list))
848 spin_unlock(&swap_avail_lock);
852 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
857 swp_entry_t get_swap_page(void)
861 get_swap_pages(1, &entry);
865 /* The only caller of this function is now suspend routine */
866 swp_entry_t get_swap_page_of_type(int type)
868 struct swap_info_struct *si;
871 si = swap_info[type];
872 spin_lock(&si->lock);
873 if (si && (si->flags & SWP_WRITEOK)) {
874 atomic_long_dec(&nr_swap_pages);
875 /* This is called for allocating swap entry, not cache */
876 offset = scan_swap_map(si, 1);
878 spin_unlock(&si->lock);
879 return swp_entry(type, offset);
881 atomic_long_inc(&nr_swap_pages);
883 spin_unlock(&si->lock);
884 return (swp_entry_t) {0};
887 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
889 struct swap_info_struct *p;
890 unsigned long offset, type;
894 type = swp_type(entry);
895 if (type >= nr_swapfiles)
898 if (!(p->flags & SWP_USED))
900 offset = swp_offset(entry);
901 if (offset >= p->max)
906 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
909 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
912 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
917 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
919 struct swap_info_struct *p;
921 p = __swap_info_get(entry);
924 if (!p->swap_map[swp_offset(entry)])
929 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
935 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
937 struct swap_info_struct *p;
939 p = _swap_info_get(entry);
945 static unsigned char swap_entry_free(struct swap_info_struct *p,
946 swp_entry_t entry, unsigned char usage,
947 bool swap_info_locked)
949 struct swap_cluster_info *ci;
950 unsigned long offset = swp_offset(entry);
952 unsigned char has_cache;
953 bool lock_swap_info = false;
955 if (!swap_info_locked) {
956 count = p->swap_map[offset];
957 if (!p->cluster_info || count == usage || count == SWAP_MAP_SHMEM) {
959 swap_info_locked = true;
960 lock_swap_info = true;
965 ci = lock_cluster(p, offset);
967 count = p->swap_map[offset];
969 if (!swap_info_locked && (count == usage || count == SWAP_MAP_SHMEM)) {
974 has_cache = count & SWAP_HAS_CACHE;
975 count &= ~SWAP_HAS_CACHE;
977 if (usage == SWAP_HAS_CACHE) {
978 VM_BUG_ON(!has_cache);
980 } else if (count == SWAP_MAP_SHMEM) {
982 * Or we could insist on shmem.c using a special
983 * swap_shmem_free() and free_shmem_swap_and_cache()...
986 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
987 if (count == COUNT_CONTINUED) {
988 if (swap_count_continued(p, offset, count))
989 count = SWAP_MAP_MAX | COUNT_CONTINUED;
991 count = SWAP_MAP_MAX;
996 usage = count | has_cache;
997 p->swap_map[offset] = usage;
1001 /* free if no reference */
1003 VM_BUG_ON(!swap_info_locked);
1004 mem_cgroup_uncharge_swap(entry);
1005 ci = lock_cluster(p, offset);
1006 dec_cluster_info_page(p, p->cluster_info, offset);
1008 if (offset < p->lowest_bit)
1009 p->lowest_bit = offset;
1010 if (offset > p->highest_bit) {
1011 bool was_full = !p->highest_bit;
1012 p->highest_bit = offset;
1013 if (was_full && (p->flags & SWP_WRITEOK)) {
1014 spin_lock(&swap_avail_lock);
1015 WARN_ON(!plist_node_empty(&p->avail_list));
1016 if (plist_node_empty(&p->avail_list))
1017 plist_add(&p->avail_list,
1019 spin_unlock(&swap_avail_lock);
1022 atomic_long_inc(&nr_swap_pages);
1024 frontswap_invalidate_page(p->type, offset);
1025 if (p->flags & SWP_BLKDEV) {
1026 struct gendisk *disk = p->bdev->bd_disk;
1027 if (disk->fops->swap_slot_free_notify)
1028 disk->fops->swap_slot_free_notify(p->bdev,
1034 spin_unlock(&p->lock);
1040 * Caller has made sure that the swap device corresponding to entry
1041 * is still around or has not been recycled.
1043 void swap_free(swp_entry_t entry)
1045 struct swap_info_struct *p;
1047 p = _swap_info_get(entry);
1049 swap_entry_free(p, entry, 1, false);
1053 * Called after dropping swapcache to decrease refcnt to swap entries.
1055 void swapcache_free(swp_entry_t entry)
1057 struct swap_info_struct *p;
1059 p = _swap_info_get(entry);
1061 swap_entry_free(p, entry, SWAP_HAS_CACHE, false);
1065 * How many references to page are currently swapped out?
1066 * This does not give an exact answer when swap count is continued,
1067 * but does include the high COUNT_CONTINUED flag to allow for that.
1069 int page_swapcount(struct page *page)
1072 struct swap_info_struct *p;
1073 struct swap_cluster_info *ci;
1075 unsigned long offset;
1077 entry.val = page_private(page);
1078 p = _swap_info_get(entry);
1080 offset = swp_offset(entry);
1081 ci = lock_cluster_or_swap_info(p, offset);
1082 count = swap_count(p->swap_map[offset]);
1083 unlock_cluster_or_swap_info(p, ci);
1089 * How many references to @entry are currently swapped out?
1090 * This does not give an exact answer when swap count is continued,
1091 * but does include the high COUNT_CONTINUED flag to allow for that.
1093 int __swp_swapcount(swp_entry_t entry)
1097 struct swap_info_struct *si;
1098 struct swap_cluster_info *ci;
1100 si = __swap_info_get(entry);
1102 offset = swp_offset(entry);
1103 ci = lock_cluster_or_swap_info(si, offset);
1104 count = swap_count(si->swap_map[offset]);
1105 unlock_cluster_or_swap_info(si, ci);
1111 * How many references to @entry are currently swapped out?
1112 * This considers COUNT_CONTINUED so it returns exact answer.
1114 int swp_swapcount(swp_entry_t entry)
1116 int count, tmp_count, n;
1117 struct swap_info_struct *p;
1118 struct swap_cluster_info *ci;
1123 p = _swap_info_get(entry);
1127 offset = swp_offset(entry);
1129 ci = lock_cluster_or_swap_info(p, offset);
1131 count = swap_count(p->swap_map[offset]);
1132 if (!(count & COUNT_CONTINUED))
1135 count &= ~COUNT_CONTINUED;
1136 n = SWAP_MAP_MAX + 1;
1138 page = vmalloc_to_page(p->swap_map + offset);
1139 offset &= ~PAGE_MASK;
1140 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1143 page = list_next_entry(page, lru);
1144 map = kmap_atomic(page);
1145 tmp_count = map[offset];
1148 count += (tmp_count & ~COUNT_CONTINUED) * n;
1149 n *= (SWAP_CONT_MAX + 1);
1150 } while (tmp_count & COUNT_CONTINUED);
1152 unlock_cluster_or_swap_info(p, ci);
1157 * We can write to an anon page without COW if there are no other references
1158 * to it. And as a side-effect, free up its swap: because the old content
1159 * on disk will never be read, and seeking back there to write new content
1160 * later would only waste time away from clustering.
