]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmscan.c
6e805feb95da05ecee48480c41c510da84d981ef
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108         struct memcg_scanrecord *memcg_record;
109
110         /*
111          * Nodemask of nodes allowed by the caller. If NULL, all nodes
112          * are scanned.
113          */
114         nodemask_t      *nodemask;
115 };
116
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field)                    \
121         do {                                                            \
122                 if ((_page)->lru.prev != _base) {                       \
123                         struct page *prev;                              \
124                                                                         \
125                         prev = lru_to_page(&(_page->lru));              \
126                         prefetch(&prev->_field);                        \
127                 }                                                       \
128         } while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
132
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
135         do {                                                            \
136                 if ((_page)->lru.prev != _base) {                       \
137                         struct page *prev;                              \
138                                                                         \
139                         prev = lru_to_page(&(_page->lru));              \
140                         prefetchw(&prev->_field);                       \
141                 }                                                       \
142         } while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
146
147 /*
148  * From 0 .. 100.  Higher means more swappy.
149  */
150 int vm_swappiness = 60;
151 long vm_total_pages;    /* The total number of pages which the VM controls */
152
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
155
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc) (1)
160 #endif
161
162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163                                                   struct scan_control *sc)
164 {
165         if (!scanning_global_lru(sc))
166                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167
168         return &zone->reclaim_stat;
169 }
170
171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172                                 struct scan_control *sc, enum lru_list lru)
173 {
174         if (!scanning_global_lru(sc))
175                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
176                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
177
178         return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180
181
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187         shrinker->nr = 0;
188         down_write(&shrinker_rwsem);
189         list_add_tail(&shrinker->list, &shrinker_list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199         down_write(&shrinker_rwsem);
200         list_del(&shrinker->list);
201         up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206                                      struct shrink_control *sc,
207                                      unsigned long nr_to_scan)
208 {
209         sc->nr_to_scan = nr_to_scan;
210         return (*shrinker->shrink)(shrinker, sc);
211 }
212
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234                           unsigned long nr_pages_scanned,
235                           unsigned long lru_pages)
236 {
237         struct shrinker *shrinker;
238         unsigned long ret = 0;
239
240         if (nr_pages_scanned == 0)
241                 nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243         if (!down_read_trylock(&shrinker_rwsem)) {
244                 /* Assume we'll be able to shrink next time */
245                 ret = 1;
246                 goto out;
247         }
248
249         list_for_each_entry(shrinker, &shrinker_list, list) {
250                 unsigned long long delta;
251                 unsigned long total_scan;
252                 unsigned long max_pass;
253                 int shrink_ret = 0;
254                 long nr;
255                 long new_nr;
256                 long batch_size = shrinker->batch ? shrinker->batch
257                                                   : SHRINK_BATCH;
258
259                 /*
260                  * copy the current shrinker scan count into a local variable
261                  * and zero it so that other concurrent shrinker invocations
262                  * don't also do this scanning work.
263                  */
264                 do {
265                         nr = shrinker->nr;
266                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
267
268                 total_scan = nr;
269                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
270                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271                 delta *= max_pass;
272                 do_div(delta, lru_pages + 1);
273                 total_scan += delta;
274                 if (total_scan < 0) {
275                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
276                                "delete nr=%ld\n",
277                                shrinker->shrink, total_scan);
278                         total_scan = max_pass;
279                 }
280
281                 /*
282                  * We need to avoid excessive windup on filesystem shrinkers
283                  * due to large numbers of GFP_NOFS allocations causing the
284                  * shrinkers to return -1 all the time. This results in a large
285                  * nr being built up so when a shrink that can do some work
286                  * comes along it empties the entire cache due to nr >>>
287                  * max_pass.  This is bad for sustaining a working set in
288                  * memory.
289                  *
290                  * Hence only allow the shrinker to scan the entire cache when
291                  * a large delta change is calculated directly.
292                  */
293                 if (delta < max_pass / 4)
294                         total_scan = min(total_scan, max_pass / 2);
295
296                 /*
297                  * Avoid risking looping forever due to too large nr value:
298                  * never try to free more than twice the estimate number of
299                  * freeable entries.
300                  */
301                 if (total_scan > max_pass * 2)
302                         total_scan = max_pass * 2;
303
304                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305                                         nr_pages_scanned, lru_pages,
306                                         max_pass, delta, total_scan);
307
308                 while (total_scan >= batch_size) {
309                         int nr_before;
310
311                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
313                                                         batch_size);
314                         if (shrink_ret == -1)
315                                 break;
316                         if (shrink_ret < nr_before)
317                                 ret += nr_before - shrink_ret;
318                         count_vm_events(SLABS_SCANNED, batch_size);
319                         total_scan -= batch_size;
320
321                         cond_resched();
322                 }
323
324                 /*
325                  * move the unused scan count back into the shrinker in a
326                  * manner that handles concurrent updates. If we exhausted the
327                  * scan, there is no need to do an update.
328                  */
329                 do {
330                         nr = shrinker->nr;
331                         new_nr = total_scan + nr;
332                         if (total_scan <= 0)
333                                 break;
334                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
335
336                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
337         }
338         up_read(&shrinker_rwsem);
339 out:
340         cond_resched();
341         return ret;
342 }
343
344 static void set_reclaim_mode(int priority, struct scan_control *sc,
345                                    bool sync)
346 {
347         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
348
349         /*
350          * Initially assume we are entering either lumpy reclaim or
351          * reclaim/compaction.Depending on the order, we will either set the
352          * sync mode or just reclaim order-0 pages later.
