]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmscan.c
drm/radeon: forever loop on error in radeon_do_test_moves()
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
52
53 #include "internal.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
57
58 struct scan_control {
59         /* Incremented by the number of inactive pages that were scanned */
60         unsigned long nr_scanned;
61
62         /* Number of pages freed so far during a call to shrink_zones() */
63         unsigned long nr_reclaimed;
64
65         /* How many pages shrink_list() should reclaim */
66         unsigned long nr_to_reclaim;
67
68         unsigned long hibernation_mode;
69
70         /* This context's GFP mask */
71         gfp_t gfp_mask;
72
73         int may_writepage;
74
75         /* Can mapped pages be reclaimed? */
76         int may_unmap;
77
78         /* Can pages be swapped as part of reclaim? */
79         int may_swap;
80
81         int order;
82
83         /* Scan (total_size >> priority) pages at once */
84         int priority;
85
86         /*
87          * The memory cgroup that hit its limit and as a result is the
88          * primary target of this reclaim invocation.
89          */
90         struct mem_cgroup *target_mem_cgroup;
91
92         /*
93          * Nodemask of nodes allowed by the caller. If NULL, all nodes
94          * are scanned.
95          */
96         nodemask_t      *nodemask;
97 };
98
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field)                    \
103         do {                                                            \
104                 if ((_page)->lru.prev != _base) {                       \
105                         struct page *prev;                              \
106                                                                         \
107                         prev = lru_to_page(&(_page->lru));              \
108                         prefetch(&prev->_field);                        \
109                 }                                                       \
110         } while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
117         do {                                                            \
118                 if ((_page)->lru.prev != _base) {                       \
119                         struct page *prev;                              \
120                                                                         \
121                         prev = lru_to_page(&(_page->lru));              \
122                         prefetchw(&prev->_field);                       \
123                 }                                                       \
124         } while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128
129 /*
130  * From 0 .. 100.  Higher means more swappy.
131  */
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
134
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137
138 #ifdef CONFIG_MEMCG
139 static bool global_reclaim(struct scan_control *sc)
140 {
141         return !sc->target_mem_cgroup;
142 }
143 #else
144 static bool global_reclaim(struct scan_control *sc)
145 {
146         return true;
147 }
148 #endif
149
150 unsigned long zone_reclaimable_pages(struct zone *zone)
151 {
152         int nr;
153
154         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155              zone_page_state(zone, NR_INACTIVE_FILE);
156
157         if (get_nr_swap_pages() > 0)
158                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159                       zone_page_state(zone, NR_INACTIVE_ANON);
160
161         return nr;
162 }
163
164 bool zone_reclaimable(struct zone *zone)
165 {
166         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167 }
168
169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170 {
171         if (!mem_cgroup_disabled())
172                 return mem_cgroup_get_lru_size(lruvec, lru);
173
174         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 }
176
177 /*
178  * Add a shrinker callback to be called from the vm.
179  */
180 int register_shrinker(struct shrinker *shrinker)
181 {
182         size_t size = sizeof(*shrinker->nr_deferred);
183
184         /*
185          * If we only have one possible node in the system anyway, save
186          * ourselves the trouble and disable NUMA aware behavior. This way we
187          * will save memory and some small loop time later.
188          */
189         if (nr_node_ids == 1)
190                 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191
192         if (shrinker->flags & SHRINKER_NUMA_AWARE)
193                 size *= nr_node_ids;
194
195         shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196         if (!shrinker->nr_deferred)
197                 return -ENOMEM;
198
199         down_write(&shrinker_rwsem);
200         list_add_tail(&shrinker->list, &shrinker_list);
201         up_write(&shrinker_rwsem);
202         return 0;
203 }
204 EXPORT_SYMBOL(register_shrinker);
205
206 /*
207  * Remove one
208  */
209 void unregister_shrinker(struct shrinker *shrinker)
210 {
211         down_write(&shrinker_rwsem);
212         list_del(&shrinker->list);
213         up_write(&shrinker_rwsem);
214 }
215 EXPORT_SYMBOL(unregister_shrinker);
216
217 #define SHRINK_BATCH 128
218
219 static unsigned long
220 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
221                  unsigned long nr_pages_scanned, unsigned long lru_pages)
222 {
223         unsigned long freed = 0;
224         unsigned long long delta;
225         long total_scan;
226         long max_pass;
227         long nr;
228         long new_nr;
229         int nid = shrinkctl->nid;
230         long batch_size = shrinker->batch ? shrinker->batch
231                                           : SHRINK_BATCH;
232
233         max_pass = shrinker->count_objects(shrinker, shrinkctl);
234         if (max_pass == 0)
235                 return 0;
236
237         /*
238          * copy the current shrinker scan count into a local variable
239          * and zero it so that other concurrent shrinker invocations
240          * don't also do this scanning work.
241          */
242         nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
243
244         total_scan = nr;
245         delta = (4 * nr_pages_scanned) / shrinker->seeks;
246         delta *= max_pass;
247         do_div(delta, lru_pages + 1);
248         total_scan += delta;
249         if (total_scan < 0) {
250                 printk(KERN_ERR
251                 "shrink_slab: %pF negative objects to delete nr=%ld\n",
252                        shrinker->scan_objects, total_scan);
253                 total_scan = max_pass;
254         }
255
256         /*
257          * We need to avoid excessive windup on filesystem shrinkers
258          * due to large numbers of GFP_NOFS allocations causing the
259          * shrinkers to return -1 all the time. This results in a large
260          * nr being built up so when a shrink that can do some work
261          * comes along it empties the entire cache due to nr >>>
262          * max_pass.  This is bad for sustaining a working set in
263          * memory.
264          *
265          * Hence only allow the shrinker to scan the entire cache when
266          * a large delta change is calculated directly.
267          */
268         if (delta < max_pass / 4)
269                 total_scan = min(total_scan, max_pass / 2);
270
271         /*
272          * Avoid risking looping forever due to too large nr value:
273          * never try to free more than twice the estimate number of
274          * freeable entries.
275          */
276         if (total_scan > max_pass * 2)
277                 total_scan = max_pass * 2;
278
279         trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
280                                 nr_pages_scanned, lru_pages,
281                                 max_pass, delta, total_scan);
282
283         while (total_scan >= batch_size) {
284                 unsigned long ret;
285
286                 shrinkctl->nr_to_scan = batch_size;
287                 ret = shrinker->scan_objects(shrinker, shrinkctl);
288                 if (ret == SHRINK_STOP)
289                         break;
290                 freed += ret;
291
292                 count_vm_events(SLABS_SCANNED, batch_size);
293                 total_scan -= batch_size;
294
295                 cond_resched();
296         }
297
298         /*
299          * move the unused scan count back into the shrinker in a
300          * manner that handles concurrent updates. If we exhausted the
301          * scan, there is no need to do an update.
302          */
303         if (total_scan > 0)
304                 new_nr = atomic_long_add_return(total_scan,
305                                                 &shrinker->nr_deferred[nid]);
306         else
307                 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
308
309         trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
310         return freed;
311 }
312
313 /*
314  * Call the shrink functions to age shrinkable caches
315  *
316  * Here we assume it costs one seek to replace a lru page and that it also
317  * takes a seek to recreate a cache object.  With this in mind we age equal
318  * percentages of the lru and ageable caches.  This should balance the seeks
319  * generated by these structures.
320  *
321  * If the vm encountered mapped pages on the LRU it increase the pressure on
322  * slab to avoid swapping.
323  *
324  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
325  *
326  * `lru_pages' represents the number of on-LRU pages in all the zones which
327  * are eligible for the caller's allocation attempt.  It is used for balancing
328  * slab reclaim versus page reclaim.
329  *
330  * Returns the number of slab objects which we shrunk.
331  */
332 unsigned long shrink_slab(struct shrink_control *shrinkctl,
333                           unsigned long nr_pages_scanned,
334                           unsigned long lru_pages)
335 {
336         struct shrinker *shrinker;
337         unsigned long freed = 0;
338
339         if (nr_pages_scanned == 0)
340                 nr_pages_scanned = SWAP_CLUSTER_MAX;
341
342         if (!down_read_trylock(&shrinker_rwsem)) {
343                 /*
344                  * If we would return 0, our callers would understand that we
345                  * have nothing else to shrink and give up trying. By returning
346                  * 1 we keep it going and assume we'll be able to shrink next
347                  * time.
348                  */
349                 freed = 1;
350                 goto out;
351         }
352
353         list_for_each_entry(shrinker, &shrinker_list, list) {
354                 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
355                         if (!node_online(shrinkctl->nid))
356                                 continue;
357
358                         if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
359                             (shrinkctl->nid != 0))
360                                 break;
361
362                         freed += shrink_slab_node(shrinkctl, shrinker,
363                                  nr_pages_scanned, lru_pages);
364
365                 }
366         }
367         up_read(&shrinker_rwsem);
368 out:
369         cond_resched();
370         return freed;
371 }
372
373 static inline int is_page_cache_freeable(struct page *page)
374 {
375         /*
376          * A freeable page cache page is referenced only by the caller
377          * that isolated the page, the page cache radix tree and
378          * optional buffer heads at page->private.
379          */
380         return page_count(page) - page_has_private(page) == 2;
381 }
382
383 static int may_write_to_queue(struct backing_dev_info *bdi,
384                               struct scan_control *sc)
385 {
386         if (current->flags & PF_SWAPWRITE)
387                 return 1;
388         if (!bdi_write_congested(bdi))
389                 return 1;
390         if (bdi == current->backing_dev_info)
391                 return 1;
392         return 0;
393 }
394
395 /*
396  * We detected a synchronous write error writing a page out.  Probably
397  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
398  * fsync(), msync() or close().
399  *
400  * The tricky part is that after writepage we cannot touch the mapping: nothing
401  * prevents it from being freed up.  But we have a ref on the page and once
402  * that page is locked, the mapping is pinned.
403  *
404  * We're allowed to run sleeping lock_page() here because we know the caller has
405  * __GFP_FS.
406  */
407 static void handle_write_error(struct address_space *mapping,
408                                 struct page *page, int error)
409 {
410         lock_page(page);
411         if (page_mapping(page) == mapping)
412                 mapping_set_error(mapping, error);
413         unlock_page(page);
414 }
415
416 /* possible outcome of pageout() */
417 typedef enum {
418         /* failed to write page out, page is locked */
419         PAGE_KEEP,
420         /* move page to the active list, page is locked */
421         PAGE_ACTIVATE,
422         /* page has been sent to the disk successfully, page is unlocked */
423         PAGE_SUCCESS,
424         /* page is clean and locked */
425         PAGE_CLEAN,
426 } pageout_t;
427
428 /*
429  * pageout is called by shrink_page_list() for each dirty page.
430  * Calls ->writepage().
431  */
432 static pageout_t pageout(struct page *page, struct address_space *mapping,
433                          struct scan_control *sc)
434 {
435         /*
436          * If the page is dirty, only perform writeback if that write
437          * will be non-blocking.  To prevent this allocation from being
438          * stalled by pagecache activity.  But note that there may be
439          * stalls if we need to run get_block().  We could test
440          * PagePrivate for that.
441          *
442          * If this process is currently in __generic_file_aio_write() against
443          * this page's queue, we can perform writeback even if that
444          * will block.
445          *
446          * If the page is swapcache, write it back even if that would
447          * block, for some throttling. This happens by accident, because
448          * swap_backing_dev_info is bust: it doesn't reflect the
449          * congestion state of the swapdevs.  Easy to fix, if needed.
450          */
451         if (!is_page_cache_freeable(page))
452                 return PAGE_KEEP;
453         if (!mapping) {
454                 /*
455                  * Some data journaling orphaned pages can have
456                  * page->mapping == NULL while being dirty with clean buffers.
457                  */
458                 if (page_has_private(page)) {
459                         if (try_to_free_buffers(page)) {
460                                 ClearPageDirty(page);
461                                 printk("%s: orphaned page\n", __func__);
462                                 return PAGE_CLEAN;
463                         }
464                 }
465                 return PAGE_KEEP;
466         }
467         if (mapping->a_ops->writepage == NULL)
468                 return PAGE_ACTIVATE;
469         if (!may_write_to_queue(mapping->backing_dev_info, sc))
470                 return PAGE_KEEP;
471
472         if (clear_page_dirty_for_io(page)) {
473                 int res;
474                 struct writeback_control wbc = {
475                         .sync_mode = WB_SYNC_NONE,
476                         .nr_to_write = SWAP_CLUSTER_MAX,
477                         .range_start = 0,
478                         .range_end = LLONG_MAX,
479                         .for_reclaim = 1,
480                 };
481
482                 SetPageReclaim(page);
483                 res = mapping->a_ops->writepage(page, &wbc);
484                 if (res < 0)
485                         handle_write_error(mapping, page, res);
486                 if (res == AOP_WRITEPAGE_ACTIVATE) {
487                         ClearPageReclaim(page);
488                         return PAGE_ACTIVATE;
489                 }
490
491                 if (!PageWriteback(page)) {
492                         /* synchronous write or broken a_ops? */
493                         ClearPageReclaim(page);
494                 }
495                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
496                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
497                 return PAGE_SUCCESS;
498         }
499
500         return PAGE_CLEAN;
501 }
502
503 /*
504  * Same as remove_mapping, but if the page is removed from the mapping, it
505  * gets returned with a refcount of 0.
506  */
507 static int __remove_mapping(struct address_space *mapping, struct page *page)
508 {
509         BUG_ON(!PageLocked(page));
510         BUG_ON(mapping != page_mapping(page));
511
512         spin_lock_irq(&mapping->tree_lock);
513         /*
514          * The non racy check for a busy page.
515          *
516          * Must be careful with the order of the tests. When someone has
517          * a ref to the page, it may be possible that they dirty it then
518          * drop the reference. So if PageDirty is tested before page_count
519          * here, then the following race may occur:
520          *
521          * get_user_pages(&page);
522          * [user mapping goes away]
523          * write_to(page);
524          *                              !PageDirty(page)    [good]
525          * SetPageDirty(page);
526          * put_page(page);
527          *                              !page_count(page)   [good, discard it]
528          *
529          * [oops, our write_to data is lost]
530          *
531          * Reversing the order of the tests ensures such a situation cannot
532          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
533          * load is not satisfied before that of page->_count.
534          *
535          * Note that if SetPageDirty is always performed via set_page_dirty,
536          * and thus under tree_lock, then this ordering is not required.
