]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmscan.c
mm: remove lru type checks from __isolate_lru_page()
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57         /* Incremented by the number of inactive pages that were scanned */
58         unsigned long nr_scanned;
59
60         /* Number of pages freed so far during a call to shrink_zones() */
61         unsigned long nr_reclaimed;
62
63         /* How many pages shrink_list() should reclaim */
64         unsigned long nr_to_reclaim;
65
66         unsigned long hibernation_mode;
67
68         /* This context's GFP mask */
69         gfp_t gfp_mask;
70
71         int may_writepage;
72
73         /* Can mapped pages be reclaimed? */
74         int may_unmap;
75
76         /* Can pages be swapped as part of reclaim? */
77         int may_swap;
78
79         int order;
80
81         /*
82          * The memory cgroup that hit its limit and as a result is the
83          * primary target of this reclaim invocation.
84          */
85         struct mem_cgroup *target_mem_cgroup;
86
87         /*
88          * Nodemask of nodes allowed by the caller. If NULL, all nodes
89          * are scanned.
90          */
91         nodemask_t      *nodemask;
92 };
93
94 struct mem_cgroup_zone {
95         struct mem_cgroup *mem_cgroup;
96         struct zone *zone;
97 };
98
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field)                    \
103         do {                                                            \
104                 if ((_page)->lru.prev != _base) {                       \
105                         struct page *prev;                              \
106                                                                         \
107                         prev = lru_to_page(&(_page->lru));              \
108                         prefetch(&prev->_field);                        \
109                 }                                                       \
110         } while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
117         do {                                                            \
118                 if ((_page)->lru.prev != _base) {                       \
119                         struct page *prev;                              \
120                                                                         \
121                         prev = lru_to_page(&(_page->lru));              \
122                         prefetchw(&prev->_field);                       \
123                 }                                                       \
124         } while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128
129 /*
130  * From 0 .. 100.  Higher means more swappy.
131  */
132 int vm_swappiness = 60;
133 long vm_total_pages;    /* The total number of pages which the VM controls */
134
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137
138 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
139 static bool global_reclaim(struct scan_control *sc)
140 {
141         return !sc->target_mem_cgroup;
142 }
143 #else
144 static bool global_reclaim(struct scan_control *sc)
145 {
146         return true;
147 }
148 #endif
149
150 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
151 {
152         return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
153 }
154
155 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
156                                        enum lru_list lru)
157 {
158         if (!mem_cgroup_disabled())
159                 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
160                                                     zone_to_nid(mz->zone),
161                                                     zone_idx(mz->zone),
162                                                     BIT(lru));
163
164         return zone_page_state(mz->zone, NR_LRU_BASE + lru);
165 }
166
167
168 /*
169  * Add a shrinker callback to be called from the vm
170  */
171 void register_shrinker(struct shrinker *shrinker)
172 {
173         atomic_long_set(&shrinker->nr_in_batch, 0);
174         down_write(&shrinker_rwsem);
175         list_add_tail(&shrinker->list, &shrinker_list);
176         up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(register_shrinker);
179
180 /*
181  * Remove one
182  */
183 void unregister_shrinker(struct shrinker *shrinker)
184 {
185         down_write(&shrinker_rwsem);
186         list_del(&shrinker->list);
187         up_write(&shrinker_rwsem);
188 }
189 EXPORT_SYMBOL(unregister_shrinker);
190
191 static inline int do_shrinker_shrink(struct shrinker *shrinker,
192                                      struct shrink_control *sc,
193                                      unsigned long nr_to_scan)
194 {
195         sc->nr_to_scan = nr_to_scan;
196         return (*shrinker->shrink)(shrinker, sc);
197 }
198
199 #define SHRINK_BATCH 128
200 /*
201  * Call the shrink functions to age shrinkable caches
202  *
203  * Here we assume it costs one seek to replace a lru page and that it also
204  * takes a seek to recreate a cache object.  With this in mind we age equal
205  * percentages of the lru and ageable caches.  This should balance the seeks
206  * generated by these structures.
207  *
208  * If the vm encountered mapped pages on the LRU it increase the pressure on
209  * slab to avoid swapping.
210  *
211  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
212  *
213  * `lru_pages' represents the number of on-LRU pages in all the zones which
214  * are eligible for the caller's allocation attempt.  It is used for balancing
215  * slab reclaim versus page reclaim.
216  *
217  * Returns the number of slab objects which we shrunk.
218  */
219 unsigned long shrink_slab(struct shrink_control *shrink,
220                           unsigned long nr_pages_scanned,
221                           unsigned long lru_pages)
222 {
223         struct shrinker *shrinker;
224         unsigned long ret = 0;
225
226         if (nr_pages_scanned == 0)
227                 nr_pages_scanned = SWAP_CLUSTER_MAX;
228
229         if (!down_read_trylock(&shrinker_rwsem)) {
230                 /* Assume we'll be able to shrink next time */
231                 ret = 1;
232                 goto out;
233         }
234
235         list_for_each_entry(shrinker, &shrinker_list, list) {
236                 unsigned long long delta;
237                 long total_scan;
238                 long max_pass;
239                 int shrink_ret = 0;
240                 long nr;
241                 long new_nr;
242                 long batch_size = shrinker->batch ? shrinker->batch
243                                                   : SHRINK_BATCH;
244
245                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
246                 if (max_pass <= 0)
247                         continue;
248
249                 /*
250                  * copy the current shrinker scan count into a local variable
251                  * and zero it so that other concurrent shrinker invocations
252                  * don't also do this scanning work.
253                  */
254                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
255
256                 total_scan = nr;
257                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
258                 delta *= max_pass;
259                 do_div(delta, lru_pages + 1);
260                 total_scan += delta;
261                 if (total_scan < 0) {
262                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
263                                "delete nr=%ld\n",
264                                shrinker->shrink, total_scan);
265                         total_scan = max_pass;
266                 }
267
268                 /*
269                  * We need to avoid excessive windup on filesystem shrinkers
270                  * due to large numbers of GFP_NOFS allocations causing the
271                  * shrinkers to return -1 all the time. This results in a large
272                  * nr being built up so when a shrink that can do some work
273                  * comes along it empties the entire cache due to nr >>>
274                  * max_pass.  This is bad for sustaining a working set in
275                  * memory.
276                  *
277                  * Hence only allow the shrinker to scan the entire cache when
278                  * a large delta change is calculated directly.
279                  */
280                 if (delta < max_pass / 4)
281                         total_scan = min(total_scan, max_pass / 2);
282
283                 /*
284                  * Avoid risking looping forever due to too large nr value:
285                  * never try to free more than twice the estimate number of
286                  * freeable entries.
287                  */
288                 if (total_scan > max_pass * 2)
289                         total_scan = max_pass * 2;
290
291                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
292                                         nr_pages_scanned, lru_pages,
293                                         max_pass, delta, total_scan);
294
295                 while (total_scan >= batch_size) {
296                         int nr_before;
297
298                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
299                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
300                                                         batch_size);
301                         if (shrink_ret == -1)
302                                 break;
303                         if (shrink_ret < nr_before)
304                                 ret += nr_before - shrink_ret;
305                         count_vm_events(SLABS_SCANNED, batch_size);
306                         total_scan -= batch_size;
307
308                         cond_resched();
309                 }
310
311                 /*
312                  * move the unused scan count back into the shrinker in a
313                  * manner that handles concurrent updates. If we exhausted the
314                  * scan, there is no need to do an update.
315                  */
316                 if (total_scan > 0)
317                         new_nr = atomic_long_add_return(total_scan,
318                                         &shrinker->nr_in_batch);
319                 else
320                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
321
322                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
323         }
324         up_read(&shrinker_rwsem);
325 out:
326         cond_resched();
327         return ret;
328 }
329
330 static inline int is_page_cache_freeable(struct page *page)
331 {
332         /*
333          * A freeable page cache page is referenced only by the caller
334          * that isolated the page, the page cache radix tree and
335          * optional buffer heads at page->private.
336          */
337         return page_count(page) - page_has_private(page) == 2;
338 }
339
340 static int may_write_to_queue(struct backing_dev_info *bdi,
341                               struct scan_control *sc)
342 {
343         if (current->flags & PF_SWAPWRITE)
344                 return 1;
345         if (!bdi_write_congested(bdi))
346                 return 1;
347         if (bdi == current->backing_dev_info)
348                 return 1;
349         return 0;
350 }
351
352 /*
353  * We detected a synchronous write error writing a page out.  Probably
354  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
355  * fsync(), msync() or close().
356  *
357  * The tricky part is that after writepage we cannot touch the mapping: nothing
358  * prevents it from being freed up.  But we have a ref on the page and once
359  * that page is locked, the mapping is pinned.
360  *
361  * We're allowed to run sleeping lock_page() here because we know the caller has
362  * __GFP_FS.
363  */
364 static void handle_write_error(struct address_space *mapping,
365                                 struct page *page, int error)
366 {
367         lock_page(page);
368         if (page_mapping(page) == mapping)
369                 mapping_set_error(mapping, error);
370         unlock_page(page);
371 }
372
373 /* possible outcome of pageout() */
374 typedef enum {
375         /* failed to write page out, page is locked */
376         PAGE_KEEP,
377         /* move page to the active list, page is locked */
378         PAGE_ACTIVATE,
379         /* page has been sent to the disk successfully, page is unlocked */
380         PAGE_SUCCESS,
381         /* page is clean and locked */
382         PAGE_CLEAN,
383 } pageout_t;
384
385 /*
386  * pageout is called by shrink_page_list() for each dirty page.
387  * Calls ->writepage().
388  */
389 static pageout_t pageout(struct page *page, struct address_space *mapping,
390                          struct scan_control *sc)
391 {
392         /*
393          * If the page is dirty, only perform writeback if that write
394          * will be non-blocking.  To prevent this allocation from being
395          * stalled by pagecache activity.  But note that there may be
396          * stalls if we need to run get_block().  We could test
397          * PagePrivate for that.
398          *
399          * If this process is currently in __generic_file_aio_write() against
400          * this page's queue, we can perform writeback even if that
401          * will block.
402          *
403          * If the page is swapcache, write it back even if that would
404          * block, for some throttling. This happens by accident, because
405          * swap_backing_dev_info is bust: it doesn't reflect the
406          * congestion state of the swapdevs.  Easy to fix, if needed.
407          */
408         if (!is_page_cache_freeable(page))
409                 return PAGE_KEEP;
410         if (!mapping) {
411                 /*
412                  * Some data journaling orphaned pages can have
413                  * page->mapping == NULL while being dirty with clean buffers.
414                  */
415                 if (page_has_private(page)) {
416                         if (try_to_free_buffers(page)) {
417                                 ClearPageDirty(page);
418                                 printk("%s: orphaned page\n", __func__);
419                                 return PAGE_CLEAN;
420                         }
421                 }
422                 return PAGE_KEEP;
423         }
424         if (mapping->a_ops->writepage == NULL)
425                 return PAGE_ACTIVATE;
426         if (!may_write_to_queue(mapping->backing_dev_info, sc))
427                 return PAGE_KEEP;
428
429         if (clear_page_dirty_for_io(page)) {
430                 int res;
431                 struct writeback_control wbc = {
432                         .sync_mode = WB_SYNC_NONE,
433                         .nr_to_write = SWAP_CLUSTER_MAX,
434                         .range_start = 0,
435                         .range_end = LLONG_MAX,
436                         .for_reclaim = 1,
437                 };
438
439                 SetPageReclaim(page);
440                 res = mapping->a_ops->writepage(page, &wbc);
441                 if (res < 0)
442                         handle_write_error(mapping, page, res);
443                 if (res == AOP_WRITEPAGE_ACTIVATE) {
444                         ClearPageReclaim(page);
445                         return PAGE_ACTIVATE;
446                 }
447
448                 if (!PageWriteback(page)) {
449                         /* synchronous write or broken a_ops? */
450                         ClearPageReclaim(page);
451                 }
452                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
453                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
454                 return PAGE_SUCCESS;
455         }
456
457         return PAGE_CLEAN;
458 }
459
460 /*
461  * Same as remove_mapping, but if the page is removed from the mapping, it
462  * gets returned with a refcount of 0.
463  */
464 static int __remove_mapping(struct address_space *mapping, struct page *page)
465 {
466         BUG_ON(!PageLocked(page));
467         BUG_ON(mapping != page_mapping(page));
468
469         spin_lock_irq(&mapping->tree_lock);
470         /*
471          * The non racy check for a busy page.
472          *
473          * Must be careful with the order of the tests. When someone has
474          * a ref to the page, it may be possible that they dirty it then
475          * drop the reference. So if PageDirty is tested before page_count
476          * here, then the following race may occur:
477          *
478          * get_user_pages(&page);
479          * [user mapping goes away]
480          * write_to(page);
481          *                              !PageDirty(page)    [good]
482          * SetPageDirty(page);
483          * put_page(page);
484          *                              !page_count(page)   [good, discard it]
485          *
486          * [oops, our write_to data is lost]
487          *
488          * Reversing the order of the tests ensures such a situation cannot
489          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
490          * load is not satisfied before that of page->_count.
491          *
492          * Note that if SetPageDirty is always performed via set_page_dirty,
493          * and thus under tree_lock, then this ordering is not required.
