]> git.karo-electronics.de Git - mv-sheeva.git/blob - mm/vmscan.c
[PATCH] slab: cache_reap(): further reduction in interrupt holdoff
[mv-sheeva.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>  /* for try_to_release_page(),
26                                         buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36 #include <linux/delay.h>
37
38 #include <asm/tlbflush.h>
39 #include <asm/div64.h>
40
41 #include <linux/swapops.h>
42
43 #include "internal.h"
44
45 /* possible outcome of pageout() */
46 typedef enum {
47         /* failed to write page out, page is locked */
48         PAGE_KEEP,
49         /* move page to the active list, page is locked */
50         PAGE_ACTIVATE,
51         /* page has been sent to the disk successfully, page is unlocked */
52         PAGE_SUCCESS,
53         /* page is clean and locked */
54         PAGE_CLEAN,
55 } pageout_t;
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         unsigned long nr_mapped;        /* From page_state */
62
63         /* This context's GFP mask */
64         gfp_t gfp_mask;
65
66         int may_writepage;
67
68         /* Can pages be swapped as part of reclaim? */
69         int may_swap;
70
71         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
72          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
73          * In this context, it doesn't matter that we scan the
74          * whole list at once. */
75         int swap_cluster_max;
76 };
77
78 /*
79  * The list of shrinker callbacks used by to apply pressure to
80  * ageable caches.
81  */
82 struct shrinker {
83         shrinker_t              shrinker;
84         struct list_head        list;
85         int                     seeks;  /* seeks to recreate an obj */
86         long                    nr;     /* objs pending delete */
87 };
88
89 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
90
91 #ifdef ARCH_HAS_PREFETCH
92 #define prefetch_prev_lru_page(_page, _base, _field)                    \
93         do {                                                            \
94                 if ((_page)->lru.prev != _base) {                       \
95                         struct page *prev;                              \
96                                                                         \
97                         prev = lru_to_page(&(_page->lru));              \
98                         prefetch(&prev->_field);                        \
99                 }                                                       \
100         } while (0)
101 #else
102 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
103 #endif
104
105 #ifdef ARCH_HAS_PREFETCHW
106 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
107         do {                                                            \
108                 if ((_page)->lru.prev != _base) {                       \
109                         struct page *prev;                              \
110                                                                         \
111                         prev = lru_to_page(&(_page->lru));              \
112                         prefetchw(&prev->_field);                       \
113                 }                                                       \
114         } while (0)
115 #else
116 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
117 #endif
118
119 /*
120  * From 0 .. 100.  Higher means more swappy.
121  */
122 int vm_swappiness = 60;
123 static long total_memory;
124
125 static LIST_HEAD(shrinker_list);
126 static DECLARE_RWSEM(shrinker_rwsem);
127
128 /*
129  * Add a shrinker callback to be called from the vm
130  */
131 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
132 {
133         struct shrinker *shrinker;
134
135         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
136         if (shrinker) {
137                 shrinker->shrinker = theshrinker;
138                 shrinker->seeks = seeks;
139                 shrinker->nr = 0;
140                 down_write(&shrinker_rwsem);
141                 list_add_tail(&shrinker->list, &shrinker_list);
142                 up_write(&shrinker_rwsem);
143         }
144         return shrinker;
145 }
146 EXPORT_SYMBOL(set_shrinker);
147
148 /*
149  * Remove one
150  */
151 void remove_shrinker(struct shrinker *shrinker)
152 {
153         down_write(&shrinker_rwsem);
154         list_del(&shrinker->list);
155         up_write(&shrinker_rwsem);
156         kfree(shrinker);
157 }
158 EXPORT_SYMBOL(remove_shrinker);
159
160 #define SHRINK_BATCH 128
161 /*
162  * Call the shrink functions to age shrinkable caches
163  *
164  * Here we assume it costs one seek to replace a lru page and that it also
165  * takes a seek to recreate a cache object.  With this in mind we age equal
166  * percentages of the lru and ageable caches.  This should balance the seeks
167  * generated by these structures.
168  *
169  * If the vm encounted mapped pages on the LRU it increase the pressure on
170  * slab to avoid swapping.
171  *
172  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
173  *
174  * `lru_pages' represents the number of on-LRU pages in all the zones which
175  * are eligible for the caller's allocation attempt.  It is used for balancing
176  * slab reclaim versus page reclaim.
177  *
178  * Returns the number of slab objects which we shrunk.
179  */
180 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
181                         unsigned long lru_pages)
182 {
183         struct shrinker *shrinker;
184         unsigned long ret = 0;
185
186         if (scanned == 0)
187                 scanned = SWAP_CLUSTER_MAX;
188
189         if (!down_read_trylock(&shrinker_rwsem))
190                 return 1;       /* Assume we'll be able to shrink next time */
191
192         list_for_each_entry(shrinker, &shrinker_list, list) {
193                 unsigned long long delta;
194                 unsigned long total_scan;
195                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
196
197                 delta = (4 * scanned) / shrinker->seeks;
198                 delta *= max_pass;
199                 do_div(delta, lru_pages + 1);
200                 shrinker->nr += delta;
201                 if (shrinker->nr < 0) {
202                         printk(KERN_ERR "%s: nr=%ld\n",
203                                         __FUNCTION__, shrinker->nr);
204                         shrinker->nr = max_pass;
205                 }
206
207                 /*
208                  * Avoid risking looping forever due to too large nr value:
209                  * never try to free more than twice the estimate number of
210                  * freeable entries.
211                  */
212                 if (shrinker->nr > max_pass * 2)
213                         shrinker->nr = max_pass * 2;
214
215                 total_scan = shrinker->nr;
216                 shrinker->nr = 0;
217
218                 while (total_scan >= SHRINK_BATCH) {
219                         long this_scan = SHRINK_BATCH;
220                         int shrink_ret;
221                         int nr_before;
222
223                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
224                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
225                         if (shrink_ret == -1)
226                                 break;
227                         if (shrink_ret < nr_before)
228                                 ret += nr_before - shrink_ret;
229                         mod_page_state(slabs_scanned, this_scan);
230                         total_scan -= this_scan;
231
232                         cond_resched();
233                 }
234
235                 shrinker->nr += total_scan;
236         }
237         up_read(&shrinker_rwsem);
238         return ret;
239 }
240
241 /* Called without lock on whether page is mapped, so answer is unstable */
242 static inline int page_mapping_inuse(struct page *page)
243 {
244         struct address_space *mapping;
245
246         /* Page is in somebody's page tables. */
247         if (page_mapped(page))
248                 return 1;
249
250         /* Be more reluctant to reclaim swapcache than pagecache */
251         if (PageSwapCache(page))
252                 return 1;
253
254         mapping = page_mapping(page);
255         if (!mapping)
256                 return 0;
257
258         /* File is mmap'd by somebody? */
259         return mapping_mapped(mapping);
260 }
261
262 static inline int is_page_cache_freeable(struct page *page)
263 {
264         return page_count(page) - !!PagePrivate(page) == 2;
265 }
266
267 static int may_write_to_queue(struct backing_dev_info *bdi)
268 {
269         if (current->flags & PF_SWAPWRITE)
270                 return 1;
271         if (!bdi_write_congested(bdi))
272                 return 1;
273         if (bdi == current->backing_dev_info)
274                 return 1;
275         return 0;
276 }
277
278 /*
279  * We detected a synchronous write error writing a page out.  Probably
280  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
281  * fsync(), msync() or close().
282  *
283  * The tricky part is that after writepage we cannot touch the mapping: nothing
284  * prevents it from being freed up.  But we have a ref on the page and once
285  * that page is locked, the mapping is pinned.
286  *
287  * We're allowed to run sleeping lock_page() here because we know the caller has
288  * __GFP_FS.
289  */
290 static void handle_write_error(struct address_space *mapping,
291                                 struct page *page, int error)
292 {
293         lock_page(page);
294         if (page_mapping(page) == mapping) {
295                 if (error == -ENOSPC)
296                         set_bit(AS_ENOSPC, &mapping->flags);
297                 else
298                         set_bit(AS_EIO, &mapping->flags);
299         }
300         unlock_page(page);
301 }
302
303 /*
304  * pageout is called by shrink_page_list() for each dirty page.