537          */
538         if (!page_freeze_refs(page, 2))
539                 goto cannot_free;
540         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
541         if (unlikely(PageDirty(page))) {
542                 page_unfreeze_refs(page, 2);
543                 goto cannot_free;
544         }
545
546         if (PageSwapCache(page)) {
547                 swp_entry_t swap = { .val = page_private(page) };
548                 __delete_from_swap_cache(page);
549                 spin_unlock_irq(&mapping->tree_lock);
550                 swapcache_free(swap, page);
551         } else {
552                 void (*freepage)(struct page *);
553
554                 freepage = mapping->a_ops->freepage;
555
556                 __delete_from_page_cache(page);
557                 spin_unlock_irq(&mapping->tree_lock);
558                 mem_cgroup_uncharge_cache_page(page);
559
560                 if (freepage != NULL)
561                         freepage(page);
562         }
563
564         return 1;
565
566 cannot_free:
567         spin_unlock_irq(&mapping->tree_lock);
568         return 0;
569 }
570
571 /*
572  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
573  * someone else has a ref on the page, abort and return 0.  If it was
574  * successfully detached, return 1.  Assumes the caller has a single ref on
575  * this page.
576  */
577 int remove_mapping(struct address_space *mapping, struct page *page)
578 {
579         if (__remove_mapping(mapping, page)) {
580                 /*
581                  * Unfreezing the refcount with 1 rather than 2 effectively
582                  * drops the pagecache ref for us without requiring another
583                  * atomic operation.
584                  */
585                 page_unfreeze_refs(page, 1);
586                 return 1;
587         }
588         return 0;
589 }
590
591 /**
592  * putback_lru_page - put previously isolated page onto appropriate LRU list
593  * @page: page to be put back to appropriate lru list
594  *
595  * Add previously isolated @page to appropriate LRU list.
596  * Page may still be unevictable for other reasons.
597  *
598  * lru_lock must not be held, interrupts must be enabled.
599  */
600 void putback_lru_page(struct page *page)
601 {
602         bool is_unevictable;
603         int was_unevictable = PageUnevictable(page);
604
605         VM_BUG_ON(PageLRU(page));
606
607 redo:
608         ClearPageUnevictable(page);
609
610         if (page_evictable(page)) {
611                 /*
612                  * For evictable pages, we can use the cache.
613                  * In event of a race, worst case is we end up with an
614                  * unevictable page on [in]active list.
615                  * We know how to handle that.
616                  */
617                 is_unevictable = false;
618                 lru_cache_add(page);
619         } else {
620                 /*
621                  * Put unevictable pages directly on zone's unevictable
622                  * list.
623                  */
624                 is_unevictable = true;
625                 add_page_to_unevictable_list(page);
626                 /*
627                  * When racing with an mlock or AS_UNEVICTABLE clearing
628                  * (page is unlocked) make sure that if the other thread
629                  * does not observe our setting of PG_lru and fails
630                  * isolation/check_move_unevictable_pages,
631                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
632                  * the page back to the evictable list.
633                  *
634                  * The other side is TestClearPageMlocked() or shmem_lock().
635                  */
636                 smp_mb();
637         }
638
639         /*
640          * page's status can change while we move it among lru. If an evictable
641          * page is on unevictable list, it never be freed. To avoid that,
642          * check after we added it to the list, again.
643          */
644         if (is_unevictable && page_evictable(page)) {
645                 if (!isolate_lru_page(page)) {
646                         put_page(page);
647                         goto redo;
648                 }
649                 /* This means someone else dropped this page from LRU
650                  * So, it will be freed or putback to LRU again. There is
651                  * nothing to do here.
652                  */
653         }
654
655         if (was_unevictable && !is_unevictable)
656                 count_vm_event(UNEVICTABLE_PGRESCUED);
657         else if (!was_unevictable && is_unevictable)
658                 count_vm_event(UNEVICTABLE_PGCULLED);
659
660         put_page(page);         /* drop ref from isolate */
661 }
662
663 enum page_references {
664         PAGEREF_RECLAIM,
665         PAGEREF_RECLAIM_CLEAN,
666         PAGEREF_KEEP,
667         PAGEREF_ACTIVATE,
668 };
669
670 static enum page_references page_check_references(struct page *page,
671                                                   struct scan_control *sc)
672 {
673         int referenced_ptes, referenced_page;
674         unsigned long vm_flags;
675
676         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
677                                           &vm_flags);
678         referenced_page = TestClearPageReferenced(page);
679
680         /*
681          * Mlock lost the isolation race with us.  Let try_to_unmap()
682          * move the page to the unevictable list.
683          */
684         if (vm_flags & VM_LOCKED)
685                 return PAGEREF_RECLAIM;
686
687         if (referenced_ptes) {
688                 if (PageSwapBacked(page))
689                         return PAGEREF_ACTIVATE;
690                 /*
691                  * All mapped pages start out with page table
692                  * references from the instantiating fault, so we need
693                  * to look twice if a mapped file page is used more
694                  * than once.
695                  *
696                  * Mark it and spare it for another trip around the
697                  * inactive list.  Another page table reference will
698                  * lead to its activation.
699                  *
700                  * Note: the mark is set for activated pages as well
701                  * so that recently deactivated but used pages are
702                  * quickly recovered.
703                  */
704                 SetPageReferenced(page);
705
706                 if (referenced_page || referenced_ptes > 1)
707                         return PAGEREF_ACTIVATE;
708
709                 /*
710                  * Activate file-backed executable pages after first usage.
711                  */
712                 if (vm_flags & VM_EXEC)
713                         return PAGEREF_ACTIVATE;
714
715                 return PAGEREF_KEEP;
716         }
717
718         /* Reclaim if clean, defer dirty pages to writeback */
719         if (referenced_page && !PageSwapBacked(page))
720                 return PAGEREF_RECLAIM_CLEAN;
721
722         return PAGEREF_RECLAIM;
723 }
724
725 /* Check if a page is dirty or under writeback */
726 static void page_check_dirty_writeback(struct page *page,
727                                        bool *dirty, bool *writeback)
728 {
729         struct address_space *mapping;
730
731         /*
732          * Anonymous pages are not handled by flushers and must be written
733          * from reclaim context. Do not stall reclaim based on them
734          */
735         if (!page_is_file_cache(page)) {
736                 *dirty = false;
737                 *writeback = false;
738                 return;
739         }
740
741         /* By default assume that the page flags are accurate */
742         *dirty = PageDirty(page);
743         *writeback = PageWriteback(page);
744
745         /* Verify dirty/writeback state if the filesystem supports it */
746         if (!page_has_private(page))
747                 return;
748
749         mapping = page_mapping(page);
750         if (mapping && mapping->a_ops->is_dirty_writeback)
751                 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
752 }
753
754 /*
755  * shrink_page_list() returns the number of reclaimed pages
756  */
757 static unsigned long shrink_page_list(struct list_head *page_list,
758                                       struct zone *zone,
759                                       struct scan_control *sc,
760                                       enum ttu_flags ttu_flags,
761                                       unsigned long *ret_nr_dirty,
762                                       unsigned long *ret_nr_unqueued_dirty,
763                                       unsigned long *ret_nr_congested,
764                                       unsigned long *ret_nr_writeback,
765                                       unsigned long *ret_nr_immediate,
766                                       bool force_reclaim)
767 {
768         LIST_HEAD(ret_pages);
769         LIST_HEAD(free_pages);
770         int pgactivate = 0;
771         unsigned long nr_unqueued_dirty = 0;
772         unsigned long nr_dirty = 0;
773         unsigned long nr_congested = 0;
774         unsigned long nr_reclaimed = 0;
775         unsigned long nr_writeback = 0;
776         unsigned long nr_immediate = 0;
777
778         cond_resched();
779
780         mem_cgroup_uncharge_start();
781         while (!list_empty(page_list)) {
782                 struct address_space *mapping;
783                 struct page *page;
784                 int may_enter_fs;
785                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
786                 bool dirty, writeback;
787
788                 cond_resched();
789
790                 page = lru_to_page(page_list);
791                 list_del(&page->lru);
792
793                 if (!trylock_page(page))
794                         goto keep;
795
796                 VM_BUG_ON(PageActive(page));
797                 VM_BUG_ON(page_zone(page) != zone);
798
799                 sc->nr_scanned++;
800
801                 if (unlikely(!page_evictable(page)))
802                         goto cull_mlocked;
803
804                 if (!sc->may_unmap && page_mapped(page))
805                         goto keep_locked;
806
807                 /* Double the slab pressure for mapped and swapcache pages */
808                 if (page_mapped(page) || PageSwapCache(page))
809                         sc->nr_scanned++;
810
811                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
812                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
813
814                 /*
815                  * The number of dirty pages determines if a zone is marked
816                  * reclaim_congested which affects wait_iff_congested. kswapd
817                  * will stall and start writing pages if the tail of the LRU
818                  * is all dirty unqueued pages.
819                  */
820                 page_check_dirty_writeback(page, &dirty, &writeback);
821                 if (dirty || writeback)
822                         nr_dirty++;
823
824                 if (dirty && !writeback)
825                         nr_unqueued_dirty++;
826
827                 /*
828                  * Treat this page as congested if the underlying BDI is or if
829                  * pages are cycling through the LRU so quickly that the
830                  * pages marked for immediate reclaim are making it to the
831                  * end of the LRU a second time.
832                  */
833                 mapping = page_mapping(page);
834                 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
835                     (writeback && PageReclaim(page)))
836                         nr_congested++;
837
838                 /*
839                  * If a page at the tail of the LRU is under writeback, there
840                  * are three cases to consider.
841                  *
842                  * 1) If reclaim is encountering an excessive number of pages
843                  *    under writeback and this page is both under writeback and
844                  *    PageReclaim then it indicates that pages are being queued
845                  *    for IO but are being recycled through the LRU before the
846                  *    IO can complete. Waiting on the page itself risks an
847                  *    indefinite stall if it is impossible to writeback the
848                  *    page due to IO error or disconnected storage so instead
849                  *    note that the LRU is being scanned too quickly and the
850                  *    caller can stall after page list has been processed.
851                  *
852                  * 2) Global reclaim encounters a page, memcg encounters a
853                  *    page that is not marked for immediate reclaim or
854                  *    the caller does not have __GFP_IO. In this case mark
855                  *    the page for immediate reclaim and continue scanning.
856                  *
857                  *    __GFP_IO is checked  because a loop driver thread might
858                  *    enter reclaim, and deadlock if it waits on a page for
859                  *    which it is needed to do the write (loop masks off
860                  *    __GFP_IO|__GFP_FS for this reason); but more thought
861                  *    would probably show more reasons.
862                  *
863                  *    Don't require __GFP_FS, since we're not going into the
864                  *    FS, just waiting on its writeback completion. Worryingly,
865                  *    ext4 gfs2 and xfs allocate pages with
866                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
867                  *    may_enter_fs here is liable to OOM on them.
868                  *
869                  * 3) memcg encounters a page that is not already marked
870                  *    PageReclaim. memcg does not have any dirty pages
871                  *    throttling so we could easily OOM just because too many
872                  *    pages are in writeback and there is nothing else to
873                  *    reclaim. Wait for the writeback to complete.
874                  */
875                 if (PageWriteback(page)) {
876                         /* Case 1 above */
877                         if (current_is_kswapd() &&
878                             PageReclaim(page) &&
879                             zone_is_reclaim_writeback(zone)) {
880                                 nr_immediate++;
881                                 goto keep_locked;
882
883                         /* Case 2 above */
884                         } else if (global_reclaim(sc) ||
885                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
886                                 /*
887                                  * This is slightly racy - end_page_writeback()
888                                  * might have just cleared PageReclaim, then
889                                  * setting PageReclaim here end up interpreted
890                                  * as PageReadahead - but that does not matter
891                                  * enough to care.  What we do want is for this
892                                  * page to have PageReclaim set next time memcg
893                                  * reclaim reaches the tests above, so it will
894                                  * then wait_on_page_writeback() to avoid OOM;
895                                  * and it's also appropriate in global reclaim.
896                                  */
897                                 SetPageReclaim(page);
898                                 nr_writeback++;
899
900                                 goto keep_locked;
901
902                         /* Case 3 above */
903                         } else {
904                                 wait_on_page_writeback(page);
905                         }
906                 }
907
908                 if (!force_reclaim)
909                         references = page_check_references(page, sc);
910
911                 switch (references) {
912                 case PAGEREF_ACTIVATE:
913                         goto activate_locked;
914                 case PAGEREF_KEEP:
915                         goto keep_locked;
916                 case PAGEREF_RECLAIM:
917                 case PAGEREF_RECLAIM_CLEAN:
918                         ; /* try to reclaim the page below */
919                 }
920
921                 /*
922                  * Anonymous process memory has backing store?
923                  * Try to allocate it some swap space here.
924                  */
925                 if (PageAnon(page) && !PageSwapCache(page)) {
926                         if (!(sc->gfp_mask & __GFP_IO))
927                                 goto keep_locked;
928                         if (!add_to_swap(page, page_list))
929                                 goto activate_locked;
930                         may_enter_fs = 1;
931
932                         /* Adding to swap updated mapping */
933                         mapping = page_mapping(page);
934                 }
935
936                 /*
937                  * The page is mapped into the page tables of one or more
938                  * processes. Try to unmap it here.
939                  */
940                 if (page_mapped(page) && mapping) {
941                         switch (try_to_unmap(page, ttu_flags)) {
942                         case SWAP_FAIL:
943                                 goto activate_locked;
944                         case SWAP_AGAIN:
945                                 goto keep_locked;
946                         case SWAP_MLOCK:
947                                 goto cull_mlocked;
948                         case SWAP_SUCCESS:
949                                 ; /* try to free the page below */
950                         }
951                 }
952
953                 if (PageDirty(page)) {
954                         /*
955                          * Only kswapd can writeback filesystem pages to
956                          * avoid risk of stack overflow but only writeback
957                          * if many dirty pages have been encountered.
958                          */
959                         if (page_is_file_cache(page) &&
960                                         (!current_is_kswapd() ||
961                                          !zone_is_reclaim_dirty(zone))) {
962                                 /*
963                                  * Immediately reclaim when written back.
964                                  * Similar in principal to deactivate_page()
965                                  * except we already have the page isolated
966                                  * and know it's dirty
967                                  */
968                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
969                                 SetPageReclaim(page);
970
971                                 goto keep_locked;
972                         }
973
974                         if (references == PAGEREF_RECLAIM_CLEAN)
975                                 goto keep_locked;
976                         if (!may_enter_fs)
977                                 goto keep_locked;
978                         if (!sc->may_writepage)
979                                 goto keep_locked;
980
981                         /* Page is dirty, try to write it out here */
982                         switch (pageout(page, mapping, sc)) {
983                         case PAGE_KEEP:
984                                 goto keep_locked;
985                         case PAGE_ACTIVATE:
986                                 goto activate_locked;
987                         case PAGE_SUCCESS:
988                                 if (PageWriteback(page))
989                                         goto keep;
990                                 if (PageDirty(page))
991                                         goto keep;
992
993                                 /*
994                                  * A synchronous write - probably a ramdisk.  Go
995                                  * ahead and try to reclaim the page.
