]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/swapfile.c
Merge remote-tracking branches 'asoc/fix/fsl-mxs-saif' and 'asoc/fix/sunxi' into...
[karo-tx-linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /*
52  * Some modules use swappable objects and may try to swap them out under
53  * memory pressure (via the shrinker). Before doing so, they may wish to
54  * check to see if any swap space is available.
55  */
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
60
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
65
66 /*
67  * all active swap_info_structs
68  * protected with swap_lock, and ordered by priority.
69  */
70 PLIST_HEAD(swap_active_head);
71
72 /*
73  * all available (active, not full) swap_info_structs
74  * protected with swap_avail_lock, ordered by priority.
75  * This is used by get_swap_page() instead of swap_active_head
76  * because swap_active_head includes all swap_info_structs,
77  * but get_swap_page() doesn't need to look at full ones.
78  * This uses its own lock instead of swap_lock because when a
79  * swap_info_struct changes between not-full/full, it needs to
80  * add/remove itself to/from this list, but the swap_info_struct->lock
81  * is held and the locking order requires swap_lock to be taken
82  * before any swap_info_struct->lock.
83  */
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
86
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
88
89 static DEFINE_MUTEX(swapon_mutex);
90
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
94
95 static inline unsigned char swap_count(unsigned char ent)
96 {
97         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
98 }
99
100 /* returns 1 if swap entry is freed */
101 static int
102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103 {
104         swp_entry_t entry = swp_entry(si->type, offset);
105         struct page *page;
106         int ret = 0;
107
108         page = find_get_page(swap_address_space(entry), swp_offset(entry));
109         if (!page)
110                 return 0;
111         /*
112          * This function is called from scan_swap_map() and it's called
113          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114          * We have to use trylock for avoiding deadlock. This is a special
115          * case and you should use try_to_free_swap() with explicit lock_page()
116          * in usual operations.
117          */
118         if (trylock_page(page)) {
119                 ret = try_to_free_swap(page);
120                 unlock_page(page);
121         }
122         put_page(page);
123         return ret;
124 }
125
126 /*
127  * swapon tell device that all the old swap contents can be discarded,
128  * to allow the swap device to optimize its wear-levelling.
129  */
130 static int discard_swap(struct swap_info_struct *si)
131 {
132         struct swap_extent *se;
133         sector_t start_block;
134         sector_t nr_blocks;
135         int err = 0;
136
137         /* Do not discard the swap header page! */
138         se = &si->first_swap_extent;
139         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141         if (nr_blocks) {
142                 err = blkdev_issue_discard(si->bdev, start_block,
143                                 nr_blocks, GFP_KERNEL, 0);
144                 if (err)
145                         return err;
146                 cond_resched();
147         }
148
149         list_for_each_entry(se, &si->first_swap_extent.list, list) {
150                 start_block = se->start_block << (PAGE_SHIFT - 9);
151                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152
153                 err = blkdev_issue_discard(si->bdev, start_block,
154                                 nr_blocks, GFP_KERNEL, 0);
155                 if (err)
156                         break;
157
158                 cond_resched();
159         }
160         return err;             /* That will often be -EOPNOTSUPP */
161 }
162
163 /*
164  * swap allocation tell device that a cluster of swap can now be discarded,
165  * to allow the swap device to optimize its wear-levelling.
166  */
167 static void discard_swap_cluster(struct swap_info_struct *si,
168                                  pgoff_t start_page, pgoff_t nr_pages)
169 {
170         struct swap_extent *se = si->curr_swap_extent;
171         int found_extent = 0;
172
173         while (nr_pages) {
174                 if (se->start_page <= start_page &&
175                     start_page < se->start_page + se->nr_pages) {
176                         pgoff_t offset = start_page - se->start_page;
177                         sector_t start_block = se->start_block + offset;
178                         sector_t nr_blocks = se->nr_pages - offset;
179
180                         if (nr_blocks > nr_pages)
181                                 nr_blocks = nr_pages;
182                         start_page += nr_blocks;
183                         nr_pages -= nr_blocks;
184
185                         if (!found_extent++)
186                                 si->curr_swap_extent = se;
187
188                         start_block <<= PAGE_SHIFT - 9;
189                         nr_blocks <<= PAGE_SHIFT - 9;
190                         if (blkdev_issue_discard(si->bdev, start_block,
191                                     nr_blocks, GFP_NOIO, 0))
192                                 break;
193                 }
194
195                 se = list_next_entry(se, list);
196         }
197 }
198
199 #define SWAPFILE_CLUSTER        256
200 #define LATENCY_LIMIT           256
201
202 static inline void cluster_set_flag(struct swap_cluster_info *info,
203         unsigned int flag)
204 {
205         info->flags = flag;
206 }
207
208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
209 {
210         return info->data;
211 }
212
213 static inline void cluster_set_count(struct swap_cluster_info *info,
214                                      unsigned int c)
215 {
216         info->data = c;
217 }
218
219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220                                          unsigned int c, unsigned int f)
221 {
222         info->flags = f;
223         info->data = c;
224 }
225
226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
227 {
228         return info->data;
229 }
230
231 static inline void cluster_set_next(struct swap_cluster_info *info,
232                                     unsigned int n)
233 {
234         info->data = n;
235 }
236
237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238                                          unsigned int n, unsigned int f)
239 {
240         info->flags = f;
241         info->data = n;
242 }
243
244 static inline bool cluster_is_free(struct swap_cluster_info *info)
245 {
246         return info->flags & CLUSTER_FLAG_FREE;
247 }
248
249 static inline bool cluster_is_null(struct swap_cluster_info *info)
250 {
251         return info->flags & CLUSTER_FLAG_NEXT_NULL;
252 }
253
254 static inline void cluster_set_null(struct swap_cluster_info *info)
255 {
256         info->flags = CLUSTER_FLAG_NEXT_NULL;
257         info->data = 0;
258 }
259
260 static inline bool cluster_list_empty(struct swap_cluster_list *list)
261 {
262         return cluster_is_null(&list->head);
263 }
264
265 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
266 {
267         return cluster_next(&list->head);
268 }
269
270 static void cluster_list_init(struct swap_cluster_list *list)
271 {
272         cluster_set_null(&list->head);
273         cluster_set_null(&list->tail);
274 }
275
276 static void cluster_list_add_tail(struct swap_cluster_list *list,
277                                   struct swap_cluster_info *ci,
278                                   unsigned int idx)
279 {
280         if (cluster_list_empty(list)) {
281                 cluster_set_next_flag(&list->head, idx, 0);
282                 cluster_set_next_flag(&list->tail, idx, 0);
283         } else {
284                 unsigned int tail = cluster_next(&list->tail);
285
286                 cluster_set_next(&ci[tail], idx);
287                 cluster_set_next_flag(&list->tail, idx, 0);
288         }
289 }
290
291 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
292                                            struct swap_cluster_info *ci)
293 {
294         unsigned int idx;
295
296         idx = cluster_next(&list->head);
297         if (cluster_next(&list->tail) == idx) {
298                 cluster_set_null(&list->head);
299                 cluster_set_null(&list->tail);
300         } else
301                 cluster_set_next_flag(&list->head,
302                                       cluster_next(&ci[idx]), 0);
303
304         return idx;
305 }
306
307 /* Add a cluster to discard list and schedule it to do discard */
308 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
309                 unsigned int idx)
310 {
311         /*
312          * If scan_swap_map() can't find a free cluster, it will check
313          * si->swap_map directly. To make sure the discarding cluster isn't
314          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
315          * will be cleared after discard
316          */
317         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
318                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
319
320         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
321
322         schedule_work(&si->discard_work);
323 }
324
325 /*
326  * Doing discard actually. After a cluster discard is finished, the cluster
327  * will be added to free cluster list. caller should hold si->lock.
328 */
329 static void swap_do_scheduled_discard(struct swap_info_struct *si)
330 {
331         struct swap_cluster_info *info;
332         unsigned int idx;
333
334         info = si->cluster_info;
335
336         while (!cluster_list_empty(&si->discard_clusters)) {
337                 idx = cluster_list_del_first(&si->discard_clusters, info);
338                 spin_unlock(&si->lock);
339
340                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
341                                 SWAPFILE_CLUSTER);
342
343                 spin_lock(&si->lock);
344                 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
345                 cluster_list_add_tail(&si->free_clusters, info, idx);
346                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
347                                 0, SWAPFILE_CLUSTER);
348         }
349 }
350
351 static void swap_discard_work(struct work_struct *work)
352 {
353         struct swap_info_struct *si;
354
355         si = container_of(work, struct swap_info_struct, discard_work);
356
357         spin_lock(&si->lock);
358         swap_do_scheduled_discard(si);
359         spin_unlock(&si->lock);
360 }
361
362 /*
363  * The cluster corresponding to page_nr will be used. The cluster will be
364  * removed from free cluster list and its usage counter will be increased.
365  */
366 static void inc_cluster_info_page(struct swap_info_struct *p,
367         struct swap_cluster_info *cluster_info, unsigned long page_nr)
368 {
369         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
370
371         if (!cluster_info)
372                 return;
373         if (cluster_is_free(&cluster_info[idx])) {
374                 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
375                 cluster_list_del_first(&p->free_clusters, cluster_info);
376                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
377         }
378
379         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
380         cluster_set_count(&cluster_info[idx],
381                 cluster_count(&cluster_info[idx]) + 1);
382 }
383
384 /*
385  * The cluster corresponding to page_nr decreases one usage. If the usage
386  * counter becomes 0, which means no page in the cluster is in using, we can
387  * optionally discard the cluster and add it to free cluster list.
388  */
389 static void dec_cluster_info_page(struct swap_info_struct *p,
390         struct swap_cluster_info *cluster_info, unsigned long page_nr)
391 {
392         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
393
394         if (!cluster_info)
395                 return;
396
397         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
398         cluster_set_count(&cluster_info[idx],
399                 cluster_count(&cluster_info[idx]) - 1);
400
401         if (cluster_count(&cluster_info[idx]) == 0) {
402                 /*
403                  * If the swap is discardable, prepare discard the cluster
404                  * instead of free it immediately. The cluster will be freed
405                  * after discard.
406                  */
407                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
408                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
409                         swap_cluster_schedule_discard(p, idx);
410                         return;
411                 }
412
413                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
414                 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
415         }
416 }
417
418 /*
419  * It's possible scan_swap_map() uses a free cluster in the middle of free
420  * cluster list. Avoiding such abuse to avoid list corruption.
421  */
422 static bool
423 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
424         unsigned long offset)
425 {
426         struct percpu_cluster *percpu_cluster;
427         bool conflict;
428
429         offset /= SWAPFILE_CLUSTER;
430         conflict = !cluster_list_empty(&si->free_clusters) &&
431                 offset != cluster_list_first(&si->free_clusters) &&
432                 cluster_is_free(&si->cluster_info[offset]);
433
434         if (!conflict)
435                 return false;
436
437         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
438         cluster_set_null(&percpu_cluster->index);
439         return true;
440 }
441
442 /*
443  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
444  * might involve allocating a new cluster for current CPU too.