305  * Calls ->writepage().
306  */
307 static pageout_t pageout(struct page *page, struct address_space *mapping)
308 {
309         /*
310          * If the page is dirty, only perform writeback if that write
311          * will be non-blocking.  To prevent this allocation from being
312          * stalled by pagecache activity.  But note that there may be
313          * stalls if we need to run get_block().  We could test
314          * PagePrivate for that.
315          *
316          * If this process is currently in generic_file_write() against
317          * this page's queue, we can perform writeback even if that
318          * will block.
319          *
320          * If the page is swapcache, write it back even if that would
321          * block, for some throttling. This happens by accident, because
322          * swap_backing_dev_info is bust: it doesn't reflect the
323          * congestion state of the swapdevs.  Easy to fix, if needed.
324          * See swapfile.c:page_queue_congested().
325          */
326         if (!is_page_cache_freeable(page))
327                 return PAGE_KEEP;
328         if (!mapping) {
329                 /*
330                  * Some data journaling orphaned pages can have
331                  * page->mapping == NULL while being dirty with clean buffers.
332                  */
333                 if (PagePrivate(page)) {
334                         if (try_to_free_buffers(page)) {
335                                 ClearPageDirty(page);
336                                 printk("%s: orphaned page\n", __FUNCTION__);
337                                 return PAGE_CLEAN;
338                         }
339                 }
340                 return PAGE_KEEP;
341         }
342         if (mapping->a_ops->writepage == NULL)
343                 return PAGE_ACTIVATE;
344         if (!may_write_to_queue(mapping->backing_dev_info))
345                 return PAGE_KEEP;
346
347         if (clear_page_dirty_for_io(page)) {
348                 int res;
349                 struct writeback_control wbc = {
350                         .sync_mode = WB_SYNC_NONE,
351                         .nr_to_write = SWAP_CLUSTER_MAX,
352                         .nonblocking = 1,
353                         .for_reclaim = 1,
354                 };
355
356                 SetPageReclaim(page);
357                 res = mapping->a_ops->writepage(page, &wbc);
358                 if (res < 0)
359                         handle_write_error(mapping, page, res);
360                 if (res == AOP_WRITEPAGE_ACTIVATE) {
361                         ClearPageReclaim(page);
362                         return PAGE_ACTIVATE;
363                 }
364                 if (!PageWriteback(page)) {
365                         /* synchronous write or broken a_ops? */
366                         ClearPageReclaim(page);
367                 }
368
369                 return PAGE_SUCCESS;
370         }
371
372         return PAGE_CLEAN;
373 }
374
375 static int remove_mapping(struct address_space *mapping, struct page *page)
376 {
377         if (!mapping)
378                 return 0;               /* truncate got there first */
379
380         write_lock_irq(&mapping->tree_lock);
381
382         /*
383          * The non-racy check for busy page.  It is critical to check
384          * PageDirty _after_ making sure that the page is freeable and
385          * not in use by anybody.       (pagecache + us == 2)
386          */
387         if (unlikely(page_count(page) != 2))
388                 goto cannot_free;
389         smp_rmb();
390         if (unlikely(PageDirty(page)))
391                 goto cannot_free;
392
393         if (PageSwapCache(page)) {
394                 swp_entry_t swap = { .val = page_private(page) };
395                 __delete_from_swap_cache(page);
396                 write_unlock_irq(&mapping->tree_lock);
397                 swap_free(swap);
398                 __put_page(page);       /* The pagecache ref */
399                 return 1;
400         }
401
402         __remove_from_page_cache(page);
403         write_unlock_irq(&mapping->tree_lock);
404         __put_page(page);
405         return 1;
406
407 cannot_free:
408         write_unlock_irq(&mapping->tree_lock);
409         return 0;
410 }
411
412 /*
413  * shrink_page_list() returns the number of reclaimed pages
414  */
415 static unsigned long shrink_page_list(struct list_head *page_list,
416                                         struct scan_control *sc)
417 {
418         LIST_HEAD(ret_pages);
419         struct pagevec freed_pvec;
420         int pgactivate = 0;
421         unsigned long nr_reclaimed = 0;
422
423         cond_resched();
424
425         pagevec_init(&freed_pvec, 1);
426         while (!list_empty(page_list)) {
427                 struct address_space *mapping;
428                 struct page *page;
429                 int may_enter_fs;
430                 int referenced;
431
432                 cond_resched();
433
434                 page = lru_to_page(page_list);
435                 list_del(&page->lru);
436
437                 if (TestSetPageLocked(page))
438                         goto keep;
439
440                 BUG_ON(PageActive(page));
441
442                 sc->nr_scanned++;
443
444                 if (!sc->may_swap && page_mapped(page))
445                         goto keep_locked;
446
447                 /* Double the slab pressure for mapped and swapcache pages */
448                 if (page_mapped(page) || PageSwapCache(page))
449                         sc->nr_scanned++;
450
451                 if (PageWriteback(page))
452                         goto keep_locked;
453
454                 referenced = page_referenced(page, 1);
455                 /* In active use or really unfreeable?  Activate it. */
456                 if (referenced && page_mapping_inuse(page))
457                         goto activate_locked;
458
459 #ifdef CONFIG_SWAP
460                 /*
461                  * Anonymous process memory has backing store?
462                  * Try to allocate it some swap space here.
463                  */
464                 if (PageAnon(page) && !PageSwapCache(page))
465                         if (!add_to_swap(page, GFP_ATOMIC))
466                                 goto activate_locked;
467 #endif /* CONFIG_SWAP */
468
469                 mapping = page_mapping(page);
470                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
471                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
472
473                 /*
474                  * The page is mapped into the page tables of one or more
475                  * processes. Try to unmap it here.
476                  */
477                 if (page_mapped(page) && mapping) {
478                         switch (try_to_unmap(page, 0)) {
479                         case SWAP_FAIL:
480                                 goto activate_locked;
481                         case SWAP_AGAIN:
482                                 goto keep_locked;
483                         case SWAP_SUCCESS:
484                                 ; /* try to free the page below */
485                         }
486                 }
487
488                 if (PageDirty(page)) {
489                         if (referenced)
490                                 goto keep_locked;
491                         if (!may_enter_fs)
492                                 goto keep_locked;
493                         if (!sc->may_writepage)
494                                 goto keep_locked;
495
496                         /* Page is dirty, try to write it out here */
497                         switch(pageout(page, mapping)) {
498                         case PAGE_KEEP:
499                                 goto keep_locked;
500                         case PAGE_ACTIVATE:
501                                 goto activate_locked;
502                         case PAGE_SUCCESS:
503                                 if (PageWriteback(page) || PageDirty(page))
504                                         goto keep;
505                                 /*
506                                  * A synchronous write - probably a ramdisk.  Go
507                                  * ahead and try to reclaim the page.
508                                  */
509                                 if (TestSetPageLocked(page))
510                                         goto keep;
511                                 if (PageDirty(page) || PageWriteback(page))
512                                         goto keep_locked;
513                                 mapping = page_mapping(page);
514                         case PAGE_CLEAN:
515                                 ; /* try to free the page below */
516                         }
517                 }
518
519                 /*
520                  * If the page has buffers, try to free the buffer mappings
521                  * associated with this page. If we succeed we try to free
522                  * the page as well.
523                  *
524                  * We do this even if the page is PageDirty().
525                  * try_to_release_page() does not perform I/O, but it is
526                  * possible for a page to have PageDirty set, but it is actually
527                  * clean (all its buffers are clean).  This happens if the
528                  * buffers were written out directly, with submit_bh(). ext3
529                  * will do this, as well as the blockdev mapping. 
530                  * try_to_release_page() will discover that cleanness and will
531                  * drop the buffers and mark the page clean - it can be freed.
532                  *
533                  * Rarely, pages can have buffers and no ->mapping.  These are
534                  * the pages which were not successfully invalidated in
535                  * truncate_complete_page().  We try to drop those buffers here
536                  * and if that worked, and the page is no longer mapped into
537                  * process address space (page_count == 1) it can be freed.