996                                  */
997                                 if (!trylock_page(page))
998                                         goto keep;
999                                 if (PageDirty(page) || PageWriteback(page))
1000                                         goto keep_locked;
1001                                 mapping = page_mapping(page);
1002                         case PAGE_CLEAN:
1003                                 ; /* try to free the page below */
1004                         }
1005                 }
1006
1007                 /*
1008                  * If the page has buffers, try to free the buffer mappings
1009                  * associated with this page. If we succeed we try to free
1010                  * the page as well.
1011                  *
1012                  * We do this even if the page is PageDirty().
1013                  * try_to_release_page() does not perform I/O, but it is
1014                  * possible for a page to have PageDirty set, but it is actually
1015                  * clean (all its buffers are clean).  This happens if the
1016                  * buffers were written out directly, with submit_bh(). ext3
1017                  * will do this, as well as the blockdev mapping.
1018                  * try_to_release_page() will discover that cleanness and will
1019                  * drop the buffers and mark the page clean - it can be freed.
1020                  *
1021                  * Rarely, pages can have buffers and no ->mapping.  These are
1022                  * the pages which were not successfully invalidated in
1023                  * truncate_complete_page().  We try to drop those buffers here
1024                  * and if that worked, and the page is no longer mapped into
1025                  * process address space (page_count == 1) it can be freed.
1026                  * Otherwise, leave the page on the LRU so it is swappable.
1027                  */
1028                 if (page_has_private(page)) {
1029                         if (!try_to_release_page(page, sc->gfp_mask))
1030                                 goto activate_locked;
1031                         if (!mapping && page_count(page) == 1) {
1032                                 unlock_page(page);
1033                                 if (put_page_testzero(page))
1034                                         goto free_it;
1035                                 else {
1036                                         /*
1037                                          * rare race with speculative reference.
1038                                          * the speculative reference will free
1039                                          * this page shortly, so we may
1040                                          * increment nr_reclaimed here (and
1041                                          * leave it off the LRU).
1042                                          */
1043                                         nr_reclaimed++;
1044                                         continue;
1045                                 }
1046                         }
1047                 }
1048
1049                 if (!mapping || !__remove_mapping(mapping, page))
1050                         goto keep_locked;
1051
1052                 /*
1053                  * At this point, we have no other references and there is
1054                  * no way to pick any more up (removed from LRU, removed
1055                  * from pagecache). Can use non-atomic bitops now (and
1056                  * we obviously don't have to worry about waking up a process
1057                  * waiting on the page lock, because there are no references.
1058                  */
1059                 __clear_page_locked(page);
1060 free_it:
1061                 nr_reclaimed++;
1062
1063                 /*
1064                  * Is there need to periodically free_page_list? It would
1065                  * appear not as the counts should be low
1066                  */
1067                 list_add(&page->lru, &free_pages);
1068                 continue;
1069
1070 cull_mlocked:
1071                 if (PageSwapCache(page))
1072                         try_to_free_swap(page);
1073                 unlock_page(page);
1074                 putback_lru_page(page);
1075                 continue;
1076
1077 activate_locked:
1078                 /* Not a candidate for swapping, so reclaim swap space. */
1079                 if (PageSwapCache(page) && vm_swap_full())
1080                         try_to_free_swap(page);
1081                 VM_BUG_ON(PageActive(page));
1082                 SetPageActive(page);
1083                 pgactivate++;
1084 keep_locked:
1085                 unlock_page(page);
1086 keep:
1087                 list_add(&page->lru, &ret_pages);
1088                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1089         }
1090
1091         free_hot_cold_page_list(&free_pages, 1);
1092
1093         list_splice(&ret_pages, page_list);
1094         count_vm_events(PGACTIVATE, pgactivate);
1095         mem_cgroup_uncharge_end();
1096         *ret_nr_dirty += nr_dirty;
1097         *ret_nr_congested += nr_congested;
1098         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1099         *ret_nr_writeback += nr_writeback;
1100         *ret_nr_immediate += nr_immediate;
1101         return nr_reclaimed;
1102 }
1103
1104 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1105                                             struct list_head *page_list)
1106 {
1107         struct scan_control sc = {
1108                 .gfp_mask = GFP_KERNEL,
1109                 .priority = DEF_PRIORITY,
1110                 .may_unmap = 1,
1111         };
1112         unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1113         struct page *page, *next;
1114         LIST_HEAD(clean_pages);
1115
1116         list_for_each_entry_safe(page, next, page_list, lru) {
1117                 if (page_is_file_cache(page) && !PageDirty(page) &&
1118                     !isolated_balloon_page(page)) {
1119                         ClearPageActive(page);
1120                         list_move(&page->lru, &clean_pages);
1121                 }
1122         }
1123
1124         ret = shrink_page_list(&clean_pages, zone, &sc,
1125                         TTU_UNMAP|TTU_IGNORE_ACCESS,
1126                         &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1127         list_splice(&clean_pages, page_list);
1128         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1129         return ret;
1130 }
1131
1132 /*
1133  * Attempt to remove the specified page from its LRU.  Only take this page
1134  * if it is of the appropriate PageActive status.  Pages which are being
1135  * freed elsewhere are also ignored.
1136  *
1137  * page:        page to consider
1138  * mode:        one of the LRU isolation modes defined above
1139  *
1140  * returns 0 on success, -ve errno on failure.
1141  */
1142 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1143 {
1144         int ret = -EINVAL;
1145
1146         /* Only take pages on the LRU. */
1147         if (!PageLRU(page))
1148                 return ret;
1149
1150         /* Compaction should not handle unevictable pages but CMA can do so */
1151         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1152                 return ret;
1153
1154         ret = -EBUSY;
1155
1156         /*
1157          * To minimise LRU disruption, the caller can indicate that it only
1158          * wants to isolate pages it will be able to operate on without
1159          * blocking - clean pages for the most part.
1160          *
1161          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1162          * is used by reclaim when it is cannot write to backing storage
1163          *
1164          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1165          * that it is possible to migrate without blocking
1166          */
1167         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1168                 /* All the caller can do on PageWriteback is block */
1169                 if (PageWriteback(page))
1170                         return ret;
1171
1172                 if (PageDirty(page)) {
1173                         struct address_space *mapping;
1174
1175                         /* ISOLATE_CLEAN means only clean pages */
1176                         if (mode & ISOLATE_CLEAN)
1177                                 return ret;
1178
1179                         /*
1180                          * Only pages without mappings or that have a
1181                          * ->migratepage callback are possible to migrate
1182                          * without blocking
1183                          */
1184                         mapping = page_mapping(page);
1185                         if (mapping && !mapping->a_ops->migratepage)
1186                                 return ret;
1187                 }
1188         }
1189
1190         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1191                 return ret;
1192
1193         if (likely(get_page_unless_zero(page))) {
1194                 /*
1195                  * Be careful not to clear PageLRU until after we're
1196                  * sure the page is not being freed elsewhere -- the
1197                  * page release code relies on it.
1198                  */
1199                 ClearPageLRU(page);
1200                 ret = 0;
1201         }
1202
1203         return ret;
1204 }
1205
1206 /*
1207  * zone->lru_lock is heavily contended.  Some of the functions that
1208  * shrink the lists perform better by taking out a batch of pages
1209  * and working on them outside the LRU lock.
1210  *
1211  * For pagecache intensive workloads, this function is the hottest
1212  * spot in the kernel (apart from copy_*_user functions).
1213  *
1214  * Appropriate locks must be held before calling this function.
1215  *
1216  * @nr_to_scan: The number of pages to look through on the list.
1217  * @lruvec:     The LRU vector to pull pages from.
1218  * @dst:        The temp list to put pages on to.
1219  * @nr_scanned: The number of pages that were scanned.
1220  * @sc:         The scan_control struct for this reclaim session
1221  * @mode:       One of the LRU isolation modes
1222  * @lru:        LRU list id for isolating
1223  *
1224  * returns how many pages were moved onto *@dst.
1225  */
1226 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1227                 struct lruvec *lruvec, struct list_head *dst,
1228                 unsigned long *nr_scanned, struct scan_control *sc,
1229                 isolate_mode_t mode, enum lru_list lru)
1230 {
1231         struct list_head *src = &lruvec->lists[lru];
1232         unsigned long nr_taken = 0;
1233         unsigned long scan;
1234
1235         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1236                 struct page *page;
1237                 int nr_pages;
1238
1239                 page = lru_to_page(src);
1240                 prefetchw_prev_lru_page(page, src, flags);
1241
1242                 VM_BUG_ON(!PageLRU(page));
1243
1244                 switch (__isolate_lru_page(page, mode)) {
1245                 case 0:
1246                         nr_pages = hpage_nr_pages(page);
1247                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1248                         list_move(&page->lru, dst);
1249                         nr_taken += nr_pages;
1250                         break;
1251
1252                 case -EBUSY:
1253                         /* else it is being freed elsewhere */
1254                         list_move(&page->lru, src);
1255                         continue;
1256
1257                 default:
1258                         BUG();
1259                 }
1260         }
1261
1262         *nr_scanned = scan;
1263         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1264                                     nr_taken, mode, is_file_lru(lru));
1265         return nr_taken;
1266 }
1267
1268 /**
1269  * isolate_lru_page - tries to isolate a page from its LRU list
1270  * @page: page to isolate from its LRU list
1271  *
1272  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1273  * vmstat statistic corresponding to whatever LRU list the page was on.
1274  *
1275  * Returns 0 if the page was removed from an LRU list.
1276  * Returns -EBUSY if the page was not on an LRU list.
1277  *
1278  * The returned page will have PageLRU() cleared.  If it was found on
1279  * the active list, it will have PageActive set.  If it was found on
1280  * the unevictable list, it will have the PageUnevictable bit set. That flag
1281  * may need to be cleared by the caller before letting the page go.
1282  *
1283  * The vmstat statistic corresponding to the list on which the page was
1284  * found will be decremented.
1285  *
1286  * Restrictions:
1287  * (1) Must be called with an elevated refcount on the page. This is a
1288  *     fundamentnal difference from isolate_lru_pages (which is called
1289  *     without a stable reference).
1290  * (2) the lru_lock must not be held.
1291  * (3) interrupts must be enabled.
1292  */
1293 int isolate_lru_page(struct page *page)
1294 {
1295         int ret = -EBUSY;
1296
1297         VM_BUG_ON(!page_count(page));
1298
1299         if (PageLRU(page)) {
1300                 struct zone *zone = page_zone(page);
1301                 struct lruvec *lruvec;
1302
1303                 spin_lock_irq(&zone->lru_lock);
1304                 lruvec = mem_cgroup_page_lruvec(page, zone);
1305                 if (PageLRU(page)) {
1306                         int lru = page_lru(page);
1307                         get_page(page);
1308                         ClearPageLRU(page);
1309                         del_page_from_lru_list(page, lruvec, lru);
1310                         ret = 0;
1311                 }
1312                 spin_unlock_irq(&zone->lru_lock);
1313         }
1314         return ret;
1315 }
1316
1317 /*
1318  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1319  * then get resheduled. When there are massive number of tasks doing page
1320  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1321  * the LRU list will go small and be scanned faster than necessary, leading to
1322  * unnecessary swapping, thrashing and OOM.
1323  */
1324 static int too_many_isolated(struct zone *zone, int file,
1325                 struct scan_control *sc)
1326 {
1327         unsigned long inactive, isolated;
1328
1329         if (current_is_kswapd())
1330                 return 0;
1331
1332         if (!global_reclaim(sc))
1333                 return 0;
1334
1335         if (file) {
1336                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1337                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1338         } else {
1339                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1340                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1341         }
1342
1343         /*
1344          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1345          * won't get blocked by normal direct-reclaimers, forming a circular
1346          * deadlock.
1347          */
1348         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1349                 inactive >>= 3;
1350
1351         return isolated > inactive;
1352 }
1353
1354 static noinline_for_stack void
1355 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1356 {
1357         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1358         struct zone *zone = lruvec_zone(lruvec);
1359         LIST_HEAD(pages_to_free);
1360
1361         /*
1362          * Put back any unfreeable pages.
1363          */
1364         while (!list_empty(page_list)) {
1365                 struct page *page = lru_to_page(page_list);
1366                 int lru;
1367
1368                 VM_BUG_ON(PageLRU(page));
1369                 list_del(&page->lru);
1370                 if (unlikely(!page_evictable(page))) {
1371                         spin_unlock_irq(&zone->lru_lock);
1372                         putback_lru_page(page);
1373                         spin_lock_irq(&zone->lru_lock);
1374                         continue;
1375                 }
1376
1377                 lruvec = mem_cgroup_page_lruvec(page, zone);
1378
1379                 SetPageLRU(page);
1380                 lru = page_lru(page);
1381                 add_page_to_lru_list(page, lruvec, lru);
1382
1383                 if (is_active_lru(lru)) {
1384                         int file = is_file_lru(lru);
1385                         int numpages = hpage_nr_pages(page);
1386                         reclaim_stat->recent_rotated[file] += numpages;
1387                 }
1388                 if (put_page_testzero(page)) {
1389                         __ClearPageLRU(page);
1390                         __ClearPageActive(page);
1391                         del_page_from_lru_list(page, lruvec, lru);
1392
1393                         if (unlikely(PageCompound(page))) {
1394                                 spin_unlock_irq(&zone->lru_lock);
1395                                 (*get_compound_page_dtor(page))(page);
1396                                 spin_lock_irq(&zone->lru_lock);
1397                         } else
1398                                 list_add(&page->lru, &pages_to_free);
1399                 }
1400         }
1401
1402         /*
1403          * To save our caller's stack, now use input list for pages to free.
