]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmscan.c
52fac58b4461c2e3acb0591cdfebd0841bbdb2f3
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57         /* Incremented by the number of inactive pages that were scanned */
58         unsigned long nr_scanned;
59
60         /* Number of pages freed so far during a call to shrink_zones() */
61         unsigned long nr_reclaimed;
62
63         /* How many pages shrink_list() should reclaim */
64         unsigned long nr_to_reclaim;
65
66         unsigned long hibernation_mode;
67
68         /* This context's GFP mask */
69         gfp_t gfp_mask;
70
71         int may_writepage;
72
73         /* Can mapped pages be reclaimed? */
74         int may_unmap;
75
76         /* Can pages be swapped as part of reclaim? */
77         int may_swap;
78
79         int order;
80
81         /*
82          * The memory cgroup that hit its limit and as a result is the
83          * primary target of this reclaim invocation.
84          */
85         struct mem_cgroup *target_mem_cgroup;
86
87         /*
88          * Nodemask of nodes allowed by the caller. If NULL, all nodes
89          * are scanned.
90          */
91         nodemask_t      *nodemask;
92 };
93
94 struct mem_cgroup_zone {
95         struct mem_cgroup *mem_cgroup;
96         struct zone *zone;
97 };
98
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field)                    \
103         do {                                                            \
104                 if ((_page)->lru.prev != _base) {                       \
105                         struct page *prev;                              \
106                                                                         \
107                         prev = lru_to_page(&(_page->lru));              \
108                         prefetch(&prev->_field);                        \
109                 }                                                       \
110         } while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
117         do {                                                            \
118                 if ((_page)->lru.prev != _base) {                       \
119                         struct page *prev;                              \
120                                                                         \
121                         prev = lru_to_page(&(_page->lru));              \
122                         prefetchw(&prev->_field);                       \
123                 }                                                       \
124         } while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128
129 /*
130  * From 0 .. 100.  Higher means more swappy.
131  */
132 int vm_swappiness = 60;
133 long vm_total_pages;    /* The total number of pages which the VM controls */
134
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137
138 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
139 static bool global_reclaim(struct scan_control *sc)
140 {
141         return !sc->target_mem_cgroup;
142 }
143 #else
144 static bool global_reclaim(struct scan_control *sc)
145 {
146         return true;
147 }
148 #endif
149
150 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
151 {
152         if (!mem_cgroup_disabled())
153                 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
154
155         return &mz->zone->reclaim_stat;
156 }
157
158 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
159                                        enum lru_list lru)
160 {
161         if (!mem_cgroup_disabled())
162                 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
163                                                     zone_to_nid(mz->zone),
164                                                     zone_idx(mz->zone),
165                                                     BIT(lru));
166
167         return zone_page_state(mz->zone, NR_LRU_BASE + lru);
168 }
169
170
171 /*
172  * Add a shrinker callback to be called from the vm
173  */
174 void register_shrinker(struct shrinker *shrinker)
175 {
176         atomic_long_set(&shrinker->nr_in_batch, 0);
177         down_write(&shrinker_rwsem);
178         list_add_tail(&shrinker->list, &shrinker_list);
179         up_write(&shrinker_rwsem);
180 }
181 EXPORT_SYMBOL(register_shrinker);
182
183 /*
184  * Remove one
185  */
186 void unregister_shrinker(struct shrinker *shrinker)
187 {
188         down_write(&shrinker_rwsem);
189         list_del(&shrinker->list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(unregister_shrinker);
193
194 static inline int do_shrinker_shrink(struct shrinker *shrinker,
195                                      struct shrink_control *sc,
196                                      unsigned long nr_to_scan)
197 {
198         sc->nr_to_scan = nr_to_scan;
199         return (*shrinker->shrink)(shrinker, sc);
200 }
201
202 #define SHRINK_BATCH 128
203 /*
204  * Call the shrink functions to age shrinkable caches
205  *
206  * Here we assume it costs one seek to replace a lru page and that it also
207  * takes a seek to recreate a cache object.  With this in mind we age equal
208  * percentages of the lru and ageable caches.  This should balance the seeks
209  * generated by these structures.
210  *
211  * If the vm encountered mapped pages on the LRU it increase the pressure on
212  * slab to avoid swapping.
213  *
214  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
215  *
216  * `lru_pages' represents the number of on-LRU pages in all the zones which
217  * are eligible for the caller's allocation attempt.  It is used for balancing
218  * slab reclaim versus page reclaim.
219  *
220  * Returns the number of slab objects which we shrunk.
221  */
222 unsigned long shrink_slab(struct shrink_control *shrink,
223                           unsigned long nr_pages_scanned,
224                           unsigned long lru_pages)
225 {
226         struct shrinker *shrinker;
227         unsigned long ret = 0;
228
229         if (nr_pages_scanned == 0)
230                 nr_pages_scanned = SWAP_CLUSTER_MAX;
231
232         if (!down_read_trylock(&shrinker_rwsem)) {
233                 /* Assume we'll be able to shrink next time */
234                 ret = 1;
235                 goto out;
236         }
237
238         list_for_each_entry(shrinker, &shrinker_list, list) {
239                 unsigned long long delta;
240                 long total_scan;
241                 long max_pass;
242                 int shrink_ret = 0;
243                 long nr;
244                 long new_nr;
245                 long batch_size = shrinker->batch ? shrinker->batch
246                                                   : SHRINK_BATCH;
247
248                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
249                 if (max_pass <= 0)
250                         continue;
251
252                 /*
253                  * copy the current shrinker scan count into a local variable
254                  * and zero it so that other concurrent shrinker invocations
255                  * don't also do this scanning work.
256                  */
257                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
258
259                 total_scan = nr;
260                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
261                 delta *= max_pass;
262                 do_div(delta, lru_pages + 1);
263                 total_scan += delta;
264                 if (total_scan < 0) {
265                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
266                                "delete nr=%ld\n",
267                                shrinker->shrink, total_scan);
268                         total_scan = max_pass;
269                 }
270
271                 /*
272                  * We need to avoid excessive windup on filesystem shrinkers
273                  * due to large numbers of GFP_NOFS allocations causing the
274                  * shrinkers to return -1 all the time. This results in a large
275                  * nr being built up so when a shrink that can do some work
276                  * comes along it empties the entire cache due to nr >>>
277                  * max_pass.  This is bad for sustaining a working set in
278                  * memory.
279                  *
280                  * Hence only allow the shrinker to scan the entire cache when
281                  * a large delta change is calculated directly.
282                  */
283                 if (delta < max_pass / 4)
284                         total_scan = min(total_scan, max_pass / 2);
285
286                 /*
287                  * Avoid risking looping forever due to too large nr value:
288                  * never try to free more than twice the estimate number of
289                  * freeable entries.
290                  */
291                 if (total_scan > max_pass * 2)
292                         total_scan = max_pass * 2;
293
294                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
295                                         nr_pages_scanned, lru_pages,
296                                         max_pass, delta, total_scan);
297
298                 while (total_scan >= batch_size) {
299                         int nr_before;
300
301                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
302                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
303                                                         batch_size);
304                         if (shrink_ret == -1)
305                                 break;
306                         if (shrink_ret < nr_before)
307                                 ret += nr_before - shrink_ret;
308                         count_vm_events(SLABS_SCANNED, batch_size);
309                         total_scan -= batch_size;
310
311                         cond_resched();
312                 }
313
314                 /*
315                  * move the unused scan count back into the shrinker in a
316                  * manner that handles concurrent updates. If we exhausted the
317                  * scan, there is no need to do an update.
318                  */
319                 if (total_scan > 0)
320                         new_nr = atomic_long_add_return(total_scan,
321                                         &shrinker->nr_in_batch);
322                 else
323                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
324
325                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
326         }
327         up_read(&shrinker_rwsem);
328 out:
329         cond_resched();
330         return ret;
331 }
332
333 static inline int is_page_cache_freeable(struct page *page)
334 {
335         /*
336          * A freeable page cache page is referenced only by the caller
337          * that isolated the page, the page cache radix tree and
338          * optional buffer heads at page->private.
339          */
340         return page_count(page) - page_has_private(page) == 2;
341 }
342
343 static int may_write_to_queue(struct backing_dev_info *bdi,
344                               struct scan_control *sc)
345 {
346         if (current->flags & PF_SWAPWRITE)
347                 return 1;
348         if (!bdi_write_congested(bdi))
349                 return 1;
350         if (bdi == current->backing_dev_info)
351                 return 1;
352         return 0;
353 }
354
355 /*
356  * We detected a synchronous write error writing a page out.  Probably
357  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
358  * fsync(), msync() or close().
359  *
360  * The tricky part is that after writepage we cannot touch the mapping: nothing
361  * prevents it from being freed up.  But we have a ref on the page and once
362  * that page is locked, the mapping is pinned.
363  *
364  * We're allowed to run sleeping lock_page() here because we know the caller has
365  * __GFP_FS.
366  */
367 static void handle_write_error(struct address_space *mapping,
368                                 struct page *page, int error)
369 {
370         lock_page(page);
371         if (page_mapping(page) == mapping)
372                 mapping_set_error(mapping, error);
373         unlock_page(page);
374 }
375
376 /* possible outcome of pageout() */
377 typedef enum {
378         /* failed to write page out, page is locked */
379         PAGE_KEEP,
380         /* move page to the active list, page is locked */
381         PAGE_ACTIVATE,
382         /* page has been sent to the disk successfully, page is unlocked */
383         PAGE_SUCCESS,
384         /* page is clean and locked */
385         PAGE_CLEAN,
386 } pageout_t;
387
388 /*
389  * pageout is called by shrink_page_list() for each dirty page.
390  * Calls ->writepage().
391  */
392 static pageout_t pageout(struct page *page, struct address_space *mapping,
393                          struct scan_control *sc)
394 {
395         /*
396          * If the page is dirty, only perform writeback if that write
397          * will be non-blocking.  To prevent this allocation from being
398          * stalled by pagecache activity.  But note that there may be
399          * stalls if we need to run get_block().  We could test
400          * PagePrivate for that.
401          *
402          * If this process is currently in __generic_file_aio_write() against
403          * this page's queue, we can perform writeback even if that
404          * will block.
405          *
406          * If the page is swapcache, write it back even if that would
407          * block, for some throttling. This happens by accident, because
408          * swap_backing_dev_info is bust: it doesn't reflect the
409          * congestion state of the swapdevs.  Easy to fix, if needed.
410          */
411         if (!is_page_cache_freeable(page))
412                 return PAGE_KEEP;
413         if (!mapping) {
414                 /*
415                  * Some data journaling orphaned pages can have
416                  * page->mapping == NULL while being dirty with clean buffers.
417                  */
418                 if (page_has_private(page)) {
419                         if (try_to_free_buffers(page)) {
420                                 ClearPageDirty(page);
421                                 printk("%s: orphaned page\n", __func__);
422                                 return PAGE_CLEAN;
423                         }
424                 }
425                 return PAGE_KEEP;
426         }
427         if (mapping->a_ops->writepage == NULL)
428                 return PAGE_ACTIVATE;
429         if (!may_write_to_queue(mapping->backing_dev_info, sc))
430                 return PAGE_KEEP;
431
432         if (clear_page_dirty_for_io(page)) {
433                 int res;
434                 struct writeback_control wbc = {
435                         .sync_mode = WB_SYNC_NONE,
436                         .nr_to_write = SWAP_CLUSTER_MAX,
437                         .range_start = 0,
438                         .range_end = LLONG_MAX,
439                         .for_reclaim = 1,
440                 };
441
442                 SetPageReclaim(page);
443                 res = mapping->a_ops->writepage(page, &wbc);
444                 if (res < 0)
445                         handle_write_error(mapping, page, res);
446                 if (res == AOP_WRITEPAGE_ACTIVATE) {
447                         ClearPageReclaim(page);
448                         return PAGE_ACTIVATE;
449                 }
450
451                 if (!PageWriteback(page)) {
452                         /* synchronous write or broken a_ops? */
453                         ClearPageReclaim(page);
454                 }
455                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
456                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
457                 return PAGE_SUCCESS;
458         }
459
460         return PAGE_CLEAN;
461 }
462
463 /*
464  * Same as remove_mapping, but if the page is removed from the mapping, it
465  * gets returned with a refcount of 0.
466  */
467 static int __remove_mapping(struct address_space *mapping, struct page *page)
468 {
469         BUG_ON(!PageLocked(page));
470         BUG_ON(mapping != page_mapping(page));
471
472         spin_lock_irq(&mapping->tree_lock);
473         /*
474          * The non racy check for a busy page.
475          *
476          * Must be careful with the order of the tests. When someone has
477          * a ref to the page, it may be possible that they dirty it then
478          * drop the reference. So if PageDirty is tested before page_count
479          * here, then the following race may occur:
480          *
481          * get_user_pages(&page);
482          * [user mapping goes away]
483          * write_to(page);
484          *                              !PageDirty(page)    [good]
485          * SetPageDirty(page);
486          * put_page(page);
487          *                              !page_count(page)   [good, discard it]
488          *
489          * [oops, our write_to data is lost]
490          *
491          * Reversing the order of the tests ensures such a situation cannot
492          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
493          * load is not satisfied before that of page->_count.
494          *
495          * Note that if SetPageDirty is always performed via set_page_dirty,
496          * and thus under tree_lock, then this ordering is not required.
