]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/swapfile.c
mm/swap: free swap slots in batch
[karo-tx-linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /*
52  * Some modules use swappable objects and may try to swap them out under
53  * memory pressure (via the shrinker). Before doing so, they may wish to
54  * check to see if any swap space is available.
55  */
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
60
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
65
66 /*
67  * all active swap_info_structs
68  * protected with swap_lock, and ordered by priority.
69  */
70 PLIST_HEAD(swap_active_head);
71
72 /*
73  * all available (active, not full) swap_info_structs
74  * protected with swap_avail_lock, ordered by priority.
75  * This is used by get_swap_page() instead of swap_active_head
76  * because swap_active_head includes all swap_info_structs,
77  * but get_swap_page() doesn't need to look at full ones.
78  * This uses its own lock instead of swap_lock because when a
79  * swap_info_struct changes between not-full/full, it needs to
80  * add/remove itself to/from this list, but the swap_info_struct->lock
81  * is held and the locking order requires swap_lock to be taken
82  * before any swap_info_struct->lock.
83  */
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
86
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
88
89 static DEFINE_MUTEX(swapon_mutex);
90
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
94
95 static inline unsigned char swap_count(unsigned char ent)
96 {
97         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
98 }
99
100 /* returns 1 if swap entry is freed */
101 static int
102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103 {
104         swp_entry_t entry = swp_entry(si->type, offset);
105         struct page *page;
106         int ret = 0;
107
108         page = find_get_page(swap_address_space(entry), swp_offset(entry));
109         if (!page)
110                 return 0;
111         /*
112          * This function is called from scan_swap_map() and it's called
113          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114          * We have to use trylock for avoiding deadlock. This is a special
115          * case and you should use try_to_free_swap() with explicit lock_page()
116          * in usual operations.
117          */
118         if (trylock_page(page)) {
119                 ret = try_to_free_swap(page);
120                 unlock_page(page);
121         }
122         put_page(page);
123         return ret;
124 }
125
126 /*
127  * swapon tell device that all the old swap contents can be discarded,
128  * to allow the swap device to optimize its wear-levelling.
129  */
130 static int discard_swap(struct swap_info_struct *si)
131 {
132         struct swap_extent *se;
133         sector_t start_block;
134         sector_t nr_blocks;
135         int err = 0;
136
137         /* Do not discard the swap header page! */
138         se = &si->first_swap_extent;
139         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141         if (nr_blocks) {
142                 err = blkdev_issue_discard(si->bdev, start_block,
143                                 nr_blocks, GFP_KERNEL, 0);
144                 if (err)
145                         return err;
146                 cond_resched();
147         }
148
149         list_for_each_entry(se, &si->first_swap_extent.list, list) {
150                 start_block = se->start_block << (PAGE_SHIFT - 9);
151                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152
153                 err = blkdev_issue_discard(si->bdev, start_block,
154                                 nr_blocks, GFP_KERNEL, 0);
155                 if (err)
156                         break;
157
158                 cond_resched();
159         }
160         return err;             /* That will often be -EOPNOTSUPP */
161 }
162
163 /*
164  * swap allocation tell device that a cluster of swap can now be discarded,
165  * to allow the swap device to optimize its wear-levelling.
166  */
167 static void discard_swap_cluster(struct swap_info_struct *si,
168                                  pgoff_t start_page, pgoff_t nr_pages)
169 {
170         struct swap_extent *se = si->curr_swap_extent;
171         int found_extent = 0;
172
173         while (nr_pages) {
174                 if (se->start_page <= start_page &&
175                     start_page < se->start_page + se->nr_pages) {
176                         pgoff_t offset = start_page - se->start_page;
177                         sector_t start_block = se->start_block + offset;
178                         sector_t nr_blocks = se->nr_pages - offset;
179
180                         if (nr_blocks > nr_pages)
181                                 nr_blocks = nr_pages;
182                         start_page += nr_blocks;
183                         nr_pages -= nr_blocks;
184
185                         if (!found_extent++)
186                                 si->curr_swap_extent = se;
187
188                         start_block <<= PAGE_SHIFT - 9;
189                         nr_blocks <<= PAGE_SHIFT - 9;
190                         if (blkdev_issue_discard(si->bdev, start_block,
191                                     nr_blocks, GFP_NOIO, 0))
192                                 break;
193                 }
194
195                 se = list_next_entry(se, list);
196         }
197 }
198
199 #define SWAPFILE_CLUSTER        256
200 #define LATENCY_LIMIT           256
201
202 static inline void cluster_set_flag(struct swap_cluster_info *info,
203         unsigned int flag)
204 {
205         info->flags = flag;
206 }
207
208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
209 {
210         return info->data;
211 }
212
213 static inline void cluster_set_count(struct swap_cluster_info *info,
214                                      unsigned int c)
215 {
216         info->data = c;
217 }
218
219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220                                          unsigned int c, unsigned int f)
221 {
222         info->flags = f;
223         info->data = c;
224 }
225
226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
227 {
228         return info->data;
229 }
230
231 static inline void cluster_set_next(struct swap_cluster_info *info,
232                                     unsigned int n)
233 {
234         info->data = n;
235 }
236
237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238                                          unsigned int n, unsigned int f)
239 {
240         info->flags = f;
241         info->data = n;
242 }
243
244 static inline bool cluster_is_free(struct swap_cluster_info *info)
245 {
246         return info->flags & CLUSTER_FLAG_FREE;
247 }
248
249 static inline bool cluster_is_null(struct swap_cluster_info *info)
250 {
251         return info->flags & CLUSTER_FLAG_NEXT_NULL;
252 }
253
254 static inline void cluster_set_null(struct swap_cluster_info *info)
255 {
256         info->flags = CLUSTER_FLAG_NEXT_NULL;
257         info->data = 0;
258 }
259
260 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
261                                                      unsigned long offset)
262 {
263         struct swap_cluster_info *ci;
264
265         ci = si->cluster_info;
266         if (ci) {
267                 ci += offset / SWAPFILE_CLUSTER;
268                 spin_lock(&ci->lock);
269         }
270         return ci;
271 }
272
273 static inline void unlock_cluster(struct swap_cluster_info *ci)
274 {
275         if (ci)
276                 spin_unlock(&ci->lock);
277 }
278
279 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
280         struct swap_info_struct *si,
281         unsigned long offset)
282 {
283         struct swap_cluster_info *ci;
284
285         ci = lock_cluster(si, offset);
286         if (!ci)
287                 spin_lock(&si->lock);
288
289         return ci;
290 }
291
292 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
293                                                struct swap_cluster_info *ci)
294 {
295         if (ci)
296                 unlock_cluster(ci);
297         else
298                 spin_unlock(&si->lock);
299 }
300
301 static inline bool cluster_list_empty(struct swap_cluster_list *list)
302 {
303         return cluster_is_null(&list->head);
304 }
305
306 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
307 {
308         return cluster_next(&list->head);
309 }
310
311 static void cluster_list_init(struct swap_cluster_list *list)
312 {
313         cluster_set_null(&list->head);
314         cluster_set_null(&list->tail);
315 }
316
317 static void cluster_list_add_tail(struct swap_cluster_list *list,
318                                   struct swap_cluster_info *ci,
319                                   unsigned int idx)
320 {
321         if (cluster_list_empty(list)) {
322                 cluster_set_next_flag(&list->head, idx, 0);
323                 cluster_set_next_flag(&list->tail, idx, 0);
324         } else {
325                 struct swap_cluster_info *ci_tail;
326                 unsigned int tail = cluster_next(&list->tail);
327
328                 /*
329                  * Nested cluster lock, but both cluster locks are
330                  * only acquired when we held swap_info_struct->lock
331                  */
332                 ci_tail = ci + tail;
333                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
334                 cluster_set_next(ci_tail, idx);
335                 unlock_cluster(ci_tail);
336                 cluster_set_next_flag(&list->tail, idx, 0);
337         }
338 }
339
340 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
341                                            struct swap_cluster_info *ci)
342 {
343         unsigned int idx;
344
345         idx = cluster_next(&list->head);
346         if (cluster_next(&list->tail) == idx) {
347                 cluster_set_null(&list->head);
348                 cluster_set_null(&list->tail);
349         } else
350                 cluster_set_next_flag(&list->head,
351                                       cluster_next(&ci[idx]), 0);
352
353         return idx;
354 }
355
356 /* Add a cluster to discard list and schedule it to do discard */
357 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
358                 unsigned int idx)
359 {
360         /*
361          * If scan_swap_map() can't find a free cluster, it will check
362          * si->swap_map directly. To make sure the discarding cluster isn't
363          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
364          * will be cleared after discard
365          */
366         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
367                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
368
369         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
370
371         schedule_work(&si->discard_work);
372 }
373
374 /*
375  * Doing discard actually. After a cluster discard is finished, the cluster
376  * will be added to free cluster list. caller should hold si->lock.
377 */
378 static void swap_do_scheduled_discard(struct swap_info_struct *si)
379 {
380         struct swap_cluster_info *info, *ci;
381         unsigned int idx;
382
383         info = si->cluster_info;
384
385         while (!cluster_list_empty(&si->discard_clusters)) {
386                 idx = cluster_list_del_first(&si->discard_clusters, info);
387                 spin_unlock(&si->lock);
388
389                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
390                                 SWAPFILE_CLUSTER);
391
392                 spin_lock(&si->lock);
393                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
394                 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
395                 unlock_cluster(ci);
396                 cluster_list_add_tail(&si->free_clusters, info, idx);
397                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
398                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
399                                 0, SWAPFILE_CLUSTER);
400                 unlock_cluster(ci);
401         }
402 }
403
404 static void swap_discard_work(struct work_struct *work)
405 {
406         struct swap_info_struct *si;
407
408         si = container_of(work, struct swap_info_struct, discard_work);
409
410         spin_lock(&si->lock);
411         swap_do_scheduled_discard(si);
412         spin_unlock(&si->lock);
413 }
414
415 /*
416  * The cluster corresponding to page_nr will be used. The cluster will be
417  * removed from free cluster list and its usage counter will be increased.
418  */
419 static void inc_cluster_info_page(struct swap_info_struct *p,
420         struct swap_cluster_info *cluster_info, unsigned long page_nr)
421 {
422         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
423
424         if (!cluster_info)
425                 return;
426         if (cluster_is_free(&cluster_info[idx])) {
427                 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
428                 cluster_list_del_first(&p->free_clusters, cluster_info);
429                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
430         }
431
432         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
433         cluster_set_count(&cluster_info[idx],
434                 cluster_count(&cluster_info[idx]) + 1);
435 }
436
437 /*
438  * The cluster corresponding to page_nr decreases one usage. If the usage
439  * counter becomes 0, which means no page in the cluster is in using, we can
440  * optionally discard the cluster and add it to free cluster list.
441  */
442 static void dec_cluster_info_page(struct swap_info_struct *p,
443         struct swap_cluster_info *cluster_info, unsigned long page_nr)
444 {
445         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
446
447         if (!cluster_info)
448                 return;
449
450         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
451         cluster_set_count(&cluster_info[idx],
452                 cluster_count(&cluster_info[idx]) - 1);
453
454         if (cluster_count(&cluster_info[idx]) == 0) {
455                 /*
456                  * If the swap is discardable, prepare discard the cluster
457                  * instead of free it immediately. The cluster will be freed
458                  * after discard.
459                  */
460                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
461                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
462                         swap_cluster_schedule_discard(p, idx);
463                         return;
464                 }
465
466                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
467                 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
468         }
469 }
470
471 /*
472  * It's possible scan_swap_map() uses a free cluster in the middle of free
473  * cluster list. Avoiding such abuse to avoid list corruption.
474  */
475 static bool
476 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
477         unsigned long offset)
478 {
479         struct percpu_cluster *percpu_cluster;
480         bool conflict;
481
482         offset /= SWAPFILE_CLUSTER;
483         conflict = !cluster_list_empty(&si->free_clusters) &&
484                 offset != cluster_list_first(&si->free_clusters) &&
485                 cluster_is_free(&si->cluster_info[offset]);
486
487         if (!conflict)
488                 return false;
489
490         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
491         cluster_set_null(&percpu_cluster->index);
492         return true;
493 }
494
495 /*
496  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
497  * might involve allocating a new cluster for current CPU too.