353          */
354         if (COMPACTION_BUILD)
355                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
356         else
357                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
358
359         /*
360          * Avoid using lumpy reclaim or reclaim/compaction if possible by
361          * restricting when its set to either costly allocations or when
362          * under memory pressure
363          */
364         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
365                 sc->reclaim_mode |= syncmode;
366         else if (sc->order && priority < DEF_PRIORITY - 2)
367                 sc->reclaim_mode |= syncmode;
368         else
369                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
370 }
371
372 static void reset_reclaim_mode(struct scan_control *sc)
373 {
374         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
375 }
376
377 static inline int is_page_cache_freeable(struct page *page)
378 {
379         /*
380          * A freeable page cache page is referenced only by the caller
381          * that isolated the page, the page cache radix tree and
382          * optional buffer heads at page->private.
383          */
384         return page_count(page) - page_has_private(page) == 2;
385 }
386
387 static int may_write_to_queue(struct backing_dev_info *bdi,
388                               struct scan_control *sc)
389 {
390         if (current->flags & PF_SWAPWRITE)
391                 return 1;
392         if (!bdi_write_congested(bdi))
393                 return 1;
394         if (bdi == current->backing_dev_info)
395                 return 1;
396
397         /* lumpy reclaim for hugepage often need a lot of write */
398         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
399                 return 1;
400         return 0;
401 }
402
403 /*
404  * We detected a synchronous write error writing a page out.  Probably
405  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
406  * fsync(), msync() or close().
407  *
408  * The tricky part is that after writepage we cannot touch the mapping: nothing
409  * prevents it from being freed up.  But we have a ref on the page and once
410  * that page is locked, the mapping is pinned.
411  *
412  * We're allowed to run sleeping lock_page() here because we know the caller has
413  * __GFP_FS.
414  */
415 static void handle_write_error(struct address_space *mapping,
416                                 struct page *page, int error)
417 {
418         lock_page(page);
419         if (page_mapping(page) == mapping)
420                 mapping_set_error(mapping, error);
421         unlock_page(page);
422 }
423
424 /* possible outcome of pageout() */
425 typedef enum {
426         /* failed to write page out, page is locked */
427         PAGE_KEEP,
428         /* move page to the active list, page is locked */
429         PAGE_ACTIVATE,
430         /* page has been sent to the disk successfully, page is unlocked */
431         PAGE_SUCCESS,
432         /* page is clean and locked */
433         PAGE_CLEAN,
434 } pageout_t;
435
436 /*
437  * pageout is called by shrink_page_list() for each dirty page.
438  * Calls ->writepage().
439  */
440 static pageout_t pageout(struct page *page, struct address_space *mapping,
441                          struct scan_control *sc)
442 {
443         /*
444          * If the page is dirty, only perform writeback if that write
445          * will be non-blocking.  To prevent this allocation from being
446          * stalled by pagecache activity.  But note that there may be
447          * stalls if we need to run get_block().  We could test
448          * PagePrivate for that.
449          *
450          * If this process is currently in __generic_file_aio_write() against
451          * this page's queue, we can perform writeback even if that
452          * will block.
453          *
454          * If the page is swapcache, write it back even if that would
455          * block, for some throttling. This happens by accident, because
456          * swap_backing_dev_info is bust: it doesn't reflect the
457          * congestion state of the swapdevs.  Easy to fix, if needed.
458          */
459         if (!is_page_cache_freeable(page))
460                 return PAGE_KEEP;
461         if (!mapping) {
462                 /*
463                  * Some data journaling orphaned pages can have
464                  * page->mapping == NULL while being dirty with clean buffers.
465                  */
466                 if (page_has_private(page)) {
467                         if (try_to_free_buffers(page)) {
468                                 ClearPageDirty(page);
469                                 printk("%s: orphaned page\n", __func__);
470                                 return PAGE_CLEAN;
471                         }
472                 }
473                 return PAGE_KEEP;
474         }
475         if (mapping->a_ops->writepage == NULL)
476                 return PAGE_ACTIVATE;
477         if (!may_write_to_queue(mapping->backing_dev_info, sc))
478                 return PAGE_KEEP;
479
480         if (clear_page_dirty_for_io(page)) {
481                 int res;
482                 struct writeback_control wbc = {
483                         .sync_mode = WB_SYNC_NONE,
484                         .nr_to_write = SWAP_CLUSTER_MAX,
485                         .range_start = 0,
486                         .range_end = LLONG_MAX,
487                         .for_reclaim = 1,
488                 };
489
490                 SetPageReclaim(page);
491                 res = mapping->a_ops->writepage(page, &wbc);
492                 if (res < 0)
493                         handle_write_error(mapping, page, res);
494                 if (res == AOP_WRITEPAGE_ACTIVATE) {
495                         ClearPageReclaim(page);
496                         return PAGE_ACTIVATE;
497                 }
498
499                 if (!PageWriteback(page)) {
500                         /* synchronous write or broken a_ops? */
501                         ClearPageReclaim(page);
502                 }
503                 trace_mm_vmscan_writepage(page,
504                         trace_reclaim_flags(page, sc->reclaim_mode));
505                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
506                 return PAGE_SUCCESS;
507         }
508
509         return PAGE_CLEAN;
510 }
511
512 /*
513  * Same as remove_mapping, but if the page is removed from the mapping, it
514  * gets returned with a refcount of 0.