445  */
446 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
447         unsigned long *offset, unsigned long *scan_base)
448 {
449         struct percpu_cluster *cluster;
450         bool found_free;
451         unsigned long tmp;
452
453 new_cluster:
454         cluster = this_cpu_ptr(si->percpu_cluster);
455         if (cluster_is_null(&cluster->index)) {
456                 if (!cluster_list_empty(&si->free_clusters)) {
457                         cluster->index = si->free_clusters.head;
458                         cluster->next = cluster_next(&cluster->index) *
459                                         SWAPFILE_CLUSTER;
460                 } else if (!cluster_list_empty(&si->discard_clusters)) {
461                         /*
462                          * we don't have free cluster but have some clusters in
463                          * discarding, do discard now and reclaim them
464                          */
465                         swap_do_scheduled_discard(si);
466                         *scan_base = *offset = si->cluster_next;
467                         goto new_cluster;
468                 } else
469                         return;
470         }
471
472         found_free = false;
473
474         /*
475          * Other CPUs can use our cluster if they can't find a free cluster,
476          * check if there is still free entry in the cluster
477          */
478         tmp = cluster->next;
479         while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
480                SWAPFILE_CLUSTER) {
481                 if (!si->swap_map[tmp]) {
482                         found_free = true;
483                         break;
484                 }
485                 tmp++;
486         }
487         if (!found_free) {
488                 cluster_set_null(&cluster->index);
489                 goto new_cluster;
490         }
491         cluster->next = tmp + 1;
492         *offset = tmp;
493         *scan_base = tmp;
494 }
495
496 static unsigned long scan_swap_map(struct swap_info_struct *si,
497                                    unsigned char usage)
498 {
499         unsigned long offset;
500         unsigned long scan_base;
501         unsigned long last_in_cluster = 0;
502         int latency_ration = LATENCY_LIMIT;
503
504         /*
505          * We try to cluster swap pages by allocating them sequentially
506          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
507          * way, however, we resort to first-free allocation, starting
508          * a new cluster.  This prevents us from scattering swap pages
509          * all over the entire swap partition, so that we reduce
510          * overall disk seek times between swap pages.  -- sct
511          * But we do now try to find an empty cluster.  -Andrea
512          * And we let swap pages go all over an SSD partition.  Hugh
513          */
514
515         si->flags += SWP_SCANNING;
516         scan_base = offset = si->cluster_next;
517
518         /* SSD algorithm */
519         if (si->cluster_info) {
520                 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
521                 goto checks;
522         }
523
524         if (unlikely(!si->cluster_nr--)) {
525                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
526                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
527                         goto checks;
528                 }
529
530                 spin_unlock(&si->lock);
531
532                 /*
533                  * If seek is expensive, start searching for new cluster from
534                  * start of partition, to minimize the span of allocated swap.
535                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
536                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
537                  */
538                 scan_base = offset = si->lowest_bit;
539                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
540
541                 /* Locate the first empty (unaligned) cluster */
542                 for (; last_in_cluster <= si->highest_bit; offset++) {
543                         if (si->swap_map[offset])
544                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
545                         else if (offset == last_in_cluster) {
546                                 spin_lock(&si->lock);
547                                 offset -= SWAPFILE_CLUSTER - 1;
548                                 si->cluster_next = offset;
549                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
550                                 goto checks;
551                         }
552                         if (unlikely(--latency_ration < 0)) {
553                                 cond_resched();
554                                 latency_ration = LATENCY_LIMIT;
555                         }
556                 }
557
558                 offset = scan_base;
559                 spin_lock(&si->lock);
560                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
561         }
562
563 checks:
564         if (si->cluster_info) {
565                 while (scan_swap_map_ssd_cluster_conflict(si, offset))
566                         scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
567         }
568         if (!(si->flags & SWP_WRITEOK))
569                 goto no_page;
570         if (!si->highest_bit)
571                 goto no_page;
572         if (offset > si->highest_bit)
573                 scan_base = offset = si->lowest_bit;
574
575         /* reuse swap entry of cache-only swap if not busy. */
576         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
577                 int swap_was_freed;
578                 spin_unlock(&si->lock);
579                 swap_was_freed = __try_to_reclaim_swap(si, offset);
580                 spin_lock(&si->lock);
581                 /* entry was freed successfully, try to use this again */
582                 if (swap_was_freed)
583                         goto checks;
584                 goto scan; /* check next one */
585         }
586
587         if (si->swap_map[offset])
588                 goto scan;
589
590         if (offset == si->lowest_bit)
591                 si->lowest_bit++;
592         if (offset == si->highest_bit)
593                 si->highest_bit--;
594         si->inuse_pages++;
595         if (si->inuse_pages == si->pages) {
596                 si->lowest_bit = si->max;
597                 si->highest_bit = 0;
598                 spin_lock(&swap_avail_lock);
599                 plist_del(&si->avail_list, &swap_avail_head);
600                 spin_unlock(&swap_avail_lock);
601         }
602         si->swap_map[offset] = usage;
603         inc_cluster_info_page(si, si->cluster_info, offset);
604         si->cluster_next = offset + 1;
605         si->flags -= SWP_SCANNING;
606
607         return offset;
608
609 scan:
610         spin_unlock(&si->lock);
611         while (++offset <= si->highest_bit) {
612                 if (!si->swap_map[offset]) {
613                         spin_lock(&si->lock);
614                         goto checks;
615                 }
616                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
617                         spin_lock(&si->lock);
618                         goto checks;
619                 }
620                 if (unlikely(--latency_ration < 0)) {
621                         cond_resched();
622                         latency_ration = LATENCY_LIMIT;
623                 }
624         }
625         offset = si->lowest_bit;
626         while (offset < scan_base) {
627                 if (!si->swap_map[offset]) {
628                         spin_lock(&si->lock);
629                         goto checks;
630                 }
631                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
632                         spin_lock(&si->lock);
633                         goto checks;
634                 }
635                 if (unlikely(--latency_ration < 0)) {
636                         cond_resched();
637                         latency_ration = LATENCY_LIMIT;
638                 }
639                 offset++;
640         }
641         spin_lock(&si->lock);
642
643 no_page:
644         si->flags -= SWP_SCANNING;
645         return 0;
646 }
647
648 swp_entry_t get_swap_page(void)
649 {
650         struct swap_info_struct *si, *next;
651         pgoff_t offset;
652
653         if (atomic_long_read(&nr_swap_pages) <= 0)
654                 goto noswap;
655         atomic_long_dec(&nr_swap_pages);
656
657         spin_lock(&swap_avail_lock);
658
659 start_over:
660         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
661                 /* requeue si to after same-priority siblings */
662                 plist_requeue(&si->avail_list, &swap_avail_head);
663                 spin_unlock(&swap_avail_lock);
664                 spin_lock(&si->lock);
665                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
666                         spin_lock(&swap_avail_lock);
667                         if (plist_node_empty(&si->avail_list)) {
668                                 spin_unlock(&si->lock);
669                                 goto nextsi;
670                         }
671                         WARN(!si->highest_bit,
672                              "swap_info %d in list but !highest_bit\n",
673                              si->type);
674                         WARN(!(si->flags & SWP_WRITEOK),
675                              "swap_info %d in list but !SWP_WRITEOK\n",
676                              si->type);
677                         plist_del(&si->avail_list, &swap_avail_head);
678                         spin_unlock(&si->lock);
679                         goto nextsi;
680                 }
681
682                 /* This is called for allocating swap entry for cache */
683                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
684                 spin_unlock(&si->lock);
685                 if (offset)
686                         return swp_entry(si->type, offset);
687                 pr_debug("scan_swap_map of si %d failed to find offset\n",
688                        si->type);
689                 spin_lock(&swap_avail_lock);
690 nextsi:
691                 /*
692                  * if we got here, it's likely that si was almost full before,
693                  * and since scan_swap_map() can drop the si->lock, multiple
694                  * callers probably all tried to get a page from the same si
695                  * and it filled up before we could get one; or, the si filled
696                  * up between us dropping swap_avail_lock and taking si->lock.
697                  * Since we dropped the swap_avail_lock, the swap_avail_head
698                  * list may have been modified; so if next is still in the
699                  * swap_avail_head list then try it, otherwise start over.
700                  */
701                 if (plist_node_empty(&next->avail_list))
702                         goto start_over;
703         }
704
705         spin_unlock(&swap_avail_lock);
706
707         atomic_long_inc(&nr_swap_pages);
708 noswap:
709         return (swp_entry_t) {0};
710 }
711
712 /* The only caller of this function is now suspend routine */
713 swp_entry_t get_swap_page_of_type(int type)
714 {
715         struct swap_info_struct *si;
716         pgoff_t offset;
717
718         si = swap_info[type];
719         spin_lock(&si->lock);
720         if (si && (si->flags & SWP_WRITEOK)) {
721                 atomic_long_dec(&nr_swap_pages);
722                 /* This is called for allocating swap entry, not cache */
723                 offset = scan_swap_map(si, 1);
724                 if (offset) {
725                         spin_unlock(&si->lock);
726                         return swp_entry(type, offset);
727                 }
728                 atomic_long_inc(&nr_swap_pages);
729         }
730         spin_unlock(&si->lock);
731         return (swp_entry_t) {0};
732 }
733
734 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
735 {
736         struct swap_info_struct *p;
737         unsigned long offset, type;
738
739         if (!entry.val)
740                 goto out;
741         type = swp_type(entry);
742         if (type >= nr_swapfiles)
743                 goto bad_nofile;
744         p = swap_info[type];
745         if (!(p->flags & SWP_USED))
746                 goto bad_device;
747         offset = swp_offset(entry);
748         if (offset >= p->max)
749                 goto bad_offset;
750         if (!p->swap_map[offset])
751                 goto bad_free;
752         spin_lock(&p->lock);
753         return p;
754
755 bad_free:
756         pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
757         goto out;
758 bad_offset:
759         pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
760         goto out;
761 bad_device:
762         pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
763         goto out;
764 bad_nofile:
765         pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
766 out:
767         return NULL;
768 }
769
770 static unsigned char swap_entry_free(struct swap_info_struct *p,
771                                      swp_entry_t entry, unsigned char usage)
772 {
773         unsigned long offset = swp_offset(entry);
774         unsigned char count;
775         unsigned char has_cache;
776
777         count = p->swap_map[offset];
778         has_cache = count & SWAP_HAS_CACHE;
779         count &= ~SWAP_HAS_CACHE;
780
781         if (usage == SWAP_HAS_CACHE) {
782                 VM_BUG_ON(!has_cache);
783                 has_cache = 0;
784         } else if (count == SWAP_MAP_SHMEM) {
785                 /*
786                  * Or we could insist on shmem.c using a special
787                  * swap_shmem_free() and free_shmem_swap_and_cache()...
788                  */
789                 count = 0;
790         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
791                 if (count == COUNT_CONTINUED) {
792                         if (swap_count_continued(p, offset, count))
793                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
794                         else
795                                 count = SWAP_MAP_MAX;
796                 } else
797                         count--;
798         }
799
800         usage = count | has_cache;
801         p->swap_map[offset] = usage;
802
803         /* free if no reference */
804         if (!usage) {
805                 mem_cgroup_uncharge_swap(entry);
806                 dec_cluster_info_page(p, p->cluster_info, offset);
807                 if (offset < p->lowest_bit)
808                         p->lowest_bit = offset;
809                 if (offset > p->highest_bit) {
810                         bool was_full = !p->highest_bit;
811                         p->highest_bit = offset;
812                         if (was_full && (p->flags & SWP_WRITEOK)) {
813                                 spin_lock(&swap_avail_lock);
814                                 WARN_ON(!plist_node_empty(&p->avail_list));
815                                 if (plist_node_empty(&p->avail_list))
816                                         plist_add(&p->avail_list,
817                                                   &swap_avail_head);
818                                 spin_unlock(&swap_avail_lock);
819                         }
820                 }
821                 atomic_long_inc(&nr_swap_pages);
822                 p->inuse_pages--;
823                 frontswap_invalidate_page(p->type, offset);
824                 if (p->flags & SWP_BLKDEV) {
825                         struct gendisk *disk = p->bdev->bd_disk;
826                         if (disk->fops->swap_slot_free_notify)
827                                 disk->fops->swap_slot_free_notify(p->bdev,
828                                                                   offset);
829                 }
830         }
831
832         return usage;
833 }
834
835 /*
836  * Caller has made sure that the swap device corresponding to entry
837  * is still around or has not been recycled.