498  */
499 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
500         unsigned long *offset, unsigned long *scan_base)
501 {
502         struct percpu_cluster *cluster;
503         struct swap_cluster_info *ci;
504         bool found_free;
505         unsigned long tmp, max;
506
507 new_cluster:
508         cluster = this_cpu_ptr(si->percpu_cluster);
509         if (cluster_is_null(&cluster->index)) {
510                 if (!cluster_list_empty(&si->free_clusters)) {
511                         cluster->index = si->free_clusters.head;
512                         cluster->next = cluster_next(&cluster->index) *
513                                         SWAPFILE_CLUSTER;
514                 } else if (!cluster_list_empty(&si->discard_clusters)) {
515                         /*
516                          * we don't have free cluster but have some clusters in
517                          * discarding, do discard now and reclaim them
518                          */
519                         swap_do_scheduled_discard(si);
520                         *scan_base = *offset = si->cluster_next;
521                         goto new_cluster;
522                 } else
523                         return false;
524         }
525
526         found_free = false;
527
528         /*
529          * Other CPUs can use our cluster if they can't find a free cluster,
530          * check if there is still free entry in the cluster
531          */
532         tmp = cluster->next;
533         max = min_t(unsigned long, si->max,
534                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
535         if (tmp >= max) {
536                 cluster_set_null(&cluster->index);
537                 goto new_cluster;
538         }
539         ci = lock_cluster(si, tmp);
540         while (tmp < max) {
541                 if (!si->swap_map[tmp]) {
542                         found_free = true;
543                         break;
544                 }
545                 tmp++;
546         }
547         unlock_cluster(ci);
548         if (!found_free) {
549                 cluster_set_null(&cluster->index);
550                 goto new_cluster;
551         }
552         cluster->next = tmp + 1;
553         *offset = tmp;
554         *scan_base = tmp;
555         return found_free;
556 }
557
558 static int scan_swap_map_slots(struct swap_info_struct *si,
559                                unsigned char usage, int nr,
560                                swp_entry_t slots[])
561 {
562         struct swap_cluster_info *ci;
563         unsigned long offset;
564         unsigned long scan_base;
565         unsigned long last_in_cluster = 0;
566         int latency_ration = LATENCY_LIMIT;
567         int n_ret = 0;
568
569         if (nr > SWAP_BATCH)
570                 nr = SWAP_BATCH;
571
572         /*
573          * We try to cluster swap pages by allocating them sequentially
574          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
575          * way, however, we resort to first-free allocation, starting
576          * a new cluster.  This prevents us from scattering swap pages
577          * all over the entire swap partition, so that we reduce
578          * overall disk seek times between swap pages.  -- sct
579          * But we do now try to find an empty cluster.  -Andrea
580          * And we let swap pages go all over an SSD partition.  Hugh
581          */
582
583         si->flags += SWP_SCANNING;
584         scan_base = offset = si->cluster_next;
585
586         /* SSD algorithm */
587         if (si->cluster_info) {
588                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
589                         goto checks;
590                 else
591                         goto scan;
592         }
593
594         if (unlikely(!si->cluster_nr--)) {
595                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
596                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
597                         goto checks;
598                 }
599
600                 spin_unlock(&si->lock);
601
602                 /*
603                  * If seek is expensive, start searching for new cluster from
604                  * start of partition, to minimize the span of allocated swap.
605                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
606                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
607                  */
608                 scan_base = offset = si->lowest_bit;
609                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
610
611                 /* Locate the first empty (unaligned) cluster */
612                 for (; last_in_cluster <= si->highest_bit; offset++) {
613                         if (si->swap_map[offset])
614                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
615                         else if (offset == last_in_cluster) {
616                                 spin_lock(&si->lock);
617                                 offset -= SWAPFILE_CLUSTER - 1;
618                                 si->cluster_next = offset;
619                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
620                                 goto checks;
621                         }
622                         if (unlikely(--latency_ration < 0)) {
623                                 cond_resched();
624                                 latency_ration = LATENCY_LIMIT;
625                         }
626                 }
627
628                 offset = scan_base;
629                 spin_lock(&si->lock);
630                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
631         }
632
633 checks:
634         if (si->cluster_info) {
635                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
636                 /* take a break if we already got some slots */
637                         if (n_ret)
638                                 goto done;
639                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
640                                                         &scan_base))
641                                 goto scan;
642                 }
643         }
644         if (!(si->flags & SWP_WRITEOK))
645                 goto no_page;
646         if (!si->highest_bit)
647                 goto no_page;
648         if (offset > si->highest_bit)
649                 scan_base = offset = si->lowest_bit;
650
651         ci = lock_cluster(si, offset);
652         /* reuse swap entry of cache-only swap if not busy. */
653         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
654                 int swap_was_freed;
655                 unlock_cluster(ci);
656                 spin_unlock(&si->lock);
657                 swap_was_freed = __try_to_reclaim_swap(si, offset);
658                 spin_lock(&si->lock);
659                 /* entry was freed successfully, try to use this again */
660                 if (swap_was_freed)
661                         goto checks;
662                 goto scan; /* check next one */
663         }
664
665         if (si->swap_map[offset]) {
666                 unlock_cluster(ci);
667                 if (!n_ret)
668                         goto scan;
669                 else
670                         goto done;
671         }
672
673         if (offset == si->lowest_bit)
674                 si->lowest_bit++;
675         if (offset == si->highest_bit)
676                 si->highest_bit--;
677         si->inuse_pages++;
678         if (si->inuse_pages == si->pages) {
679                 si->lowest_bit = si->max;
680                 si->highest_bit = 0;
681                 spin_lock(&swap_avail_lock);
682                 plist_del(&si->avail_list, &swap_avail_head);
683                 spin_unlock(&swap_avail_lock);
684         }
685         si->swap_map[offset] = usage;
686         inc_cluster_info_page(si, si->cluster_info, offset);
687         unlock_cluster(ci);
688         si->cluster_next = offset + 1;
689         slots[n_ret++] = swp_entry(si->type, offset);
690
691         /* got enough slots or reach max slots? */
692         if ((n_ret == nr) || (offset >= si->highest_bit))
693                 goto done;
694
695         /* search for next available slot */
696
697         /* time to take a break? */
698         if (unlikely(--latency_ration < 0)) {
699                 if (n_ret)
700                         goto done;
701                 spin_unlock(&si->lock);
702                 cond_resched();
703                 spin_lock(&si->lock);
704                 latency_ration = LATENCY_LIMIT;
705         }
706
707         /* try to get more slots in cluster */
708         if (si->cluster_info) {
709                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
710                         goto checks;
711                 else
712                         goto done;
713         }
714         /* non-ssd case */
715         ++offset;
716
717         /* non-ssd case, still more slots in cluster? */
718         if (si->cluster_nr && !si->swap_map[offset]) {
719                 --si->cluster_nr;
720                 goto checks;
721         }
722
723 done:
724         si->flags -= SWP_SCANNING;
725         return n_ret;
726
727 scan:
728         spin_unlock(&si->lock);
729         while (++offset <= si->highest_bit) {
730                 if (!si->swap_map[offset]) {
731                         spin_lock(&si->lock);
732                         goto checks;
733                 }
734                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
735                         spin_lock(&si->lock);
736                         goto checks;
737                 }
738                 if (unlikely(--latency_ration < 0)) {
739                         cond_resched();
740                         latency_ration = LATENCY_LIMIT;
741                 }
742         }
743         offset = si->lowest_bit;
744         while (offset < scan_base) {
745                 if (!si->swap_map[offset]) {
746                         spin_lock(&si->lock);
747                         goto checks;
748                 }
749                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
750                         spin_lock(&si->lock);
751                         goto checks;
752                 }
753                 if (unlikely(--latency_ration < 0)) {
754                         cond_resched();
755                         latency_ration = LATENCY_LIMIT;
756                 }
757                 offset++;
758         }
759         spin_lock(&si->lock);
760
761 no_page:
762         si->flags -= SWP_SCANNING;
763         return n_ret;
764 }
765
766 static unsigned long scan_swap_map(struct swap_info_struct *si,
767                                    unsigned char usage)
768 {
769         swp_entry_t entry;
770         int n_ret;
771
772         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
773
774         if (n_ret)
775                 return swp_offset(entry);
776         else
777                 return 0;
778
779 }
780
781 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
782 {
783         struct swap_info_struct *si, *next;
784         long avail_pgs;
785         int n_ret = 0;
786
787         avail_pgs = atomic_long_read(&nr_swap_pages);
788         if (avail_pgs <= 0)
789                 goto noswap;
790
791         if (n_goal > SWAP_BATCH)
792                 n_goal = SWAP_BATCH;
793
794         if (n_goal > avail_pgs)
795                 n_goal = avail_pgs;
796
797         atomic_long_sub(n_goal, &nr_swap_pages);
798
799         spin_lock(&swap_avail_lock);
800
801 start_over:
802         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
803                 /* requeue si to after same-priority siblings */
804                 plist_requeue(&si->avail_list, &swap_avail_head);
805                 spin_unlock(&swap_avail_lock);
806                 spin_lock(&si->lock);
807                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
808                         spin_lock(&swap_avail_lock);
809                         if (plist_node_empty(&si->avail_list)) {
810                                 spin_unlock(&si->lock);
811                                 goto nextsi;
812                         }
813                         WARN(!si->highest_bit,
814                              "swap_info %d in list but !highest_bit\n",
815                              si->type);
816                         WARN(!(si->flags & SWP_WRITEOK),
817                              "swap_info %d in list but !SWP_WRITEOK\n",
818                              si->type);
819                         plist_del(&si->avail_list, &swap_avail_head);
820                         spin_unlock(&si->lock);
821                         goto nextsi;
822                 }
823                 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
824                                             n_goal, swp_entries);
825                 spin_unlock(&si->lock);
826                 if (n_ret)
827                         goto check_out;
828                 pr_debug("scan_swap_map of si %d failed to find offset\n",
829                         si->type);
830
831                 spin_lock(&swap_avail_lock);
832 nextsi:
833                 /*
834                  * if we got here, it's likely that si was almost full before,
835                  * and since scan_swap_map() can drop the si->lock, multiple
836                  * callers probably all tried to get a page from the same si
837                  * and it filled up before we could get one; or, the si filled
838                  * up between us dropping swap_avail_lock and taking si->lock.
839                  * Since we dropped the swap_avail_lock, the swap_avail_head
840                  * list may have been modified; so if next is still in the
841                  * swap_avail_head list then try it, otherwise start over
842                  * if we have not gotten any slots.
843                  */
844                 if (plist_node_empty(&next->avail_list))
845                         goto start_over;
846         }
847
848         spin_unlock(&swap_avail_lock);
849
850 check_out:
851         if (n_ret < n_goal)
852                 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
853 noswap:
854         return n_ret;
855 }
856
857 swp_entry_t get_swap_page(void)
858 {
859         swp_entry_t entry;
860
861         get_swap_pages(1, &entry);
862         return entry;
863 }
864
865 /* The only caller of this function is now suspend routine */
866 swp_entry_t get_swap_page_of_type(int type)
867 {
868         struct swap_info_struct *si;
869         pgoff_t offset;
870
871         si = swap_info[type];
872         spin_lock(&si->lock);
873         if (si && (si->flags & SWP_WRITEOK)) {
874                 atomic_long_dec(&nr_swap_pages);
875                 /* This is called for allocating swap entry, not cache */
876                 offset = scan_swap_map(si, 1);
877                 if (offset) {
878                         spin_unlock(&si->lock);
879                         return swp_entry(type, offset);
880                 }
881                 atomic_long_inc(&nr_swap_pages);
882         }
883         spin_unlock(&si->lock);
884         return (swp_entry_t) {0};
885 }
886
887 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
888 {
889         struct swap_info_struct *p;
890         unsigned long offset, type;
891
892         if (!entry.val)
893                 goto out;
894         type = swp_type(entry);
895         if (type >= nr_swapfiles)
896                 goto bad_nofile;
897         p = swap_info[type];
898         if (!(p->flags & SWP_USED))
899                 goto bad_device;
900         offset = swp_offset(entry);
901         if (offset >= p->max)
902                 goto bad_offset;
903         return p;
904
905 bad_offset:
906         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
907         goto out;
908 bad_device:
909         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
910         goto out;
911 bad_nofile:
912         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
913 out:
914         return NULL;
915 }
916
917 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
918 {
919         struct swap_info_struct *p;
920
921         p = __swap_info_get(entry);
922         if (!p)
923                 goto out;
924         if (!p->swap_map[swp_offset(entry)])
925                 goto bad_free;
926         return p;
927
928 bad_free:
929         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
930         goto out;
931 out:
932         return NULL;
933 }
934
935 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
936 {
937         struct swap_info_struct *p;
938
939         p = _swap_info_get(entry);
940         if (p)
941                 spin_lock(&p->lock);
942         return p;
943 }
944
945 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
946                                         struct swap_info_struct *q)
947 {
948         struct swap_info_struct *p;
949
950         p = _swap_info_get(entry);
951
952         if (p != q) {
953                 if (q != NULL)
954                         spin_unlock(&q->lock);
955                 if (p != NULL)
956                         spin_lock(&p->lock);
957         }
958         return p;
959 }
960
961 static unsigned char __swap_entry_free(struct swap_info_struct *p,
962                                        swp_entry_t entry, unsigned char usage)
963 {
964         struct swap_cluster_info *ci;
965         unsigned long offset = swp_offset(entry);
966         unsigned char count;
967         unsigned char has_cache;
968
969         ci = lock_cluster_or_swap_info(p, offset);
970
971         count = p->swap_map[offset];
972
973         has_cache = count & SWAP_HAS_CACHE;
974         count &= ~SWAP_HAS_CACHE;
975
976         if (usage == SWAP_HAS_CACHE) {
977                 VM_BUG_ON(!has_cache);
978                 has_cache = 0;
979         } else if (count == SWAP_MAP_SHMEM) {
980                 /*
981                  * Or we could insist on shmem.c using a special
982                  * swap_shmem_free() and free_shmem_swap_and_cache()...