497          */
498         if (!page_freeze_refs(page, 2))
499                 goto cannot_free;
500         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
501         if (unlikely(PageDirty(page))) {
502                 page_unfreeze_refs(page, 2);
503                 goto cannot_free;
504         }
505
506         if (PageSwapCache(page)) {
507                 swp_entry_t swap = { .val = page_private(page) };
508                 __delete_from_swap_cache(page);
509                 spin_unlock_irq(&mapping->tree_lock);
510                 swapcache_free(swap, page);
511         } else {
512                 void (*freepage)(struct page *);
513
514                 freepage = mapping->a_ops->freepage;
515
516                 __delete_from_page_cache(page);
517                 spin_unlock_irq(&mapping->tree_lock);
518                 mem_cgroup_uncharge_cache_page(page);
519
520                 if (freepage != NULL)
521                         freepage(page);
522         }
523
524         return 1;
525
526 cannot_free:
527         spin_unlock_irq(&mapping->tree_lock);
528         return 0;
529 }
530
531 /*
532  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
533  * someone else has a ref on the page, abort and return 0.  If it was
534  * successfully detached, return 1.  Assumes the caller has a single ref on
535  * this page.
536  */
537 int remove_mapping(struct address_space *mapping, struct page *page)
538 {
539         if (__remove_mapping(mapping, page)) {
540                 /*
541                  * Unfreezing the refcount with 1 rather than 2 effectively
542                  * drops the pagecache ref for us without requiring another
543                  * atomic operation.
544                  */
545                 page_unfreeze_refs(page, 1);
546                 return 1;
547         }
548         return 0;
549 }
550
551 /**
552  * putback_lru_page - put previously isolated page onto appropriate LRU list
553  * @page: page to be put back to appropriate lru list
554  *
555  * Add previously isolated @page to appropriate LRU list.
556  * Page may still be unevictable for other reasons.
557  *
558  * lru_lock must not be held, interrupts must be enabled.
559  */
560 void putback_lru_page(struct page *page)
561 {
562         int lru;
563         int active = !!TestClearPageActive(page);
564         int was_unevictable = PageUnevictable(page);
565
566         VM_BUG_ON(PageLRU(page));
567
568 redo:
569         ClearPageUnevictable(page);
570
571         if (page_evictable(page, NULL)) {
572                 /*
573                  * For evictable pages, we can use the cache.
574                  * In event of a race, worst case is we end up with an
575                  * unevictable page on [in]active list.
576                  * We know how to handle that.
577                  */
578                 lru = active + page_lru_base_type(page);
579                 lru_cache_add_lru(page, lru);
580         } else {
581                 /*
582                  * Put unevictable pages directly on zone's unevictable
583                  * list.
584                  */
585                 lru = LRU_UNEVICTABLE;
586                 add_page_to_unevictable_list(page);
587                 /*
588                  * When racing with an mlock or AS_UNEVICTABLE clearing
589                  * (page is unlocked) make sure that if the other thread
590                  * does not observe our setting of PG_lru and fails
591                  * isolation/check_move_unevictable_pages,
592                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
593                  * the page back to the evictable list.
594                  *
595                  * The other side is TestClearPageMlocked() or shmem_lock().
596                  */
597                 smp_mb();
598         }
599
600         /*
601          * page's status can change while we move it among lru. If an evictable
602          * page is on unevictable list, it never be freed. To avoid that,
603          * check after we added it to the list, again.
604          */
605         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
606                 if (!isolate_lru_page(page)) {
607                         put_page(page);
608                         goto redo;
609                 }
610                 /* This means someone else dropped this page from LRU
611                  * So, it will be freed or putback to LRU again. There is
612                  * nothing to do here.
613                  */
614         }
615
616         if (was_unevictable && lru != LRU_UNEVICTABLE)
617                 count_vm_event(UNEVICTABLE_PGRESCUED);
618         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
619                 count_vm_event(UNEVICTABLE_PGCULLED);
620
621         put_page(page);         /* drop ref from isolate */
622 }
623
624 enum page_references {
625         PAGEREF_RECLAIM,
626         PAGEREF_RECLAIM_CLEAN,
627         PAGEREF_KEEP,
628         PAGEREF_ACTIVATE,
629 };
630
631 static enum page_references page_check_references(struct page *page,
632                                                   struct mem_cgroup_zone *mz,
633                                                   struct scan_control *sc)
634 {
635         int referenced_ptes, referenced_page;
636         unsigned long vm_flags;
637
638         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
639                                           &vm_flags);
640         referenced_page = TestClearPageReferenced(page);
641
642         /*
643          * Mlock lost the isolation race with us.  Let try_to_unmap()
644          * move the page to the unevictable list.
645          */
646         if (vm_flags & VM_LOCKED)
647                 return PAGEREF_RECLAIM;
648
649         if (referenced_ptes) {
650                 if (PageSwapBacked(page))
651                         return PAGEREF_ACTIVATE;
652                 /*
653                  * All mapped pages start out with page table
654                  * references from the instantiating fault, so we need
655                  * to look twice if a mapped file page is used more
656                  * than once.
657                  *
658                  * Mark it and spare it for another trip around the
659                  * inactive list.  Another page table reference will
660                  * lead to its activation.
661                  *
662                  * Note: the mark is set for activated pages as well
663                  * so that recently deactivated but used pages are
664                  * quickly recovered.
665                  */
666                 SetPageReferenced(page);
667
668                 if (referenced_page || referenced_ptes > 1)
669                         return PAGEREF_ACTIVATE;
670
671                 /*
672                  * Activate file-backed executable pages after first usage.
673                  */
674                 if (vm_flags & VM_EXEC)
675                         return PAGEREF_ACTIVATE;
676
677                 return PAGEREF_KEEP;
678         }
679
680         /* Reclaim if clean, defer dirty pages to writeback */
681         if (referenced_page && !PageSwapBacked(page))
682                 return PAGEREF_RECLAIM_CLEAN;
683
684         return PAGEREF_RECLAIM;
685 }
686
687 /*
688  * shrink_page_list() returns the number of reclaimed pages
689  */
690 static unsigned long shrink_page_list(struct list_head *page_list,
691                                       struct mem_cgroup_zone *mz,
692                                       struct scan_control *sc,
693                                       int priority,
694                                       unsigned long *ret_nr_dirty,
695                                       unsigned long *ret_nr_writeback)
696 {
697         LIST_HEAD(ret_pages);
698         LIST_HEAD(free_pages);
699         int pgactivate = 0;
700         unsigned long nr_dirty = 0;
701         unsigned long nr_congested = 0;
702         unsigned long nr_reclaimed = 0;
703         unsigned long nr_writeback = 0;
704
705         cond_resched();
706
707         while (!list_empty(page_list)) {
708                 enum page_references references;
709                 struct address_space *mapping;
710                 struct page *page;
711                 int may_enter_fs;
712
713                 cond_resched();
714
715                 page = lru_to_page(page_list);
716                 list_del(&page->lru);
717
718                 if (!trylock_page(page))
719                         goto keep;
720
721                 VM_BUG_ON(PageActive(page));
722                 VM_BUG_ON(page_zone(page) != mz->zone);
723
724                 sc->nr_scanned++;
725
726                 if (unlikely(!page_evictable(page, NULL)))
727                         goto cull_mlocked;
728
729                 if (!sc->may_unmap && page_mapped(page))
730                         goto keep_locked;
731
732                 /* Double the slab pressure for mapped and swapcache pages */
733                 if (page_mapped(page) || PageSwapCache(page))
734                         sc->nr_scanned++;
735
736                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
737                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
738
739                 if (PageWriteback(page)) {
740                         nr_writeback++;
741                         unlock_page(page);
742                         goto keep;
743                 }
744
745                 references = page_check_references(page, mz, sc);
746                 switch (references) {
747                 case PAGEREF_ACTIVATE:
748                         goto activate_locked;
749                 case PAGEREF_KEEP:
750                         goto keep_locked;
751                 case PAGEREF_RECLAIM:
752                 case PAGEREF_RECLAIM_CLEAN:
753                         ; /* try to reclaim the page below */
754                 }
755
756                 /*
757                  * Anonymous process memory has backing store?
758                  * Try to allocate it some swap space here.
759                  */
760                 if (PageAnon(page) && !PageSwapCache(page)) {
761                         if (!(sc->gfp_mask & __GFP_IO))
762                                 goto keep_locked;
763                         if (!add_to_swap(page))
764                                 goto activate_locked;
765                         may_enter_fs = 1;
766                 }
767
768                 mapping = page_mapping(page);
769
770                 /*
771                  * The page is mapped into the page tables of one or more
772                  * processes. Try to unmap it here.
773                  */
774                 if (page_mapped(page) && mapping) {
775                         switch (try_to_unmap(page, TTU_UNMAP)) {
776                         case SWAP_FAIL:
777                                 goto activate_locked;
778                         case SWAP_AGAIN:
779                                 goto keep_locked;
780                         case SWAP_MLOCK:
781                                 goto cull_mlocked;
782                         case SWAP_SUCCESS:
783                                 ; /* try to free the page below */
784                         }
785                 }
786
787                 if (PageDirty(page)) {
788                         nr_dirty++;
789
790                         /*
791                          * Only kswapd can writeback filesystem pages to
792                          * avoid risk of stack overflow but do not writeback
793                          * unless under significant pressure.
794                          */
795                         if (page_is_file_cache(page) &&
796                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
797                                 /*
798                                  * Immediately reclaim when written back.
799                                  * Similar in principal to deactivate_page()
800                                  * except we already have the page isolated
801                                  * and know it's dirty
802                                  */
803                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
804                                 SetPageReclaim(page);
805
806                                 goto keep_locked;
807                         }
808
809                         if (references == PAGEREF_RECLAIM_CLEAN)
810                                 goto keep_locked;
811                         if (!may_enter_fs)
812                                 goto keep_locked;
813                         if (!sc->may_writepage)
814                                 goto keep_locked;
815
816                         /* Page is dirty, try to write it out here */
817                         switch (pageout(page, mapping, sc)) {
818                         case PAGE_KEEP:
819                                 nr_congested++;
820                                 goto keep_locked;
821                         case PAGE_ACTIVATE:
822                                 goto activate_locked;
823                         case PAGE_SUCCESS:
824                                 if (PageWriteback(page))
825                                         goto keep;
826                                 if (PageDirty(page))
827                                         goto keep;
828
829                                 /*
830                                  * A synchronous write - probably a ramdisk.  Go
831                                  * ahead and try to reclaim the page.
832                                  */
833                                 if (!trylock_page(page))
834                                         goto keep;
835                                 if (PageDirty(page) || PageWriteback(page))
836                                         goto keep_locked;
837                                 mapping = page_mapping(page);
838                         case PAGE_CLEAN:
839                                 ; /* try to free the page below */
840                         }
841                 }
842
843                 /*
844                  * If the page has buffers, try to free the buffer mappings
845                  * associated with this page. If we succeed we try to free
846                  * the page as well.
847                  *
848                  * We do this even if the page is PageDirty().
849                  * try_to_release_page() does not perform I/O, but it is
850                  * possible for a page to have PageDirty set, but it is actually
851                  * clean (all its buffers are clean).  This happens if the
852                  * buffers were written out directly, with submit_bh(). ext3
853                  * will do this, as well as the blockdev mapping.
854                  * try_to_release_page() will discover that cleanness and will
855                  * drop the buffers and mark the page clean - it can be freed.
856                  *
857                  * Rarely, pages can have buffers and no ->mapping.  These are
858                  * the pages which were not successfully invalidated in
859                  * truncate_complete_page().  We try to drop those buffers here
860                  * and if that worked, and the page is no longer mapped into
861                  * process address space (page_count == 1) it can be freed.
862                  * Otherwise, leave the page on the LRU so it is swappable.
863                  */
864                 if (page_has_private(page)) {
865                         if (!try_to_release_page(page, sc->gfp_mask))
866                                 goto activate_locked;
867                         if (!mapping && page_count(page) == 1) {
868                                 unlock_page(page);
869                                 if (put_page_testzero(page))
870                                         goto free_it;
871                                 else {
872                                         /*
873                                          * rare race with speculative reference.
874                                          * the speculative reference will free
875                                          * this page shortly, so we may
876                                          * increment nr_reclaimed here (and
877                                          * leave it off the LRU).
878                                          */
879                                         nr_reclaimed++;
880                                         continue;
881                                 }
882                         }
883                 }
884
885                 if (!mapping || !__remove_mapping(mapping, page))
886                         goto keep_locked;
887
888                 /*
889                  * At this point, we have no other references and there is
890                  * no way to pick any more up (removed from LRU, removed
891                  * from pagecache). Can use non-atomic bitops now (and
892                  * we obviously don't have to worry about waking up a process
893                  * waiting on the page lock, because there are no references.