538                  * Otherwise, leave the page on the LRU so it is swappable.
539                  */
540                 if (PagePrivate(page)) {
541                         if (!try_to_release_page(page, sc->gfp_mask))
542                                 goto activate_locked;
543                         if (!mapping && page_count(page) == 1)
544                                 goto free_it;
545                 }
546
547                 if (!remove_mapping(mapping, page))
548                         goto keep_locked;
549
550 free_it:
551                 unlock_page(page);
552                 nr_reclaimed++;
553                 if (!pagevec_add(&freed_pvec, page))
554                         __pagevec_release_nonlru(&freed_pvec);
555                 continue;
556
557 activate_locked:
558                 SetPageActive(page);
559                 pgactivate++;
560 keep_locked:
561                 unlock_page(page);
562 keep:
563                 list_add(&page->lru, &ret_pages);
564                 BUG_ON(PageLRU(page));
565         }
566         list_splice(&ret_pages, page_list);
567         if (pagevec_count(&freed_pvec))
568                 __pagevec_release_nonlru(&freed_pvec);
569         mod_page_state(pgactivate, pgactivate);
570         return nr_reclaimed;
571 }
572
573 #ifdef CONFIG_MIGRATION
574 static inline void move_to_lru(struct page *page)
575 {
576         list_del(&page->lru);
577         if (PageActive(page)) {
578                 /*
579                  * lru_cache_add_active checks that
580                  * the PG_active bit is off.
581                  */
582                 ClearPageActive(page);
583                 lru_cache_add_active(page);
584         } else {
585                 lru_cache_add(page);
586         }
587         put_page(page);
588 }
589
590 /*
591  * Add isolated pages on the list back to the LRU.
592  *
593  * returns the number of pages put back.
594  */
595 unsigned long putback_lru_pages(struct list_head *l)
596 {
597         struct page *page;
598         struct page *page2;
599         unsigned long count = 0;
600
601         list_for_each_entry_safe(page, page2, l, lru) {
602                 move_to_lru(page);
603                 count++;
604         }
605         return count;
606 }
607
608 /*
609  * Non migratable page
610  */
611 int fail_migrate_page(struct page *newpage, struct page *page)
612 {
613         return -EIO;
614 }
615 EXPORT_SYMBOL(fail_migrate_page);
616
617 /*
618  * swapout a single page
619  * page is locked upon entry, unlocked on exit
620  */
621 static int swap_page(struct page *page)
622 {
623         struct address_space *mapping = page_mapping(page);
624
625         if (page_mapped(page) && mapping)
626                 if (try_to_unmap(page, 1) != SWAP_SUCCESS)
627                         goto unlock_retry;
628
629         if (PageDirty(page)) {
630                 /* Page is dirty, try to write it out here */
631                 switch(pageout(page, mapping)) {
632                 case PAGE_KEEP:
633                 case PAGE_ACTIVATE:
634                         goto unlock_retry;
635
636                 case PAGE_SUCCESS:
637                         goto retry;
638
639                 case PAGE_CLEAN:
640                         ; /* try to free the page below */
641                 }
642         }
643
644         if (PagePrivate(page)) {
645                 if (!try_to_release_page(page, GFP_KERNEL) ||
646                     (!mapping && page_count(page) == 1))
647                         goto unlock_retry;
648         }
649
650         if (remove_mapping(mapping, page)) {
651                 /* Success */
652                 unlock_page(page);
653                 return 0;
654         }
655
656 unlock_retry:
657         unlock_page(page);
658
659 retry:
660         return -EAGAIN;
661 }
662 EXPORT_SYMBOL(swap_page);
663
664 /*
665  * Page migration was first developed in the context of the memory hotplug
666  * project. The main authors of the migration code are:
667  *
668  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
669  * Hirokazu Takahashi <taka@valinux.co.jp>
670  * Dave Hansen <haveblue@us.ibm.com>
671  * Christoph Lameter <clameter@sgi.com>
672  */
673
674 /*
675  * Remove references for a page and establish the new page with the correct
676  * basic settings to be able to stop accesses to the page.
677  */
678 int migrate_page_remove_references(struct page *newpage,
679                                 struct page *page, int nr_refs)
680 {
681         struct address_space *mapping = page_mapping(page);
682         struct page **radix_pointer;
683
684         /*
685          * Avoid doing any of the following work if the page count
686          * indicates that the page is in use or truncate has removed
687          * the page.
688          */
689         if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
690                 return -EAGAIN;
691
692         /*
693          * Establish swap ptes for anonymous pages or destroy pte
694          * maps for files.
695          *
696          * In order to reestablish file backed mappings the fault handlers
697          * will take the radix tree_lock which may then be used to stop
698          * processses from accessing this page until the new page is ready.
699          *
700          * A process accessing via a swap pte (an anonymous page) will take a
701          * page_lock on the old page which will block the process until the
702          * migration attempt is complete. At that time the PageSwapCache bit
703          * will be examined. If the page was migrated then the PageSwapCache
704          * bit will be clear and the operation to retrieve the page will be
705          * retried which will find the new page in the radix tree. Then a new
706          * direct mapping may be generated based on the radix tree contents.
707          *
708          * If the page was not migrated then the PageSwapCache bit
709          * is still set and the operation may continue.
710          */
711         if (try_to_unmap(page, 1) == SWAP_FAIL)
712                 /* A vma has VM_LOCKED set -> Permanent failure */
713                 return -EPERM;
714
715         /*
716          * Give up if we were unable to remove all mappings.
717          */
718         if (page_mapcount(page))
719                 return -EAGAIN;
720
721         write_lock_irq(&mapping->tree_lock);
722
723         radix_pointer = (struct page **)radix_tree_lookup_slot(
724                                                 &mapping->page_tree,
725                                                 page_index(page));
726
727         if (!page_mapping(page) || page_count(page) != nr_refs ||
728                         *radix_pointer != page) {
729                 write_unlock_irq(&mapping->tree_lock);
730                 return -EAGAIN;
731         }
732
733         /*
734          * Now we know that no one else is looking at the page.
735          *
736          * Certain minimal information about a page must be available
737          * in order for other subsystems to properly handle the page if they
738          * find it through the radix tree update before we are finished
739          * copying the page.
740          */
741         get_page(newpage);
742         newpage->index = page->index;
743         newpage->mapping = page->mapping;
744         if (PageSwapCache(page)) {
745                 SetPageSwapCache(newpage);
746                 set_page_private(newpage, page_private(page));
747         }
748
749         *radix_pointer = newpage;
750         __put_page(page);
751         write_unlock_irq(&mapping->tree_lock);
752
753         return 0;
754 }
755 EXPORT_SYMBOL(migrate_page_remove_references);
756
757 /*
758  * Copy the page to its new location
759  */
760 void migrate_page_copy(struct page *newpage, struct page *page)
761 {
762         copy_highpage(newpage, page);
763
764         if (PageError(page))
765                 SetPageError(newpage);
766         if (PageReferenced(page))
767                 SetPageReferenced(newpage);
768         if (PageUptodate(page))
769                 SetPageUptodate(newpage);
770         if (PageActive(page))
771                 SetPageActive(newpage);
772         if (PageChecked(page))
773                 SetPageChecked(newpage);
774         if (PageMappedToDisk(page))
775                 SetPageMappedToDisk(newpage);
776
777         if (PageDirty(page)) {
778                 clear_page_dirty_for_io(page);
779                 set_page_dirty(newpage);
780         }
781
782         ClearPageSwapCache(page);
783         ClearPageActive(page);
784         ClearPagePrivate(page);
785         set_page_private(page, 0);
786         page->mapping = NULL;
787
788         /*
789          * If any waiters have accumulated on the new page then
790          * wake them up.
791          */
792         if (PageWriteback(newpage))
793                 end_page_writeback(newpage);
794 }
795 EXPORT_SYMBOL(migrate_page_copy);
796
797 /*
798  * Common logic to directly migrate a single page suitable for
799  * pages that do not use PagePrivate.
800  *
801  * Pages are locked upon entry and exit.