983                  */
984                 count = 0;
985         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
986                 if (count == COUNT_CONTINUED) {
987                         if (swap_count_continued(p, offset, count))
988                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
989                         else
990                                 count = SWAP_MAP_MAX;
991                 } else
992                         count--;
993         }
994
995         usage = count | has_cache;
996         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
997
998         unlock_cluster_or_swap_info(p, ci);
999
1000         return usage;
1001 }
1002
1003 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1004 {
1005         struct swap_cluster_info *ci;
1006         unsigned long offset = swp_offset(entry);
1007         unsigned char count;
1008
1009         ci = lock_cluster(p, offset);
1010         count = p->swap_map[offset];
1011         VM_BUG_ON(count != SWAP_HAS_CACHE);
1012         p->swap_map[offset] = 0;
1013         dec_cluster_info_page(p, p->cluster_info, offset);
1014         unlock_cluster(ci);
1015
1016         mem_cgroup_uncharge_swap(entry);
1017         if (offset < p->lowest_bit)
1018                 p->lowest_bit = offset;
1019         if (offset > p->highest_bit) {
1020                 bool was_full = !p->highest_bit;
1021
1022                 p->highest_bit = offset;
1023                 if (was_full && (p->flags & SWP_WRITEOK)) {
1024                         spin_lock(&swap_avail_lock);
1025                         WARN_ON(!plist_node_empty(&p->avail_list));
1026                         if (plist_node_empty(&p->avail_list))
1027                                 plist_add(&p->avail_list,
1028                                           &swap_avail_head);
1029                         spin_unlock(&swap_avail_lock);
1030                 }
1031         }
1032         atomic_long_inc(&nr_swap_pages);
1033         p->inuse_pages--;
1034         frontswap_invalidate_page(p->type, offset);
1035         if (p->flags & SWP_BLKDEV) {
1036                 struct gendisk *disk = p->bdev->bd_disk;
1037
1038                 if (disk->fops->swap_slot_free_notify)
1039                         disk->fops->swap_slot_free_notify(p->bdev,
1040                                                           offset);
1041         }
1042 }
1043
1044 /*
1045  * Caller has made sure that the swap device corresponding to entry
1046  * is still around or has not been recycled.
1047  */
1048 void swap_free(swp_entry_t entry)
1049 {
1050         struct swap_info_struct *p;
1051
1052         p = _swap_info_get(entry);
1053         if (p) {
1054                 if (!__swap_entry_free(p, entry, 1))
1055                         swapcache_free_entries(&entry, 1);
1056         }
1057 }
1058
1059 /*
1060  * Called after dropping swapcache to decrease refcnt to swap entries.
1061  */
1062 void swapcache_free(swp_entry_t entry)
1063 {
1064         struct swap_info_struct *p;
1065
1066         p = _swap_info_get(entry);
1067         if (p) {
1068                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1069                         swapcache_free_entries(&entry, 1);
1070         }
1071 }
1072
1073 void swapcache_free_entries(swp_entry_t *entries, int n)
1074 {
1075         struct swap_info_struct *p, *prev;
1076         int i;
1077
1078         if (n <= 0)
1079                 return;
1080
1081         prev = NULL;
1082         p = NULL;
1083         for (i = 0; i < n; ++i) {
1084                 p = swap_info_get_cont(entries[i], prev);
1085                 if (p)
1086                         swap_entry_free(p, entries[i]);
1087                 else
1088                         break;
1089                 prev = p;
1090         }
1091         if (p)
1092                 spin_unlock(&p->lock);
1093 }
1094
1095 /*
1096  * How many references to page are currently swapped out?
1097  * This does not give an exact answer when swap count is continued,
1098  * but does include the high COUNT_CONTINUED flag to allow for that.
1099  */
1100 int page_swapcount(struct page *page)
1101 {
1102         int count = 0;
1103         struct swap_info_struct *p;
1104         struct swap_cluster_info *ci;
1105         swp_entry_t entry;
1106         unsigned long offset;
1107
1108         entry.val = page_private(page);
1109         p = _swap_info_get(entry);
1110         if (p) {
1111                 offset = swp_offset(entry);
1112                 ci = lock_cluster_or_swap_info(p, offset);
1113                 count = swap_count(p->swap_map[offset]);
1114                 unlock_cluster_or_swap_info(p, ci);
1115         }
1116         return count;
1117 }
1118
1119 /*
1120  * How many references to @entry are currently swapped out?
1121  * This does not give an exact answer when swap count is continued,
1122  * but does include the high COUNT_CONTINUED flag to allow for that.
1123  */
1124 int __swp_swapcount(swp_entry_t entry)
1125 {
1126         int count = 0;
1127         pgoff_t offset;
1128         struct swap_info_struct *si;
1129         struct swap_cluster_info *ci;
1130
1131         si = __swap_info_get(entry);
1132         if (si) {
1133                 offset = swp_offset(entry);
1134                 ci = lock_cluster_or_swap_info(si, offset);
1135                 count = swap_count(si->swap_map[offset]);
1136                 unlock_cluster_or_swap_info(si, ci);
1137         }
1138         return count;
1139 }
1140
1141 /*
1142  * How many references to @entry are currently swapped out?
1143  * This considers COUNT_CONTINUED so it returns exact answer.
1144  */
1145 int swp_swapcount(swp_entry_t entry)
1146 {
1147         int count, tmp_count, n;
1148         struct swap_info_struct *p;
1149         struct swap_cluster_info *ci;
1150         struct page *page;
1151         pgoff_t offset;
1152         unsigned char *map;
1153
1154         p = _swap_info_get(entry);
1155         if (!p)
1156                 return 0;
1157
1158         offset = swp_offset(entry);
1159
1160         ci = lock_cluster_or_swap_info(p, offset);
1161
1162         count = swap_count(p->swap_map[offset]);
1163         if (!(count & COUNT_CONTINUED))
1164                 goto out;
1165
1166         count &= ~COUNT_CONTINUED;
1167         n = SWAP_MAP_MAX + 1;
1168
1169         page = vmalloc_to_page(p->swap_map + offset);
1170         offset &= ~PAGE_MASK;
1171         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1172
1173         do {
1174                 page = list_next_entry(page, lru);
1175                 map = kmap_atomic(page);
1176                 tmp_count = map[offset];
1177                 kunmap_atomic(map);
1178
1179                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1180                 n *= (SWAP_CONT_MAX + 1);
1181         } while (tmp_count & COUNT_CONTINUED);
1182 out:
1183         unlock_cluster_or_swap_info(p, ci);
1184         return count;
1185 }
1186
1187 /*
1188  * We can write to an anon page without COW if there are no other references
1189  * to it.  And as a side-effect, free up its swap: because the old content
1190  * on disk will never be read, and seeking back there to write new content
1191  * later would only waste time away from clustering.
1192  *
1193  * NOTE: total_mapcount should not be relied upon by the caller if
1194  * reuse_swap_page() returns false, but it may be always overwritten
1195  * (see the other implementation for CONFIG_SWAP=n).
1196  */
1197 bool reuse_swap_page(struct page *page, int *total_mapcount)
1198 {
1199         int count;
1200
1201         VM_BUG_ON_PAGE(!PageLocked(page), page);
1202         if (unlikely(PageKsm(page)))
1203                 return false;
1204         count = page_trans_huge_mapcount(page, total_mapcount);
1205         if (count <= 1 && PageSwapCache(page)) {
1206                 count += page_swapcount(page);
1207                 if (count != 1)
1208                         goto out;
1209                 if (!PageWriteback(page)) {
1210                         delete_from_swap_cache(page);
1211                         SetPageDirty(page);
1212                 } else {
1213                         swp_entry_t entry;
1214                         struct swap_info_struct *p;
1215
1216                         entry.val = page_private(page);
1217                         p = swap_info_get(entry);
1218                         if (p->flags & SWP_STABLE_WRITES) {
1219                                 spin_unlock(&p->lock);
1220                                 return false;
1221                         }
1222                         spin_unlock(&p->lock);
1223                 }
1224         }
1225 out:
1226         return count <= 1;
1227 }
1228
1229 /*
1230  * If swap is getting full, or if there are no more mappings of this page,
1231  * then try_to_free_swap is called to free its swap space.
1232  */
1233 int try_to_free_swap(struct page *page)
1234 {
1235         VM_BUG_ON_PAGE(!PageLocked(page), page);
1236
1237         if (!PageSwapCache(page))
1238                 return 0;
1239         if (PageWriteback(page))
1240                 return 0;
1241         if (page_swapcount(page))
1242                 return 0;
1243
1244         /*
1245          * Once hibernation has begun to create its image of memory,
1246          * there's a danger that one of the calls to try_to_free_swap()
1247          * - most probably a call from __try_to_reclaim_swap() while
1248          * hibernation is allocating its own swap pages for the image,
1249          * but conceivably even a call from memory reclaim - will free
1250          * the swap from a page which has already been recorded in the
1251          * image as a clean swapcache page, and then reuse its swap for
1252          * another page of the image.  On waking from hibernation, the
1253          * original page might be freed under memory pressure, then
1254          * later read back in from swap, now with the wrong data.
1255          *
1256          * Hibernation suspends storage while it is writing the image
1257          * to disk so check that here.
1258          */
1259         if (pm_suspended_storage())
1260                 return 0;
1261
1262         delete_from_swap_cache(page);
1263         SetPageDirty(page);
1264         return 1;
1265 }
1266
1267 /*
1268  * Free the swap entry like above, but also try to
1269  * free the page cache entry if it is the last user.
1270  */
1271 int free_swap_and_cache(swp_entry_t entry)
1272 {
1273         struct swap_info_struct *p;
1274         struct page *page = NULL;
1275         unsigned char count;
1276
1277         if (non_swap_entry(entry))
1278                 return 1;
1279
1280         p = _swap_info_get(entry);
1281         if (p) {
1282                 count = __swap_entry_free(p, entry, 1);
1283                 if (count == SWAP_HAS_CACHE) {
1284                         page = find_get_page(swap_address_space(entry),
1285                                              swp_offset(entry));
1286                         if (page && !trylock_page(page)) {
1287                                 put_page(page);
1288                                 page = NULL;
1289                         }
1290                 } else if (!count)
1291                         swapcache_free_entries(&entry, 1);
1292         }
1293         if (page) {
1294                 /*
1295                  * Not mapped elsewhere, or swap space full? Free it!
1296                  * Also recheck PageSwapCache now page is locked (above).
1297                  */
1298                 if (PageSwapCache(page) && !PageWriteback(page) &&
1299                     (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1300                         delete_from_swap_cache(page);
1301                         SetPageDirty(page);
1302                 }
1303                 unlock_page(page);
1304                 put_page(page);
1305         }
1306         return p != NULL;
1307 }
1308
1309 #ifdef CONFIG_HIBERNATION
1310 /*
1311  * Find the swap type that corresponds to given device (if any).
1312  *
1313  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1314  * from 0, in which the swap header is expected to be located.
1315  *
1316  * This is needed for the suspend to disk (aka swsusp).