1162 * NOTE: total_mapcount should not be relied upon by the caller if
1163 * reuse_swap_page() returns false, but it may be always overwritten
1164 * (see the other implementation for CONFIG_SWAP=n).
1166 bool reuse_swap_page(struct page *page, int *total_mapcount)
1170 VM_BUG_ON_PAGE(!PageLocked(page), page);
1171 if (unlikely(PageKsm(page)))
1173 count = page_trans_huge_mapcount(page, total_mapcount);
1174 if (count <= 1 && PageSwapCache(page)) {
1175 count += page_swapcount(page);
1178 if (!PageWriteback(page)) {
1179 delete_from_swap_cache(page);
1183 struct swap_info_struct *p;
1185 entry.val = page_private(page);
1186 p = swap_info_get(entry);
1187 if (p->flags & SWP_STABLE_WRITES) {
1188 spin_unlock(&p->lock);
1191 spin_unlock(&p->lock);
1199 * If swap is getting full, or if there are no more mappings of this page,
1200 * then try_to_free_swap is called to free its swap space.
1202 int try_to_free_swap(struct page *page)
1204 VM_BUG_ON_PAGE(!PageLocked(page), page);
1206 if (!PageSwapCache(page))
1208 if (PageWriteback(page))
1210 if (page_swapcount(page))
1214 * Once hibernation has begun to create its image of memory,
1215 * there's a danger that one of the calls to try_to_free_swap()
1216 * - most probably a call from __try_to_reclaim_swap() while
1217 * hibernation is allocating its own swap pages for the image,
1218 * but conceivably even a call from memory reclaim - will free
1219 * the swap from a page which has already been recorded in the
1220 * image as a clean swapcache page, and then reuse its swap for
1221 * another page of the image. On waking from hibernation, the
1222 * original page might be freed under memory pressure, then
1223 * later read back in from swap, now with the wrong data.
1225 * Hibernation suspends storage while it is writing the image
1226 * to disk so check that here.
1228 if (pm_suspended_storage())
1231 delete_from_swap_cache(page);
1237 * Free the swap entry like above, but also try to
1238 * free the page cache entry if it is the last user.
1240 int free_swap_and_cache(swp_entry_t entry)
1242 struct swap_info_struct *p;
1243 struct page *page = NULL;
1245 if (non_swap_entry(entry))
1248 p = swap_info_get(entry);
1250 if (swap_entry_free(p, entry, 1, true) == SWAP_HAS_CACHE) {
1251 page = find_get_page(swap_address_space(entry),
1253 if (page && !trylock_page(page)) {
1258 spin_unlock(&p->lock);
1262 * Not mapped elsewhere, or swap space full? Free it!
1263 * Also recheck PageSwapCache now page is locked (above).
1265 if (PageSwapCache(page) && !PageWriteback(page) &&
1266 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1267 delete_from_swap_cache(page);
1276 #ifdef CONFIG_HIBERNATION
1278 * Find the swap type that corresponds to given device (if any).
1280 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1281 * from 0, in which the swap header is expected to be located.
1283 * This is needed for the suspend to disk (aka swsusp).
1285 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1287 struct block_device *bdev = NULL;
1291 bdev = bdget(device);
1293 spin_lock(&swap_lock);
1294 for (type = 0; type < nr_swapfiles; type++) {
1295 struct swap_info_struct *sis = swap_info[type];
1297 if (!(sis->flags & SWP_WRITEOK))
1302 *bdev_p = bdgrab(sis->bdev);
1304 spin_unlock(&swap_lock);
1307 if (bdev == sis->bdev) {
1308 struct swap_extent *se = &sis->first_swap_extent;
1310 if (se->start_block == offset) {
1312 *bdev_p = bdgrab(sis->bdev);
1314 spin_unlock(&swap_lock);
1320 spin_unlock(&swap_lock);
1328 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1329 * corresponding to given index in swap_info (swap type).
1331 sector_t swapdev_block(int type, pgoff_t offset)
1333 struct block_device *bdev;
1335 if ((unsigned int)type >= nr_swapfiles)
1337 if (!(swap_info[type]->flags & SWP_WRITEOK))
1339 return map_swap_entry(swp_entry(type, offset), &bdev);
1343 * Return either the total number of swap pages of given type, or the number
1344 * of free pages of that type (depending on @free)
1346 * This is needed for software suspend
1348 unsigned int count_swap_pages(int type, int free)
1352 spin_lock(&swap_lock);
1353 if ((unsigned int)type < nr_swapfiles) {
1354 struct swap_info_struct *sis = swap_info[type];
1356 spin_lock(&sis->lock);
1357 if (sis->flags & SWP_WRITEOK) {
1360 n -= sis->inuse_pages;
1362 spin_unlock(&sis->lock);
1364 spin_unlock(&swap_lock);
1367 #endif /* CONFIG_HIBERNATION */
1369 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1371 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1375 * No need to decide whether this PTE shares the swap entry with others,
1376 * just let do_wp_page work it out if a write is requested later - to
1377 * force COW, vm_page_prot omits write permission from any private vma.
1379 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1380 unsigned long addr, swp_entry_t entry, struct page *page)
1382 struct page *swapcache;
1383 struct mem_cgroup *memcg;
1389 page = ksm_might_need_to_copy(page, vma, addr);
1390 if (unlikely(!page))
1393 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1399 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1400 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1401 mem_cgroup_cancel_charge(page, memcg, false);
1406 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1407 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1409 set_pte_at(vma->vm_mm, addr, pte,
1410 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1411 if (page == swapcache) {
1412 page_add_anon_rmap(page, vma, addr, false);
1413 mem_cgroup_commit_charge(page, memcg, true, false);
1414 } else { /* ksm created a completely new copy */
1415 page_add_new_anon_rmap(page, vma, addr, false);
1416 mem_cgroup_commit_charge(page, memcg, false, false);
1417 lru_cache_add_active_or_unevictable(page, vma);
1421 * Move the page to the active list so it is not
1422 * immediately swapped out again after swapon.
1424 activate_page(page);
1426 pte_unmap_unlock(pte, ptl);
1428 if (page != swapcache) {
1435 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1436 unsigned long addr, unsigned long end,
1437 swp_entry_t entry, struct page *page)
1439 pte_t swp_pte = swp_entry_to_pte(entry);
1444 * We don't actually need pte lock while scanning for swp_pte: since
1445 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1446 * page table while we're scanning; though it could get zapped, and on
1447 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1448 * of unmatched parts which look like swp_pte, so unuse_pte must
1449 * recheck under pte lock. Scanning without pte lock lets it be
1450 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1452 pte = pte_offset_map(pmd, addr);
1455 * swapoff spends a _lot_ of time in this loop!
1456 * Test inline before going to call unuse_pte.