838  */
839 void swap_free(swp_entry_t entry)
840 {
841         struct swap_info_struct *p;
842
843         p = swap_info_get(entry);
844         if (p) {
845                 swap_entry_free(p, entry, 1);
846                 spin_unlock(&p->lock);
847         }
848 }
849
850 /*
851  * Called after dropping swapcache to decrease refcnt to swap entries.
852  */
853 void swapcache_free(swp_entry_t entry)
854 {
855         struct swap_info_struct *p;
856
857         p = swap_info_get(entry);
858         if (p) {
859                 swap_entry_free(p, entry, SWAP_HAS_CACHE);
860                 spin_unlock(&p->lock);
861         }
862 }
863
864 /*
865  * How many references to page are currently swapped out?
866  * This does not give an exact answer when swap count is continued,
867  * but does include the high COUNT_CONTINUED flag to allow for that.
868  */
869 int page_swapcount(struct page *page)
870 {
871         int count = 0;
872         struct swap_info_struct *p;
873         swp_entry_t entry;
874
875         entry.val = page_private(page);
876         p = swap_info_get(entry);
877         if (p) {
878                 count = swap_count(p->swap_map[swp_offset(entry)]);
879                 spin_unlock(&p->lock);
880         }
881         return count;
882 }
883
884 /*
885  * How many references to @entry are currently swapped out?
886  * This considers COUNT_CONTINUED so it returns exact answer.
887  */
888 int swp_swapcount(swp_entry_t entry)
889 {
890         int count, tmp_count, n;
891         struct swap_info_struct *p;
892         struct page *page;
893         pgoff_t offset;
894         unsigned char *map;
895
896         p = swap_info_get(entry);
897         if (!p)
898                 return 0;
899
900         count = swap_count(p->swap_map[swp_offset(entry)]);
901         if (!(count & COUNT_CONTINUED))
902                 goto out;
903
904         count &= ~COUNT_CONTINUED;
905         n = SWAP_MAP_MAX + 1;
906
907         offset = swp_offset(entry);
908         page = vmalloc_to_page(p->swap_map + offset);
909         offset &= ~PAGE_MASK;
910         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
911
912         do {
913                 page = list_next_entry(page, lru);
914                 map = kmap_atomic(page);
915                 tmp_count = map[offset];
916                 kunmap_atomic(map);
917
918                 count += (tmp_count & ~COUNT_CONTINUED) * n;
919                 n *= (SWAP_CONT_MAX + 1);
920         } while (tmp_count & COUNT_CONTINUED);
921 out:
922         spin_unlock(&p->lock);
923         return count;
924 }
925
926 /*
927  * We can write to an anon page without COW if there are no other references
928  * to it.  And as a side-effect, free up its swap: because the old content
929  * on disk will never be read, and seeking back there to write new content
930  * later would only waste time away from clustering.
931  *
932  * NOTE: total_mapcount should not be relied upon by the caller if
933  * reuse_swap_page() returns false, but it may be always overwritten
934  * (see the other implementation for CONFIG_SWAP=n).
935  */
936 bool reuse_swap_page(struct page *page, int *total_mapcount)
937 {
938         int count;
939
940         VM_BUG_ON_PAGE(!PageLocked(page), page);
941         if (unlikely(PageKsm(page)))
942                 return false;
943         count = page_trans_huge_mapcount(page, total_mapcount);
944         if (count <= 1 && PageSwapCache(page)) {
945                 count += page_swapcount(page);
946                 if (count == 1 && !PageWriteback(page)) {
947                         delete_from_swap_cache(page);
948                         SetPageDirty(page);
949                 }
950         }
951         return count <= 1;
952 }
953
954 /*
955  * If swap is getting full, or if there are no more mappings of this page,
956  * then try_to_free_swap is called to free its swap space.
957  */
958 int try_to_free_swap(struct page *page)
959 {
960         VM_BUG_ON_PAGE(!PageLocked(page), page);
961
962         if (!PageSwapCache(page))
963                 return 0;
964         if (PageWriteback(page))
965                 return 0;
966         if (page_swapcount(page))
967                 return 0;
968
969         /*
970          * Once hibernation has begun to create its image of memory,
971          * there's a danger that one of the calls to try_to_free_swap()
972          * - most probably a call from __try_to_reclaim_swap() while
973          * hibernation is allocating its own swap pages for the image,
974          * but conceivably even a call from memory reclaim - will free
975          * the swap from a page which has already been recorded in the
976          * image as a clean swapcache page, and then reuse its swap for
977          * another page of the image.  On waking from hibernation, the
978          * original page might be freed under memory pressure, then
979          * later read back in from swap, now with the wrong data.
980          *
981          * Hibernation suspends storage while it is writing the image
982          * to disk so check that here.
983          */
984         if (pm_suspended_storage())
985                 return 0;
986
987         delete_from_swap_cache(page);
988         SetPageDirty(page);
989         return 1;
990 }
991
992 /*
993  * Free the swap entry like above, but also try to
994  * free the page cache entry if it is the last user.
995  */
996 int free_swap_and_cache(swp_entry_t entry)
997 {
998         struct swap_info_struct *p;
999         struct page *page = NULL;
1000
1001         if (non_swap_entry(entry))
1002                 return 1;
1003
1004         p = swap_info_get(entry);
1005         if (p) {
1006                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
1007                         page = find_get_page(swap_address_space(entry),
1008                                              swp_offset(entry));
1009                         if (page && !trylock_page(page)) {
1010                                 put_page(page);
1011                                 page = NULL;
1012                         }
1013                 }
1014                 spin_unlock(&p->lock);
1015         }
1016         if (page) {
1017                 /*
1018                  * Not mapped elsewhere, or swap space full? Free it!
1019                  * Also recheck PageSwapCache now page is locked (above).
1020                  */
1021                 if (PageSwapCache(page) && !PageWriteback(page) &&
1022                     (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1023                         delete_from_swap_cache(page);
1024                         SetPageDirty(page);
1025                 }
1026                 unlock_page(page);
1027                 put_page(page);
1028         }
1029         return p != NULL;
1030 }
1031
1032 #ifdef CONFIG_HIBERNATION
1033 /*
1034  * Find the swap type that corresponds to given device (if any).
1035  *
1036  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1037  * from 0, in which the swap header is expected to be located.
1038  *
1039  * This is needed for the suspend to disk (aka swsusp).
1040  */
1041 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1042 {
1043         struct block_device *bdev = NULL;
1044         int type;
1045
1046         if (device)
1047                 bdev = bdget(device);
1048
1049         spin_lock(&swap_lock);
1050         for (type = 0; type < nr_swapfiles; type++) {
1051                 struct swap_info_struct *sis = swap_info[type];
1052
1053                 if (!(sis->flags & SWP_WRITEOK))
1054                         continue;
1055
1056                 if (!bdev) {
1057                         if (bdev_p)
1058                                 *bdev_p = bdgrab(sis->bdev);
1059
1060                         spin_unlock(&swap_lock);
1061                         return type;
1062                 }
1063                 if (bdev == sis->bdev) {
1064                         struct swap_extent *se = &sis->first_swap_extent;
1065
1066                         if (se->start_block == offset) {
1067                                 if (bdev_p)
1068                                         *bdev_p = bdgrab(sis->bdev);
1069
1070                                 spin_unlock(&swap_lock);
1071                                 bdput(bdev);
1072                                 return type;
1073                         }
1074                 }
1075         }
1076         spin_unlock(&swap_lock);
1077         if (bdev)
1078                 bdput(bdev);
1079
1080         return -ENODEV;
1081 }
1082
1083 /*
1084  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1085  * corresponding to given index in swap_info (swap type).
1086  */
1087 sector_t swapdev_block(int type, pgoff_t offset)
1088 {
1089         struct block_device *bdev;
1090
1091         if ((unsigned int)type >= nr_swapfiles)
1092                 return 0;
1093         if (!(swap_info[type]->flags & SWP_WRITEOK))
1094                 return 0;
1095         return map_swap_entry(swp_entry(type, offset), &bdev);
1096 }
1097
1098 /*
1099  * Return either the total number of swap pages of given type, or the number
1100  * of free pages of that type (depending on @free)
1101  *
1102  * This is needed for software suspend
1103  */
1104 unsigned int count_swap_pages(int type, int free)
1105 {
1106         unsigned int n = 0;
1107
1108         spin_lock(&swap_lock);
1109         if ((unsigned int)type < nr_swapfiles) {
1110                 struct swap_info_struct *sis = swap_info[type];
1111
1112                 spin_lock(&sis->lock);
1113                 if (sis->flags & SWP_WRITEOK) {
1114                         n = sis->pages;
1115                         if (free)
1116                                 n -= sis->inuse_pages;
1117                 }
1118                 spin_unlock(&sis->lock);
1119         }
1120         spin_unlock(&swap_lock);
1121         return n;
1122 }
1123 #endif /* CONFIG_HIBERNATION */
1124
1125 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1126 {
1127         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1128 }
1129
1130 /*
1131  * No need to decide whether this PTE shares the swap entry with others,
1132  * just let do_wp_page work it out if a write is requested later - to
1133  * force COW, vm_page_prot omits write permission from any private vma.
1134  */
1135 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1136                 unsigned long addr, swp_entry_t entry, struct page *page)
1137 {
1138         struct page *swapcache;
1139         struct mem_cgroup *memcg;
1140         spinlock_t *ptl;
1141         pte_t *pte;
1142         int ret = 1;
1143
1144         swapcache = page;
1145         page = ksm_might_need_to_copy(page, vma, addr);
1146         if (unlikely(!page))
1147                 return -ENOMEM;
1148
1149         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1150                                 &memcg, false)) {
1151                 ret = -ENOMEM;
1152                 goto out_nolock;
1153         }
1154
1155         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1156         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1157                 mem_cgroup_cancel_charge(page, memcg, false);
1158                 ret = 0;
1159                 goto out;
1160         }
1161
1162         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1163         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1164         get_page(page);
1165         set_pte_at(vma->vm_mm, addr, pte,
1166                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1167         if (page == swapcache) {
1168                 page_add_anon_rmap(page, vma, addr, false);
1169                 mem_cgroup_commit_charge(page, memcg, true, false);
1170         } else { /* ksm created a completely new copy */
1171                 page_add_new_anon_rmap(page, vma, addr, false);
1172                 mem_cgroup_commit_charge(page, memcg, false, false);
1173                 lru_cache_add_active_or_unevictable(page, vma);
1174         }
1175         swap_free(entry);
1176         /*
1177          * Move the page to the active list so it is not
1178          * immediately swapped out again after swapon.