1404          */
1405         list_splice(&pages_to_free, page_list);
1406 }
1407
1408 /*
1409  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1410  * of reclaimed pages
1411  */
1412 static noinline_for_stack unsigned long
1413 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1414                      struct scan_control *sc, enum lru_list lru)
1415 {
1416         LIST_HEAD(page_list);
1417         unsigned long nr_scanned;
1418         unsigned long nr_reclaimed = 0;
1419         unsigned long nr_taken;
1420         unsigned long nr_dirty = 0;
1421         unsigned long nr_congested = 0;
1422         unsigned long nr_unqueued_dirty = 0;
1423         unsigned long nr_writeback = 0;
1424         unsigned long nr_immediate = 0;
1425         isolate_mode_t isolate_mode = 0;
1426         int file = is_file_lru(lru);
1427         struct zone *zone = lruvec_zone(lruvec);
1428         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1429
1430         while (unlikely(too_many_isolated(zone, file, sc))) {
1431                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1432
1433                 /* We are about to die and free our memory. Return now. */
1434                 if (fatal_signal_pending(current))
1435                         return SWAP_CLUSTER_MAX;
1436         }
1437
1438         lru_add_drain();
1439
1440         if (!sc->may_unmap)
1441                 isolate_mode |= ISOLATE_UNMAPPED;
1442         if (!sc->may_writepage)
1443                 isolate_mode |= ISOLATE_CLEAN;
1444
1445         spin_lock_irq(&zone->lru_lock);
1446
1447         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1448                                      &nr_scanned, sc, isolate_mode, lru);
1449
1450         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1451         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1452
1453         if (global_reclaim(sc)) {
1454                 zone->pages_scanned += nr_scanned;
1455                 if (current_is_kswapd())
1456                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1457                 else
1458                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1459         }
1460         spin_unlock_irq(&zone->lru_lock);
1461
1462         if (nr_taken == 0)
1463                 return 0;
1464
1465         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1466                                 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1467                                 &nr_writeback, &nr_immediate,
1468                                 false);
1469
1470         spin_lock_irq(&zone->lru_lock);
1471
1472         reclaim_stat->recent_scanned[file] += nr_taken;
1473
1474         if (global_reclaim(sc)) {
1475                 if (current_is_kswapd())
1476                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1477                                                nr_reclaimed);
1478                 else
1479                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1480                                                nr_reclaimed);
1481         }
1482
1483         putback_inactive_pages(lruvec, &page_list);
1484
1485         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1486
1487         spin_unlock_irq(&zone->lru_lock);
1488
1489         free_hot_cold_page_list(&page_list, 1);
1490
1491         /*
1492          * If reclaim is isolating dirty pages under writeback, it implies
1493          * that the long-lived page allocation rate is exceeding the page
1494          * laundering rate. Either the global limits are not being effective
1495          * at throttling processes due to the page distribution throughout
1496          * zones or there is heavy usage of a slow backing device. The
1497          * only option is to throttle from reclaim context which is not ideal
1498          * as there is no guarantee the dirtying process is throttled in the
1499          * same way balance_dirty_pages() manages.
1500          *
1501          * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1502          * of pages under pages flagged for immediate reclaim and stall if any
1503          * are encountered in the nr_immediate check below.
1504          */
1505         if (nr_writeback && nr_writeback == nr_taken)
1506                 zone_set_flag(zone, ZONE_WRITEBACK);
1507
1508         /*
1509          * memcg will stall in page writeback so only consider forcibly
1510          * stalling for global reclaim
1511          */
1512         if (global_reclaim(sc)) {
1513                 /*
1514                  * Tag a zone as congested if all the dirty pages scanned were
1515                  * backed by a congested BDI and wait_iff_congested will stall.
1516                  */
1517                 if (nr_dirty && nr_dirty == nr_congested)
1518                         zone_set_flag(zone, ZONE_CONGESTED);
1519
1520                 /*
1521                  * If dirty pages are scanned that are not queued for IO, it
1522                  * implies that flushers are not keeping up. In this case, flag
1523                  * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1524                  * pages from reclaim context. It will forcibly stall in the
1525                  * next check.
1526                  */
1527                 if (nr_unqueued_dirty == nr_taken)
1528                         zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1529
1530                 /*
1531                  * In addition, if kswapd scans pages marked marked for
1532                  * immediate reclaim and under writeback (nr_immediate), it
1533                  * implies that pages are cycling through the LRU faster than
1534                  * they are written so also forcibly stall.
1535                  */
1536                 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1537                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1538         }
1539
1540         /*
1541          * Stall direct reclaim for IO completions if underlying BDIs or zone
1542          * is congested. Allow kswapd to continue until it starts encountering
1543          * unqueued dirty pages or cycling through the LRU too quickly.
1544          */
1545         if (!sc->hibernation_mode && !current_is_kswapd())
1546                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1547
1548         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1549                 zone_idx(zone),
1550                 nr_scanned, nr_reclaimed,
1551                 sc->priority,
1552                 trace_shrink_flags(file));
1553         return nr_reclaimed;
1554 }
1555
1556 /*
1557  * This moves pages from the active list to the inactive list.
1558  *
1559  * We move them the other way if the page is referenced by one or more
1560  * processes, from rmap.
1561  *
1562  * If the pages are mostly unmapped, the processing is fast and it is
1563  * appropriate to hold zone->lru_lock across the whole operation.  But if
1564  * the pages are mapped, the processing is slow (page_referenced()) so we
1565  * should drop zone->lru_lock around each page.  It's impossible to balance
1566  * this, so instead we remove the pages from the LRU while processing them.
1567  * It is safe to rely on PG_active against the non-LRU pages in here because
1568  * nobody will play with that bit on a non-LRU page.
1569  *
1570  * The downside is that we have to touch page->_count against each page.
1571  * But we had to alter page->flags anyway.
1572  */
1573
1574 static void move_active_pages_to_lru(struct lruvec *lruvec,
1575                                      struct list_head *list,
1576                                      struct list_head *pages_to_free,
1577                                      enum lru_list lru)
1578 {
1579         struct zone *zone = lruvec_zone(lruvec);
1580         unsigned long pgmoved = 0;
1581         struct page *page;
1582         int nr_pages;
1583
1584         while (!list_empty(list)) {
1585                 page = lru_to_page(list);
1586                 lruvec = mem_cgroup_page_lruvec(page, zone);
1587
1588                 VM_BUG_ON(PageLRU(page));
1589                 SetPageLRU(page);
1590
1591                 nr_pages = hpage_nr_pages(page);
1592                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1593                 list_move(&page->lru, &lruvec->lists[lru]);
1594                 pgmoved += nr_pages;
1595
1596                 if (put_page_testzero(page)) {
1597                         __ClearPageLRU(page);
1598                         __ClearPageActive(page);
1599                         del_page_from_lru_list(page, lruvec, lru);
1600
1601                         if (unlikely(PageCompound(page))) {
1602                                 spin_unlock_irq(&zone->lru_lock);
1603                                 (*get_compound_page_dtor(page))(page);
1604                                 spin_lock_irq(&zone->lru_lock);
1605                         } else
1606                                 list_add(&page->lru, pages_to_free);
1607                 }
1608         }
1609         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1610         if (!is_active_lru(lru))
1611                 __count_vm_events(PGDEACTIVATE, pgmoved);
1612 }
1613
1614 static void shrink_active_list(unsigned long nr_to_scan,
1615                                struct lruvec *lruvec,
1616                                struct scan_control *sc,
1617                                enum lru_list lru)
1618 {
1619         unsigned long nr_taken;
1620         unsigned long nr_scanned;
1621         unsigned long vm_flags;
1622         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1623         LIST_HEAD(l_active);
1624         LIST_HEAD(l_inactive);
1625         struct page *page;
1626         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1627         unsigned long nr_rotated = 0;
1628         isolate_mode_t isolate_mode = 0;
1629         int file = is_file_lru(lru);
1630         struct zone *zone = lruvec_zone(lruvec);
1631
1632         lru_add_drain();
1633
1634         if (!sc->may_unmap)
1635                 isolate_mode |= ISOLATE_UNMAPPED;
1636         if (!sc->may_writepage)
1637                 isolate_mode |= ISOLATE_CLEAN;
1638
1639         spin_lock_irq(&zone->lru_lock);
1640
1641         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1642                                      &nr_scanned, sc, isolate_mode, lru);
1643         if (global_reclaim(sc))
1644                 zone->pages_scanned += nr_scanned;
1645
1646         reclaim_stat->recent_scanned[file] += nr_taken;
1647
1648         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1649         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1650         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1651         spin_unlock_irq(&zone->lru_lock);
1652
1653         while (!list_empty(&l_hold)) {
1654                 cond_resched();
1655                 page = lru_to_page(&l_hold);
1656                 list_del(&page->lru);
1657
1658                 if (unlikely(!page_evictable(page))) {
1659                         putback_lru_page(page);
1660                         continue;
1661                 }
1662
1663                 if (unlikely(buffer_heads_over_limit)) {
1664                         if (page_has_private(page) && trylock_page(page)) {
1665                                 if (page_has_private(page))
1666                                         try_to_release_page(page, 0);
1667                                 unlock_page(page);
1668                         }
1669                 }
1670
1671                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1672                                     &vm_flags)) {
1673                         nr_rotated += hpage_nr_pages(page);
1674                         /*
1675                          * Identify referenced, file-backed active pages and
1676                          * give them one more trip around the active list. So
1677                          * that executable code get better chances to stay in
1678                          * memory under moderate memory pressure.  Anon pages
1679                          * are not likely to be evicted by use-once streaming
1680                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1681                          * so we ignore them here.
1682                          */
1683                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1684                                 list_add(&page->lru, &l_active);
1685                                 continue;
1686                         }
1687                 }
1688
1689                 ClearPageActive(page);  /* we are de-activating */
1690                 list_add(&page->lru, &l_inactive);
1691         }
1692
1693         /*
1694          * Move pages back to the lru list.
1695          */
1696         spin_lock_irq(&zone->lru_lock);
1697         /*
1698          * Count referenced pages from currently used mappings as rotated,
1699          * even though only some of them are actually re-activated.  This
1700          * helps balance scan pressure between file and anonymous pages in
1701          * get_scan_ratio.
1702          */
1703         reclaim_stat->recent_rotated[file] += nr_rotated;
1704
1705         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1706         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1707         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1708         spin_unlock_irq(&zone->lru_lock);
1709
1710         free_hot_cold_page_list(&l_hold, 1);
1711 }
1712
1713 #ifdef CONFIG_SWAP
1714 static int inactive_anon_is_low_global(struct zone *zone)
1715 {
1716         unsigned long active, inactive;
1717
1718         active = zone_page_state(zone, NR_ACTIVE_ANON);
1719         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1720
1721         if (inactive * zone->inactive_ratio < active)
1722                 return 1;
1723
1724         return 0;
1725 }
1726
1727 /**
1728  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1729  * @lruvec: LRU vector to check
1730  *
1731  * Returns true if the zone does not have enough inactive anon pages,
1732  * meaning some active anon pages need to be deactivated.
1733  */
1734 static int inactive_anon_is_low(struct lruvec *lruvec)
1735 {
1736         /*
1737          * If we don't have swap space, anonymous page deactivation
1738          * is pointless.
1739          */
1740         if (!total_swap_pages)
1741                 return 0;
1742
1743         if (!mem_cgroup_disabled())
1744                 return mem_cgroup_inactive_anon_is_low(lruvec);
1745
1746         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1747 }
1748 #else
1749 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1750 {
1751         return 0;
1752 }
1753 #endif
1754
1755 /**
1756  * inactive_file_is_low - check if file pages need to be deactivated
1757  * @lruvec: LRU vector to check
1758  *
1759  * When the system is doing streaming IO, memory pressure here
1760  * ensures that active file pages get deactivated, until more
1761  * than half of the file pages are on the inactive list.
1762  *
1763  * Once we get to that situation, protect the system's working
1764  * set from being evicted by disabling active file page aging.
1765  *
1766  * This uses a different ratio than the anonymous pages, because
1767  * the page cache uses a use-once replacement algorithm.
1768  */
1769 static int inactive_file_is_low(struct lruvec *lruvec)
1770 {
1771         unsigned long inactive;
1772         unsigned long active;
1773
1774         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1775         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1776
1777         return active > inactive;
1778 }
1779
1780 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1781 {
1782         if (is_file_lru(lru))
1783                 return inactive_file_is_low(lruvec);
1784         else
1785                 return inactive_anon_is_low(lruvec);
1786 }
1787
1788 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1789                                  struct lruvec *lruvec, struct scan_control *sc)
1790 {
1791         if (is_active_lru(lru)) {
1792                 if (inactive_list_is_low(lruvec, lru))
1793                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1794                 return 0;
1795         }
1796
1797         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1798 }
1799
1800 static int vmscan_swappiness(struct scan_control *sc)
1801 {
1802         if (global_reclaim(sc))
1803                 return vm_swappiness;
1804         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1805 }
1806
1807 enum scan_balance {
1808         SCAN_EQUAL,
1809         SCAN_FRACT,
1810         SCAN_ANON,
1811         SCAN_FILE,
1812 };
1813
1814 /*
1815  * Determine how aggressively the anon and file LRU lists should be
1816  * scanned.  The relative value of each set of LRU lists is determined
1817  * by looking at the fraction of the pages scanned we did rotate back
1818  * onto the active list instead of evict.
1819  *
1820  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1821  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1822  */
1823 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1824                            unsigned long *nr)
1825 {
1826         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1827         u64 fraction[2];
1828         u64 denominator = 0;    /* gcc */
1829         struct zone *zone = lruvec_zone(lruvec);
1830         unsigned long anon_prio, file_prio;
1831         enum scan_balance scan_balance;
1832         unsigned long anon, file, free;
1833         bool force_scan = false;
1834         unsigned long ap, fp;
1835         enum lru_list lru;
1836
1837         /*
1838          * If the zone or memcg is small, nr[l] can be 0.  This
1839          * results in no scanning on this priority and a potential
1840          * priority drop.  Global direct reclaim can go to the next
1841          * zone and tends to have no problems. Global kswapd is for
1842          * zone balancing and it needs to scan a minimum amount. When
1843          * reclaiming for a memcg, a priority drop can cause high
1844          * latencies, so it's better to scan a minimum amount there as
1845          * well.
1846          */
1847         if (current_is_kswapd() && !zone_reclaimable(zone))
1848                 force_scan = true;
1849         if (!global_reclaim(sc))
1850                 force_scan = true;
1851
1852         /* If we have no swap space, do not bother scanning anon pages. */
1853         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1854                 scan_balance = SCAN_FILE;
1855                 goto out;
1856         }
1857
1858         /*
1859          * Global reclaim will swap to prevent OOM even with no
1860          * swappiness, but memcg users want to use this knob to
1861          * disable swapping for individual groups completely when
1862          * using the memory controller's swap limit feature would be
1863          * too expensive.
1864          */
1865         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1866                 scan_balance = SCAN_FILE;
1867                 goto out;
1868         }
1869
1870         /*
1871          * Do not apply any pressure balancing cleverness when the
1872          * system is close to OOM, scan both anon and file equally
1873          * (unless the swappiness setting disagrees with swapping).
1874          */
1875         if (!sc->priority && vmscan_swappiness(sc)) {
1876                 scan_balance = SCAN_EQUAL;
1877                 goto out;
1878         }
1879
1880         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1881                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1882         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1883                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1884
1885         /*
1886          * If it's foreseeable that reclaiming the file cache won't be
1887          * enough to get the zone back into a desirable shape, we have
1888          * to swap.  Better start now and leave the - probably heavily
1889          * thrashing - remaining file pages alone.
1890          */
1891         if (global_reclaim(sc)) {
1892                 free = zone_page_state(zone, NR_FREE_PAGES);
1893                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1894                         scan_balance = SCAN_ANON;
1895                         goto out;
1896                 }
1897         }
1898
1899         /*
1900          * There is enough inactive page cache, do not reclaim
1901          * anything from the anonymous working set right now.