1458 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1460 ret = unuse_pte(vma, pmd, addr, entry, page);
1463 pte = pte_offset_map(pmd, addr);
1465 } while (pte++, addr += PAGE_SIZE, addr != end);
1471 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1472 unsigned long addr, unsigned long end,
1473 swp_entry_t entry, struct page *page)
1479 pmd = pmd_offset(pud, addr);
1482 next = pmd_addr_end(addr, end);
1483 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1485 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1488 } while (pmd++, addr = next, addr != end);
1492 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1493 unsigned long addr, unsigned long end,
1494 swp_entry_t entry, struct page *page)
1500 pud = pud_offset(pgd, addr);
1502 next = pud_addr_end(addr, end);
1503 if (pud_none_or_clear_bad(pud))
1505 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1508 } while (pud++, addr = next, addr != end);
1512 static int unuse_vma(struct vm_area_struct *vma,
1513 swp_entry_t entry, struct page *page)
1516 unsigned long addr, end, next;
1519 if (page_anon_vma(page)) {
1520 addr = page_address_in_vma(page, vma);
1521 if (addr == -EFAULT)
1524 end = addr + PAGE_SIZE;
1526 addr = vma->vm_start;
1530 pgd = pgd_offset(vma->vm_mm, addr);
1532 next = pgd_addr_end(addr, end);
1533 if (pgd_none_or_clear_bad(pgd))
1535 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1538 } while (pgd++, addr = next, addr != end);
1542 static int unuse_mm(struct mm_struct *mm,
1543 swp_entry_t entry, struct page *page)
1545 struct vm_area_struct *vma;
1548 if (!down_read_trylock(&mm->mmap_sem)) {
1550 * Activate page so shrink_inactive_list is unlikely to unmap
1551 * its ptes while lock is dropped, so swapoff can make progress.
1553 activate_page(page);
1555 down_read(&mm->mmap_sem);
1558 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1559 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1563 up_read(&mm->mmap_sem);
1564 return (ret < 0)? ret: 0;
1568 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1569 * from current position to next entry still in use.
1570 * Recycle to start on reaching the end, returning 0 when empty.
1572 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1573 unsigned int prev, bool frontswap)
1575 unsigned int max = si->max;
1576 unsigned int i = prev;
1577 unsigned char count;
1580 * No need for swap_lock here: we're just looking
1581 * for whether an entry is in use, not modifying it; false
1582 * hits are okay, and sys_swapoff() has already prevented new
1583 * allocations from this area (while holding swap_lock).
1592 * No entries in use at top of swap_map,
1593 * loop back to start and recheck there.
1599 count = READ_ONCE(si->swap_map[i]);
1600 if (count && swap_count(count) != SWAP_MAP_BAD)
1601 if (!frontswap || frontswap_test(si, i))
1603 if ((i % LATENCY_LIMIT) == 0)
1610 * We completely avoid races by reading each swap page in advance,
1611 * and then search for the process using it. All the necessary
1612 * page table adjustments can then be made atomically.
1614 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1615 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1617 int try_to_unuse(unsigned int type, bool frontswap,
1618 unsigned long pages_to_unuse)
1620 struct swap_info_struct *si = swap_info[type];
1621 struct mm_struct *start_mm;
1622 volatile unsigned char *swap_map; /* swap_map is accessed without
1623 * locking. Mark it as volatile
1624 * to prevent compiler doing
1627 unsigned char swcount;
1634 * When searching mms for an entry, a good strategy is to
1635 * start at the first mm we freed the previous entry from
1636 * (though actually we don't notice whether we or coincidence
1637 * freed the entry). Initialize this start_mm with a hold.
1639 * A simpler strategy would be to start at the last mm we
1640 * freed the previous entry from; but that would take less
1641 * advantage of mmlist ordering, which clusters forked mms
1642 * together, child after parent. If we race with dup_mmap(), we
1643 * prefer to resolve parent before child, lest we miss entries
1644 * duplicated after we scanned child: using last mm would invert
1647 start_mm = &init_mm;
1648 atomic_inc(&init_mm.mm_users);
1651 * Keep on scanning until all entries have gone. Usually,
1652 * one pass through swap_map is enough, but not necessarily:
1653 * there are races when an instance of an entry might be missed.
1655 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1656 if (signal_pending(current)) {
1662 * Get a page for the entry, using the existing swap
1663 * cache page if there is one. Otherwise, get a clean
1664 * page and read the swap into it.
1666 swap_map = &si->swap_map[i];
1667 entry = swp_entry(type, i);
1668 page = read_swap_cache_async(entry,
1669 GFP_HIGHUSER_MOVABLE, NULL, 0);
1672 * Either swap_duplicate() failed because entry
1673 * has been freed independently, and will not be
1674 * reused since sys_swapoff() already disabled
1675 * allocation from here, or alloc_page() failed.
1677 swcount = *swap_map;
1679 * We don't hold lock here, so the swap entry could be
1680 * SWAP_MAP_BAD (when the cluster is discarding).
1681 * Instead of fail out, We can just skip the swap
1682 * entry because swapoff will wait for discarding
1685 if (!swcount || swcount == SWAP_MAP_BAD)
1692 * Don't hold on to start_mm if it looks like exiting.
1694 if (atomic_read(&start_mm->mm_users) == 1) {
1696 start_mm = &init_mm;
1697 atomic_inc(&init_mm.mm_users);
1701 * Wait for and lock page. When do_swap_page races with
1702 * try_to_unuse, do_swap_page can handle the fault much
1703 * faster than try_to_unuse can locate the entry. This
1704 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1705 * defer to do_swap_page in such a case - in some tests,
1706 * do_swap_page and try_to_unuse repeatedly compete.
1708 wait_on_page_locked(page);
1709 wait_on_page_writeback(page);
1711 wait_on_page_writeback(page);
1714 * Remove all references to entry.
1716 swcount = *swap_map;
1717 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1718 retval = shmem_unuse(entry, page);
1719 /* page has already been unlocked and released */
1724 if (swap_count(swcount) && start_mm != &init_mm)
1725 retval = unuse_mm(start_mm, entry, page);
1727 if (swap_count(*swap_map)) {
1728 int set_start_mm = (*swap_map >= swcount);
1729 struct list_head *p = &start_mm->mmlist;
1730 struct mm_struct *new_start_mm = start_mm;
1731 struct mm_struct *prev_mm = start_mm;
1732 struct mm_struct *mm;
1734 atomic_inc(&new_start_mm->mm_users);
1735 atomic_inc(&prev_mm->mm_users);
1736 spin_lock(&mmlist_lock);
1737 while (swap_count(*swap_map) && !retval &&
1738 (p = p->next) != &start_mm->mmlist) {
1739 mm = list_entry(p, struct mm_struct, mmlist);
1740 if (!atomic_inc_not_zero(&mm->mm_users))
1742 spin_unlock(&mmlist_lock);
1748 swcount = *swap_map;
1749 if (!swap_count(swcount)) /* any usage ? */
1751 else if (mm == &init_mm)
1754 retval = unuse_mm(mm, entry, page);
1756 if (set_start_mm && *swap_map < swcount) {
1757 mmput(new_start_mm);
1758 atomic_inc(&mm->mm_users);
1762 spin_lock(&mmlist_lock);
1764 spin_unlock(&mmlist_lock);
1767 start_mm = new_start_mm;
1776 * If a reference remains (rare), we would like to leave
1777 * the page in the swap cache; but try_to_unmap could
1778 * then re-duplicate the entry once we drop page lock,
1779 * so we might loop indefinitely; also, that page could
1780 * not be swapped out to other storage meanwhile. So:
1781 * delete from cache even if there's another reference,
1782 * after ensuring that the data has been saved to disk -
1783 * since if the reference remains (rarer), it will be
1784 * read from disk into another page. Splitting into two
1785 * pages would be incorrect if swap supported "shared
1786 * private" pages, but they are handled by tmpfs files.
