4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
70 PLIST_HEAD(swap_active_head);
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
89 static DEFINE_MUTEX(swapon_mutex);
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
95 static inline unsigned char swap_count(unsigned char ent)
97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
100 /* returns 1 if swap entry is freed */
102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
104 swp_entry_t entry = swp_entry(si->type, offset);
108 page = find_get_page(swap_address_space(entry), swp_offset(entry));
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
118 if (trylock_page(page)) {
119 ret = try_to_free_swap(page);
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
130 static int discard_swap(struct swap_info_struct *si)
132 struct swap_extent *se;
133 sector_t start_block;
137 /* Do not discard the swap header page! */
138 se = &si->first_swap_extent;
139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
142 err = blkdev_issue_discard(si->bdev, start_block,
143 nr_blocks, GFP_KERNEL, 0);
149 list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 start_block = se->start_block << (PAGE_SHIFT - 9);
151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
153 err = blkdev_issue_discard(si->bdev, start_block,
154 nr_blocks, GFP_KERNEL, 0);
160 return err; /* That will often be -EOPNOTSUPP */
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
167 static void discard_swap_cluster(struct swap_info_struct *si,
168 pgoff_t start_page, pgoff_t nr_pages)
170 struct swap_extent *se = si->curr_swap_extent;
171 int found_extent = 0;
174 if (se->start_page <= start_page &&
175 start_page < se->start_page + se->nr_pages) {
176 pgoff_t offset = start_page - se->start_page;
177 sector_t start_block = se->start_block + offset;
178 sector_t nr_blocks = se->nr_pages - offset;
180 if (nr_blocks > nr_pages)
181 nr_blocks = nr_pages;
182 start_page += nr_blocks;
183 nr_pages -= nr_blocks;
186 si->curr_swap_extent = se;
188 start_block <<= PAGE_SHIFT - 9;
189 nr_blocks <<= PAGE_SHIFT - 9;
190 if (blkdev_issue_discard(si->bdev, start_block,
191 nr_blocks, GFP_NOIO, 0))
195 se = list_next_entry(se, list);
199 #define SWAPFILE_CLUSTER 256
200 #define LATENCY_LIMIT 256
202 static inline void cluster_set_flag(struct swap_cluster_info *info,
208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
213 static inline void cluster_set_count(struct swap_cluster_info *info,
219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 unsigned int c, unsigned int f)
226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
231 static inline void cluster_set_next(struct swap_cluster_info *info,
237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 unsigned int n, unsigned int f)
244 static inline bool cluster_is_free(struct swap_cluster_info *info)
246 return info->flags & CLUSTER_FLAG_FREE;
249 static inline bool cluster_is_null(struct swap_cluster_info *info)
251 return info->flags & CLUSTER_FLAG_NEXT_NULL;
254 static inline void cluster_set_null(struct swap_cluster_info *info)
256 info->flags = CLUSTER_FLAG_NEXT_NULL;
260 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
261 unsigned long offset)
263 struct swap_cluster_info *ci;
265 ci = si->cluster_info;
267 ci += offset / SWAPFILE_CLUSTER;
268 spin_lock(&ci->lock);
273 static inline void unlock_cluster(struct swap_cluster_info *ci)
276 spin_unlock(&ci->lock);
279 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
280 struct swap_info_struct *si,
281 unsigned long offset)
283 struct swap_cluster_info *ci;
285 ci = lock_cluster(si, offset);
287 spin_lock(&si->lock);
292 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
293 struct swap_cluster_info *ci)
298 spin_unlock(&si->lock);
301 static inline bool cluster_list_empty(struct swap_cluster_list *list)
303 return cluster_is_null(&list->head);
306 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
308 return cluster_next(&list->head);
311 static void cluster_list_init(struct swap_cluster_list *list)
313 cluster_set_null(&list->head);
314 cluster_set_null(&list->tail);
317 static void cluster_list_add_tail(struct swap_cluster_list *list,
318 struct swap_cluster_info *ci,
321 if (cluster_list_empty(list)) {
322 cluster_set_next_flag(&list->head, idx, 0);
323 cluster_set_next_flag(&list->tail, idx, 0);
325 struct swap_cluster_info *ci_tail;
326 unsigned int tail = cluster_next(&list->tail);
329 * Nested cluster lock, but both cluster locks are
330 * only acquired when we held swap_info_struct->lock
333 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
334 cluster_set_next(ci_tail, idx);
335 unlock_cluster(ci_tail);
336 cluster_set_next_flag(&list->tail, idx, 0);
340 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
341 struct swap_cluster_info *ci)
345 idx = cluster_next(&list->head);
346 if (cluster_next(&list->tail) == idx) {
347 cluster_set_null(&list->head);
348 cluster_set_null(&list->tail);
350 cluster_set_next_flag(&list->head,
351 cluster_next(&ci[idx]), 0);
356 /* Add a cluster to discard list and schedule it to do discard */
357 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
361 * If scan_swap_map() can't find a free cluster, it will check
362 * si->swap_map directly. To make sure the discarding cluster isn't
363 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
364 * will be cleared after discard
366 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
367 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
369 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
371 schedule_work(&si->discard_work);
375 * Doing discard actually. After a cluster discard is finished, the cluster
376 * will be added to free cluster list. caller should hold si->lock.
378 static void swap_do_scheduled_discard(struct swap_info_struct *si)
380 struct swap_cluster_info *info, *ci;
383 info = si->cluster_info;
385 while (!cluster_list_empty(&si->discard_clusters)) {
386 idx = cluster_list_del_first(&si->discard_clusters, info);
387 spin_unlock(&si->lock);
389 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
392 spin_lock(&si->lock);
393 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
394 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
396 cluster_list_add_tail(&si->free_clusters, info, idx);
397 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
398 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
399 0, SWAPFILE_CLUSTER);
404 static void swap_discard_work(struct work_struct *work)
406 struct swap_info_struct *si;
408 si = container_of(work, struct swap_info_struct, discard_work);
410 spin_lock(&si->lock);
411 swap_do_scheduled_discard(si);
412 spin_unlock(&si->lock);
416 * The cluster corresponding to page_nr will be used. The cluster will be
417 * removed from free cluster list and its usage counter will be increased.
419 static void inc_cluster_info_page(struct swap_info_struct *p,
420 struct swap_cluster_info *cluster_info, unsigned long page_nr)
422 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
426 if (cluster_is_free(&cluster_info[idx])) {
427 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
428 cluster_list_del_first(&p->free_clusters, cluster_info);
429 cluster_set_count_flag(&cluster_info[idx], 0, 0);
432 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
433 cluster_set_count(&cluster_info[idx],
434 cluster_count(&cluster_info[idx]) + 1);
438 * The cluster corresponding to page_nr decreases one usage. If the usage
439 * counter becomes 0, which means no page in the cluster is in using, we can
440 * optionally discard the cluster and add it to free cluster list.
442 static void dec_cluster_info_page(struct swap_info_struct *p,
443 struct swap_cluster_info *cluster_info, unsigned long page_nr)
445 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
450 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
451 cluster_set_count(&cluster_info[idx],
452 cluster_count(&cluster_info[idx]) - 1);
454 if (cluster_count(&cluster_info[idx]) == 0) {
456 * If the swap is discardable, prepare discard the cluster
457 * instead of free it immediately. The cluster will be freed
460 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
461 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
462 swap_cluster_schedule_discard(p, idx);
466 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
467 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
472 * It's possible scan_swap_map() uses a free cluster in the middle of free
473 * cluster list. Avoiding such abuse to avoid list corruption.
476 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
477 unsigned long offset)
479 struct percpu_cluster *percpu_cluster;
482 offset /= SWAPFILE_CLUSTER;
483 conflict = !cluster_list_empty(&si->free_clusters) &&
484 offset != cluster_list_first(&si->free_clusters) &&
485 cluster_is_free(&si->cluster_info[offset]);
490 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
491 cluster_set_null(&percpu_cluster->index);
496 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
497 * might involve allocating a new cluster for current CPU too.