515  */
516 static int __remove_mapping(struct address_space *mapping, struct page *page)
517 {
518         BUG_ON(!PageLocked(page));
519         BUG_ON(mapping != page_mapping(page));
520
521         spin_lock_irq(&mapping->tree_lock);
522         /*
523          * The non racy check for a busy page.
524          *
525          * Must be careful with the order of the tests. When someone has
526          * a ref to the page, it may be possible that they dirty it then
527          * drop the reference. So if PageDirty is tested before page_count
528          * here, then the following race may occur:
529          *
530          * get_user_pages(&page);
531          * [user mapping goes away]
532          * write_to(page);
533          *                              !PageDirty(page)    [good]
534          * SetPageDirty(page);
535          * put_page(page);
536          *                              !page_count(page)   [good, discard it]
537          *
538          * [oops, our write_to data is lost]
539          *
540          * Reversing the order of the tests ensures such a situation cannot
541          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
542          * load is not satisfied before that of page->_count.
543          *
544          * Note that if SetPageDirty is always performed via set_page_dirty,
545          * and thus under tree_lock, then this ordering is not required.
546          */
547         if (!page_freeze_refs(page, 2))
548                 goto cannot_free;
549         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
550         if (unlikely(PageDirty(page))) {
551                 page_unfreeze_refs(page, 2);
552                 goto cannot_free;
553         }
554
555         if (PageSwapCache(page)) {
556                 swp_entry_t swap = { .val = page_private(page) };
557                 __delete_from_swap_cache(page);
558                 spin_unlock_irq(&mapping->tree_lock);
559                 swapcache_free(swap, page);
560         } else {
561                 void (*freepage)(struct page *);
562
563                 freepage = mapping->a_ops->freepage;
564
565                 __delete_from_page_cache(page);
566                 spin_unlock_irq(&mapping->tree_lock);
567                 mem_cgroup_uncharge_cache_page(page);
568
569                 if (freepage != NULL)
570                         freepage(page);
571         }
572
573         return 1;
574
575 cannot_free:
576         spin_unlock_irq(&mapping->tree_lock);
577         return 0;
578 }
579
580 /*
581  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
582  * someone else has a ref on the page, abort and return 0.  If it was
583  * successfully detached, return 1.  Assumes the caller has a single ref on
584  * this page.
585  */
586 int remove_mapping(struct address_space *mapping, struct page *page)
587 {
588         if (__remove_mapping(mapping, page)) {
589                 /*
590                  * Unfreezing the refcount with 1 rather than 2 effectively
591                  * drops the pagecache ref for us without requiring another
592                  * atomic operation.
593                  */
594                 page_unfreeze_refs(page, 1);
595                 return 1;
596         }
597         return 0;
598 }
599
600 /**
601  * putback_lru_page - put previously isolated page onto appropriate LRU list
602  * @page: page to be put back to appropriate lru list
603  *
604  * Add previously isolated @page to appropriate LRU list.
605  * Page may still be unevictable for other reasons.
606  *
607  * lru_lock must not be held, interrupts must be enabled.
608  */
609 void putback_lru_page(struct page *page)
610 {
611         int lru;
612         int active = !!TestClearPageActive(page);
613         int was_unevictable = PageUnevictable(page);
614
615         VM_BUG_ON(PageLRU(page));
616
617 redo:
618         ClearPageUnevictable(page);
619
620         if (page_evictable(page, NULL)) {
621                 /*
622                  * For evictable pages, we can use the cache.
623                  * In event of a race, worst case is we end up with an
624                  * unevictable page on [in]active list.
625                  * We know how to handle that.
626                  */
627                 lru = active + page_lru_base_type(page);
628                 lru_cache_add_lru(page, lru);
629         } else {
630                 /*
631                  * Put unevictable pages directly on zone's unevictable
632                  * list.
633                  */
634                 lru = LRU_UNEVICTABLE;
635                 add_page_to_unevictable_list(page);
636                 /*
637                  * When racing with an mlock clearing (page is
638                  * unlocked), make sure that if the other thread does
639                  * not observe our setting of PG_lru and fails
640                  * isolation, we see PG_mlocked cleared below and move
641                  * the page back to the evictable list.
642                  *
643                  * The other side is TestClearPageMlocked().
644                  */
645                 smp_mb();
646         }
647
648         /*
649          * page's status can change while we move it among lru. If an evictable
650          * page is on unevictable list, it never be freed. To avoid that,
651          * check after we added it to the list, again.
652          */
653         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654                 if (!isolate_lru_page(page)) {
655                         put_page(page);
656                         goto redo;
657                 }
658                 /* This means someone else dropped this page from LRU
659                  * So, it will be freed or putback to LRU again. There is
660                  * nothing to do here.