1179          */
1180         activate_page(page);
1181 out:
1182         pte_unmap_unlock(pte, ptl);
1183 out_nolock:
1184         if (page != swapcache) {
1185                 unlock_page(page);
1186                 put_page(page);
1187         }
1188         return ret;
1189 }
1190
1191 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1192                                 unsigned long addr, unsigned long end,
1193                                 swp_entry_t entry, struct page *page)
1194 {
1195         pte_t swp_pte = swp_entry_to_pte(entry);
1196         pte_t *pte;
1197         int ret = 0;
1198
1199         /*
1200          * We don't actually need pte lock while scanning for swp_pte: since
1201          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1202          * page table while we're scanning; though it could get zapped, and on
1203          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1204          * of unmatched parts which look like swp_pte, so unuse_pte must
1205          * recheck under pte lock.  Scanning without pte lock lets it be
1206          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1207          */
1208         pte = pte_offset_map(pmd, addr);
1209         do {
1210                 /*
1211                  * swapoff spends a _lot_ of time in this loop!
1212                  * Test inline before going to call unuse_pte.
1213                  */
1214                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1215                         pte_unmap(pte);
1216                         ret = unuse_pte(vma, pmd, addr, entry, page);
1217                         if (ret)
1218                                 goto out;
1219                         pte = pte_offset_map(pmd, addr);
1220                 }
1221         } while (pte++, addr += PAGE_SIZE, addr != end);
1222         pte_unmap(pte - 1);
1223 out:
1224         return ret;
1225 }
1226
1227 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1228                                 unsigned long addr, unsigned long end,
1229                                 swp_entry_t entry, struct page *page)
1230 {
1231         pmd_t *pmd;
1232         unsigned long next;
1233         int ret;
1234
1235         pmd = pmd_offset(pud, addr);
1236         do {
1237                 cond_resched();
1238                 next = pmd_addr_end(addr, end);
1239                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1240                         continue;
1241                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1242                 if (ret)
1243                         return ret;
1244         } while (pmd++, addr = next, addr != end);
1245         return 0;
1246 }
1247
1248 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1249                                 unsigned long addr, unsigned long end,
1250                                 swp_entry_t entry, struct page *page)
1251 {
1252         pud_t *pud;
1253         unsigned long next;
1254         int ret;
1255
1256         pud = pud_offset(pgd, addr);
1257         do {
1258                 next = pud_addr_end(addr, end);
1259                 if (pud_none_or_clear_bad(pud))
1260                         continue;
1261                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1262                 if (ret)
1263                         return ret;
1264         } while (pud++, addr = next, addr != end);
1265         return 0;
1266 }
1267
1268 static int unuse_vma(struct vm_area_struct *vma,
1269                                 swp_entry_t entry, struct page *page)
1270 {
1271         pgd_t *pgd;
1272         unsigned long addr, end, next;
1273         int ret;
1274
1275         if (page_anon_vma(page)) {
1276                 addr = page_address_in_vma(page, vma);
1277                 if (addr == -EFAULT)
1278                         return 0;
1279                 else
1280                         end = addr + PAGE_SIZE;
1281         } else {
1282                 addr = vma->vm_start;
1283                 end = vma->vm_end;
1284         }
1285
1286         pgd = pgd_offset(vma->vm_mm, addr);
1287         do {
1288                 next = pgd_addr_end(addr, end);
1289                 if (pgd_none_or_clear_bad(pgd))
1290                         continue;
1291                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1292                 if (ret)
1293                         return ret;
1294         } while (pgd++, addr = next, addr != end);
1295         return 0;
1296 }
1297
1298 static int unuse_mm(struct mm_struct *mm,
1299                                 swp_entry_t entry, struct page *page)
1300 {
1301         struct vm_area_struct *vma;
1302         int ret = 0;
1303
1304         if (!down_read_trylock(&mm->mmap_sem)) {
1305                 /*
1306                  * Activate page so shrink_inactive_list is unlikely to unmap
1307                  * its ptes while lock is dropped, so swapoff can make progress.
1308                  */
1309                 activate_page(page);
1310                 unlock_page(page);
1311                 down_read(&mm->mmap_sem);
1312                 lock_page(page);
1313         }
1314         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1315                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1316                         break;
1317                 cond_resched();
1318         }
1319         up_read(&mm->mmap_sem);
1320         return (ret < 0)? ret: 0;
1321 }
1322
1323 /*
1324  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1325  * from current position to next entry still in use.
1326  * Recycle to start on reaching the end, returning 0 when empty.
1327  */
1328 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1329                                         unsigned int prev, bool frontswap)
1330 {
1331         unsigned int max = si->max;
1332         unsigned int i = prev;
1333         unsigned char count;
1334
1335         /*
1336          * No need for swap_lock here: we're just looking
1337          * for whether an entry is in use, not modifying it; false
1338          * hits are okay, and sys_swapoff() has already prevented new
1339          * allocations from this area (while holding swap_lock).
1340          */
1341         for (;;) {
1342                 if (++i >= max) {
1343                         if (!prev) {
1344                                 i = 0;
1345                                 break;
1346                         }
1347                         /*
1348                          * No entries in use at top of swap_map,
1349                          * loop back to start and recheck there.
1350                          */
1351                         max = prev + 1;
1352                         prev = 0;
1353                         i = 1;
1354                 }
1355                 count = READ_ONCE(si->swap_map[i]);
1356                 if (count && swap_count(count) != SWAP_MAP_BAD)
1357                         if (!frontswap || frontswap_test(si, i))
1358                                 break;
1359                 if ((i % LATENCY_LIMIT) == 0)
1360                         cond_resched();
1361         }
1362         return i;
1363 }
1364
1365 /*
1366  * We completely avoid races by reading each swap page in advance,
1367  * and then search for the process using it.  All the necessary
1368  * page table adjustments can then be made atomically.
1369  *
1370  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1371  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1372  */
1373 int try_to_unuse(unsigned int type, bool frontswap,
1374                  unsigned long pages_to_unuse)
1375 {
1376         struct swap_info_struct *si = swap_info[type];
1377         struct mm_struct *start_mm;
1378         volatile unsigned char *swap_map; /* swap_map is accessed without
1379                                            * locking. Mark it as volatile
1380                                            * to prevent compiler doing
1381                                            * something odd.
1382                                            */
1383         unsigned char swcount;
1384         struct page *page;
1385         swp_entry_t entry;
1386         unsigned int i = 0;
1387         int retval = 0;
1388
1389         /*
1390          * When searching mms for an entry, a good strategy is to
1391          * start at the first mm we freed the previous entry from
1392          * (though actually we don't notice whether we or coincidence
1393          * freed the entry).  Initialize this start_mm with a hold.
1394          *
1395          * A simpler strategy would be to start at the last mm we
1396          * freed the previous entry from; but that would take less
1397          * advantage of mmlist ordering, which clusters forked mms
1398          * together, child after parent.  If we race with dup_mmap(), we
1399          * prefer to resolve parent before child, lest we miss entries
1400          * duplicated after we scanned child: using last mm would invert
1401          * that.
1402          */
1403         start_mm = &init_mm;
1404         atomic_inc(&init_mm.mm_users);
1405
1406         /*
1407          * Keep on scanning until all entries have gone.  Usually,
1408          * one pass through swap_map is enough, but not necessarily:
1409          * there are races when an instance of an entry might be missed.
1410          */
1411         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1412                 if (signal_pending(current)) {
1413                         retval = -EINTR;
1414                         break;
1415                 }
1416
1417                 /*
1418                  * Get a page for the entry, using the existing swap
1419                  * cache page if there is one.  Otherwise, get a clean
1420                  * page and read the swap into it.
1421                  */
1422                 swap_map = &si->swap_map[i];
1423                 entry = swp_entry(type, i);
1424                 page = read_swap_cache_async(entry,
1425                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1426                 if (!page) {
1427                         /*
1428                          * Either swap_duplicate() failed because entry
1429                          * has been freed independently, and will not be
1430                          * reused since sys_swapoff() already disabled
1431                          * allocation from here, or alloc_page() failed.
1432                          */
1433                         swcount = *swap_map;
1434                         /*
1435                          * We don't hold lock here, so the swap entry could be
1436                          * SWAP_MAP_BAD (when the cluster is discarding).
1437                          * Instead of fail out, We can just skip the swap
1438                          * entry because swapoff will wait for discarding
1439                          * finish anyway.
1440                          */
1441                         if (!swcount || swcount == SWAP_MAP_BAD)
1442                                 continue;
1443                         retval = -ENOMEM;
1444                         break;
1445                 }
1446
1447                 /*
1448                  * Don't hold on to start_mm if it looks like exiting.
1449                  */
1450                 if (atomic_read(&start_mm->mm_users) == 1) {
1451                         mmput(start_mm);
1452                         start_mm = &init_mm;
1453                         atomic_inc(&init_mm.mm_users);
1454                 }
1455
1456                 /*
1457                  * Wait for and lock page.  When do_swap_page races with
1458                  * try_to_unuse, do_swap_page can handle the fault much
1459                  * faster than try_to_unuse can locate the entry.  This
1460                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1461                  * defer to do_swap_page in such a case - in some tests,
1462                  * do_swap_page and try_to_unuse repeatedly compete.
1463                  */
1464                 wait_on_page_locked(page);
1465                 wait_on_page_writeback(page);
1466                 lock_page(page);
1467                 wait_on_page_writeback(page);
1468
1469                 /*
1470                  * Remove all references to entry.
1471                  */
1472                 swcount = *swap_map;
1473                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1474                         retval = shmem_unuse(entry, page);
1475                         /* page has already been unlocked and released */
1476                         if (retval < 0)
1477                                 break;
1478                         continue;
1479                 }
1480                 if (swap_count(swcount) && start_mm != &init_mm)
1481                         retval = unuse_mm(start_mm, entry, page);
1482
1483                 if (swap_count(*swap_map)) {
1484                         int set_start_mm = (*swap_map >= swcount);
1485                         struct list_head *p = &start_mm->mmlist;
1486                         struct mm_struct *new_start_mm = start_mm;
1487                         struct mm_struct *prev_mm = start_mm;
1488                         struct mm_struct *mm;
1489
1490                         atomic_inc(&new_start_mm->mm_users);
1491                         atomic_inc(&prev_mm->mm_users);
1492                         spin_lock(&mmlist_lock);
1493                         while (swap_count(*swap_map) && !retval &&
1494                                         (p = p->next) != &start_mm->mmlist) {
1495                                 mm = list_entry(p, struct mm_struct, mmlist);
1496                                 if (!atomic_inc_not_zero(&mm->mm_users))
1497                                         continue;
1498                                 spin_unlock(&mmlist_lock);
1499                                 mmput(prev_mm);
1500                                 prev_mm = mm;
1501
1502                                 cond_resched();
1503
1504                                 swcount = *swap_map;
1505                                 if (!swap_count(swcount)) /* any usage ? */
1506                                         ;
1507                                 else if (mm == &init_mm)
1508                                         set_start_mm = 1;
1509                                 else
1510                                         retval = unuse_mm(mm, entry, page);
1511
1512                                 if (set_start_mm && *swap_map < swcount) {
1513                                         mmput(new_start_mm);
1514                                         atomic_inc(&mm->mm_users);
1515                                         new_start_mm = mm;
1516                                         set_start_mm = 0;
1517                                 }
1518                                 spin_lock(&mmlist_lock);
1519                         }
1520                         spin_unlock(&mmlist_lock);
1521                         mmput(prev_mm);
1522                         mmput(start_mm);
1523                         start_mm = new_start_mm;
1524                 }
1525                 if (retval) {
1526                         unlock_page(page);
1527                         put_page(page);
1528                         break;
1529                 }
1530
1531                 /*
1532                  * If a reference remains (rare), we would like to leave
1533                  * the page in the swap cache; but try_to_unmap could
1534                  * then re-duplicate the entry once we drop page lock,
1535                  * so we might loop indefinitely; also, that page could
1536                  * not be swapped out to other storage meanwhile.  So:
1537                  * delete from cache even if there's another reference,
1538                  * after ensuring that the data has been saved to disk -
1539                  * since if the reference remains (rarer), it will be
1540                  * read from disk into another page.  Splitting into two
1541                  * pages would be incorrect if swap supported "shared
1542                  * private" pages, but they are handled by tmpfs files.