499 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
500 unsigned long *offset, unsigned long *scan_base)
502 struct percpu_cluster *cluster;
503 struct swap_cluster_info *ci;
505 unsigned long tmp, max;
508 cluster = this_cpu_ptr(si->percpu_cluster);
509 if (cluster_is_null(&cluster->index)) {
510 if (!cluster_list_empty(&si->free_clusters)) {
511 cluster->index = si->free_clusters.head;
512 cluster->next = cluster_next(&cluster->index) *
514 } else if (!cluster_list_empty(&si->discard_clusters)) {
516 * we don't have free cluster but have some clusters in
517 * discarding, do discard now and reclaim them
519 swap_do_scheduled_discard(si);
520 *scan_base = *offset = si->cluster_next;
529 * Other CPUs can use our cluster if they can't find a free cluster,
530 * check if there is still free entry in the cluster
533 max = min_t(unsigned long, si->max,
534 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
536 cluster_set_null(&cluster->index);
539 ci = lock_cluster(si, tmp);
541 if (!si->swap_map[tmp]) {
549 cluster_set_null(&cluster->index);
552 cluster->next = tmp + 1;
558 static int scan_swap_map_slots(struct swap_info_struct *si,
559 unsigned char usage, int nr,
562 struct swap_cluster_info *ci;
563 unsigned long offset;
564 unsigned long scan_base;
565 unsigned long last_in_cluster = 0;
566 int latency_ration = LATENCY_LIMIT;
573 * We try to cluster swap pages by allocating them sequentially
574 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
575 * way, however, we resort to first-free allocation, starting
576 * a new cluster. This prevents us from scattering swap pages
577 * all over the entire swap partition, so that we reduce
578 * overall disk seek times between swap pages. -- sct
579 * But we do now try to find an empty cluster. -Andrea
580 * And we let swap pages go all over an SSD partition. Hugh
583 si->flags += SWP_SCANNING;
584 scan_base = offset = si->cluster_next;
587 if (si->cluster_info) {
588 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
594 if (unlikely(!si->cluster_nr--)) {
595 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
596 si->cluster_nr = SWAPFILE_CLUSTER - 1;
600 spin_unlock(&si->lock);
603 * If seek is expensive, start searching for new cluster from
604 * start of partition, to minimize the span of allocated swap.
605 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
606 * case, just handled by scan_swap_map_try_ssd_cluster() above.
608 scan_base = offset = si->lowest_bit;
609 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
611 /* Locate the first empty (unaligned) cluster */
612 for (; last_in_cluster <= si->highest_bit; offset++) {
613 if (si->swap_map[offset])
614 last_in_cluster = offset + SWAPFILE_CLUSTER;
615 else if (offset == last_in_cluster) {
616 spin_lock(&si->lock);
617 offset -= SWAPFILE_CLUSTER - 1;
618 si->cluster_next = offset;
619 si->cluster_nr = SWAPFILE_CLUSTER - 1;
622 if (unlikely(--latency_ration < 0)) {
624 latency_ration = LATENCY_LIMIT;
629 spin_lock(&si->lock);
630 si->cluster_nr = SWAPFILE_CLUSTER - 1;
634 if (si->cluster_info) {
635 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
636 /* take a break if we already got some slots */
639 if (!scan_swap_map_try_ssd_cluster(si, &offset,
644 if (!(si->flags & SWP_WRITEOK))
646 if (!si->highest_bit)
648 if (offset > si->highest_bit)
649 scan_base = offset = si->lowest_bit;
651 ci = lock_cluster(si, offset);
652 /* reuse swap entry of cache-only swap if not busy. */
653 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
656 spin_unlock(&si->lock);
657 swap_was_freed = __try_to_reclaim_swap(si, offset);
658 spin_lock(&si->lock);
659 /* entry was freed successfully, try to use this again */
662 goto scan; /* check next one */
665 if (si->swap_map[offset]) {
673 if (offset == si->lowest_bit)
675 if (offset == si->highest_bit)
678 if (si->inuse_pages == si->pages) {
679 si->lowest_bit = si->max;
681 spin_lock(&swap_avail_lock);
682 plist_del(&si->avail_list, &swap_avail_head);
683 spin_unlock(&swap_avail_lock);
685 si->swap_map[offset] = usage;
686 inc_cluster_info_page(si, si->cluster_info, offset);
688 si->cluster_next = offset + 1;
689 slots[n_ret++] = swp_entry(si->type, offset);
691 /* got enough slots or reach max slots? */
692 if ((n_ret == nr) || (offset >= si->highest_bit))
695 /* search for next available slot */
697 /* time to take a break? */
698 if (unlikely(--latency_ration < 0)) {
701 spin_unlock(&si->lock);
703 spin_lock(&si->lock);
704 latency_ration = LATENCY_LIMIT;
707 /* try to get more slots in cluster */
708 if (si->cluster_info) {
709 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
717 /* non-ssd case, still more slots in cluster? */
718 if (si->cluster_nr && !si->swap_map[offset]) {
724 si->flags -= SWP_SCANNING;
728 spin_unlock(&si->lock);
729 while (++offset <= si->highest_bit) {
730 if (!si->swap_map[offset]) {
731 spin_lock(&si->lock);
734 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
735 spin_lock(&si->lock);
738 if (unlikely(--latency_ration < 0)) {
740 latency_ration = LATENCY_LIMIT;
743 offset = si->lowest_bit;
744 while (offset < scan_base) {
745 if (!si->swap_map[offset]) {
746 spin_lock(&si->lock);
749 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
750 spin_lock(&si->lock);
753 if (unlikely(--latency_ration < 0)) {
755 latency_ration = LATENCY_LIMIT;
759 spin_lock(&si->lock);
762 si->flags -= SWP_SCANNING;
766 static unsigned long scan_swap_map(struct swap_info_struct *si,
772 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
775 return swp_offset(entry);
781 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
783 struct swap_info_struct *si, *next;
787 avail_pgs = atomic_long_read(&nr_swap_pages);
791 if (n_goal > SWAP_BATCH)
794 if (n_goal > avail_pgs)
797 atomic_long_sub(n_goal, &nr_swap_pages);
799 spin_lock(&swap_avail_lock);
802 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
803 /* requeue si to after same-priority siblings */
804 plist_requeue(&si->avail_list, &swap_avail_head);
805 spin_unlock(&swap_avail_lock);
806 spin_lock(&si->lock);
807 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
808 spin_lock(&swap_avail_lock);
809 if (plist_node_empty(&si->avail_list)) {
810 spin_unlock(&si->lock);
813 WARN(!si->highest_bit,
814 "swap_info %d in list but !highest_bit\n",
816 WARN(!(si->flags & SWP_WRITEOK),
817 "swap_info %d in list but !SWP_WRITEOK\n",
819 plist_del(&si->avail_list, &swap_avail_head);
820 spin_unlock(&si->lock);
823 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
824 n_goal, swp_entries);
825 spin_unlock(&si->lock);
828 pr_debug("scan_swap_map of si %d failed to find offset\n",
831 spin_lock(&swap_avail_lock);
834 * if we got here, it's likely that si was almost full before,
835 * and since scan_swap_map() can drop the si->lock, multiple
836 * callers probably all tried to get a page from the same si
837 * and it filled up before we could get one; or, the si filled
838 * up between us dropping swap_avail_lock and taking si->lock.
839 * Since we dropped the swap_avail_lock, the swap_avail_head
840 * list may have been modified; so if next is still in the
841 * swap_avail_head list then try it, otherwise start over
842 * if we have not gotten any slots.
844 if (plist_node_empty(&next->avail_list))
848 spin_unlock(&swap_avail_lock);
852 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
857 swp_entry_t get_swap_page(void)
861 get_swap_pages(1, &entry);
865 /* The only caller of this function is now suspend routine */
866 swp_entry_t get_swap_page_of_type(int type)
868 struct swap_info_struct *si;
871 si = swap_info[type];
872 spin_lock(&si->lock);
873 if (si && (si->flags & SWP_WRITEOK)) {
874 atomic_long_dec(&nr_swap_pages);
875 /* This is called for allocating swap entry, not cache */
876 offset = scan_swap_map(si, 1);
878 spin_unlock(&si->lock);
879 return swp_entry(type, offset);
881 atomic_long_inc(&nr_swap_pages);
883 spin_unlock(&si->lock);
884 return (swp_entry_t) {0};
887 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
889 struct swap_info_struct *p;
890 unsigned long offset, type;
894 type = swp_type(entry);
895 if (type >= nr_swapfiles)
898 if (!(p->flags & SWP_USED))
900 offset = swp_offset(entry);
901 if (offset >= p->max)
906 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
909 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
912 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
917 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
919 struct swap_info_struct *p;
921 p = __swap_info_get(entry);
924 if (!p->swap_map[swp_offset(entry)])
929 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
935 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
937 struct swap_info_struct *p;
939 p = _swap_info_get(entry);
945 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
946 struct swap_info_struct *q)
948 struct swap_info_struct *p;
950 p = _swap_info_get(entry);
954 spin_unlock(&q->lock);
961 static unsigned char __swap_entry_free(struct swap_info_struct *p,
962 swp_entry_t entry, unsigned char usage)
964 struct swap_cluster_info *ci;
965 unsigned long offset = swp_offset(entry);
967 unsigned char has_cache;
969 ci = lock_cluster_or_swap_info(p, offset);
971 count = p->swap_map[offset];
973 has_cache = count & SWAP_HAS_CACHE;
974 count &= ~SWAP_HAS_CACHE;
976 if (usage == SWAP_HAS_CACHE) {
977 VM_BUG_ON(!has_cache);
979 } else if (count == SWAP_MAP_SHMEM) {
981 * Or we could insist on shmem.c using a special
982 * swap_shmem_free() and free_shmem_swap_and_cache()...