661                  */
662         }
663
664         if (was_unevictable && lru != LRU_UNEVICTABLE)
665                 count_vm_event(UNEVICTABLE_PGRESCUED);
666         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667                 count_vm_event(UNEVICTABLE_PGCULLED);
668
669         put_page(page);         /* drop ref from isolate */
670 }
671
672 enum page_references {
673         PAGEREF_RECLAIM,
674         PAGEREF_RECLAIM_CLEAN,
675         PAGEREF_KEEP,
676         PAGEREF_ACTIVATE,
677 };
678
679 static enum page_references page_check_references(struct page *page,
680                                                   struct scan_control *sc)
681 {
682         int referenced_ptes, referenced_page;
683         unsigned long vm_flags;
684
685         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686         referenced_page = TestClearPageReferenced(page);
687
688         /* Lumpy reclaim - ignore references */
689         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690                 return PAGEREF_RECLAIM;
691
692         /*
693          * Mlock lost the isolation race with us.  Let try_to_unmap()
694          * move the page to the unevictable list.
695          */
696         if (vm_flags & VM_LOCKED)
697                 return PAGEREF_RECLAIM;
698
699         if (referenced_ptes) {
700                 if (PageAnon(page))
701                         return PAGEREF_ACTIVATE;
702                 /*
703                  * All mapped pages start out with page table
704                  * references from the instantiating fault, so we need
705                  * to look twice if a mapped file page is used more
706                  * than once.
707                  *
708                  * Mark it and spare it for another trip around the
709                  * inactive list.  Another page table reference will
710                  * lead to its activation.
711                  *
712                  * Note: the mark is set for activated pages as well
713                  * so that recently deactivated but used pages are
714                  * quickly recovered.
715                  */
716                 SetPageReferenced(page);
717
718                 if (referenced_page)
719                         return PAGEREF_ACTIVATE;
720
721                 return PAGEREF_KEEP;
722         }
723
724         /* Reclaim if clean, defer dirty pages to writeback */
725         if (referenced_page && !PageSwapBacked(page))
726                 return PAGEREF_RECLAIM_CLEAN;
727
728         return PAGEREF_RECLAIM;
729 }
730
731 static noinline_for_stack void free_page_list(struct list_head *free_pages)
732 {
733         struct pagevec freed_pvec;
734         struct page *page, *tmp;
735
736         pagevec_init(&freed_pvec, 1);
737
738         list_for_each_entry_safe(page, tmp, free_pages, lru) {
739                 list_del(&page->lru);
740                 if (!pagevec_add(&freed_pvec, page)) {
741                         __pagevec_free(&freed_pvec);
742                         pagevec_reinit(&freed_pvec);
743                 }
744         }
745
746         pagevec_free(&freed_pvec);
747 }
748
749 /*
750  * shrink_page_list() returns the number of reclaimed pages
751  */
752 static unsigned long shrink_page_list(struct list_head *page_list,
753                                       struct zone *zone,
754                                       struct scan_control *sc,
755                                       int priority,
756                                       unsigned long *ret_nr_dirty,
757                                       unsigned long *ret_nr_writeback)
758 {
759         LIST_HEAD(ret_pages);
760         LIST_HEAD(free_pages);
761         int pgactivate = 0;
762         unsigned long nr_dirty = 0;
763         unsigned long nr_congested = 0;
764         unsigned long nr_reclaimed = 0;
765         unsigned long nr_writeback = 0;
766
767         cond_resched();
768
769         while (!list_empty(page_list)) {
770                 enum page_references references;
771                 struct address_space *mapping;
772                 struct page *page;
773                 int may_enter_fs;
774
775                 cond_resched();
776
777                 page = lru_to_page(page_list);
778                 list_del(&page->lru);
779
780                 if (!trylock_page(page))
781                         goto keep;
782
783                 VM_BUG_ON(PageActive(page));
784                 VM_BUG_ON(page_zone(page) != zone);
785
786                 sc->nr_scanned++;
787
788                 if (unlikely(!page_evictable(page, NULL)))
789                         goto cull_mlocked;
790
791                 if (!sc->may_unmap && page_mapped(page))
792                         goto keep_locked;
793
794                 /* Double the slab pressure for mapped and swapcache pages */
795                 if (page_mapped(page) || PageSwapCache(page))
796                         sc->nr_scanned++;
797
798                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
799                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
800
801                 if (PageWriteback(page)) {
802                         nr_writeback++;
803                         /*
804                          * Synchronous reclaim cannot queue pages for
805                          * writeback due to the possibility of stack overflow
806                          * but if it encounters a page under writeback, wait
807                          * for the IO to complete.
808                          */
809                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
810                             may_enter_fs)
811                                 wait_on_page_writeback(page);
812                         else {
813                                 unlock_page(page);
814                                 goto keep_lumpy;
815                         }
816                 }
817
818                 references = page_check_references(page, sc);
819                 switch (references) {
820                 case PAGEREF_ACTIVATE:
821                         goto activate_locked;
822                 case PAGEREF_KEEP:
823                         goto keep_locked;
824                 case PAGEREF_RECLAIM:
825                 case PAGEREF_RECLAIM_CLEAN:
826                         ; /* try to reclaim the page below */
827                 }
828
829                 /*
830                  * Anonymous process memory has backing store?
831                  * Try to allocate it some swap space here.