802  */
803 int migrate_page(struct page *newpage, struct page *page)
804 {
805         int rc;
806
807         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
808
809         rc = migrate_page_remove_references(newpage, page, 2);
810
811         if (rc)
812                 return rc;
813
814         migrate_page_copy(newpage, page);
815
816         /*
817          * Remove auxiliary swap entries and replace
818          * them with real ptes.
819          *
820          * Note that a real pte entry will allow processes that are not
821          * waiting on the page lock to use the new page via the page tables
822          * before the new page is unlocked.
823          */
824         remove_from_swap(newpage);
825         return 0;
826 }
827 EXPORT_SYMBOL(migrate_page);
828
829 /*
830  * migrate_pages
831  *
832  * Two lists are passed to this function. The first list
833  * contains the pages isolated from the LRU to be migrated.
834  * The second list contains new pages that the pages isolated
835  * can be moved to. If the second list is NULL then all
836  * pages are swapped out.
837  *
838  * The function returns after 10 attempts or if no pages
839  * are movable anymore because to has become empty
840  * or no retryable pages exist anymore.
841  *
842  * Return: Number of pages not migrated when "to" ran empty.
843  */
844 unsigned long migrate_pages(struct list_head *from, struct list_head *to,
845                   struct list_head *moved, struct list_head *failed)
846 {
847         unsigned long retry;
848         unsigned long nr_failed = 0;
849         int pass = 0;
850         struct page *page;
851         struct page *page2;
852         int swapwrite = current->flags & PF_SWAPWRITE;
853         int rc;
854
855         if (!swapwrite)
856                 current->flags |= PF_SWAPWRITE;
857
858 redo:
859         retry = 0;
860
861         list_for_each_entry_safe(page, page2, from, lru) {
862                 struct page *newpage = NULL;
863                 struct address_space *mapping;
864
865                 cond_resched();
866
867                 rc = 0;
868                 if (page_count(page) == 1)
869                         /* page was freed from under us. So we are done. */
870                         goto next;
871
872                 if (to && list_empty(to))
873                         break;
874
875                 /*
876                  * Skip locked pages during the first two passes to give the
877                  * functions holding the lock time to release the page. Later we
878                  * use lock_page() to have a higher chance of acquiring the
879                  * lock.
880                  */
881                 rc = -EAGAIN;
882                 if (pass > 2)
883                         lock_page(page);
884                 else
885                         if (TestSetPageLocked(page))
886                                 goto next;
887
888                 /*
889                  * Only wait on writeback if we have already done a pass where
890                  * we we may have triggered writeouts for lots of pages.
891                  */
892                 if (pass > 0) {
893                         wait_on_page_writeback(page);
894                 } else {
895                         if (PageWriteback(page))
896                                 goto unlock_page;
897                 }
898
899                 /*
900                  * Anonymous pages must have swap cache references otherwise
901                  * the information contained in the page maps cannot be
902                  * preserved.
903                  */
904                 if (PageAnon(page) && !PageSwapCache(page)) {
905                         if (!add_to_swap(page, GFP_KERNEL)) {
906                                 rc = -ENOMEM;
907                                 goto unlock_page;
908                         }
909                 }
910
911                 if (!to) {
912                         rc = swap_page(page);
913                         goto next;
914                 }
915
916                 newpage = lru_to_page(to);
917                 lock_page(newpage);
918
919                 /*
920                  * Pages are properly locked and writeback is complete.
921                  * Try to migrate the page.
922                  */
923                 mapping = page_mapping(page);
924                 if (!mapping)
925                         goto unlock_both;
926
927                 if (mapping->a_ops->migratepage) {
928                         /*
929                          * Most pages have a mapping and most filesystems
930                          * should provide a migration function. Anonymous
931                          * pages are part of swap space which also has its
932                          * own migration function. This is the most common
933                          * path for page migration.
934                          */
935                         rc = mapping->a_ops->migratepage(newpage, page);
936                         goto unlock_both;
937                 }
938
939                 /*
940                  * Default handling if a filesystem does not provide
941                  * a migration function. We can only migrate clean
942                  * pages so try to write out any dirty pages first.
943                  */
944                 if (PageDirty(page)) {
945                         switch (pageout(page, mapping)) {
946                         case PAGE_KEEP:
947                         case PAGE_ACTIVATE:
948                                 goto unlock_both;
949
950                         case PAGE_SUCCESS:
951                                 unlock_page(newpage);
952                                 goto next;
953
954                         case PAGE_CLEAN:
955                                 ; /* try to migrate the page below */
956                         }
957                 }
958
959                 /*
960                  * Buffers are managed in a filesystem specific way.
961                  * We must have no buffers or drop them.
962                  */
963                 if (!page_has_buffers(page) ||
964                     try_to_release_page(page, GFP_KERNEL)) {
965                         rc = migrate_page(newpage, page);
966                         goto unlock_both;
967                 }
968
969                 /*
970                  * On early passes with mapped pages simply
971                  * retry. There may be a lock held for some
972                  * buffers that may go away. Later
973                  * swap them out.
974                  */
975                 if (pass > 4) {
976                         /*
977                          * Persistently unable to drop buffers..... As a
978                          * measure of last resort we fall back to
979                          * swap_page().
980                          */
981                         unlock_page(newpage);
982                         newpage = NULL;
983                         rc = swap_page(page);
984                         goto next;
985                 }
986
987 unlock_both:
988                 unlock_page(newpage);
989
990 unlock_page:
991                 unlock_page(page);
992
993 next:
994                 if (rc == -EAGAIN) {
995                         retry++;
996                 } else if (rc) {
997                         /* Permanent failure */
998                         list_move(&page->lru, failed);
999                         nr_failed++;
1000                 } else {
1001                         if (newpage) {
1002                                 /* Successful migration. Return page to LRU */
1003                                 move_to_lru(newpage);
1004                         }
1005                         list_move(&page->lru, moved);
1006                 }
1007         }
1008         if (retry && pass++ < 10)
1009                 goto redo;
1010
1011         if (!swapwrite)
1012                 current->flags &= ~PF_SWAPWRITE;
1013
1014         return nr_failed + retry;
1015 }
1016
1017 /*
1018  * Isolate one page from the LRU lists and put it on the
1019  * indicated list with elevated refcount.
1020  *
1021  * Result:
1022  *  0 = page not on LRU list
1023  *  1 = page removed from LRU list and added to the specified list.
1024  */
1025 int isolate_lru_page(struct page *page)
1026 {
1027         int ret = 0;
1028
1029         if (PageLRU(page)) {
1030                 struct zone *zone = page_zone(page);
1031                 spin_lock_irq(&zone->lru_lock);
1032                 if (PageLRU(page)) {
1033                         ret = 1;
1034                         get_page(page);
1035                         ClearPageLRU(page);
1036                         if (PageActive(page))
1037                                 del_page_from_active_list(zone, page);
1038                         else
1039                                 del_page_from_inactive_list(zone, page);
1040                 }
1041                 spin_unlock_irq(&zone->lru_lock);
1042         }
1043
1044         return ret;
1045 }
1046 #endif
1047
1048 /*
1049  * zone->lru_lock is heavily contended.  Some of the functions that
1050  * shrink the lists perform better by taking out a batch of pages
1051  * and working on them outside the LRU lock.
1052  *
1053  * For pagecache intensive workloads, this function is the hottest
1054  * spot in the kernel (apart from copy_*_user functions).
1055  *
1056  * Appropriate locks must be held before calling this function.
1057  *
1058  * @nr_to_scan: The number of pages to look through on the list.
1059  * @src:        The LRU list to pull pages off.
1060  * @dst:        The temp list to put pages on to.
1061  * @scanned:    The number of pages that were scanned.
1062  *
1063  * returns how many pages were moved onto *@dst.
1064  */
1065 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1066                 struct list_head *src, struct list_head *dst,
1067                 unsigned long *scanned)
1068 {
1069         unsigned long nr_taken = 0;
1070         struct page *page;
1071         unsigned long scan;
1072
1073         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1074                 struct list_head *target;
1075                 page = lru_to_page(src);
1076                 prefetchw_prev_lru_page(page, src, flags);
1077
1078                 BUG_ON(!PageLRU(page));
1079
1080                 list_del(&page->lru);
1081                 target = src;
1082                 if (likely(get_page_unless_zero(page))) {
1083                         /*
1084                          * Be careful not to clear PageLRU until after we're
1085                          * sure the page is not being freed elsewhere -- the
1086                          * page release code relies on it.