1902          */
1903         if (!inactive_file_is_low(lruvec)) {
1904                 scan_balance = SCAN_FILE;
1905                 goto out;
1906         }
1907
1908         scan_balance = SCAN_FRACT;
1909
1910         /*
1911          * With swappiness at 100, anonymous and file have the same priority.
1912          * This scanning priority is essentially the inverse of IO cost.
1913          */
1914         anon_prio = vmscan_swappiness(sc);
1915         file_prio = 200 - anon_prio;
1916
1917         /*
1918          * OK, so we have swap space and a fair amount of page cache
1919          * pages.  We use the recently rotated / recently scanned
1920          * ratios to determine how valuable each cache is.
1921          *
1922          * Because workloads change over time (and to avoid overflow)
1923          * we keep these statistics as a floating average, which ends
1924          * up weighing recent references more than old ones.
1925          *
1926          * anon in [0], file in [1]
1927          */
1928         spin_lock_irq(&zone->lru_lock);
1929         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1930                 reclaim_stat->recent_scanned[0] /= 2;
1931                 reclaim_stat->recent_rotated[0] /= 2;
1932         }
1933
1934         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1935                 reclaim_stat->recent_scanned[1] /= 2;
1936                 reclaim_stat->recent_rotated[1] /= 2;
1937         }
1938
1939         /*
1940          * The amount of pressure on anon vs file pages is inversely
1941          * proportional to the fraction of recently scanned pages on
1942          * each list that were recently referenced and in active use.
1943          */
1944         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1945         ap /= reclaim_stat->recent_rotated[0] + 1;
1946
1947         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1948         fp /= reclaim_stat->recent_rotated[1] + 1;
1949         spin_unlock_irq(&zone->lru_lock);
1950
1951         fraction[0] = ap;
1952         fraction[1] = fp;
1953         denominator = ap + fp + 1;
1954 out:
1955         for_each_evictable_lru(lru) {
1956                 int file = is_file_lru(lru);
1957                 unsigned long size;
1958                 unsigned long scan;
1959
1960                 size = get_lru_size(lruvec, lru);
1961                 scan = size >> sc->priority;
1962
1963                 if (!scan && force_scan)
1964                         scan = min(size, SWAP_CLUSTER_MAX);
1965
1966                 switch (scan_balance) {
1967                 case SCAN_EQUAL:
1968                         /* Scan lists relative to size */
1969                         break;
1970                 case SCAN_FRACT:
1971                         /*
1972                          * Scan types proportional to swappiness and
1973                          * their relative recent reclaim efficiency.
1974                          */
1975                         scan = div64_u64(scan * fraction[file], denominator);
1976                         break;
1977                 case SCAN_FILE:
1978                 case SCAN_ANON:
1979                         /* Scan one type exclusively */
1980                         if ((scan_balance == SCAN_FILE) != file)
1981                                 scan = 0;
1982                         break;
1983                 default:
1984                         /* Look ma, no brain */
1985                         BUG();
1986                 }
1987                 nr[lru] = scan;
1988         }
1989 }
1990
1991 /*
1992  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1993  */
1994 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1995 {
1996         unsigned long nr[NR_LRU_LISTS];
1997         unsigned long targets[NR_LRU_LISTS];
1998         unsigned long nr_to_scan;
1999         enum lru_list lru;
2000         unsigned long nr_reclaimed = 0;
2001         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2002         struct blk_plug plug;
2003         bool scan_adjusted = false;
2004
2005         get_scan_count(lruvec, sc, nr);
2006
2007         /* Record the original scan target for proportional adjustments later */
2008         memcpy(targets, nr, sizeof(nr));
2009
2010         blk_start_plug(&plug);
2011         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2012                                         nr[LRU_INACTIVE_FILE]) {
2013                 unsigned long nr_anon, nr_file, percentage;
2014                 unsigned long nr_scanned;
2015
2016                 for_each_evictable_lru(lru) {
2017                         if (nr[lru]) {
2018                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2019                                 nr[lru] -= nr_to_scan;
2020
2021                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
2022                                                             lruvec, sc);
2023                         }
2024                 }
2025
2026                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2027                         continue;
2028
2029                 /*
2030                  * For global direct reclaim, reclaim only the number of pages
2031                  * requested. Less care is taken to scan proportionally as it
2032                  * is more important to minimise direct reclaim stall latency
2033                  * than it is to properly age the LRU lists.
2034                  */
2035                 if (global_reclaim(sc) && !current_is_kswapd())
2036                         break;
2037
2038                 /*
2039                  * For kswapd and memcg, reclaim at least the number of pages
2040                  * requested. Ensure that the anon and file LRUs shrink
2041                  * proportionally what was requested by get_scan_count(). We
2042                  * stop reclaiming one LRU and reduce the amount scanning
2043                  * proportional to the original scan target.
2044                  */
2045                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2046                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2047
2048                 if (nr_file > nr_anon) {
2049                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2050                                                 targets[LRU_ACTIVE_ANON] + 1;
2051                         lru = LRU_BASE;
2052                         percentage = nr_anon * 100 / scan_target;
2053                 } else {
2054                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2055                                                 targets[LRU_ACTIVE_FILE] + 1;
2056                         lru = LRU_FILE;
2057                         percentage = nr_file * 100 / scan_target;
2058                 }
2059
2060                 /* Stop scanning the smaller of the LRU */
2061                 nr[lru] = 0;
2062                 nr[lru + LRU_ACTIVE] = 0;
2063
2064                 /*
2065                  * Recalculate the other LRU scan count based on its original
2066                  * scan target and the percentage scanning already complete
2067                  */
2068                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2069                 nr_scanned = targets[lru] - nr[lru];
2070                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2071                 nr[lru] -= min(nr[lru], nr_scanned);
2072
2073                 lru += LRU_ACTIVE;
2074                 nr_scanned = targets[lru] - nr[lru];
2075                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2076                 nr[lru] -= min(nr[lru], nr_scanned);
2077
2078                 scan_adjusted = true;
2079         }
2080         blk_finish_plug(&plug);
2081         sc->nr_reclaimed += nr_reclaimed;
2082
2083         /*
2084          * Even if we did not try to evict anon pages at all, we want to
2085          * rebalance the anon lru active/inactive ratio.
2086          */
2087         if (inactive_anon_is_low(lruvec))
2088                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2089                                    sc, LRU_ACTIVE_ANON);
2090
2091         throttle_vm_writeout(sc->gfp_mask);
2092 }
2093
2094 /* Use reclaim/compaction for costly allocs or under memory pressure */
2095 static bool in_reclaim_compaction(struct scan_control *sc)
2096 {
2097         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2098                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2099                          sc->priority < DEF_PRIORITY - 2))
2100                 return true;
2101
2102         return false;
2103 }
2104
2105 /*
2106  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2107  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2108  * true if more pages should be reclaimed such that when the page allocator
2109  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2110  * It will give up earlier than that if there is difficulty reclaiming pages.
2111  */
2112 static inline bool should_continue_reclaim(struct zone *zone,
2113                                         unsigned long nr_reclaimed,
2114                                         unsigned long nr_scanned,
2115                                         struct scan_control *sc)
2116 {
2117         unsigned long pages_for_compaction;
2118         unsigned long inactive_lru_pages;
2119
2120         /* If not in reclaim/compaction mode, stop */
2121         if (!in_reclaim_compaction(sc))
2122                 return false;
2123
2124         /* Consider stopping depending on scan and reclaim activity */
2125         if (sc->gfp_mask & __GFP_REPEAT) {
2126                 /*
2127                  * For __GFP_REPEAT allocations, stop reclaiming if the
2128                  * full LRU list has been scanned and we are still failing
2129                  * to reclaim pages. This full LRU scan is potentially
2130                  * expensive but a __GFP_REPEAT caller really wants to succeed
2131                  */
2132                 if (!nr_reclaimed && !nr_scanned)
2133                         return false;
2134         } else {
2135                 /*
2136                  * For non-__GFP_REPEAT allocations which can presumably
2137                  * fail without consequence, stop if we failed to reclaim
2138                  * any pages from the last SWAP_CLUSTER_MAX number of
2139                  * pages that were scanned. This will return to the
2140                  * caller faster at the risk reclaim/compaction and
2141                  * the resulting allocation attempt fails
2142                  */
2143                 if (!nr_reclaimed)
2144                         return false;
2145         }
2146
2147         /*
2148          * If we have not reclaimed enough pages for compaction and the
2149          * inactive lists are large enough, continue reclaiming
2150          */
2151         pages_for_compaction = (2UL << sc->order);
2152         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2153         if (get_nr_swap_pages() > 0)
2154                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2155         if (sc->nr_reclaimed < pages_for_compaction &&
2156                         inactive_lru_pages > pages_for_compaction)
2157                 return true;
2158
2159         /* If compaction would go ahead or the allocation would succeed, stop */
2160         switch (compaction_suitable(zone, sc->order)) {
2161         case COMPACT_PARTIAL:
2162         case COMPACT_CONTINUE:
2163                 return false;
2164         default:
2165                 return true;
2166         }
2167 }
2168
2169 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2170 {
2171         unsigned long nr_reclaimed, nr_scanned;
2172
2173         do {
2174                 struct mem_cgroup *root = sc->target_mem_cgroup;
2175                 struct mem_cgroup_reclaim_cookie reclaim = {
2176                         .zone = zone,
2177                         .priority = sc->priority,
2178                 };
2179                 struct mem_cgroup *memcg;
2180
2181                 nr_reclaimed = sc->nr_reclaimed;
2182                 nr_scanned = sc->nr_scanned;
2183
2184                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2185                 do {
2186                         struct lruvec *lruvec;
2187
2188                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2189
2190                         shrink_lruvec(lruvec, sc);
2191
2192                         /*
2193                          * Direct reclaim and kswapd have to scan all memory
2194                          * cgroups to fulfill the overall scan target for the
2195                          * zone.
2196                          *
2197                          * Limit reclaim, on the other hand, only cares about
2198                          * nr_to_reclaim pages to be reclaimed and it will
2199                          * retry with decreasing priority if one round over the
2200                          * whole hierarchy is not sufficient.
2201                          */
2202                         if (!global_reclaim(sc) &&
2203                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2204                                 mem_cgroup_iter_break(root, memcg);
2205                                 break;
2206                         }
2207                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2208                 } while (memcg);
2209
2210                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2211                            sc->nr_scanned - nr_scanned,
2212                            sc->nr_reclaimed - nr_reclaimed);
2213
2214         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2215                                          sc->nr_scanned - nr_scanned, sc));
2216 }
2217
2218 /* Returns true if compaction should go ahead for a high-order request */
2219 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2220 {
2221         unsigned long balance_gap, watermark;
2222         bool watermark_ok;
2223
2224         /* Do not consider compaction for orders reclaim is meant to satisfy */
2225         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2226                 return false;
2227
2228         /*
2229          * Compaction takes time to run and there are potentially other
2230          * callers using the pages just freed. Continue reclaiming until
2231          * there is a buffer of free pages available to give compaction
2232          * a reasonable chance of completing and allocating the page
2233          */
2234         balance_gap = min(low_wmark_pages(zone),
2235                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2236                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2237         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2238         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2239
2240         /*
2241          * If compaction is deferred, reclaim up to a point where
2242          * compaction will have a chance of success when re-enabled
2243          */
2244         if (compaction_deferred(zone, sc->order))
2245                 return watermark_ok;
2246
2247         /* If compaction is not ready to start, keep reclaiming */
2248         if (!compaction_suitable(zone, sc->order))
2249                 return false;
2250
2251         return watermark_ok;
2252 }
2253
2254 /*
2255  * This is the direct reclaim path, for page-allocating processes.  We only
2256  * try to reclaim pages from zones which will satisfy the caller's allocation
2257  * request.
2258  *
2259  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2260  * Because:
2261  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2262  *    allocation or
2263  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2264  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2265  *    zone defense algorithm.
2266  *
2267  * If a zone is deemed to be full of pinned pages then just give it a light
2268  * scan then give up on it.
2269  *
2270  * This function returns true if a zone is being reclaimed for a costly
2271  * high-order allocation and compaction is ready to begin. This indicates to
2272  * the caller that it should consider retrying the allocation instead of
2273  * further reclaim.
2274  */
2275 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2276 {
2277         struct zoneref *z;
2278         struct zone *zone;
2279         unsigned long nr_soft_reclaimed;
2280         unsigned long nr_soft_scanned;
2281         bool aborted_reclaim = false;
2282
2283         /*
2284          * If the number of buffer_heads in the machine exceeds the maximum
2285          * allowed level, force direct reclaim to scan the highmem zone as
2286          * highmem pages could be pinning lowmem pages storing buffer_heads
2287          */
2288         if (buffer_heads_over_limit)
2289                 sc->gfp_mask |= __GFP_HIGHMEM;
2290
2291         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2292                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2293                 if (!populated_zone(zone))
2294                         continue;
2295                 /*
2296                  * Take care memory controller reclaiming has small influence
2297                  * to global LRU.
2298                  */
2299                 if (global_reclaim(sc)) {
2300                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2301                                 continue;
2302                         if (sc->priority != DEF_PRIORITY &&
2303                             !zone_reclaimable(zone))
2304                                 continue;       /* Let kswapd poll it */
2305                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2306                                 /*
2307                                  * If we already have plenty of memory free for
2308                                  * compaction in this zone, don't free any more.
2309                                  * Even though compaction is invoked for any
2310                                  * non-zero order, only frequent costly order
2311                                  * reclamation is disruptive enough to become a
2312                                  * noticeable problem, like transparent huge
2313                                  * page allocations.
2314                                  */
2315                                 if (compaction_ready(zone, sc)) {
2316                                         aborted_reclaim = true;
2317                                         continue;
2318                                 }
2319                         }
2320                         /*
2321                          * This steals pages from memory cgroups over softlimit
2322                          * and returns the number of reclaimed pages and
2323                          * scanned pages. This works for global memory pressure
2324                          * and balancing, not for a memcg's limit.
2325                          */
2326                         nr_soft_scanned = 0;
2327                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2328                                                 sc->order, sc->gfp_mask,
2329                                                 &nr_soft_scanned);
2330                         sc->nr_reclaimed += nr_soft_reclaimed;
2331                         sc->nr_scanned += nr_soft_scanned;
2332                         /* need some check for avoid more shrink_zone() */
2333                 }
2334
2335                 shrink_zone(zone, sc);
2336         }
2337
2338         return aborted_reclaim;
2339 }
2340
2341 /* All zones in zonelist are unreclaimable? */
2342 static bool all_unreclaimable(struct zonelist *zonelist,
2343                 struct scan_control *sc)
2344 {
2345         struct zoneref *z;
2346         struct zone *zone;
2347
2348         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2349                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2350                 if (!populated_zone(zone))
2351                         continue;
2352                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2353                         continue;
2354                 if (zone_reclaimable(zone))
2355                         return false;
2356         }
2357
2358         return true;
2359 }
2360
2361 /*
2362  * This is the main entry point to direct page reclaim.