1543                  *
1544                  * Given how unuse_vma() targets one particular offset
1545                  * in an anon_vma, once the anon_vma has been determined,
1546                  * this splitting happens to be just what is needed to
1547                  * handle where KSM pages have been swapped out: re-reading
1548                  * is unnecessarily slow, but we can fix that later on.
1549                  */
1550                 if (swap_count(*swap_map) &&
1551                      PageDirty(page) && PageSwapCache(page)) {
1552                         struct writeback_control wbc = {
1553                                 .sync_mode = WB_SYNC_NONE,
1554                         };
1555
1556                         swap_writepage(page, &wbc);
1557                         lock_page(page);
1558                         wait_on_page_writeback(page);
1559                 }
1560
1561                 /*
1562                  * It is conceivable that a racing task removed this page from
1563                  * swap cache just before we acquired the page lock at the top,
1564                  * or while we dropped it in unuse_mm().  The page might even
1565                  * be back in swap cache on another swap area: that we must not
1566                  * delete, since it may not have been written out to swap yet.
1567                  */
1568                 if (PageSwapCache(page) &&
1569                     likely(page_private(page) == entry.val))
1570                         delete_from_swap_cache(page);
1571
1572                 /*
1573                  * So we could skip searching mms once swap count went
1574                  * to 1, we did not mark any present ptes as dirty: must
1575                  * mark page dirty so shrink_page_list will preserve it.
1576                  */
1577                 SetPageDirty(page);
1578                 unlock_page(page);
1579                 put_page(page);
1580
1581                 /*
1582                  * Make sure that we aren't completely killing
1583                  * interactive performance.
1584                  */
1585                 cond_resched();
1586                 if (frontswap && pages_to_unuse > 0) {
1587                         if (!--pages_to_unuse)
1588                                 break;
1589                 }
1590         }
1591
1592         mmput(start_mm);
1593         return retval;
1594 }
1595
1596 /*
1597  * After a successful try_to_unuse, if no swap is now in use, we know
1598  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1599  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1600  * added to the mmlist just after page_duplicate - before would be racy.
1601  */
1602 static void drain_mmlist(void)
1603 {
1604         struct list_head *p, *next;
1605         unsigned int type;
1606
1607         for (type = 0; type < nr_swapfiles; type++)
1608                 if (swap_info[type]->inuse_pages)
1609                         return;
1610         spin_lock(&mmlist_lock);
1611         list_for_each_safe(p, next, &init_mm.mmlist)
1612                 list_del_init(p);
1613         spin_unlock(&mmlist_lock);
1614 }
1615
1616 /*
1617  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1618  * corresponds to page offset for the specified swap entry.
1619  * Note that the type of this function is sector_t, but it returns page offset
1620  * into the bdev, not sector offset.
1621  */
1622 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1623 {
1624         struct swap_info_struct *sis;
1625         struct swap_extent *start_se;
1626         struct swap_extent *se;
1627         pgoff_t offset;
1628
1629         sis = swap_info[swp_type(entry)];
1630         *bdev = sis->bdev;
1631
1632         offset = swp_offset(entry);
1633         start_se = sis->curr_swap_extent;
1634         se = start_se;
1635
1636         for ( ; ; ) {
1637                 if (se->start_page <= offset &&
1638                                 offset < (se->start_page + se->nr_pages)) {
1639                         return se->start_block + (offset - se->start_page);
1640                 }
1641                 se = list_next_entry(se, list);
1642                 sis->curr_swap_extent = se;
1643                 BUG_ON(se == start_se);         /* It *must* be present */
1644         }
1645 }
1646
1647 /*
1648  * Returns the page offset into bdev for the specified page's swap entry.
1649  */
1650 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1651 {
1652         swp_entry_t entry;
1653         entry.val = page_private(page);
1654         return map_swap_entry(entry, bdev);
1655 }
1656
1657 /*
1658  * Free all of a swapdev's extent information
1659  */
1660 static void destroy_swap_extents(struct swap_info_struct *sis)
1661 {
1662         while (!list_empty(&sis->first_swap_extent.list)) {
1663                 struct swap_extent *se;
1664
1665                 se = list_first_entry(&sis->first_swap_extent.list,
1666                                 struct swap_extent, list);
1667                 list_del(&se->list);
1668                 kfree(se);
1669         }
1670
1671         if (sis->flags & SWP_FILE) {
1672                 struct file *swap_file = sis->swap_file;
1673                 struct address_space *mapping = swap_file->f_mapping;
1674
1675                 sis->flags &= ~SWP_FILE;
1676                 mapping->a_ops->swap_deactivate(swap_file);
1677         }
1678 }
1679
1680 /*
1681  * Add a block range (and the corresponding page range) into this swapdev's
1682  * extent list.  The extent list is kept sorted in page order.
1683  *
1684  * This function rather assumes that it is called in ascending page order.
1685  */
1686 int
1687 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1688                 unsigned long nr_pages, sector_t start_block)
1689 {
1690         struct swap_extent *se;
1691         struct swap_extent *new_se;
1692         struct list_head *lh;
1693
1694         if (start_page == 0) {
1695                 se = &sis->first_swap_extent;
1696                 sis->curr_swap_extent = se;
1697                 se->start_page = 0;
1698                 se->nr_pages = nr_pages;
1699                 se->start_block = start_block;
1700                 return 1;
1701         } else {
1702                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1703                 se = list_entry(lh, struct swap_extent, list);
1704                 BUG_ON(se->start_page + se->nr_pages != start_page);
1705                 if (se->start_block + se->nr_pages == start_block) {
1706                         /* Merge it */
1707                         se->nr_pages += nr_pages;
1708                         return 0;
1709                 }
1710         }
1711
1712         /*
1713          * No merge.  Insert a new extent, preserving ordering.
1714          */
1715         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1716         if (new_se == NULL)
1717                 return -ENOMEM;
1718         new_se->start_page = start_page;
1719         new_se->nr_pages = nr_pages;
1720         new_se->start_block = start_block;
1721
1722         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1723         return 1;
1724 }
1725
1726 /*
1727  * A `swap extent' is a simple thing which maps a contiguous range of pages
1728  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1729  * is built at swapon time and is then used at swap_writepage/swap_readpage
1730  * time for locating where on disk a page belongs.
1731  *
1732  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1733  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1734  * swap files identically.
1735  *
1736  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1737  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1738  * swapfiles are handled *identically* after swapon time.
1739  *
1740  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1741  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1742  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1743  * requirements, they are simply tossed out - we will never use those blocks
1744  * for swapping.
1745  *
1746  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1747  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1748  * which will scribble on the fs.
1749  *
1750  * The amount of disk space which a single swap extent represents varies.
1751  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1752  * extents in the list.  To avoid much list walking, we cache the previous
1753  * search location in `curr_swap_extent', and start new searches from there.
1754  * This is extremely effective.  The average number of iterations in
1755  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1756  */
1757 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1758 {
1759         struct file *swap_file = sis->swap_file;
1760         struct address_space *mapping = swap_file->f_mapping;
1761         struct inode *inode = mapping->host;
1762         int ret;
1763
1764         if (S_ISBLK(inode->i_mode)) {
1765                 ret = add_swap_extent(sis, 0, sis->max, 0);
1766                 *span = sis->pages;
1767                 return ret;
1768         }
1769
1770         if (mapping->a_ops->swap_activate) {
1771                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1772                 if (!ret) {
1773                         sis->flags |= SWP_FILE;
1774                         ret = add_swap_extent(sis, 0, sis->max, 0);
1775                         *span = sis->pages;
1776                 }
1777                 return ret;
1778         }
1779
1780         return generic_swapfile_activate(sis, swap_file, span);
1781 }
1782
1783 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1784                                 unsigned char *swap_map,
1785                                 struct swap_cluster_info *cluster_info)
1786 {
1787         if (prio >= 0)
1788                 p->prio = prio;
1789         else
1790                 p->prio = --least_priority;
1791         /*
1792          * the plist prio is negated because plist ordering is
1793          * low-to-high, while swap ordering is high-to-low
1794          */
1795         p->list.prio = -p->prio;
1796         p->avail_list.prio = -p->prio;
1797         p->swap_map = swap_map;
1798         p->cluster_info = cluster_info;
1799         p->flags |= SWP_WRITEOK;
1800         atomic_long_add(p->pages, &nr_swap_pages);
1801         total_swap_pages += p->pages;
1802
1803         assert_spin_locked(&swap_lock);
1804         /*
1805          * both lists are plists, and thus priority ordered.
1806          * swap_active_head needs to be priority ordered for swapoff(),
1807          * which on removal of any swap_info_struct with an auto-assigned
1808          * (i.e. negative) priority increments the auto-assigned priority
1809          * of any lower-priority swap_info_structs.
1810          * swap_avail_head needs to be priority ordered for get_swap_page(),
1811          * which allocates swap pages from the highest available priority
1812          * swap_info_struct.