1087                          */
1088                         ClearPageLRU(page);
1089                         target = dst;
1090                         nr_taken++;
1091                 } /* else it is being freed elsewhere */
1092
1093                 list_add(&page->lru, target);
1094         }
1095
1096         *scanned = scan;
1097         return nr_taken;
1098 }
1099
1100 /*
1101  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1102  * of reclaimed pages
1103  */
1104 static unsigned long shrink_inactive_list(unsigned long max_scan,
1105                                 struct zone *zone, struct scan_control *sc)
1106 {
1107         LIST_HEAD(page_list);
1108         struct pagevec pvec;
1109         unsigned long nr_scanned = 0;
1110         unsigned long nr_reclaimed = 0;
1111
1112         pagevec_init(&pvec, 1);
1113
1114         lru_add_drain();
1115         spin_lock_irq(&zone->lru_lock);
1116         do {
1117                 struct page *page;
1118                 unsigned long nr_taken;
1119                 unsigned long nr_scan;
1120                 unsigned long nr_freed;
1121
1122                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
1123                                              &zone->inactive_list,
1124                                              &page_list, &nr_scan);
1125                 zone->nr_inactive -= nr_taken;
1126                 zone->pages_scanned += nr_scan;
1127                 spin_unlock_irq(&zone->lru_lock);
1128
1129                 nr_scanned += nr_scan;
1130                 nr_freed = shrink_page_list(&page_list, sc);
1131                 nr_reclaimed += nr_freed;
1132                 local_irq_disable();
1133                 if (current_is_kswapd()) {
1134                         __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
1135                         __mod_page_state(kswapd_steal, nr_freed);
1136                 } else
1137                         __mod_page_state_zone(zone, pgscan_direct, nr_scan);
1138                 __mod_page_state_zone(zone, pgsteal, nr_freed);
1139
1140                 if (nr_taken == 0)
1141                         goto done;
1142
1143                 spin_lock(&zone->lru_lock);
1144                 /*
1145                  * Put back any unfreeable pages.
1146                  */
1147                 while (!list_empty(&page_list)) {
1148                         page = lru_to_page(&page_list);
1149                         BUG_ON(PageLRU(page));
1150                         SetPageLRU(page);
1151                         list_del(&page->lru);
1152                         if (PageActive(page))
1153                                 add_page_to_active_list(zone, page);
1154                         else
1155                                 add_page_to_inactive_list(zone, page);
1156                         if (!pagevec_add(&pvec, page)) {
1157                                 spin_unlock_irq(&zone->lru_lock);
1158                                 __pagevec_release(&pvec);
1159                                 spin_lock_irq(&zone->lru_lock);
1160                         }
1161                 }
1162         } while (nr_scanned < max_scan);
1163         spin_unlock(&zone->lru_lock);
1164 done:
1165         local_irq_enable();
1166         pagevec_release(&pvec);
1167         return nr_reclaimed;
1168 }
1169
1170 /*
1171  * This moves pages from the active list to the inactive list.
1172  *
1173  * We move them the other way if the page is referenced by one or more
1174  * processes, from rmap.
1175  *
1176  * If the pages are mostly unmapped, the processing is fast and it is
1177  * appropriate to hold zone->lru_lock across the whole operation.  But if
1178  * the pages are mapped, the processing is slow (page_referenced()) so we
1179  * should drop zone->lru_lock around each page.  It's impossible to balance
1180  * this, so instead we remove the pages from the LRU while processing them.
1181  * It is safe to rely on PG_active against the non-LRU pages in here because
1182  * nobody will play with that bit on a non-LRU page.
1183  *
1184  * The downside is that we have to touch page->_count against each page.
1185  * But we had to alter page->flags anyway.
1186  */
1187 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1188                                 struct scan_control *sc)
1189 {
1190         unsigned long pgmoved;
1191         int pgdeactivate = 0;
1192         unsigned long pgscanned;
1193         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1194         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
1195         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
1196         struct page *page;
1197         struct pagevec pvec;
1198         int reclaim_mapped = 0;
1199
1200         if (sc->may_swap) {
1201                 long mapped_ratio;
1202                 long distress;
1203                 long swap_tendency;
1204
1205                 /*
1206                  * `distress' is a measure of how much trouble we're having
1207                  * reclaiming pages.  0 -> no problems.  100 -> great trouble.
1208                  */
1209                 distress = 100 >> zone->prev_priority;
1210
1211                 /*
1212                  * The point of this algorithm is to decide when to start
1213                  * reclaiming mapped memory instead of just pagecache.  Work out
1214                  * how much memory
1215                  * is mapped.
1216                  */
1217                 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
1218
1219                 /*
1220                  * Now decide how much we really want to unmap some pages.  The
1221                  * mapped ratio is downgraded - just because there's a lot of
1222                  * mapped memory doesn't necessarily mean that page reclaim
1223                  * isn't succeeding.
1224                  *
1225                  * The distress ratio is important - we don't want to start
1226                  * going oom.
1227                  *
1228                  * A 100% value of vm_swappiness overrides this algorithm
1229                  * altogether.
1230                  */
1231                 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
1232
1233                 /*
1234                  * Now use this metric to decide whether to start moving mapped
1235                  * memory onto the inactive list.
1236                  */
1237                 if (swap_tendency >= 100)
1238                         reclaim_mapped = 1;
1239         }
1240
1241         lru_add_drain();
1242         spin_lock_irq(&zone->lru_lock);
1243         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
1244                                     &l_hold, &pgscanned);
1245         zone->pages_scanned += pgscanned;
1246         zone->nr_active -= pgmoved;
1247         spin_unlock_irq(&zone->lru_lock);
1248
1249         while (!list_empty(&l_hold)) {
1250                 cond_resched();
1251                 page = lru_to_page(&l_hold);
1252                 list_del(&page->lru);
1253                 if (page_mapped(page)) {
1254                         if (!reclaim_mapped ||
1255                             (total_swap_pages == 0 && PageAnon(page)) ||
1256                             page_referenced(page, 0)) {
1257                                 list_add(&page->lru, &l_active);
1258                                 continue;
1259                         }
1260                 }
1261                 list_add(&page->lru, &l_inactive);
1262         }
1263
1264         pagevec_init(&pvec, 1);
1265         pgmoved = 0;
1266         spin_lock_irq(&zone->lru_lock);
1267         while (!list_empty(&l_inactive)) {
1268                 page = lru_to_page(&l_inactive);
1269                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1270                 BUG_ON(PageLRU(page));
1271                 SetPageLRU(page);
1272                 BUG_ON(!PageActive(page));
1273                 ClearPageActive(page);
1274
1275                 list_move(&page->lru, &zone->inactive_list);
1276                 pgmoved++;
1277                 if (!pagevec_add(&pvec, page)) {
1278                         zone->nr_inactive += pgmoved;
1279                         spin_unlock_irq(&zone->lru_lock);
1280                         pgdeactivate += pgmoved;
1281                         pgmoved = 0;
1282                         if (buffer_heads_over_limit)
1283                                 pagevec_strip(&pvec);
1284                         __pagevec_release(&pvec);
1285                         spin_lock_irq(&zone->lru_lock);
1286                 }
1287         }
1288         zone->nr_inactive += pgmoved;
1289         pgdeactivate += pgmoved;
1290         if (buffer_heads_over_limit) {
1291                 spin_unlock_irq(&zone->lru_lock);
1292                 pagevec_strip(&pvec);
1293                 spin_lock_irq(&zone->lru_lock);
1294         }
1295
1296         pgmoved = 0;
1297         while (!list_empty(&l_active)) {
1298                 page = lru_to_page(&l_active);
1299                 prefetchw_prev_lru_page(page, &l_active, flags);
1300                 BUG_ON(PageLRU(page));
1301                 SetPageLRU(page);
1302                 BUG_ON(!PageActive(page));
1303                 list_move(&page->lru, &zone->active_list);
1304                 pgmoved++;
1305                 if (!pagevec_add(&pvec, page)) {
1306                         zone->nr_active += pgmoved;
1307                         pgmoved = 0;
1308                         spin_unlock_irq(&zone->lru_lock);
1309                         __pagevec_release(&pvec);
1310                         spin_lock_irq(&zone->lru_lock);
1311                 }
1312         }
1313         zone->nr_active += pgmoved;
1314         spin_unlock(&zone->lru_lock);
1315
1316         __mod_page_state_zone(zone, pgrefill, pgscanned);
1317         __mod_page_state(pgdeactivate, pgdeactivate);
1318         local_irq_enable();
1319
1320         pagevec_release(&pvec);
1321 }
1322
1323 /*
1324  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1325  */
1326 static unsigned long shrink_zone(int priority, struct zone *zone,
1327                                 struct scan_control *sc)
1328 {
1329         unsigned long nr_active;
1330         unsigned long nr_inactive;
1331         unsigned long nr_to_scan;
1332         unsigned long nr_reclaimed = 0;
1333
1334         atomic_inc(&zone->reclaim_in_progress);
1335
1336         /*
1337          * Add one to `nr_to_scan' just to make sure that the kernel will
1338          * slowly sift through the active list.