832                  */
833                 if (PageAnon(page) && !PageSwapCache(page)) {
834                         if (!(sc->gfp_mask & __GFP_IO))
835                                 goto keep_locked;
836                         if (!add_to_swap(page))
837                                 goto activate_locked;
838                         may_enter_fs = 1;
839                 }
840
841                 mapping = page_mapping(page);
842
843                 /*
844                  * The page is mapped into the page tables of one or more
845                  * processes. Try to unmap it here.
846                  */
847                 if (page_mapped(page) && mapping) {
848                         switch (try_to_unmap(page, TTU_UNMAP)) {
849                         case SWAP_FAIL:
850                                 goto activate_locked;
851                         case SWAP_AGAIN:
852                                 goto keep_locked;
853                         case SWAP_MLOCK:
854                                 goto cull_mlocked;
855                         case SWAP_SUCCESS:
856                                 ; /* try to free the page below */
857                         }
858                 }
859
860                 if (PageDirty(page)) {
861                         nr_dirty++;
862
863                         /*
864                          * Only kswapd can writeback filesystem pages to
865                          * avoid risk of stack overflow but do not writeback
866                          * unless under significant pressure.
867                          */
868                         if (page_is_file_cache(page) &&
869                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
870                                 inc_zone_page_state(page, NR_VMSCAN_WRITE_SKIP);
871                                 goto keep_locked;
872                         }
873
874                         if (references == PAGEREF_RECLAIM_CLEAN)
875                                 goto keep_locked;
876                         if (!may_enter_fs)
877                                 goto keep_locked;
878                         if (!sc->may_writepage)
879                                 goto keep_locked;
880
881                         /* Page is dirty, try to write it out here */
882                         switch (pageout(page, mapping, sc)) {
883                         case PAGE_KEEP:
884                                 nr_congested++;
885                                 goto keep_locked;
886                         case PAGE_ACTIVATE:
887                                 goto activate_locked;
888                         case PAGE_SUCCESS:
889                                 if (PageWriteback(page))
890                                         goto keep_lumpy;
891                                 if (PageDirty(page))
892                                         goto keep;
893
894                                 /*
895                                  * A synchronous write - probably a ramdisk.  Go
896                                  * ahead and try to reclaim the page.
897                                  */
898                                 if (!trylock_page(page))
899                                         goto keep;
900                                 if (PageDirty(page) || PageWriteback(page))
901                                         goto keep_locked;
902                                 mapping = page_mapping(page);
903                         case PAGE_CLEAN:
904                                 ; /* try to free the page below */
905                         }
906                 }
907
908                 /*
909                  * If the page has buffers, try to free the buffer mappings
910                  * associated with this page. If we succeed we try to free
911                  * the page as well.
912                  *
913                  * We do this even if the page is PageDirty().
914                  * try_to_release_page() does not perform I/O, but it is
915                  * possible for a page to have PageDirty set, but it is actually
916                  * clean (all its buffers are clean).  This happens if the
917                  * buffers were written out directly, with submit_bh(). ext3
918                  * will do this, as well as the blockdev mapping.
919                  * try_to_release_page() will discover that cleanness and will
920                  * drop the buffers and mark the page clean - it can be freed.
921                  *
922                  * Rarely, pages can have buffers and no ->mapping.  These are
923                  * the pages which were not successfully invalidated in
924                  * truncate_complete_page().  We try to drop those buffers here
925                  * and if that worked, and the page is no longer mapped into
926                  * process address space (page_count == 1) it can be freed.
927                  * Otherwise, leave the page on the LRU so it is swappable.
928                  */
929                 if (page_has_private(page)) {
930                         if (!try_to_release_page(page, sc->gfp_mask))
931                                 goto activate_locked;
932                         if (!mapping && page_count(page) == 1) {
933                                 unlock_page(page);
934                                 if (put_page_testzero(page))
935                                         goto free_it;
936                                 else {
937                                         /*
938                                          * rare race with speculative reference.
939                                          * the speculative reference will free
940                                          * this page shortly, so we may
941                                          * increment nr_reclaimed here (and
942                                          * leave it off the LRU).
943                                          */
944                                         nr_reclaimed++;
945                                         continue;
946                                 }
947                         }
948                 }
949
950                 if (!mapping || !__remove_mapping(mapping, page))
951                         goto keep_locked;
952
953                 /*
954                  * At this point, we have no other references and there is
955                  * no way to pick any more up (removed from LRU, removed
956                  * from pagecache). Can use non-atomic bitops now (and
957                  * we obviously don't have to worry about waking up a process
958                  * waiting on the page lock, because there are no references.