985 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
986 if (count == COUNT_CONTINUED) {
987 if (swap_count_continued(p, offset, count))
988 count = SWAP_MAP_MAX | COUNT_CONTINUED;
990 count = SWAP_MAP_MAX;
995 usage = count | has_cache;
996 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
998 unlock_cluster_or_swap_info(p, ci);
1003 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1005 struct swap_cluster_info *ci;
1006 unsigned long offset = swp_offset(entry);
1007 unsigned char count;
1009 ci = lock_cluster(p, offset);
1010 count = p->swap_map[offset];
1011 VM_BUG_ON(count != SWAP_HAS_CACHE);
1012 p->swap_map[offset] = 0;
1013 dec_cluster_info_page(p, p->cluster_info, offset);
1016 mem_cgroup_uncharge_swap(entry);
1017 if (offset < p->lowest_bit)
1018 p->lowest_bit = offset;
1019 if (offset > p->highest_bit) {
1020 bool was_full = !p->highest_bit;
1022 p->highest_bit = offset;
1023 if (was_full && (p->flags & SWP_WRITEOK)) {
1024 spin_lock(&swap_avail_lock);
1025 WARN_ON(!plist_node_empty(&p->avail_list));
1026 if (plist_node_empty(&p->avail_list))
1027 plist_add(&p->avail_list,
1029 spin_unlock(&swap_avail_lock);
1032 atomic_long_inc(&nr_swap_pages);
1034 frontswap_invalidate_page(p->type, offset);
1035 if (p->flags & SWP_BLKDEV) {
1036 struct gendisk *disk = p->bdev->bd_disk;
1038 if (disk->fops->swap_slot_free_notify)
1039 disk->fops->swap_slot_free_notify(p->bdev,
1045 * Caller has made sure that the swap device corresponding to entry
1046 * is still around or has not been recycled.
1048 void swap_free(swp_entry_t entry)
1050 struct swap_info_struct *p;
1052 p = _swap_info_get(entry);
1054 if (!__swap_entry_free(p, entry, 1))
1055 swapcache_free_entries(&entry, 1);
1060 * Called after dropping swapcache to decrease refcnt to swap entries.
1062 void swapcache_free(swp_entry_t entry)
1064 struct swap_info_struct *p;
1066 p = _swap_info_get(entry);
1068 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1069 swapcache_free_entries(&entry, 1);
1073 void swapcache_free_entries(swp_entry_t *entries, int n)
1075 struct swap_info_struct *p, *prev;
1083 for (i = 0; i < n; ++i) {
1084 p = swap_info_get_cont(entries[i], prev);
1086 swap_entry_free(p, entries[i]);
1092 spin_unlock(&p->lock);
1096 * How many references to page are currently swapped out?
1097 * This does not give an exact answer when swap count is continued,
1098 * but does include the high COUNT_CONTINUED flag to allow for that.
1100 int page_swapcount(struct page *page)
1103 struct swap_info_struct *p;
1104 struct swap_cluster_info *ci;
1106 unsigned long offset;
1108 entry.val = page_private(page);
1109 p = _swap_info_get(entry);
1111 offset = swp_offset(entry);
1112 ci = lock_cluster_or_swap_info(p, offset);
1113 count = swap_count(p->swap_map[offset]);
1114 unlock_cluster_or_swap_info(p, ci);
1120 * How many references to @entry are currently swapped out?
1121 * This does not give an exact answer when swap count is continued,
1122 * but does include the high COUNT_CONTINUED flag to allow for that.
1124 int __swp_swapcount(swp_entry_t entry)
1128 struct swap_info_struct *si;
1129 struct swap_cluster_info *ci;
1131 si = __swap_info_get(entry);
1133 offset = swp_offset(entry);
1134 ci = lock_cluster_or_swap_info(si, offset);
1135 count = swap_count(si->swap_map[offset]);
1136 unlock_cluster_or_swap_info(si, ci);
1142 * How many references to @entry are currently swapped out?
1143 * This considers COUNT_CONTINUED so it returns exact answer.
1145 int swp_swapcount(swp_entry_t entry)
1147 int count, tmp_count, n;
1148 struct swap_info_struct *p;
1149 struct swap_cluster_info *ci;
1154 p = _swap_info_get(entry);
1158 offset = swp_offset(entry);
1160 ci = lock_cluster_or_swap_info(p, offset);
1162 count = swap_count(p->swap_map[offset]);
1163 if (!(count & COUNT_CONTINUED))
1166 count &= ~COUNT_CONTINUED;
1167 n = SWAP_MAP_MAX + 1;
1169 page = vmalloc_to_page(p->swap_map + offset);
1170 offset &= ~PAGE_MASK;
1171 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1174 page = list_next_entry(page, lru);
1175 map = kmap_atomic(page);
1176 tmp_count = map[offset];
1179 count += (tmp_count & ~COUNT_CONTINUED) * n;
1180 n *= (SWAP_CONT_MAX + 1);
1181 } while (tmp_count & COUNT_CONTINUED);
1183 unlock_cluster_or_swap_info(p, ci);
1188 * We can write to an anon page without COW if there are no other references
1189 * to it. And as a side-effect, free up its swap: because the old content
1190 * on disk will never be read, and seeking back there to write new content
1191 * later would only waste time away from clustering.
1193 * NOTE: total_mapcount should not be relied upon by the caller if
1194 * reuse_swap_page() returns false, but it may be always overwritten
1195 * (see the other implementation for CONFIG_SWAP=n).
1197 bool reuse_swap_page(struct page *page, int *total_mapcount)
1201 VM_BUG_ON_PAGE(!PageLocked(page), page);
1202 if (unlikely(PageKsm(page)))
1204 count = page_trans_huge_mapcount(page, total_mapcount);
1205 if (count <= 1 && PageSwapCache(page)) {
1206 count += page_swapcount(page);
1209 if (!PageWriteback(page)) {
1210 delete_from_swap_cache(page);
1214 struct swap_info_struct *p;
1216 entry.val = page_private(page);
1217 p = swap_info_get(entry);
1218 if (p->flags & SWP_STABLE_WRITES) {
1219 spin_unlock(&p->lock);
1222 spin_unlock(&p->lock);
1230 * If swap is getting full, or if there are no more mappings of this page,
1231 * then try_to_free_swap is called to free its swap space.
1233 int try_to_free_swap(struct page *page)
1235 VM_BUG_ON_PAGE(!PageLocked(page), page);
1237 if (!PageSwapCache(page))
1239 if (PageWriteback(page))
1241 if (page_swapcount(page))
1245 * Once hibernation has begun to create its image of memory,
1246 * there's a danger that one of the calls to try_to_free_swap()
1247 * - most probably a call from __try_to_reclaim_swap() while
1248 * hibernation is allocating its own swap pages for the image,
1249 * but conceivably even a call from memory reclaim - will free
1250 * the swap from a page which has already been recorded in the
1251 * image as a clean swapcache page, and then reuse its swap for
1252 * another page of the image. On waking from hibernation, the
1253 * original page might be freed under memory pressure, then
1254 * later read back in from swap, now with the wrong data.
1256 * Hibernation suspends storage while it is writing the image
1257 * to disk so check that here.
1259 if (pm_suspended_storage())
1262 delete_from_swap_cache(page);
1268 * Free the swap entry like above, but also try to
1269 * free the page cache entry if it is the last user.
1271 int free_swap_and_cache(swp_entry_t entry)
1273 struct swap_info_struct *p;
1274 struct page *page = NULL;
1275 unsigned char count;
1277 if (non_swap_entry(entry))
1280 p = _swap_info_get(entry);
1282 count = __swap_entry_free(p, entry, 1);
1283 if (count == SWAP_HAS_CACHE) {
1284 page = find_get_page(swap_address_space(entry),
1286 if (page && !trylock_page(page)) {
1291 swapcache_free_entries(&entry, 1);
1295 * Not mapped elsewhere, or swap space full? Free it!
1296 * Also recheck PageSwapCache now page is locked (above).
1298 if (PageSwapCache(page) && !PageWriteback(page) &&
1299 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1300 delete_from_swap_cache(page);
1309 #ifdef CONFIG_HIBERNATION
1311 * Find the swap type that corresponds to given device (if any).
1313 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1314 * from 0, in which the swap header is expected to be located.
1316 * This is needed for the suspend to disk (aka swsusp).
1318 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1320 struct block_device *bdev = NULL;
1324 bdev = bdget(device);
1326 spin_lock(&swap_lock);
1327 for (type = 0; type < nr_swapfiles; type++) {
1328 struct swap_info_struct *sis = swap_info[type];
1330 if (!(sis->flags & SWP_WRITEOK))
1335 *bdev_p = bdgrab(sis->bdev);
1337 spin_unlock(&swap_lock);
1340 if (bdev == sis->bdev) {
1341 struct swap_extent *se = &sis->first_swap_extent;
1343 if (se->start_block == offset) {
1345 *bdev_p = bdgrab(sis->bdev);
1347 spin_unlock(&swap_lock);
1353 spin_unlock(&swap_lock);
1361 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1362 * corresponding to given index in swap_info (swap type).