1317  */
1318 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1319 {
1320         struct block_device *bdev = NULL;
1321         int type;
1322
1323         if (device)
1324                 bdev = bdget(device);
1325
1326         spin_lock(&swap_lock);
1327         for (type = 0; type < nr_swapfiles; type++) {
1328                 struct swap_info_struct *sis = swap_info[type];
1329
1330                 if (!(sis->flags & SWP_WRITEOK))
1331                         continue;
1332
1333                 if (!bdev) {
1334                         if (bdev_p)
1335                                 *bdev_p = bdgrab(sis->bdev);
1336
1337                         spin_unlock(&swap_lock);
1338                         return type;
1339                 }
1340                 if (bdev == sis->bdev) {
1341                         struct swap_extent *se = &sis->first_swap_extent;
1342
1343                         if (se->start_block == offset) {
1344                                 if (bdev_p)
1345                                         *bdev_p = bdgrab(sis->bdev);
1346
1347                                 spin_unlock(&swap_lock);
1348                                 bdput(bdev);
1349                                 return type;
1350                         }
1351                 }
1352         }
1353         spin_unlock(&swap_lock);
1354         if (bdev)
1355                 bdput(bdev);
1356
1357         return -ENODEV;
1358 }
1359
1360 /*
1361  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1362  * corresponding to given index in swap_info (swap type).
1363  */
1364 sector_t swapdev_block(int type, pgoff_t offset)
1365 {
1366         struct block_device *bdev;
1367
1368         if ((unsigned int)type >= nr_swapfiles)
1369                 return 0;
1370         if (!(swap_info[type]->flags & SWP_WRITEOK))
1371                 return 0;
1372         return map_swap_entry(swp_entry(type, offset), &bdev);
1373 }
1374
1375 /*
1376  * Return either the total number of swap pages of given type, or the number
1377  * of free pages of that type (depending on @free)
1378  *
1379  * This is needed for software suspend
1380  */
1381 unsigned int count_swap_pages(int type, int free)
1382 {
1383         unsigned int n = 0;
1384
1385         spin_lock(&swap_lock);
1386         if ((unsigned int)type < nr_swapfiles) {
1387                 struct swap_info_struct *sis = swap_info[type];
1388
1389                 spin_lock(&sis->lock);
1390                 if (sis->flags & SWP_WRITEOK) {
1391                         n = sis->pages;
1392                         if (free)
1393                                 n -= sis->inuse_pages;
1394                 }
1395                 spin_unlock(&sis->lock);
1396         }
1397         spin_unlock(&swap_lock);
1398         return n;
1399 }
1400 #endif /* CONFIG_HIBERNATION */
1401
1402 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1403 {
1404         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1405 }
1406
1407 /*
1408  * No need to decide whether this PTE shares the swap entry with others,
1409  * just let do_wp_page work it out if a write is requested later - to
1410  * force COW, vm_page_prot omits write permission from any private vma.
1411  */
1412 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1413                 unsigned long addr, swp_entry_t entry, struct page *page)
1414 {
1415         struct page *swapcache;
1416         struct mem_cgroup *memcg;
1417         spinlock_t *ptl;
1418         pte_t *pte;
1419         int ret = 1;
1420
1421         swapcache = page;
1422         page = ksm_might_need_to_copy(page, vma, addr);
1423         if (unlikely(!page))
1424                 return -ENOMEM;
1425
1426         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1427                                 &memcg, false)) {
1428                 ret = -ENOMEM;
1429                 goto out_nolock;
1430         }
1431
1432         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1433         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1434                 mem_cgroup_cancel_charge(page, memcg, false);
1435                 ret = 0;
1436                 goto out;
1437         }
1438
1439         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1440         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1441         get_page(page);
1442         set_pte_at(vma->vm_mm, addr, pte,
1443                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1444         if (page == swapcache) {
1445                 page_add_anon_rmap(page, vma, addr, false);
1446                 mem_cgroup_commit_charge(page, memcg, true, false);
1447         } else { /* ksm created a completely new copy */
1448                 page_add_new_anon_rmap(page, vma, addr, false);
1449                 mem_cgroup_commit_charge(page, memcg, false, false);
1450                 lru_cache_add_active_or_unevictable(page, vma);
1451         }
1452         swap_free(entry);
1453         /*
1454          * Move the page to the active list so it is not
1455          * immediately swapped out again after swapon.
1456          */
1457         activate_page(page);
1458 out:
1459         pte_unmap_unlock(pte, ptl);
1460 out_nolock:
1461         if (page != swapcache) {
1462                 unlock_page(page);
1463                 put_page(page);
1464         }
1465         return ret;
1466 }
1467
1468 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1469                                 unsigned long addr, unsigned long end,
1470                                 swp_entry_t entry, struct page *page)
1471 {
1472         pte_t swp_pte = swp_entry_to_pte(entry);
1473         pte_t *pte;
1474         int ret = 0;
1475
1476         /*
1477          * We don't actually need pte lock while scanning for swp_pte: since
1478          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1479          * page table while we're scanning; though it could get zapped, and on
1480          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1481          * of unmatched parts which look like swp_pte, so unuse_pte must
1482          * recheck under pte lock.  Scanning without pte lock lets it be
1483          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1484          */
1485         pte = pte_offset_map(pmd, addr);
1486         do {
1487                 /*
1488                  * swapoff spends a _lot_ of time in this loop!
1489                  * Test inline before going to call unuse_pte.
1490                  */
1491                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1492                         pte_unmap(pte);
1493                         ret = unuse_pte(vma, pmd, addr, entry, page);
1494                         if (ret)
1495                                 goto out;
1496                         pte = pte_offset_map(pmd, addr);
1497                 }
1498         } while (pte++, addr += PAGE_SIZE, addr != end);
1499         pte_unmap(pte - 1);
1500 out:
1501         return ret;
1502 }
1503
1504 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1505                                 unsigned long addr, unsigned long end,
1506                                 swp_entry_t entry, struct page *page)
1507 {
1508         pmd_t *pmd;
1509         unsigned long next;
1510         int ret;
1511
1512         pmd = pmd_offset(pud, addr);
1513         do {
1514                 cond_resched();
1515                 next = pmd_addr_end(addr, end);
1516                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1517                         continue;
1518                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1519                 if (ret)
1520                         return ret;
1521         } while (pmd++, addr = next, addr != end);
1522         return 0;
1523 }
1524
1525 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1526                                 unsigned long addr, unsigned long end,
1527                                 swp_entry_t entry, struct page *page)
1528 {
1529         pud_t *pud;
1530         unsigned long next;
1531         int ret;
1532
1533         pud = pud_offset(pgd, addr);
1534         do {
1535                 next = pud_addr_end(addr, end);
1536                 if (pud_none_or_clear_bad(pud))
1537                         continue;
1538                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1539                 if (ret)
1540                         return ret;
1541         } while (pud++, addr = next, addr != end);
1542         return 0;
1543 }
1544
1545 static int unuse_vma(struct vm_area_struct *vma,
1546                                 swp_entry_t entry, struct page *page)
1547 {
1548         pgd_t *pgd;
1549         unsigned long addr, end, next;
1550         int ret;
1551
1552         if (page_anon_vma(page)) {
1553                 addr = page_address_in_vma(page, vma);
1554                 if (addr == -EFAULT)
1555                         return 0;
1556                 else
1557                         end = addr + PAGE_SIZE;
1558         } else {
1559                 addr = vma->vm_start;
1560                 end = vma->vm_end;
1561         }
1562
1563         pgd = pgd_offset(vma->vm_mm, addr);
1564         do {
1565                 next = pgd_addr_end(addr, end);
1566                 if (pgd_none_or_clear_bad(pgd))
1567                         continue;
1568                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1569                 if (ret)
1570                         return ret;
1571         } while (pgd++, addr = next, addr != end);
1572         return 0;
1573 }
1574
1575 static int unuse_mm(struct mm_struct *mm,
1576                                 swp_entry_t entry, struct page *page)
1577 {
1578         struct vm_area_struct *vma;
1579         int ret = 0;
1580
1581         if (!down_read_trylock(&mm->mmap_sem)) {
1582                 /*
1583                  * Activate page so shrink_inactive_list is unlikely to unmap
1584                  * its ptes while lock is dropped, so swapoff can make progress.
1585                  */
1586                 activate_page(page);
1587                 unlock_page(page);
1588                 down_read(&mm->mmap_sem);
1589                 lock_page(page);
1590         }
1591         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1592                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1593                         break;
1594                 cond_resched();
1595         }
1596         up_read(&mm->mmap_sem);
1597         return (ret < 0)? ret: 0;
1598 }
1599
1600 /*
1601  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1602  * from current position to next entry still in use.
1603  * Recycle to start on reaching the end, returning 0 when empty.
1604  */
1605 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1606                                         unsigned int prev, bool frontswap)
1607 {
1608         unsigned int max = si->max;
1609         unsigned int i = prev;
1610         unsigned char count;
1611
1612         /*
1613          * No need for swap_lock here: we're just looking
1614          * for whether an entry is in use, not modifying it; false
1615          * hits are okay, and sys_swapoff() has already prevented new
1616          * allocations from this area (while holding swap_lock).
1617          */
1618         for (;;) {
1619                 if (++i >= max) {
1620                         if (!prev) {
1621                                 i = 0;
1622                                 break;
1623                         }
1624                         /*
1625                          * No entries in use at top of swap_map,
1626                          * loop back to start and recheck there.
1627                          */
1628                         max = prev + 1;
1629                         prev = 0;
1630                         i = 1;
1631                 }
1632                 count = READ_ONCE(si->swap_map[i]);
1633                 if (count && swap_count(count) != SWAP_MAP_BAD)
1634                         if (!frontswap || frontswap_test(si, i))
1635                                 break;
1636                 if ((i % LATENCY_LIMIT) == 0)
1637                         cond_resched();
1638         }
1639         return i;
1640 }
1641
1642 /*
1643  * We completely avoid races by reading each swap page in advance,
1644  * and then search for the process using it.  All the necessary
1645  * page table adjustments can then be made atomically.
1646  *
1647  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1648  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1649  */
1650 int try_to_unuse(unsigned int type, bool frontswap,
1651                  unsigned long pages_to_unuse)
1652 {
1653         struct swap_info_struct *si = swap_info[type];
1654         struct mm_struct *start_mm;
1655         volatile unsigned char *swap_map; /* swap_map is accessed without
1656                                            * locking. Mark it as volatile
1657                                            * to prevent compiler doing
1658                                            * something odd.
1659                                            */
1660         unsigned char swcount;
1661         struct page *page;
1662         swp_entry_t entry;
1663         unsigned int i = 0;
1664         int retval = 0;
1665
1666         /*
1667          * When searching mms for an entry, a good strategy is to
1668          * start at the first mm we freed the previous entry from
1669          * (though actually we don't notice whether we or coincidence
1670          * freed the entry).  Initialize this start_mm with a hold.
1671          *
1672          * A simpler strategy would be to start at the last mm we
1673          * freed the previous entry from; but that would take less
1674          * advantage of mmlist ordering, which clusters forked mms
1675          * together, child after parent.  If we race with dup_mmap(), we
1676          * prefer to resolve parent before child, lest we miss entries
1677          * duplicated after we scanned child: using last mm would invert
1678          * that.
1679          */
1680         start_mm = &init_mm;
1681         atomic_inc(&init_mm.mm_users);
1682
1683         /*
1684          * Keep on scanning until all entries have gone.  Usually,
1685          * one pass through swap_map is enough, but not necessarily:
1686          * there are races when an instance of an entry might be missed.
1687          */
1688         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1689                 if (signal_pending(current)) {
1690                         retval = -EINTR;
1691                         break;
1692                 }
1693
1694                 /*
1695                  * Get a page for the entry, using the existing swap
1696                  * cache page if there is one.  Otherwise, get a clean
1697                  * page and read the swap into it.
1698                  */
1699                 swap_map = &si->swap_map[i];
1700                 entry = swp_entry(type, i);
1701                 page = read_swap_cache_async(entry,
1702                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1703                 if (!page) {
1704                         /*
1705                          * Either swap_duplicate() failed because entry
1706                          * has been freed independently, and will not be
1707                          * reused since sys_swapoff() already disabled
1708                          * allocation from here, or alloc_page() failed.
1709                          */
1710                         swcount = *swap_map;
1711                         /*
1712                          * We don't hold lock here, so the swap entry could be
1713                          * SWAP_MAP_BAD (when the cluster is discarding).