2363  *
2364  * If a full scan of the inactive list fails to free enough memory then we
2365  * are "out of memory" and something needs to be killed.
2366  *
2367  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2368  * high - the zone may be full of dirty or under-writeback pages, which this
2369  * caller can't do much about.  We kick the writeback threads and take explicit
2370  * naps in the hope that some of these pages can be written.  But if the
2371  * allocating task holds filesystem locks which prevent writeout this might not
2372  * work, and the allocation attempt will fail.
2373  *
2374  * returns:     0, if no pages reclaimed
2375  *              else, the number of pages reclaimed
2376  */
2377 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2378                                         struct scan_control *sc,
2379                                         struct shrink_control *shrink)
2380 {
2381         unsigned long total_scanned = 0;
2382         struct reclaim_state *reclaim_state = current->reclaim_state;
2383         struct zoneref *z;
2384         struct zone *zone;
2385         unsigned long writeback_threshold;
2386         bool aborted_reclaim;
2387
2388         delayacct_freepages_start();
2389
2390         if (global_reclaim(sc))
2391                 count_vm_event(ALLOCSTALL);
2392
2393         do {
2394                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2395                                 sc->priority);
2396                 sc->nr_scanned = 0;
2397                 aborted_reclaim = shrink_zones(zonelist, sc);
2398
2399                 /*
2400                  * Don't shrink slabs when reclaiming memory from over limit
2401                  * cgroups but do shrink slab at least once when aborting
2402                  * reclaim for compaction to avoid unevenly scanning file/anon
2403                  * LRU pages over slab pages.
2404                  */
2405                 if (global_reclaim(sc)) {
2406                         unsigned long lru_pages = 0;
2407
2408                         nodes_clear(shrink->nodes_to_scan);
2409                         for_each_zone_zonelist(zone, z, zonelist,
2410                                         gfp_zone(sc->gfp_mask)) {
2411                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2412                                         continue;
2413
2414                                 lru_pages += zone_reclaimable_pages(zone);
2415                                 node_set(zone_to_nid(zone),
2416                                          shrink->nodes_to_scan);
2417                         }
2418
2419                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2420                         if (reclaim_state) {
2421                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2422                                 reclaim_state->reclaimed_slab = 0;
2423                         }
2424                 }
2425                 total_scanned += sc->nr_scanned;
2426                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2427                         goto out;
2428
2429                 /*
2430                  * If we're getting trouble reclaiming, start doing
2431                  * writepage even in laptop mode.
2432                  */
2433                 if (sc->priority < DEF_PRIORITY - 2)
2434                         sc->may_writepage = 1;
2435
2436                 /*
2437                  * Try to write back as many pages as we just scanned.  This
2438                  * tends to cause slow streaming writers to write data to the
2439                  * disk smoothly, at the dirtying rate, which is nice.   But
2440                  * that's undesirable in laptop mode, where we *want* lumpy
2441                  * writeout.  So in laptop mode, write out the whole world.
2442                  */
2443                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2444                 if (total_scanned > writeback_threshold) {
2445                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2446                                                 WB_REASON_TRY_TO_FREE_PAGES);
2447                         sc->may_writepage = 1;
2448                 }
2449         } while (--sc->priority >= 0 && !aborted_reclaim);
2450
2451 out:
2452         delayacct_freepages_end();
2453
2454         if (sc->nr_reclaimed)
2455                 return sc->nr_reclaimed;
2456
2457         /*
2458          * As hibernation is going on, kswapd is freezed so that it can't mark
2459          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2460          * check.
2461          */
2462         if (oom_killer_disabled)
2463                 return 0;
2464
2465         /* Aborted reclaim to try compaction? don't OOM, then */
2466         if (aborted_reclaim)
2467                 return 1;
2468
2469         /* top priority shrink_zones still had more to do? don't OOM, then */
2470         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2471                 return 1;
2472
2473         return 0;
2474 }
2475
2476 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2477 {
2478         struct zone *zone;
2479         unsigned long pfmemalloc_reserve = 0;
2480         unsigned long free_pages = 0;
2481         int i;
2482         bool wmark_ok;
2483
2484         for (i = 0; i <= ZONE_NORMAL; i++) {
2485                 zone = &pgdat->node_zones[i];
2486                 pfmemalloc_reserve += min_wmark_pages(zone);
2487                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2488         }
2489
2490         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2491
2492         /* kswapd must be awake if processes are being throttled */
2493         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2494                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2495                                                 (enum zone_type)ZONE_NORMAL);
2496                 wake_up_interruptible(&pgdat->kswapd_wait);
2497         }
2498
2499         return wmark_ok;
2500 }
2501
2502 /*
2503  * Throttle direct reclaimers if backing storage is backed by the network
2504  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2505  * depleted. kswapd will continue to make progress and wake the processes
2506  * when the low watermark is reached.
2507  *
2508  * Returns true if a fatal signal was delivered during throttling. If this
2509  * happens, the page allocator should not consider triggering the OOM killer.
2510  */
2511 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2512                                         nodemask_t *nodemask)
2513 {
2514         struct zone *zone;
2515         int high_zoneidx = gfp_zone(gfp_mask);
2516         pg_data_t *pgdat;
2517
2518         /*
2519          * Kernel threads should not be throttled as they may be indirectly
2520          * responsible for cleaning pages necessary for reclaim to make forward
2521          * progress. kjournald for example may enter direct reclaim while
2522          * committing a transaction where throttling it could forcing other
2523          * processes to block on log_wait_commit().
2524          */
2525         if (current->flags & PF_KTHREAD)
2526                 goto out;
2527
2528         /*
2529          * If a fatal signal is pending, this process should not throttle.
2530          * It should return quickly so it can exit and free its memory
2531          */
2532         if (fatal_signal_pending(current))
2533                 goto out;
2534
2535         /* Check if the pfmemalloc reserves are ok */
2536         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2537         pgdat = zone->zone_pgdat;
2538         if (pfmemalloc_watermark_ok(pgdat))
2539                 goto out;
2540
2541         /* Account for the throttling */
2542         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2543
2544         /*
2545          * If the caller cannot enter the filesystem, it's possible that it
2546          * is due to the caller holding an FS lock or performing a journal
2547          * transaction in the case of a filesystem like ext[3|4]. In this case,
2548          * it is not safe to block on pfmemalloc_wait as kswapd could be
2549          * blocked waiting on the same lock. Instead, throttle for up to a
2550          * second before continuing.
2551          */
2552         if (!(gfp_mask & __GFP_FS)) {
2553                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2554                         pfmemalloc_watermark_ok(pgdat), HZ);
2555
2556                 goto check_pending;
2557         }
2558
2559         /* Throttle until kswapd wakes the process */
2560         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2561                 pfmemalloc_watermark_ok(pgdat));
2562
2563 check_pending:
2564         if (fatal_signal_pending(current))
2565                 return true;
2566
2567 out:
2568         return false;
2569 }
2570
2571 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2572                                 gfp_t gfp_mask, nodemask_t *nodemask)
2573 {
2574         unsigned long nr_reclaimed;
2575         struct scan_control sc = {
2576                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2577                 .may_writepage = !laptop_mode,
2578                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2579                 .may_unmap = 1,
2580                 .may_swap = 1,
2581                 .order = order,
2582                 .priority = DEF_PRIORITY,
2583                 .target_mem_cgroup = NULL,
2584                 .nodemask = nodemask,
2585         };
2586         struct shrink_control shrink = {
2587                 .gfp_mask = sc.gfp_mask,
2588         };
2589
2590         /*
2591          * Do not enter reclaim if fatal signal was delivered while throttled.
2592          * 1 is returned so that the page allocator does not OOM kill at this
2593          * point.
2594          */
2595         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2596                 return 1;
2597
2598         trace_mm_vmscan_direct_reclaim_begin(order,
2599                                 sc.may_writepage,
2600                                 gfp_mask);
2601
2602         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2603
2604         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2605
2606         return nr_reclaimed;
2607 }
2608
2609 #ifdef CONFIG_MEMCG
2610
2611 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2612                                                 gfp_t gfp_mask, bool noswap,
2613                                                 struct zone *zone,
2614                                                 unsigned long *nr_scanned)
2615 {
2616         struct scan_control sc = {
2617                 .nr_scanned = 0,
2618                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2619                 .may_writepage = !laptop_mode,
2620                 .may_unmap = 1,
2621                 .may_swap = !noswap,
2622                 .order = 0,
2623                 .priority = 0,
2624                 .target_mem_cgroup = memcg,
2625         };
2626         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2627
2628         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2629                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2630
2631         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2632                                                       sc.may_writepage,
2633                                                       sc.gfp_mask);
2634
2635         /*
2636          * NOTE: Although we can get the priority field, using it
2637          * here is not a good idea, since it limits the pages we can scan.
2638          * if we don't reclaim here, the shrink_zone from balance_pgdat
2639          * will pick up pages from other mem cgroup's as well. We hack
2640          * the priority and make it zero.
2641          */
2642         shrink_lruvec(lruvec, &sc);
2643
2644         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2645
2646         *nr_scanned = sc.nr_scanned;
2647         return sc.nr_reclaimed;
2648 }
2649
2650 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2651                                            gfp_t gfp_mask,
2652                                            bool noswap)
2653 {
2654         struct zonelist *zonelist;
2655         unsigned long nr_reclaimed;
2656         int nid;
2657         struct scan_control sc = {
2658                 .may_writepage = !laptop_mode,
2659                 .may_unmap = 1,
2660                 .may_swap = !noswap,
2661                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2662                 .order = 0,
2663                 .priority = DEF_PRIORITY,
2664                 .target_mem_cgroup = memcg,
2665                 .nodemask = NULL, /* we don't care the placement */
2666                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2667                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2668         };
2669         struct shrink_control shrink = {
2670                 .gfp_mask = sc.gfp_mask,
2671         };
2672
2673         /*
2674          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2675          * take care of from where we get pages. So the node where we start the
2676          * scan does not need to be the current node.
2677          */
2678         nid = mem_cgroup_select_victim_node(memcg);
2679
2680         zonelist = NODE_DATA(nid)->node_zonelists;
2681
2682         trace_mm_vmscan_memcg_reclaim_begin(0,
2683                                             sc.may_writepage,
2684                                             sc.gfp_mask);
2685
2686         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2687
2688         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2689
2690         return nr_reclaimed;
2691 }
2692 #endif
2693
2694 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2695 {
2696         struct mem_cgroup *memcg;
2697
2698         if (!total_swap_pages)
2699                 return;
2700
2701         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2702         do {
2703                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2704
2705                 if (inactive_anon_is_low(lruvec))
2706                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2707                                            sc, LRU_ACTIVE_ANON);
2708
2709                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2710         } while (memcg);
2711 }
2712
2713 static bool zone_balanced(struct zone *zone, int order,
2714                           unsigned long balance_gap, int classzone_idx)
2715 {
2716         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2717                                     balance_gap, classzone_idx, 0))
2718                 return false;
2719
2720         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2721             !compaction_suitable(zone, order))
2722                 return false;
2723
2724         return true;
2725 }
2726
2727 /*
2728  * pgdat_balanced() is used when checking if a node is balanced.
2729  *
2730  * For order-0, all zones must be balanced!
2731  *
2732  * For high-order allocations only zones that meet watermarks and are in a
2733  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2734  * total of balanced pages must be at least 25% of the zones allowed by
2735  * classzone_idx for the node to be considered balanced. Forcing all zones to
2736  * be balanced for high orders can cause excessive reclaim when there are
2737  * imbalanced zones.
2738  * The choice of 25% is due to
2739  *   o a 16M DMA zone that is balanced will not balance a zone on any
2740  *     reasonable sized machine
2741  *   o On all other machines, the top zone must be at least a reasonable
2742  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2743  *     would need to be at least 256M for it to be balance a whole node.
2744  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2745  *     to balance a node on its own. These seemed like reasonable ratios.
2746  */
2747 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2748 {
2749         unsigned long managed_pages = 0;
2750         unsigned long balanced_pages = 0;
2751         int i;
2752
2753         /* Check the watermark levels */
2754         for (i = 0; i <= classzone_idx; i++) {
2755                 struct zone *zone = pgdat->node_zones + i;
2756
2757                 if (!populated_zone(zone))
2758                         continue;
2759
2760                 managed_pages += zone->managed_pages;
2761
2762                 /*
2763                  * A special case here:
2764                  *
2765                  * balance_pgdat() skips over all_unreclaimable after
2766                  * DEF_PRIORITY. Effectively, it considers them balanced so
2767                  * they must be considered balanced here as well!
2768                  */
2769                 if (!zone_reclaimable(zone)) {
2770                         balanced_pages += zone->managed_pages;
2771                         continue;
2772                 }
2773
2774                 if (zone_balanced(zone, order, 0, i))
2775                         balanced_pages += zone->managed_pages;
2776                 else if (!order)
2777                         return false;
2778         }
2779
2780         if (order)
2781                 return balanced_pages >= (managed_pages >> 2);
2782         else
2783                 return true;
2784 }
2785
2786 /*
2787  * Prepare kswapd for sleeping. This verifies that there are no processes
2788  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2789  *
2790  * Returns true if kswapd is ready to sleep
2791  */
2792 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2793                                         int classzone_idx)
2794 {
2795         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2796         if (remaining)
2797                 return false;
2798
2799         /*
2800          * There is a potential race between when kswapd checks its watermarks
2801          * and a process gets throttled. There is also a potential race if
2802          * processes get throttled, kswapd wakes, a large process exits therby
2803          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2804          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2805          * so wake them now if necessary. If necessary, processes will wake
2806          * kswapd and get throttled again
2807          */
2808         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2809                 wake_up(&pgdat->pfmemalloc_wait);
2810                 return false;
2811         }
2812
2813         return pgdat_balanced(pgdat, order, classzone_idx);
2814 }
2815
2816 /*
2817  * kswapd shrinks the zone by the number of pages required to reach
2818  * the high watermark.
2819  *
2820  * Returns true if kswapd scanned at least the requested number of pages to
2821  * reclaim or if the lack of progress was due to pages under writeback.
2822  * This is used to determine if the scanning priority needs to be raised.