494          */
495         if (!page_freeze_refs(page, 2))
496                 goto cannot_free;
497         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
498         if (unlikely(PageDirty(page))) {
499                 page_unfreeze_refs(page, 2);
500                 goto cannot_free;
501         }
502
503         if (PageSwapCache(page)) {
504                 swp_entry_t swap = { .val = page_private(page) };
505                 __delete_from_swap_cache(page);
506                 spin_unlock_irq(&mapping->tree_lock);
507                 swapcache_free(swap, page);
508         } else {
509                 void (*freepage)(struct page *);
510
511                 freepage = mapping->a_ops->freepage;
512
513                 __delete_from_page_cache(page);
514                 spin_unlock_irq(&mapping->tree_lock);
515                 mem_cgroup_uncharge_cache_page(page);
516
517                 if (freepage != NULL)
518                         freepage(page);
519         }
520
521         return 1;
522
523 cannot_free:
524         spin_unlock_irq(&mapping->tree_lock);
525         return 0;
526 }
527
528 /*
529  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
530  * someone else has a ref on the page, abort and return 0.  If it was
531  * successfully detached, return 1.  Assumes the caller has a single ref on
532  * this page.
533  */
534 int remove_mapping(struct address_space *mapping, struct page *page)
535 {
536         if (__remove_mapping(mapping, page)) {
537                 /*
538                  * Unfreezing the refcount with 1 rather than 2 effectively
539                  * drops the pagecache ref for us without requiring another
540                  * atomic operation.
541                  */
542                 page_unfreeze_refs(page, 1);
543                 return 1;
544         }
545         return 0;
546 }
547
548 /**
549  * putback_lru_page - put previously isolated page onto appropriate LRU list
550  * @page: page to be put back to appropriate lru list
551  *
552  * Add previously isolated @page to appropriate LRU list.
553  * Page may still be unevictable for other reasons.
554  *
555  * lru_lock must not be held, interrupts must be enabled.
556  */
557 void putback_lru_page(struct page *page)
558 {
559         int lru;
560         int active = !!TestClearPageActive(page);
561         int was_unevictable = PageUnevictable(page);
562
563         VM_BUG_ON(PageLRU(page));
564
565 redo:
566         ClearPageUnevictable(page);
567
568         if (page_evictable(page, NULL)) {
569                 /*
570                  * For evictable pages, we can use the cache.
571                  * In event of a race, worst case is we end up with an
572                  * unevictable page on [in]active list.
573                  * We know how to handle that.
574                  */
575                 lru = active + page_lru_base_type(page);
576                 lru_cache_add_lru(page, lru);
577         } else {
578                 /*
579                  * Put unevictable pages directly on zone's unevictable
580                  * list.
581                  */
582                 lru = LRU_UNEVICTABLE;
583                 add_page_to_unevictable_list(page);
584                 /*
585                  * When racing with an mlock or AS_UNEVICTABLE clearing
586                  * (page is unlocked) make sure that if the other thread
587                  * does not observe our setting of PG_lru and fails
588                  * isolation/check_move_unevictable_pages,
589                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
590                  * the page back to the evictable list.
591                  *
592                  * The other side is TestClearPageMlocked() or shmem_lock().
593                  */
594                 smp_mb();
595         }
596
597         /*
598          * page's status can change while we move it among lru. If an evictable
599          * page is on unevictable list, it never be freed. To avoid that,
600          * check after we added it to the list, again.
601          */
602         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
603                 if (!isolate_lru_page(page)) {
604                         put_page(page);
605                         goto redo;
606                 }
607                 /* This means someone else dropped this page from LRU
608                  * So, it will be freed or putback to LRU again. There is
609                  * nothing to do here.
610                  */
611         }
612
613         if (was_unevictable && lru != LRU_UNEVICTABLE)
614                 count_vm_event(UNEVICTABLE_PGRESCUED);
615         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
616                 count_vm_event(UNEVICTABLE_PGCULLED);
617
618         put_page(page);         /* drop ref from isolate */
619 }
620
621 enum page_references {
622         PAGEREF_RECLAIM,
623         PAGEREF_RECLAIM_CLEAN,
624         PAGEREF_KEEP,
625         PAGEREF_ACTIVATE,
626 };
627
628 static enum page_references page_check_references(struct page *page,
629                                                   struct mem_cgroup_zone *mz,
630                                                   struct scan_control *sc)
631 {
632         int referenced_ptes, referenced_page;
633         unsigned long vm_flags;
634
635         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
636                                           &vm_flags);
637         referenced_page = TestClearPageReferenced(page);
638
639         /*
640          * Mlock lost the isolation race with us.  Let try_to_unmap()
641          * move the page to the unevictable list.
642          */
643         if (vm_flags & VM_LOCKED)
644                 return PAGEREF_RECLAIM;
645
646         if (referenced_ptes) {
647                 if (PageSwapBacked(page))
648                         return PAGEREF_ACTIVATE;
649                 /*
650                  * All mapped pages start out with page table
651                  * references from the instantiating fault, so we need
652                  * to look twice if a mapped file page is used more
653                  * than once.
654                  *
655                  * Mark it and spare it for another trip around the
656                  * inactive list.  Another page table reference will
657                  * lead to its activation.
658                  *
659                  * Note: the mark is set for activated pages as well
660                  * so that recently deactivated but used pages are
661                  * quickly recovered.
662                  */
663                 SetPageReferenced(page);
664
665                 if (referenced_page || referenced_ptes > 1)
666                         return PAGEREF_ACTIVATE;
667
668                 /*
669                  * Activate file-backed executable pages after first usage.
670                  */
671                 if (vm_flags & VM_EXEC)
672                         return PAGEREF_ACTIVATE;
673
674                 return PAGEREF_KEEP;
675         }
676
677         /* Reclaim if clean, defer dirty pages to writeback */
678         if (referenced_page && !PageSwapBacked(page))
679                 return PAGEREF_RECLAIM_CLEAN;
680
681         return PAGEREF_RECLAIM;
682 }
683
684 /*
685  * shrink_page_list() returns the number of reclaimed pages
686  */
687 static unsigned long shrink_page_list(struct list_head *page_list,
688                                       struct mem_cgroup_zone *mz,
689                                       struct scan_control *sc,
690                                       int priority,
691                                       unsigned long *ret_nr_dirty,
692                                       unsigned long *ret_nr_writeback)
693 {
694         LIST_HEAD(ret_pages);
695         LIST_HEAD(free_pages);
696         int pgactivate = 0;
697         unsigned long nr_dirty = 0;
698         unsigned long nr_congested = 0;
699         unsigned long nr_reclaimed = 0;
700         unsigned long nr_writeback = 0;
701
702         cond_resched();
703
704         while (!list_empty(page_list)) {
705                 enum page_references references;
706                 struct address_space *mapping;
707                 struct page *page;
708                 int may_enter_fs;
709
710                 cond_resched();
711
712                 page = lru_to_page(page_list);
713                 list_del(&page->lru);
714
715                 if (!trylock_page(page))
716                         goto keep;
717
718                 VM_BUG_ON(PageActive(page));
719                 VM_BUG_ON(page_zone(page) != mz->zone);
720
721                 sc->nr_scanned++;
722
723                 if (unlikely(!page_evictable(page, NULL)))
724                         goto cull_mlocked;
725
726                 if (!sc->may_unmap && page_mapped(page))
727                         goto keep_locked;
728
729                 /* Double the slab pressure for mapped and swapcache pages */
730                 if (page_mapped(page) || PageSwapCache(page))
731                         sc->nr_scanned++;
732
733                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
734                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
735
736                 if (PageWriteback(page)) {
737                         nr_writeback++;
738                         unlock_page(page);
739                         goto keep;
740                 }
741
742                 references = page_check_references(page, mz, sc);
743                 switch (references) {
744                 case PAGEREF_ACTIVATE:
745                         goto activate_locked;
746                 case PAGEREF_KEEP:
747                         goto keep_locked;
748                 case PAGEREF_RECLAIM:
749                 case PAGEREF_RECLAIM_CLEAN:
750                         ; /* try to reclaim the page below */
751                 }
752
753                 /*
754                  * Anonymous process memory has backing store?
755                  * Try to allocate it some swap space here.
756                  */
757                 if (PageAnon(page) && !PageSwapCache(page)) {
758                         if (!(sc->gfp_mask & __GFP_IO))
759                                 goto keep_locked;
760                         if (!add_to_swap(page))
761                                 goto activate_locked;
762                         may_enter_fs = 1;
763                 }
764
765                 mapping = page_mapping(page);
766
767                 /*
768                  * The page is mapped into the page tables of one or more
769                  * processes. Try to unmap it here.
770                  */
771                 if (page_mapped(page) && mapping) {
772                         switch (try_to_unmap(page, TTU_UNMAP)) {
773                         case SWAP_FAIL:
774                                 goto activate_locked;
775                         case SWAP_AGAIN:
776                                 goto keep_locked;
777                         case SWAP_MLOCK:
778                                 goto cull_mlocked;
779                         case SWAP_SUCCESS:
780                                 ; /* try to free the page below */
781                         }
782                 }
783
784                 if (PageDirty(page)) {
785                         nr_dirty++;
786
787                         /*
788                          * Only kswapd can writeback filesystem pages to
789                          * avoid risk of stack overflow but do not writeback
790                          * unless under significant pressure.
791                          */
792                         if (page_is_file_cache(page) &&
793                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
794                                 /*
795                                  * Immediately reclaim when written back.
796                                  * Similar in principal to deactivate_page()
797                                  * except we already have the page isolated
798                                  * and know it's dirty
799                                  */
800                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
801                                 SetPageReclaim(page);
802
803                                 goto keep_locked;
804                         }
805
806                         if (references == PAGEREF_RECLAIM_CLEAN)
807                                 goto keep_locked;
808                         if (!may_enter_fs)
809                                 goto keep_locked;
810                         if (!sc->may_writepage)
811                                 goto keep_locked;
812
813                         /* Page is dirty, try to write it out here */
814                         switch (pageout(page, mapping, sc)) {
815                         case PAGE_KEEP:
816                                 nr_congested++;
817                                 goto keep_locked;
818                         case PAGE_ACTIVATE:
819                                 goto activate_locked;
820                         case PAGE_SUCCESS:
821                                 if (PageWriteback(page))
822                                         goto keep;
823                                 if (PageDirty(page))
824                                         goto keep;
825
826                                 /*
827                                  * A synchronous write - probably a ramdisk.  Go
828                                  * ahead and try to reclaim the page.
829                                  */
830                                 if (!trylock_page(page))
831                                         goto keep;
832                                 if (PageDirty(page) || PageWriteback(page))
833                                         goto keep_locked;
834                                 mapping = page_mapping(page);
835                         case PAGE_CLEAN:
836                                 ; /* try to free the page below */
837                         }
838                 }
839
840                 /*
841                  * If the page has buffers, try to free the buffer mappings
842                  * associated with this page. If we succeed we try to free
843                  * the page as well.
844                  *
845                  * We do this even if the page is PageDirty().
846                  * try_to_release_page() does not perform I/O, but it is
847                  * possible for a page to have PageDirty set, but it is actually
848                  * clean (all its buffers are clean).  This happens if the
849                  * buffers were written out directly, with submit_bh(). ext3
850                  * will do this, as well as the blockdev mapping.
851                  * try_to_release_page() will discover that cleanness and will
852                  * drop the buffers and mark the page clean - it can be freed.
853                  *
854                  * Rarely, pages can have buffers and no ->mapping.  These are
855                  * the pages which were not successfully invalidated in
856                  * truncate_complete_page().  We try to drop those buffers here
857                  * and if that worked, and the page is no longer mapped into
858                  * process address space (page_count == 1) it can be freed.
859                  * Otherwise, leave the page on the LRU so it is swappable.
860                  */
861                 if (page_has_private(page)) {
862                         if (!try_to_release_page(page, sc->gfp_mask))
863                                 goto activate_locked;
864                         if (!mapping && page_count(page) == 1) {
865                                 unlock_page(page);
866                                 if (put_page_testzero(page))
867                                         goto free_it;
868                                 else {
869                                         /*
870                                          * rare race with speculative reference.
871                                          * the speculative reference will free
872                                          * this page shortly, so we may
873                                          * increment nr_reclaimed here (and
874                                          * leave it off the LRU).
875                                          */
876                                         nr_reclaimed++;
877                                         continue;
878                                 }
879                         }
880                 }
881
882                 if (!mapping || !__remove_mapping(mapping, page))
883                         goto keep_locked;
884
885                 /*
886                  * At this point, we have no other references and there is
887                  * no way to pick any more up (removed from LRU, removed
888                  * from pagecache). Can use non-atomic bitops now (and
889                  * we obviously don't have to worry about waking up a process
890                  * waiting on the page lock, because there are no references.