959                  */
960                 __clear_page_locked(page);
961 free_it:
962                 nr_reclaimed++;
963
964                 /*
965                  * Is there need to periodically free_page_list? It would
966                  * appear not as the counts should be low
967                  */
968                 list_add(&page->lru, &free_pages);
969                 continue;
970
971 cull_mlocked:
972                 if (PageSwapCache(page))
973                         try_to_free_swap(page);
974                 unlock_page(page);
975                 putback_lru_page(page);
976                 reset_reclaim_mode(sc);
977                 continue;
978
979 activate_locked:
980                 /* Not a candidate for swapping, so reclaim swap space. */
981                 if (PageSwapCache(page) && vm_swap_full())
982                         try_to_free_swap(page);
983                 VM_BUG_ON(PageActive(page));
984                 SetPageActive(page);
985                 pgactivate++;
986 keep_locked:
987                 unlock_page(page);
988 keep:
989                 reset_reclaim_mode(sc);
990 keep_lumpy:
991                 list_add(&page->lru, &ret_pages);
992                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
993         }
994
995         /*
996          * Tag a zone as congested if all the dirty pages encountered were
997          * backed by a congested BDI. In this case, reclaimers should just
998          * back off and wait for congestion to clear because further reclaim
999          * will encounter the same problem
1000          */
1001         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1002                 zone_set_flag(zone, ZONE_CONGESTED);
1003
1004         free_page_list(&free_pages);
1005
1006         list_splice(&ret_pages, page_list);
1007         count_vm_events(PGACTIVATE, pgactivate);
1008         *ret_nr_dirty += nr_dirty;
1009         *ret_nr_writeback += nr_writeback;
1010         return nr_reclaimed;
1011 }
1012
1013 /*
1014  * Attempt to remove the specified page from its LRU.  Only take this page
1015  * if it is of the appropriate PageActive status.  Pages which are being
1016  * freed elsewhere are also ignored.
1017  *
1018  * page:        page to consider
1019  * mode:        one of the LRU isolation modes defined above
1020  *
1021  * returns 0 on success, -ve errno on failure.
1022  */
1023 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1024 {
1025         bool all_lru_mode;
1026         int ret = -EINVAL;
1027
1028         /* Only take pages on the LRU. */
1029         if (!PageLRU(page))
1030                 return ret;
1031
1032         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1033                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1034
1035         /*
1036          * When checking the active state, we need to be sure we are
1037          * dealing with comparible boolean values.  Take the logical not
1038          * of each.
1039          */
1040         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1041                 return ret;
1042
1043         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1044                 return ret;
1045
1046         /*
1047          * When this function is being called for lumpy reclaim, we
1048          * initially look into all LRU pages, active, inactive and
1049          * unevictable; only give shrink_page_list evictable pages.
1050          */
1051         if (PageUnevictable(page))
1052                 return ret;
1053
1054         ret = -EBUSY;
1055
1056         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1057                 return ret;
1058
1059         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1060                 return ret;
1061
1062         if (likely(get_page_unless_zero(page))) {
1063                 /*
1064                  * Be careful not to clear PageLRU until after we're
1065                  * sure the page is not being freed elsewhere -- the
1066                  * page release code relies on it.
1067                  */
1068                 ClearPageLRU(page);
1069                 ret = 0;
1070         }
1071
1072         return ret;
1073 }
1074
1075 /*
1076  * zone->lru_lock is heavily contended.  Some of the functions that
1077  * shrink the lists perform better by taking out a batch of pages
1078  * and working on them outside the LRU lock.
1079  *
1080  * For pagecache intensive workloads, this function is the hottest
1081  * spot in the kernel (apart from copy_*_user functions).
1082  *
1083  * Appropriate locks must be held before calling this function.
1084  *
1085  * @nr_to_scan: The number of pages to look through on the list.
1086  * @src:        The LRU list to pull pages off.
1087  * @dst:        The temp list to put pages on to.
1088  * @scanned:    The number of pages that were scanned.
1089  * @order:      The caller's attempted allocation order
1090  * @mode:       One of the LRU isolation modes
1091  * @file:       True [1] if isolating file [!anon] pages
1092  *
1093  * returns how many pages were moved onto *@dst.
1094  */
1095 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1096                 struct list_head *src, struct list_head *dst,
1097                 unsigned long *scanned, int order, isolate_mode_t mode,
1098                 int file)
1099 {
1100         unsigned long nr_taken = 0;
1101         unsigned long nr_lumpy_taken = 0;
1102         unsigned long nr_lumpy_dirty = 0;
1103         unsigned long nr_lumpy_failed = 0;
1104         unsigned long scan;
1105
1106         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1107                 struct page *page;
1108                 unsigned long pfn;
1109                 unsigned long end_pfn;
1110                 unsigned long page_pfn;
1111                 int zone_id;
1112
1113                 page = lru_to_page(src);
1114                 prefetchw_prev_lru_page(page, src, flags);
1115
1116                 VM_BUG_ON(!PageLRU(page));
1117
1118                 switch (__isolate_lru_page(page, mode, file)) {
1119                 case 0:
1120                         list_move(&page->lru, dst);
1121                         mem_cgroup_del_lru(page);
1122                         nr_taken += hpage_nr_pages(page);
1123                         break;
1124
1125                 case -EBUSY:
1126                         /* else it is being freed elsewhere */
1127                         list_move(&page->lru, src);
1128                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1129                         continue;
1130
1131                 default:
1132                         BUG();
1133                 }
1134
1135                 if (!order)
1136                         continue;
1137
1138                 /*
1139                  * Attempt to take all pages in the order aligned region
1140                  * surrounding the tag page.  Only take those pages of
1141                  * the same active state as that tag page.  We may safely
1142                  * round the target page pfn down to the requested order
1143                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1144                  * where that page is in a different zone we will detect
1145                  * it from its zone id and abort this block scan.