1714                          * Instead of fail out, We can just skip the swap
1715                          * entry because swapoff will wait for discarding
1716                          * finish anyway.
1717                          */
1718                         if (!swcount || swcount == SWAP_MAP_BAD)
1719                                 continue;
1720                         retval = -ENOMEM;
1721                         break;
1722                 }
1723
1724                 /*
1725                  * Don't hold on to start_mm if it looks like exiting.
1726                  */
1727                 if (atomic_read(&start_mm->mm_users) == 1) {
1728                         mmput(start_mm);
1729                         start_mm = &init_mm;
1730                         atomic_inc(&init_mm.mm_users);
1731                 }
1732
1733                 /*
1734                  * Wait for and lock page.  When do_swap_page races with
1735                  * try_to_unuse, do_swap_page can handle the fault much
1736                  * faster than try_to_unuse can locate the entry.  This
1737                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1738                  * defer to do_swap_page in such a case - in some tests,
1739                  * do_swap_page and try_to_unuse repeatedly compete.
1740                  */
1741                 wait_on_page_locked(page);
1742                 wait_on_page_writeback(page);
1743                 lock_page(page);
1744                 wait_on_page_writeback(page);
1745
1746                 /*
1747                  * Remove all references to entry.
1748                  */
1749                 swcount = *swap_map;
1750                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1751                         retval = shmem_unuse(entry, page);
1752                         /* page has already been unlocked and released */
1753                         if (retval < 0)
1754                                 break;
1755                         continue;
1756                 }
1757                 if (swap_count(swcount) && start_mm != &init_mm)
1758                         retval = unuse_mm(start_mm, entry, page);
1759
1760                 if (swap_count(*swap_map)) {
1761                         int set_start_mm = (*swap_map >= swcount);
1762                         struct list_head *p = &start_mm->mmlist;
1763                         struct mm_struct *new_start_mm = start_mm;
1764                         struct mm_struct *prev_mm = start_mm;
1765                         struct mm_struct *mm;
1766
1767                         atomic_inc(&new_start_mm->mm_users);
1768                         atomic_inc(&prev_mm->mm_users);
1769                         spin_lock(&mmlist_lock);
1770                         while (swap_count(*swap_map) && !retval &&
1771                                         (p = p->next) != &start_mm->mmlist) {
1772                                 mm = list_entry(p, struct mm_struct, mmlist);
1773                                 if (!atomic_inc_not_zero(&mm->mm_users))
1774                                         continue;
1775                                 spin_unlock(&mmlist_lock);
1776                                 mmput(prev_mm);
1777                                 prev_mm = mm;
1778
1779                                 cond_resched();
1780
1781                                 swcount = *swap_map;
1782                                 if (!swap_count(swcount)) /* any usage ? */
1783                                         ;
1784                                 else if (mm == &init_mm)
1785                                         set_start_mm = 1;
1786                                 else
1787                                         retval = unuse_mm(mm, entry, page);
1788
1789                                 if (set_start_mm && *swap_map < swcount) {
1790                                         mmput(new_start_mm);
1791                                         atomic_inc(&mm->mm_users);
1792                                         new_start_mm = mm;
1793                                         set_start_mm = 0;
1794                                 }
1795                                 spin_lock(&mmlist_lock);
1796                         }
1797                         spin_unlock(&mmlist_lock);
1798                         mmput(prev_mm);
1799                         mmput(start_mm);
1800                         start_mm = new_start_mm;
1801                 }
1802                 if (retval) {
1803                         unlock_page(page);
1804                         put_page(page);
1805                         break;
1806                 }
1807
1808                 /*
1809                  * If a reference remains (rare), we would like to leave
1810                  * the page in the swap cache; but try_to_unmap could
1811                  * then re-duplicate the entry once we drop page lock,
1812                  * so we might loop indefinitely; also, that page could
1813                  * not be swapped out to other storage meanwhile.  So:
1814                  * delete from cache even if there's another reference,
1815                  * after ensuring that the data has been saved to disk -
1816                  * since if the reference remains (rarer), it will be
1817                  * read from disk into another page.  Splitting into two
1818                  * pages would be incorrect if swap supported "shared
1819                  * private" pages, but they are handled by tmpfs files.
1820                  *
1821                  * Given how unuse_vma() targets one particular offset
1822                  * in an anon_vma, once the anon_vma has been determined,
1823                  * this splitting happens to be just what is needed to
1824                  * handle where KSM pages have been swapped out: re-reading
1825                  * is unnecessarily slow, but we can fix that later on.
1826                  */
1827                 if (swap_count(*swap_map) &&
1828                      PageDirty(page) && PageSwapCache(page)) {
1829                         struct writeback_control wbc = {
1830                                 .sync_mode = WB_SYNC_NONE,
1831                         };
1832
1833                         swap_writepage(page, &wbc);
1834                         lock_page(page);
1835                         wait_on_page_writeback(page);
1836                 }
1837
1838                 /*
1839                  * It is conceivable that a racing task removed this page from
1840                  * swap cache just before we acquired the page lock at the top,
1841                  * or while we dropped it in unuse_mm().  The page might even
1842                  * be back in swap cache on another swap area: that we must not
1843                  * delete, since it may not have been written out to swap yet.
1844                  */
1845                 if (PageSwapCache(page) &&
1846                     likely(page_private(page) == entry.val))
1847                         delete_from_swap_cache(page);
1848
1849                 /*
1850                  * So we could skip searching mms once swap count went
1851                  * to 1, we did not mark any present ptes as dirty: must
1852                  * mark page dirty so shrink_page_list will preserve it.
1853                  */
1854                 SetPageDirty(page);
1855                 unlock_page(page);
1856                 put_page(page);
1857
1858                 /*
1859                  * Make sure that we aren't completely killing
1860                  * interactive performance.
1861                  */
1862                 cond_resched();
1863                 if (frontswap && pages_to_unuse > 0) {
1864                         if (!--pages_to_unuse)
1865                                 break;
1866                 }
1867         }
1868
1869         mmput(start_mm);
1870         return retval;
1871 }
1872
1873 /*
1874  * After a successful try_to_unuse, if no swap is now in use, we know
1875  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1876  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1877  * added to the mmlist just after page_duplicate - before would be racy.
1878  */
1879 static void drain_mmlist(void)
1880 {
1881         struct list_head *p, *next;
1882         unsigned int type;
1883
1884         for (type = 0; type < nr_swapfiles; type++)
1885                 if (swap_info[type]->inuse_pages)
1886                         return;
1887         spin_lock(&mmlist_lock);
1888         list_for_each_safe(p, next, &init_mm.mmlist)
1889                 list_del_init(p);
1890         spin_unlock(&mmlist_lock);
1891 }
1892
1893 /*
1894  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1895  * corresponds to page offset for the specified swap entry.
1896  * Note that the type of this function is sector_t, but it returns page offset
1897  * into the bdev, not sector offset.
1898  */
1899 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1900 {
1901         struct swap_info_struct *sis;
1902         struct swap_extent *start_se;
1903         struct swap_extent *se;
1904         pgoff_t offset;
1905
1906         sis = swap_info[swp_type(entry)];
1907         *bdev = sis->bdev;
1908
1909         offset = swp_offset(entry);
1910         start_se = sis->curr_swap_extent;
1911         se = start_se;
1912
1913         for ( ; ; ) {
1914                 if (se->start_page <= offset &&
1915                                 offset < (se->start_page + se->nr_pages)) {
1916                         return se->start_block + (offset - se->start_page);
1917                 }
1918                 se = list_next_entry(se, list);
1919                 sis->curr_swap_extent = se;
1920                 BUG_ON(se == start_se);         /* It *must* be present */
1921         }
1922 }
1923
1924 /*
1925  * Returns the page offset into bdev for the specified page's swap entry.
1926  */
1927 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1928 {
1929         swp_entry_t entry;
1930         entry.val = page_private(page);
1931         return map_swap_entry(entry, bdev);
1932 }
1933
1934 /*
1935  * Free all of a swapdev's extent information
1936  */
1937 static void destroy_swap_extents(struct swap_info_struct *sis)
1938 {
1939         while (!list_empty(&sis->first_swap_extent.list)) {
1940                 struct swap_extent *se;
1941
1942                 se = list_first_entry(&sis->first_swap_extent.list,
1943                                 struct swap_extent, list);
1944                 list_del(&se->list);
1945                 kfree(se);
1946         }
1947
1948         if (sis->flags & SWP_FILE) {
1949                 struct file *swap_file = sis->swap_file;
1950                 struct address_space *mapping = swap_file->f_mapping;
1951
1952                 sis->flags &= ~SWP_FILE;
1953                 mapping->a_ops->swap_deactivate(swap_file);
1954         }
1955 }
1956
1957 /*
1958  * Add a block range (and the corresponding page range) into this swapdev's
1959  * extent list.  The extent list is kept sorted in page order.
1960  *
1961  * This function rather assumes that it is called in ascending page order.
1962  */
1963 int
1964 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1965                 unsigned long nr_pages, sector_t start_block)
1966 {
1967         struct swap_extent *se;
1968         struct swap_extent *new_se;
1969         struct list_head *lh;
1970
1971         if (start_page == 0) {
1972                 se = &sis->first_swap_extent;
1973                 sis->curr_swap_extent = se;
1974                 se->start_page = 0;
1975                 se->nr_pages = nr_pages;
1976                 se->start_block = start_block;
1977                 return 1;
1978         } else {
1979                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1980                 se = list_entry(lh, struct swap_extent, list);
1981                 BUG_ON(se->start_page + se->nr_pages != start_page);
1982                 if (se->start_block + se->nr_pages == start_block) {
1983                         /* Merge it */
1984                         se->nr_pages += nr_pages;
1985                         return 0;
1986                 }
1987         }
1988
1989         /*
1990          * No merge.  Insert a new extent, preserving ordering.
1991          */
1992         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1993         if (new_se == NULL)
1994                 return -ENOMEM;
1995         new_se->start_page = start_page;
1996         new_se->nr_pages = nr_pages;
1997         new_se->start_block = start_block;
1998
1999         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2000         return 1;
2001 }
2002
2003 /*
2004  * A `swap extent' is a simple thing which maps a contiguous range of pages
2005  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2006  * is built at swapon time and is then used at swap_writepage/swap_readpage
2007  * time for locating where on disk a page belongs.
2008  *
2009  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2010  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2011  * swap files identically.
2012  *
2013  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2014  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2015  * swapfiles are handled *identically* after swapon time.
2016  *
2017  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2018  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2019  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2020  * requirements, they are simply tossed out - we will never use those blocks
2021  * for swapping.
2022  *
2023  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2024  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2025  * which will scribble on the fs.
2026  *
2027  * The amount of disk space which a single swap extent represents varies.
2028  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2029  * extents in the list.  To avoid much list walking, we cache the previous
2030  * search location in `curr_swap_extent', and start new searches from there.
2031  * This is extremely effective.  The average number of iterations in
2032  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2033  */
2034 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2035 {
2036         struct file *swap_file = sis->swap_file;
2037         struct address_space *mapping = swap_file->f_mapping;
2038         struct inode *inode = mapping->host;
2039         int ret;
2040
2041         if (S_ISBLK(inode->i_mode)) {
2042                 ret = add_swap_extent(sis, 0, sis->max, 0);
2043                 *span = sis->pages;
2044                 return ret;
2045         }
2046
2047         if (mapping->a_ops->swap_activate) {
2048                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2049                 if (!ret) {
2050                         sis->flags |= SWP_FILE;
2051                         ret = add_swap_extent(sis, 0, sis->max, 0);
2052                         *span = sis->pages;
2053                 }
2054                 return ret;
2055         }
2056
2057         return generic_swapfile_activate(sis, swap_file, span);
2058 }
2059
2060 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2061                                 unsigned char *swap_map,
2062                                 struct swap_cluster_info *cluster_info)
2063 {
2064         if (prio >= 0)
2065                 p->prio = prio;
2066         else
2067                 p->prio = --least_priority;
2068         /*
2069          * the plist prio is negated because plist ordering is
2070          * low-to-high, while swap ordering is high-to-low
2071          */
2072         p->list.prio = -p->prio;
2073         p->avail_list.prio = -p->prio;
2074         p->swap_map = swap_map;
2075         p->cluster_info = cluster_info;
2076         p->flags |= SWP_WRITEOK;
2077         atomic_long_add(p->pages, &nr_swap_pages);
2078         total_swap_pages += p->pages;
2079
2080         assert_spin_locked(&swap_lock);
2081         /*
2082          * both lists are plists, and thus priority ordered.