894                  */
895                 __clear_page_locked(page);
896 free_it:
897                 nr_reclaimed++;
898
899                 /*
900                  * Is there need to periodically free_page_list? It would
901                  * appear not as the counts should be low
902                  */
903                 list_add(&page->lru, &free_pages);
904                 continue;
905
906 cull_mlocked:
907                 if (PageSwapCache(page))
908                         try_to_free_swap(page);
909                 unlock_page(page);
910                 putback_lru_page(page);
911                 continue;
912
913 activate_locked:
914                 /* Not a candidate for swapping, so reclaim swap space. */
915                 if (PageSwapCache(page) && vm_swap_full())
916                         try_to_free_swap(page);
917                 VM_BUG_ON(PageActive(page));
918                 SetPageActive(page);
919                 pgactivate++;
920 keep_locked:
921                 unlock_page(page);
922 keep:
923                 list_add(&page->lru, &ret_pages);
924                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
925         }
926
927         /*
928          * Tag a zone as congested if all the dirty pages encountered were
929          * backed by a congested BDI. In this case, reclaimers should just
930          * back off and wait for congestion to clear because further reclaim
931          * will encounter the same problem
932          */
933         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
934                 zone_set_flag(mz->zone, ZONE_CONGESTED);
935
936         free_hot_cold_page_list(&free_pages, 1);
937
938         list_splice(&ret_pages, page_list);
939         count_vm_events(PGACTIVATE, pgactivate);
940         *ret_nr_dirty += nr_dirty;
941         *ret_nr_writeback += nr_writeback;
942         return nr_reclaimed;
943 }
944
945 /*
946  * Attempt to remove the specified page from its LRU.  Only take this page
947  * if it is of the appropriate PageActive status.  Pages which are being
948  * freed elsewhere are also ignored.
949  *
950  * page:        page to consider
951  * mode:        one of the LRU isolation modes defined above
952  *
953  * returns 0 on success, -ve errno on failure.
954  */
955 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
956 {
957         bool all_lru_mode;
958         int ret = -EINVAL;
959
960         /* Only take pages on the LRU. */
961         if (!PageLRU(page))
962                 return ret;
963
964         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
965                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
966
967         /*
968          * When checking the active state, we need to be sure we are
969          * dealing with comparible boolean values.  Take the logical not
970          * of each.
971          */
972         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
973                 return ret;
974
975         if (!all_lru_mode && !!page_is_file_cache(page) != file)
976                 return ret;
977
978         /* Do not give back unevictable pages for compaction */
979         if (PageUnevictable(page))
980                 return ret;
981
982         ret = -EBUSY;
983
984         /*
985          * To minimise LRU disruption, the caller can indicate that it only
986          * wants to isolate pages it will be able to operate on without
987          * blocking - clean pages for the most part.
988          *
989          * ISOLATE_CLEAN means that only clean pages should be isolated. This
990          * is used by reclaim when it is cannot write to backing storage
991          *
992          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
993          * that it is possible to migrate without blocking
994          */
995         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
996                 /* All the caller can do on PageWriteback is block */
997                 if (PageWriteback(page))
998                         return ret;
999
1000                 if (PageDirty(page)) {
1001                         struct address_space *mapping;
1002
1003                         /* ISOLATE_CLEAN means only clean pages */
1004                         if (mode & ISOLATE_CLEAN)
1005                                 return ret;
1006
1007                         /*
1008                          * Only pages without mappings or that have a
1009                          * ->migratepage callback are possible to migrate
1010                          * without blocking
1011                          */
1012                         mapping = page_mapping(page);
1013                         if (mapping && !mapping->a_ops->migratepage)
1014                                 return ret;
1015                 }
1016         }
1017
1018         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1019                 return ret;
1020
1021         if (likely(get_page_unless_zero(page))) {
1022                 /*
1023                  * Be careful not to clear PageLRU until after we're
1024                  * sure the page is not being freed elsewhere -- the
1025                  * page release code relies on it.
1026                  */
1027                 ClearPageLRU(page);
1028                 ret = 0;
1029         }
1030
1031         return ret;
1032 }
1033
1034 /*
1035  * zone->lru_lock is heavily contended.  Some of the functions that
1036  * shrink the lists perform better by taking out a batch of pages
1037  * and working on them outside the LRU lock.
1038  *
1039  * For pagecache intensive workloads, this function is the hottest
1040  * spot in the kernel (apart from copy_*_user functions).
1041  *
1042  * Appropriate locks must be held before calling this function.
1043  *
1044  * @nr_to_scan: The number of pages to look through on the list.
1045  * @mz:         The mem_cgroup_zone to pull pages from.
1046  * @dst:        The temp list to put pages on to.
1047  * @nr_scanned: The number of pages that were scanned.
1048  * @sc:         The scan_control struct for this reclaim session
1049  * @mode:       One of the LRU isolation modes
1050  * @active:     True [1] if isolating active pages
1051  * @file:       True [1] if isolating file [!anon] pages
1052  *
1053  * returns how many pages were moved onto *@dst.
1054  */
1055 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1056                 struct mem_cgroup_zone *mz, struct list_head *dst,
1057                 unsigned long *nr_scanned, struct scan_control *sc,
1058                 isolate_mode_t mode, int active, int file)
1059 {
1060         struct lruvec *lruvec;
1061         struct list_head *src;
1062         unsigned long nr_taken = 0;
1063         unsigned long scan;
1064         int lru = LRU_BASE;
1065
1066         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1067         if (active)
1068                 lru += LRU_ACTIVE;
1069         if (file)
1070                 lru += LRU_FILE;
1071         src = &lruvec->lists[lru];
1072
1073         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1074                 struct page *page;
1075
1076                 page = lru_to_page(src);
1077                 prefetchw_prev_lru_page(page, src, flags);
1078
1079                 VM_BUG_ON(!PageLRU(page));
1080
1081                 switch (__isolate_lru_page(page, mode, file)) {
1082                 case 0:
1083                         mem_cgroup_lru_del(page);
1084                         list_move(&page->lru, dst);
1085                         nr_taken += hpage_nr_pages(page);
1086                         break;
1087
1088                 case -EBUSY:
1089                         /* else it is being freed elsewhere */
1090                         list_move(&page->lru, src);
1091                         continue;
1092
1093                 default:
1094                         BUG();
1095                 }
1096         }
1097
1098         *nr_scanned = scan;
1099
1100         trace_mm_vmscan_lru_isolate(sc->order,
1101                         nr_to_scan, scan,
1102                         nr_taken,
1103                         mode, file);
1104         return nr_taken;
1105 }
1106
1107 /**
1108  * isolate_lru_page - tries to isolate a page from its LRU list
1109  * @page: page to isolate from its LRU list
1110  *
1111  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1112  * vmstat statistic corresponding to whatever LRU list the page was on.
1113  *
1114  * Returns 0 if the page was removed from an LRU list.
1115  * Returns -EBUSY if the page was not on an LRU list.
1116  *
1117  * The returned page will have PageLRU() cleared.  If it was found on
1118  * the active list, it will have PageActive set.  If it was found on
1119  * the unevictable list, it will have the PageUnevictable bit set. That flag
1120  * may need to be cleared by the caller before letting the page go.
1121  *
1122  * The vmstat statistic corresponding to the list on which the page was
1123  * found will be decremented.
1124  *
1125  * Restrictions:
1126  * (1) Must be called with an elevated refcount on the page. This is a
1127  *     fundamentnal difference from isolate_lru_pages (which is called
1128  *     without a stable reference).
1129  * (2) the lru_lock must not be held.
1130  * (3) interrupts must be enabled.
1131  */
1132 int isolate_lru_page(struct page *page)
1133 {
1134         int ret = -EBUSY;
1135
1136         VM_BUG_ON(!page_count(page));
1137
1138         if (PageLRU(page)) {
1139                 struct zone *zone = page_zone(page);
1140
1141                 spin_lock_irq(&zone->lru_lock);
1142                 if (PageLRU(page)) {
1143                         int lru = page_lru(page);
1144                         ret = 0;
1145                         get_page(page);
1146                         ClearPageLRU(page);
1147
1148                         del_page_from_lru_list(zone, page, lru);
1149                 }
1150                 spin_unlock_irq(&zone->lru_lock);
1151         }
1152         return ret;
1153 }
1154
1155 /*
1156  * Are there way too many processes in the direct reclaim path already?
1157  */
1158 static int too_many_isolated(struct zone *zone, int file,
1159                 struct scan_control *sc)
1160 {
1161         unsigned long inactive, isolated;
1162
1163         if (current_is_kswapd())
1164                 return 0;
1165
1166         if (!global_reclaim(sc))
1167                 return 0;
1168
1169         if (file) {
1170                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1171                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1172         } else {
1173                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1174                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1175         }
1176
1177         return isolated > inactive;
1178 }
1179
1180 static noinline_for_stack void
1181 putback_inactive_pages(struct mem_cgroup_zone *mz,
1182                        struct list_head *page_list)
1183 {
1184         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1185         struct zone *zone = mz->zone;
1186         LIST_HEAD(pages_to_free);
1187
1188         /*
1189          * Put back any unfreeable pages.
1190          */
1191         while (!list_empty(page_list)) {
1192                 struct page *page = lru_to_page(page_list);
1193                 int lru;
1194
1195                 VM_BUG_ON(PageLRU(page));
1196                 list_del(&page->lru);
1197                 if (unlikely(!page_evictable(page, NULL))) {
1198                         spin_unlock_irq(&zone->lru_lock);
1199                         putback_lru_page(page);
1200                         spin_lock_irq(&zone->lru_lock);
1201                         continue;
1202                 }
1203                 SetPageLRU(page);
1204                 lru = page_lru(page);
1205                 add_page_to_lru_list(zone, page, lru);
1206                 if (is_active_lru(lru)) {
1207                         int file = is_file_lru(lru);
1208                         int numpages = hpage_nr_pages(page);
1209                         reclaim_stat->recent_rotated[file] += numpages;
1210                 }
1211                 if (put_page_testzero(page)) {
1212                         __ClearPageLRU(page);
1213                         __ClearPageActive(page);
1214                         del_page_from_lru_list(zone, page, lru);
1215
1216                         if (unlikely(PageCompound(page))) {
1217                                 spin_unlock_irq(&zone->lru_lock);
1218                                 (*get_compound_page_dtor(page))(page);
1219                                 spin_lock_irq(&zone->lru_lock);
1220                         } else
1221                                 list_add(&page->lru, &pages_to_free);
1222                 }
1223         }
1224
1225         /*
1226          * To save our caller's stack, now use input list for pages to free.
1227          */
1228         list_splice(&pages_to_free, page_list);
1229 }
1230
1231 static noinline_for_stack void
1232 update_isolated_counts(struct mem_cgroup_zone *mz,
1233                        struct list_head *page_list,
1234                        unsigned long *nr_anon,
1235                        unsigned long *nr_file)
1236 {
1237         struct zone *zone = mz->zone;
1238         unsigned int count[NR_LRU_LISTS] = { 0, };
1239         unsigned long nr_active = 0;
1240         struct page *page;
1241         int lru;
1242
1243         /*
1244          * Count pages and clear active flags
1245          */
1246         list_for_each_entry(page, page_list, lru) {
1247                 int numpages = hpage_nr_pages(page);
1248                 lru = page_lru_base_type(page);
1249                 if (PageActive(page)) {
1250                         lru += LRU_ACTIVE;
1251                         ClearPageActive(page);
1252                         nr_active += numpages;
1253                 }
1254                 count[lru] += numpages;
1255         }
1256
1257         preempt_disable();
1258         __count_vm_events(PGDEACTIVATE, nr_active);
1259
1260         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1261                               -count[LRU_ACTIVE_FILE]);
1262         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1263                               -count[LRU_INACTIVE_FILE]);
1264         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1265                               -count[LRU_ACTIVE_ANON]);
1266         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1267                               -count[LRU_INACTIVE_ANON]);
1268
1269         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1270         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1271
1272         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1273         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1274         preempt_enable();
1275 }
1276
1277 /*
1278  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1279  * of reclaimed pages
1280  */
1281 static noinline_for_stack unsigned long
1282 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1283                      struct scan_control *sc, int priority, int file)
1284 {
1285         LIST_HEAD(page_list);
1286         unsigned long nr_scanned;
1287         unsigned long nr_reclaimed = 0;
1288         unsigned long nr_taken;
1289         unsigned long nr_anon;
1290         unsigned long nr_file;
1291         unsigned long nr_dirty = 0;
1292         unsigned long nr_writeback = 0;
1293         isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1294         struct zone *zone = mz->zone;
1295         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1296
1297         while (unlikely(too_many_isolated(zone, file, sc))) {
1298                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1299
1300                 /* We are about to die and free our memory. Return now. */
1301                 if (fatal_signal_pending(current))
1302                         return SWAP_CLUSTER_MAX;
1303         }
1304
1305         lru_add_drain();
1306
1307         if (!sc->may_unmap)
1308                 isolate_mode |= ISOLATE_UNMAPPED;
1309         if (!sc->may_writepage)
1310                 isolate_mode |= ISOLATE_CLEAN;
1311
1312         spin_lock_irq(&zone->lru_lock);
1313
1314         nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1315                                      sc, isolate_mode, 0, file);
1316         if (global_reclaim(sc)) {
1317                 zone->pages_scanned += nr_scanned;
1318                 if (current_is_kswapd())
1319                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1320                                                nr_scanned);
1321                 else
1322                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1323                                                nr_scanned);
1324         }
1325         spin_unlock_irq(&zone->lru_lock);
1326
1327         if (nr_taken == 0)
1328                 return 0;
1329
1330         update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1331
1332         nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1333                                                 &nr_dirty, &nr_writeback);
1334
1335         spin_lock_irq(&zone->lru_lock);
1336
1337         reclaim_stat->recent_scanned[0] += nr_anon;
1338         reclaim_stat->recent_scanned[1] += nr_file;
1339
1340         if (global_reclaim(sc)) {
1341                 if (current_is_kswapd())
1342                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1343                                                nr_reclaimed);
1344                 else
1345                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1346                                                nr_reclaimed);
1347         }
1348
1349         putback_inactive_pages(mz, &page_list);
1350
1351         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1352         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1353
1354         spin_unlock_irq(&zone->lru_lock);
1355
1356         free_hot_cold_page_list(&page_list, 1);
1357
1358         /*
1359          * If reclaim is isolating dirty pages under writeback, it implies
1360          * that the long-lived page allocation rate is exceeding the page
1361          * laundering rate. Either the global limits are not being effective
1362          * at throttling processes due to the page distribution throughout
1363          * zones or there is heavy usage of a slow backing device. The
1364          * only option is to throttle from reclaim context which is not ideal
1365          * as there is no guarantee the dirtying process is throttled in the
1366          * same way balance_dirty_pages() manages.