1339          */
1340         zone->nr_scan_active += (zone->nr_active >> priority) + 1;
1341         nr_active = zone->nr_scan_active;
1342         if (nr_active >= sc->swap_cluster_max)
1343                 zone->nr_scan_active = 0;
1344         else
1345                 nr_active = 0;
1346
1347         zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
1348         nr_inactive = zone->nr_scan_inactive;
1349         if (nr_inactive >= sc->swap_cluster_max)
1350                 zone->nr_scan_inactive = 0;
1351         else
1352                 nr_inactive = 0;
1353
1354         while (nr_active || nr_inactive) {
1355                 if (nr_active) {
1356                         nr_to_scan = min(nr_active,
1357                                         (unsigned long)sc->swap_cluster_max);
1358                         nr_active -= nr_to_scan;
1359                         shrink_active_list(nr_to_scan, zone, sc);
1360                 }
1361
1362                 if (nr_inactive) {
1363                         nr_to_scan = min(nr_inactive,
1364                                         (unsigned long)sc->swap_cluster_max);
1365                         nr_inactive -= nr_to_scan;
1366                         nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1367                                                                 sc);
1368                 }
1369         }
1370
1371         throttle_vm_writeout();
1372
1373         atomic_dec(&zone->reclaim_in_progress);
1374         return nr_reclaimed;
1375 }
1376
1377 /*
1378  * This is the direct reclaim path, for page-allocating processes.  We only
1379  * try to reclaim pages from zones which will satisfy the caller's allocation
1380  * request.
1381  *
1382  * We reclaim from a zone even if that zone is over pages_high.  Because:
1383  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1384  *    allocation or
1385  * b) The zones may be over pages_high but they must go *over* pages_high to
1386  *    satisfy the `incremental min' zone defense algorithm.
1387  *
1388  * Returns the number of reclaimed pages.
1389  *
1390  * If a zone is deemed to be full of pinned pages then just give it a light
1391  * scan then give up on it.
1392  */
1393 static unsigned long shrink_zones(int priority, struct zone **zones,
1394                                         struct scan_control *sc)
1395 {
1396         unsigned long nr_reclaimed = 0;
1397         int i;
1398
1399         for (i = 0; zones[i] != NULL; i++) {
1400                 struct zone *zone = zones[i];
1401
1402                 if (!populated_zone(zone))
1403                         continue;
1404
1405                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1406                         continue;
1407
1408                 zone->temp_priority = priority;
1409                 if (zone->prev_priority > priority)
1410                         zone->prev_priority = priority;
1411
1412                 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1413                         continue;       /* Let kswapd poll it */
1414
1415                 nr_reclaimed += shrink_zone(priority, zone, sc);
1416         }
1417         return nr_reclaimed;
1418 }
1419  
1420 /*
1421  * This is the main entry point to direct page reclaim.
1422  *
1423  * If a full scan of the inactive list fails to free enough memory then we
1424  * are "out of memory" and something needs to be killed.
1425  *
1426  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1427  * high - the zone may be full of dirty or under-writeback pages, which this
1428  * caller can't do much about.  We kick pdflush and take explicit naps in the
1429  * hope that some of these pages can be written.  But if the allocating task
1430  * holds filesystem locks which prevent writeout this might not work, and the
1431  * allocation attempt will fail.
1432  */
1433 unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1434 {
1435         int priority;
1436         int ret = 0;
1437         unsigned long total_scanned = 0;
1438         unsigned long nr_reclaimed = 0;
1439         struct reclaim_state *reclaim_state = current->reclaim_state;
1440         unsigned long lru_pages = 0;
1441         int i;
1442         struct scan_control sc = {
1443                 .gfp_mask = gfp_mask,
1444                 .may_writepage = !laptop_mode,
1445                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1446                 .may_swap = 1,
1447         };
1448
1449         inc_page_state(allocstall);
1450
1451         for (i = 0; zones[i] != NULL; i++) {
1452                 struct zone *zone = zones[i];
1453
1454                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1455                         continue;
1456
1457                 zone->temp_priority = DEF_PRIORITY;
1458                 lru_pages += zone->nr_active + zone->nr_inactive;
1459         }
1460
1461         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1462                 sc.nr_mapped = read_page_state(nr_mapped);
1463                 sc.nr_scanned = 0;
1464                 if (!priority)
1465                         disable_swap_token();
1466                 nr_reclaimed += shrink_zones(priority, zones, &sc);
1467                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1468                 if (reclaim_state) {
1469                         nr_reclaimed += reclaim_state->reclaimed_slab;
1470                         reclaim_state->reclaimed_slab = 0;
1471                 }
1472                 total_scanned += sc.nr_scanned;
1473                 if (nr_reclaimed >= sc.swap_cluster_max) {
1474                         ret = 1;
1475                         goto out;
1476                 }
1477
1478                 /*
1479                  * Try to write back as many pages as we just scanned.  This
1480                  * tends to cause slow streaming writers to write data to the
1481                  * disk smoothly, at the dirtying rate, which is nice.   But
1482                  * that's undesirable in laptop mode, where we *want* lumpy
1483                  * writeout.  So in laptop mode, write out the whole world.
1484                  */
1485                 if (total_scanned > sc.swap_cluster_max +
1486                                         sc.swap_cluster_max / 2) {
1487                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1488                         sc.may_writepage = 1;
1489                 }
1490
1491                 /* Take a nap, wait for some writeback to complete */
1492                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1493                         blk_congestion_wait(WRITE, HZ/10);
1494         }
1495 out:
1496         for (i = 0; zones[i] != 0; i++) {
1497                 struct zone *zone = zones[i];
1498
1499                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1500                         continue;
1501
1502                 zone->prev_priority = zone->temp_priority;
1503         }
1504         return ret;
1505 }
1506
1507 /*
1508  * For kswapd, balance_pgdat() will work across all this node's zones until
1509  * they are all at pages_high.
1510  *
1511  * If `nr_pages' is non-zero then it is the number of pages which are to be
1512  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1513  * special.
1514  *
1515  * Returns the number of pages which were actually freed.
1516  *
1517  * There is special handling here for zones which are full of pinned pages.
1518  * This can happen if the pages are all mlocked, or if they are all used by
1519  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1520  * What we do is to detect the case where all pages in the zone have been
1521  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1522  * dead and from now on, only perform a short scan.  Basically we're polling
1523  * the zone for when the problem goes away.
1524  *
1525  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1526  * zones which have free_pages > pages_high, but once a zone is found to have
1527  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1528  * of the number of free pages in the lower zones.  This interoperates with
1529  * the page allocator fallback scheme to ensure that aging of pages is balanced
1530  * across the zones.