1813          */
1814         plist_add(&p->list, &swap_active_head);
1815         spin_lock(&swap_avail_lock);
1816         plist_add(&p->avail_list, &swap_avail_head);
1817         spin_unlock(&swap_avail_lock);
1818 }
1819
1820 static void enable_swap_info(struct swap_info_struct *p, int prio,
1821                                 unsigned char *swap_map,
1822                                 struct swap_cluster_info *cluster_info,
1823                                 unsigned long *frontswap_map)
1824 {
1825         frontswap_init(p->type, frontswap_map);
1826         spin_lock(&swap_lock);
1827         spin_lock(&p->lock);
1828          _enable_swap_info(p, prio, swap_map, cluster_info);
1829         spin_unlock(&p->lock);
1830         spin_unlock(&swap_lock);
1831 }
1832
1833 static void reinsert_swap_info(struct swap_info_struct *p)
1834 {
1835         spin_lock(&swap_lock);
1836         spin_lock(&p->lock);
1837         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1838         spin_unlock(&p->lock);
1839         spin_unlock(&swap_lock);
1840 }
1841
1842 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1843 {
1844         struct swap_info_struct *p = NULL;
1845         unsigned char *swap_map;
1846         struct swap_cluster_info *cluster_info;
1847         unsigned long *frontswap_map;
1848         struct file *swap_file, *victim;
1849         struct address_space *mapping;
1850         struct inode *inode;
1851         struct filename *pathname;
1852         int err, found = 0;
1853         unsigned int old_block_size;
1854
1855         if (!capable(CAP_SYS_ADMIN))
1856                 return -EPERM;
1857
1858         BUG_ON(!current->mm);
1859
1860         pathname = getname(specialfile);
1861         if (IS_ERR(pathname))
1862                 return PTR_ERR(pathname);
1863
1864         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1865         err = PTR_ERR(victim);
1866         if (IS_ERR(victim))
1867                 goto out;
1868
1869         mapping = victim->f_mapping;
1870         spin_lock(&swap_lock);
1871         plist_for_each_entry(p, &swap_active_head, list) {
1872                 if (p->flags & SWP_WRITEOK) {
1873                         if (p->swap_file->f_mapping == mapping) {
1874                                 found = 1;
1875                                 break;
1876                         }
1877                 }
1878         }
1879         if (!found) {
1880                 err = -EINVAL;
1881                 spin_unlock(&swap_lock);
1882                 goto out_dput;
1883         }
1884         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1885                 vm_unacct_memory(p->pages);
1886         else {
1887                 err = -ENOMEM;
1888                 spin_unlock(&swap_lock);
1889                 goto out_dput;
1890         }
1891         spin_lock(&swap_avail_lock);
1892         plist_del(&p->avail_list, &swap_avail_head);
1893         spin_unlock(&swap_avail_lock);
1894         spin_lock(&p->lock);
1895         if (p->prio < 0) {
1896                 struct swap_info_struct *si = p;
1897
1898                 plist_for_each_entry_continue(si, &swap_active_head, list) {
1899                         si->prio++;
1900                         si->list.prio--;
1901                         si->avail_list.prio--;
1902                 }
1903                 least_priority++;
1904         }
1905         plist_del(&p->list, &swap_active_head);
1906         atomic_long_sub(p->pages, &nr_swap_pages);
1907         total_swap_pages -= p->pages;
1908         p->flags &= ~SWP_WRITEOK;
1909         spin_unlock(&p->lock);
1910         spin_unlock(&swap_lock);
1911
1912         set_current_oom_origin();
1913         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1914         clear_current_oom_origin();
1915
1916         if (err) {
1917                 /* re-insert swap space back into swap_list */
1918                 reinsert_swap_info(p);
1919                 goto out_dput;
1920         }
1921
1922         flush_work(&p->discard_work);
1923
1924         destroy_swap_extents(p);
1925         if (p->flags & SWP_CONTINUED)
1926                 free_swap_count_continuations(p);
1927
1928         mutex_lock(&swapon_mutex);
1929         spin_lock(&swap_lock);
1930         spin_lock(&p->lock);
1931         drain_mmlist();
1932
1933         /* wait for anyone still in scan_swap_map */
1934         p->highest_bit = 0;             /* cuts scans short */
1935         while (p->flags >= SWP_SCANNING) {
1936                 spin_unlock(&p->lock);
1937                 spin_unlock(&swap_lock);
1938                 schedule_timeout_uninterruptible(1);
1939                 spin_lock(&swap_lock);
1940                 spin_lock(&p->lock);
1941         }
1942
1943         swap_file = p->swap_file;
1944         old_block_size = p->old_block_size;
1945         p->swap_file = NULL;
1946         p->max = 0;
1947         swap_map = p->swap_map;
1948         p->swap_map = NULL;
1949         cluster_info = p->cluster_info;
1950         p->cluster_info = NULL;
1951         frontswap_map = frontswap_map_get(p);
1952         spin_unlock(&p->lock);
1953         spin_unlock(&swap_lock);
1954         frontswap_invalidate_area(p->type);
1955         frontswap_map_set(p, NULL);
1956         mutex_unlock(&swapon_mutex);
1957         free_percpu(p->percpu_cluster);
1958         p->percpu_cluster = NULL;
1959         vfree(swap_map);
1960         vfree(cluster_info);
1961         vfree(frontswap_map);
1962         /* Destroy swap account information */
1963         swap_cgroup_swapoff(p->type);
1964
1965         inode = mapping->host;
1966         if (S_ISBLK(inode->i_mode)) {
1967                 struct block_device *bdev = I_BDEV(inode);
1968                 set_blocksize(bdev, old_block_size);
1969                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1970         } else {
1971                 inode_lock(inode);
1972                 inode->i_flags &= ~S_SWAPFILE;
1973                 inode_unlock(inode);
1974         }
1975         filp_close(swap_file, NULL);
1976
1977         /*
1978          * Clear the SWP_USED flag after all resources are freed so that swapon
1979          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1980          * not hold p->lock after we cleared its SWP_WRITEOK.
1981          */
1982         spin_lock(&swap_lock);
1983         p->flags = 0;
1984         spin_unlock(&swap_lock);
1985
1986         err = 0;
1987         atomic_inc(&proc_poll_event);
1988         wake_up_interruptible(&proc_poll_wait);
1989
1990 out_dput:
1991         filp_close(victim, NULL);
1992 out:
1993         putname(pathname);
1994         return err;
1995 }
1996
1997 #ifdef CONFIG_PROC_FS
1998 static unsigned swaps_poll(struct file *file, poll_table *wait)
1999 {
2000         struct seq_file *seq = file->private_data;
2001
2002         poll_wait(file, &proc_poll_wait, wait);
2003
2004         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2005                 seq->poll_event = atomic_read(&proc_poll_event);
2006                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2007         }
2008
2009         return POLLIN | POLLRDNORM;
2010 }
2011
2012 /* iterator */
2013 static void *swap_start(struct seq_file *swap, loff_t *pos)
2014 {
2015         struct swap_info_struct *si;
2016         int type;
2017         loff_t l = *pos;
2018
2019         mutex_lock(&swapon_mutex);
2020
2021         if (!l)
2022                 return SEQ_START_TOKEN;
2023
2024         for (type = 0; type < nr_swapfiles; type++) {
2025                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2026                 si = swap_info[type];
2027                 if (!(si->flags & SWP_USED) || !si->swap_map)
2028                         continue;
2029                 if (!--l)
2030                         return si;
2031         }
2032
2033         return NULL;
2034 }
2035
2036 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2037 {
2038         struct swap_info_struct *si = v;
2039         int type;
2040
2041         if (v == SEQ_START_TOKEN)
2042                 type = 0;
2043         else
2044                 type = si->type + 1;
2045
2046         for (; type < nr_swapfiles; type++) {
2047                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2048                 si = swap_info[type];
2049                 if (!(si->flags & SWP_USED) || !si->swap_map)
2050                         continue;
2051                 ++*pos;
2052                 return si;
2053         }
2054
2055         return NULL;
2056 }
2057
2058 static void swap_stop(struct seq_file *swap, void *v)
2059 {
2060         mutex_unlock(&swapon_mutex);
2061 }
2062
2063 static int swap_show(struct seq_file *swap, void *v)
2064 {
2065         struct swap_info_struct *si = v;
2066         struct file *file;
2067         int len;
2068
2069         if (si == SEQ_START_TOKEN) {
2070                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2071                 return 0;
2072         }
2073
2074         file = si->swap_file;
2075         len = seq_file_path(swap, file, " \t\n\\");
2076         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2077                         len < 40 ? 40 - len : 1, " ",
2078                         S_ISBLK(file_inode(file)->i_mode) ?
2079                                 "partition" : "file\t",
2080                         si->pages << (PAGE_SHIFT - 10),
2081                         si->inuse_pages << (PAGE_SHIFT - 10),
2082                         si->prio);
2083         return 0;
2084 }
2085
2086 static const struct seq_operations swaps_op = {
2087         .start =        swap_start,
2088         .next =         swap_next,
2089         .stop =         swap_stop,
2090         .show =         swap_show
2091 };
2092
2093 static int swaps_open(struct inode *inode, struct file *file)
2094 {
2095         struct seq_file *seq;
2096         int ret;
2097
2098         ret = seq_open(file, &swaps_op);
2099         if (ret)
2100                 return ret;
2101
2102         seq = file->private_data;
2103         seq->poll_event = atomic_read(&proc_poll_event);
2104         return 0;
2105 }
2106
2107 static const struct file_operations proc_swaps_operations = {
2108         .open           = swaps_open,
2109         .read           = seq_read,
2110         .llseek         = seq_lseek,
2111         .release        = seq_release,
2112         .poll           = swaps_poll,
2113 };
2114
2115 static int __init procswaps_init(void)
2116 {
2117         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2118         return 0;
2119 }
2120 __initcall(procswaps_init);
2121 #endif /* CONFIG_PROC_FS */
2122
2123 #ifdef MAX_SWAPFILES_CHECK
2124 static int __init max_swapfiles_check(void)
2125 {
2126         MAX_SWAPFILES_CHECK();
2127         return 0;
2128 }
2129 late_initcall(max_swapfiles_check);
2130 #endif
2131
2132 static struct swap_info_struct *alloc_swap_info(void)
2133 {
2134         struct swap_info_struct *p;
2135         unsigned int type;
2136
2137         p = kzalloc(sizeof(*p), GFP_KERNEL);
2138         if (!p)
2139                 return ERR_PTR(-ENOMEM);
2140
2141         spin_lock(&swap_lock);
2142         for (type = 0; type < nr_swapfiles; type++) {
2143                 if (!(swap_info[type]->flags & SWP_USED))
2144                         break;
2145         }
2146         if (type >= MAX_SWAPFILES) {
2147                 spin_unlock(&swap_lock);
2148                 kfree(p);
2149                 return ERR_PTR(-EPERM);
2150         }
2151         if (type >= nr_swapfiles) {
2152                 p->type = type;
2153                 swap_info[type] = p;
2154                 /*
2155                  * Write swap_info[type] before nr_swapfiles, in case a
2156                  * racing procfs swap_start() or swap_next() is reading them.
2157                  * (We never shrink nr_swapfiles, we never free this entry.)
2158                  */
2159                 smp_wmb();
2160                 nr_swapfiles++;
2161         } else {
2162                 kfree(p);
2163                 p = swap_info[type];
2164                 /*
2165                  * Do not memset this entry: a racing procfs swap_next()
2166                  * would be relying on p->type to remain valid.
2167                  */
2168         }
2169         INIT_LIST_HEAD(&p->first_swap_extent.list);
2170         plist_node_init(&p->list, 0);
2171         plist_node_init(&p->avail_list, 0);
2172         p->flags = SWP_USED;
2173         spin_unlock(&swap_lock);
2174         spin_lock_init(&p->lock);
2175
2176         return p;
2177 }
2178
2179 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2180 {
2181         int error;
2182
2183         if (S_ISBLK(inode->i_mode)) {
2184                 p->bdev = bdgrab(I_BDEV(inode));
2185                 error = blkdev_get(p->bdev,
2186                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2187                 if (error < 0) {
2188                         p->bdev = NULL;
2189                         return error;
2190                 }
2191                 p->old_block_size = block_size(p->bdev);
2192                 error = set_blocksize(p->bdev, PAGE_SIZE);
2193                 if (error < 0)
2194                         return error;
2195                 p->flags |= SWP_BLKDEV;
2196         } else if (S_ISREG(inode->i_mode)) {
2197                 p->bdev = inode->i_sb->s_bdev;
2198                 inode_lock(inode);
2199                 if (IS_SWAPFILE(inode))
2200                         return -EBUSY;
2201         } else
2202                 return -EINVAL;
2203
2204         return 0;
2205 }
2206
2207 static unsigned long read_swap_header(struct swap_info_struct *p,
2208                                         union swap_header *swap_header,
2209                                         struct inode *inode)
2210 {
2211         int i;
2212         unsigned long maxpages;
2213         unsigned long swapfilepages;
2214         unsigned long last_page;
2215
2216         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2217                 pr_err("Unable to find swap-space signature\n");
2218                 return 0;
2219         }
2220
2221         /* swap partition endianess hack... */
2222         if (swab32(swap_header->info.version) == 1) {
2223                 swab32s(&swap_header->info.version);
2224                 swab32s(&swap_header->info.last_page);
2225                 swab32s(&swap_header->info.nr_badpages);
2226                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2227                         return 0;
2228                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2229                         swab32s(&swap_header->info.badpages[i]);
2230         }
2231         /* Check the swap header's sub-version */
2232         if (swap_header->info.version != 1) {
2233                 pr_warn("Unable to handle swap header version %d\n",
2234                         swap_header->info.version);
2235                 return 0;
2236         }
2237
2238         p->lowest_bit  = 1;
2239         p->cluster_next = 1;
2240         p->cluster_nr = 0;
2241
2242         /*
2243          * Find out how many pages are allowed for a single swap
2244          * device. There are two limiting factors: 1) the number
2245          * of bits for the swap offset in the swp_entry_t type, and
2246          * 2) the number of bits in the swap pte as defined by the
2247          * different architectures. In order to find the
2248          * largest possible bit mask, a swap entry with swap type 0
2249          * and swap offset ~0UL is created, encoded to a swap pte,
2250          * decoded to a swp_entry_t again, and finally the swap
2251          * offset is extracted. This will mask all the bits from
2252          * the initial ~0UL mask that can't be encoded in either
2253          * the swp_entry_t or the architecture definition of a
2254          * swap pte.