2823  */
2824 static bool kswapd_shrink_zone(struct zone *zone,
2825                                int classzone_idx,
2826                                struct scan_control *sc,
2827                                unsigned long lru_pages,
2828                                unsigned long *nr_attempted)
2829 {
2830         int testorder = sc->order;
2831         unsigned long balance_gap;
2832         struct reclaim_state *reclaim_state = current->reclaim_state;
2833         struct shrink_control shrink = {
2834                 .gfp_mask = sc->gfp_mask,
2835         };
2836         bool lowmem_pressure;
2837
2838         /* Reclaim above the high watermark. */
2839         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2840
2841         /*
2842          * Kswapd reclaims only single pages with compaction enabled. Trying
2843          * too hard to reclaim until contiguous free pages have become
2844          * available can hurt performance by evicting too much useful data
2845          * from memory. Do not reclaim more than needed for compaction.
2846          */
2847         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2848                         compaction_suitable(zone, sc->order) !=
2849                                 COMPACT_SKIPPED)
2850                 testorder = 0;
2851
2852         /*
2853          * We put equal pressure on every zone, unless one zone has way too
2854          * many pages free already. The "too many pages" is defined as the
2855          * high wmark plus a "gap" where the gap is either the low
2856          * watermark or 1% of the zone, whichever is smaller.
2857          */
2858         balance_gap = min(low_wmark_pages(zone),
2859                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2860                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2861
2862         /*
2863          * If there is no low memory pressure or the zone is balanced then no
2864          * reclaim is necessary
2865          */
2866         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2867         if (!lowmem_pressure && zone_balanced(zone, testorder,
2868                                                 balance_gap, classzone_idx))
2869                 return true;
2870
2871         shrink_zone(zone, sc);
2872         nodes_clear(shrink.nodes_to_scan);
2873         node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2874
2875         reclaim_state->reclaimed_slab = 0;
2876         shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2877         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2878
2879         /* Account for the number of pages attempted to reclaim */
2880         *nr_attempted += sc->nr_to_reclaim;
2881
2882         zone_clear_flag(zone, ZONE_WRITEBACK);
2883
2884         /*
2885          * If a zone reaches its high watermark, consider it to be no longer
2886          * congested. It's possible there are dirty pages backed by congested
2887          * BDIs but as pressure is relieved, speculatively avoid congestion
2888          * waits.
2889          */
2890         if (zone_reclaimable(zone) &&
2891             zone_balanced(zone, testorder, 0, classzone_idx)) {
2892                 zone_clear_flag(zone, ZONE_CONGESTED);
2893                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2894         }
2895
2896         return sc->nr_scanned >= sc->nr_to_reclaim;
2897 }
2898
2899 /*
2900  * For kswapd, balance_pgdat() will work across all this node's zones until
2901  * they are all at high_wmark_pages(zone).
2902  *
2903  * Returns the final order kswapd was reclaiming at
2904  *
2905  * There is special handling here for zones which are full of pinned pages.
2906  * This can happen if the pages are all mlocked, or if they are all used by
2907  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2908  * What we do is to detect the case where all pages in the zone have been
2909  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2910  * dead and from now on, only perform a short scan.  Basically we're polling
2911  * the zone for when the problem goes away.
2912  *
2913  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2914  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2915  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2916  * lower zones regardless of the number of free pages in the lower zones. This
2917  * interoperates with the page allocator fallback scheme to ensure that aging
2918  * of pages is balanced across the zones.
2919  */
2920 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2921                                                         int *classzone_idx)
2922 {
2923         int i;
2924         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2925         unsigned long nr_soft_reclaimed;
2926         unsigned long nr_soft_scanned;
2927         struct scan_control sc = {
2928                 .gfp_mask = GFP_KERNEL,
2929                 .priority = DEF_PRIORITY,
2930                 .may_unmap = 1,
2931                 .may_swap = 1,
2932                 .may_writepage = !laptop_mode,
2933                 .order = order,
2934                 .target_mem_cgroup = NULL,
2935         };
2936         count_vm_event(PAGEOUTRUN);
2937
2938         do {
2939                 unsigned long lru_pages = 0;
2940                 unsigned long nr_attempted = 0;
2941                 bool raise_priority = true;
2942                 bool pgdat_needs_compaction = (order > 0);
2943
2944                 sc.nr_reclaimed = 0;
2945
2946                 /*
2947                  * Scan in the highmem->dma direction for the highest
2948                  * zone which needs scanning
2949                  */
2950                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2951                         struct zone *zone = pgdat->node_zones + i;
2952
2953                         if (!populated_zone(zone))
2954                                 continue;
2955
2956                         if (sc.priority != DEF_PRIORITY &&
2957                             !zone_reclaimable(zone))
2958                                 continue;
2959
2960                         /*
2961                          * Do some background aging of the anon list, to give
2962                          * pages a chance to be referenced before reclaiming.
2963                          */
2964                         age_active_anon(zone, &sc);
2965
2966                         /*
2967                          * If the number of buffer_heads in the machine
2968                          * exceeds the maximum allowed level and this node
2969                          * has a highmem zone, force kswapd to reclaim from
2970                          * it to relieve lowmem pressure.
2971                          */
2972                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2973                                 end_zone = i;
2974                                 break;
2975                         }
2976
2977                         if (!zone_balanced(zone, order, 0, 0)) {
2978                                 end_zone = i;
2979                                 break;
2980                         } else {
2981                                 /*
2982                                  * If balanced, clear the dirty and congested
2983                                  * flags
2984                                  */
2985                                 zone_clear_flag(zone, ZONE_CONGESTED);
2986                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2987                         }
2988                 }
2989
2990                 if (i < 0)
2991                         goto out;
2992
2993                 for (i = 0; i <= end_zone; i++) {
2994                         struct zone *zone = pgdat->node_zones + i;
2995
2996                         if (!populated_zone(zone))
2997                                 continue;
2998
2999                         lru_pages += zone_reclaimable_pages(zone);
3000
3001                         /*
3002                          * If any zone is currently balanced then kswapd will
3003                          * not call compaction as it is expected that the
3004                          * necessary pages are already available.
3005                          */
3006                         if (pgdat_needs_compaction &&
3007                                         zone_watermark_ok(zone, order,
3008                                                 low_wmark_pages(zone),
3009                                                 *classzone_idx, 0))
3010                                 pgdat_needs_compaction = false;
3011                 }
3012
3013                 /*
3014                  * If we're getting trouble reclaiming, start doing writepage
3015                  * even in laptop mode.
3016                  */
3017                 if (sc.priority < DEF_PRIORITY - 2)
3018                         sc.may_writepage = 1;
3019
3020                 /*
3021                  * Now scan the zone in the dma->highmem direction, stopping
3022                  * at the last zone which needs scanning.
3023                  *
3024                  * We do this because the page allocator works in the opposite
3025                  * direction.  This prevents the page allocator from allocating
3026                  * pages behind kswapd's direction of progress, which would
3027                  * cause too much scanning of the lower zones.
3028                  */
3029                 for (i = 0; i <= end_zone; i++) {
3030                         struct zone *zone = pgdat->node_zones + i;
3031
3032                         if (!populated_zone(zone))
3033                                 continue;
3034
3035                         if (sc.priority != DEF_PRIORITY &&
3036                             !zone_reclaimable(zone))
3037                                 continue;
3038
3039                         sc.nr_scanned = 0;
3040
3041                         nr_soft_scanned = 0;
3042                         /*
3043                          * Call soft limit reclaim before calling shrink_zone.
3044                          */
3045                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3046                                                         order, sc.gfp_mask,
3047                                                         &nr_soft_scanned);
3048                         sc.nr_reclaimed += nr_soft_reclaimed;
3049
3050                         /*
3051                          * There should be no need to raise the scanning
3052                          * priority if enough pages are already being scanned
3053                          * that that high watermark would be met at 100%
3054                          * efficiency.
3055                          */
3056                         if (kswapd_shrink_zone(zone, end_zone, &sc,
3057                                         lru_pages, &nr_attempted))
3058                                 raise_priority = false;
3059                 }
3060
3061                 /*
3062                  * If the low watermark is met there is no need for processes
3063                  * to be throttled on pfmemalloc_wait as they should not be
3064                  * able to safely make forward progress. Wake them
3065                  */
3066                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3067                                 pfmemalloc_watermark_ok(pgdat))
3068                         wake_up(&pgdat->pfmemalloc_wait);
3069
3070                 /*
3071                  * Fragmentation may mean that the system cannot be rebalanced
3072                  * for high-order allocations in all zones. If twice the
3073                  * allocation size has been reclaimed and the zones are still
3074                  * not balanced then recheck the watermarks at order-0 to
3075                  * prevent kswapd reclaiming excessively. Assume that a
3076                  * process requested a high-order can direct reclaim/compact.
3077                  */
3078                 if (order && sc.nr_reclaimed >= 2UL << order)
3079                         order = sc.order = 0;
3080
3081                 /* Check if kswapd should be suspending */
3082                 if (try_to_freeze() || kthread_should_stop())
3083                         break;
3084
3085                 /*
3086                  * Compact if necessary and kswapd is reclaiming at least the
3087                  * high watermark number of pages as requsted
3088                  */
3089                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3090                         compact_pgdat(pgdat, order);
3091
3092                 /*
3093                  * Raise priority if scanning rate is too low or there was no
3094                  * progress in reclaiming pages
3095                  */
3096                 if (raise_priority || !sc.nr_reclaimed)
3097                         sc.priority--;
3098         } while (sc.priority >= 1 &&
3099                  !pgdat_balanced(pgdat, order, *classzone_idx));
3100
3101 out:
3102         /*
3103          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3104          * makes a decision on the order we were last reclaiming at. However,
3105          * if another caller entered the allocator slow path while kswapd
3106          * was awake, order will remain at the higher level
3107          */
3108         *classzone_idx = end_zone;
3109         return order;
3110 }
3111
3112 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3113 {
3114         long remaining = 0;
3115         DEFINE_WAIT(wait);
3116
3117         if (freezing(current) || kthread_should_stop())
3118                 return;
3119
3120         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3121
3122         /* Try to sleep for a short interval */
3123         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3124                 remaining = schedule_timeout(HZ/10);
3125                 finish_wait(&pgdat->kswapd_wait, &wait);
3126                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3127         }
3128
3129         /*
3130          * After a short sleep, check if it was a premature sleep. If not, then
3131          * go fully to sleep until explicitly woken up.
3132          */
3133         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3134                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3135
3136                 /*
3137                  * vmstat counters are not perfectly accurate and the estimated
3138                  * value for counters such as NR_FREE_PAGES can deviate from the
3139                  * true value by nr_online_cpus * threshold. To avoid the zone
3140                  * watermarks being breached while under pressure, we reduce the
3141                  * per-cpu vmstat threshold while kswapd is awake and restore
3142                  * them before going back to sleep.
3143                  */
3144                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3145
3146                 /*
3147                  * Compaction records what page blocks it recently failed to
3148                  * isolate pages from and skips them in the future scanning.
3149                  * When kswapd is going to sleep, it is reasonable to assume
3150                  * that pages and compaction may succeed so reset the cache.
3151                  */
3152                 reset_isolation_suitable(pgdat);
3153
3154                 if (!kthread_should_stop())
3155                         schedule();
3156
3157                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3158         } else {
3159                 if (remaining)
3160                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3161                 else
3162                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3163         }
3164         finish_wait(&pgdat->kswapd_wait, &wait);
3165 }
3166
3167 /*
3168  * The background pageout daemon, started as a kernel thread
3169  * from the init process.
3170  *
3171  * This basically trickles out pages so that we have _some_
3172  * free memory available even if there is no other activity
3173  * that frees anything up. This is needed for things like routing
3174  * etc, where we otherwise might have all activity going on in
3175  * asynchronous contexts that cannot page things out.
3176  *
3177  * If there are applications that are active memory-allocators
3178  * (most normal use), this basically shouldn't matter.
3179  */
3180 static int kswapd(void *p)
3181 {
3182         unsigned long order, new_order;
3183         unsigned balanced_order;
3184         int classzone_idx, new_classzone_idx;
3185         int balanced_classzone_idx;
3186         pg_data_t *pgdat = (pg_data_t*)p;
3187         struct task_struct *tsk = current;
3188
3189         struct reclaim_state reclaim_state = {
3190                 .reclaimed_slab = 0,
3191         };
3192         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3193
3194         lockdep_set_current_reclaim_state(GFP_KERNEL);
3195
3196         if (!cpumask_empty(cpumask))
3197                 set_cpus_allowed_ptr(tsk, cpumask);
3198         current->reclaim_state = &reclaim_state;
3199
3200         /*
3201          * Tell the memory management that we're a "memory allocator",
3202          * and that if we need more memory we should get access to it
3203          * regardless (see "__alloc_pages()"). "kswapd" should
3204          * never get caught in the normal page freeing logic.
3205          *
3206          * (Kswapd normally doesn't need memory anyway, but sometimes
3207          * you need a small amount of memory in order to be able to
3208          * page out something else, and this flag essentially protects
3209          * us from recursively trying to free more memory as we're
3210          * trying to free the first piece of memory in the first place).
3211          */
3212         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3213         set_freezable();
3214
3215         order = new_order = 0;
3216         balanced_order = 0;
3217         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3218         balanced_classzone_idx = classzone_idx;
3219         for ( ; ; ) {
3220                 bool ret;
3221
3222                 /*
3223                  * If the last balance_pgdat was unsuccessful it's unlikely a
3224                  * new request of a similar or harder type will succeed soon
3225                  * so consider going to sleep on the basis we reclaimed at
3226                  */
3227                 if (balanced_classzone_idx >= new_classzone_idx &&
3228                                         balanced_order == new_order) {
3229                         new_order = pgdat->kswapd_max_order;
3230                         new_classzone_idx = pgdat->classzone_idx;
3231                         pgdat->kswapd_max_order =  0;
3232                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3233                 }
3234
3235                 if (order < new_order || classzone_idx > new_classzone_idx) {
3236                         /*
3237                          * Don't sleep if someone wants a larger 'order'
3238                          * allocation or has tigher zone constraints
3239                          */
3240                         order = new_order;
3241                         classzone_idx = new_classzone_idx;
3242                 } else {
3243                         kswapd_try_to_sleep(pgdat, balanced_order,
3244                                                 balanced_classzone_idx);
3245                         order = pgdat->kswapd_max_order;
3246                         classzone_idx = pgdat->classzone_idx;
3247                         new_order = order;
3248                         new_classzone_idx = classzone_idx;
3249                         pgdat->kswapd_max_order = 0;
3250                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3251                 }
3252
3253                 ret = try_to_freeze();
3254                 if (kthread_should_stop())
3255                         break;
3256
3257                 /*
3258                  * We can speed up thawing tasks if we don't call balance_pgdat
3259                  * after returning from the refrigerator
3260                  */
3261                 if (!ret) {
3262                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3263                         balanced_classzone_idx = classzone_idx;
3264                         balanced_order = balance_pgdat(pgdat, order,
3265                                                 &balanced_classzone_idx);
3266                 }
3267         }
3268
3269         current->reclaim_state = NULL;
3270         return 0;
3271 }
3272
3273 /*
3274  * A zone is low on free memory, so wake its kswapd task to service it.