1367          *
1368          * This scales the number of dirty pages that must be under writeback
1369          * before throttling depending on priority. It is a simple backoff
1370          * function that has the most effect in the range DEF_PRIORITY to
1371          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1372          * in trouble and reclaim is considered to be in trouble.
1373          *
1374          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1375          * DEF_PRIORITY-1  50% must be PageWriteback
1376          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1377          * ...
1378          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1379          *                     isolated page is PageWriteback
1380          */
1381         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1382                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1383
1384         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1385                 zone_idx(zone),
1386                 nr_scanned, nr_reclaimed,
1387                 priority,
1388                 trace_shrink_flags(file));
1389         return nr_reclaimed;
1390 }
1391
1392 /*
1393  * This moves pages from the active list to the inactive list.
1394  *
1395  * We move them the other way if the page is referenced by one or more
1396  * processes, from rmap.
1397  *
1398  * If the pages are mostly unmapped, the processing is fast and it is
1399  * appropriate to hold zone->lru_lock across the whole operation.  But if
1400  * the pages are mapped, the processing is slow (page_referenced()) so we
1401  * should drop zone->lru_lock around each page.  It's impossible to balance
1402  * this, so instead we remove the pages from the LRU while processing them.
1403  * It is safe to rely on PG_active against the non-LRU pages in here because
1404  * nobody will play with that bit on a non-LRU page.
1405  *
1406  * The downside is that we have to touch page->_count against each page.
1407  * But we had to alter page->flags anyway.
1408  */
1409
1410 static void move_active_pages_to_lru(struct zone *zone,
1411                                      struct list_head *list,
1412                                      struct list_head *pages_to_free,
1413                                      enum lru_list lru)
1414 {
1415         unsigned long pgmoved = 0;
1416         struct page *page;
1417
1418         while (!list_empty(list)) {
1419                 struct lruvec *lruvec;
1420
1421                 page = lru_to_page(list);
1422
1423                 VM_BUG_ON(PageLRU(page));
1424                 SetPageLRU(page);
1425
1426                 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1427                 list_move(&page->lru, &lruvec->lists[lru]);
1428                 pgmoved += hpage_nr_pages(page);
1429
1430                 if (put_page_testzero(page)) {
1431                         __ClearPageLRU(page);
1432                         __ClearPageActive(page);
1433                         del_page_from_lru_list(zone, page, lru);
1434
1435                         if (unlikely(PageCompound(page))) {
1436                                 spin_unlock_irq(&zone->lru_lock);
1437                                 (*get_compound_page_dtor(page))(page);
1438                                 spin_lock_irq(&zone->lru_lock);
1439                         } else
1440                                 list_add(&page->lru, pages_to_free);
1441                 }
1442         }
1443         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1444         if (!is_active_lru(lru))
1445                 __count_vm_events(PGDEACTIVATE, pgmoved);
1446 }
1447
1448 static void shrink_active_list(unsigned long nr_to_scan,
1449                                struct mem_cgroup_zone *mz,
1450                                struct scan_control *sc,
1451                                int priority, int file)
1452 {
1453         unsigned long nr_taken;
1454         unsigned long nr_scanned;
1455         unsigned long vm_flags;
1456         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1457         LIST_HEAD(l_active);
1458         LIST_HEAD(l_inactive);
1459         struct page *page;
1460         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1461         unsigned long nr_rotated = 0;
1462         isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1463         struct zone *zone = mz->zone;
1464
1465         lru_add_drain();
1466
1467         if (!sc->may_unmap)
1468                 isolate_mode |= ISOLATE_UNMAPPED;
1469         if (!sc->may_writepage)
1470                 isolate_mode |= ISOLATE_CLEAN;
1471
1472         spin_lock_irq(&zone->lru_lock);
1473
1474         nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1475                                      isolate_mode, 1, file);
1476         if (global_reclaim(sc))
1477                 zone->pages_scanned += nr_scanned;
1478
1479         reclaim_stat->recent_scanned[file] += nr_taken;
1480
1481         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1482         if (file)
1483                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1484         else
1485                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1486         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1487         spin_unlock_irq(&zone->lru_lock);
1488
1489         while (!list_empty(&l_hold)) {
1490                 cond_resched();
1491                 page = lru_to_page(&l_hold);
1492                 list_del(&page->lru);
1493
1494                 if (unlikely(!page_evictable(page, NULL))) {
1495                         putback_lru_page(page);
1496                         continue;
1497                 }
1498
1499                 if (unlikely(buffer_heads_over_limit)) {
1500                         if (page_has_private(page) && trylock_page(page)) {
1501                                 if (page_has_private(page))
1502                                         try_to_release_page(page, 0);
1503                                 unlock_page(page);
1504                         }
1505                 }
1506
1507                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1508                                     &vm_flags)) {
1509                         nr_rotated += hpage_nr_pages(page);
1510                         /*
1511                          * Identify referenced, file-backed active pages and
1512                          * give them one more trip around the active list. So
1513                          * that executable code get better chances to stay in
1514                          * memory under moderate memory pressure.  Anon pages
1515                          * are not likely to be evicted by use-once streaming
1516                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1517                          * so we ignore them here.
1518                          */
1519                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1520                                 list_add(&page->lru, &l_active);
1521                                 continue;
1522                         }
1523                 }
1524
1525                 ClearPageActive(page);  /* we are de-activating */
1526                 list_add(&page->lru, &l_inactive);
1527         }
1528
1529         /*
1530          * Move pages back to the lru list.
1531          */
1532         spin_lock_irq(&zone->lru_lock);
1533         /*
1534          * Count referenced pages from currently used mappings as rotated,
1535          * even though only some of them are actually re-activated.  This
1536          * helps balance scan pressure between file and anonymous pages in
1537          * get_scan_ratio.
1538          */
1539         reclaim_stat->recent_rotated[file] += nr_rotated;
1540
1541         move_active_pages_to_lru(zone, &l_active, &l_hold,
1542                                                 LRU_ACTIVE + file * LRU_FILE);
1543         move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1544                                                 LRU_BASE   + file * LRU_FILE);
1545         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1546         spin_unlock_irq(&zone->lru_lock);
1547
1548         free_hot_cold_page_list(&l_hold, 1);
1549 }
1550
1551 #ifdef CONFIG_SWAP
1552 static int inactive_anon_is_low_global(struct zone *zone)
1553 {
1554         unsigned long active, inactive;
1555
1556         active = zone_page_state(zone, NR_ACTIVE_ANON);
1557         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1558
1559         if (inactive * zone->inactive_ratio < active)
1560                 return 1;
1561
1562         return 0;
1563 }
1564
1565 /**
1566  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1567  * @zone: zone to check
1568  * @sc:   scan control of this context
1569  *
1570  * Returns true if the zone does not have enough inactive anon pages,
1571  * meaning some active anon pages need to be deactivated.
1572  */
1573 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1574 {
1575         /*
1576          * If we don't have swap space, anonymous page deactivation
1577          * is pointless.
1578          */
1579         if (!total_swap_pages)
1580                 return 0;
1581
1582         if (!mem_cgroup_disabled())
1583                 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1584                                                        mz->zone);
1585
1586         return inactive_anon_is_low_global(mz->zone);
1587 }
1588 #else
1589 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1590 {
1591         return 0;
1592 }
1593 #endif
1594
1595 static int inactive_file_is_low_global(struct zone *zone)
1596 {
1597         unsigned long active, inactive;
1598
1599         active = zone_page_state(zone, NR_ACTIVE_FILE);
1600         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1601
1602         return (active > inactive);
1603 }
1604
1605 /**
1606  * inactive_file_is_low - check if file pages need to be deactivated
1607  * @mz: memory cgroup and zone to check
1608  *
1609  * When the system is doing streaming IO, memory pressure here
1610  * ensures that active file pages get deactivated, until more
1611  * than half of the file pages are on the inactive list.
1612  *
1613  * Once we get to that situation, protect the system's working
1614  * set from being evicted by disabling active file page aging.
1615  *
1616  * This uses a different ratio than the anonymous pages, because
1617  * the page cache uses a use-once replacement algorithm.
1618  */
1619 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1620 {
1621         if (!mem_cgroup_disabled())
1622                 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1623                                                        mz->zone);
1624
1625         return inactive_file_is_low_global(mz->zone);
1626 }
1627
1628 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1629 {
1630         if (file)
1631                 return inactive_file_is_low(mz);
1632         else
1633                 return inactive_anon_is_low(mz);
1634 }
1635
1636 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1637                                  struct mem_cgroup_zone *mz,
1638                                  struct scan_control *sc, int priority)
1639 {
1640         int file = is_file_lru(lru);
1641
1642         if (is_active_lru(lru)) {
1643                 if (inactive_list_is_low(mz, file))
1644                         shrink_active_list(nr_to_scan, mz, sc, priority, file);
1645                 return 0;
1646         }
1647
1648         return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1649 }
1650
1651 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1652                              struct scan_control *sc)
1653 {
1654         if (global_reclaim(sc))
1655                 return vm_swappiness;
1656         return mem_cgroup_swappiness(mz->mem_cgroup);
1657 }
1658
1659 /*
1660  * Determine how aggressively the anon and file LRU lists should be
1661  * scanned.  The relative value of each set of LRU lists is determined
1662  * by looking at the fraction of the pages scanned we did rotate back
1663  * onto the active list instead of evict.
1664  *
1665  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1666  */
1667 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1668                            unsigned long *nr, int priority)
1669 {
1670         unsigned long anon, file, free;
1671         unsigned long anon_prio, file_prio;
1672         unsigned long ap, fp;
1673         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1674         u64 fraction[2], denominator;
1675         enum lru_list lru;
1676         int noswap = 0;
1677         bool force_scan = false;
1678
1679         /*
1680          * If the zone or memcg is small, nr[l] can be 0.  This
1681          * results in no scanning on this priority and a potential
1682          * priority drop.  Global direct reclaim can go to the next
1683          * zone and tends to have no problems. Global kswapd is for
1684          * zone balancing and it needs to scan a minimum amount. When
1685          * reclaiming for a memcg, a priority drop can cause high
1686          * latencies, so it's better to scan a minimum amount there as
1687          * well.
1688          */
1689         if (current_is_kswapd() && mz->zone->all_unreclaimable)
1690                 force_scan = true;
1691         if (!global_reclaim(sc))
1692                 force_scan = true;
1693
1694         /* If we have no swap space, do not bother scanning anon pages. */
1695         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1696                 noswap = 1;
1697                 fraction[0] = 0;
1698                 fraction[1] = 1;
1699                 denominator = 1;
1700                 goto out;
1701         }
1702
1703         anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1704                 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1705         file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1706                 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1707
1708         if (global_reclaim(sc)) {
1709                 free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1710                 /* If we have very few page cache pages,
1711                    force-scan anon pages. */
1712                 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1713                         fraction[0] = 1;
1714                         fraction[1] = 0;
1715                         denominator = 1;
1716                         goto out;
1717                 }
1718         }
1719
1720         /*
1721          * With swappiness at 100, anonymous and file have the same priority.
1722          * This scanning priority is essentially the inverse of IO cost.
1723          */
1724         anon_prio = vmscan_swappiness(mz, sc);
1725         file_prio = 200 - vmscan_swappiness(mz, sc);
1726
1727         /*
1728          * OK, so we have swap space and a fair amount of page cache
1729          * pages.  We use the recently rotated / recently scanned
1730          * ratios to determine how valuable each cache is.
1731          *
1732          * Because workloads change over time (and to avoid overflow)
1733          * we keep these statistics as a floating average, which ends
1734          * up weighing recent references more than old ones.
1735          *
1736          * anon in [0], file in [1]
1737          */
1738         spin_lock_irq(&mz->zone->lru_lock);
1739         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1740                 reclaim_stat->recent_scanned[0] /= 2;
1741                 reclaim_stat->recent_rotated[0] /= 2;
1742         }
1743
1744         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1745                 reclaim_stat->recent_scanned[1] /= 2;
1746                 reclaim_stat->recent_rotated[1] /= 2;
1747         }
1748
1749         /*
1750          * The amount of pressure on anon vs file pages is inversely
1751          * proportional to the fraction of recently scanned pages on
1752          * each list that were recently referenced and in active use.