891                  */
892                 __clear_page_locked(page);
893 free_it:
894                 nr_reclaimed++;
895
896                 /*
897                  * Is there need to periodically free_page_list? It would
898                  * appear not as the counts should be low
899                  */
900                 list_add(&page->lru, &free_pages);
901                 continue;
902
903 cull_mlocked:
904                 if (PageSwapCache(page))
905                         try_to_free_swap(page);
906                 unlock_page(page);
907                 putback_lru_page(page);
908                 continue;
909
910 activate_locked:
911                 /* Not a candidate for swapping, so reclaim swap space. */
912                 if (PageSwapCache(page) && vm_swap_full())
913                         try_to_free_swap(page);
914                 VM_BUG_ON(PageActive(page));
915                 SetPageActive(page);
916                 pgactivate++;
917 keep_locked:
918                 unlock_page(page);
919 keep:
920                 list_add(&page->lru, &ret_pages);
921                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
922         }
923
924         /*
925          * Tag a zone as congested if all the dirty pages encountered were
926          * backed by a congested BDI. In this case, reclaimers should just
927          * back off and wait for congestion to clear because further reclaim
928          * will encounter the same problem
929          */
930         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
931                 zone_set_flag(mz->zone, ZONE_CONGESTED);
932
933         free_hot_cold_page_list(&free_pages, 1);
934
935         list_splice(&ret_pages, page_list);
936         count_vm_events(PGACTIVATE, pgactivate);
937         *ret_nr_dirty += nr_dirty;
938         *ret_nr_writeback += nr_writeback;
939         return nr_reclaimed;
940 }
941
942 /*
943  * Attempt to remove the specified page from its LRU.  Only take this page
944  * if it is of the appropriate PageActive status.  Pages which are being
945  * freed elsewhere are also ignored.
946  *
947  * page:        page to consider
948  * mode:        one of the LRU isolation modes defined above
949  *
950  * returns 0 on success, -ve errno on failure.
951  */
952 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
953 {
954         int ret = -EINVAL;
955
956         /* Only take pages on the LRU. */
957         if (!PageLRU(page))
958                 return ret;
959
960         /* Do not give back unevictable pages for compaction */
961         if (PageUnevictable(page))
962                 return ret;
963
964         ret = -EBUSY;
965
966         /*
967          * To minimise LRU disruption, the caller can indicate that it only
968          * wants to isolate pages it will be able to operate on without
969          * blocking - clean pages for the most part.
970          *
971          * ISOLATE_CLEAN means that only clean pages should be isolated. This
972          * is used by reclaim when it is cannot write to backing storage
973          *
974          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
975          * that it is possible to migrate without blocking
976          */
977         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
978                 /* All the caller can do on PageWriteback is block */
979                 if (PageWriteback(page))
980                         return ret;
981
982                 if (PageDirty(page)) {
983                         struct address_space *mapping;
984
985                         /* ISOLATE_CLEAN means only clean pages */
986                         if (mode & ISOLATE_CLEAN)
987                                 return ret;
988
989                         /*
990                          * Only pages without mappings or that have a
991                          * ->migratepage callback are possible to migrate
992                          * without blocking
993                          */
994                         mapping = page_mapping(page);
995                         if (mapping && !mapping->a_ops->migratepage)
996                                 return ret;
997                 }
998         }
999
1000         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1001                 return ret;
1002
1003         if (likely(get_page_unless_zero(page))) {
1004                 /*
1005                  * Be careful not to clear PageLRU until after we're
1006                  * sure the page is not being freed elsewhere -- the
1007                  * page release code relies on it.
1008                  */
1009                 ClearPageLRU(page);
1010                 ret = 0;
1011         }
1012
1013         return ret;
1014 }
1015
1016 /*
1017  * zone->lru_lock is heavily contended.  Some of the functions that
1018  * shrink the lists perform better by taking out a batch of pages
1019  * and working on them outside the LRU lock.
1020  *
1021  * For pagecache intensive workloads, this function is the hottest
1022  * spot in the kernel (apart from copy_*_user functions).
1023  *
1024  * Appropriate locks must be held before calling this function.
1025  *
1026  * @nr_to_scan: The number of pages to look through on the list.
1027  * @mz:         The mem_cgroup_zone to pull pages from.
1028  * @dst:        The temp list to put pages on to.
1029  * @nr_scanned: The number of pages that were scanned.
1030  * @sc:         The scan_control struct for this reclaim session
1031  * @mode:       One of the LRU isolation modes
1032  * @lru:        LRU list id for isolating
1033  *
1034  * returns how many pages were moved onto *@dst.
1035  */
1036 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1037                 struct mem_cgroup_zone *mz, struct list_head *dst,
1038                 unsigned long *nr_scanned, struct scan_control *sc,
1039                 isolate_mode_t mode, enum lru_list lru)
1040 {
1041         struct lruvec *lruvec;
1042         struct list_head *src;
1043         unsigned long nr_taken = 0;
1044         unsigned long scan;
1045         int file = is_file_lru(lru);
1046
1047         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1048         src = &lruvec->lists[lru];
1049
1050         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1051                 struct page *page;
1052
1053                 page = lru_to_page(src);
1054                 prefetchw_prev_lru_page(page, src, flags);
1055
1056                 VM_BUG_ON(!PageLRU(page));
1057
1058                 switch (__isolate_lru_page(page, mode)) {
1059                 case 0:
1060                         mem_cgroup_lru_del(page);
1061                         list_move(&page->lru, dst);
1062                         nr_taken += hpage_nr_pages(page);
1063                         break;
1064
1065                 case -EBUSY:
1066                         /* else it is being freed elsewhere */
1067                         list_move(&page->lru, src);
1068                         continue;
1069
1070                 default:
1071                         BUG();
1072                 }
1073         }
1074
1075         *nr_scanned = scan;
1076
1077         trace_mm_vmscan_lru_isolate(sc->order,
1078                         nr_to_scan, scan,
1079                         nr_taken,
1080                         mode, file);
1081         return nr_taken;
1082 }
1083
1084 /**
1085  * isolate_lru_page - tries to isolate a page from its LRU list
1086  * @page: page to isolate from its LRU list
1087  *
1088  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1089  * vmstat statistic corresponding to whatever LRU list the page was on.
1090  *
1091  * Returns 0 if the page was removed from an LRU list.
1092  * Returns -EBUSY if the page was not on an LRU list.
1093  *
1094  * The returned page will have PageLRU() cleared.  If it was found on
1095  * the active list, it will have PageActive set.  If it was found on
1096  * the unevictable list, it will have the PageUnevictable bit set. That flag
1097  * may need to be cleared by the caller before letting the page go.
1098  *
1099  * The vmstat statistic corresponding to the list on which the page was
1100  * found will be decremented.
1101  *
1102  * Restrictions:
1103  * (1) Must be called with an elevated refcount on the page. This is a
1104  *     fundamentnal difference from isolate_lru_pages (which is called
1105  *     without a stable reference).
1106  * (2) the lru_lock must not be held.
1107  * (3) interrupts must be enabled.
1108  */
1109 int isolate_lru_page(struct page *page)
1110 {
1111         int ret = -EBUSY;
1112
1113         VM_BUG_ON(!page_count(page));
1114
1115         if (PageLRU(page)) {
1116                 struct zone *zone = page_zone(page);
1117
1118                 spin_lock_irq(&zone->lru_lock);
1119                 if (PageLRU(page)) {
1120                         int lru = page_lru(page);
1121                         ret = 0;
1122                         get_page(page);
1123                         ClearPageLRU(page);
1124
1125                         del_page_from_lru_list(zone, page, lru);
1126                 }
1127                 spin_unlock_irq(&zone->lru_lock);
1128         }
1129         return ret;
1130 }
1131
1132 /*
1133  * Are there way too many processes in the direct reclaim path already?
1134  */
1135 static int too_many_isolated(struct zone *zone, int file,
1136                 struct scan_control *sc)
1137 {
1138         unsigned long inactive, isolated;
1139
1140         if (current_is_kswapd())
1141                 return 0;
1142
1143         if (!global_reclaim(sc))
1144                 return 0;
1145
1146         if (file) {
1147                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1148                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1149         } else {
1150                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1151                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1152         }
1153
1154         return isolated > inactive;
1155 }
1156
1157 static noinline_for_stack void
1158 putback_inactive_pages(struct mem_cgroup_zone *mz,
1159                        struct list_head *page_list)
1160 {
1161         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1162         struct zone *zone = mz->zone;
1163         LIST_HEAD(pages_to_free);
1164
1165         /*
1166          * Put back any unfreeable pages.
1167          */
1168         while (!list_empty(page_list)) {
1169                 struct page *page = lru_to_page(page_list);
1170                 int lru;
1171
1172                 VM_BUG_ON(PageLRU(page));
1173                 list_del(&page->lru);
1174                 if (unlikely(!page_evictable(page, NULL))) {
1175                         spin_unlock_irq(&zone->lru_lock);
1176                         putback_lru_page(page);
1177                         spin_lock_irq(&zone->lru_lock);
1178                         continue;
1179                 }
1180                 SetPageLRU(page);
1181                 lru = page_lru(page);
1182                 add_page_to_lru_list(zone, page, lru);
1183                 if (is_active_lru(lru)) {
1184                         int file = is_file_lru(lru);
1185                         int numpages = hpage_nr_pages(page);
1186                         reclaim_stat->recent_rotated[file] += numpages;
1187                 }
1188                 if (put_page_testzero(page)) {
1189                         __ClearPageLRU(page);
1190                         __ClearPageActive(page);
1191                         del_page_from_lru_list(zone, page, lru);
1192
1193                         if (unlikely(PageCompound(page))) {
1194                                 spin_unlock_irq(&zone->lru_lock);
1195                                 (*get_compound_page_dtor(page))(page);
1196                                 spin_lock_irq(&zone->lru_lock);
1197                         } else
1198                                 list_add(&page->lru, &pages_to_free);
1199                 }
1200         }
1201
1202         /*
1203          * To save our caller's stack, now use input list for pages to free.
1204          */
1205         list_splice(&pages_to_free, page_list);
1206 }
1207
1208 static noinline_for_stack void
1209 update_isolated_counts(struct mem_cgroup_zone *mz,
1210                        struct list_head *page_list,
1211                        unsigned long *nr_anon,
1212                        unsigned long *nr_file)
1213 {
1214         struct zone *zone = mz->zone;
1215         unsigned int count[NR_LRU_LISTS] = { 0, };
1216         unsigned long nr_active = 0;
1217         struct page *page;
1218         int lru;
1219
1220         /*
1221          * Count pages and clear active flags
1222          */
1223         list_for_each_entry(page, page_list, lru) {
1224                 int numpages = hpage_nr_pages(page);
1225                 lru = page_lru_base_type(page);
1226                 if (PageActive(page)) {
1227                         lru += LRU_ACTIVE;
1228                         ClearPageActive(page);
1229                         nr_active += numpages;
1230                 }
1231                 count[lru] += numpages;
1232         }
1233
1234         preempt_disable();
1235         __count_vm_events(PGDEACTIVATE, nr_active);
1236
1237         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1238                               -count[LRU_ACTIVE_FILE]);
1239         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1240                               -count[LRU_INACTIVE_FILE]);
1241         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1242                               -count[LRU_ACTIVE_ANON]);
1243         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1244                               -count[LRU_INACTIVE_ANON]);
1245
1246         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1247         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1248
1249         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1250         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1251         preempt_enable();
1252 }
1253
1254 /*
1255  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1256  * of reclaimed pages
1257  */
1258 static noinline_for_stack unsigned long
1259 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1260                      struct scan_control *sc, int priority, enum lru_list lru)
1261 {
1262         LIST_HEAD(page_list);
1263         unsigned long nr_scanned;
1264         unsigned long nr_reclaimed = 0;
1265         unsigned long nr_taken;
1266         unsigned long nr_anon;
1267         unsigned long nr_file;
1268         unsigned long nr_dirty = 0;
1269         unsigned long nr_writeback = 0;
1270         isolate_mode_t isolate_mode = 0;
1271         int file = is_file_lru(lru);
1272         struct zone *zone = mz->zone;
1273         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1274
1275         while (unlikely(too_many_isolated(zone, file, sc))) {
1276                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1277
1278                 /* We are about to die and free our memory. Return now. */
1279                 if (fatal_signal_pending(current))
1280                         return SWAP_CLUSTER_MAX;
1281         }
1282
1283         lru_add_drain();
1284
1285         if (!sc->may_unmap)
1286                 isolate_mode |= ISOLATE_UNMAPPED;
1287         if (!sc->may_writepage)
1288                 isolate_mode |= ISOLATE_CLEAN;
1289
1290         spin_lock_irq(&zone->lru_lock);
1291
1292         nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1293                                      sc, isolate_mode, lru);
1294         if (global_reclaim(sc)) {
1295                 zone->pages_scanned += nr_scanned;
1296                 if (current_is_kswapd())
1297                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1298                                                nr_scanned);
1299                 else
1300                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1301                                                nr_scanned);
1302         }
1303         spin_unlock_irq(&zone->lru_lock);
1304
1305         if (nr_taken == 0)
1306                 return 0;
1307
1308         update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1309
1310         nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1311                                                 &nr_dirty, &nr_writeback);
1312
1313         spin_lock_irq(&zone->lru_lock);
1314
1315         reclaim_stat->recent_scanned[0] += nr_anon;
1316         reclaim_stat->recent_scanned[1] += nr_file;
1317
1318         if (global_reclaim(sc)) {
1319                 if (current_is_kswapd())
1320                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1321                                                nr_reclaimed);
1322                 else
1323                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1324                                                nr_reclaimed);
1325         }
1326
1327         putback_inactive_pages(mz, &page_list);
1328
1329         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1330         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1331
1332         spin_unlock_irq(&zone->lru_lock);
1333
1334         free_hot_cold_page_list(&page_list, 1);
1335
1336         /*
1337          * If reclaim is isolating dirty pages under writeback, it implies
1338          * that the long-lived page allocation rate is exceeding the page
1339          * laundering rate. Either the global limits are not being effective
1340          * at throttling processes due to the page distribution throughout
1341          * zones or there is heavy usage of a slow backing device. The
1342          * only option is to throttle from reclaim context which is not ideal
1343          * as there is no guarantee the dirtying process is throttled in the
1344          * same way balance_dirty_pages() manages.