1364 sector_t swapdev_block(int type, pgoff_t offset)
1366 struct block_device *bdev;
1368 if ((unsigned int)type >= nr_swapfiles)
1370 if (!(swap_info[type]->flags & SWP_WRITEOK))
1372 return map_swap_entry(swp_entry(type, offset), &bdev);
1376 * Return either the total number of swap pages of given type, or the number
1377 * of free pages of that type (depending on @free)
1379 * This is needed for software suspend
1381 unsigned int count_swap_pages(int type, int free)
1385 spin_lock(&swap_lock);
1386 if ((unsigned int)type < nr_swapfiles) {
1387 struct swap_info_struct *sis = swap_info[type];
1389 spin_lock(&sis->lock);
1390 if (sis->flags & SWP_WRITEOK) {
1393 n -= sis->inuse_pages;
1395 spin_unlock(&sis->lock);
1397 spin_unlock(&swap_lock);
1400 #endif /* CONFIG_HIBERNATION */
1402 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1404 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1408 * No need to decide whether this PTE shares the swap entry with others,
1409 * just let do_wp_page work it out if a write is requested later - to
1410 * force COW, vm_page_prot omits write permission from any private vma.
1412 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1413 unsigned long addr, swp_entry_t entry, struct page *page)
1415 struct page *swapcache;
1416 struct mem_cgroup *memcg;
1422 page = ksm_might_need_to_copy(page, vma, addr);
1423 if (unlikely(!page))
1426 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1432 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1433 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1434 mem_cgroup_cancel_charge(page, memcg, false);
1439 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1440 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1442 set_pte_at(vma->vm_mm, addr, pte,
1443 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1444 if (page == swapcache) {
1445 page_add_anon_rmap(page, vma, addr, false);
1446 mem_cgroup_commit_charge(page, memcg, true, false);
1447 } else { /* ksm created a completely new copy */
1448 page_add_new_anon_rmap(page, vma, addr, false);
1449 mem_cgroup_commit_charge(page, memcg, false, false);
1450 lru_cache_add_active_or_unevictable(page, vma);
1454 * Move the page to the active list so it is not
1455 * immediately swapped out again after swapon.
1457 activate_page(page);
1459 pte_unmap_unlock(pte, ptl);
1461 if (page != swapcache) {
1468 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1469 unsigned long addr, unsigned long end,
1470 swp_entry_t entry, struct page *page)
1472 pte_t swp_pte = swp_entry_to_pte(entry);
1477 * We don't actually need pte lock while scanning for swp_pte: since
1478 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1479 * page table while we're scanning; though it could get zapped, and on
1480 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1481 * of unmatched parts which look like swp_pte, so unuse_pte must
1482 * recheck under pte lock. Scanning without pte lock lets it be
1483 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1485 pte = pte_offset_map(pmd, addr);
1488 * swapoff spends a _lot_ of time in this loop!
1489 * Test inline before going to call unuse_pte.
1491 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1493 ret = unuse_pte(vma, pmd, addr, entry, page);
1496 pte = pte_offset_map(pmd, addr);
1498 } while (pte++, addr += PAGE_SIZE, addr != end);
1504 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1505 unsigned long addr, unsigned long end,
1506 swp_entry_t entry, struct page *page)
1512 pmd = pmd_offset(pud, addr);
1515 next = pmd_addr_end(addr, end);
1516 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1518 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1521 } while (pmd++, addr = next, addr != end);
1525 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1526 unsigned long addr, unsigned long end,
1527 swp_entry_t entry, struct page *page)
1533 pud = pud_offset(pgd, addr);
1535 next = pud_addr_end(addr, end);
1536 if (pud_none_or_clear_bad(pud))
1538 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1541 } while (pud++, addr = next, addr != end);
1545 static int unuse_vma(struct vm_area_struct *vma,
1546 swp_entry_t entry, struct page *page)
1549 unsigned long addr, end, next;
1552 if (page_anon_vma(page)) {
1553 addr = page_address_in_vma(page, vma);
1554 if (addr == -EFAULT)
1557 end = addr + PAGE_SIZE;
1559 addr = vma->vm_start;
1563 pgd = pgd_offset(vma->vm_mm, addr);
1565 next = pgd_addr_end(addr, end);
1566 if (pgd_none_or_clear_bad(pgd))
1568 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1571 } while (pgd++, addr = next, addr != end);
1575 static int unuse_mm(struct mm_struct *mm,
1576 swp_entry_t entry, struct page *page)
1578 struct vm_area_struct *vma;
1581 if (!down_read_trylock(&mm->mmap_sem)) {
1583 * Activate page so shrink_inactive_list is unlikely to unmap
1584 * its ptes while lock is dropped, so swapoff can make progress.
1586 activate_page(page);
1588 down_read(&mm->mmap_sem);
1591 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1592 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1596 up_read(&mm->mmap_sem);
1597 return (ret < 0)? ret: 0;
1601 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1602 * from current position to next entry still in use.
1603 * Recycle to start on reaching the end, returning 0 when empty.
1605 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1606 unsigned int prev, bool frontswap)
1608 unsigned int max = si->max;
1609 unsigned int i = prev;
1610 unsigned char count;
1613 * No need for swap_lock here: we're just looking
1614 * for whether an entry is in use, not modifying it; false
1615 * hits are okay, and sys_swapoff() has already prevented new
1616 * allocations from this area (while holding swap_lock).
1625 * No entries in use at top of swap_map,
1626 * loop back to start and recheck there.
1632 count = READ_ONCE(si->swap_map[i]);
1633 if (count && swap_count(count) != SWAP_MAP_BAD)
1634 if (!frontswap || frontswap_test(si, i))
1636 if ((i % LATENCY_LIMIT) == 0)
1643 * We completely avoid races by reading each swap page in advance,
1644 * and then search for the process using it. All the necessary
1645 * page table adjustments can then be made atomically.
1647 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1648 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1650 int try_to_unuse(unsigned int type, bool frontswap,
1651 unsigned long pages_to_unuse)
1653 struct swap_info_struct *si = swap_info[type];
1654 struct mm_struct *start_mm;
1655 volatile unsigned char *swap_map; /* swap_map is accessed without
1656 * locking. Mark it as volatile
1657 * to prevent compiler doing
1660 unsigned char swcount;
1667 * When searching mms for an entry, a good strategy is to
1668 * start at the first mm we freed the previous entry from
1669 * (though actually we don't notice whether we or coincidence
1670 * freed the entry). Initialize this start_mm with a hold.
1672 * A simpler strategy would be to start at the last mm we
1673 * freed the previous entry from; but that would take less
1674 * advantage of mmlist ordering, which clusters forked mms
1675 * together, child after parent. If we race with dup_mmap(), we
1676 * prefer to resolve parent before child, lest we miss entries
1677 * duplicated after we scanned child: using last mm would invert
1680 start_mm = &init_mm;
1681 atomic_inc(&init_mm.mm_users);
1684 * Keep on scanning until all entries have gone. Usually,
1685 * one pass through swap_map is enough, but not necessarily:
1686 * there are races when an instance of an entry might be missed.
1688 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1689 if (signal_pending(current)) {
1695 * Get a page for the entry, using the existing swap
1696 * cache page if there is one. Otherwise, get a clean
1697 * page and read the swap into it.
1699 swap_map = &si->swap_map[i];
1700 entry = swp_entry(type, i);
1701 page = read_swap_cache_async(entry,
1702 GFP_HIGHUSER_MOVABLE, NULL, 0);
1705 * Either swap_duplicate() failed because entry
1706 * has been freed independently, and will not be
1707 * reused since sys_swapoff() already disabled
1708 * allocation from here, or alloc_page() failed.
1710 swcount = *swap_map;
1712 * We don't hold lock here, so the swap entry could be
1713 * SWAP_MAP_BAD (when the cluster is discarding).
1714 * Instead of fail out, We can just skip the swap
1715 * entry because swapoff will wait for discarding
1718 if (!swcount || swcount == SWAP_MAP_BAD)
1725 * Don't hold on to start_mm if it looks like exiting.
1727 if (atomic_read(&start_mm->mm_users) == 1) {
1729 start_mm = &init_mm;
1730 atomic_inc(&init_mm.mm_users);
1734 * Wait for and lock page. When do_swap_page races with
1735 * try_to_unuse, do_swap_page can handle the fault much
1736 * faster than try_to_unuse can locate the entry. This
1737 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1738 * defer to do_swap_page in such a case - in some tests,
1739 * do_swap_page and try_to_unuse repeatedly compete.
1741 wait_on_page_locked(page);
1742 wait_on_page_writeback(page);
1744 wait_on_page_writeback(page);
1747 * Remove all references to entry.