2083          * swap_active_head needs to be priority ordered for swapoff(),
2084          * which on removal of any swap_info_struct with an auto-assigned
2085          * (i.e. negative) priority increments the auto-assigned priority
2086          * of any lower-priority swap_info_structs.
2087          * swap_avail_head needs to be priority ordered for get_swap_page(),
2088          * which allocates swap pages from the highest available priority
2089          * swap_info_struct.
2090          */
2091         plist_add(&p->list, &swap_active_head);
2092         spin_lock(&swap_avail_lock);
2093         plist_add(&p->avail_list, &swap_avail_head);
2094         spin_unlock(&swap_avail_lock);
2095 }
2096
2097 static void enable_swap_info(struct swap_info_struct *p, int prio,
2098                                 unsigned char *swap_map,
2099                                 struct swap_cluster_info *cluster_info,
2100                                 unsigned long *frontswap_map)
2101 {
2102         frontswap_init(p->type, frontswap_map);
2103         spin_lock(&swap_lock);
2104         spin_lock(&p->lock);
2105          _enable_swap_info(p, prio, swap_map, cluster_info);
2106         spin_unlock(&p->lock);
2107         spin_unlock(&swap_lock);
2108 }
2109
2110 static void reinsert_swap_info(struct swap_info_struct *p)
2111 {
2112         spin_lock(&swap_lock);
2113         spin_lock(&p->lock);
2114         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2115         spin_unlock(&p->lock);
2116         spin_unlock(&swap_lock);
2117 }
2118
2119 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2120 {
2121         struct swap_info_struct *p = NULL;
2122         unsigned char *swap_map;
2123         struct swap_cluster_info *cluster_info;
2124         unsigned long *frontswap_map;
2125         struct file *swap_file, *victim;
2126         struct address_space *mapping;
2127         struct inode *inode;
2128         struct filename *pathname;
2129         int err, found = 0;
2130         unsigned int old_block_size;
2131
2132         if (!capable(CAP_SYS_ADMIN))
2133                 return -EPERM;
2134
2135         BUG_ON(!current->mm);
2136
2137         pathname = getname(specialfile);
2138         if (IS_ERR(pathname))
2139                 return PTR_ERR(pathname);
2140
2141         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2142         err = PTR_ERR(victim);
2143         if (IS_ERR(victim))
2144                 goto out;
2145
2146         mapping = victim->f_mapping;
2147         spin_lock(&swap_lock);
2148         plist_for_each_entry(p, &swap_active_head, list) {
2149                 if (p->flags & SWP_WRITEOK) {
2150                         if (p->swap_file->f_mapping == mapping) {
2151                                 found = 1;
2152                                 break;
2153                         }
2154                 }
2155         }
2156         if (!found) {
2157                 err = -EINVAL;
2158                 spin_unlock(&swap_lock);
2159                 goto out_dput;
2160         }
2161         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2162                 vm_unacct_memory(p->pages);
2163         else {
2164                 err = -ENOMEM;
2165                 spin_unlock(&swap_lock);
2166                 goto out_dput;
2167         }
2168         spin_lock(&swap_avail_lock);
2169         plist_del(&p->avail_list, &swap_avail_head);
2170         spin_unlock(&swap_avail_lock);
2171         spin_lock(&p->lock);
2172         if (p->prio < 0) {
2173                 struct swap_info_struct *si = p;
2174
2175                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2176                         si->prio++;
2177                         si->list.prio--;
2178                         si->avail_list.prio--;
2179                 }
2180                 least_priority++;
2181         }
2182         plist_del(&p->list, &swap_active_head);
2183         atomic_long_sub(p->pages, &nr_swap_pages);
2184         total_swap_pages -= p->pages;
2185         p->flags &= ~SWP_WRITEOK;
2186         spin_unlock(&p->lock);
2187         spin_unlock(&swap_lock);
2188
2189         set_current_oom_origin();
2190         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2191         clear_current_oom_origin();
2192
2193         if (err) {
2194                 /* re-insert swap space back into swap_list */
2195                 reinsert_swap_info(p);
2196                 goto out_dput;
2197         }
2198
2199         flush_work(&p->discard_work);
2200
2201         destroy_swap_extents(p);
2202         if (p->flags & SWP_CONTINUED)
2203                 free_swap_count_continuations(p);
2204
2205         mutex_lock(&swapon_mutex);
2206         spin_lock(&swap_lock);
2207         spin_lock(&p->lock);
2208         drain_mmlist();
2209
2210         /* wait for anyone still in scan_swap_map */
2211         p->highest_bit = 0;             /* cuts scans short */
2212         while (p->flags >= SWP_SCANNING) {
2213                 spin_unlock(&p->lock);
2214                 spin_unlock(&swap_lock);
2215                 schedule_timeout_uninterruptible(1);
2216                 spin_lock(&swap_lock);
2217                 spin_lock(&p->lock);
2218         }
2219
2220         swap_file = p->swap_file;
2221         old_block_size = p->old_block_size;
2222         p->swap_file = NULL;
2223         p->max = 0;
2224         swap_map = p->swap_map;
2225         p->swap_map = NULL;
2226         cluster_info = p->cluster_info;
2227         p->cluster_info = NULL;
2228         frontswap_map = frontswap_map_get(p);
2229         spin_unlock(&p->lock);
2230         spin_unlock(&swap_lock);
2231         frontswap_invalidate_area(p->type);
2232         frontswap_map_set(p, NULL);
2233         mutex_unlock(&swapon_mutex);
2234         free_percpu(p->percpu_cluster);
2235         p->percpu_cluster = NULL;
2236         vfree(swap_map);
2237         vfree(cluster_info);
2238         vfree(frontswap_map);
2239         /* Destroy swap account information */
2240         swap_cgroup_swapoff(p->type);
2241         exit_swap_address_space(p->type);
2242
2243         inode = mapping->host;
2244         if (S_ISBLK(inode->i_mode)) {
2245                 struct block_device *bdev = I_BDEV(inode);
2246                 set_blocksize(bdev, old_block_size);
2247                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2248         } else {
2249                 inode_lock(inode);
2250                 inode->i_flags &= ~S_SWAPFILE;
2251                 inode_unlock(inode);
2252         }
2253         filp_close(swap_file, NULL);
2254
2255         /*
2256          * Clear the SWP_USED flag after all resources are freed so that swapon
2257          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2258          * not hold p->lock after we cleared its SWP_WRITEOK.
2259          */
2260         spin_lock(&swap_lock);
2261         p->flags = 0;
2262         spin_unlock(&swap_lock);
2263
2264         err = 0;
2265         atomic_inc(&proc_poll_event);
2266         wake_up_interruptible(&proc_poll_wait);
2267
2268 out_dput:
2269         filp_close(victim, NULL);
2270 out:
2271         putname(pathname);
2272         return err;
2273 }
2274
2275 #ifdef CONFIG_PROC_FS
2276 static unsigned swaps_poll(struct file *file, poll_table *wait)
2277 {
2278         struct seq_file *seq = file->private_data;
2279
2280         poll_wait(file, &proc_poll_wait, wait);
2281
2282         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2283                 seq->poll_event = atomic_read(&proc_poll_event);
2284                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2285         }
2286
2287         return POLLIN | POLLRDNORM;
2288 }
2289
2290 /* iterator */
2291 static void *swap_start(struct seq_file *swap, loff_t *pos)
2292 {
2293         struct swap_info_struct *si;
2294         int type;
2295         loff_t l = *pos;
2296
2297         mutex_lock(&swapon_mutex);
2298
2299         if (!l)
2300                 return SEQ_START_TOKEN;
2301
2302         for (type = 0; type < nr_swapfiles; type++) {
2303                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2304                 si = swap_info[type];
2305                 if (!(si->flags & SWP_USED) || !si->swap_map)
2306                         continue;
2307                 if (!--l)
2308                         return si;
2309         }
2310
2311         return NULL;
2312 }
2313
2314 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2315 {
2316         struct swap_info_struct *si = v;
2317         int type;
2318
2319         if (v == SEQ_START_TOKEN)
2320                 type = 0;
2321         else
2322                 type = si->type + 1;
2323
2324         for (; type < nr_swapfiles; type++) {
2325                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2326                 si = swap_info[type];
2327                 if (!(si->flags & SWP_USED) || !si->swap_map)
2328                         continue;
2329                 ++*pos;
2330                 return si;
2331         }
2332
2333         return NULL;
2334 }
2335
2336 static void swap_stop(struct seq_file *swap, void *v)
2337 {
2338         mutex_unlock(&swapon_mutex);
2339 }
2340
2341 static int swap_show(struct seq_file *swap, void *v)
2342 {
2343         struct swap_info_struct *si = v;
2344         struct file *file;
2345         int len;
2346
2347         if (si == SEQ_START_TOKEN) {
2348                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2349                 return 0;
2350         }
2351
2352         file = si->swap_file;
2353         len = seq_file_path(swap, file, " \t\n\\");
2354         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2355                         len < 40 ? 40 - len : 1, " ",
2356                         S_ISBLK(file_inode(file)->i_mode) ?
2357                                 "partition" : "file\t",
2358                         si->pages << (PAGE_SHIFT - 10),
2359                         si->inuse_pages << (PAGE_SHIFT - 10),
2360                         si->prio);
2361         return 0;
2362 }
2363
2364 static const struct seq_operations swaps_op = {
2365         .start =        swap_start,
2366         .next =         swap_next,
2367         .stop =         swap_stop,
2368         .show =         swap_show
2369 };
2370
2371 static int swaps_open(struct inode *inode, struct file *file)
2372 {
2373         struct seq_file *seq;
2374         int ret;
2375
2376         ret = seq_open(file, &swaps_op);
2377         if (ret)
2378                 return ret;
2379
2380         seq = file->private_data;
2381         seq->poll_event = atomic_read(&proc_poll_event);
2382         return 0;
2383 }
2384
2385 static const struct file_operations proc_swaps_operations = {
2386         .open           = swaps_open,
2387         .read           = seq_read,
2388         .llseek         = seq_lseek,
2389         .release        = seq_release,
2390         .poll           = swaps_poll,
2391 };
2392
2393 static int __init procswaps_init(void)
2394 {
2395         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2396         return 0;
2397 }
2398 __initcall(procswaps_init);
2399 #endif /* CONFIG_PROC_FS */
2400
2401 #ifdef MAX_SWAPFILES_CHECK
2402 static int __init max_swapfiles_check(void)
2403 {
2404         MAX_SWAPFILES_CHECK();
2405         return 0;
2406 }
2407 late_initcall(max_swapfiles_check);
2408 #endif
2409
2410 static struct swap_info_struct *alloc_swap_info(void)
2411 {
2412         struct swap_info_struct *p;
2413         unsigned int type;
2414
2415         p = kzalloc(sizeof(*p), GFP_KERNEL);
2416         if (!p)
2417                 return ERR_PTR(-ENOMEM);
2418
2419         spin_lock(&swap_lock);
2420         for (type = 0; type < nr_swapfiles; type++) {
2421                 if (!(swap_info[type]->flags & SWP_USED))
2422                         break;
2423         }
2424         if (type >= MAX_SWAPFILES) {
2425                 spin_unlock(&swap_lock);
2426                 kfree(p);
2427                 return ERR_PTR(-EPERM);
2428         }
2429         if (type >= nr_swapfiles) {
2430                 p->type = type;
2431                 swap_info[type] = p;
2432                 /*
2433                  * Write swap_info[type] before nr_swapfiles, in case a
2434                  * racing procfs swap_start() or swap_next() is reading them.
2435                  * (We never shrink nr_swapfiles, we never free this entry.)
2436                  */
2437                 smp_wmb();
2438                 nr_swapfiles++;
2439         } else {
2440                 kfree(p);
2441                 p = swap_info[type];
2442                 /*
2443                  * Do not memset this entry: a racing procfs swap_next()
2444                  * would be relying on p->type to remain valid.