1345          *
1346          * This scales the number of dirty pages that must be under writeback
1347          * before throttling depending on priority. It is a simple backoff
1348          * function that has the most effect in the range DEF_PRIORITY to
1349          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1350          * in trouble and reclaim is considered to be in trouble.
1351          *
1352          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1353          * DEF_PRIORITY-1  50% must be PageWriteback
1354          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1355          * ...
1356          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1357          *                     isolated page is PageWriteback
1358          */
1359         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1360                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1361
1362         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1363                 zone_idx(zone),
1364                 nr_scanned, nr_reclaimed,
1365                 priority,
1366                 trace_shrink_flags(file));
1367         return nr_reclaimed;
1368 }
1369
1370 /*
1371  * This moves pages from the active list to the inactive list.
1372  *
1373  * We move them the other way if the page is referenced by one or more
1374  * processes, from rmap.
1375  *
1376  * If the pages are mostly unmapped, the processing is fast and it is
1377  * appropriate to hold zone->lru_lock across the whole operation.  But if
1378  * the pages are mapped, the processing is slow (page_referenced()) so we
1379  * should drop zone->lru_lock around each page.  It's impossible to balance
1380  * this, so instead we remove the pages from the LRU while processing them.
1381  * It is safe to rely on PG_active against the non-LRU pages in here because
1382  * nobody will play with that bit on a non-LRU page.
1383  *
1384  * The downside is that we have to touch page->_count against each page.
1385  * But we had to alter page->flags anyway.
1386  */
1387
1388 static void move_active_pages_to_lru(struct zone *zone,
1389                                      struct list_head *list,
1390                                      struct list_head *pages_to_free,
1391                                      enum lru_list lru)
1392 {
1393         unsigned long pgmoved = 0;
1394         struct page *page;
1395
1396         while (!list_empty(list)) {
1397                 struct lruvec *lruvec;
1398
1399                 page = lru_to_page(list);
1400
1401                 VM_BUG_ON(PageLRU(page));
1402                 SetPageLRU(page);
1403
1404                 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1405                 list_move(&page->lru, &lruvec->lists[lru]);
1406                 pgmoved += hpage_nr_pages(page);
1407
1408                 if (put_page_testzero(page)) {
1409                         __ClearPageLRU(page);
1410                         __ClearPageActive(page);
1411                         del_page_from_lru_list(zone, page, lru);
1412
1413                         if (unlikely(PageCompound(page))) {
1414                                 spin_unlock_irq(&zone->lru_lock);
1415                                 (*get_compound_page_dtor(page))(page);
1416                                 spin_lock_irq(&zone->lru_lock);
1417                         } else
1418                                 list_add(&page->lru, pages_to_free);
1419                 }
1420         }
1421         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1422         if (!is_active_lru(lru))
1423                 __count_vm_events(PGDEACTIVATE, pgmoved);
1424 }
1425
1426 static void shrink_active_list(unsigned long nr_to_scan,
1427                                struct mem_cgroup_zone *mz,
1428                                struct scan_control *sc,
1429                                int priority, enum lru_list lru)
1430 {
1431         unsigned long nr_taken;
1432         unsigned long nr_scanned;
1433         unsigned long vm_flags;
1434         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1435         LIST_HEAD(l_active);
1436         LIST_HEAD(l_inactive);
1437         struct page *page;
1438         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1439         unsigned long nr_rotated = 0;
1440         isolate_mode_t isolate_mode = 0;
1441         int file = is_file_lru(lru);
1442         struct zone *zone = mz->zone;
1443
1444         lru_add_drain();
1445
1446         if (!sc->may_unmap)
1447                 isolate_mode |= ISOLATE_UNMAPPED;
1448         if (!sc->may_writepage)
1449                 isolate_mode |= ISOLATE_CLEAN;
1450
1451         spin_lock_irq(&zone->lru_lock);
1452
1453         nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1454                                      isolate_mode, lru);
1455         if (global_reclaim(sc))
1456                 zone->pages_scanned += nr_scanned;
1457
1458         reclaim_stat->recent_scanned[file] += nr_taken;
1459
1460         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1461         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1462         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1463         spin_unlock_irq(&zone->lru_lock);
1464
1465         while (!list_empty(&l_hold)) {
1466                 cond_resched();
1467                 page = lru_to_page(&l_hold);
1468                 list_del(&page->lru);
1469
1470                 if (unlikely(!page_evictable(page, NULL))) {
1471                         putback_lru_page(page);
1472                         continue;
1473                 }
1474
1475                 if (unlikely(buffer_heads_over_limit)) {
1476                         if (page_has_private(page) && trylock_page(page)) {
1477                                 if (page_has_private(page))
1478                                         try_to_release_page(page, 0);
1479                                 unlock_page(page);
1480                         }
1481                 }
1482
1483                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1484                                     &vm_flags)) {
1485                         nr_rotated += hpage_nr_pages(page);
1486                         /*
1487                          * Identify referenced, file-backed active pages and
1488                          * give them one more trip around the active list. So
1489                          * that executable code get better chances to stay in
1490                          * memory under moderate memory pressure.  Anon pages
1491                          * are not likely to be evicted by use-once streaming
1492                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1493                          * so we ignore them here.
1494                          */
1495                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1496                                 list_add(&page->lru, &l_active);
1497                                 continue;
1498                         }
1499                 }
1500
1501                 ClearPageActive(page);  /* we are de-activating */
1502                 list_add(&page->lru, &l_inactive);
1503         }
1504
1505         /*
1506          * Move pages back to the lru list.
1507          */
1508         spin_lock_irq(&zone->lru_lock);
1509         /*
1510          * Count referenced pages from currently used mappings as rotated,
1511          * even though only some of them are actually re-activated.  This
1512          * helps balance scan pressure between file and anonymous pages in
1513          * get_scan_ratio.
1514          */
1515         reclaim_stat->recent_rotated[file] += nr_rotated;
1516
1517         move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1518         move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1519         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1520         spin_unlock_irq(&zone->lru_lock);
1521
1522         free_hot_cold_page_list(&l_hold, 1);
1523 }
1524
1525 #ifdef CONFIG_SWAP
1526 static int inactive_anon_is_low_global(struct zone *zone)
1527 {
1528         unsigned long active, inactive;
1529
1530         active = zone_page_state(zone, NR_ACTIVE_ANON);
1531         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1532
1533         if (inactive * zone->inactive_ratio < active)
1534                 return 1;
1535
1536         return 0;
1537 }
1538
1539 /**
1540  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1541  * @zone: zone to check
1542  * @sc:   scan control of this context
1543  *
1544  * Returns true if the zone does not have enough inactive anon pages,
1545  * meaning some active anon pages need to be deactivated.
1546  */
1547 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1548 {
1549         /*
1550          * If we don't have swap space, anonymous page deactivation
1551          * is pointless.
1552          */
1553         if (!total_swap_pages)
1554                 return 0;
1555
1556         if (!mem_cgroup_disabled())
1557                 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1558                                                        mz->zone);
1559
1560         return inactive_anon_is_low_global(mz->zone);
1561 }
1562 #else
1563 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1564 {
1565         return 0;
1566 }
1567 #endif
1568
1569 static int inactive_file_is_low_global(struct zone *zone)
1570 {
1571         unsigned long active, inactive;
1572
1573         active = zone_page_state(zone, NR_ACTIVE_FILE);
1574         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1575
1576         return (active > inactive);
1577 }
1578
1579 /**
1580  * inactive_file_is_low - check if file pages need to be deactivated
1581  * @mz: memory cgroup and zone to check
1582  *
1583  * When the system is doing streaming IO, memory pressure here
1584  * ensures that active file pages get deactivated, until more
1585  * than half of the file pages are on the inactive list.
1586  *
1587  * Once we get to that situation, protect the system's working
1588  * set from being evicted by disabling active file page aging.
1589  *
1590  * This uses a different ratio than the anonymous pages, because
1591  * the page cache uses a use-once replacement algorithm.
1592  */
1593 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1594 {
1595         if (!mem_cgroup_disabled())
1596                 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1597                                                        mz->zone);
1598
1599         return inactive_file_is_low_global(mz->zone);
1600 }
1601
1602 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1603 {
1604         if (file)
1605                 return inactive_file_is_low(mz);
1606         else
1607                 return inactive_anon_is_low(mz);
1608 }
1609
1610 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1611                                  struct mem_cgroup_zone *mz,
1612                                  struct scan_control *sc, int priority)
1613 {
1614         int file = is_file_lru(lru);
1615
1616         if (is_active_lru(lru)) {
1617                 if (inactive_list_is_low(mz, file))
1618                         shrink_active_list(nr_to_scan, mz, sc, priority, lru);
1619                 return 0;
1620         }
1621
1622         return shrink_inactive_list(nr_to_scan, mz, sc, priority, lru);
1623 }
1624
1625 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1626                              struct scan_control *sc)
1627 {
1628         if (global_reclaim(sc))
1629                 return vm_swappiness;
1630         return mem_cgroup_swappiness(mz->mem_cgroup);
1631 }
1632
1633 /*
1634  * Determine how aggressively the anon and file LRU lists should be
1635  * scanned.  The relative value of each set of LRU lists is determined
1636  * by looking at the fraction of the pages scanned we did rotate back
1637  * onto the active list instead of evict.
1638  *
1639  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1640  */
1641 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1642                            unsigned long *nr, int priority)
1643 {
1644         unsigned long anon, file, free;
1645         unsigned long anon_prio, file_prio;
1646         unsigned long ap, fp;
1647         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1648         u64 fraction[2], denominator;
1649         enum lru_list lru;
1650         int noswap = 0;
1651         bool force_scan = false;
1652
1653         /*
1654          * If the zone or memcg is small, nr[l] can be 0.  This
1655          * results in no scanning on this priority and a potential
1656          * priority drop.  Global direct reclaim can go to the next
1657          * zone and tends to have no problems. Global kswapd is for
1658          * zone balancing and it needs to scan a minimum amount. When
1659          * reclaiming for a memcg, a priority drop can cause high
1660          * latencies, so it's better to scan a minimum amount there as
1661          * well.
1662          */
1663         if (current_is_kswapd() && mz->zone->all_unreclaimable)
1664                 force_scan = true;
1665         if (!global_reclaim(sc))
1666                 force_scan = true;
1667
1668         /* If we have no swap space, do not bother scanning anon pages. */
1669         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1670                 noswap = 1;
1671                 fraction[0] = 0;
1672                 fraction[1] = 1;
1673                 denominator = 1;
1674                 goto out;
1675         }
1676
1677         anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1678                 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1679         file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1680                 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1681
1682         if (global_reclaim(sc)) {
1683                 free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1684                 /* If we have very few page cache pages,
1685                    force-scan anon pages. */
1686                 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1687                         fraction[0] = 1;
1688                         fraction[1] = 0;
1689                         denominator = 1;
1690                         goto out;
1691                 }
1692         }
1693
1694         /*
1695          * With swappiness at 100, anonymous and file have the same priority.
1696          * This scanning priority is essentially the inverse of IO cost.
1697          */
1698         anon_prio = vmscan_swappiness(mz, sc);
1699         file_prio = 200 - vmscan_swappiness(mz, sc);
1700
1701         /*
1702          * OK, so we have swap space and a fair amount of page cache
1703          * pages.  We use the recently rotated / recently scanned
1704          * ratios to determine how valuable each cache is.
1705          *
1706          * Because workloads change over time (and to avoid overflow)
1707          * we keep these statistics as a floating average, which ends
1708          * up weighing recent references more than old ones.
1709          *
1710          * anon in [0], file in [1]
1711          */
1712         spin_lock_irq(&mz->zone->lru_lock);
1713         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1714                 reclaim_stat->recent_scanned[0] /= 2;
1715                 reclaim_stat->recent_rotated[0] /= 2;
1716         }
1717
1718         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1719                 reclaim_stat->recent_scanned[1] /= 2;
1720                 reclaim_stat->recent_rotated[1] /= 2;
1721         }
1722
1723         /*
1724          * The amount of pressure on anon vs file pages is inversely
1725          * proportional to the fraction of recently scanned pages on
1726          * each list that were recently referenced and in active use.