1146                  */
1147                 zone_id = page_zone_id(page);
1148                 page_pfn = page_to_pfn(page);
1149                 pfn = page_pfn & ~((1 << order) - 1);
1150                 end_pfn = pfn + (1 << order);
1151                 for (; pfn < end_pfn; pfn++) {
1152                         struct page *cursor_page;
1153
1154                         /* The target page is in the block, ignore it. */
1155                         if (unlikely(pfn == page_pfn))
1156                                 continue;
1157
1158                         /* Avoid holes within the zone. */
1159                         if (unlikely(!pfn_valid_within(pfn)))
1160                                 break;
1161
1162                         cursor_page = pfn_to_page(pfn);
1163
1164                         /* Check that we have not crossed a zone boundary. */
1165                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1166                                 break;
1167
1168                         /*
1169                          * If we don't have enough swap space, reclaiming of
1170                          * anon page which don't already have a swap slot is
1171                          * pointless.
1172                          */
1173                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1174                             !PageSwapCache(cursor_page))
1175                                 break;
1176
1177                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1178                                 list_move(&cursor_page->lru, dst);
1179                                 mem_cgroup_del_lru(cursor_page);
1180                                 nr_taken += hpage_nr_pages(page);
1181                                 nr_lumpy_taken++;
1182                                 if (PageDirty(cursor_page))
1183                                         nr_lumpy_dirty++;
1184                                 scan++;
1185                         } else {
1186                                 /*
1187                                  * Check if the page is freed already.
1188                                  *
1189                                  * We can't use page_count() as that
1190                                  * requires compound_head and we don't
1191                                  * have a pin on the page here. If a
1192                                  * page is tail, we may or may not
1193                                  * have isolated the head, so assume
1194                                  * it's not free, it'd be tricky to
1195                                  * track the head status without a
1196                                  * page pin.
1197                                  */
1198                                 if (!PageTail(cursor_page) &&
1199                                     !atomic_read(&cursor_page->_count))
1200                                         continue;
1201                                 break;
1202                         }
1203                 }
1204
1205                 /* If we break out of the loop above, lumpy reclaim failed */
1206                 if (pfn < end_pfn)
1207                         nr_lumpy_failed++;
1208         }
1209
1210         *scanned = scan;
1211
1212         trace_mm_vmscan_lru_isolate(order,
1213                         nr_to_scan, scan,
1214                         nr_taken,
1215                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1216                         mode);
1217         return nr_taken;
1218 }
1219
1220 static unsigned long isolate_pages_global(unsigned long nr,
1221                                         struct list_head *dst,
1222                                         unsigned long *scanned, int order,
1223                                         isolate_mode_t mode,
1224                                         struct zone *z, int active, int file)
1225 {
1226         int lru = LRU_BASE;
1227         if (active)
1228                 lru += LRU_ACTIVE;
1229         if (file)
1230                 lru += LRU_FILE;
1231         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1232                                                                 mode, file);
1233 }
1234
1235 /*
1236  * clear_active_flags() is a helper for shrink_active_list(), clearing
1237  * any active bits from the pages in the list.
1238  */
1239 static unsigned long clear_active_flags(struct list_head *page_list,
1240                                         unsigned int *count)
1241 {
1242         int nr_active = 0;
1243         int lru;
1244         struct page *page;
1245
1246         list_for_each_entry(page, page_list, lru) {
1247                 int numpages = hpage_nr_pages(page);
1248                 lru = page_lru_base_type(page);
1249                 if (PageActive(page)) {
1250                         lru += LRU_ACTIVE;
1251                         ClearPageActive(page);
1252                         nr_active += numpages;
1253                 }
1254                 if (count)
1255                         count[lru] += numpages;
1256         }
1257
1258         return nr_active;
1259 }
1260
1261 /**
1262  * isolate_lru_page - tries to isolate a page from its LRU list
1263  * @page: page to isolate from its LRU list
1264  *
1265  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1266  * vmstat statistic corresponding to whatever LRU list the page was on.
1267  *
1268  * Returns 0 if the page was removed from an LRU list.
1269  * Returns -EBUSY if the page was not on an LRU list.
1270  *
1271  * The returned page will have PageLRU() cleared.  If it was found on
1272  * the active list, it will have PageActive set.  If it was found on
1273  * the unevictable list, it will have the PageUnevictable bit set. That flag
1274  * may need to be cleared by the caller before letting the page go.
1275  *
1276  * The vmstat statistic corresponding to the list on which the page was
1277  * found will be decremented.
1278  *
1279  * Restrictions:
1280  * (1) Must be called with an elevated refcount on the page. This is a
1281  *     fundamentnal difference from isolate_lru_pages (which is called
1282  *     without a stable reference).
1283  * (2) the lru_lock must not be held.
1284  * (3) interrupts must be enabled.
1285  */
1286 int isolate_lru_page(struct page *page)
1287 {
1288         int ret = -EBUSY;
1289
1290         VM_BUG_ON(!page_count(page));
1291
1292         if (PageLRU(page)) {
1293                 struct zone *zone = page_zone(page);
1294
1295                 spin_lock_irq(&zone->lru_lock);
1296                 if (PageLRU(page)) {
1297                         int lru = page_lru(page);
1298                         ret = 0;
1299                         get_page(page);
1300                         ClearPageLRU(page);
1301
1302                         del_page_from_lru_list(zone, page, lru);
1303                 }
1304                 spin_unlock_irq(&zone->lru_lock);
1305         }
1306         return ret;
1307 }
1308
1309 /*
1310  * Are there way too many processes in the direct reclaim path already?