1749 swcount = *swap_map;
1750 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1751 retval = shmem_unuse(entry, page);
1752 /* page has already been unlocked and released */
1757 if (swap_count(swcount) && start_mm != &init_mm)
1758 retval = unuse_mm(start_mm, entry, page);
1760 if (swap_count(*swap_map)) {
1761 int set_start_mm = (*swap_map >= swcount);
1762 struct list_head *p = &start_mm->mmlist;
1763 struct mm_struct *new_start_mm = start_mm;
1764 struct mm_struct *prev_mm = start_mm;
1765 struct mm_struct *mm;
1767 atomic_inc(&new_start_mm->mm_users);
1768 atomic_inc(&prev_mm->mm_users);
1769 spin_lock(&mmlist_lock);
1770 while (swap_count(*swap_map) && !retval &&
1771 (p = p->next) != &start_mm->mmlist) {
1772 mm = list_entry(p, struct mm_struct, mmlist);
1773 if (!atomic_inc_not_zero(&mm->mm_users))
1775 spin_unlock(&mmlist_lock);
1781 swcount = *swap_map;
1782 if (!swap_count(swcount)) /* any usage ? */
1784 else if (mm == &init_mm)
1787 retval = unuse_mm(mm, entry, page);
1789 if (set_start_mm && *swap_map < swcount) {
1790 mmput(new_start_mm);
1791 atomic_inc(&mm->mm_users);
1795 spin_lock(&mmlist_lock);
1797 spin_unlock(&mmlist_lock);
1800 start_mm = new_start_mm;
1809 * If a reference remains (rare), we would like to leave
1810 * the page in the swap cache; but try_to_unmap could
1811 * then re-duplicate the entry once we drop page lock,
1812 * so we might loop indefinitely; also, that page could
1813 * not be swapped out to other storage meanwhile. So:
1814 * delete from cache even if there's another reference,
1815 * after ensuring that the data has been saved to disk -
1816 * since if the reference remains (rarer), it will be
1817 * read from disk into another page. Splitting into two
1818 * pages would be incorrect if swap supported "shared
1819 * private" pages, but they are handled by tmpfs files.
1821 * Given how unuse_vma() targets one particular offset
1822 * in an anon_vma, once the anon_vma has been determined,
1823 * this splitting happens to be just what is needed to
1824 * handle where KSM pages have been swapped out: re-reading
1825 * is unnecessarily slow, but we can fix that later on.
1827 if (swap_count(*swap_map) &&
1828 PageDirty(page) && PageSwapCache(page)) {
1829 struct writeback_control wbc = {
1830 .sync_mode = WB_SYNC_NONE,
1833 swap_writepage(page, &wbc);
1835 wait_on_page_writeback(page);
1839 * It is conceivable that a racing task removed this page from
1840 * swap cache just before we acquired the page lock at the top,
1841 * or while we dropped it in unuse_mm(). The page might even
1842 * be back in swap cache on another swap area: that we must not
1843 * delete, since it may not have been written out to swap yet.
1845 if (PageSwapCache(page) &&
1846 likely(page_private(page) == entry.val))
1847 delete_from_swap_cache(page);
1850 * So we could skip searching mms once swap count went
1851 * to 1, we did not mark any present ptes as dirty: must
1852 * mark page dirty so shrink_page_list will preserve it.
1859 * Make sure that we aren't completely killing
1860 * interactive performance.
1863 if (frontswap && pages_to_unuse > 0) {
1864 if (!--pages_to_unuse)
1874 * After a successful try_to_unuse, if no swap is now in use, we know
1875 * we can empty the mmlist. swap_lock must be held on entry and exit.
1876 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1877 * added to the mmlist just after page_duplicate - before would be racy.
1879 static void drain_mmlist(void)
1881 struct list_head *p, *next;
1884 for (type = 0; type < nr_swapfiles; type++)
1885 if (swap_info[type]->inuse_pages)
1887 spin_lock(&mmlist_lock);
1888 list_for_each_safe(p, next, &init_mm.mmlist)
1890 spin_unlock(&mmlist_lock);
1894 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1895 * corresponds to page offset for the specified swap entry.
1896 * Note that the type of this function is sector_t, but it returns page offset
1897 * into the bdev, not sector offset.
1899 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1901 struct swap_info_struct *sis;
1902 struct swap_extent *start_se;
1903 struct swap_extent *se;
1906 sis = swap_info[swp_type(entry)];
1909 offset = swp_offset(entry);
1910 start_se = sis->curr_swap_extent;
1914 if (se->start_page <= offset &&
1915 offset < (se->start_page + se->nr_pages)) {
1916 return se->start_block + (offset - se->start_page);
1918 se = list_next_entry(se, list);
1919 sis->curr_swap_extent = se;
1920 BUG_ON(se == start_se); /* It *must* be present */
1925 * Returns the page offset into bdev for the specified page's swap entry.
1927 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1930 entry.val = page_private(page);
1931 return map_swap_entry(entry, bdev);
1935 * Free all of a swapdev's extent information
1937 static void destroy_swap_extents(struct swap_info_struct *sis)
1939 while (!list_empty(&sis->first_swap_extent.list)) {
1940 struct swap_extent *se;
1942 se = list_first_entry(&sis->first_swap_extent.list,
1943 struct swap_extent, list);
1944 list_del(&se->list);
1948 if (sis->flags & SWP_FILE) {
1949 struct file *swap_file = sis->swap_file;
1950 struct address_space *mapping = swap_file->f_mapping;
1952 sis->flags &= ~SWP_FILE;
1953 mapping->a_ops->swap_deactivate(swap_file);
1958 * Add a block range (and the corresponding page range) into this swapdev's
1959 * extent list. The extent list is kept sorted in page order.
1961 * This function rather assumes that it is called in ascending page order.
1964 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1965 unsigned long nr_pages, sector_t start_block)
1967 struct swap_extent *se;
1968 struct swap_extent *new_se;
1969 struct list_head *lh;
1971 if (start_page == 0) {
1972 se = &sis->first_swap_extent;
1973 sis->curr_swap_extent = se;
1975 se->nr_pages = nr_pages;
1976 se->start_block = start_block;
1979 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1980 se = list_entry(lh, struct swap_extent, list);
1981 BUG_ON(se->start_page + se->nr_pages != start_page);
1982 if (se->start_block + se->nr_pages == start_block) {
1984 se->nr_pages += nr_pages;
1990 * No merge. Insert a new extent, preserving ordering.
1992 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1995 new_se->start_page = start_page;
1996 new_se->nr_pages = nr_pages;
1997 new_se->start_block = start_block;
1999 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2004 * A `swap extent' is a simple thing which maps a contiguous range of pages
2005 * onto a contiguous range of disk blocks. An ordered list of swap extents
2006 * is built at swapon time and is then used at swap_writepage/swap_readpage
2007 * time for locating where on disk a page belongs.
2009 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2010 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2011 * swap files identically.
2013 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2014 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2015 * swapfiles are handled *identically* after swapon time.
2017 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2018 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2019 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2020 * requirements, they are simply tossed out - we will never use those blocks
2023 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2024 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2025 * which will scribble on the fs.
2027 * The amount of disk space which a single swap extent represents varies.
2028 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2029 * extents in the list. To avoid much list walking, we cache the previous
2030 * search location in `curr_swap_extent', and start new searches from there.
2031 * This is extremely effective. The average number of iterations in
2032 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2034 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2036 struct file *swap_file = sis->swap_file;
2037 struct address_space *mapping = swap_file->f_mapping;
2038 struct inode *inode = mapping->host;
2041 if (S_ISBLK(inode->i_mode)) {
2042 ret = add_swap_extent(sis, 0, sis->max, 0);
2047 if (mapping->a_ops->swap_activate) {
2048 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2050 sis->flags |= SWP_FILE;
2051 ret = add_swap_extent(sis, 0, sis->max, 0);
2057 return generic_swapfile_activate(sis, swap_file, span);
2060 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2061 unsigned char *swap_map,
2062 struct swap_cluster_info *cluster_info)
2067 p->prio = --least_priority;
2069 * the plist prio is negated because plist ordering is
2070 * low-to-high, while swap ordering is high-to-low
2072 p->list.prio = -p->prio;
2073 p->avail_list.prio = -p->prio;
2074 p->swap_map = swap_map;
2075 p->cluster_info = cluster_info;
2076 p->flags |= SWP_WRITEOK;
2077 atomic_long_add(p->pages, &nr_swap_pages);
2078 total_swap_pages += p->pages;
2080 assert_spin_locked(&swap_lock);
2082 * both lists are plists, and thus priority ordered.
2083 * swap_active_head needs to be priority ordered for swapoff(),
2084 * which on removal of any swap_info_struct with an auto-assigned
2085 * (i.e. negative) priority increments the auto-assigned priority
2086 * of any lower-priority swap_info_structs.