1727          */
1728         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1729         ap /= reclaim_stat->recent_rotated[0] + 1;
1730
1731         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1732         fp /= reclaim_stat->recent_rotated[1] + 1;
1733         spin_unlock_irq(&mz->zone->lru_lock);
1734
1735         fraction[0] = ap;
1736         fraction[1] = fp;
1737         denominator = ap + fp + 1;
1738 out:
1739         for_each_evictable_lru(lru) {
1740                 int file = is_file_lru(lru);
1741                 unsigned long scan;
1742
1743                 scan = zone_nr_lru_pages(mz, lru);
1744                 if (priority || noswap || !vmscan_swappiness(mz, sc)) {
1745                         scan >>= priority;
1746                         if (!scan && force_scan)
1747                                 scan = SWAP_CLUSTER_MAX;
1748                         scan = div64_u64(scan * fraction[file], denominator);
1749                 }
1750                 nr[lru] = scan;
1751         }
1752 }
1753
1754 /* Use reclaim/compaction for costly allocs or under memory pressure */
1755 static bool in_reclaim_compaction(int priority, struct scan_control *sc)
1756 {
1757         if (COMPACTION_BUILD && sc->order &&
1758                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1759                          priority < DEF_PRIORITY - 2))
1760                 return true;
1761
1762         return false;
1763 }
1764
1765 /*
1766  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1767  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1768  * true if more pages should be reclaimed such that when the page allocator
1769  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1770  * It will give up earlier than that if there is difficulty reclaiming pages.
1771  */
1772 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1773                                         unsigned long nr_reclaimed,
1774                                         unsigned long nr_scanned,
1775                                         int priority,
1776                                         struct scan_control *sc)
1777 {
1778         unsigned long pages_for_compaction;
1779         unsigned long inactive_lru_pages;
1780
1781         /* If not in reclaim/compaction mode, stop */
1782         if (!in_reclaim_compaction(priority, sc))
1783                 return false;
1784
1785         /* Consider stopping depending on scan and reclaim activity */
1786         if (sc->gfp_mask & __GFP_REPEAT) {
1787                 /*
1788                  * For __GFP_REPEAT allocations, stop reclaiming if the
1789                  * full LRU list has been scanned and we are still failing
1790                  * to reclaim pages. This full LRU scan is potentially
1791                  * expensive but a __GFP_REPEAT caller really wants to succeed
1792                  */
1793                 if (!nr_reclaimed && !nr_scanned)
1794                         return false;
1795         } else {
1796                 /*
1797                  * For non-__GFP_REPEAT allocations which can presumably
1798                  * fail without consequence, stop if we failed to reclaim
1799                  * any pages from the last SWAP_CLUSTER_MAX number of
1800                  * pages that were scanned. This will return to the
1801                  * caller faster at the risk reclaim/compaction and
1802                  * the resulting allocation attempt fails
1803                  */
1804                 if (!nr_reclaimed)
1805                         return false;
1806         }
1807
1808         /*
1809          * If we have not reclaimed enough pages for compaction and the
1810          * inactive lists are large enough, continue reclaiming
1811          */
1812         pages_for_compaction = (2UL << sc->order);
1813         inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1814         if (nr_swap_pages > 0)
1815                 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1816         if (sc->nr_reclaimed < pages_for_compaction &&
1817                         inactive_lru_pages > pages_for_compaction)
1818                 return true;
1819
1820         /* If compaction would go ahead or the allocation would succeed, stop */
1821         switch (compaction_suitable(mz->zone, sc->order)) {
1822         case COMPACT_PARTIAL:
1823         case COMPACT_CONTINUE:
1824                 return false;
1825         default:
1826                 return true;
1827         }
1828 }
1829
1830 /*
1831  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1832  */
1833 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
1834                                    struct scan_control *sc)
1835 {
1836         unsigned long nr[NR_LRU_LISTS];
1837         unsigned long nr_to_scan;
1838         enum lru_list lru;
1839         unsigned long nr_reclaimed, nr_scanned;
1840         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1841         struct blk_plug plug;
1842
1843 restart:
1844         nr_reclaimed = 0;
1845         nr_scanned = sc->nr_scanned;
1846         get_scan_count(mz, sc, nr, priority);
1847
1848         blk_start_plug(&plug);
1849         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1850                                         nr[LRU_INACTIVE_FILE]) {
1851                 for_each_evictable_lru(lru) {
1852                         if (nr[lru]) {
1853                                 nr_to_scan = min_t(unsigned long,
1854                                                    nr[lru], SWAP_CLUSTER_MAX);
1855                                 nr[lru] -= nr_to_scan;
1856
1857                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1858                                                             mz, sc, priority);
1859                         }
1860                 }
1861                 /*
1862                  * On large memory systems, scan >> priority can become
1863                  * really large. This is fine for the starting priority;
1864                  * we want to put equal scanning pressure on each zone.
1865                  * However, if the VM has a harder time of freeing pages,
1866                  * with multiple processes reclaiming pages, the total
1867                  * freeing target can get unreasonably large.
1868                  */
1869                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1870                         break;
1871         }
1872         blk_finish_plug(&plug);
1873         sc->nr_reclaimed += nr_reclaimed;
1874
1875         /*
1876          * Even if we did not try to evict anon pages at all, we want to
1877          * rebalance the anon lru active/inactive ratio.
1878          */
1879         if (inactive_anon_is_low(mz))
1880                 shrink_active_list(SWAP_CLUSTER_MAX, mz,
1881                                    sc, priority, LRU_ACTIVE_ANON);
1882
1883         /* reclaim/compaction might need reclaim to continue */
1884         if (should_continue_reclaim(mz, nr_reclaimed,
1885                                         sc->nr_scanned - nr_scanned,
1886                                         priority, sc))
1887                 goto restart;
1888
1889         throttle_vm_writeout(sc->gfp_mask);
1890 }
1891
1892 static void shrink_zone(int priority, struct zone *zone,
1893                         struct scan_control *sc)
1894 {
1895         struct mem_cgroup *root = sc->target_mem_cgroup;
1896         struct mem_cgroup_reclaim_cookie reclaim = {
1897                 .zone = zone,
1898                 .priority = priority,
1899         };
1900         struct mem_cgroup *memcg;
1901
1902         memcg = mem_cgroup_iter(root, NULL, &reclaim);
1903         do {
1904                 struct mem_cgroup_zone mz = {
1905                         .mem_cgroup = memcg,
1906                         .zone = zone,
1907                 };
1908
1909                 shrink_mem_cgroup_zone(priority, &mz, sc);
1910                 /*
1911                  * Limit reclaim has historically picked one memcg and
1912                  * scanned it with decreasing priority levels until
1913                  * nr_to_reclaim had been reclaimed.  This priority
1914                  * cycle is thus over after a single memcg.
1915                  *
1916                  * Direct reclaim and kswapd, on the other hand, have
1917                  * to scan all memory cgroups to fulfill the overall
1918                  * scan target for the zone.
1919                  */
1920                 if (!global_reclaim(sc)) {
1921                         mem_cgroup_iter_break(root, memcg);
1922                         break;
1923                 }
1924                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1925         } while (memcg);
1926 }
1927
1928 /* Returns true if compaction should go ahead for a high-order request */
1929 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1930 {
1931         unsigned long balance_gap, watermark;
1932         bool watermark_ok;
1933
1934         /* Do not consider compaction for orders reclaim is meant to satisfy */
1935         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1936                 return false;
1937
1938         /*
1939          * Compaction takes time to run and there are potentially other
1940          * callers using the pages just freed. Continue reclaiming until
1941          * there is a buffer of free pages available to give compaction
1942          * a reasonable chance of completing and allocating the page
1943          */
1944         balance_gap = min(low_wmark_pages(zone),
1945                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1946                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
1947         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1948         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1949
1950         /*
1951          * If compaction is deferred, reclaim up to a point where
1952          * compaction will have a chance of success when re-enabled
1953          */
1954         if (compaction_deferred(zone, sc->order))
1955                 return watermark_ok;
1956
1957         /* If compaction is not ready to start, keep reclaiming */
1958         if (!compaction_suitable(zone, sc->order))
1959                 return false;
1960
1961         return watermark_ok;
1962 }
1963
1964 /*
1965  * This is the direct reclaim path, for page-allocating processes.  We only
1966  * try to reclaim pages from zones which will satisfy the caller's allocation
1967  * request.
1968  *
1969  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1970  * Because:
1971  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1972  *    allocation or
1973  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1974  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1975  *    zone defense algorithm.
1976  *
1977  * If a zone is deemed to be full of pinned pages then just give it a light
1978  * scan then give up on it.
1979  *
1980  * This function returns true if a zone is being reclaimed for a costly
1981  * high-order allocation and compaction is ready to begin. This indicates to
1982  * the caller that it should consider retrying the allocation instead of
1983  * further reclaim.
1984  */
1985 static bool shrink_zones(int priority, struct zonelist *zonelist,
1986                                         struct scan_control *sc)
1987 {
1988         struct zoneref *z;
1989         struct zone *zone;
1990         unsigned long nr_soft_reclaimed;
1991         unsigned long nr_soft_scanned;
1992         bool aborted_reclaim = false;
1993
1994         /*
1995          * If the number of buffer_heads in the machine exceeds the maximum
1996          * allowed level, force direct reclaim to scan the highmem zone as
1997          * highmem pages could be pinning lowmem pages storing buffer_heads
1998          */
1999         if (buffer_heads_over_limit)
2000                 sc->gfp_mask |= __GFP_HIGHMEM;
2001
2002         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2003                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2004                 if (!populated_zone(zone))
2005                         continue;
2006                 /*
2007                  * Take care memory controller reclaiming has small influence
2008                  * to global LRU.
2009                  */
2010                 if (global_reclaim(sc)) {
2011                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2012                                 continue;
2013                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2014                                 continue;       /* Let kswapd poll it */
2015                         if (COMPACTION_BUILD) {
2016                                 /*
2017                                  * If we already have plenty of memory free for
2018                                  * compaction in this zone, don't free any more.
2019                                  * Even though compaction is invoked for any
2020                                  * non-zero order, only frequent costly order
2021                                  * reclamation is disruptive enough to become a
2022                                  * noticeable problem, like transparent huge
2023                                  * page allocations.
2024                                  */
2025                                 if (compaction_ready(zone, sc)) {
2026                                         aborted_reclaim = true;
2027                                         continue;
2028                                 }
2029                         }
2030                         /*
2031                          * This steals pages from memory cgroups over softlimit
2032                          * and returns the number of reclaimed pages and
2033                          * scanned pages. This works for global memory pressure
2034                          * and balancing, not for a memcg's limit.
2035                          */
2036                         nr_soft_scanned = 0;
2037                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2038                                                 sc->order, sc->gfp_mask,
2039                                                 &nr_soft_scanned);
2040                         sc->nr_reclaimed += nr_soft_reclaimed;
2041                         sc->nr_scanned += nr_soft_scanned;
2042                         /* need some check for avoid more shrink_zone() */
2043                 }
2044
2045                 shrink_zone(priority, zone, sc);
2046         }
2047
2048         return aborted_reclaim;
2049 }
2050
2051 static bool zone_reclaimable(struct zone *zone)
2052 {
2053         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2054 }
2055
2056 /* All zones in zonelist are unreclaimable? */
2057 static bool all_unreclaimable(struct zonelist *zonelist,
2058                 struct scan_control *sc)
2059 {
2060         struct zoneref *z;
2061         struct zone *zone;
2062
2063         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2064                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2065                 if (!populated_zone(zone))
2066                         continue;
2067                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2068                         continue;
2069                 if (!zone->all_unreclaimable)
2070                         return false;
2071         }
2072
2073         return true;
2074 }
2075
2076 /*
2077  * This is the main entry point to direct page reclaim.
2078  *
2079  * If a full scan of the inactive list fails to free enough memory then we
2080  * are "out of memory" and something needs to be killed.
2081  *
2082  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2083  * high - the zone may be full of dirty or under-writeback pages, which this
2084  * caller can't do much about.  We kick the writeback threads and take explicit
2085  * naps in the hope that some of these pages can be written.  But if the
2086  * allocating task holds filesystem locks which prevent writeout this might not
2087  * work, and the allocation attempt will fail.
2088  *
2089  * returns:     0, if no pages reclaimed
2090  *              else, the number of pages reclaimed
2091  */
2092 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2093                                         struct scan_control *sc,
2094                                         struct shrink_control *shrink)
2095 {
2096         int priority;
2097         unsigned long total_scanned = 0;
2098         struct reclaim_state *reclaim_state = current->reclaim_state;
2099         struct zoneref *z;
2100         struct zone *zone;
2101         unsigned long writeback_threshold;
2102         bool aborted_reclaim;
2103
2104         delayacct_freepages_start();
2105
2106         if (global_reclaim(sc))
2107                 count_vm_event(ALLOCSTALL);
2108
2109         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2110                 sc->nr_scanned = 0;
2111                 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2112
2113                 /*
2114                  * Don't shrink slabs when reclaiming memory from
2115                  * over limit cgroups
2116                  */
2117                 if (global_reclaim(sc)) {
2118                         unsigned long lru_pages = 0;
2119                         for_each_zone_zonelist(zone, z, zonelist,
2120                                         gfp_zone(sc->gfp_mask)) {
2121                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2122                                         continue;
2123
2124                                 lru_pages += zone_reclaimable_pages(zone);
2125                         }
2126
2127                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2128                         if (reclaim_state) {
2129                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2130                                 reclaim_state->reclaimed_slab = 0;
2131                         }
2132                 }
2133                 total_scanned += sc->nr_scanned;
2134                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2135                         goto out;
2136
2137                 /*
2138                  * Try to write back as many pages as we just scanned.  This
2139                  * tends to cause slow streaming writers to write data to the
2140                  * disk smoothly, at the dirtying rate, which is nice.   But
2141                  * that's undesirable in laptop mode, where we *want* lumpy
2142                  * writeout.  So in laptop mode, write out the whole world.