1531  */
1532 static unsigned long balance_pgdat(pg_data_t *pgdat, unsigned long nr_pages,
1533                                 int order)
1534 {
1535         unsigned long to_free = nr_pages;
1536         int all_zones_ok;
1537         int priority;
1538         int i;
1539         unsigned long total_scanned;
1540         unsigned long nr_reclaimed;
1541         struct reclaim_state *reclaim_state = current->reclaim_state;
1542         struct scan_control sc = {
1543                 .gfp_mask = GFP_KERNEL,
1544                 .may_swap = 1,
1545                 .swap_cluster_max = nr_pages ? nr_pages : SWAP_CLUSTER_MAX,
1546         };
1547
1548 loop_again:
1549         total_scanned = 0;
1550         nr_reclaimed = 0;
1551         sc.may_writepage = !laptop_mode,
1552         sc.nr_mapped = read_page_state(nr_mapped);
1553
1554         inc_page_state(pageoutrun);
1555
1556         for (i = 0; i < pgdat->nr_zones; i++) {
1557                 struct zone *zone = pgdat->node_zones + i;
1558
1559                 zone->temp_priority = DEF_PRIORITY;
1560         }
1561
1562         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1563                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1564                 unsigned long lru_pages = 0;
1565
1566                 /* The swap token gets in the way of swapout... */
1567                 if (!priority)
1568                         disable_swap_token();
1569
1570                 all_zones_ok = 1;
1571
1572                 if (nr_pages == 0) {
1573                         /*
1574                          * Scan in the highmem->dma direction for the highest
1575                          * zone which needs scanning
1576                          */
1577                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1578                                 struct zone *zone = pgdat->node_zones + i;
1579
1580                                 if (!populated_zone(zone))
1581                                         continue;
1582
1583                                 if (zone->all_unreclaimable &&
1584                                                 priority != DEF_PRIORITY)
1585                                         continue;
1586
1587                                 if (!zone_watermark_ok(zone, order,
1588                                                 zone->pages_high, 0, 0)) {
1589                                         end_zone = i;
1590                                         goto scan;
1591                                 }
1592                         }
1593                         goto out;
1594                 } else {
1595                         end_zone = pgdat->nr_zones - 1;
1596                 }
1597 scan:
1598                 for (i = 0; i <= end_zone; i++) {
1599                         struct zone *zone = pgdat->node_zones + i;
1600
1601                         lru_pages += zone->nr_active + zone->nr_inactive;
1602                 }
1603
1604                 /*
1605                  * Now scan the zone in the dma->highmem direction, stopping
1606                  * at the last zone which needs scanning.
1607                  *
1608                  * We do this because the page allocator works in the opposite
1609                  * direction.  This prevents the page allocator from allocating
1610                  * pages behind kswapd's direction of progress, which would
1611                  * cause too much scanning of the lower zones.
1612                  */
1613                 for (i = 0; i <= end_zone; i++) {
1614                         struct zone *zone = pgdat->node_zones + i;
1615                         int nr_slab;
1616
1617                         if (!populated_zone(zone))
1618                                 continue;
1619
1620                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1621                                 continue;
1622
1623                         if (nr_pages == 0) {    /* Not software suspend */
1624                                 if (!zone_watermark_ok(zone, order,
1625                                                 zone->pages_high, end_zone, 0))
1626                                         all_zones_ok = 0;
1627                         }
1628                         zone->temp_priority = priority;
1629                         if (zone->prev_priority > priority)
1630                                 zone->prev_priority = priority;
1631                         sc.nr_scanned = 0;
1632                         nr_reclaimed += shrink_zone(priority, zone, &sc);
1633                         reclaim_state->reclaimed_slab = 0;
1634                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1635                                                 lru_pages);
1636                         nr_reclaimed += reclaim_state->reclaimed_slab;
1637                         total_scanned += sc.nr_scanned;
1638                         if (zone->all_unreclaimable)
1639                                 continue;
1640                         if (nr_slab == 0 && zone->pages_scanned >=
1641                                     (zone->nr_active + zone->nr_inactive) * 4)
1642                                 zone->all_unreclaimable = 1;
1643                         /*
1644                          * If we've done a decent amount of scanning and
1645                          * the reclaim ratio is low, start doing writepage
1646                          * even in laptop mode
1647                          */
1648                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1649                             total_scanned > nr_reclaimed + nr_reclaimed / 2)
1650                                 sc.may_writepage = 1;
1651                 }
1652                 if (nr_pages && to_free > nr_reclaimed)
1653                         continue;       /* swsusp: need to do more work */
1654                 if (all_zones_ok)
1655                         break;          /* kswapd: all done */
1656                 /*
1657                  * OK, kswapd is getting into trouble.  Take a nap, then take
1658                  * another pass across the zones.
1659                  */
1660                 if (total_scanned && priority < DEF_PRIORITY - 2)
1661                         blk_congestion_wait(WRITE, HZ/10);
1662
1663                 /*
1664                  * We do this so kswapd doesn't build up large priorities for
1665                  * example when it is freeing in parallel with allocators. It
1666                  * matches the direct reclaim path behaviour in terms of impact
1667                  * on zone->*_priority.
1668                  */
1669                 if ((nr_reclaimed >= SWAP_CLUSTER_MAX) && !nr_pages)
1670                         break;
1671         }
1672 out:
1673         for (i = 0; i < pgdat->nr_zones; i++) {
1674                 struct zone *zone = pgdat->node_zones + i;
1675
1676                 zone->prev_priority = zone->temp_priority;
1677         }
1678         if (!all_zones_ok) {
1679                 cond_resched();
1680                 goto loop_again;
1681         }
1682
1683         return nr_reclaimed;
1684 }
1685
1686 /*
1687  * The background pageout daemon, started as a kernel thread
1688  * from the init process. 
1689  *
1690  * This basically trickles out pages so that we have _some_
1691  * free memory available even if there is no other activity
1692  * that frees anything up. This is needed for things like routing
1693  * etc, where we otherwise might have all activity going on in
1694  * asynchronous contexts that cannot page things out.
1695  *
1696  * If there are applications that are active memory-allocators
1697  * (most normal use), this basically shouldn't matter.
1698  */
1699 static int kswapd(void *p)
1700 {
1701         unsigned long order;
1702         pg_data_t *pgdat = (pg_data_t*)p;
1703         struct task_struct *tsk = current;
1704         DEFINE_WAIT(wait);
1705         struct reclaim_state reclaim_state = {
1706                 .reclaimed_slab = 0,
1707         };
1708         cpumask_t cpumask;
1709
1710         daemonize("kswapd%d", pgdat->node_id);
1711         cpumask = node_to_cpumask(pgdat->node_id);
1712         if (!cpus_empty(cpumask))
1713                 set_cpus_allowed(tsk, cpumask);
1714         current->reclaim_state = &reclaim_state;
1715
1716         /*
1717          * Tell the memory management that we're a "memory allocator",
1718          * and that if we need more memory we should get access to it
1719          * regardless (see "__alloc_pages()"). "kswapd" should
1720          * never get caught in the normal page freeing logic.
1721          *
1722          * (Kswapd normally doesn't need memory anyway, but sometimes
1723          * you need a small amount of memory in order to be able to
1724          * page out something else, and this flag essentially protects
1725          * us from recursively trying to free more memory as we're
1726          * trying to free the first piece of memory in the first place).
1727          */
1728         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1729
1730         order = 0;
1731         for ( ; ; ) {
1732                 unsigned long new_order;
1733
1734                 try_to_freeze();
1735
1736                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1737                 new_order = pgdat->kswapd_max_order;
1738                 pgdat->kswapd_max_order = 0;
1739                 if (order < new_order) {
1740                         /*
1741                          * Don't sleep if someone wants a larger 'order'
1742                          * allocation
1743                          */
1744                         order = new_order;
1745                 } else {
1746                         schedule();
1747                         order = pgdat->kswapd_max_order;
1748                 }
1749                 finish_wait(&pgdat->kswapd_wait, &wait);
1750
1751                 balance_pgdat(pgdat, 0, order);
1752         }
1753         return 0;
1754 }
1755
1756 /*
1757  * A zone is low on free memory, so wake its kswapd task to service it.