2087 * swap_avail_head needs to be priority ordered for get_swap_page(),
2088 * which allocates swap pages from the highest available priority
2091 plist_add(&p->list, &swap_active_head);
2092 spin_lock(&swap_avail_lock);
2093 plist_add(&p->avail_list, &swap_avail_head);
2094 spin_unlock(&swap_avail_lock);
2097 static void enable_swap_info(struct swap_info_struct *p, int prio,
2098 unsigned char *swap_map,
2099 struct swap_cluster_info *cluster_info,
2100 unsigned long *frontswap_map)
2102 frontswap_init(p->type, frontswap_map);
2103 spin_lock(&swap_lock);
2104 spin_lock(&p->lock);
2105 _enable_swap_info(p, prio, swap_map, cluster_info);
2106 spin_unlock(&p->lock);
2107 spin_unlock(&swap_lock);
2110 static void reinsert_swap_info(struct swap_info_struct *p)
2112 spin_lock(&swap_lock);
2113 spin_lock(&p->lock);
2114 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2115 spin_unlock(&p->lock);
2116 spin_unlock(&swap_lock);
2119 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2121 struct swap_info_struct *p = NULL;
2122 unsigned char *swap_map;
2123 struct swap_cluster_info *cluster_info;
2124 unsigned long *frontswap_map;
2125 struct file *swap_file, *victim;
2126 struct address_space *mapping;
2127 struct inode *inode;
2128 struct filename *pathname;
2130 unsigned int old_block_size;
2132 if (!capable(CAP_SYS_ADMIN))
2135 BUG_ON(!current->mm);
2137 pathname = getname(specialfile);
2138 if (IS_ERR(pathname))
2139 return PTR_ERR(pathname);
2141 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2142 err = PTR_ERR(victim);
2146 mapping = victim->f_mapping;
2147 spin_lock(&swap_lock);
2148 plist_for_each_entry(p, &swap_active_head, list) {
2149 if (p->flags & SWP_WRITEOK) {
2150 if (p->swap_file->f_mapping == mapping) {
2158 spin_unlock(&swap_lock);
2161 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2162 vm_unacct_memory(p->pages);
2165 spin_unlock(&swap_lock);
2168 spin_lock(&swap_avail_lock);
2169 plist_del(&p->avail_list, &swap_avail_head);
2170 spin_unlock(&swap_avail_lock);
2171 spin_lock(&p->lock);
2173 struct swap_info_struct *si = p;
2175 plist_for_each_entry_continue(si, &swap_active_head, list) {
2178 si->avail_list.prio--;
2182 plist_del(&p->list, &swap_active_head);
2183 atomic_long_sub(p->pages, &nr_swap_pages);
2184 total_swap_pages -= p->pages;
2185 p->flags &= ~SWP_WRITEOK;
2186 spin_unlock(&p->lock);
2187 spin_unlock(&swap_lock);
2189 set_current_oom_origin();
2190 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2191 clear_current_oom_origin();
2194 /* re-insert swap space back into swap_list */
2195 reinsert_swap_info(p);
2199 flush_work(&p->discard_work);
2201 destroy_swap_extents(p);
2202 if (p->flags & SWP_CONTINUED)
2203 free_swap_count_continuations(p);
2205 mutex_lock(&swapon_mutex);
2206 spin_lock(&swap_lock);
2207 spin_lock(&p->lock);
2210 /* wait for anyone still in scan_swap_map */
2211 p->highest_bit = 0; /* cuts scans short */
2212 while (p->flags >= SWP_SCANNING) {
2213 spin_unlock(&p->lock);
2214 spin_unlock(&swap_lock);
2215 schedule_timeout_uninterruptible(1);
2216 spin_lock(&swap_lock);
2217 spin_lock(&p->lock);
2220 swap_file = p->swap_file;
2221 old_block_size = p->old_block_size;
2222 p->swap_file = NULL;
2224 swap_map = p->swap_map;
2226 cluster_info = p->cluster_info;
2227 p->cluster_info = NULL;
2228 frontswap_map = frontswap_map_get(p);
2229 spin_unlock(&p->lock);
2230 spin_unlock(&swap_lock);
2231 frontswap_invalidate_area(p->type);
2232 frontswap_map_set(p, NULL);
2233 mutex_unlock(&swapon_mutex);
2234 free_percpu(p->percpu_cluster);
2235 p->percpu_cluster = NULL;
2237 vfree(cluster_info);
2238 vfree(frontswap_map);
2239 /* Destroy swap account information */
2240 swap_cgroup_swapoff(p->type);
2241 exit_swap_address_space(p->type);
2243 inode = mapping->host;
2244 if (S_ISBLK(inode->i_mode)) {
2245 struct block_device *bdev = I_BDEV(inode);
2246 set_blocksize(bdev, old_block_size);
2247 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2250 inode->i_flags &= ~S_SWAPFILE;
2251 inode_unlock(inode);
2253 filp_close(swap_file, NULL);
2256 * Clear the SWP_USED flag after all resources are freed so that swapon
2257 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2258 * not hold p->lock after we cleared its SWP_WRITEOK.
2260 spin_lock(&swap_lock);
2262 spin_unlock(&swap_lock);
2265 atomic_inc(&proc_poll_event);
2266 wake_up_interruptible(&proc_poll_wait);
2269 filp_close(victim, NULL);
2275 #ifdef CONFIG_PROC_FS
2276 static unsigned swaps_poll(struct file *file, poll_table *wait)
2278 struct seq_file *seq = file->private_data;
2280 poll_wait(file, &proc_poll_wait, wait);
2282 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2283 seq->poll_event = atomic_read(&proc_poll_event);
2284 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2287 return POLLIN | POLLRDNORM;
2291 static void *swap_start(struct seq_file *swap, loff_t *pos)
2293 struct swap_info_struct *si;
2297 mutex_lock(&swapon_mutex);
2300 return SEQ_START_TOKEN;
2302 for (type = 0; type < nr_swapfiles; type++) {
2303 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2304 si = swap_info[type];
2305 if (!(si->flags & SWP_USED) || !si->swap_map)
2314 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2316 struct swap_info_struct *si = v;
2319 if (v == SEQ_START_TOKEN)
2322 type = si->type + 1;
2324 for (; type < nr_swapfiles; type++) {
2325 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2326 si = swap_info[type];
2327 if (!(si->flags & SWP_USED) || !si->swap_map)
2336 static void swap_stop(struct seq_file *swap, void *v)
2338 mutex_unlock(&swapon_mutex);
2341 static int swap_show(struct seq_file *swap, void *v)
2343 struct swap_info_struct *si = v;
2347 if (si == SEQ_START_TOKEN) {
2348 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2352 file = si->swap_file;
2353 len = seq_file_path(swap, file, " \t\n\\");
2354 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2355 len < 40 ? 40 - len : 1, " ",
2356 S_ISBLK(file_inode(file)->i_mode) ?
2357 "partition" : "file\t",
2358 si->pages << (PAGE_SHIFT - 10),
2359 si->inuse_pages << (PAGE_SHIFT - 10),
2364 static const struct seq_operations swaps_op = {
2365 .start = swap_start,
2371 static int swaps_open(struct inode *inode, struct file *file)
2373 struct seq_file *seq;
2376 ret = seq_open(file, &swaps_op);
2380 seq = file->private_data;
2381 seq->poll_event = atomic_read(&proc_poll_event);
2385 static const struct file_operations proc_swaps_operations = {
2388 .llseek = seq_lseek,
2389 .release = seq_release,
2393 static int __init procswaps_init(void)
2395 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2398 __initcall(procswaps_init);
2399 #endif /* CONFIG_PROC_FS */
2401 #ifdef MAX_SWAPFILES_CHECK
2402 static int __init max_swapfiles_check(void)
2404 MAX_SWAPFILES_CHECK();
2407 late_initcall(max_swapfiles_check);
2410 static struct swap_info_struct *alloc_swap_info(void)
2412 struct swap_info_struct *p;
2415 p = kzalloc(sizeof(*p), GFP_KERNEL);
2417 return ERR_PTR(-ENOMEM);
2419 spin_lock(&swap_lock);
2420 for (type = 0; type < nr_swapfiles; type++) {
2421 if (!(swap_info[type]->flags & SWP_USED))
2424 if (type >= MAX_SWAPFILES) {
2425 spin_unlock(&swap_lock);
2427 return ERR_PTR(-EPERM);
2429 if (type >= nr_swapfiles) {
2431 swap_info[type] = p;
2433 * Write swap_info[type] before nr_swapfiles, in case a
2434 * racing procfs swap_start() or swap_next() is reading them.
2435 * (We never shrink nr_swapfiles, we never free this entry.)
2441 p = swap_info[type];
2443 * Do not memset this entry: a racing procfs swap_next()
2444 * would be relying on p->type to remain valid.