2143                  */
2144                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2145                 if (total_scanned > writeback_threshold) {
2146                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2147                                                 WB_REASON_TRY_TO_FREE_PAGES);
2148                         sc->may_writepage = 1;
2149                 }
2150
2151                 /* Take a nap, wait for some writeback to complete */
2152                 if (!sc->hibernation_mode && sc->nr_scanned &&
2153                     priority < DEF_PRIORITY - 2) {
2154                         struct zone *preferred_zone;
2155
2156                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2157                                                 &cpuset_current_mems_allowed,
2158                                                 &preferred_zone);
2159                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2160                 }
2161         }
2162
2163 out:
2164         delayacct_freepages_end();
2165
2166         if (sc->nr_reclaimed)
2167                 return sc->nr_reclaimed;
2168
2169         /*
2170          * As hibernation is going on, kswapd is freezed so that it can't mark
2171          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2172          * check.
2173          */
2174         if (oom_killer_disabled)
2175                 return 0;
2176
2177         /* Aborted reclaim to try compaction? don't OOM, then */
2178         if (aborted_reclaim)
2179                 return 1;
2180
2181         /* top priority shrink_zones still had more to do? don't OOM, then */
2182         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2183                 return 1;
2184
2185         return 0;
2186 }
2187
2188 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2189                                 gfp_t gfp_mask, nodemask_t *nodemask)
2190 {
2191         unsigned long nr_reclaimed;
2192         struct scan_control sc = {
2193                 .gfp_mask = gfp_mask,
2194                 .may_writepage = !laptop_mode,
2195                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2196                 .may_unmap = 1,
2197                 .may_swap = 1,
2198                 .order = order,
2199                 .target_mem_cgroup = NULL,
2200                 .nodemask = nodemask,
2201         };
2202         struct shrink_control shrink = {
2203                 .gfp_mask = sc.gfp_mask,
2204         };
2205
2206         trace_mm_vmscan_direct_reclaim_begin(order,
2207                                 sc.may_writepage,
2208                                 gfp_mask);
2209
2210         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2211
2212         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2213
2214         return nr_reclaimed;
2215 }
2216
2217 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2218
2219 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2220                                                 gfp_t gfp_mask, bool noswap,
2221                                                 struct zone *zone,
2222                                                 unsigned long *nr_scanned)
2223 {
2224         struct scan_control sc = {
2225                 .nr_scanned = 0,
2226                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2227                 .may_writepage = !laptop_mode,
2228                 .may_unmap = 1,
2229                 .may_swap = !noswap,
2230                 .order = 0,
2231                 .target_mem_cgroup = memcg,
2232         };
2233         struct mem_cgroup_zone mz = {
2234                 .mem_cgroup = memcg,
2235                 .zone = zone,
2236         };
2237
2238         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2239                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2240
2241         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2242                                                       sc.may_writepage,
2243                                                       sc.gfp_mask);
2244
2245         /*
2246          * NOTE: Although we can get the priority field, using it
2247          * here is not a good idea, since it limits the pages we can scan.
2248          * if we don't reclaim here, the shrink_zone from balance_pgdat
2249          * will pick up pages from other mem cgroup's as well. We hack
2250          * the priority and make it zero.
2251          */
2252         shrink_mem_cgroup_zone(0, &mz, &sc);
2253
2254         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2255
2256         *nr_scanned = sc.nr_scanned;
2257         return sc.nr_reclaimed;
2258 }
2259
2260 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2261                                            gfp_t gfp_mask,
2262                                            bool noswap)
2263 {
2264         struct zonelist *zonelist;
2265         unsigned long nr_reclaimed;
2266         int nid;
2267         struct scan_control sc = {
2268                 .may_writepage = !laptop_mode,
2269                 .may_unmap = 1,
2270                 .may_swap = !noswap,
2271                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2272                 .order = 0,
2273                 .target_mem_cgroup = memcg,
2274                 .nodemask = NULL, /* we don't care the placement */
2275                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2276                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2277         };
2278         struct shrink_control shrink = {
2279                 .gfp_mask = sc.gfp_mask,
2280         };
2281
2282         /*
2283          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2284          * take care of from where we get pages. So the node where we start the
2285          * scan does not need to be the current node.
2286          */
2287         nid = mem_cgroup_select_victim_node(memcg);
2288
2289         zonelist = NODE_DATA(nid)->node_zonelists;
2290
2291         trace_mm_vmscan_memcg_reclaim_begin(0,
2292                                             sc.may_writepage,
2293                                             sc.gfp_mask);
2294
2295         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2296
2297         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2298
2299         return nr_reclaimed;
2300 }
2301 #endif
2302
2303 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2304                             int priority)
2305 {
2306         struct mem_cgroup *memcg;
2307
2308         if (!total_swap_pages)
2309                 return;
2310
2311         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2312         do {
2313                 struct mem_cgroup_zone mz = {
2314                         .mem_cgroup = memcg,
2315                         .zone = zone,
2316                 };
2317
2318                 if (inactive_anon_is_low(&mz))
2319                         shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2320                                            sc, priority, LRU_ACTIVE_ANON);
2321
2322                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2323         } while (memcg);
2324 }
2325
2326 /*
2327  * pgdat_balanced is used when checking if a node is balanced for high-order
2328  * allocations. Only zones that meet watermarks and are in a zone allowed
2329  * by the callers classzone_idx are added to balanced_pages. The total of
2330  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2331  * for the node to be considered balanced. Forcing all zones to be balanced
2332  * for high orders can cause excessive reclaim when there are imbalanced zones.
2333  * The choice of 25% is due to
2334  *   o a 16M DMA zone that is balanced will not balance a zone on any
2335  *     reasonable sized machine
2336  *   o On all other machines, the top zone must be at least a reasonable
2337  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2338  *     would need to be at least 256M for it to be balance a whole node.
2339  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2340  *     to balance a node on its own. These seemed like reasonable ratios.
2341  */
2342 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2343                                                 int classzone_idx)
2344 {
2345         unsigned long present_pages = 0;
2346         int i;
2347
2348         for (i = 0; i <= classzone_idx; i++)
2349                 present_pages += pgdat->node_zones[i].present_pages;
2350
2351         /* A special case here: if zone has no page, we think it's balanced */
2352         return balanced_pages >= (present_pages >> 2);
2353 }
2354
2355 /* is kswapd sleeping prematurely? */
2356 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2357                                         int classzone_idx)
2358 {
2359         int i;
2360         unsigned long balanced = 0;
2361         bool all_zones_ok = true;
2362
2363         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2364         if (remaining)
2365                 return true;
2366
2367         /* Check the watermark levels */
2368         for (i = 0; i <= classzone_idx; i++) {
2369                 struct zone *zone = pgdat->node_zones + i;
2370
2371                 if (!populated_zone(zone))
2372                         continue;
2373
2374                 /*
2375                  * balance_pgdat() skips over all_unreclaimable after
2376                  * DEF_PRIORITY. Effectively, it considers them balanced so
2377                  * they must be considered balanced here as well if kswapd
2378                  * is to sleep
2379                  */
2380                 if (zone->all_unreclaimable) {
2381                         balanced += zone->present_pages;
2382                         continue;
2383                 }
2384
2385                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2386                                                         i, 0))
2387                         all_zones_ok = false;
2388                 else
2389                         balanced += zone->present_pages;
2390         }
2391
2392         /*
2393          * For high-order requests, the balanced zones must contain at least
2394          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2395          * must be balanced
2396          */
2397         if (order)
2398                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2399         else
2400                 return !all_zones_ok;
2401 }
2402
2403 /*
2404  * For kswapd, balance_pgdat() will work across all this node's zones until
2405  * they are all at high_wmark_pages(zone).
2406  *
2407  * Returns the final order kswapd was reclaiming at
2408  *
2409  * There is special handling here for zones which are full of pinned pages.
2410  * This can happen if the pages are all mlocked, or if they are all used by
2411  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2412  * What we do is to detect the case where all pages in the zone have been
2413  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2414  * dead and from now on, only perform a short scan.  Basically we're polling
2415  * the zone for when the problem goes away.
2416  *
2417  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2418  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2419  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2420  * lower zones regardless of the number of free pages in the lower zones. This
2421  * interoperates with the page allocator fallback scheme to ensure that aging
2422  * of pages is balanced across the zones.
2423  */
2424 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2425                                                         int *classzone_idx)
2426 {
2427         int all_zones_ok;
2428         unsigned long balanced;
2429         int priority;
2430         int i;
2431         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2432         unsigned long total_scanned;
2433         struct reclaim_state *reclaim_state = current->reclaim_state;
2434         unsigned long nr_soft_reclaimed;
2435         unsigned long nr_soft_scanned;
2436         struct scan_control sc = {
2437                 .gfp_mask = GFP_KERNEL,
2438                 .may_unmap = 1,
2439                 .may_swap = 1,
2440                 /*
2441                  * kswapd doesn't want to be bailed out while reclaim. because
2442                  * we want to put equal scanning pressure on each zone.
2443                  */
2444                 .nr_to_reclaim = ULONG_MAX,
2445                 .order = order,
2446                 .target_mem_cgroup = NULL,
2447         };
2448         struct shrink_control shrink = {
2449                 .gfp_mask = sc.gfp_mask,
2450         };
2451 loop_again:
2452         total_scanned = 0;
2453         sc.nr_reclaimed = 0;
2454         sc.may_writepage = !laptop_mode;
2455         count_vm_event(PAGEOUTRUN);
2456
2457         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2458                 unsigned long lru_pages = 0;
2459                 int has_under_min_watermark_zone = 0;
2460
2461                 all_zones_ok = 1;
2462                 balanced = 0;
2463
2464                 /*
2465                  * Scan in the highmem->dma direction for the highest
2466                  * zone which needs scanning
2467                  */
2468                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2469                         struct zone *zone = pgdat->node_zones + i;
2470
2471                         if (!populated_zone(zone))
2472                                 continue;
2473
2474                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2475                                 continue;
2476
2477                         /*
2478                          * Do some background aging of the anon list, to give
2479                          * pages a chance to be referenced before reclaiming.
2480                          */
2481                         age_active_anon(zone, &sc, priority);
2482
2483                         /*
2484                          * If the number of buffer_heads in the machine
2485                          * exceeds the maximum allowed level and this node
2486                          * has a highmem zone, force kswapd to reclaim from
2487                          * it to relieve lowmem pressure.
2488                          */
2489                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2490                                 end_zone = i;
2491                                 break;
2492                         }
2493
2494                         if (!zone_watermark_ok_safe(zone, order,
2495                                         high_wmark_pages(zone), 0, 0)) {
2496                                 end_zone = i;
2497                                 break;
2498                         } else {
2499                                 /* If balanced, clear the congested flag */
2500                                 zone_clear_flag(zone, ZONE_CONGESTED);
2501                         }
2502                 }
2503                 if (i < 0)
2504                         goto out;
2505
2506                 for (i = 0; i <= end_zone; i++) {
2507                         struct zone *zone = pgdat->node_zones + i;
2508
2509                         lru_pages += zone_reclaimable_pages(zone);
2510                 }
2511
2512                 /*
2513                  * Now scan the zone in the dma->highmem direction, stopping
2514                  * at the last zone which needs scanning.
2515                  *
2516                  * We do this because the page allocator works in the opposite
2517                  * direction.  This prevents the page allocator from allocating
2518                  * pages behind kswapd's direction of progress, which would
2519                  * cause too much scanning of the lower zones.
2520                  */
2521                 for (i = 0; i <= end_zone; i++) {
2522                         struct zone *zone = pgdat->node_zones + i;
2523                         int nr_slab, testorder;
2524                         unsigned long balance_gap;
2525
2526                         if (!populated_zone(zone))
2527                                 continue;
2528
2529                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2530                                 continue;
2531
2532                         sc.nr_scanned = 0;
2533
2534                         nr_soft_scanned = 0;
2535                         /*
2536                          * Call soft limit reclaim before calling shrink_zone.
2537                          */
2538                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2539                                                         order, sc.gfp_mask,
2540                                                         &nr_soft_scanned);
2541                         sc.nr_reclaimed += nr_soft_reclaimed;
2542                         total_scanned += nr_soft_scanned;
2543
2544                         /*
2545                          * We put equal pressure on every zone, unless
2546                          * one zone has way too many pages free
2547                          * already. The "too many pages" is defined
2548                          * as the high wmark plus a "gap" where the
2549                          * gap is either the low watermark or 1%
2550                          * of the zone, whichever is smaller.
2551                          */
2552                         balance_gap = min(low_wmark_pages(zone),
2553                                 (zone->present_pages +
2554                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2555                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2556                         /*
2557                          * Kswapd reclaims only single pages with compaction
2558                          * enabled. Trying too hard to reclaim until contiguous
2559                          * free pages have become available can hurt performance
2560                          * by evicting too much useful data from memory.