2445                  */
2446         }
2447         INIT_LIST_HEAD(&p->first_swap_extent.list);
2448         plist_node_init(&p->list, 0);
2449         plist_node_init(&p->avail_list, 0);
2450         p->flags = SWP_USED;
2451         spin_unlock(&swap_lock);
2452         spin_lock_init(&p->lock);
2453
2454         return p;
2455 }
2456
2457 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2458 {
2459         int error;
2460
2461         if (S_ISBLK(inode->i_mode)) {
2462                 p->bdev = bdgrab(I_BDEV(inode));
2463                 error = blkdev_get(p->bdev,
2464                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2465                 if (error < 0) {
2466                         p->bdev = NULL;
2467                         return error;
2468                 }
2469                 p->old_block_size = block_size(p->bdev);
2470                 error = set_blocksize(p->bdev, PAGE_SIZE);
2471                 if (error < 0)
2472                         return error;
2473                 p->flags |= SWP_BLKDEV;
2474         } else if (S_ISREG(inode->i_mode)) {
2475                 p->bdev = inode->i_sb->s_bdev;
2476                 inode_lock(inode);
2477                 if (IS_SWAPFILE(inode))
2478                         return -EBUSY;
2479         } else
2480                 return -EINVAL;
2481
2482         return 0;
2483 }
2484
2485 static unsigned long read_swap_header(struct swap_info_struct *p,
2486                                         union swap_header *swap_header,
2487                                         struct inode *inode)
2488 {
2489         int i;
2490         unsigned long maxpages;
2491         unsigned long swapfilepages;
2492         unsigned long last_page;
2493
2494         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2495                 pr_err("Unable to find swap-space signature\n");
2496                 return 0;
2497         }
2498
2499         /* swap partition endianess hack... */
2500         if (swab32(swap_header->info.version) == 1) {
2501                 swab32s(&swap_header->info.version);
2502                 swab32s(&swap_header->info.last_page);
2503                 swab32s(&swap_header->info.nr_badpages);
2504                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2505                         return 0;
2506                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2507                         swab32s(&swap_header->info.badpages[i]);
2508         }
2509         /* Check the swap header's sub-version */
2510         if (swap_header->info.version != 1) {
2511                 pr_warn("Unable to handle swap header version %d\n",
2512                         swap_header->info.version);
2513                 return 0;
2514         }
2515
2516         p->lowest_bit  = 1;
2517         p->cluster_next = 1;
2518         p->cluster_nr = 0;
2519
2520         /*
2521          * Find out how many pages are allowed for a single swap
2522          * device. There are two limiting factors: 1) the number
2523          * of bits for the swap offset in the swp_entry_t type, and
2524          * 2) the number of bits in the swap pte as defined by the
2525          * different architectures. In order to find the
2526          * largest possible bit mask, a swap entry with swap type 0
2527          * and swap offset ~0UL is created, encoded to a swap pte,
2528          * decoded to a swp_entry_t again, and finally the swap
2529          * offset is extracted. This will mask all the bits from
2530          * the initial ~0UL mask that can't be encoded in either
2531          * the swp_entry_t or the architecture definition of a
2532          * swap pte.
2533          */
2534         maxpages = swp_offset(pte_to_swp_entry(
2535                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2536         last_page = swap_header->info.last_page;
2537         if (last_page > maxpages) {
2538                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2539                         maxpages << (PAGE_SHIFT - 10),
2540                         last_page << (PAGE_SHIFT - 10));
2541         }
2542         if (maxpages > last_page) {
2543                 maxpages = last_page + 1;
2544                 /* p->max is an unsigned int: don't overflow it */
2545                 if ((unsigned int)maxpages == 0)
2546                         maxpages = UINT_MAX;
2547         }
2548         p->highest_bit = maxpages - 1;
2549
2550         if (!maxpages)
2551                 return 0;
2552         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2553         if (swapfilepages && maxpages > swapfilepages) {
2554                 pr_warn("Swap area shorter than signature indicates\n");
2555                 return 0;
2556         }
2557         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2558                 return 0;
2559         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2560                 return 0;
2561
2562         return maxpages;
2563 }
2564
2565 #define SWAP_CLUSTER_INFO_COLS                                          \
2566         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2567 #define SWAP_CLUSTER_SPACE_COLS                                         \
2568         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2569 #define SWAP_CLUSTER_COLS                                               \
2570         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2571
2572 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2573                                         union swap_header *swap_header,
2574                                         unsigned char *swap_map,
2575                                         struct swap_cluster_info *cluster_info,
2576                                         unsigned long maxpages,
2577                                         sector_t *span)
2578 {
2579         unsigned int j, k;
2580         unsigned int nr_good_pages;
2581         int nr_extents;
2582         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2583         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2584         unsigned long i, idx;
2585
2586         nr_good_pages = maxpages - 1;   /* omit header page */
2587
2588         cluster_list_init(&p->free_clusters);
2589         cluster_list_init(&p->discard_clusters);
2590
2591         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2592                 unsigned int page_nr = swap_header->info.badpages[i];
2593                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2594                         return -EINVAL;
2595                 if (page_nr < maxpages) {
2596                         swap_map[page_nr] = SWAP_MAP_BAD;
2597                         nr_good_pages--;
2598                         /*
2599                          * Haven't marked the cluster free yet, no list
2600                          * operation involved
2601                          */
2602                         inc_cluster_info_page(p, cluster_info, page_nr);
2603                 }
2604         }
2605
2606         /* Haven't marked the cluster free yet, no list operation involved */
2607         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2608                 inc_cluster_info_page(p, cluster_info, i);
2609
2610         if (nr_good_pages) {
2611                 swap_map[0] = SWAP_MAP_BAD;
2612                 /*
2613                  * Not mark the cluster free yet, no list
2614                  * operation involved
2615                  */
2616                 inc_cluster_info_page(p, cluster_info, 0);
2617                 p->max = maxpages;
2618                 p->pages = nr_good_pages;
2619                 nr_extents = setup_swap_extents(p, span);
2620                 if (nr_extents < 0)
2621                         return nr_extents;
2622                 nr_good_pages = p->pages;
2623         }
2624         if (!nr_good_pages) {
2625                 pr_warn("Empty swap-file\n");
2626                 return -EINVAL;
2627         }
2628
2629         if (!cluster_info)
2630                 return nr_extents;
2631
2632
2633         /*
2634          * Reduce false cache line sharing between cluster_info and
2635          * sharing same address space.
2636          */
2637         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2638                 j = (k + col) % SWAP_CLUSTER_COLS;
2639                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2640                         idx = i * SWAP_CLUSTER_COLS + j;
2641                         if (idx >= nr_clusters)
2642                                 continue;
2643                         if (cluster_count(&cluster_info[idx]))
2644                                 continue;
2645                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2646                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2647                                               idx);
2648                 }
2649         }
2650         return nr_extents;
2651 }
2652
2653 /*
2654  * Helper to sys_swapon determining if a given swap
2655  * backing device queue supports DISCARD operations.
2656  */
2657 static bool swap_discardable(struct swap_info_struct *si)
2658 {
2659         struct request_queue *q = bdev_get_queue(si->bdev);
2660
2661         if (!q || !blk_queue_discard(q))
2662                 return false;
2663
2664         return true;
2665 }
2666
2667 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2668 {
2669         struct swap_info_struct *p;
2670         struct filename *name;
2671         struct file *swap_file = NULL;
2672         struct address_space *mapping;
2673         int prio;
2674         int error;
2675         union swap_header *swap_header;
2676         int nr_extents;
2677         sector_t span;
2678         unsigned long maxpages;
2679         unsigned char *swap_map = NULL;
2680         struct swap_cluster_info *cluster_info = NULL;
2681         unsigned long *frontswap_map = NULL;
2682         struct page *page = NULL;
2683         struct inode *inode = NULL;
2684
2685         if (swap_flags & ~SWAP_FLAGS_VALID)
2686                 return -EINVAL;
2687
2688         if (!capable(CAP_SYS_ADMIN))
2689                 return -EPERM;
2690
2691         p = alloc_swap_info();
2692         if (IS_ERR(p))
2693                 return PTR_ERR(p);
2694
2695         INIT_WORK(&p->discard_work, swap_discard_work);
2696
2697         name = getname(specialfile);
2698         if (IS_ERR(name)) {
2699                 error = PTR_ERR(name);
2700                 name = NULL;
2701                 goto bad_swap;
2702         }
2703         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2704         if (IS_ERR(swap_file)) {
2705                 error = PTR_ERR(swap_file);
2706                 swap_file = NULL;
2707                 goto bad_swap;
2708         }
2709
2710         p->swap_file = swap_file;
2711         mapping = swap_file->f_mapping;
2712         inode = mapping->host;
2713
2714         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2715         error = claim_swapfile(p, inode);
2716         if (unlikely(error))
2717                 goto bad_swap;
2718
2719         /*
2720          * Read the swap header.
2721          */
2722         if (!mapping->a_ops->readpage) {
2723                 error = -EINVAL;
2724                 goto bad_swap;
2725         }
2726         page = read_mapping_page(mapping, 0, swap_file);
2727         if (IS_ERR(page)) {
2728                 error = PTR_ERR(page);
2729                 goto bad_swap;
2730         }
2731         swap_header = kmap(page);
2732
2733         maxpages = read_swap_header(p, swap_header, inode);
2734         if (unlikely(!maxpages)) {
2735                 error = -EINVAL;
2736                 goto bad_swap;
2737         }
2738
2739         /* OK, set up the swap map and apply the bad block list */
2740         swap_map = vzalloc(maxpages);
2741         if (!swap_map) {
2742                 error = -ENOMEM;
2743                 goto bad_swap;
2744         }
2745
2746         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2747                 p->flags |= SWP_STABLE_WRITES;
2748
2749         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2750                 int cpu;
2751                 unsigned long ci, nr_cluster;
2752
2753                 p->flags |= SWP_SOLIDSTATE;
2754                 /*
2755                  * select a random position to start with to help wear leveling
2756                  * SSD
2757                  */
2758                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2759                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2760
2761                 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2762                 if (!cluster_info) {
2763                         error = -ENOMEM;
2764                         goto bad_swap;
2765                 }
2766
2767                 for (ci = 0; ci < nr_cluster; ci++)
2768                         spin_lock_init(&((cluster_info + ci)->lock));
2769
2770                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2771                 if (!p->percpu_cluster) {
2772                         error = -ENOMEM;
2773                         goto bad_swap;
2774                 }
2775                 for_each_possible_cpu(cpu) {
2776                         struct percpu_cluster *cluster;
2777                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2778                         cluster_set_null(&cluster->index);
2779                 }
2780         }
2781
2782         error = swap_cgroup_swapon(p->type, maxpages);
2783         if (error)
2784                 goto bad_swap;
2785
2786         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2787                 cluster_info, maxpages, &span);
2788         if (unlikely(nr_extents < 0)) {
2789                 error = nr_extents;
2790                 goto bad_swap;
2791         }
2792         /* frontswap enabled? set up bit-per-page map for frontswap */
2793         if (IS_ENABLED(CONFIG_FRONTSWAP))
2794                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2795
2796         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2797                 /*
2798                  * When discard is enabled for swap with no particular
2799                  * policy flagged, we set all swap discard flags here in
2800                  * order to sustain backward compatibility with older
2801                  * swapon(8) releases.
2802                  */
2803                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2804                              SWP_PAGE_DISCARD);
2805
2806                 /*
2807                  * By flagging sys_swapon, a sysadmin can tell us to
2808                  * either do single-time area discards only, or to just
2809                  * perform discards for released swap page-clusters.
2810                  * Now it's time to adjust the p->flags accordingly.