2255          */
2256         maxpages = swp_offset(pte_to_swp_entry(
2257                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2258         last_page = swap_header->info.last_page;
2259         if (last_page > maxpages) {
2260                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2261                         maxpages << (PAGE_SHIFT - 10),
2262                         last_page << (PAGE_SHIFT - 10));
2263         }
2264         if (maxpages > last_page) {
2265                 maxpages = last_page + 1;
2266                 /* p->max is an unsigned int: don't overflow it */
2267                 if ((unsigned int)maxpages == 0)
2268                         maxpages = UINT_MAX;
2269         }
2270         p->highest_bit = maxpages - 1;
2271
2272         if (!maxpages)
2273                 return 0;
2274         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2275         if (swapfilepages && maxpages > swapfilepages) {
2276                 pr_warn("Swap area shorter than signature indicates\n");
2277                 return 0;
2278         }
2279         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2280                 return 0;
2281         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2282                 return 0;
2283
2284         return maxpages;
2285 }
2286
2287 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2288                                         union swap_header *swap_header,
2289                                         unsigned char *swap_map,
2290                                         struct swap_cluster_info *cluster_info,
2291                                         unsigned long maxpages,
2292                                         sector_t *span)
2293 {
2294         int i;
2295         unsigned int nr_good_pages;
2296         int nr_extents;
2297         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2298         unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2299
2300         nr_good_pages = maxpages - 1;   /* omit header page */
2301
2302         cluster_list_init(&p->free_clusters);
2303         cluster_list_init(&p->discard_clusters);
2304
2305         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2306                 unsigned int page_nr = swap_header->info.badpages[i];
2307                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2308                         return -EINVAL;
2309                 if (page_nr < maxpages) {
2310                         swap_map[page_nr] = SWAP_MAP_BAD;
2311                         nr_good_pages--;
2312                         /*
2313                          * Haven't marked the cluster free yet, no list
2314                          * operation involved
2315                          */
2316                         inc_cluster_info_page(p, cluster_info, page_nr);
2317                 }
2318         }
2319
2320         /* Haven't marked the cluster free yet, no list operation involved */
2321         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2322                 inc_cluster_info_page(p, cluster_info, i);
2323
2324         if (nr_good_pages) {
2325                 swap_map[0] = SWAP_MAP_BAD;
2326                 /*
2327                  * Not mark the cluster free yet, no list
2328                  * operation involved
2329                  */
2330                 inc_cluster_info_page(p, cluster_info, 0);
2331                 p->max = maxpages;
2332                 p->pages = nr_good_pages;
2333                 nr_extents = setup_swap_extents(p, span);
2334                 if (nr_extents < 0)
2335                         return nr_extents;
2336                 nr_good_pages = p->pages;
2337         }
2338         if (!nr_good_pages) {
2339                 pr_warn("Empty swap-file\n");
2340                 return -EINVAL;
2341         }
2342
2343         if (!cluster_info)
2344                 return nr_extents;
2345
2346         for (i = 0; i < nr_clusters; i++) {
2347                 if (!cluster_count(&cluster_info[idx])) {
2348                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2349                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2350                                               idx);
2351                 }
2352                 idx++;
2353                 if (idx == nr_clusters)
2354                         idx = 0;
2355         }
2356         return nr_extents;
2357 }
2358
2359 /*
2360  * Helper to sys_swapon determining if a given swap
2361  * backing device queue supports DISCARD operations.
2362  */
2363 static bool swap_discardable(struct swap_info_struct *si)
2364 {
2365         struct request_queue *q = bdev_get_queue(si->bdev);
2366
2367         if (!q || !blk_queue_discard(q))
2368                 return false;
2369
2370         return true;
2371 }
2372
2373 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2374 {
2375         struct swap_info_struct *p;
2376         struct filename *name;
2377         struct file *swap_file = NULL;
2378         struct address_space *mapping;
2379         int prio;
2380         int error;
2381         union swap_header *swap_header;
2382         int nr_extents;
2383         sector_t span;
2384         unsigned long maxpages;
2385         unsigned char *swap_map = NULL;
2386         struct swap_cluster_info *cluster_info = NULL;
2387         unsigned long *frontswap_map = NULL;
2388         struct page *page = NULL;
2389         struct inode *inode = NULL;
2390
2391         if (swap_flags & ~SWAP_FLAGS_VALID)
2392                 return -EINVAL;
2393
2394         if (!capable(CAP_SYS_ADMIN))
2395                 return -EPERM;
2396
2397         p = alloc_swap_info();
2398         if (IS_ERR(p))
2399                 return PTR_ERR(p);
2400
2401         INIT_WORK(&p->discard_work, swap_discard_work);
2402
2403         name = getname(specialfile);
2404         if (IS_ERR(name)) {
2405                 error = PTR_ERR(name);
2406                 name = NULL;
2407                 goto bad_swap;
2408         }
2409         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2410         if (IS_ERR(swap_file)) {
2411                 error = PTR_ERR(swap_file);
2412                 swap_file = NULL;
2413                 goto bad_swap;
2414         }
2415
2416         p->swap_file = swap_file;
2417         mapping = swap_file->f_mapping;
2418         inode = mapping->host;
2419
2420         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2421         error = claim_swapfile(p, inode);
2422         if (unlikely(error))
2423                 goto bad_swap;
2424
2425         /*
2426          * Read the swap header.
2427          */
2428         if (!mapping->a_ops->readpage) {
2429                 error = -EINVAL;
2430                 goto bad_swap;
2431         }
2432         page = read_mapping_page(mapping, 0, swap_file);
2433         if (IS_ERR(page)) {
2434                 error = PTR_ERR(page);
2435                 goto bad_swap;
2436         }
2437         swap_header = kmap(page);
2438
2439         maxpages = read_swap_header(p, swap_header, inode);
2440         if (unlikely(!maxpages)) {
2441                 error = -EINVAL;
2442                 goto bad_swap;
2443         }
2444
2445         /* OK, set up the swap map and apply the bad block list */
2446         swap_map = vzalloc(maxpages);
2447         if (!swap_map) {
2448                 error = -ENOMEM;
2449                 goto bad_swap;
2450         }
2451         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2452                 int cpu;
2453
2454                 p->flags |= SWP_SOLIDSTATE;
2455                 /*
2456                  * select a random position to start with to help wear leveling
2457                  * SSD
2458                  */
2459                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2460
2461                 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2462                         SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2463                 if (!cluster_info) {
2464                         error = -ENOMEM;
2465                         goto bad_swap;
2466                 }
2467                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2468                 if (!p->percpu_cluster) {
2469                         error = -ENOMEM;
2470                         goto bad_swap;
2471                 }
2472                 for_each_possible_cpu(cpu) {
2473                         struct percpu_cluster *cluster;
2474                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2475                         cluster_set_null(&cluster->index);
2476                 }
2477         }
2478
2479         error = swap_cgroup_swapon(p->type, maxpages);
2480         if (error)
2481                 goto bad_swap;
2482
2483         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2484                 cluster_info, maxpages, &span);
2485         if (unlikely(nr_extents < 0)) {
2486                 error = nr_extents;
2487                 goto bad_swap;
2488         }
2489         /* frontswap enabled? set up bit-per-page map for frontswap */
2490         if (IS_ENABLED(CONFIG_FRONTSWAP))
2491                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2492
2493         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2494                 /*
2495                  * When discard is enabled for swap with no particular
2496                  * policy flagged, we set all swap discard flags here in
2497                  * order to sustain backward compatibility with older
2498                  * swapon(8) releases.
2499                  */
2500                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2501                              SWP_PAGE_DISCARD);
2502
2503                 /*
2504                  * By flagging sys_swapon, a sysadmin can tell us to
2505                  * either do single-time area discards only, or to just
2506                  * perform discards for released swap page-clusters.
2507                  * Now it's time to adjust the p->flags accordingly.
2508                  */
2509                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2510                         p->flags &= ~SWP_PAGE_DISCARD;
2511                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2512                         p->flags &= ~SWP_AREA_DISCARD;
2513
2514                 /* issue a swapon-time discard if it's still required */
2515                 if (p->flags & SWP_AREA_DISCARD) {
2516                         int err = discard_swap(p);
2517                         if (unlikely(err))
2518                                 pr_err("swapon: discard_swap(%p): %d\n",
2519                                         p, err);
2520                 }
2521         }
2522
2523         mutex_lock(&swapon_mutex);
2524         prio = -1;
2525         if (swap_flags & SWAP_FLAG_PREFER)
2526                 prio =
2527                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2528         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2529
2530         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2531                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2532                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2533                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2534                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2535                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2536                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2537                 (frontswap_map) ? "FS" : "");
2538
2539         mutex_unlock(&swapon_mutex);
2540         atomic_inc(&proc_poll_event);
2541         wake_up_interruptible(&proc_poll_wait);
2542
2543         if (S_ISREG(inode->i_mode))
2544                 inode->i_flags |= S_SWAPFILE;
2545         error = 0;
2546         goto out;
2547 bad_swap:
2548         free_percpu(p->percpu_cluster);
2549         p->percpu_cluster = NULL;
2550         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2551                 set_blocksize(p->bdev, p->old_block_size);
2552                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2553         }
2554         destroy_swap_extents(p);
2555         swap_cgroup_swapoff(p->type);
2556         spin_lock(&swap_lock);
2557         p->swap_file = NULL;
2558         p->flags = 0;
2559         spin_unlock(&swap_lock);
2560         vfree(swap_map);
2561         vfree(cluster_info);
2562         if (swap_file) {
2563                 if (inode && S_ISREG(inode->i_mode)) {
2564                         inode_unlock(inode);
2565                         inode = NULL;
2566                 }
2567                 filp_close(swap_file, NULL);
2568         }
2569 out:
2570         if (page && !IS_ERR(page)) {
2571                 kunmap(page);
2572                 put_page(page);
2573         }
2574         if (name)
2575                 putname(name);
2576         if (inode && S_ISREG(inode->i_mode))
2577                 inode_unlock(inode);
2578         return error;
2579 }
2580
2581 void si_swapinfo(struct sysinfo *val)
2582 {
2583         unsigned int type;
2584         unsigned long nr_to_be_unused = 0;
2585
2586         spin_lock(&swap_lock);
2587         for (type = 0; type < nr_swapfiles; type++) {
2588                 struct swap_info_struct *si = swap_info[type];
2589
2590                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2591                         nr_to_be_unused += si->inuse_pages;
2592         }
2593         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2594         val->totalswap = total_swap_pages + nr_to_be_unused;
2595         spin_unlock(&swap_lock);
2596 }
2597
2598 /*
2599  * Verify that a swap entry is valid and increment its swap map count.