2561                          * Do not reclaim more than needed for compaction.
2562                          */
2563                         testorder = order;
2564                         if (COMPACTION_BUILD && order &&
2565                                         compaction_suitable(zone, order) !=
2566                                                 COMPACT_SKIPPED)
2567                                 testorder = 0;
2568
2569                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2570                                     !zone_watermark_ok_safe(zone, testorder,
2571                                         high_wmark_pages(zone) + balance_gap,
2572                                         end_zone, 0)) {
2573                                 shrink_zone(priority, zone, &sc);
2574
2575                                 reclaim_state->reclaimed_slab = 0;
2576                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2577                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2578                                 total_scanned += sc.nr_scanned;
2579
2580                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2581                                         zone->all_unreclaimable = 1;
2582                         }
2583
2584                         /*
2585                          * If we've done a decent amount of scanning and
2586                          * the reclaim ratio is low, start doing writepage
2587                          * even in laptop mode
2588                          */
2589                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2590                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2591                                 sc.may_writepage = 1;
2592
2593                         if (zone->all_unreclaimable) {
2594                                 if (end_zone && end_zone == i)
2595                                         end_zone--;
2596                                 continue;
2597                         }
2598
2599                         if (!zone_watermark_ok_safe(zone, testorder,
2600                                         high_wmark_pages(zone), end_zone, 0)) {
2601                                 all_zones_ok = 0;
2602                                 /*
2603                                  * We are still under min water mark.  This
2604                                  * means that we have a GFP_ATOMIC allocation
2605                                  * failure risk. Hurry up!
2606                                  */
2607                                 if (!zone_watermark_ok_safe(zone, order,
2608                                             min_wmark_pages(zone), end_zone, 0))
2609                                         has_under_min_watermark_zone = 1;
2610                         } else {
2611                                 /*
2612                                  * If a zone reaches its high watermark,
2613                                  * consider it to be no longer congested. It's
2614                                  * possible there are dirty pages backed by
2615                                  * congested BDIs but as pressure is relieved,
2616                                  * spectulatively avoid congestion waits
2617                                  */
2618                                 zone_clear_flag(zone, ZONE_CONGESTED);
2619                                 if (i <= *classzone_idx)
2620                                         balanced += zone->present_pages;
2621                         }
2622
2623                 }
2624                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2625                         break;          /* kswapd: all done */
2626                 /*
2627                  * OK, kswapd is getting into trouble.  Take a nap, then take
2628                  * another pass across the zones.
2629                  */
2630                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2631                         if (has_under_min_watermark_zone)
2632                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2633                         else
2634                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2635                 }
2636
2637                 /*
2638                  * We do this so kswapd doesn't build up large priorities for
2639                  * example when it is freeing in parallel with allocators. It
2640                  * matches the direct reclaim path behaviour in terms of impact
2641                  * on zone->*_priority.
2642                  */
2643                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2644                         break;
2645         }
2646 out:
2647
2648         /*
2649          * order-0: All zones must meet high watermark for a balanced node
2650          * high-order: Balanced zones must make up at least 25% of the node
2651          *             for the node to be balanced
2652          */
2653         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2654                 cond_resched();
2655
2656                 try_to_freeze();
2657
2658                 /*
2659                  * Fragmentation may mean that the system cannot be
2660                  * rebalanced for high-order allocations in all zones.
2661                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2662                  * it means the zones have been fully scanned and are still
2663                  * not balanced. For high-order allocations, there is
2664                  * little point trying all over again as kswapd may
2665                  * infinite loop.
2666                  *
2667                  * Instead, recheck all watermarks at order-0 as they
2668                  * are the most important. If watermarks are ok, kswapd will go
2669                  * back to sleep. High-order users can still perform direct
2670                  * reclaim if they wish.
2671                  */
2672                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2673                         order = sc.order = 0;
2674
2675                 goto loop_again;
2676         }
2677
2678         /*
2679          * If kswapd was reclaiming at a higher order, it has the option of
2680          * sleeping without all zones being balanced. Before it does, it must
2681          * ensure that the watermarks for order-0 on *all* zones are met and
2682          * that the congestion flags are cleared. The congestion flag must
2683          * be cleared as kswapd is the only mechanism that clears the flag
2684          * and it is potentially going to sleep here.
2685          */
2686         if (order) {
2687                 int zones_need_compaction = 1;
2688
2689                 for (i = 0; i <= end_zone; i++) {
2690                         struct zone *zone = pgdat->node_zones + i;
2691
2692                         if (!populated_zone(zone))
2693                                 continue;
2694
2695                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2696                                 continue;
2697
2698                         /* Would compaction fail due to lack of free memory? */
2699                         if (COMPACTION_BUILD &&
2700                             compaction_suitable(zone, order) == COMPACT_SKIPPED)
2701                                 goto loop_again;
2702
2703                         /* Confirm the zone is balanced for order-0 */
2704                         if (!zone_watermark_ok(zone, 0,
2705                                         high_wmark_pages(zone), 0, 0)) {
2706                                 order = sc.order = 0;
2707                                 goto loop_again;
2708                         }
2709
2710                         /* Check if the memory needs to be defragmented. */
2711                         if (zone_watermark_ok(zone, order,
2712                                     low_wmark_pages(zone), *classzone_idx, 0))
2713                                 zones_need_compaction = 0;
2714
2715                         /* If balanced, clear the congested flag */
2716                         zone_clear_flag(zone, ZONE_CONGESTED);
2717                 }
2718
2719                 if (zones_need_compaction)
2720                         compact_pgdat(pgdat, order);
2721         }
2722
2723         /*
2724          * Return the order we were reclaiming at so sleeping_prematurely()
2725          * makes a decision on the order we were last reclaiming at. However,
2726          * if another caller entered the allocator slow path while kswapd
2727          * was awake, order will remain at the higher level
2728          */
2729         *classzone_idx = end_zone;
2730         return order;
2731 }
2732
2733 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2734 {
2735         long remaining = 0;
2736         DEFINE_WAIT(wait);
2737
2738         if (freezing(current) || kthread_should_stop())
2739                 return;
2740
2741         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2742
2743         /* Try to sleep for a short interval */
2744         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2745                 remaining = schedule_timeout(HZ/10);
2746                 finish_wait(&pgdat->kswapd_wait, &wait);
2747                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2748         }
2749
2750         /*
2751          * After a short sleep, check if it was a premature sleep. If not, then
2752          * go fully to sleep until explicitly woken up.
2753          */
2754         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2755                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2756
2757                 /*
2758                  * vmstat counters are not perfectly accurate and the estimated
2759                  * value for counters such as NR_FREE_PAGES can deviate from the
2760                  * true value by nr_online_cpus * threshold. To avoid the zone
2761                  * watermarks being breached while under pressure, we reduce the
2762                  * per-cpu vmstat threshold while kswapd is awake and restore
2763                  * them before going back to sleep.
2764                  */
2765                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2766                 schedule();
2767                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2768         } else {
2769                 if (remaining)
2770                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2771                 else
2772                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2773         }
2774         finish_wait(&pgdat->kswapd_wait, &wait);
2775 }
2776
2777 /*
2778  * The background pageout daemon, started as a kernel thread
2779  * from the init process.
2780  *
2781  * This basically trickles out pages so that we have _some_
2782  * free memory available even if there is no other activity
2783  * that frees anything up. This is needed for things like routing
2784  * etc, where we otherwise might have all activity going on in
2785  * asynchronous contexts that cannot page things out.
2786  *
2787  * If there are applications that are active memory-allocators
2788  * (most normal use), this basically shouldn't matter.
2789  */
2790 static int kswapd(void *p)
2791 {
2792         unsigned long order, new_order;
2793         unsigned balanced_order;
2794         int classzone_idx, new_classzone_idx;
2795         int balanced_classzone_idx;
2796         pg_data_t *pgdat = (pg_data_t*)p;
2797         struct task_struct *tsk = current;
2798
2799         struct reclaim_state reclaim_state = {
2800                 .reclaimed_slab = 0,
2801         };
2802         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2803
2804         lockdep_set_current_reclaim_state(GFP_KERNEL);
2805
2806         if (!cpumask_empty(cpumask))
2807                 set_cpus_allowed_ptr(tsk, cpumask);
2808         current->reclaim_state = &reclaim_state;
2809
2810         /*
2811          * Tell the memory management that we're a "memory allocator",
2812          * and that if we need more memory we should get access to it
2813          * regardless (see "__alloc_pages()"). "kswapd" should
2814          * never get caught in the normal page freeing logic.
2815          *
2816          * (Kswapd normally doesn't need memory anyway, but sometimes
2817          * you need a small amount of memory in order to be able to
2818          * page out something else, and this flag essentially protects
2819          * us from recursively trying to free more memory as we're
2820          * trying to free the first piece of memory in the first place).
2821          */
2822         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2823         set_freezable();
2824
2825         order = new_order = 0;
2826         balanced_order = 0;
2827         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2828         balanced_classzone_idx = classzone_idx;
2829         for ( ; ; ) {
2830                 int ret;
2831
2832                 /*
2833                  * If the last balance_pgdat was unsuccessful it's unlikely a
2834                  * new request of a similar or harder type will succeed soon
2835                  * so consider going to sleep on the basis we reclaimed at
2836                  */
2837                 if (balanced_classzone_idx >= new_classzone_idx &&
2838                                         balanced_order == new_order) {
2839                         new_order = pgdat->kswapd_max_order;
2840                         new_classzone_idx = pgdat->classzone_idx;
2841                         pgdat->kswapd_max_order =  0;
2842                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2843                 }
2844
2845                 if (order < new_order || classzone_idx > new_classzone_idx) {
2846                         /*
2847                          * Don't sleep if someone wants a larger 'order'
2848                          * allocation or has tigher zone constraints
2849                          */
2850                         order = new_order;
2851                         classzone_idx = new_classzone_idx;
2852                 } else {
2853                         kswapd_try_to_sleep(pgdat, balanced_order,
2854                                                 balanced_classzone_idx);
2855                         order = pgdat->kswapd_max_order;
2856                         classzone_idx = pgdat->classzone_idx;
2857                         new_order = order;
2858                         new_classzone_idx = classzone_idx;
2859                         pgdat->kswapd_max_order = 0;
2860                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2861                 }
2862
2863                 ret = try_to_freeze();
2864                 if (kthread_should_stop())
2865                         break;
2866
2867                 /*
2868                  * We can speed up thawing tasks if we don't call balance_pgdat
2869                  * after returning from the refrigerator
2870                  */
2871                 if (!ret) {
2872                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2873                         balanced_classzone_idx = classzone_idx;
2874                         balanced_order = balance_pgdat(pgdat, order,
2875                                                 &balanced_classzone_idx);
2876                 }
2877         }
2878         return 0;
2879 }
2880
2881 /*
2882  * A zone is low on free memory, so wake its kswapd task to service it.
2883  */
2884 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2885 {
2886         pg_data_t *pgdat;
2887
2888         if (!populated_zone(zone))
2889                 return;
2890
2891         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2892                 return;
2893         pgdat = zone->zone_pgdat;
2894         if (pgdat->kswapd_max_order < order) {
2895                 pgdat->kswapd_max_order = order;
2896                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2897         }
2898         if (!waitqueue_active(&pgdat->kswapd_wait))
2899                 return;
2900         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2901                 return;
2902
2903         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2904         wake_up_interruptible(&pgdat->kswapd_wait);
2905 }
2906
2907 /*
2908  * The reclaimable count would be mostly accurate.
2909  * The less reclaimable pages may be
2910  * - mlocked pages, which will be moved to unevictable list when encountered
2911  * - mapped pages, which may require several travels to be reclaimed
2912  * - dirty pages, which is not "instantly" reclaimable
2913  */
2914 unsigned long global_reclaimable_pages(void)
2915 {
2916         int nr;
2917
2918         nr = global_page_state(NR_ACTIVE_FILE) +
2919              global_page_state(NR_INACTIVE_FILE);
2920
2921         if (nr_swap_pages > 0)
2922                 nr += global_page_state(NR_ACTIVE_ANON) +
2923                       global_page_state(NR_INACTIVE_ANON);
2924
2925         return nr;
2926 }
2927
2928 unsigned long zone_reclaimable_pages(struct zone *zone)
2929 {
2930         int nr;
2931
2932         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2933              zone_page_state(zone, NR_INACTIVE_FILE);
2934
2935         if (nr_swap_pages > 0)
2936                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2937                       zone_page_state(zone, NR_INACTIVE_ANON);
2938
2939         return nr;
2940 }
2941
2942 #ifdef CONFIG_HIBERNATION
2943 /*
2944  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2945  * freed pages.