1753          */
1754         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1755         ap /= reclaim_stat->recent_rotated[0] + 1;
1756
1757         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1758         fp /= reclaim_stat->recent_rotated[1] + 1;
1759         spin_unlock_irq(&mz->zone->lru_lock);
1760
1761         fraction[0] = ap;
1762         fraction[1] = fp;
1763         denominator = ap + fp + 1;
1764 out:
1765         for_each_evictable_lru(lru) {
1766                 int file = is_file_lru(lru);
1767                 unsigned long scan;
1768
1769                 scan = zone_nr_lru_pages(mz, lru);
1770                 if (priority || noswap || !vmscan_swappiness(mz, sc)) {
1771                         scan >>= priority;
1772                         if (!scan && force_scan)
1773                                 scan = SWAP_CLUSTER_MAX;
1774                         scan = div64_u64(scan * fraction[file], denominator);
1775                 }
1776                 nr[lru] = scan;
1777         }
1778 }
1779
1780 /* Use reclaim/compaction for costly allocs or under memory pressure */
1781 static bool in_reclaim_compaction(int priority, struct scan_control *sc)
1782 {
1783         if (COMPACTION_BUILD && sc->order &&
1784                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1785                          priority < DEF_PRIORITY - 2))
1786                 return true;
1787
1788         return false;
1789 }
1790
1791 /*
1792  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1793  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1794  * true if more pages should be reclaimed such that when the page allocator
1795  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1796  * It will give up earlier than that if there is difficulty reclaiming pages.
1797  */
1798 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1799                                         unsigned long nr_reclaimed,
1800                                         unsigned long nr_scanned,
1801                                         int priority,
1802                                         struct scan_control *sc)
1803 {
1804         unsigned long pages_for_compaction;
1805         unsigned long inactive_lru_pages;
1806
1807         /* If not in reclaim/compaction mode, stop */
1808         if (!in_reclaim_compaction(priority, sc))
1809                 return false;
1810
1811         /* Consider stopping depending on scan and reclaim activity */
1812         if (sc->gfp_mask & __GFP_REPEAT) {
1813                 /*
1814                  * For __GFP_REPEAT allocations, stop reclaiming if the
1815                  * full LRU list has been scanned and we are still failing
1816                  * to reclaim pages. This full LRU scan is potentially
1817                  * expensive but a __GFP_REPEAT caller really wants to succeed
1818                  */
1819                 if (!nr_reclaimed && !nr_scanned)
1820                         return false;
1821         } else {
1822                 /*
1823                  * For non-__GFP_REPEAT allocations which can presumably
1824                  * fail without consequence, stop if we failed to reclaim
1825                  * any pages from the last SWAP_CLUSTER_MAX number of
1826                  * pages that were scanned. This will return to the
1827                  * caller faster at the risk reclaim/compaction and
1828                  * the resulting allocation attempt fails
1829                  */
1830                 if (!nr_reclaimed)
1831                         return false;
1832         }
1833
1834         /*
1835          * If we have not reclaimed enough pages for compaction and the
1836          * inactive lists are large enough, continue reclaiming
1837          */
1838         pages_for_compaction = (2UL << sc->order);
1839         inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1840         if (nr_swap_pages > 0)
1841                 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1842         if (sc->nr_reclaimed < pages_for_compaction &&
1843                         inactive_lru_pages > pages_for_compaction)
1844                 return true;
1845
1846         /* If compaction would go ahead or the allocation would succeed, stop */
1847         switch (compaction_suitable(mz->zone, sc->order)) {
1848         case COMPACT_PARTIAL:
1849         case COMPACT_CONTINUE:
1850                 return false;
1851         default:
1852                 return true;
1853         }
1854 }
1855
1856 /*
1857  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1858  */
1859 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
1860                                    struct scan_control *sc)
1861 {
1862         unsigned long nr[NR_LRU_LISTS];
1863         unsigned long nr_to_scan;
1864         enum lru_list lru;
1865         unsigned long nr_reclaimed, nr_scanned;
1866         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1867         struct blk_plug plug;
1868
1869 restart:
1870         nr_reclaimed = 0;
1871         nr_scanned = sc->nr_scanned;
1872         get_scan_count(mz, sc, nr, priority);
1873
1874         blk_start_plug(&plug);
1875         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1876                                         nr[LRU_INACTIVE_FILE]) {
1877                 for_each_evictable_lru(lru) {
1878                         if (nr[lru]) {
1879                                 nr_to_scan = min_t(unsigned long,
1880                                                    nr[lru], SWAP_CLUSTER_MAX);
1881                                 nr[lru] -= nr_to_scan;
1882
1883                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1884                                                             mz, sc, priority);
1885                         }
1886                 }
1887                 /*
1888                  * On large memory systems, scan >> priority can become
1889                  * really large. This is fine for the starting priority;
1890                  * we want to put equal scanning pressure on each zone.
1891                  * However, if the VM has a harder time of freeing pages,
1892                  * with multiple processes reclaiming pages, the total
1893                  * freeing target can get unreasonably large.
1894                  */
1895                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1896                         break;
1897         }
1898         blk_finish_plug(&plug);
1899         sc->nr_reclaimed += nr_reclaimed;
1900
1901         /*
1902          * Even if we did not try to evict anon pages at all, we want to
1903          * rebalance the anon lru active/inactive ratio.
1904          */
1905         if (inactive_anon_is_low(mz))
1906                 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
1907
1908         /* reclaim/compaction might need reclaim to continue */
1909         if (should_continue_reclaim(mz, nr_reclaimed,
1910                                         sc->nr_scanned - nr_scanned,
1911                                         priority, sc))
1912                 goto restart;
1913
1914         throttle_vm_writeout(sc->gfp_mask);
1915 }
1916
1917 static void shrink_zone(int priority, struct zone *zone,
1918                         struct scan_control *sc)
1919 {
1920         struct mem_cgroup *root = sc->target_mem_cgroup;
1921         struct mem_cgroup_reclaim_cookie reclaim = {
1922                 .zone = zone,
1923                 .priority = priority,
1924         };
1925         struct mem_cgroup *memcg;
1926
1927         memcg = mem_cgroup_iter(root, NULL, &reclaim);
1928         do {
1929                 struct mem_cgroup_zone mz = {
1930                         .mem_cgroup = memcg,
1931                         .zone = zone,
1932                 };
1933
1934                 shrink_mem_cgroup_zone(priority, &mz, sc);
1935                 /*
1936                  * Limit reclaim has historically picked one memcg and
1937                  * scanned it with decreasing priority levels until
1938                  * nr_to_reclaim had been reclaimed.  This priority
1939                  * cycle is thus over after a single memcg.
1940                  *
1941                  * Direct reclaim and kswapd, on the other hand, have
1942                  * to scan all memory cgroups to fulfill the overall
1943                  * scan target for the zone.
1944                  */
1945                 if (!global_reclaim(sc)) {
1946                         mem_cgroup_iter_break(root, memcg);
1947                         break;
1948                 }
1949                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1950         } while (memcg);
1951 }
1952
1953 /* Returns true if compaction should go ahead for a high-order request */
1954 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1955 {
1956         unsigned long balance_gap, watermark;
1957         bool watermark_ok;
1958
1959         /* Do not consider compaction for orders reclaim is meant to satisfy */
1960         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1961                 return false;
1962
1963         /*
1964          * Compaction takes time to run and there are potentially other
1965          * callers using the pages just freed. Continue reclaiming until
1966          * there is a buffer of free pages available to give compaction
1967          * a reasonable chance of completing and allocating the page
1968          */
1969         balance_gap = min(low_wmark_pages(zone),
1970                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1971                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
1972         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1973         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1974
1975         /*
1976          * If compaction is deferred, reclaim up to a point where
1977          * compaction will have a chance of success when re-enabled
1978          */
1979         if (compaction_deferred(zone, sc->order))
1980                 return watermark_ok;
1981
1982         /* If compaction is not ready to start, keep reclaiming */
1983         if (!compaction_suitable(zone, sc->order))
1984                 return false;
1985
1986         return watermark_ok;
1987 }
1988
1989 /*
1990  * This is the direct reclaim path, for page-allocating processes.  We only
1991  * try to reclaim pages from zones which will satisfy the caller's allocation
1992  * request.
1993  *
1994  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1995  * Because:
1996  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1997  *    allocation or
1998  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1999  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2000  *    zone defense algorithm.
2001  *
2002  * If a zone is deemed to be full of pinned pages then just give it a light
2003  * scan then give up on it.
2004  *
2005  * This function returns true if a zone is being reclaimed for a costly
2006  * high-order allocation and compaction is ready to begin. This indicates to
2007  * the caller that it should consider retrying the allocation instead of
2008  * further reclaim.
2009  */
2010 static bool shrink_zones(int priority, struct zonelist *zonelist,
2011                                         struct scan_control *sc)
2012 {
2013         struct zoneref *z;
2014         struct zone *zone;
2015         unsigned long nr_soft_reclaimed;
2016         unsigned long nr_soft_scanned;
2017         bool aborted_reclaim = false;
2018
2019         /*
2020          * If the number of buffer_heads in the machine exceeds the maximum
2021          * allowed level, force direct reclaim to scan the highmem zone as
2022          * highmem pages could be pinning lowmem pages storing buffer_heads
2023          */
2024         if (buffer_heads_over_limit)
2025                 sc->gfp_mask |= __GFP_HIGHMEM;
2026
2027         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2028                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2029                 if (!populated_zone(zone))
2030                         continue;
2031                 /*
2032                  * Take care memory controller reclaiming has small influence
2033                  * to global LRU.
2034                  */
2035                 if (global_reclaim(sc)) {
2036                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2037                                 continue;
2038                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2039                                 continue;       /* Let kswapd poll it */
2040                         if (COMPACTION_BUILD) {
2041                                 /*
2042                                  * If we already have plenty of memory free for
2043                                  * compaction in this zone, don't free any more.
2044                                  * Even though compaction is invoked for any
2045                                  * non-zero order, only frequent costly order
2046                                  * reclamation is disruptive enough to become a
2047                                  * noticeable problem, like transparent huge
2048                                  * page allocations.
2049                                  */
2050                                 if (compaction_ready(zone, sc)) {
2051                                         aborted_reclaim = true;
2052                                         continue;
2053                                 }
2054                         }
2055                         /*
2056                          * This steals pages from memory cgroups over softlimit
2057                          * and returns the number of reclaimed pages and
2058                          * scanned pages. This works for global memory pressure
2059                          * and balancing, not for a memcg's limit.
2060                          */
2061                         nr_soft_scanned = 0;
2062                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2063                                                 sc->order, sc->gfp_mask,
2064                                                 &nr_soft_scanned);
2065                         sc->nr_reclaimed += nr_soft_reclaimed;
2066                         sc->nr_scanned += nr_soft_scanned;
2067                         /* need some check for avoid more shrink_zone() */
2068                 }
2069
2070                 shrink_zone(priority, zone, sc);
2071         }
2072
2073         return aborted_reclaim;
2074 }
2075
2076 static bool zone_reclaimable(struct zone *zone)
2077 {
2078         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2079 }
2080
2081 /* All zones in zonelist are unreclaimable? */
2082 static bool all_unreclaimable(struct zonelist *zonelist,
2083                 struct scan_control *sc)
2084 {
2085         struct zoneref *z;
2086         struct zone *zone;
2087
2088         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2089                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2090                 if (!populated_zone(zone))
2091                         continue;
2092                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2093                         continue;
2094                 if (!zone->all_unreclaimable)
2095                         return false;
2096         }
2097
2098         return true;
2099 }
2100
2101 /*
2102  * This is the main entry point to direct page reclaim.
2103  *
2104  * If a full scan of the inactive list fails to free enough memory then we
2105  * are "out of memory" and something needs to be killed.
2106  *
2107  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2108  * high - the zone may be full of dirty or under-writeback pages, which this
2109  * caller can't do much about.  We kick the writeback threads and take explicit
2110  * naps in the hope that some of these pages can be written.  But if the
2111  * allocating task holds filesystem locks which prevent writeout this might not
2112  * work, and the allocation attempt will fail.
2113  *
2114  * returns:     0, if no pages reclaimed
2115  *              else, the number of pages reclaimed
2116  */
2117 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2118                                         struct scan_control *sc,
2119                                         struct shrink_control *shrink)
2120 {
2121         int priority;
2122         unsigned long total_scanned = 0;
2123         struct reclaim_state *reclaim_state = current->reclaim_state;
2124         struct zoneref *z;
2125         struct zone *zone;
2126         unsigned long writeback_threshold;
2127         bool aborted_reclaim;
2128
2129         delayacct_freepages_start();
2130
2131         if (global_reclaim(sc))
2132                 count_vm_event(ALLOCSTALL);
2133
2134         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2135                 sc->nr_scanned = 0;
2136                 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2137
2138                 /*
2139                  * Don't shrink slabs when reclaiming memory from
2140                  * over limit cgroups
2141                  */
2142                 if (global_reclaim(sc)) {
2143                         unsigned long lru_pages = 0;
2144                         for_each_zone_zonelist(zone, z, zonelist,
2145                                         gfp_zone(sc->gfp_mask)) {
2146                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2147                                         continue;
2148
2149                                 lru_pages += zone_reclaimable_pages(zone);
2150                         }
2151
2152                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2153                         if (reclaim_state) {
2154                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2155                                 reclaim_state->reclaimed_slab = 0;
2156                         }
2157                 }
2158                 total_scanned += sc->nr_scanned;
2159                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2160                         goto out;
2161
2162                 /*
2163                  * Try to write back as many pages as we just scanned.  This
2164                  * tends to cause slow streaming writers to write data to the
2165                  * disk smoothly, at the dirtying rate, which is nice.   But
2166                  * that's undesirable in laptop mode, where we *want* lumpy
2167                  * writeout.  So in laptop mode, write out the whole world.