1788 * Given how unuse_vma() targets one particular offset
1789 * in an anon_vma, once the anon_vma has been determined,
1790 * this splitting happens to be just what is needed to
1791 * handle where KSM pages have been swapped out: re-reading
1792 * is unnecessarily slow, but we can fix that later on.
1794 if (swap_count(*swap_map) &&
1795 PageDirty(page) && PageSwapCache(page)) {
1796 struct writeback_control wbc = {
1797 .sync_mode = WB_SYNC_NONE,
1800 swap_writepage(page, &wbc);
1802 wait_on_page_writeback(page);
1806 * It is conceivable that a racing task removed this page from
1807 * swap cache just before we acquired the page lock at the top,
1808 * or while we dropped it in unuse_mm(). The page might even
1809 * be back in swap cache on another swap area: that we must not
1810 * delete, since it may not have been written out to swap yet.
1812 if (PageSwapCache(page) &&
1813 likely(page_private(page) == entry.val))
1814 delete_from_swap_cache(page);
1817 * So we could skip searching mms once swap count went
1818 * to 1, we did not mark any present ptes as dirty: must
1819 * mark page dirty so shrink_page_list will preserve it.
1826 * Make sure that we aren't completely killing
1827 * interactive performance.
1830 if (frontswap && pages_to_unuse > 0) {
1831 if (!--pages_to_unuse)
1841 * After a successful try_to_unuse, if no swap is now in use, we know
1842 * we can empty the mmlist. swap_lock must be held on entry and exit.
1843 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1844 * added to the mmlist just after page_duplicate - before would be racy.
1846 static void drain_mmlist(void)
1848 struct list_head *p, *next;
1851 for (type = 0; type < nr_swapfiles; type++)
1852 if (swap_info[type]->inuse_pages)
1854 spin_lock(&mmlist_lock);
1855 list_for_each_safe(p, next, &init_mm.mmlist)
1857 spin_unlock(&mmlist_lock);
1861 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1862 * corresponds to page offset for the specified swap entry.
1863 * Note that the type of this function is sector_t, but it returns page offset
1864 * into the bdev, not sector offset.
1866 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1868 struct swap_info_struct *sis;
1869 struct swap_extent *start_se;
1870 struct swap_extent *se;
1873 sis = swap_info[swp_type(entry)];
1876 offset = swp_offset(entry);
1877 start_se = sis->curr_swap_extent;
1881 if (se->start_page <= offset &&
1882 offset < (se->start_page + se->nr_pages)) {
1883 return se->start_block + (offset - se->start_page);
1885 se = list_next_entry(se, list);
1886 sis->curr_swap_extent = se;
1887 BUG_ON(se == start_se); /* It *must* be present */
1892 * Returns the page offset into bdev for the specified page's swap entry.
1894 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1897 entry.val = page_private(page);
1898 return map_swap_entry(entry, bdev);
1902 * Free all of a swapdev's extent information
1904 static void destroy_swap_extents(struct swap_info_struct *sis)
1906 while (!list_empty(&sis->first_swap_extent.list)) {
1907 struct swap_extent *se;
1909 se = list_first_entry(&sis->first_swap_extent.list,
1910 struct swap_extent, list);
1911 list_del(&se->list);
1915 if (sis->flags & SWP_FILE) {
1916 struct file *swap_file = sis->swap_file;
1917 struct address_space *mapping = swap_file->f_mapping;
1919 sis->flags &= ~SWP_FILE;
1920 mapping->a_ops->swap_deactivate(swap_file);
1925 * Add a block range (and the corresponding page range) into this swapdev's
1926 * extent list. The extent list is kept sorted in page order.
1928 * This function rather assumes that it is called in ascending page order.
1931 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1932 unsigned long nr_pages, sector_t start_block)
1934 struct swap_extent *se;
1935 struct swap_extent *new_se;
1936 struct list_head *lh;
1938 if (start_page == 0) {
1939 se = &sis->first_swap_extent;
1940 sis->curr_swap_extent = se;
1942 se->nr_pages = nr_pages;
1943 se->start_block = start_block;
1946 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1947 se = list_entry(lh, struct swap_extent, list);
1948 BUG_ON(se->start_page + se->nr_pages != start_page);
1949 if (se->start_block + se->nr_pages == start_block) {
1951 se->nr_pages += nr_pages;
1957 * No merge. Insert a new extent, preserving ordering.
1959 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1962 new_se->start_page = start_page;
1963 new_se->nr_pages = nr_pages;
1964 new_se->start_block = start_block;
1966 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1971 * A `swap extent' is a simple thing which maps a contiguous range of pages
1972 * onto a contiguous range of disk blocks. An ordered list of swap extents
1973 * is built at swapon time and is then used at swap_writepage/swap_readpage
1974 * time for locating where on disk a page belongs.
1976 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1977 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1978 * swap files identically.
1980 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1981 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1982 * swapfiles are handled *identically* after swapon time.
1984 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1985 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1986 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1987 * requirements, they are simply tossed out - we will never use those blocks
1990 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1991 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1992 * which will scribble on the fs.
1994 * The amount of disk space which a single swap extent represents varies.
1995 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1996 * extents in the list. To avoid much list walking, we cache the previous
1997 * search location in `curr_swap_extent', and start new searches from there.
1998 * This is extremely effective. The average number of iterations in
1999 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2001 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2003 struct file *swap_file = sis->swap_file;
2004 struct address_space *mapping = swap_file->f_mapping;
2005 struct inode *inode = mapping->host;
2008 if (S_ISBLK(inode->i_mode)) {
2009 ret = add_swap_extent(sis, 0, sis->max, 0);
2014 if (mapping->a_ops->swap_activate) {
2015 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2017 sis->flags |= SWP_FILE;
2018 ret = add_swap_extent(sis, 0, sis->max, 0);
2024 return generic_swapfile_activate(sis, swap_file, span);
2027 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2028 unsigned char *swap_map,
2029 struct swap_cluster_info *cluster_info)
2034 p->prio = --least_priority;
2036 * the plist prio is negated because plist ordering is
2037 * low-to-high, while swap ordering is high-to-low
2039 p->list.prio = -p->prio;
2040 p->avail_list.prio = -p->prio;
2041 p->swap_map = swap_map;
2042 p->cluster_info = cluster_info;
2043 p->flags |= SWP_WRITEOK;
2044 atomic_long_add(p->pages, &nr_swap_pages);
2045 total_swap_pages += p->pages;
2047 assert_spin_locked(&swap_lock);
2049 * both lists are plists, and thus priority ordered.