2811                  */
2812                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2813                         p->flags &= ~SWP_PAGE_DISCARD;
2814                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2815                         p->flags &= ~SWP_AREA_DISCARD;
2816
2817                 /* issue a swapon-time discard if it's still required */
2818                 if (p->flags & SWP_AREA_DISCARD) {
2819                         int err = discard_swap(p);
2820                         if (unlikely(err))
2821                                 pr_err("swapon: discard_swap(%p): %d\n",
2822                                         p, err);
2823                 }
2824         }
2825
2826         error = init_swap_address_space(p->type, maxpages);
2827         if (error)
2828                 goto bad_swap;
2829
2830         mutex_lock(&swapon_mutex);
2831         prio = -1;
2832         if (swap_flags & SWAP_FLAG_PREFER)
2833                 prio =
2834                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2835         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2836
2837         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2838                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2839                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2840                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2841                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2842                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2843                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2844                 (frontswap_map) ? "FS" : "");
2845
2846         mutex_unlock(&swapon_mutex);
2847         atomic_inc(&proc_poll_event);
2848         wake_up_interruptible(&proc_poll_wait);
2849
2850         if (S_ISREG(inode->i_mode))
2851                 inode->i_flags |= S_SWAPFILE;
2852         error = 0;
2853         goto out;
2854 bad_swap:
2855         free_percpu(p->percpu_cluster);
2856         p->percpu_cluster = NULL;
2857         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2858                 set_blocksize(p->bdev, p->old_block_size);
2859                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2860         }
2861         destroy_swap_extents(p);
2862         swap_cgroup_swapoff(p->type);
2863         spin_lock(&swap_lock);
2864         p->swap_file = NULL;
2865         p->flags = 0;
2866         spin_unlock(&swap_lock);
2867         vfree(swap_map);
2868         vfree(cluster_info);
2869         if (swap_file) {
2870                 if (inode && S_ISREG(inode->i_mode)) {
2871                         inode_unlock(inode);
2872                         inode = NULL;
2873                 }
2874                 filp_close(swap_file, NULL);
2875         }
2876 out:
2877         if (page && !IS_ERR(page)) {
2878                 kunmap(page);
2879                 put_page(page);
2880         }
2881         if (name)
2882                 putname(name);
2883         if (inode && S_ISREG(inode->i_mode))
2884                 inode_unlock(inode);
2885         return error;
2886 }
2887
2888 void si_swapinfo(struct sysinfo *val)
2889 {
2890         unsigned int type;
2891         unsigned long nr_to_be_unused = 0;
2892
2893         spin_lock(&swap_lock);
2894         for (type = 0; type < nr_swapfiles; type++) {
2895                 struct swap_info_struct *si = swap_info[type];
2896
2897                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2898                         nr_to_be_unused += si->inuse_pages;
2899         }
2900         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2901         val->totalswap = total_swap_pages + nr_to_be_unused;
2902         spin_unlock(&swap_lock);
2903 }
2904
2905 /*
2906  * Verify that a swap entry is valid and increment its swap map count.
2907  *
2908  * Returns error code in following case.
2909  * - success -> 0
2910  * - swp_entry is invalid -> EINVAL
2911  * - swp_entry is migration entry -> EINVAL
2912  * - swap-cache reference is requested but there is already one. -> EEXIST
2913  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2914  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2915  */
2916 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2917 {
2918         struct swap_info_struct *p;
2919         struct swap_cluster_info *ci;
2920         unsigned long offset, type;
2921         unsigned char count;
2922         unsigned char has_cache;
2923         int err = -EINVAL;
2924
2925         if (non_swap_entry(entry))
2926                 goto out;
2927
2928         type = swp_type(entry);
2929         if (type >= nr_swapfiles)
2930                 goto bad_file;
2931         p = swap_info[type];
2932         offset = swp_offset(entry);
2933         if (unlikely(offset >= p->max))
2934                 goto out;
2935
2936         ci = lock_cluster_or_swap_info(p, offset);
2937
2938         count = p->swap_map[offset];
2939
2940         /*
2941          * swapin_readahead() doesn't check if a swap entry is valid, so the
2942          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2943          */
2944         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2945                 err = -ENOENT;
2946                 goto unlock_out;
2947         }
2948
2949         has_cache = count & SWAP_HAS_CACHE;
2950         count &= ~SWAP_HAS_CACHE;
2951         err = 0;
2952
2953         if (usage == SWAP_HAS_CACHE) {
2954
2955                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2956                 if (!has_cache && count)
2957                         has_cache = SWAP_HAS_CACHE;
2958                 else if (has_cache)             /* someone else added cache */
2959                         err = -EEXIST;
2960                 else                            /* no users remaining */
2961                         err = -ENOENT;
2962
2963         } else if (count || has_cache) {
2964
2965                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2966                         count += usage;
2967                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2968                         err = -EINVAL;
2969                 else if (swap_count_continued(p, offset, count))
2970                         count = COUNT_CONTINUED;
2971                 else
2972                         err = -ENOMEM;
2973         } else
2974                 err = -ENOENT;                  /* unused swap entry */
2975
2976         p->swap_map[offset] = count | has_cache;
2977
2978 unlock_out:
2979         unlock_cluster_or_swap_info(p, ci);
2980 out:
2981         return err;
2982
2983 bad_file:
2984         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2985         goto out;
2986 }
2987
2988 /*
2989  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2990  * (in which case its reference count is never incremented).
2991  */
2992 void swap_shmem_alloc(swp_entry_t entry)
2993 {
2994         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2995 }
2996
2997 /*
2998  * Increase reference count of swap entry by 1.
2999  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3000  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3001  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3002  * might occur if a page table entry has got corrupted.
3003  */
3004 int swap_duplicate(swp_entry_t entry)
3005 {
3006         int err = 0;
3007
3008         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3009                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3010         return err;
3011 }
3012
3013 /*
3014  * @entry: swap entry for which we allocate swap cache.
3015  *
3016  * Called when allocating swap cache for existing swap entry,
3017  * This can return error codes. Returns 0 at success.
3018  * -EBUSY means there is a swap cache.
3019  * Note: return code is different from swap_duplicate().
3020  */
3021 int swapcache_prepare(swp_entry_t entry)
3022 {
3023         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3024 }
3025
3026 struct swap_info_struct *page_swap_info(struct page *page)
3027 {
3028         swp_entry_t swap = { .val = page_private(page) };
3029         return swap_info[swp_type(swap)];
3030 }
3031
3032 /*
3033  * out-of-line __page_file_ methods to avoid include hell.
3034  */
3035 struct address_space *__page_file_mapping(struct page *page)
3036 {
3037         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3038         return page_swap_info(page)->swap_file->f_mapping;
3039 }
3040 EXPORT_SYMBOL_GPL(__page_file_mapping);
3041
3042 pgoff_t __page_file_index(struct page *page)
3043 {
3044         swp_entry_t swap = { .val = page_private(page) };
3045         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3046         return swp_offset(swap);
3047 }
3048 EXPORT_SYMBOL_GPL(__page_file_index);
3049
3050 /*
3051  * add_swap_count_continuation - called when a swap count is duplicated
3052  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3053  * page of the original vmalloc'ed swap_map, to hold the continuation count
3054  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3055  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3056  *
3057  * These continuation pages are seldom referenced: the common paths all work
3058  * on the original swap_map, only referring to a continuation page when the
3059  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3060  *
3061  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3062  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3063  * can be called after dropping locks.
3064  */
3065 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3066 {
3067         struct swap_info_struct *si;
3068         struct swap_cluster_info *ci;
3069         struct page *head;
3070         struct page *page;
3071         struct page *list_page;
3072         pgoff_t offset;
3073         unsigned char count;
3074
3075         /*
3076          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3077          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3078          */
3079         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3080
3081         si = swap_info_get(entry);
3082         if (!si) {
3083                 /*
3084                  * An acceptable race has occurred since the failing
3085                  * __swap_duplicate(): the swap entry has been freed,
3086                  * perhaps even the whole swap_map cleared for swapoff.
3087                  */
3088                 goto outer;
3089         }
3090
3091         offset = swp_offset(entry);
3092
3093         ci = lock_cluster(si, offset);
3094
3095         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3096
3097         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3098                 /*
3099                  * The higher the swap count, the more likely it is that tasks
3100                  * will race to add swap count continuation: we need to avoid
3101                  * over-provisioning.
3102                  */
3103                 goto out;
3104         }
3105
3106         if (!page) {
3107                 unlock_cluster(ci);
3108                 spin_unlock(&si->lock);
3109                 return -ENOMEM;
3110         }
3111
3112         /*
3113          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3114          * no architecture is using highmem pages for kernel page tables: so it
3115          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3116          */
3117         head = vmalloc_to_page(si->swap_map + offset);
3118         offset &= ~PAGE_MASK;
3119
3120         /*
3121          * Page allocation does not initialize the page's lru field,
3122          * but it does always reset its private field.
3123          */
3124         if (!page_private(head)) {
3125                 BUG_ON(count & COUNT_CONTINUED);
3126                 INIT_LIST_HEAD(&head->lru);
3127                 set_page_private(head, SWP_CONTINUED);
3128                 si->flags |= SWP_CONTINUED;
3129         }
3130
3131         list_for_each_entry(list_page, &head->lru, lru) {
3132                 unsigned char *map;
3133
3134                 /*
3135                  * If the previous map said no continuation, but we've found
3136                  * a continuation page, free our allocation and use this one.
3137                  */
3138                 if (!(count & COUNT_CONTINUED))
3139                         goto out;
3140
3141                 map = kmap_atomic(list_page) + offset;
3142                 count = *map;
3143                 kunmap_atomic(map);
3144
3145                 /*
3146                  * If this continuation count now has some space in it,
3147                  * free our allocation and use this one.
3148                  */
3149                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3150                         goto out;
3151         }
3152
3153         list_add_tail(&page->lru, &head->lru);
3154         page = NULL;                    /* now it's attached, don't free it */
3155 out:
3156         unlock_cluster(ci);
3157         spin_unlock(&si->lock);
3158 outer:
3159         if (page)
3160                 __free_page(page);
3161         return 0;
3162 }
3163
3164 /*
3165  * swap_count_continued - when the original swap_map count is incremented
3166  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3167  * into, carry if so, or else fail until a new continuation page is allocated;
3168  * when the original swap_map count is decremented from 0 with continuation,
3169  * borrow from the continuation and report whether it still holds more.
3170  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3171  * lock.
3172  */
3173 static bool swap_count_continued(struct swap_info_struct *si,
3174                                  pgoff_t offset, unsigned char count)
3175 {
3176         struct page *head;
3177         struct page *page;
3178         unsigned char *map;
3179
3180         head = vmalloc_to_page(si->swap_map + offset);
3181         if (page_private(head) != SWP_CONTINUED) {
3182                 BUG_ON(count & COUNT_CONTINUED);
3183                 return false;           /* need to add count continuation */
3184         }
3185
3186         offset &= ~PAGE_MASK;
3187         page = list_entry(head->lru.next, struct page, lru);
3188         map = kmap_atomic(page) + offset;
3189
3190         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3191                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3192
3193         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3194                 /*
3195                  * Think of how you add 1 to 999
3196                  */
3197                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3198                         kunmap_atomic(map);
3199                         page = list_entry(page->lru.next, struct page, lru);
3200                         BUG_ON(page == head);
3201                         map = kmap_atomic(page) + offset;
3202                 }
3203                 if (*map == SWAP_CONT_MAX) {
3204                         kunmap_atomic(map);
3205                         page = list_entry(page->lru.next, struct page, lru);
3206                         if (page == head)
3207                                 return false;   /* add count continuation */
3208                         map = kmap_atomic(page) + offset;
3209 init_map:               *map = 0;               /* we didn't zero the page */
3210                 }
3211                 *map += 1;
3212                 kunmap_atomic(map);
3213                 page = list_entry(page->lru.prev, struct page, lru);
3214                 while (page != head) {
3215                         map = kmap_atomic(page) + offset;
3216                         *map = COUNT_CONTINUED;
3217                         kunmap_atomic(map);
3218                         page = list_entry(page->lru.prev, struct page, lru);
3219                 }
3220                 return true;                    /* incremented */
3221
3222         } else {                                /* decrementing */
3223                 /*
3224                  * Think of how you subtract 1 from 1000
3225                  */
3226                 BUG_ON(count != COUNT_CONTINUED);
3227                 while (*map == COUNT_CONTINUED) {
3228                         kunmap_atomic(map);
3229                         page = list_entry(page->lru.next, struct page, lru);
3230                         BUG_ON(page == head);
3231                         map = kmap_atomic(page) + offset;
3232                 }
3233                 BUG_ON(*map == 0);
3234                 *map -= 1;
3235                 if (*map == 0)
3236                         count = 0;
3237                 kunmap_atomic(map);
3238                 page = list_entry(page->lru.prev, struct page, lru);
3239                 while (page != head) {
3240                         map = kmap_atomic(page) + offset;
3241                         *map = SWAP_CONT_MAX | count;
3242                         count = COUNT_CONTINUED;
3243                         kunmap_atomic(map);
3244                         page = list_entry(page->lru.prev, struct page, lru);
3245                 }
3246                 return count == COUNT_CONTINUED;
3247         }
3248 }
3249
3250 /*
3251  * free_swap_count_continuations - swapoff free all the continuation pages
3252  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3253  */
3254 static void free_swap_count_continuations(struct swap_info_struct *si)
3255 {
3256         pgoff_t offset;
3257
3258         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3259                 struct page *head;
3260                 head = vmalloc_to_page(si->swap_map + offset);
3261                 if (page_private(head)) {
3262                         struct page *page, *next;
3263
3264                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3265                                 list_del(&page->lru);
3266                                 __free_page(page);
3267                         }
3268                 }
3269         }
3270 }