2168                  */
2169                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2170                 if (total_scanned > writeback_threshold) {
2171                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2172                                                 WB_REASON_TRY_TO_FREE_PAGES);
2173                         sc->may_writepage = 1;
2174                 }
2175
2176                 /* Take a nap, wait for some writeback to complete */
2177                 if (!sc->hibernation_mode && sc->nr_scanned &&
2178                     priority < DEF_PRIORITY - 2) {
2179                         struct zone *preferred_zone;
2180
2181                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2182                                                 &cpuset_current_mems_allowed,
2183                                                 &preferred_zone);
2184                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2185                 }
2186         }
2187
2188 out:
2189         delayacct_freepages_end();
2190
2191         if (sc->nr_reclaimed)
2192                 return sc->nr_reclaimed;
2193
2194         /*
2195          * As hibernation is going on, kswapd is freezed so that it can't mark
2196          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2197          * check.
2198          */
2199         if (oom_killer_disabled)
2200                 return 0;
2201
2202         /* Aborted reclaim to try compaction? don't OOM, then */
2203         if (aborted_reclaim)
2204                 return 1;
2205
2206         /* top priority shrink_zones still had more to do? don't OOM, then */
2207         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2208                 return 1;
2209
2210         return 0;
2211 }
2212
2213 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2214                                 gfp_t gfp_mask, nodemask_t *nodemask)
2215 {
2216         unsigned long nr_reclaimed;
2217         struct scan_control sc = {
2218                 .gfp_mask = gfp_mask,
2219                 .may_writepage = !laptop_mode,
2220                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2221                 .may_unmap = 1,
2222                 .may_swap = 1,
2223                 .order = order,
2224                 .target_mem_cgroup = NULL,
2225                 .nodemask = nodemask,
2226         };
2227         struct shrink_control shrink = {
2228                 .gfp_mask = sc.gfp_mask,
2229         };
2230
2231         trace_mm_vmscan_direct_reclaim_begin(order,
2232                                 sc.may_writepage,
2233                                 gfp_mask);
2234
2235         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2236
2237         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2238
2239         return nr_reclaimed;
2240 }
2241
2242 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2243
2244 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2245                                                 gfp_t gfp_mask, bool noswap,
2246                                                 struct zone *zone,
2247                                                 unsigned long *nr_scanned)
2248 {
2249         struct scan_control sc = {
2250                 .nr_scanned = 0,
2251                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2252                 .may_writepage = !laptop_mode,
2253                 .may_unmap = 1,
2254                 .may_swap = !noswap,
2255                 .order = 0,
2256                 .target_mem_cgroup = memcg,
2257         };
2258         struct mem_cgroup_zone mz = {
2259                 .mem_cgroup = memcg,
2260                 .zone = zone,
2261         };
2262
2263         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2264                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2265
2266         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2267                                                       sc.may_writepage,
2268                                                       sc.gfp_mask);
2269
2270         /*
2271          * NOTE: Although we can get the priority field, using it
2272          * here is not a good idea, since it limits the pages we can scan.
2273          * if we don't reclaim here, the shrink_zone from balance_pgdat
2274          * will pick up pages from other mem cgroup's as well. We hack
2275          * the priority and make it zero.
2276          */
2277         shrink_mem_cgroup_zone(0, &mz, &sc);
2278
2279         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2280
2281         *nr_scanned = sc.nr_scanned;
2282         return sc.nr_reclaimed;
2283 }
2284
2285 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2286                                            gfp_t gfp_mask,
2287                                            bool noswap)
2288 {
2289         struct zonelist *zonelist;
2290         unsigned long nr_reclaimed;
2291         int nid;
2292         struct scan_control sc = {
2293                 .may_writepage = !laptop_mode,
2294                 .may_unmap = 1,
2295                 .may_swap = !noswap,
2296                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2297                 .order = 0,
2298                 .target_mem_cgroup = memcg,
2299                 .nodemask = NULL, /* we don't care the placement */
2300                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2301                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2302         };
2303         struct shrink_control shrink = {
2304                 .gfp_mask = sc.gfp_mask,
2305         };
2306
2307         /*
2308          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2309          * take care of from where we get pages. So the node where we start the
2310          * scan does not need to be the current node.
2311          */
2312         nid = mem_cgroup_select_victim_node(memcg);
2313
2314         zonelist = NODE_DATA(nid)->node_zonelists;
2315
2316         trace_mm_vmscan_memcg_reclaim_begin(0,
2317                                             sc.may_writepage,
2318                                             sc.gfp_mask);
2319
2320         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2321
2322         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2323
2324         return nr_reclaimed;
2325 }
2326 #endif
2327
2328 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2329                             int priority)
2330 {
2331         struct mem_cgroup *memcg;
2332
2333         if (!total_swap_pages)
2334                 return;
2335
2336         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2337         do {
2338                 struct mem_cgroup_zone mz = {
2339                         .mem_cgroup = memcg,
2340                         .zone = zone,
2341                 };
2342
2343                 if (inactive_anon_is_low(&mz))
2344                         shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2345                                            sc, priority, 0);
2346
2347                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2348         } while (memcg);
2349 }
2350
2351 /*
2352  * pgdat_balanced is used when checking if a node is balanced for high-order
2353  * allocations. Only zones that meet watermarks and are in a zone allowed
2354  * by the callers classzone_idx are added to balanced_pages. The total of
2355  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2356  * for the node to be considered balanced. Forcing all zones to be balanced
2357  * for high orders can cause excessive reclaim when there are imbalanced zones.
2358  * The choice of 25% is due to
2359  *   o a 16M DMA zone that is balanced will not balance a zone on any
2360  *     reasonable sized machine
2361  *   o On all other machines, the top zone must be at least a reasonable
2362  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2363  *     would need to be at least 256M for it to be balance a whole node.
2364  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2365  *     to balance a node on its own. These seemed like reasonable ratios.
2366  */
2367 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2368                                                 int classzone_idx)
2369 {
2370         unsigned long present_pages = 0;
2371         int i;
2372
2373         for (i = 0; i <= classzone_idx; i++)
2374                 present_pages += pgdat->node_zones[i].present_pages;
2375
2376         /* A special case here: if zone has no page, we think it's balanced */
2377         return balanced_pages >= (present_pages >> 2);
2378 }
2379
2380 /* is kswapd sleeping prematurely? */
2381 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2382                                         int classzone_idx)
2383 {
2384         int i;
2385         unsigned long balanced = 0;
2386         bool all_zones_ok = true;
2387
2388         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2389         if (remaining)
2390                 return true;
2391
2392         /* Check the watermark levels */
2393         for (i = 0; i <= classzone_idx; i++) {
2394                 struct zone *zone = pgdat->node_zones + i;
2395
2396                 if (!populated_zone(zone))
2397                         continue;
2398
2399                 /*
2400                  * balance_pgdat() skips over all_unreclaimable after
2401                  * DEF_PRIORITY. Effectively, it considers them balanced so
2402                  * they must be considered balanced here as well if kswapd
2403                  * is to sleep
2404                  */
2405                 if (zone->all_unreclaimable) {
2406                         balanced += zone->present_pages;
2407                         continue;
2408                 }
2409
2410                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2411                                                         i, 0))
2412                         all_zones_ok = false;
2413                 else
2414                         balanced += zone->present_pages;
2415         }
2416
2417         /*
2418          * For high-order requests, the balanced zones must contain at least
2419          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2420          * must be balanced
2421          */
2422         if (order)
2423                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2424         else
2425                 return !all_zones_ok;
2426 }
2427
2428 /*
2429  * For kswapd, balance_pgdat() will work across all this node's zones until
2430  * they are all at high_wmark_pages(zone).
2431  *
2432  * Returns the final order kswapd was reclaiming at
2433  *
2434  * There is special handling here for zones which are full of pinned pages.
2435  * This can happen if the pages are all mlocked, or if they are all used by
2436  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2437  * What we do is to detect the case where all pages in the zone have been
2438  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2439  * dead and from now on, only perform a short scan.  Basically we're polling
2440  * the zone for when the problem goes away.
2441  *
2442  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2443  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2444  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2445  * lower zones regardless of the number of free pages in the lower zones. This
2446  * interoperates with the page allocator fallback scheme to ensure that aging
2447  * of pages is balanced across the zones.
2448  */
2449 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2450                                                         int *classzone_idx)
2451 {
2452         int all_zones_ok;
2453         unsigned long balanced;
2454         int priority;
2455         int i;
2456         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2457         unsigned long total_scanned;
2458         struct reclaim_state *reclaim_state = current->reclaim_state;
2459         unsigned long nr_soft_reclaimed;
2460         unsigned long nr_soft_scanned;
2461         struct scan_control sc = {
2462                 .gfp_mask = GFP_KERNEL,
2463                 .may_unmap = 1,
2464                 .may_swap = 1,
2465                 /*
2466                  * kswapd doesn't want to be bailed out while reclaim. because
2467                  * we want to put equal scanning pressure on each zone.
2468                  */
2469                 .nr_to_reclaim = ULONG_MAX,
2470                 .order = order,
2471                 .target_mem_cgroup = NULL,
2472         };
2473         struct shrink_control shrink = {
2474                 .gfp_mask = sc.gfp_mask,
2475         };
2476 loop_again:
2477         total_scanned = 0;
2478         sc.nr_reclaimed = 0;
2479         sc.may_writepage = !laptop_mode;
2480         count_vm_event(PAGEOUTRUN);
2481
2482         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2483                 unsigned long lru_pages = 0;
2484                 int has_under_min_watermark_zone = 0;
2485
2486                 all_zones_ok = 1;
2487                 balanced = 0;
2488
2489                 /*
2490                  * Scan in the highmem->dma direction for the highest
2491                  * zone which needs scanning
2492                  */
2493                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2494                         struct zone *zone = pgdat->node_zones + i;
2495
2496                         if (!populated_zone(zone))
2497                                 continue;
2498
2499                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2500                                 continue;
2501
2502                         /*
2503                          * Do some background aging of the anon list, to give
2504                          * pages a chance to be referenced before reclaiming.
2505                          */
2506                         age_active_anon(zone, &sc, priority);
2507
2508                         /*
2509                          * If the number of buffer_heads in the machine
2510                          * exceeds the maximum allowed level and this node
2511                          * has a highmem zone, force kswapd to reclaim from
2512                          * it to relieve lowmem pressure.
2513                          */
2514                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2515                                 end_zone = i;
2516                                 break;
2517                         }
2518
2519                         if (!zone_watermark_ok_safe(zone, order,
2520                                         high_wmark_pages(zone), 0, 0)) {
2521                                 end_zone = i;
2522                                 break;
2523                         } else {
2524                                 /* If balanced, clear the congested flag */
2525                                 zone_clear_flag(zone, ZONE_CONGESTED);
2526                         }
2527                 }
2528                 if (i < 0)
2529                         goto out;
2530
2531                 for (i = 0; i <= end_zone; i++) {
2532                         struct zone *zone = pgdat->node_zones + i;
2533
2534                         lru_pages += zone_reclaimable_pages(zone);
2535                 }
2536
2537                 /*
2538                  * Now scan the zone in the dma->highmem direction, stopping
2539                  * at the last zone which needs scanning.
2540                  *
2541                  * We do this because the page allocator works in the opposite
2542                  * direction.  This prevents the page allocator from allocating
2543                  * pages behind kswapd's direction of progress, which would
2544                  * cause too much scanning of the lower zones.
2545                  */
2546                 for (i = 0; i <= end_zone; i++) {
2547                         struct zone *zone = pgdat->node_zones + i;
2548                         int nr_slab, testorder;
2549                         unsigned long balance_gap;
2550
2551                         if (!populated_zone(zone))
2552                                 continue;
2553
2554                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2555                                 continue;
2556
2557                         sc.nr_scanned = 0;
2558
2559                         nr_soft_scanned = 0;
2560                         /*
2561                          * Call soft limit reclaim before calling shrink_zone.
2562                          */
2563                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2564                                                         order, sc.gfp_mask,
2565                                                         &nr_soft_scanned);
2566                         sc.nr_reclaimed += nr_soft_reclaimed;
2567                         total_scanned += nr_soft_scanned;
2568
2569                         /*
2570                          * We put equal pressure on every zone, unless
2571                          * one zone has way too many pages free
2572                          * already. The "too many pages" is defined
2573                          * as the high wmark plus a "gap" where the
2574                          * gap is either the low watermark or 1%
2575                          * of the zone, whichever is smaller.
2576                          */
2577                         balance_gap = min(low_wmark_pages(zone),
2578                                 (zone->present_pages +
2579                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2580                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2581                         /*
2582                          * Kswapd reclaims only single pages with compaction
2583                          * enabled. Trying too hard to reclaim until contiguous
2584                          * free pages have become available can hurt performance
2585                          * by evicting too much useful data from memory.