2050 * swap_active_head needs to be priority ordered for swapoff(),
2051 * which on removal of any swap_info_struct with an auto-assigned
2052 * (i.e. negative) priority increments the auto-assigned priority
2053 * of any lower-priority swap_info_structs.
2054 * swap_avail_head needs to be priority ordered for get_swap_page(),
2055 * which allocates swap pages from the highest available priority
2058 plist_add(&p->list, &swap_active_head);
2059 spin_lock(&swap_avail_lock);
2060 plist_add(&p->avail_list, &swap_avail_head);
2061 spin_unlock(&swap_avail_lock);
2064 static void enable_swap_info(struct swap_info_struct *p, int prio,
2065 unsigned char *swap_map,
2066 struct swap_cluster_info *cluster_info,
2067 unsigned long *frontswap_map)
2069 frontswap_init(p->type, frontswap_map);
2070 spin_lock(&swap_lock);
2071 spin_lock(&p->lock);
2072 _enable_swap_info(p, prio, swap_map, cluster_info);
2073 spin_unlock(&p->lock);
2074 spin_unlock(&swap_lock);
2077 static void reinsert_swap_info(struct swap_info_struct *p)
2079 spin_lock(&swap_lock);
2080 spin_lock(&p->lock);
2081 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2082 spin_unlock(&p->lock);
2083 spin_unlock(&swap_lock);
2086 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2088 struct swap_info_struct *p = NULL;
2089 unsigned char *swap_map;
2090 struct swap_cluster_info *cluster_info;
2091 unsigned long *frontswap_map;
2092 struct file *swap_file, *victim;
2093 struct address_space *mapping;
2094 struct inode *inode;
2095 struct filename *pathname;
2097 unsigned int old_block_size;
2099 if (!capable(CAP_SYS_ADMIN))
2102 BUG_ON(!current->mm);
2104 pathname = getname(specialfile);
2105 if (IS_ERR(pathname))
2106 return PTR_ERR(pathname);
2108 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2109 err = PTR_ERR(victim);
2113 mapping = victim->f_mapping;
2114 spin_lock(&swap_lock);
2115 plist_for_each_entry(p, &swap_active_head, list) {
2116 if (p->flags & SWP_WRITEOK) {
2117 if (p->swap_file->f_mapping == mapping) {
2125 spin_unlock(&swap_lock);
2128 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2129 vm_unacct_memory(p->pages);
2132 spin_unlock(&swap_lock);
2135 spin_lock(&swap_avail_lock);
2136 plist_del(&p->avail_list, &swap_avail_head);
2137 spin_unlock(&swap_avail_lock);
2138 spin_lock(&p->lock);
2140 struct swap_info_struct *si = p;
2142 plist_for_each_entry_continue(si, &swap_active_head, list) {
2145 si->avail_list.prio--;
2149 plist_del(&p->list, &swap_active_head);
2150 atomic_long_sub(p->pages, &nr_swap_pages);
2151 total_swap_pages -= p->pages;
2152 p->flags &= ~SWP_WRITEOK;
2153 spin_unlock(&p->lock);
2154 spin_unlock(&swap_lock);
2156 set_current_oom_origin();
2157 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2158 clear_current_oom_origin();
2161 /* re-insert swap space back into swap_list */
2162 reinsert_swap_info(p);
2166 flush_work(&p->discard_work);
2168 destroy_swap_extents(p);
2169 if (p->flags & SWP_CONTINUED)
2170 free_swap_count_continuations(p);
2172 mutex_lock(&swapon_mutex);
2173 spin_lock(&swap_lock);
2174 spin_lock(&p->lock);
2177 /* wait for anyone still in scan_swap_map */
2178 p->highest_bit = 0; /* cuts scans short */
2179 while (p->flags >= SWP_SCANNING) {
2180 spin_unlock(&p->lock);
2181 spin_unlock(&swap_lock);
2182 schedule_timeout_uninterruptible(1);
2183 spin_lock(&swap_lock);
2184 spin_lock(&p->lock);
2187 swap_file = p->swap_file;
2188 old_block_size = p->old_block_size;
2189 p->swap_file = NULL;
2191 swap_map = p->swap_map;
2193 cluster_info = p->cluster_info;
2194 p->cluster_info = NULL;
2195 frontswap_map = frontswap_map_get(p);
2196 spin_unlock(&p->lock);
2197 spin_unlock(&swap_lock);
2198 frontswap_invalidate_area(p->type);
2199 frontswap_map_set(p, NULL);
2200 mutex_unlock(&swapon_mutex);
2201 free_percpu(p->percpu_cluster);
2202 p->percpu_cluster = NULL;
2204 vfree(cluster_info);
2205 vfree(frontswap_map);
2206 /* Destroy swap account information */
2207 swap_cgroup_swapoff(p->type);
2208 exit_swap_address_space(p->type);
2210 inode = mapping->host;
2211 if (S_ISBLK(inode->i_mode)) {
2212 struct block_device *bdev = I_BDEV(inode);
2213 set_blocksize(bdev, old_block_size);
2214 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2217 inode->i_flags &= ~S_SWAPFILE;
2218 inode_unlock(inode);
2220 filp_close(swap_file, NULL);
2223 * Clear the SWP_USED flag after all resources are freed so that swapon
2224 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2225 * not hold p->lock after we cleared its SWP_WRITEOK.
2227 spin_lock(&swap_lock);
2229 spin_unlock(&swap_lock);
2232 atomic_inc(&proc_poll_event);
2233 wake_up_interruptible(&proc_poll_wait);
2236 filp_close(victim, NULL);
2242 #ifdef CONFIG_PROC_FS
2243 static unsigned swaps_poll(struct file *file, poll_table *wait)
2245 struct seq_file *seq = file->private_data;
2247 poll_wait(file, &proc_poll_wait, wait);
2249 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2250 seq->poll_event = atomic_read(&proc_poll_event);
2251 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2254 return POLLIN | POLLRDNORM;
2258 static void *swap_start(struct seq_file *swap, loff_t *pos)
2260 struct swap_info_struct *si;
2264 mutex_lock(&swapon_mutex);
2267 return SEQ_START_TOKEN;
2269 for (type = 0; type < nr_swapfiles; type++) {
2270 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2271 si = swap_info[type];
2272 if (!(si->flags & SWP_USED) || !si->swap_map)
2281 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2283 struct swap_info_struct *si = v;
2286 if (v == SEQ_START_TOKEN)
2289 type = si->type + 1;
2291 for (; type < nr_swapfiles; type++) {
2292 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2293 si = swap_info[type];
2294 if (!(si->flags & SWP_USED) || !si->swap_map)
2303 static void swap_stop(struct seq_file *swap, void *v)
2305 mutex_unlock(&swapon_mutex);
2308 static int swap_show(struct seq_file *swap, void *v)
2310 struct swap_info_struct *si = v;
2314 if (si == SEQ_START_TOKEN) {
2315 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2319 file = si->swap_file;
2320 len = seq_file_path(swap, file, " \t\n\\");
2321 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2322 len < 40 ? 40 - len : 1, " ",