2447 INIT_LIST_HEAD(&p->first_swap_extent.list);
2448 plist_node_init(&p->list, 0);
2449 plist_node_init(&p->avail_list, 0);
2450 p->flags = SWP_USED;
2451 spin_unlock(&swap_lock);
2452 spin_lock_init(&p->lock);
2457 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2461 if (S_ISBLK(inode->i_mode)) {
2462 p->bdev = bdgrab(I_BDEV(inode));
2463 error = blkdev_get(p->bdev,
2464 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2469 p->old_block_size = block_size(p->bdev);
2470 error = set_blocksize(p->bdev, PAGE_SIZE);
2473 p->flags |= SWP_BLKDEV;
2474 } else if (S_ISREG(inode->i_mode)) {
2475 p->bdev = inode->i_sb->s_bdev;
2477 if (IS_SWAPFILE(inode))
2485 static unsigned long read_swap_header(struct swap_info_struct *p,
2486 union swap_header *swap_header,
2487 struct inode *inode)
2490 unsigned long maxpages;
2491 unsigned long swapfilepages;
2492 unsigned long last_page;
2494 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2495 pr_err("Unable to find swap-space signature\n");
2499 /* swap partition endianess hack... */
2500 if (swab32(swap_header->info.version) == 1) {
2501 swab32s(&swap_header->info.version);
2502 swab32s(&swap_header->info.last_page);
2503 swab32s(&swap_header->info.nr_badpages);
2504 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2506 for (i = 0; i < swap_header->info.nr_badpages; i++)
2507 swab32s(&swap_header->info.badpages[i]);
2509 /* Check the swap header's sub-version */
2510 if (swap_header->info.version != 1) {
2511 pr_warn("Unable to handle swap header version %d\n",
2512 swap_header->info.version);
2517 p->cluster_next = 1;
2521 * Find out how many pages are allowed for a single swap
2522 * device. There are two limiting factors: 1) the number
2523 * of bits for the swap offset in the swp_entry_t type, and
2524 * 2) the number of bits in the swap pte as defined by the
2525 * different architectures. In order to find the
2526 * largest possible bit mask, a swap entry with swap type 0
2527 * and swap offset ~0UL is created, encoded to a swap pte,
2528 * decoded to a swp_entry_t again, and finally the swap
2529 * offset is extracted. This will mask all the bits from
2530 * the initial ~0UL mask that can't be encoded in either
2531 * the swp_entry_t or the architecture definition of a
2534 maxpages = swp_offset(pte_to_swp_entry(
2535 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2536 last_page = swap_header->info.last_page;
2537 if (last_page > maxpages) {
2538 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2539 maxpages << (PAGE_SHIFT - 10),
2540 last_page << (PAGE_SHIFT - 10));
2542 if (maxpages > last_page) {
2543 maxpages = last_page + 1;
2544 /* p->max is an unsigned int: don't overflow it */
2545 if ((unsigned int)maxpages == 0)
2546 maxpages = UINT_MAX;
2548 p->highest_bit = maxpages - 1;
2552 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2553 if (swapfilepages && maxpages > swapfilepages) {
2554 pr_warn("Swap area shorter than signature indicates\n");
2557 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2559 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2565 #define SWAP_CLUSTER_INFO_COLS \
2566 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2567 #define SWAP_CLUSTER_SPACE_COLS \
2568 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2569 #define SWAP_CLUSTER_COLS \
2570 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2572 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2573 union swap_header *swap_header,
2574 unsigned char *swap_map,
2575 struct swap_cluster_info *cluster_info,
2576 unsigned long maxpages,
2580 unsigned int nr_good_pages;
2582 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2583 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2584 unsigned long i, idx;
2586 nr_good_pages = maxpages - 1; /* omit header page */
2588 cluster_list_init(&p->free_clusters);
2589 cluster_list_init(&p->discard_clusters);
2591 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2592 unsigned int page_nr = swap_header->info.badpages[i];
2593 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2595 if (page_nr < maxpages) {
2596 swap_map[page_nr] = SWAP_MAP_BAD;
2599 * Haven't marked the cluster free yet, no list
2600 * operation involved
2602 inc_cluster_info_page(p, cluster_info, page_nr);
2606 /* Haven't marked the cluster free yet, no list operation involved */
2607 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2608 inc_cluster_info_page(p, cluster_info, i);
2610 if (nr_good_pages) {
2611 swap_map[0] = SWAP_MAP_BAD;
2613 * Not mark the cluster free yet, no list
2614 * operation involved
2616 inc_cluster_info_page(p, cluster_info, 0);
2618 p->pages = nr_good_pages;
2619 nr_extents = setup_swap_extents(p, span);
2622 nr_good_pages = p->pages;
2624 if (!nr_good_pages) {
2625 pr_warn("Empty swap-file\n");
2634 * Reduce false cache line sharing between cluster_info and
2635 * sharing same address space.
2637 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2638 j = (k + col) % SWAP_CLUSTER_COLS;
2639 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2640 idx = i * SWAP_CLUSTER_COLS + j;
2641 if (idx >= nr_clusters)
2643 if (cluster_count(&cluster_info[idx]))
2645 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2646 cluster_list_add_tail(&p->free_clusters, cluster_info,
2654 * Helper to sys_swapon determining if a given swap
2655 * backing device queue supports DISCARD operations.
2657 static bool swap_discardable(struct swap_info_struct *si)
2659 struct request_queue *q = bdev_get_queue(si->bdev);
2661 if (!q || !blk_queue_discard(q))
2667 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2669 struct swap_info_struct *p;
2670 struct filename *name;
2671 struct file *swap_file = NULL;
2672 struct address_space *mapping;
2675 union swap_header *swap_header;
2678 unsigned long maxpages;
2679 unsigned char *swap_map = NULL;
2680 struct swap_cluster_info *cluster_info = NULL;
2681 unsigned long *frontswap_map = NULL;
2682 struct page *page = NULL;
2683 struct inode *inode = NULL;
2685 if (swap_flags & ~SWAP_FLAGS_VALID)
2688 if (!capable(CAP_SYS_ADMIN))
2691 p = alloc_swap_info();
2695 INIT_WORK(&p->discard_work, swap_discard_work);
2697 name = getname(specialfile);
2699 error = PTR_ERR(name);
2703 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2704 if (IS_ERR(swap_file)) {
2705 error = PTR_ERR(swap_file);
2710 p->swap_file = swap_file;
2711 mapping = swap_file->f_mapping;
2712 inode = mapping->host;
2714 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2715 error = claim_swapfile(p, inode);
2716 if (unlikely(error))
2720 * Read the swap header.
2722 if (!mapping->a_ops->readpage) {
2726 page = read_mapping_page(mapping, 0, swap_file);
2728 error = PTR_ERR(page);
2731 swap_header = kmap(page);
2733 maxpages = read_swap_header(p, swap_header, inode);
2734 if (unlikely(!maxpages)) {
2739 /* OK, set up the swap map and apply the bad block list */
2740 swap_map = vzalloc(maxpages);
2746 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2747 p->flags |= SWP_STABLE_WRITES;
2749 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2751 unsigned long ci, nr_cluster;
2753 p->flags |= SWP_SOLIDSTATE;
2755 * select a random position to start with to help wear leveling
2758 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2759 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2761 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2762 if (!cluster_info) {
2767 for (ci = 0; ci < nr_cluster; ci++)
2768 spin_lock_init(&((cluster_info + ci)->lock));
2770 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2771 if (!p->percpu_cluster) {
2775 for_each_possible_cpu(cpu) {
2776 struct percpu_cluster *cluster;
2777 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2778 cluster_set_null(&cluster->index);
2782 error = swap_cgroup_swapon(p->type, maxpages);
2786 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2787 cluster_info, maxpages, &span);
2788 if (unlikely(nr_extents < 0)) {
2792 /* frontswap enabled? set up bit-per-page map for frontswap */
2793 if (IS_ENABLED(CONFIG_FRONTSWAP))
2794 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2796 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2798 * When discard is enabled for swap with no particular
2799 * policy flagged, we set all swap discard flags here in
2800 * order to sustain backward compatibility with older
2801 * swapon(8) releases.
2803 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2807 * By flagging sys_swapon, a sysadmin can tell us to
2808 * either do single-time area discards only, or to just
2809 * perform discards for released swap page-clusters.
2810 * Now it's time to adjust the p->flags accordingly.