2586                          * Do not reclaim more than needed for compaction.
2587                          */
2588                         testorder = order;
2589                         if (COMPACTION_BUILD && order &&
2590                                         compaction_suitable(zone, order) !=
2591                                                 COMPACT_SKIPPED)
2592                                 testorder = 0;
2593
2594                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2595                                     !zone_watermark_ok_safe(zone, testorder,
2596                                         high_wmark_pages(zone) + balance_gap,
2597                                         end_zone, 0)) {
2598                                 shrink_zone(priority, zone, &sc);
2599
2600                                 reclaim_state->reclaimed_slab = 0;
2601                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2602                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2603                                 total_scanned += sc.nr_scanned;
2604
2605                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2606                                         zone->all_unreclaimable = 1;
2607                         }
2608
2609                         /*
2610                          * If we've done a decent amount of scanning and
2611                          * the reclaim ratio is low, start doing writepage
2612                          * even in laptop mode
2613                          */
2614                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2615                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2616                                 sc.may_writepage = 1;
2617
2618                         if (zone->all_unreclaimable) {
2619                                 if (end_zone && end_zone == i)
2620                                         end_zone--;
2621                                 continue;
2622                         }
2623
2624                         if (!zone_watermark_ok_safe(zone, testorder,
2625                                         high_wmark_pages(zone), end_zone, 0)) {
2626                                 all_zones_ok = 0;
2627                                 /*
2628                                  * We are still under min water mark.  This
2629                                  * means that we have a GFP_ATOMIC allocation
2630                                  * failure risk. Hurry up!
2631                                  */
2632                                 if (!zone_watermark_ok_safe(zone, order,
2633                                             min_wmark_pages(zone), end_zone, 0))
2634                                         has_under_min_watermark_zone = 1;
2635                         } else {
2636                                 /*
2637                                  * If a zone reaches its high watermark,
2638                                  * consider it to be no longer congested. It's
2639                                  * possible there are dirty pages backed by
2640                                  * congested BDIs but as pressure is relieved,
2641                                  * spectulatively avoid congestion waits
2642                                  */
2643                                 zone_clear_flag(zone, ZONE_CONGESTED);
2644                                 if (i <= *classzone_idx)
2645                                         balanced += zone->present_pages;
2646                         }
2647
2648                 }
2649                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2650                         break;          /* kswapd: all done */
2651                 /*
2652                  * OK, kswapd is getting into trouble.  Take a nap, then take
2653                  * another pass across the zones.
2654                  */
2655                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2656                         if (has_under_min_watermark_zone)
2657                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2658                         else
2659                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2660                 }
2661
2662                 /*
2663                  * We do this so kswapd doesn't build up large priorities for
2664                  * example when it is freeing in parallel with allocators. It
2665                  * matches the direct reclaim path behaviour in terms of impact
2666                  * on zone->*_priority.
2667                  */
2668                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2669                         break;
2670         }
2671 out:
2672
2673         /*
2674          * order-0: All zones must meet high watermark for a balanced node
2675          * high-order: Balanced zones must make up at least 25% of the node
2676          *             for the node to be balanced
2677          */
2678         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2679                 cond_resched();
2680
2681                 try_to_freeze();
2682
2683                 /*
2684                  * Fragmentation may mean that the system cannot be
2685                  * rebalanced for high-order allocations in all zones.
2686                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2687                  * it means the zones have been fully scanned and are still
2688                  * not balanced. For high-order allocations, there is
2689                  * little point trying all over again as kswapd may
2690                  * infinite loop.
2691                  *
2692                  * Instead, recheck all watermarks at order-0 as they
2693                  * are the most important. If watermarks are ok, kswapd will go
2694                  * back to sleep. High-order users can still perform direct
2695                  * reclaim if they wish.
2696                  */
2697                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2698                         order = sc.order = 0;
2699
2700                 goto loop_again;
2701         }
2702
2703         /*
2704          * If kswapd was reclaiming at a higher order, it has the option of
2705          * sleeping without all zones being balanced. Before it does, it must
2706          * ensure that the watermarks for order-0 on *all* zones are met and
2707          * that the congestion flags are cleared. The congestion flag must
2708          * be cleared as kswapd is the only mechanism that clears the flag
2709          * and it is potentially going to sleep here.
2710          */
2711         if (order) {
2712                 int zones_need_compaction = 1;
2713
2714                 for (i = 0; i <= end_zone; i++) {
2715                         struct zone *zone = pgdat->node_zones + i;
2716
2717                         if (!populated_zone(zone))
2718                                 continue;
2719
2720                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2721                                 continue;
2722
2723                         /* Would compaction fail due to lack of free memory? */
2724                         if (COMPACTION_BUILD &&
2725                             compaction_suitable(zone, order) == COMPACT_SKIPPED)
2726                                 goto loop_again;
2727
2728                         /* Confirm the zone is balanced for order-0 */
2729                         if (!zone_watermark_ok(zone, 0,
2730                                         high_wmark_pages(zone), 0, 0)) {
2731                                 order = sc.order = 0;
2732                                 goto loop_again;
2733                         }
2734
2735                         /* Check if the memory needs to be defragmented. */
2736                         if (zone_watermark_ok(zone, order,
2737                                     low_wmark_pages(zone), *classzone_idx, 0))
2738                                 zones_need_compaction = 0;
2739
2740                         /* If balanced, clear the congested flag */
2741                         zone_clear_flag(zone, ZONE_CONGESTED);
2742                 }
2743
2744                 if (zones_need_compaction)
2745                         compact_pgdat(pgdat, order);
2746         }
2747
2748         /*
2749          * Return the order we were reclaiming at so sleeping_prematurely()
2750          * makes a decision on the order we were last reclaiming at. However,
2751          * if another caller entered the allocator slow path while kswapd
2752          * was awake, order will remain at the higher level
2753          */
2754         *classzone_idx = end_zone;
2755         return order;
2756 }
2757
2758 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2759 {
2760         long remaining = 0;
2761         DEFINE_WAIT(wait);
2762
2763         if (freezing(current) || kthread_should_stop())
2764                 return;
2765
2766         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2767
2768         /* Try to sleep for a short interval */
2769         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2770                 remaining = schedule_timeout(HZ/10);
2771                 finish_wait(&pgdat->kswapd_wait, &wait);
2772                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2773         }
2774
2775         /*
2776          * After a short sleep, check if it was a premature sleep. If not, then
2777          * go fully to sleep until explicitly woken up.
2778          */
2779         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2780                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2781
2782                 /*
2783                  * vmstat counters are not perfectly accurate and the estimated
2784                  * value for counters such as NR_FREE_PAGES can deviate from the
2785                  * true value by nr_online_cpus * threshold. To avoid the zone
2786                  * watermarks being breached while under pressure, we reduce the
2787                  * per-cpu vmstat threshold while kswapd is awake and restore
2788                  * them before going back to sleep.
2789                  */
2790                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2791                 schedule();
2792                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2793         } else {
2794                 if (remaining)
2795                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2796                 else
2797                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2798         }
2799         finish_wait(&pgdat->kswapd_wait, &wait);
2800 }
2801
2802 /*
2803  * The background pageout daemon, started as a kernel thread
2804  * from the init process.
2805  *
2806  * This basically trickles out pages so that we have _some_
2807  * free memory available even if there is no other activity
2808  * that frees anything up. This is needed for things like routing
2809  * etc, where we otherwise might have all activity going on in
2810  * asynchronous contexts that cannot page things out.
2811  *
2812  * If there are applications that are active memory-allocators
2813  * (most normal use), this basically shouldn't matter.
2814  */
2815 static int kswapd(void *p)
2816 {
2817         unsigned long order, new_order;
2818         unsigned balanced_order;
2819         int classzone_idx, new_classzone_idx;
2820         int balanced_classzone_idx;
2821         pg_data_t *pgdat = (pg_data_t*)p;
2822         struct task_struct *tsk = current;
2823
2824         struct reclaim_state reclaim_state = {
2825                 .reclaimed_slab = 0,
2826         };
2827         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2828
2829         lockdep_set_current_reclaim_state(GFP_KERNEL);
2830
2831         if (!cpumask_empty(cpumask))
2832                 set_cpus_allowed_ptr(tsk, cpumask);
2833         current->reclaim_state = &reclaim_state;
2834
2835         /*
2836          * Tell the memory management that we're a "memory allocator",
2837          * and that if we need more memory we should get access to it
2838          * regardless (see "__alloc_pages()"). "kswapd" should
2839          * never get caught in the normal page freeing logic.
2840          *
2841          * (Kswapd normally doesn't need memory anyway, but sometimes
2842          * you need a small amount of memory in order to be able to
2843          * page out something else, and this flag essentially protects
2844          * us from recursively trying to free more memory as we're
2845          * trying to free the first piece of memory in the first place).
2846          */
2847         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2848         set_freezable();
2849
2850         order = new_order = 0;
2851         balanced_order = 0;
2852         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2853         balanced_classzone_idx = classzone_idx;
2854         for ( ; ; ) {
2855                 int ret;
2856
2857                 /*
2858                  * If the last balance_pgdat was unsuccessful it's unlikely a
2859                  * new request of a similar or harder type will succeed soon
2860                  * so consider going to sleep on the basis we reclaimed at
2861                  */
2862                 if (balanced_classzone_idx >= new_classzone_idx &&
2863                                         balanced_order == new_order) {
2864                         new_order = pgdat->kswapd_max_order;
2865                         new_classzone_idx = pgdat->classzone_idx;
2866                         pgdat->kswapd_max_order =  0;
2867                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2868                 }
2869
2870                 if (order < new_order || classzone_idx > new_classzone_idx) {
2871                         /*
2872                          * Don't sleep if someone wants a larger 'order'
2873                          * allocation or has tigher zone constraints
2874                          */
2875                         order = new_order;
2876                         classzone_idx = new_classzone_idx;
2877                 } else {
2878                         kswapd_try_to_sleep(pgdat, balanced_order,
2879                                                 balanced_classzone_idx);
2880                         order = pgdat->kswapd_max_order;
2881                         classzone_idx = pgdat->classzone_idx;
2882                         new_order = order;
2883                         new_classzone_idx = classzone_idx;
2884                         pgdat->kswapd_max_order = 0;
2885                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2886                 }
2887
2888                 ret = try_to_freeze();
2889                 if (kthread_should_stop())
2890                         break;
2891
2892                 /*
2893                  * We can speed up thawing tasks if we don't call balance_pgdat
2894                  * after returning from the refrigerator
2895                  */
2896                 if (!ret) {
2897                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2898                         balanced_classzone_idx = classzone_idx;
2899                         balanced_order = balance_pgdat(pgdat, order,
2900                                                 &balanced_classzone_idx);
2901                 }
2902         }
2903         return 0;
2904 }
2905
2906 /*
2907  * A zone is low on free memory, so wake its kswapd task to service it.
2908  */
2909 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2910 {
2911         pg_data_t *pgdat;
2912
2913         if (!populated_zone(zone))
2914                 return;
2915
2916         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2917                 return;
2918         pgdat = zone->zone_pgdat;
2919         if (pgdat->kswapd_max_order < order) {
2920                 pgdat->kswapd_max_order = order;
2921                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2922         }
2923         if (!waitqueue_active(&pgdat->kswapd_wait))
2924                 return;
2925         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2926                 return;
2927
2928         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2929         wake_up_interruptible(&pgdat->kswapd_wait);
2930 }
2931
2932 /*
2933  * The reclaimable count would be mostly accurate.
2934  * The less reclaimable pages may be
2935  * - mlocked pages, which will be moved to unevictable list when encountered
2936  * - mapped pages, which may require several travels to be reclaimed
2937  * - dirty pages, which is not "instantly" reclaimable
2938  */
2939 unsigned long global_reclaimable_pages(void)
2940 {
2941         int nr;
2942
2943         nr = global_page_state(NR_ACTIVE_FILE) +
2944              global_page_state(NR_INACTIVE_FILE);
2945
2946         if (nr_swap_pages > 0)
2947                 nr += global_page_state(NR_ACTIVE_ANON) +
2948                       global_page_state(NR_INACTIVE_ANON);
2949
2950         return nr;
2951 }
2952
2953 unsigned long zone_reclaimable_pages(struct zone *zone)
2954 {
2955         int nr;
2956
2957         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2958              zone_page_state(zone, NR_INACTIVE_FILE);
2959
2960         if (nr_swap_pages > 0)
2961                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2962                       zone_page_state(zone, NR_INACTIVE_ANON);
2963
2964         return nr;
2965 }
2966
2967 #ifdef CONFIG_HIBERNATION
2968 /*
2969  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2970  * freed pages.