2323 S_ISBLK(file_inode(file)->i_mode) ?
2324 "partition" : "file\t",
2325 si->pages << (PAGE_SHIFT - 10),
2326 si->inuse_pages << (PAGE_SHIFT - 10),
2331 static const struct seq_operations swaps_op = {
2332 .start = swap_start,
2338 static int swaps_open(struct inode *inode, struct file *file)
2340 struct seq_file *seq;
2343 ret = seq_open(file, &swaps_op);
2347 seq = file->private_data;
2348 seq->poll_event = atomic_read(&proc_poll_event);
2352 static const struct file_operations proc_swaps_operations = {
2355 .llseek = seq_lseek,
2356 .release = seq_release,
2360 static int __init procswaps_init(void)
2362 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2365 __initcall(procswaps_init);
2366 #endif /* CONFIG_PROC_FS */
2368 #ifdef MAX_SWAPFILES_CHECK
2369 static int __init max_swapfiles_check(void)
2371 MAX_SWAPFILES_CHECK();
2374 late_initcall(max_swapfiles_check);
2377 static struct swap_info_struct *alloc_swap_info(void)
2379 struct swap_info_struct *p;
2382 p = kzalloc(sizeof(*p), GFP_KERNEL);
2384 return ERR_PTR(-ENOMEM);
2386 spin_lock(&swap_lock);
2387 for (type = 0; type < nr_swapfiles; type++) {
2388 if (!(swap_info[type]->flags & SWP_USED))
2391 if (type >= MAX_SWAPFILES) {
2392 spin_unlock(&swap_lock);
2394 return ERR_PTR(-EPERM);
2396 if (type >= nr_swapfiles) {
2398 swap_info[type] = p;
2400 * Write swap_info[type] before nr_swapfiles, in case a
2401 * racing procfs swap_start() or swap_next() is reading them.
2402 * (We never shrink nr_swapfiles, we never free this entry.)
2408 p = swap_info[type];
2410 * Do not memset this entry: a racing procfs swap_next()
2411 * would be relying on p->type to remain valid.
2414 INIT_LIST_HEAD(&p->first_swap_extent.list);
2415 plist_node_init(&p->list, 0);
2416 plist_node_init(&p->avail_list, 0);
2417 p->flags = SWP_USED;
2418 spin_unlock(&swap_lock);
2419 spin_lock_init(&p->lock);
2424 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2428 if (S_ISBLK(inode->i_mode)) {
2429 p->bdev = bdgrab(I_BDEV(inode));
2430 error = blkdev_get(p->bdev,
2431 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2436 p->old_block_size = block_size(p->bdev);
2437 error = set_blocksize(p->bdev, PAGE_SIZE);
2440 p->flags |= SWP_BLKDEV;
2441 } else if (S_ISREG(inode->i_mode)) {
2442 p->bdev = inode->i_sb->s_bdev;
2444 if (IS_SWAPFILE(inode))
2452 static unsigned long read_swap_header(struct swap_info_struct *p,
2453 union swap_header *swap_header,
2454 struct inode *inode)
2457 unsigned long maxpages;
2458 unsigned long swapfilepages;
2459 unsigned long last_page;
2461 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2462 pr_err("Unable to find swap-space signature\n");
2466 /* swap partition endianess hack... */
2467 if (swab32(swap_header->info.version) == 1) {
2468 swab32s(&swap_header->info.version);
2469 swab32s(&swap_header->info.last_page);
2470 swab32s(&swap_header->info.nr_badpages);
2471 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2473 for (i = 0; i < swap_header->info.nr_badpages; i++)
2474 swab32s(&swap_header->info.badpages[i]);
2476 /* Check the swap header's sub-version */
2477 if (swap_header->info.version != 1) {
2478 pr_warn("Unable to handle swap header version %d\n",
2479 swap_header->info.version);
2484 p->cluster_next = 1;
2488 * Find out how many pages are allowed for a single swap
2489 * device. There are two limiting factors: 1) the number
2490 * of bits for the swap offset in the swp_entry_t type, and
2491 * 2) the number of bits in the swap pte as defined by the
2492 * different architectures. In order to find the
2493 * largest possible bit mask, a swap entry with swap type 0
2494 * and swap offset ~0UL is created, encoded to a swap pte,
2495 * decoded to a swp_entry_t again, and finally the swap
2496 * offset is extracted. This will mask all the bits from
2497 * the initial ~0UL mask that can't be encoded in either
2498 * the swp_entry_t or the architecture definition of a
2501 maxpages = swp_offset(pte_to_swp_entry(
2502 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2503 last_page = swap_header->info.last_page;
2504 if (last_page > maxpages) {
2505 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2506 maxpages << (PAGE_SHIFT - 10),
2507 last_page << (PAGE_SHIFT - 10));
2509 if (maxpages > last_page) {
2510 maxpages = last_page + 1;
2511 /* p->max is an unsigned int: don't overflow it */
2512 if ((unsigned int)maxpages == 0)
2513 maxpages = UINT_MAX;
2515 p->highest_bit = maxpages - 1;
2519 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2520 if (swapfilepages && maxpages > swapfilepages) {
2521 pr_warn("Swap area shorter than signature indicates\n");
2524 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2526 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2532 #define SWAP_CLUSTER_INFO_COLS \
2533 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2534 #define SWAP_CLUSTER_SPACE_COLS \
2535 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2536 #define SWAP_CLUSTER_COLS \
2537 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2539 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2540 union swap_header *swap_header,
2541 unsigned char *swap_map,
2542 struct swap_cluster_info *cluster_info,
2543 unsigned long maxpages,
2547 unsigned int nr_good_pages;
2549 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2550 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2551 unsigned long i, idx;
2553 nr_good_pages = maxpages - 1; /* omit header page */
2555 cluster_list_init(&p->free_clusters);
2556 cluster_list_init(&p->discard_clusters);
2558 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2559 unsigned int page_nr = swap_header->info.badpages[i];
2560 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2562 if (page_nr < maxpages) {
2563 swap_map[page_nr] = SWAP_MAP_BAD;
2566 * Haven't marked the cluster free yet, no list
2567 * operation involved
2569 inc_cluster_info_page(p, cluster_info, page_nr);
2573 /* Haven't marked the cluster free yet, no list operation involved */
2574 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2575 inc_cluster_info_page(p, cluster_info, i);
2577 if (nr_good_pages) {
2578 swap_map[0] = SWAP_MAP_BAD;
2580 * Not mark the cluster free yet, no list
2581 * operation involved
2583 inc_cluster_info_page(p, cluster_info, 0);
2585 p->pages = nr_good_pages;
2586 nr_extents = setup_swap_extents(p, span);
2589 nr_good_pages = p->pages;
2591 if (!nr_good_pages) {
2592 pr_warn("Empty swap-file\n");
2601 * Reduce false cache line sharing between cluster_info and
2602 * sharing same address space.