3275  */
3276 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3277 {
3278         pg_data_t *pgdat;
3279
3280         if (!populated_zone(zone))
3281                 return;
3282
3283         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3284                 return;
3285         pgdat = zone->zone_pgdat;
3286         if (pgdat->kswapd_max_order < order) {
3287                 pgdat->kswapd_max_order = order;
3288                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3289         }
3290         if (!waitqueue_active(&pgdat->kswapd_wait))
3291                 return;
3292         if (zone_balanced(zone, order, 0, 0))
3293                 return;
3294
3295         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3296         wake_up_interruptible(&pgdat->kswapd_wait);
3297 }
3298
3299 /*
3300  * The reclaimable count would be mostly accurate.
3301  * The less reclaimable pages may be
3302  * - mlocked pages, which will be moved to unevictable list when encountered
3303  * - mapped pages, which may require several travels to be reclaimed
3304  * - dirty pages, which is not "instantly" reclaimable
3305  */
3306 unsigned long global_reclaimable_pages(void)
3307 {
3308         int nr;
3309
3310         nr = global_page_state(NR_ACTIVE_FILE) +
3311              global_page_state(NR_INACTIVE_FILE);
3312
3313         if (get_nr_swap_pages() > 0)
3314                 nr += global_page_state(NR_ACTIVE_ANON) +
3315                       global_page_state(NR_INACTIVE_ANON);
3316
3317         return nr;
3318 }
3319
3320 #ifdef CONFIG_HIBERNATION
3321 /*
3322  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3323  * freed pages.
3324  *
3325  * Rather than trying to age LRUs the aim is to preserve the overall
3326  * LRU order by reclaiming preferentially
3327  * inactive > active > active referenced > active mapped
3328  */
3329 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3330 {
3331         struct reclaim_state reclaim_state;
3332         struct scan_control sc = {
3333                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3334                 .may_swap = 1,
3335                 .may_unmap = 1,
3336                 .may_writepage = 1,
3337                 .nr_to_reclaim = nr_to_reclaim,
3338                 .hibernation_mode = 1,
3339                 .order = 0,
3340                 .priority = DEF_PRIORITY,
3341         };
3342         struct shrink_control shrink = {
3343                 .gfp_mask = sc.gfp_mask,
3344         };
3345         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3346         struct task_struct *p = current;
3347         unsigned long nr_reclaimed;
3348
3349         p->flags |= PF_MEMALLOC;
3350         lockdep_set_current_reclaim_state(sc.gfp_mask);
3351         reclaim_state.reclaimed_slab = 0;
3352         p->reclaim_state = &reclaim_state;
3353
3354         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3355
3356         p->reclaim_state = NULL;
3357         lockdep_clear_current_reclaim_state();
3358         p->flags &= ~PF_MEMALLOC;
3359
3360         return nr_reclaimed;
3361 }
3362 #endif /* CONFIG_HIBERNATION */
3363
3364 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3365    not required for correctness.  So if the last cpu in a node goes
3366    away, we get changed to run anywhere: as the first one comes back,
3367    restore their cpu bindings. */
3368 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3369                         void *hcpu)
3370 {
3371         int nid;
3372
3373         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3374                 for_each_node_state(nid, N_MEMORY) {
3375                         pg_data_t *pgdat = NODE_DATA(nid);
3376                         const struct cpumask *mask;
3377
3378                         mask = cpumask_of_node(pgdat->node_id);
3379
3380                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3381                                 /* One of our CPUs online: restore mask */
3382                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3383                 }
3384         }
3385         return NOTIFY_OK;
3386 }
3387
3388 /*
3389  * This kswapd start function will be called by init and node-hot-add.
3390  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3391  */
3392 int kswapd_run(int nid)
3393 {
3394         pg_data_t *pgdat = NODE_DATA(nid);
3395         int ret = 0;
3396
3397         if (pgdat->kswapd)
3398                 return 0;
3399
3400         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3401         if (IS_ERR(pgdat->kswapd)) {
3402                 /* failure at boot is fatal */
3403                 BUG_ON(system_state == SYSTEM_BOOTING);
3404                 pr_err("Failed to start kswapd on node %d\n", nid);
3405                 ret = PTR_ERR(pgdat->kswapd);
3406                 pgdat->kswapd = NULL;
3407         }
3408         return ret;
3409 }
3410
3411 /*
3412  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3413  * hold lock_memory_hotplug().
3414  */
3415 void kswapd_stop(int nid)
3416 {
3417         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3418
3419         if (kswapd) {
3420                 kthread_stop(kswapd);
3421                 NODE_DATA(nid)->kswapd = NULL;
3422         }
3423 }
3424
3425 static int __init kswapd_init(void)
3426 {
3427         int nid;
3428
3429         swap_setup();
3430         for_each_node_state(nid, N_MEMORY)
3431                 kswapd_run(nid);
3432         hotcpu_notifier(cpu_callback, 0);
3433         return 0;
3434 }
3435
3436 module_init(kswapd_init)
3437
3438 #ifdef CONFIG_NUMA
3439 /*
3440  * Zone reclaim mode
3441  *
3442  * If non-zero call zone_reclaim when the number of free pages falls below
3443  * the watermarks.
3444  */
3445 int zone_reclaim_mode __read_mostly;
3446
3447 #define RECLAIM_OFF 0
3448 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3449 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3450 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3451
3452 /*
3453  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3454  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3455  * a zone.
3456  */
3457 #define ZONE_RECLAIM_PRIORITY 4
3458
3459 /*
3460  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3461  * occur.
3462  */
3463 int sysctl_min_unmapped_ratio = 1;
3464
3465 /*
3466  * If the number of slab pages in a zone grows beyond this percentage then
3467  * slab reclaim needs to occur.
3468  */
3469 int sysctl_min_slab_ratio = 5;
3470
3471 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3472 {
3473         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3474         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3475                 zone_page_state(zone, NR_ACTIVE_FILE);
3476
3477         /*
3478          * It's possible for there to be more file mapped pages than
3479          * accounted for by the pages on the file LRU lists because
3480          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3481          */
3482         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3483 }
3484
3485 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3486 static long zone_pagecache_reclaimable(struct zone *zone)
3487 {
3488         long nr_pagecache_reclaimable;
3489         long delta = 0;
3490
3491         /*
3492          * If RECLAIM_SWAP is set, then all file pages are considered
3493          * potentially reclaimable. Otherwise, we have to worry about
3494          * pages like swapcache and zone_unmapped_file_pages() provides
3495          * a better estimate
3496          */
3497         if (zone_reclaim_mode & RECLAIM_SWAP)
3498                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3499         else
3500                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3501
3502         /* If we can't clean pages, remove dirty pages from consideration */
3503         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3504                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3505
3506         /* Watch for any possible underflows due to delta */
3507         if (unlikely(delta > nr_pagecache_reclaimable))
3508                 delta = nr_pagecache_reclaimable;
3509
3510         return nr_pagecache_reclaimable - delta;
3511 }
3512
3513 /*
3514  * Try to free up some pages from this zone through reclaim.
3515  */
3516 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3517 {
3518         /* Minimum pages needed in order to stay on node */
3519         const unsigned long nr_pages = 1 << order;
3520         struct task_struct *p = current;
3521         struct reclaim_state reclaim_state;
3522         struct scan_control sc = {
3523                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3524                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3525                 .may_swap = 1,
3526                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3527                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3528                 .order = order,
3529                 .priority = ZONE_RECLAIM_PRIORITY,
3530         };
3531         struct shrink_control shrink = {
3532                 .gfp_mask = sc.gfp_mask,
3533         };
3534         unsigned long nr_slab_pages0, nr_slab_pages1;
3535
3536         cond_resched();
3537         /*
3538          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3539          * and we also need to be able to write out pages for RECLAIM_WRITE
3540          * and RECLAIM_SWAP.
3541          */
3542         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3543         lockdep_set_current_reclaim_state(gfp_mask);
3544         reclaim_state.reclaimed_slab = 0;
3545         p->reclaim_state = &reclaim_state;
3546
3547         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3548                 /*
3549                  * Free memory by calling shrink zone with increasing
3550                  * priorities until we have enough memory freed.
3551                  */
3552                 do {
3553                         shrink_zone(zone, &sc);
3554                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3555         }
3556
3557         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3558         if (nr_slab_pages0 > zone->min_slab_pages) {
3559                 /*
3560                  * shrink_slab() does not currently allow us to determine how
3561                  * many pages were freed in this zone. So we take the current
3562                  * number of slab pages and shake the slab until it is reduced
3563                  * by the same nr_pages that we used for reclaiming unmapped
3564                  * pages.
3565                  */
3566                 nodes_clear(shrink.nodes_to_scan);
3567                 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3568                 for (;;) {
3569                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3570
3571                         /* No reclaimable slab or very low memory pressure */
3572                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3573                                 break;
3574
3575                         /* Freed enough memory */
3576                         nr_slab_pages1 = zone_page_state(zone,
3577                                                         NR_SLAB_RECLAIMABLE);
3578                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3579                                 break;
3580                 }
3581
3582                 /*
3583                  * Update nr_reclaimed by the number of slab pages we
3584                  * reclaimed from this zone.
3585                  */
3586                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3587                 if (nr_slab_pages1 < nr_slab_pages0)
3588                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3589         }
3590
3591         p->reclaim_state = NULL;
3592         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3593         lockdep_clear_current_reclaim_state();
3594         return sc.nr_reclaimed >= nr_pages;
3595 }
3596
3597 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3598 {
3599         int node_id;
3600         int ret;
3601
3602         /*
3603          * Zone reclaim reclaims unmapped file backed pages and
3604          * slab pages if we are over the defined limits.
3605          *
3606          * A small portion of unmapped file backed pages is needed for
3607          * file I/O otherwise pages read by file I/O will be immediately
3608          * thrown out if the zone is overallocated. So we do not reclaim
3609          * if less than a specified percentage of the zone is used by
3610          * unmapped file backed pages.
3611          */
3612         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3613             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3614                 return ZONE_RECLAIM_FULL;
3615
3616         if (!zone_reclaimable(zone))
3617                 return ZONE_RECLAIM_FULL;
3618
3619         /*
3620          * Do not scan if the allocation should not be delayed.
3621          */
3622         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3623                 return ZONE_RECLAIM_NOSCAN;
3624
3625         /*
3626          * Only run zone reclaim on the local zone or on zones that do not
3627          * have associated processors. This will favor the local processor
3628          * over remote processors and spread off node memory allocations
3629          * as wide as possible.
3630          */
3631         node_id = zone_to_nid(zone);
3632         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3633                 return ZONE_RECLAIM_NOSCAN;
3634
3635         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3636                 return ZONE_RECLAIM_NOSCAN;
3637
3638         ret = __zone_reclaim(zone, gfp_mask, order);
3639         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3640
3641         if (!ret)
3642                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3643
3644         return ret;
3645 }
3646 #endif
3647
3648 /*
3649  * page_evictable - test whether a page is evictable
3650  * @page: the page to test
3651  *
3652  * Test whether page is evictable--i.e., should be placed on active/inactive
3653  * lists vs unevictable list.
3654  *
3655  * Reasons page might not be evictable:
3656  * (1) page's mapping marked unevictable
3657  * (2) page is part of an mlocked VMA
3658  *
3659  */
3660 int page_evictable(struct page *page)
3661 {
3662         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3663 }
3664
3665 #ifdef CONFIG_SHMEM
3666 /**
3667  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3668  * @pages:      array of pages to check
3669  * @nr_pages:   number of pages to check
3670  *
3671  * Checks pages for evictability and moves them to the appropriate lru list.
3672  *
3673  * This function is only used for SysV IPC SHM_UNLOCK.
3674  */
3675 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3676 {
3677         struct lruvec *lruvec;
3678         struct zone *zone = NULL;
3679         int pgscanned = 0;
3680         int pgrescued = 0;
3681         int i;
3682
3683         for (i = 0; i < nr_pages; i++) {
3684                 struct page *page = pages[i];
3685                 struct zone *pagezone;
3686
3687                 pgscanned++;
3688                 pagezone = page_zone(page);
3689                 if (pagezone != zone) {
3690                         if (zone)
3691                                 spin_unlock_irq(&zone->lru_lock);
3692                         zone = pagezone;
3693                         spin_lock_irq(&zone->lru_lock);
3694                 }
3695                 lruvec = mem_cgroup_page_lruvec(page, zone);
3696
3697                 if (!PageLRU(page) || !PageUnevictable(page))
3698                         continue;
3699
3700                 if (page_evictable(page)) {
3701                         enum lru_list lru = page_lru_base_type(page);
3702
3703                         VM_BUG_ON(PageActive(page));
3704                         ClearPageUnevictable(page);
3705                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3706                         add_page_to_lru_list(page, lruvec, lru);
3707                         pgrescued++;
3708                 }
3709         }
3710
3711         if (zone) {
3712                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3713                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3714                 spin_unlock_irq(&zone->lru_lock);
3715         }
3716 }
3717 #endif /* CONFIG_SHMEM */
3718
3719 static void warn_scan_unevictable_pages(void)
3720 {
3721         printk_once(KERN_WARNING
3722                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3723                     "disabled for lack of a legitimate use case.  If you have "
3724                     "one, please send an email to linux-mm@kvack.org.\n",
3725                     current->comm);
3726 }
3727
3728 /*
3729  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3730  * all nodes' unevictable lists for evictable pages
3731  */
3732 unsigned long scan_unevictable_pages;
3733
3734 int scan_unevictable_handler(struct ctl_table *table, int write,
3735                            void __user *buffer,
3736                            size_t *length, loff_t *ppos)
3737 {
3738         warn_scan_unevictable_pages();
3739         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3740         scan_unevictable_pages = 0;
3741         return 0;
3742 }
3743
3744 #ifdef CONFIG_NUMA
3745 /*
3746  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3747  * a specified node's per zone unevictable lists for evictable pages.
3748  */
3749
3750 static ssize_t read_scan_unevictable_node(struct device *dev,
3751                                           struct device_attribute *attr,
3752                                           char *buf)
3753 {
3754         warn_scan_unevictable_pages();
3755         return sprintf(buf, "0\n");     /* always zero; should fit... */
3756 }
3757
3758 static ssize_t write_scan_unevictable_node(struct device *dev,
3759                                            struct device_attribute *attr,
3760                                         const char *buf, size_t count)
3761 {
3762         warn_scan_unevictable_pages();
3763         return 1;
3764 }
3765
3766
3767 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3768                         read_scan_unevictable_node,
3769                         write_scan_unevictable_node);
3770
3771 int scan_unevictable_register_node(struct node *node)
3772 {
3773         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3774 }
3775
3776 void scan_unevictable_unregister_node(struct node *node)
3777 {
3778         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3779 }
3780 #endif