2946  *
2947  * Rather than trying to age LRUs the aim is to preserve the overall
2948  * LRU order by reclaiming preferentially
2949  * inactive > active > active referenced > active mapped
2950  */
2951 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2952 {
2953         struct reclaim_state reclaim_state;
2954         struct scan_control sc = {
2955                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2956                 .may_swap = 1,
2957                 .may_unmap = 1,
2958                 .may_writepage = 1,
2959                 .nr_to_reclaim = nr_to_reclaim,
2960                 .hibernation_mode = 1,
2961                 .order = 0,
2962         };
2963         struct shrink_control shrink = {
2964                 .gfp_mask = sc.gfp_mask,
2965         };
2966         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2967         struct task_struct *p = current;
2968         unsigned long nr_reclaimed;
2969
2970         p->flags |= PF_MEMALLOC;
2971         lockdep_set_current_reclaim_state(sc.gfp_mask);
2972         reclaim_state.reclaimed_slab = 0;
2973         p->reclaim_state = &reclaim_state;
2974
2975         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2976
2977         p->reclaim_state = NULL;
2978         lockdep_clear_current_reclaim_state();
2979         p->flags &= ~PF_MEMALLOC;
2980
2981         return nr_reclaimed;
2982 }
2983 #endif /* CONFIG_HIBERNATION */
2984
2985 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2986    not required for correctness.  So if the last cpu in a node goes
2987    away, we get changed to run anywhere: as the first one comes back,
2988    restore their cpu bindings. */
2989 static int __devinit cpu_callback(struct notifier_block *nfb,
2990                                   unsigned long action, void *hcpu)
2991 {
2992         int nid;
2993
2994         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2995                 for_each_node_state(nid, N_HIGH_MEMORY) {
2996                         pg_data_t *pgdat = NODE_DATA(nid);
2997                         const struct cpumask *mask;
2998
2999                         mask = cpumask_of_node(pgdat->node_id);
3000
3001                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3002                                 /* One of our CPUs online: restore mask */
3003                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3004                 }
3005         }
3006         return NOTIFY_OK;
3007 }
3008
3009 /*
3010  * This kswapd start function will be called by init and node-hot-add.
3011  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3012  */
3013 int kswapd_run(int nid)
3014 {
3015         pg_data_t *pgdat = NODE_DATA(nid);
3016         int ret = 0;
3017
3018         if (pgdat->kswapd)
3019                 return 0;
3020
3021         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3022         if (IS_ERR(pgdat->kswapd)) {
3023                 /* failure at boot is fatal */
3024                 BUG_ON(system_state == SYSTEM_BOOTING);
3025                 printk("Failed to start kswapd on node %d\n",nid);
3026                 ret = -1;
3027         }
3028         return ret;
3029 }
3030
3031 /*
3032  * Called by memory hotplug when all memory in a node is offlined.
3033  */
3034 void kswapd_stop(int nid)
3035 {
3036         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3037
3038         if (kswapd)
3039                 kthread_stop(kswapd);
3040 }
3041
3042 static int __init kswapd_init(void)
3043 {
3044         int nid;
3045
3046         swap_setup();
3047         for_each_node_state(nid, N_HIGH_MEMORY)
3048                 kswapd_run(nid);
3049         hotcpu_notifier(cpu_callback, 0);
3050         return 0;
3051 }
3052
3053 module_init(kswapd_init)
3054
3055 #ifdef CONFIG_NUMA
3056 /*
3057  * Zone reclaim mode
3058  *
3059  * If non-zero call zone_reclaim when the number of free pages falls below
3060  * the watermarks.
3061  */
3062 int zone_reclaim_mode __read_mostly;
3063
3064 #define RECLAIM_OFF 0
3065 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3066 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3067 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3068
3069 /*
3070  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3071  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3072  * a zone.
3073  */
3074 #define ZONE_RECLAIM_PRIORITY 4
3075
3076 /*
3077  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3078  * occur.
3079  */
3080 int sysctl_min_unmapped_ratio = 1;
3081
3082 /*
3083  * If the number of slab pages in a zone grows beyond this percentage then
3084  * slab reclaim needs to occur.
3085  */
3086 int sysctl_min_slab_ratio = 5;
3087
3088 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3089 {
3090         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3091         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3092                 zone_page_state(zone, NR_ACTIVE_FILE);
3093
3094         /*
3095          * It's possible for there to be more file mapped pages than
3096          * accounted for by the pages on the file LRU lists because
3097          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3098          */
3099         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3100 }
3101
3102 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3103 static long zone_pagecache_reclaimable(struct zone *zone)
3104 {
3105         long nr_pagecache_reclaimable;
3106         long delta = 0;
3107
3108         /*
3109          * If RECLAIM_SWAP is set, then all file pages are considered
3110          * potentially reclaimable. Otherwise, we have to worry about
3111          * pages like swapcache and zone_unmapped_file_pages() provides
3112          * a better estimate
3113          */
3114         if (zone_reclaim_mode & RECLAIM_SWAP)
3115                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3116         else
3117                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3118
3119         /* If we can't clean pages, remove dirty pages from consideration */
3120         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3121                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3122
3123         /* Watch for any possible underflows due to delta */
3124         if (unlikely(delta > nr_pagecache_reclaimable))
3125                 delta = nr_pagecache_reclaimable;
3126
3127         return nr_pagecache_reclaimable - delta;
3128 }
3129
3130 /*
3131  * Try to free up some pages from this zone through reclaim.
3132  */
3133 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3134 {
3135         /* Minimum pages needed in order to stay on node */
3136         const unsigned long nr_pages = 1 << order;
3137         struct task_struct *p = current;
3138         struct reclaim_state reclaim_state;
3139         int priority;
3140         struct scan_control sc = {
3141                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3142                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3143                 .may_swap = 1,
3144                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3145                                        SWAP_CLUSTER_MAX),
3146                 .gfp_mask = gfp_mask,
3147                 .order = order,
3148         };
3149         struct shrink_control shrink = {
3150                 .gfp_mask = sc.gfp_mask,
3151         };
3152         unsigned long nr_slab_pages0, nr_slab_pages1;
3153
3154         cond_resched();
3155         /*
3156          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3157          * and we also need to be able to write out pages for RECLAIM_WRITE
3158          * and RECLAIM_SWAP.
3159          */
3160         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3161         lockdep_set_current_reclaim_state(gfp_mask);
3162         reclaim_state.reclaimed_slab = 0;
3163         p->reclaim_state = &reclaim_state;
3164
3165         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3166                 /*
3167                  * Free memory by calling shrink zone with increasing
3168                  * priorities until we have enough memory freed.
3169                  */
3170                 priority = ZONE_RECLAIM_PRIORITY;
3171                 do {
3172                         shrink_zone(priority, zone, &sc);
3173                         priority--;
3174                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3175         }
3176
3177         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3178         if (nr_slab_pages0 > zone->min_slab_pages) {
3179                 /*
3180                  * shrink_slab() does not currently allow us to determine how
3181                  * many pages were freed in this zone. So we take the current
3182                  * number of slab pages and shake the slab until it is reduced
3183                  * by the same nr_pages that we used for reclaiming unmapped
3184                  * pages.
3185                  *
3186                  * Note that shrink_slab will free memory on all zones and may
3187                  * take a long time.
3188                  */
3189                 for (;;) {
3190                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3191
3192                         /* No reclaimable slab or very low memory pressure */
3193                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3194                                 break;
3195
3196                         /* Freed enough memory */
3197                         nr_slab_pages1 = zone_page_state(zone,
3198                                                         NR_SLAB_RECLAIMABLE);
3199                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3200                                 break;
3201                 }
3202
3203                 /*
3204                  * Update nr_reclaimed by the number of slab pages we
3205                  * reclaimed from this zone.
3206                  */
3207                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3208                 if (nr_slab_pages1 < nr_slab_pages0)
3209                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3210         }
3211
3212         p->reclaim_state = NULL;
3213         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3214         lockdep_clear_current_reclaim_state();
3215         return sc.nr_reclaimed >= nr_pages;
3216 }
3217
3218 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3219 {
3220         int node_id;
3221         int ret;
3222
3223         /*
3224          * Zone reclaim reclaims unmapped file backed pages and
3225          * slab pages if we are over the defined limits.
3226          *
3227          * A small portion of unmapped file backed pages is needed for
3228          * file I/O otherwise pages read by file I/O will be immediately
3229          * thrown out if the zone is overallocated. So we do not reclaim
3230          * if less than a specified percentage of the zone is used by
3231          * unmapped file backed pages.
3232          */
3233         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3234             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3235                 return ZONE_RECLAIM_FULL;
3236
3237         if (zone->all_unreclaimable)
3238                 return ZONE_RECLAIM_FULL;
3239
3240         /*
3241          * Do not scan if the allocation should not be delayed.
3242          */
3243         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3244                 return ZONE_RECLAIM_NOSCAN;
3245
3246         /*
3247          * Only run zone reclaim on the local zone or on zones that do not
3248          * have associated processors. This will favor the local processor
3249          * over remote processors and spread off node memory allocations
3250          * as wide as possible.
3251          */
3252         node_id = zone_to_nid(zone);
3253         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3254                 return ZONE_RECLAIM_NOSCAN;
3255
3256         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3257                 return ZONE_RECLAIM_NOSCAN;
3258
3259         ret = __zone_reclaim(zone, gfp_mask, order);
3260         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3261
3262         if (!ret)
3263                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3264
3265         return ret;
3266 }
3267 #endif
3268
3269 /*
3270  * page_evictable - test whether a page is evictable
3271  * @page: the page to test
3272  * @vma: the VMA in which the page is or will be mapped, may be NULL
3273  *
3274  * Test whether page is evictable--i.e., should be placed on active/inactive
3275  * lists vs unevictable list.  The vma argument is !NULL when called from the
3276  * fault path to determine how to instantate a new page.
3277  *
3278  * Reasons page might not be evictable:
3279  * (1) page's mapping marked unevictable
3280  * (2) page is part of an mlocked VMA
3281  *
3282  */
3283 int page_evictable(struct page *page, struct vm_area_struct *vma)
3284 {
3285
3286         if (mapping_unevictable(page_mapping(page)))
3287                 return 0;
3288
3289         if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3290                 return 0;
3291
3292         return 1;
3293 }
3294
3295 #ifdef CONFIG_SHMEM
3296 /**
3297  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3298  * @pages:      array of pages to check
3299  * @nr_pages:   number of pages to check
3300  *
3301  * Checks pages for evictability and moves them to the appropriate lru list.
3302  *
3303  * This function is only used for SysV IPC SHM_UNLOCK.
3304  */
3305 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3306 {
3307         struct lruvec *lruvec;
3308         struct zone *zone = NULL;
3309         int pgscanned = 0;
3310         int pgrescued = 0;
3311         int i;
3312
3313         for (i = 0; i < nr_pages; i++) {
3314                 struct page *page = pages[i];
3315                 struct zone *pagezone;
3316
3317                 pgscanned++;
3318                 pagezone = page_zone(page);
3319                 if (pagezone != zone) {
3320                         if (zone)
3321                                 spin_unlock_irq(&zone->lru_lock);
3322                         zone = pagezone;
3323                         spin_lock_irq(&zone->lru_lock);
3324                 }
3325
3326                 if (!PageLRU(page) || !PageUnevictable(page))
3327                         continue;
3328
3329                 if (page_evictable(page, NULL)) {
3330                         enum lru_list lru = page_lru_base_type(page);
3331
3332                         VM_BUG_ON(PageActive(page));
3333                         ClearPageUnevictable(page);
3334                         __dec_zone_state(zone, NR_UNEVICTABLE);
3335                         lruvec = mem_cgroup_lru_move_lists(zone, page,
3336                                                 LRU_UNEVICTABLE, lru);
3337                         list_move(&page->lru, &lruvec->lists[lru]);
3338                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3339                         pgrescued++;
3340                 }
3341         }
3342
3343         if (zone) {
3344                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3345                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3346                 spin_unlock_irq(&zone->lru_lock);
3347         }
3348 }
3349 #endif /* CONFIG_SHMEM */
3350
3351 static void warn_scan_unevictable_pages(void)
3352 {
3353         printk_once(KERN_WARNING
3354                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3355                     "disabled for lack of a legitimate use case.  If you have "
3356                     "one, please send an email to linux-mm@kvack.org.\n",
3357                     current->comm);
3358 }
3359
3360 /*
3361  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3362  * all nodes' unevictable lists for evictable pages
3363  */
3364 unsigned long scan_unevictable_pages;
3365
3366 int scan_unevictable_handler(struct ctl_table *table, int write,
3367                            void __user *buffer,
3368                            size_t *length, loff_t *ppos)
3369 {
3370         warn_scan_unevictable_pages();
3371         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3372         scan_unevictable_pages = 0;
3373         return 0;
3374 }
3375
3376 #ifdef CONFIG_NUMA
3377 /*
3378  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3379  * a specified node's per zone unevictable lists for evictable pages.
3380  */
3381
3382 static ssize_t read_scan_unevictable_node(struct device *dev,
3383                                           struct device_attribute *attr,
3384                                           char *buf)
3385 {
3386         warn_scan_unevictable_pages();
3387         return sprintf(buf, "0\n");     /* always zero; should fit... */
3388 }
3389
3390 static ssize_t write_scan_unevictable_node(struct device *dev,
3391                                            struct device_attribute *attr,
3392                                         const char *buf, size_t count)
3393 {
3394         warn_scan_unevictable_pages();
3395         return 1;
3396 }
3397
3398
3399 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3400                         read_scan_unevictable_node,
3401                         write_scan_unevictable_node);
3402
3403 int scan_unevictable_register_node(struct node *node)
3404 {
3405         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3406 }
3407
3408 void scan_unevictable_unregister_node(struct node *node)
3409 {
3410         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3411 }
3412 #endif