2604 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2605 j = (k + col) % SWAP_CLUSTER_COLS;
2606 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2607 idx = i * SWAP_CLUSTER_COLS + j;
2608 if (idx >= nr_clusters)
2610 if (cluster_count(&cluster_info[idx]))
2612 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2613 cluster_list_add_tail(&p->free_clusters, cluster_info,
2621 * Helper to sys_swapon determining if a given swap
2622 * backing device queue supports DISCARD operations.
2624 static bool swap_discardable(struct swap_info_struct *si)
2626 struct request_queue *q = bdev_get_queue(si->bdev);
2628 if (!q || !blk_queue_discard(q))
2634 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2636 struct swap_info_struct *p;
2637 struct filename *name;
2638 struct file *swap_file = NULL;
2639 struct address_space *mapping;
2642 union swap_header *swap_header;
2645 unsigned long maxpages;
2646 unsigned char *swap_map = NULL;
2647 struct swap_cluster_info *cluster_info = NULL;
2648 unsigned long *frontswap_map = NULL;
2649 struct page *page = NULL;
2650 struct inode *inode = NULL;
2652 if (swap_flags & ~SWAP_FLAGS_VALID)
2655 if (!capable(CAP_SYS_ADMIN))
2658 p = alloc_swap_info();
2662 INIT_WORK(&p->discard_work, swap_discard_work);
2664 name = getname(specialfile);
2666 error = PTR_ERR(name);
2670 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2671 if (IS_ERR(swap_file)) {
2672 error = PTR_ERR(swap_file);
2677 p->swap_file = swap_file;
2678 mapping = swap_file->f_mapping;
2679 inode = mapping->host;
2681 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2682 error = claim_swapfile(p, inode);
2683 if (unlikely(error))
2687 * Read the swap header.
2689 if (!mapping->a_ops->readpage) {
2693 page = read_mapping_page(mapping, 0, swap_file);
2695 error = PTR_ERR(page);
2698 swap_header = kmap(page);
2700 maxpages = read_swap_header(p, swap_header, inode);
2701 if (unlikely(!maxpages)) {
2706 /* OK, set up the swap map and apply the bad block list */
2707 swap_map = vzalloc(maxpages);
2713 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2714 p->flags |= SWP_STABLE_WRITES;
2716 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2718 unsigned long ci, nr_cluster;
2720 p->flags |= SWP_SOLIDSTATE;
2722 * select a random position to start with to help wear leveling
2725 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2726 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2728 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2729 if (!cluster_info) {
2734 for (ci = 0; ci < nr_cluster; ci++)
2735 spin_lock_init(&((cluster_info + ci)->lock));
2737 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2738 if (!p->percpu_cluster) {
2742 for_each_possible_cpu(cpu) {
2743 struct percpu_cluster *cluster;
2744 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2745 cluster_set_null(&cluster->index);
2749 error = swap_cgroup_swapon(p->type, maxpages);
2753 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2754 cluster_info, maxpages, &span);
2755 if (unlikely(nr_extents < 0)) {
2759 /* frontswap enabled? set up bit-per-page map for frontswap */
2760 if (IS_ENABLED(CONFIG_FRONTSWAP))
2761 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2763 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2765 * When discard is enabled for swap with no particular
2766 * policy flagged, we set all swap discard flags here in
2767 * order to sustain backward compatibility with older
2768 * swapon(8) releases.
2770 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2774 * By flagging sys_swapon, a sysadmin can tell us to
2775 * either do single-time area discards only, or to just
2776 * perform discards for released swap page-clusters.
2777 * Now it's time to adjust the p->flags accordingly.
2779 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2780 p->flags &= ~SWP_PAGE_DISCARD;
2781 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2782 p->flags &= ~SWP_AREA_DISCARD;
2784 /* issue a swapon-time discard if it's still required */
2785 if (p->flags & SWP_AREA_DISCARD) {
2786 int err = discard_swap(p);
2788 pr_err("swapon: discard_swap(%p): %d\n",
2793 error = init_swap_address_space(p->type, maxpages);
2797 mutex_lock(&swapon_mutex);
2799 if (swap_flags & SWAP_FLAG_PREFER)
2801 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2802 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2804 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2805 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2806 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2807 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2808 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2809 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2810 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2811 (frontswap_map) ? "FS" : "");
2813 mutex_unlock(&swapon_mutex);
2814 atomic_inc(&proc_poll_event);
2815 wake_up_interruptible(&proc_poll_wait);
2817 if (S_ISREG(inode->i_mode))
2818 inode->i_flags |= S_SWAPFILE;
2822 free_percpu(p->percpu_cluster);
2823 p->percpu_cluster = NULL;
2824 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2825 set_blocksize(p->bdev, p->old_block_size);
2826 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2828 destroy_swap_extents(p);
2829 swap_cgroup_swapoff(p->type);
2830 spin_lock(&swap_lock);
2831 p->swap_file = NULL;
2833 spin_unlock(&swap_lock);
2835 vfree(cluster_info);
2837 if (inode && S_ISREG(inode->i_mode)) {
2838 inode_unlock(inode);
2841 filp_close(swap_file, NULL);
2844 if (page && !IS_ERR(page)) {
2850 if (inode && S_ISREG(inode->i_mode))
2851 inode_unlock(inode);
2855 void si_swapinfo(struct sysinfo *val)
2858 unsigned long nr_to_be_unused = 0;
2860 spin_lock(&swap_lock);
2861 for (type = 0; type < nr_swapfiles; type++) {
2862 struct swap_info_struct *si = swap_info[type];
2864 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2865 nr_to_be_unused += si->inuse_pages;
2867 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2868 val->totalswap = total_swap_pages + nr_to_be_unused;
2869 spin_unlock(&swap_lock);
2873 * Verify that a swap entry is valid and increment its swap map count.
2875 * Returns error code in following case.