1758  */
1759 void wakeup_kswapd(struct zone *zone, int order)
1760 {
1761         pg_data_t *pgdat;
1762
1763         if (!populated_zone(zone))
1764                 return;
1765
1766         pgdat = zone->zone_pgdat;
1767         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1768                 return;
1769         if (pgdat->kswapd_max_order < order)
1770                 pgdat->kswapd_max_order = order;
1771         if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1772                 return;
1773         if (!waitqueue_active(&pgdat->kswapd_wait))
1774                 return;
1775         wake_up_interruptible(&pgdat->kswapd_wait);
1776 }
1777
1778 #ifdef CONFIG_PM
1779 /*
1780  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1781  * pages.
1782  */
1783 unsigned long shrink_all_memory(unsigned long nr_pages)
1784 {
1785         pg_data_t *pgdat;
1786         unsigned long nr_to_free = nr_pages;
1787         unsigned long ret = 0;
1788         unsigned retry = 2;
1789         struct reclaim_state reclaim_state = {
1790                 .reclaimed_slab = 0,
1791         };
1792
1793         current->reclaim_state = &reclaim_state;
1794 repeat:
1795         for_each_pgdat(pgdat) {
1796                 unsigned long freed;
1797
1798                 freed = balance_pgdat(pgdat, nr_to_free, 0);
1799                 ret += freed;
1800                 nr_to_free -= freed;
1801                 if ((long)nr_to_free <= 0)
1802                         break;
1803         }
1804         if (retry-- && ret < nr_pages) {
1805                 blk_congestion_wait(WRITE, HZ/5);
1806                 goto repeat;
1807         }
1808         current->reclaim_state = NULL;
1809         return ret;
1810 }
1811 #endif
1812
1813 #ifdef CONFIG_HOTPLUG_CPU
1814 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1815    not required for correctness.  So if the last cpu in a node goes
1816    away, we get changed to run anywhere: as the first one comes back,
1817    restore their cpu bindings. */
1818 static int __devinit cpu_callback(struct notifier_block *nfb,
1819                                   unsigned long action, void *hcpu)
1820 {
1821         pg_data_t *pgdat;
1822         cpumask_t mask;
1823
1824         if (action == CPU_ONLINE) {
1825                 for_each_pgdat(pgdat) {
1826                         mask = node_to_cpumask(pgdat->node_id);
1827                         if (any_online_cpu(mask) != NR_CPUS)
1828                                 /* One of our CPUs online: restore mask */
1829                                 set_cpus_allowed(pgdat->kswapd, mask);
1830                 }
1831         }
1832         return NOTIFY_OK;
1833 }
1834 #endif /* CONFIG_HOTPLUG_CPU */
1835
1836 static int __init kswapd_init(void)
1837 {
1838         pg_data_t *pgdat;
1839
1840         swap_setup();
1841         for_each_pgdat(pgdat) {
1842                 pid_t pid;
1843
1844                 pid = kernel_thread(kswapd, pgdat, CLONE_KERNEL);
1845                 BUG_ON(pid < 0);
1846                 pgdat->kswapd = find_task_by_pid(pid);
1847         }
1848         total_memory = nr_free_pagecache_pages();
1849         hotcpu_notifier(cpu_callback, 0);
1850         return 0;
1851 }
1852
1853 module_init(kswapd_init)
1854
1855 #ifdef CONFIG_NUMA
1856 /*
1857  * Zone reclaim mode
1858  *
1859  * If non-zero call zone_reclaim when the number of free pages falls below
1860  * the watermarks.
1861  *
1862  * In the future we may add flags to the mode. However, the page allocator
1863  * should only have to check that zone_reclaim_mode != 0 before calling
1864  * zone_reclaim().
1865  */
1866 int zone_reclaim_mode __read_mostly;
1867
1868 #define RECLAIM_OFF 0
1869 #define RECLAIM_ZONE (1<<0)     /* Run shrink_cache on the zone */
1870 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
1871 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
1872 #define RECLAIM_SLAB (1<<3)     /* Do a global slab shrink if the zone is out of memory */
1873
1874 /*
1875  * Mininum time between zone reclaim scans
1876  */
1877 int zone_reclaim_interval __read_mostly = 30*HZ;
1878
1879 /*
1880  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1881  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1882  * a zone.
1883  */
1884 #define ZONE_RECLAIM_PRIORITY 4
1885
1886 /*
1887  * Try to free up some pages from this zone through reclaim.
1888  */
1889 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1890 {
1891         /* Minimum pages needed in order to stay on node */
1892         const unsigned long nr_pages = 1 << order;
1893         struct task_struct *p = current;
1894         struct reclaim_state reclaim_state;
1895         int priority;
1896         unsigned long nr_reclaimed = 0;
1897         struct scan_control sc = {
1898                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1899                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1900                 .nr_mapped = read_page_state(nr_mapped),
1901                 .swap_cluster_max = max_t(unsigned long, nr_pages,
1902                                         SWAP_CLUSTER_MAX),
1903                 .gfp_mask = gfp_mask,
1904         };
1905
1906         disable_swap_token();
1907         cond_resched();
1908         /*
1909          * We need to be able to allocate from the reserves for RECLAIM_SWAP
1910          * and we also need to be able to write out pages for RECLAIM_WRITE
1911          * and RECLAIM_SWAP.
1912          */
1913         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1914         reclaim_state.reclaimed_slab = 0;
1915         p->reclaim_state = &reclaim_state;
1916
1917         /*
1918          * Free memory by calling shrink zone with increasing priorities
1919          * until we have enough memory freed.
1920          */
1921         priority = ZONE_RECLAIM_PRIORITY;
1922         do {
1923                 nr_reclaimed += shrink_zone(priority, zone, &sc);
1924                 priority--;
1925         } while (priority >= 0 && nr_reclaimed < nr_pages);
1926
1927         if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1928                 /*
1929                  * shrink_slab() does not currently allow us to determine how
1930                  * many pages were freed in this zone. So we just shake the slab
1931                  * a bit and then go off node for this particular allocation
1932                  * despite possibly having freed enough memory to allocate in
1933                  * this zone.  If we freed local memory then the next
1934                  * allocations will be local again.
1935                  *
1936                  * shrink_slab will free memory on all zones and may take
1937                  * a long time.
1938                  */
1939                 shrink_slab(sc.nr_scanned, gfp_mask, order);
1940         }
1941
1942         p->reclaim_state = NULL;
1943         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1944
1945         if (nr_reclaimed == 0) {
1946                 /*
1947                  * We were unable to reclaim enough pages to stay on node.  We
1948                  * now allow off node accesses for a certain time period before
1949                  * trying again to reclaim pages from the local zone.
1950                  */
1951                 zone->last_unsuccessful_zone_reclaim = jiffies;
1952         }
1953
1954         return nr_reclaimed >= nr_pages;
1955 }
1956
1957 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1958 {
1959         cpumask_t mask;
1960         int node_id;
1961
1962         /*
1963          * Do not reclaim if there was a recent unsuccessful attempt at zone
1964          * reclaim.  In that case we let allocations go off node for the
1965          * zone_reclaim_interval.  Otherwise we would scan for each off-node
1966          * page allocation.
1967          */
1968         if (time_before(jiffies,
1969                 zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1970                         return 0;
1971
1972         /*
1973          * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1974          * not have reclaimable pages and if we should not delay the allocation
1975          * then do not scan.
1976          */
1977         if (!(gfp_mask & __GFP_WAIT) ||
1978                 zone->all_unreclaimable ||
1979                 atomic_read(&zone->reclaim_in_progress) > 0 ||
1980                 (current->flags & PF_MEMALLOC))
1981                         return 0;
1982
1983         /*
1984          * Only run zone reclaim on the local zone or on zones that do not
1985          * have associated processors. This will favor the local processor
1986          * over remote processors and spread off node memory allocations
1987          * as wide as possible.
1988          */
1989         node_id = zone->zone_pgdat->node_id;
1990         mask = node_to_cpumask(node_id);
1991         if (!cpus_empty(mask) && node_id != numa_node_id())
1992                 return 0;
1993         return __zone_reclaim(zone, gfp_mask, order);
1994 }
1995 #endif