2600  *
2601  * Returns error code in following case.
2602  * - success -> 0
2603  * - swp_entry is invalid -> EINVAL
2604  * - swp_entry is migration entry -> EINVAL
2605  * - swap-cache reference is requested but there is already one. -> EEXIST
2606  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2607  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2608  */
2609 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2610 {
2611         struct swap_info_struct *p;
2612         unsigned long offset, type;
2613         unsigned char count;
2614         unsigned char has_cache;
2615         int err = -EINVAL;
2616
2617         if (non_swap_entry(entry))
2618                 goto out;
2619
2620         type = swp_type(entry);
2621         if (type >= nr_swapfiles)
2622                 goto bad_file;
2623         p = swap_info[type];
2624         offset = swp_offset(entry);
2625
2626         spin_lock(&p->lock);
2627         if (unlikely(offset >= p->max))
2628                 goto unlock_out;
2629
2630         count = p->swap_map[offset];
2631
2632         /*
2633          * swapin_readahead() doesn't check if a swap entry is valid, so the
2634          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2635          */
2636         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2637                 err = -ENOENT;
2638                 goto unlock_out;
2639         }
2640
2641         has_cache = count & SWAP_HAS_CACHE;
2642         count &= ~SWAP_HAS_CACHE;
2643         err = 0;
2644
2645         if (usage == SWAP_HAS_CACHE) {
2646
2647                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2648                 if (!has_cache && count)
2649                         has_cache = SWAP_HAS_CACHE;
2650                 else if (has_cache)             /* someone else added cache */
2651                         err = -EEXIST;
2652                 else                            /* no users remaining */
2653                         err = -ENOENT;
2654
2655         } else if (count || has_cache) {
2656
2657                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2658                         count += usage;
2659                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2660                         err = -EINVAL;
2661                 else if (swap_count_continued(p, offset, count))
2662                         count = COUNT_CONTINUED;
2663                 else
2664                         err = -ENOMEM;
2665         } else
2666                 err = -ENOENT;                  /* unused swap entry */
2667
2668         p->swap_map[offset] = count | has_cache;
2669
2670 unlock_out:
2671         spin_unlock(&p->lock);
2672 out:
2673         return err;
2674
2675 bad_file:
2676         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2677         goto out;
2678 }
2679
2680 /*
2681  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2682  * (in which case its reference count is never incremented).
2683  */
2684 void swap_shmem_alloc(swp_entry_t entry)
2685 {
2686         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2687 }
2688
2689 /*
2690  * Increase reference count of swap entry by 1.
2691  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2692  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2693  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2694  * might occur if a page table entry has got corrupted.
2695  */
2696 int swap_duplicate(swp_entry_t entry)
2697 {
2698         int err = 0;
2699
2700         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2701                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2702         return err;
2703 }
2704
2705 /*
2706  * @entry: swap entry for which we allocate swap cache.
2707  *
2708  * Called when allocating swap cache for existing swap entry,
2709  * This can return error codes. Returns 0 at success.
2710  * -EBUSY means there is a swap cache.
2711  * Note: return code is different from swap_duplicate().
2712  */
2713 int swapcache_prepare(swp_entry_t entry)
2714 {
2715         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2716 }
2717
2718 struct swap_info_struct *page_swap_info(struct page *page)
2719 {
2720         swp_entry_t swap = { .val = page_private(page) };
2721         return swap_info[swp_type(swap)];
2722 }
2723
2724 /*
2725  * out-of-line __page_file_ methods to avoid include hell.
2726  */
2727 struct address_space *__page_file_mapping(struct page *page)
2728 {
2729         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2730         return page_swap_info(page)->swap_file->f_mapping;
2731 }
2732 EXPORT_SYMBOL_GPL(__page_file_mapping);
2733
2734 pgoff_t __page_file_index(struct page *page)
2735 {
2736         swp_entry_t swap = { .val = page_private(page) };
2737         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2738         return swp_offset(swap);
2739 }
2740 EXPORT_SYMBOL_GPL(__page_file_index);
2741
2742 /*
2743  * add_swap_count_continuation - called when a swap count is duplicated
2744  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2745  * page of the original vmalloc'ed swap_map, to hold the continuation count
2746  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2747  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2748  *
2749  * These continuation pages are seldom referenced: the common paths all work
2750  * on the original swap_map, only referring to a continuation page when the
2751  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2752  *
2753  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2754  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2755  * can be called after dropping locks.
2756  */
2757 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2758 {
2759         struct swap_info_struct *si;
2760         struct page *head;
2761         struct page *page;
2762         struct page *list_page;
2763         pgoff_t offset;
2764         unsigned char count;
2765
2766         /*
2767          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2768          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2769          */
2770         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2771
2772         si = swap_info_get(entry);
2773         if (!si) {
2774                 /*
2775                  * An acceptable race has occurred since the failing
2776                  * __swap_duplicate(): the swap entry has been freed,
2777                  * perhaps even the whole swap_map cleared for swapoff.
2778                  */
2779                 goto outer;
2780         }
2781
2782         offset = swp_offset(entry);
2783         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2784
2785         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2786                 /*
2787                  * The higher the swap count, the more likely it is that tasks
2788                  * will race to add swap count continuation: we need to avoid
2789                  * over-provisioning.
2790                  */
2791                 goto out;
2792         }
2793
2794         if (!page) {
2795                 spin_unlock(&si->lock);
2796                 return -ENOMEM;
2797         }
2798
2799         /*
2800          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2801          * no architecture is using highmem pages for kernel page tables: so it
2802          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2803          */
2804         head = vmalloc_to_page(si->swap_map + offset);
2805         offset &= ~PAGE_MASK;
2806
2807         /*
2808          * Page allocation does not initialize the page's lru field,
2809          * but it does always reset its private field.
2810          */
2811         if (!page_private(head)) {
2812                 BUG_ON(count & COUNT_CONTINUED);
2813                 INIT_LIST_HEAD(&head->lru);
2814                 set_page_private(head, SWP_CONTINUED);
2815                 si->flags |= SWP_CONTINUED;
2816         }
2817
2818         list_for_each_entry(list_page, &head->lru, lru) {
2819                 unsigned char *map;
2820
2821                 /*
2822                  * If the previous map said no continuation, but we've found
2823                  * a continuation page, free our allocation and use this one.
2824                  */
2825                 if (!(count & COUNT_CONTINUED))
2826                         goto out;
2827
2828                 map = kmap_atomic(list_page) + offset;
2829                 count = *map;
2830                 kunmap_atomic(map);
2831
2832                 /*
2833                  * If this continuation count now has some space in it,
2834                  * free our allocation and use this one.
2835                  */
2836                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2837                         goto out;
2838         }
2839
2840         list_add_tail(&page->lru, &head->lru);
2841         page = NULL;                    /* now it's attached, don't free it */
2842 out:
2843         spin_unlock(&si->lock);
2844 outer:
2845         if (page)
2846                 __free_page(page);
2847         return 0;
2848 }
2849
2850 /*
2851  * swap_count_continued - when the original swap_map count is incremented
2852  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2853  * into, carry if so, or else fail until a new continuation page is allocated;
2854  * when the original swap_map count is decremented from 0 with continuation,
2855  * borrow from the continuation and report whether it still holds more.
2856  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2857  */
2858 static bool swap_count_continued(struct swap_info_struct *si,
2859                                  pgoff_t offset, unsigned char count)
2860 {
2861         struct page *head;
2862         struct page *page;
2863         unsigned char *map;
2864
2865         head = vmalloc_to_page(si->swap_map + offset);
2866         if (page_private(head) != SWP_CONTINUED) {
2867                 BUG_ON(count & COUNT_CONTINUED);
2868                 return false;           /* need to add count continuation */
2869         }
2870
2871         offset &= ~PAGE_MASK;
2872         page = list_entry(head->lru.next, struct page, lru);
2873         map = kmap_atomic(page) + offset;
2874
2875         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2876                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2877
2878         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2879                 /*
2880                  * Think of how you add 1 to 999
2881                  */
2882                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2883                         kunmap_atomic(map);
2884                         page = list_entry(page->lru.next, struct page, lru);
2885                         BUG_ON(page == head);
2886                         map = kmap_atomic(page) + offset;
2887                 }
2888                 if (*map == SWAP_CONT_MAX) {
2889                         kunmap_atomic(map);
2890                         page = list_entry(page->lru.next, struct page, lru);
2891                         if (page == head)
2892                                 return false;   /* add count continuation */
2893                         map = kmap_atomic(page) + offset;
2894 init_map:               *map = 0;               /* we didn't zero the page */
2895                 }
2896                 *map += 1;
2897                 kunmap_atomic(map);
2898                 page = list_entry(page->lru.prev, struct page, lru);
2899                 while (page != head) {
2900                         map = kmap_atomic(page) + offset;
2901                         *map = COUNT_CONTINUED;
2902                         kunmap_atomic(map);
2903                         page = list_entry(page->lru.prev, struct page, lru);
2904                 }
2905                 return true;                    /* incremented */
2906
2907         } else {                                /* decrementing */
2908                 /*
2909                  * Think of how you subtract 1 from 1000
2910                  */
2911                 BUG_ON(count != COUNT_CONTINUED);
2912                 while (*map == COUNT_CONTINUED) {
2913                         kunmap_atomic(map);
2914                         page = list_entry(page->lru.next, struct page, lru);
2915                         BUG_ON(page == head);
2916                         map = kmap_atomic(page) + offset;
2917                 }
2918                 BUG_ON(*map == 0);
2919                 *map -= 1;
2920                 if (*map == 0)
2921                         count = 0;
2922                 kunmap_atomic(map);
2923                 page = list_entry(page->lru.prev, struct page, lru);
2924                 while (page != head) {
2925                         map = kmap_atomic(page) + offset;
2926                         *map = SWAP_CONT_MAX | count;
2927                         count = COUNT_CONTINUED;
2928                         kunmap_atomic(map);
2929                         page = list_entry(page->lru.prev, struct page, lru);
2930                 }
2931                 return count == COUNT_CONTINUED;
2932         }
2933 }
2934
2935 /*
2936  * free_swap_count_continuations - swapoff free all the continuation pages
2937  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2938  */
2939 static void free_swap_count_continuations(struct swap_info_struct *si)
2940 {
2941         pgoff_t offset;
2942
2943         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2944                 struct page *head;
2945                 head = vmalloc_to_page(si->swap_map + offset);
2946                 if (page_private(head)) {
2947                         struct page *page, *next;
2948
2949                         list_for_each_entry_safe(page, next, &head->lru, lru) {
2950                                 list_del(&page->lru);
2951                                 __free_page(page);
2952                         }
2953                 }
2954         }
2955 }