2971  *
2972  * Rather than trying to age LRUs the aim is to preserve the overall
2973  * LRU order by reclaiming preferentially
2974  * inactive > active > active referenced > active mapped
2975  */
2976 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2977 {
2978         struct reclaim_state reclaim_state;
2979         struct scan_control sc = {
2980                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2981                 .may_swap = 1,
2982                 .may_unmap = 1,
2983                 .may_writepage = 1,
2984                 .nr_to_reclaim = nr_to_reclaim,
2985                 .hibernation_mode = 1,
2986                 .order = 0,
2987         };
2988         struct shrink_control shrink = {
2989                 .gfp_mask = sc.gfp_mask,
2990         };
2991         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2992         struct task_struct *p = current;
2993         unsigned long nr_reclaimed;
2994
2995         p->flags |= PF_MEMALLOC;
2996         lockdep_set_current_reclaim_state(sc.gfp_mask);
2997         reclaim_state.reclaimed_slab = 0;
2998         p->reclaim_state = &reclaim_state;
2999
3000         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3001
3002         p->reclaim_state = NULL;
3003         lockdep_clear_current_reclaim_state();
3004         p->flags &= ~PF_MEMALLOC;
3005
3006         return nr_reclaimed;
3007 }
3008 #endif /* CONFIG_HIBERNATION */
3009
3010 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3011    not required for correctness.  So if the last cpu in a node goes
3012    away, we get changed to run anywhere: as the first one comes back,
3013    restore their cpu bindings. */
3014 static int __devinit cpu_callback(struct notifier_block *nfb,
3015                                   unsigned long action, void *hcpu)
3016 {
3017         int nid;
3018
3019         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3020                 for_each_node_state(nid, N_HIGH_MEMORY) {
3021                         pg_data_t *pgdat = NODE_DATA(nid);
3022                         const struct cpumask *mask;
3023
3024                         mask = cpumask_of_node(pgdat->node_id);
3025
3026                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3027                                 /* One of our CPUs online: restore mask */
3028                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3029                 }
3030         }
3031         return NOTIFY_OK;
3032 }
3033
3034 /*
3035  * This kswapd start function will be called by init and node-hot-add.
3036  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3037  */
3038 int kswapd_run(int nid)
3039 {
3040         pg_data_t *pgdat = NODE_DATA(nid);
3041         int ret = 0;
3042
3043         if (pgdat->kswapd)
3044                 return 0;
3045
3046         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3047         if (IS_ERR(pgdat->kswapd)) {
3048                 /* failure at boot is fatal */
3049                 BUG_ON(system_state == SYSTEM_BOOTING);
3050                 printk("Failed to start kswapd on node %d\n",nid);
3051                 ret = -1;
3052         }
3053         return ret;
3054 }
3055
3056 /*
3057  * Called by memory hotplug when all memory in a node is offlined.
3058  */
3059 void kswapd_stop(int nid)
3060 {
3061         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3062
3063         if (kswapd)
3064                 kthread_stop(kswapd);
3065 }
3066
3067 static int __init kswapd_init(void)
3068 {
3069         int nid;
3070
3071         swap_setup();
3072         for_each_node_state(nid, N_HIGH_MEMORY)
3073                 kswapd_run(nid);
3074         hotcpu_notifier(cpu_callback, 0);
3075         return 0;
3076 }
3077
3078 module_init(kswapd_init)
3079
3080 #ifdef CONFIG_NUMA
3081 /*
3082  * Zone reclaim mode
3083  *
3084  * If non-zero call zone_reclaim when the number of free pages falls below
3085  * the watermarks.
3086  */
3087 int zone_reclaim_mode __read_mostly;
3088
3089 #define RECLAIM_OFF 0
3090 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3091 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3092 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3093
3094 /*
3095  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3096  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3097  * a zone.
3098  */
3099 #define ZONE_RECLAIM_PRIORITY 4
3100
3101 /*
3102  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3103  * occur.
3104  */
3105 int sysctl_min_unmapped_ratio = 1;
3106
3107 /*
3108  * If the number of slab pages in a zone grows beyond this percentage then
3109  * slab reclaim needs to occur.
3110  */
3111 int sysctl_min_slab_ratio = 5;
3112
3113 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3114 {
3115         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3116         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3117                 zone_page_state(zone, NR_ACTIVE_FILE);
3118
3119         /*
3120          * It's possible for there to be more file mapped pages than
3121          * accounted for by the pages on the file LRU lists because
3122          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3123          */
3124         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3125 }
3126
3127 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3128 static long zone_pagecache_reclaimable(struct zone *zone)
3129 {
3130         long nr_pagecache_reclaimable;
3131         long delta = 0;
3132
3133         /*
3134          * If RECLAIM_SWAP is set, then all file pages are considered
3135          * potentially reclaimable. Otherwise, we have to worry about
3136          * pages like swapcache and zone_unmapped_file_pages() provides
3137          * a better estimate
3138          */
3139         if (zone_reclaim_mode & RECLAIM_SWAP)
3140                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3141         else
3142                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3143
3144         /* If we can't clean pages, remove dirty pages from consideration */
3145         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3146                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3147
3148         /* Watch for any possible underflows due to delta */
3149         if (unlikely(delta > nr_pagecache_reclaimable))
3150                 delta = nr_pagecache_reclaimable;
3151
3152         return nr_pagecache_reclaimable - delta;
3153 }
3154
3155 /*
3156  * Try to free up some pages from this zone through reclaim.
3157  */
3158 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3159 {
3160         /* Minimum pages needed in order to stay on node */
3161         const unsigned long nr_pages = 1 << order;
3162         struct task_struct *p = current;
3163         struct reclaim_state reclaim_state;
3164         int priority;
3165         struct scan_control sc = {
3166                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3167                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3168                 .may_swap = 1,
3169                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3170                                        SWAP_CLUSTER_MAX),
3171                 .gfp_mask = gfp_mask,
3172                 .order = order,
3173         };
3174         struct shrink_control shrink = {
3175                 .gfp_mask = sc.gfp_mask,
3176         };
3177         unsigned long nr_slab_pages0, nr_slab_pages1;
3178
3179         cond_resched();
3180         /*
3181          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3182          * and we also need to be able to write out pages for RECLAIM_WRITE
3183          * and RECLAIM_SWAP.
3184          */
3185         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3186         lockdep_set_current_reclaim_state(gfp_mask);
3187         reclaim_state.reclaimed_slab = 0;
3188         p->reclaim_state = &reclaim_state;
3189
3190         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3191                 /*
3192                  * Free memory by calling shrink zone with increasing
3193                  * priorities until we have enough memory freed.
3194                  */
3195                 priority = ZONE_RECLAIM_PRIORITY;
3196                 do {
3197                         shrink_zone(priority, zone, &sc);
3198                         priority--;
3199                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3200         }
3201
3202         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3203         if (nr_slab_pages0 > zone->min_slab_pages) {
3204                 /*
3205                  * shrink_slab() does not currently allow us to determine how
3206                  * many pages were freed in this zone. So we take the current
3207                  * number of slab pages and shake the slab until it is reduced
3208                  * by the same nr_pages that we used for reclaiming unmapped
3209                  * pages.
3210                  *
3211                  * Note that shrink_slab will free memory on all zones and may
3212                  * take a long time.
3213                  */
3214                 for (;;) {
3215                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3216
3217                         /* No reclaimable slab or very low memory pressure */
3218                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3219                                 break;
3220
3221                         /* Freed enough memory */
3222                         nr_slab_pages1 = zone_page_state(zone,
3223                                                         NR_SLAB_RECLAIMABLE);
3224                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3225                                 break;
3226                 }
3227
3228                 /*
3229                  * Update nr_reclaimed by the number of slab pages we
3230                  * reclaimed from this zone.
3231                  */
3232                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3233                 if (nr_slab_pages1 < nr_slab_pages0)
3234                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3235         }
3236
3237         p->reclaim_state = NULL;
3238         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3239         lockdep_clear_current_reclaim_state();
3240         return sc.nr_reclaimed >= nr_pages;
3241 }
3242
3243 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3244 {
3245         int node_id;
3246         int ret;
3247
3248         /*
3249          * Zone reclaim reclaims unmapped file backed pages and
3250          * slab pages if we are over the defined limits.
3251          *
3252          * A small portion of unmapped file backed pages is needed for
3253          * file I/O otherwise pages read by file I/O will be immediately
3254          * thrown out if the zone is overallocated. So we do not reclaim
3255          * if less than a specified percentage of the zone is used by
3256          * unmapped file backed pages.
3257          */
3258         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3259             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3260                 return ZONE_RECLAIM_FULL;
3261
3262         if (zone->all_unreclaimable)
3263                 return ZONE_RECLAIM_FULL;
3264
3265         /*
3266          * Do not scan if the allocation should not be delayed.
3267          */
3268         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3269                 return ZONE_RECLAIM_NOSCAN;
3270
3271         /*
3272          * Only run zone reclaim on the local zone or on zones that do not
3273          * have associated processors. This will favor the local processor
3274          * over remote processors and spread off node memory allocations
3275          * as wide as possible.
3276          */
3277         node_id = zone_to_nid(zone);
3278         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3279                 return ZONE_RECLAIM_NOSCAN;
3280
3281         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3282                 return ZONE_RECLAIM_NOSCAN;
3283
3284         ret = __zone_reclaim(zone, gfp_mask, order);
3285         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3286
3287         if (!ret)
3288                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3289
3290         return ret;
3291 }
3292 #endif
3293
3294 /*
3295  * page_evictable - test whether a page is evictable
3296  * @page: the page to test
3297  * @vma: the VMA in which the page is or will be mapped, may be NULL
3298  *
3299  * Test whether page is evictable--i.e., should be placed on active/inactive
3300  * lists vs unevictable list.  The vma argument is !NULL when called from the
3301  * fault path to determine how to instantate a new page.
3302  *
3303  * Reasons page might not be evictable:
3304  * (1) page's mapping marked unevictable
3305  * (2) page is part of an mlocked VMA
3306  *
3307  */
3308 int page_evictable(struct page *page, struct vm_area_struct *vma)
3309 {
3310
3311         if (mapping_unevictable(page_mapping(page)))
3312                 return 0;
3313
3314         if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3315                 return 0;
3316
3317         return 1;
3318 }
3319
3320 #ifdef CONFIG_SHMEM
3321 /**
3322  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3323  * @pages:      array of pages to check
3324  * @nr_pages:   number of pages to check
3325  *
3326  * Checks pages for evictability and moves them to the appropriate lru list.
3327  *
3328  * This function is only used for SysV IPC SHM_UNLOCK.
3329  */
3330 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3331 {
3332         struct lruvec *lruvec;
3333         struct zone *zone = NULL;
3334         int pgscanned = 0;
3335         int pgrescued = 0;
3336         int i;
3337
3338         for (i = 0; i < nr_pages; i++) {
3339                 struct page *page = pages[i];
3340                 struct zone *pagezone;
3341
3342                 pgscanned++;
3343                 pagezone = page_zone(page);
3344                 if (pagezone != zone) {
3345                         if (zone)
3346                                 spin_unlock_irq(&zone->lru_lock);
3347                         zone = pagezone;
3348                         spin_lock_irq(&zone->lru_lock);
3349                 }
3350
3351                 if (!PageLRU(page) || !PageUnevictable(page))
3352                         continue;
3353
3354                 if (page_evictable(page, NULL)) {
3355                         enum lru_list lru = page_lru_base_type(page);
3356
3357                         VM_BUG_ON(PageActive(page));
3358                         ClearPageUnevictable(page);
3359                         __dec_zone_state(zone, NR_UNEVICTABLE);
3360                         lruvec = mem_cgroup_lru_move_lists(zone, page,
3361                                                 LRU_UNEVICTABLE, lru);
3362                         list_move(&page->lru, &lruvec->lists[lru]);
3363                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3364                         pgrescued++;
3365                 }
3366         }
3367
3368         if (zone) {
3369                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3370                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3371                 spin_unlock_irq(&zone->lru_lock);
3372         }
3373 }
3374 #endif /* CONFIG_SHMEM */
3375
3376 static void warn_scan_unevictable_pages(void)
3377 {
3378         printk_once(KERN_WARNING
3379                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3380                     "disabled for lack of a legitimate use case.  If you have "
3381                     "one, please send an email to linux-mm@kvack.org.\n",
3382                     current->comm);
3383 }
3384
3385 /*
3386  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3387  * all nodes' unevictable lists for evictable pages
3388  */
3389 unsigned long scan_unevictable_pages;
3390
3391 int scan_unevictable_handler(struct ctl_table *table, int write,
3392                            void __user *buffer,
3393                            size_t *length, loff_t *ppos)
3394 {
3395         warn_scan_unevictable_pages();
3396         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3397         scan_unevictable_pages = 0;
3398         return 0;
3399 }
3400
3401 #ifdef CONFIG_NUMA
3402 /*
3403  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3404  * a specified node's per zone unevictable lists for evictable pages.
3405  */
3406
3407 static ssize_t read_scan_unevictable_node(struct device *dev,
3408                                           struct device_attribute *attr,
3409                                           char *buf)
3410 {
3411         warn_scan_unevictable_pages();
3412         return sprintf(buf, "0\n");     /* always zero; should fit... */
3413 }
3414
3415 static ssize_t write_scan_unevictable_node(struct device *dev,
3416                                            struct device_attribute *attr,
3417                                         const char *buf, size_t count)
3418 {
3419         warn_scan_unevictable_pages();
3420         return 1;
3421 }
3422
3423
3424 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3425                         read_scan_unevictable_node,
3426                         write_scan_unevictable_node);
3427
3428 int scan_unevictable_register_node(struct node *node)
3429 {
3430         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3431 }
3432
3433 void scan_unevictable_unregister_node(struct node *node)
3434 {
3435         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3436 }
3437 #endif