2877 * - swp_entry is invalid -> EINVAL
2878 * - swp_entry is migration entry -> EINVAL
2879 * - swap-cache reference is requested but there is already one. -> EEXIST
2880 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2881 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2883 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2885 struct swap_info_struct *p;
2886 struct swap_cluster_info *ci;
2887 unsigned long offset, type;
2888 unsigned char count;
2889 unsigned char has_cache;
2892 if (non_swap_entry(entry))
2895 type = swp_type(entry);
2896 if (type >= nr_swapfiles)
2898 p = swap_info[type];
2899 offset = swp_offset(entry);
2900 if (unlikely(offset >= p->max))
2903 ci = lock_cluster_or_swap_info(p, offset);
2905 count = p->swap_map[offset];
2908 * swapin_readahead() doesn't check if a swap entry is valid, so the
2909 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2911 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2916 has_cache = count & SWAP_HAS_CACHE;
2917 count &= ~SWAP_HAS_CACHE;
2920 if (usage == SWAP_HAS_CACHE) {
2922 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2923 if (!has_cache && count)
2924 has_cache = SWAP_HAS_CACHE;
2925 else if (has_cache) /* someone else added cache */
2927 else /* no users remaining */
2930 } else if (count || has_cache) {
2932 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2934 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2936 else if (swap_count_continued(p, offset, count))
2937 count = COUNT_CONTINUED;
2941 err = -ENOENT; /* unused swap entry */
2943 p->swap_map[offset] = count | has_cache;
2946 unlock_cluster_or_swap_info(p, ci);
2951 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2956 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2957 * (in which case its reference count is never incremented).
2959 void swap_shmem_alloc(swp_entry_t entry)
2961 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2965 * Increase reference count of swap entry by 1.
2966 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2967 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2968 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2969 * might occur if a page table entry has got corrupted.
2971 int swap_duplicate(swp_entry_t entry)
2975 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2976 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2981 * @entry: swap entry for which we allocate swap cache.
2983 * Called when allocating swap cache for existing swap entry,
2984 * This can return error codes. Returns 0 at success.
2985 * -EBUSY means there is a swap cache.
2986 * Note: return code is different from swap_duplicate().
2988 int swapcache_prepare(swp_entry_t entry)
2990 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2993 struct swap_info_struct *page_swap_info(struct page *page)
2995 swp_entry_t swap = { .val = page_private(page) };
2996 return swap_info[swp_type(swap)];
3000 * out-of-line __page_file_ methods to avoid include hell.
3002 struct address_space *__page_file_mapping(struct page *page)
3004 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3005 return page_swap_info(page)->swap_file->f_mapping;
3007 EXPORT_SYMBOL_GPL(__page_file_mapping);
3009 pgoff_t __page_file_index(struct page *page)
3011 swp_entry_t swap = { .val = page_private(page) };
3012 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3013 return swp_offset(swap);
3015 EXPORT_SYMBOL_GPL(__page_file_index);
3018 * add_swap_count_continuation - called when a swap count is duplicated
3019 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3020 * page of the original vmalloc'ed swap_map, to hold the continuation count
3021 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3022 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3024 * These continuation pages are seldom referenced: the common paths all work
3025 * on the original swap_map, only referring to a continuation page when the
3026 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3028 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3029 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3030 * can be called after dropping locks.
3032 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3034 struct swap_info_struct *si;
3035 struct swap_cluster_info *ci;
3038 struct page *list_page;
3040 unsigned char count;
3043 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3044 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3046 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3048 si = swap_info_get(entry);
3051 * An acceptable race has occurred since the failing
3052 * __swap_duplicate(): the swap entry has been freed,
3053 * perhaps even the whole swap_map cleared for swapoff.
3058 offset = swp_offset(entry);
3060 ci = lock_cluster(si, offset);
3062 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3064 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3066 * The higher the swap count, the more likely it is that tasks
3067 * will race to add swap count continuation: we need to avoid
3068 * over-provisioning.
3075 spin_unlock(&si->lock);
3080 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3081 * no architecture is using highmem pages for kernel page tables: so it
3082 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3084 head = vmalloc_to_page(si->swap_map + offset);
3085 offset &= ~PAGE_MASK;
3088 * Page allocation does not initialize the page's lru field,
3089 * but it does always reset its private field.
3091 if (!page_private(head)) {
3092 BUG_ON(count & COUNT_CONTINUED);
3093 INIT_LIST_HEAD(&head->lru);
3094 set_page_private(head, SWP_CONTINUED);
3095 si->flags |= SWP_CONTINUED;
3098 list_for_each_entry(list_page, &head->lru, lru) {
3102 * If the previous map said no continuation, but we've found
3103 * a continuation page, free our allocation and use this one.
3105 if (!(count & COUNT_CONTINUED))
3108 map = kmap_atomic(list_page) + offset;
3113 * If this continuation count now has some space in it,
3114 * free our allocation and use this one.
3116 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3120 list_add_tail(&page->lru, &head->lru);
3121 page = NULL; /* now it's attached, don't free it */
3124 spin_unlock(&si->lock);
3132 * swap_count_continued - when the original swap_map count is incremented
3133 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3134 * into, carry if so, or else fail until a new continuation page is allocated;
3135 * when the original swap_map count is decremented from 0 with continuation,
3136 * borrow from the continuation and report whether it still holds more.
3137 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3140 static bool swap_count_continued(struct swap_info_struct *si,
3141 pgoff_t offset, unsigned char count)
3147 head = vmalloc_to_page(si->swap_map + offset);
3148 if (page_private(head) != SWP_CONTINUED) {
3149 BUG_ON(count & COUNT_CONTINUED);
3150 return false; /* need to add count continuation */
3153 offset &= ~PAGE_MASK;
3154 page = list_entry(head->lru.next, struct page, lru);
3155 map = kmap_atomic(page) + offset;
3157 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3158 goto init_map; /* jump over SWAP_CONT_MAX checks */
3160 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3162 * Think of how you add 1 to 999
3164 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3166 page = list_entry(page->lru.next, struct page, lru);
3167 BUG_ON(page == head);
3168 map = kmap_atomic(page) + offset;
3170 if (*map == SWAP_CONT_MAX) {
3172 page = list_entry(page->lru.next, struct page, lru);
3174 return false; /* add count continuation */
3175 map = kmap_atomic(page) + offset;
3176 init_map: *map = 0; /* we didn't zero the page */
3180 page = list_entry(page->lru.prev, struct page, lru);
3181 while (page != head) {
3182 map = kmap_atomic(page) + offset;
3183 *map = COUNT_CONTINUED;
3185 page = list_entry(page->lru.prev, struct page, lru);
3187 return true; /* incremented */
3189 } else { /* decrementing */
3191 * Think of how you subtract 1 from 1000
3193 BUG_ON(count != COUNT_CONTINUED);
3194 while (*map == COUNT_CONTINUED) {
3196 page = list_entry(page->lru.next, struct page, lru);
3197 BUG_ON(page == head);
3198 map = kmap_atomic(page) + offset;
3205 page = list_entry(page->lru.prev, struct page, lru);
3206 while (page != head) {
3207 map = kmap_atomic(page) + offset;
3208 *map = SWAP_CONT_MAX | count;
3209 count = COUNT_CONTINUED;
3211 page = list_entry(page->lru.prev, struct page, lru);
3213 return count == COUNT_CONTINUED;
3218 * free_swap_count_continuations - swapoff free all the continuation pages
3219 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3221 static void free_swap_count_continuations(struct swap_info_struct *si)
3225 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3227 head = vmalloc_to_page(si->swap_map + offset);
3228 if (page_private(head)) {
3229 struct page *page, *next;
3231 list_for_each_entry_safe(page, next, &head->lru, lru) {
3232 list_del(&page->lru);