2812 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2813 p->flags &= ~SWP_PAGE_DISCARD;
2814 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2815 p->flags &= ~SWP_AREA_DISCARD;
2817 /* issue a swapon-time discard if it's still required */
2818 if (p->flags & SWP_AREA_DISCARD) {
2819 int err = discard_swap(p);
2821 pr_err("swapon: discard_swap(%p): %d\n",
2826 error = init_swap_address_space(p->type, maxpages);
2830 mutex_lock(&swapon_mutex);
2832 if (swap_flags & SWAP_FLAG_PREFER)
2834 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2835 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2837 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2838 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2839 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2840 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2841 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2842 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2843 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2844 (frontswap_map) ? "FS" : "");
2846 mutex_unlock(&swapon_mutex);
2847 atomic_inc(&proc_poll_event);
2848 wake_up_interruptible(&proc_poll_wait);
2850 if (S_ISREG(inode->i_mode))
2851 inode->i_flags |= S_SWAPFILE;
2855 free_percpu(p->percpu_cluster);
2856 p->percpu_cluster = NULL;
2857 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2858 set_blocksize(p->bdev, p->old_block_size);
2859 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2861 destroy_swap_extents(p);
2862 swap_cgroup_swapoff(p->type);
2863 spin_lock(&swap_lock);
2864 p->swap_file = NULL;
2866 spin_unlock(&swap_lock);
2868 vfree(cluster_info);
2870 if (inode && S_ISREG(inode->i_mode)) {
2871 inode_unlock(inode);
2874 filp_close(swap_file, NULL);
2877 if (page && !IS_ERR(page)) {
2883 if (inode && S_ISREG(inode->i_mode))
2884 inode_unlock(inode);
2888 void si_swapinfo(struct sysinfo *val)
2891 unsigned long nr_to_be_unused = 0;
2893 spin_lock(&swap_lock);
2894 for (type = 0; type < nr_swapfiles; type++) {
2895 struct swap_info_struct *si = swap_info[type];
2897 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2898 nr_to_be_unused += si->inuse_pages;
2900 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2901 val->totalswap = total_swap_pages + nr_to_be_unused;
2902 spin_unlock(&swap_lock);
2906 * Verify that a swap entry is valid and increment its swap map count.
2908 * Returns error code in following case.
2910 * - swp_entry is invalid -> EINVAL
2911 * - swp_entry is migration entry -> EINVAL
2912 * - swap-cache reference is requested but there is already one. -> EEXIST
2913 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2914 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2916 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2918 struct swap_info_struct *p;
2919 struct swap_cluster_info *ci;
2920 unsigned long offset, type;
2921 unsigned char count;
2922 unsigned char has_cache;
2925 if (non_swap_entry(entry))
2928 type = swp_type(entry);
2929 if (type >= nr_swapfiles)
2931 p = swap_info[type];
2932 offset = swp_offset(entry);
2933 if (unlikely(offset >= p->max))
2936 ci = lock_cluster_or_swap_info(p, offset);
2938 count = p->swap_map[offset];
2941 * swapin_readahead() doesn't check if a swap entry is valid, so the
2942 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2944 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2949 has_cache = count & SWAP_HAS_CACHE;
2950 count &= ~SWAP_HAS_CACHE;
2953 if (usage == SWAP_HAS_CACHE) {
2955 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2956 if (!has_cache && count)
2957 has_cache = SWAP_HAS_CACHE;
2958 else if (has_cache) /* someone else added cache */
2960 else /* no users remaining */
2963 } else if (count || has_cache) {
2965 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2967 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2969 else if (swap_count_continued(p, offset, count))
2970 count = COUNT_CONTINUED;
2974 err = -ENOENT; /* unused swap entry */
2976 p->swap_map[offset] = count | has_cache;
2979 unlock_cluster_or_swap_info(p, ci);
2984 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2989 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2990 * (in which case its reference count is never incremented).
2992 void swap_shmem_alloc(swp_entry_t entry)
2994 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2998 * Increase reference count of swap entry by 1.
2999 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3000 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3001 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3002 * might occur if a page table entry has got corrupted.
3004 int swap_duplicate(swp_entry_t entry)
3008 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3009 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3014 * @entry: swap entry for which we allocate swap cache.
3016 * Called when allocating swap cache for existing swap entry,
3017 * This can return error codes. Returns 0 at success.
3018 * -EBUSY means there is a swap cache.
3019 * Note: return code is different from swap_duplicate().
3021 int swapcache_prepare(swp_entry_t entry)
3023 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3026 struct swap_info_struct *page_swap_info(struct page *page)
3028 swp_entry_t swap = { .val = page_private(page) };
3029 return swap_info[swp_type(swap)];
3033 * out-of-line __page_file_ methods to avoid include hell.
3035 struct address_space *__page_file_mapping(struct page *page)
3037 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3038 return page_swap_info(page)->swap_file->f_mapping;
3040 EXPORT_SYMBOL_GPL(__page_file_mapping);
3042 pgoff_t __page_file_index(struct page *page)
3044 swp_entry_t swap = { .val = page_private(page) };
3045 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3046 return swp_offset(swap);
3048 EXPORT_SYMBOL_GPL(__page_file_index);
3051 * add_swap_count_continuation - called when a swap count is duplicated
3052 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3053 * page of the original vmalloc'ed swap_map, to hold the continuation count
3054 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3055 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3057 * These continuation pages are seldom referenced: the common paths all work
3058 * on the original swap_map, only referring to a continuation page when the
3059 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3061 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3062 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3063 * can be called after dropping locks.
3065 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3067 struct swap_info_struct *si;
3068 struct swap_cluster_info *ci;
3071 struct page *list_page;
3073 unsigned char count;
3076 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3077 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3079 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3081 si = swap_info_get(entry);
3084 * An acceptable race has occurred since the failing
3085 * __swap_duplicate(): the swap entry has been freed,
3086 * perhaps even the whole swap_map cleared for swapoff.
3091 offset = swp_offset(entry);
3093 ci = lock_cluster(si, offset);
3095 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3097 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3099 * The higher the swap count, the more likely it is that tasks
3100 * will race to add swap count continuation: we need to avoid
3101 * over-provisioning.
3108 spin_unlock(&si->lock);
3113 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3114 * no architecture is using highmem pages for kernel page tables: so it
3115 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3117 head = vmalloc_to_page(si->swap_map + offset);
3118 offset &= ~PAGE_MASK;
3121 * Page allocation does not initialize the page's lru field,
3122 * but it does always reset its private field.
3124 if (!page_private(head)) {
3125 BUG_ON(count & COUNT_CONTINUED);
3126 INIT_LIST_HEAD(&head->lru);
3127 set_page_private(head, SWP_CONTINUED);
3128 si->flags |= SWP_CONTINUED;
3131 list_for_each_entry(list_page, &head->lru, lru) {
3135 * If the previous map said no continuation, but we've found
3136 * a continuation page, free our allocation and use this one.
3138 if (!(count & COUNT_CONTINUED))
3141 map = kmap_atomic(list_page) + offset;
3146 * If this continuation count now has some space in it,
3147 * free our allocation and use this one.
3149 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3153 list_add_tail(&page->lru, &head->lru);
3154 page = NULL; /* now it's attached, don't free it */
3157 spin_unlock(&si->lock);
3165 * swap_count_continued - when the original swap_map count is incremented
3166 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3167 * into, carry if so, or else fail until a new continuation page is allocated;
3168 * when the original swap_map count is decremented from 0 with continuation,
3169 * borrow from the continuation and report whether it still holds more.
3170 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3173 static bool swap_count_continued(struct swap_info_struct *si,
3174 pgoff_t offset, unsigned char count)
3180 head = vmalloc_to_page(si->swap_map + offset);
3181 if (page_private(head) != SWP_CONTINUED) {
3182 BUG_ON(count & COUNT_CONTINUED);
3183 return false; /* need to add count continuation */
3186 offset &= ~PAGE_MASK;
3187 page = list_entry(head->lru.next, struct page, lru);
3188 map = kmap_atomic(page) + offset;
3190 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3191 goto init_map; /* jump over SWAP_CONT_MAX checks */
3193 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3195 * Think of how you add 1 to 999
3197 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3199 page = list_entry(page->lru.next, struct page, lru);
3200 BUG_ON(page == head);
3201 map = kmap_atomic(page) + offset;
3203 if (*map == SWAP_CONT_MAX) {
3205 page = list_entry(page->lru.next, struct page, lru);
3207 return false; /* add count continuation */
3208 map = kmap_atomic(page) + offset;
3209 init_map: *map = 0; /* we didn't zero the page */
3213 page = list_entry(page->lru.prev, struct page, lru);
3214 while (page != head) {
3215 map = kmap_atomic(page) + offset;
3216 *map = COUNT_CONTINUED;
3218 page = list_entry(page->lru.prev, struct page, lru);
3220 return true; /* incremented */
3222 } else { /* decrementing */
3224 * Think of how you subtract 1 from 1000
3226 BUG_ON(count != COUNT_CONTINUED);
3227 while (*map == COUNT_CONTINUED) {
3229 page = list_entry(page->lru.next, struct page, lru);
3230 BUG_ON(page == head);
3231 map = kmap_atomic(page) + offset;
3238 page = list_entry(page->lru.prev, struct page, lru);
3239 while (page != head) {
3240 map = kmap_atomic(page) + offset;
3241 *map = SWAP_CONT_MAX | count;
3242 count = COUNT_CONTINUED;
3244 page = list_entry(page->lru.prev, struct page, lru);
3246 return count == COUNT_CONTINUED;
3251 * free_swap_count_continuations - swapoff free all the continuation pages
3252 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3254 static void free_swap_count_continuations(struct swap_info_struct *si)
3258 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3260 head = vmalloc_to_page(si->swap_map + offset);
3261 if (page_private(head)) {
3262 struct page *page, *next;
3264 list_for_each_entry_safe(page, next, &head->lru, lru) {
3265 list_del(&page->lru);