1311  */
1312 static int too_many_isolated(struct zone *zone, int file,
1313                 struct scan_control *sc)
1314 {
1315         unsigned long inactive, isolated;
1316
1317         if (current_is_kswapd())
1318                 return 0;
1319
1320         if (!scanning_global_lru(sc))
1321                 return 0;
1322
1323         if (file) {
1324                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1325                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1326         } else {
1327                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1328                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1329         }
1330
1331         return isolated > inactive;
1332 }
1333
1334 /*
1335  * TODO: Try merging with migrations version of putback_lru_pages
1336  */
1337 static noinline_for_stack void
1338 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1339                                 unsigned long nr_anon, unsigned long nr_file,
1340                                 struct list_head *page_list)
1341 {
1342         struct page *page;
1343         struct pagevec pvec;
1344         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1345
1346         pagevec_init(&pvec, 1);
1347
1348         /*
1349          * Put back any unfreeable pages.
1350          */
1351         spin_lock(&zone->lru_lock);
1352         while (!list_empty(page_list)) {
1353                 int lru;
1354                 page = lru_to_page(page_list);
1355                 VM_BUG_ON(PageLRU(page));
1356                 list_del(&page->lru);
1357                 if (unlikely(!page_evictable(page, NULL))) {
1358                         spin_unlock_irq(&zone->lru_lock);
1359                         putback_lru_page(page);
1360                         spin_lock_irq(&zone->lru_lock);
1361                         continue;
1362                 }
1363                 SetPageLRU(page);
1364                 lru = page_lru(page);
1365                 add_page_to_lru_list(zone, page, lru);
1366                 if (is_active_lru(lru)) {
1367                         int file = is_file_lru(lru);
1368                         int numpages = hpage_nr_pages(page);
1369                         reclaim_stat->recent_rotated[file] += numpages;
1370                         if (!scanning_global_lru(sc))
1371                                 sc->memcg_record->nr_rotated[file] += numpages;
1372                 }
1373                 if (!pagevec_add(&pvec, page)) {
1374                         spin_unlock_irq(&zone->lru_lock);
1375                         __pagevec_release(&pvec);
1376                         spin_lock_irq(&zone->lru_lock);
1377                 }
1378         }
1379         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1380         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1381
1382         spin_unlock_irq(&zone->lru_lock);
1383         pagevec_release(&pvec);
1384 }
1385
1386 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1387                                         struct scan_control *sc,
1388                                         unsigned long *nr_anon,
1389                                         unsigned long *nr_file,
1390                                         struct list_head *isolated_list)
1391 {
1392         unsigned long nr_active;
1393         unsigned int count[NR_LRU_LISTS] = { 0, };
1394         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1395
1396         nr_active = clear_active_flags(isolated_list, count);
1397         __count_vm_events(PGDEACTIVATE, nr_active);
1398
1399         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1400                               -count[LRU_ACTIVE_FILE]);
1401         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1402                               -count[LRU_INACTIVE_FILE]);
1403         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1404                               -count[LRU_ACTIVE_ANON]);
1405         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1406                               -count[LRU_INACTIVE_ANON]);
1407
1408         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1409         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1410         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1411         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1412
1413         reclaim_stat->recent_scanned[0] += *nr_anon;
1414         reclaim_stat->recent_scanned[1] += *nr_file;
1415         if (!scanning_global_lru(sc)) {
1416                 sc->memcg_record->nr_scanned[0] += *nr_anon;
1417                 sc->memcg_record->nr_scanned[1] += *nr_file;
1418         }
1419 }
1420
1421 /*
1422  * Returns true if a direct reclaim should wait on pages under writeback.
1423  *
1424  * If we are direct reclaiming for contiguous pages and we do not reclaim
1425  * everything in the list, try again and wait for writeback IO to complete.
1426  * This will stall high-order allocations noticeably. Only do that when really
1427  * need to free the pages under high memory pressure.
1428  */
1429 static inline bool should_reclaim_stall(unsigned long nr_taken,
1430                                         unsigned long nr_freed,
1431                                         int priority,
1432                                         struct scan_control *sc)
1433 {
1434         int lumpy_stall_priority;
1435
1436         /* kswapd should not stall on sync IO */
1437         if (current_is_kswapd())
1438                 return false;
1439
1440         /* Only stall on lumpy reclaim */
1441         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1442                 return false;
1443
1444         /* If we have reclaimed everything on the isolated list, no stall */
1445         if (nr_freed == nr_taken)
1446                 return false;
1447
1448         /*
1449          * For high-order allocations, there are two stall thresholds.
1450          * High-cost allocations stall immediately where as lower
1451          * order allocations such as stacks require the scanning
1452          * priority to be much higher before stalling.
1453          */
1454         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1455                 lumpy_stall_priority = DEF_PRIORITY;
1456         else
1457                 lumpy_stall_priority = DEF_PRIORITY / 3;
1458
1459         return priority <= lumpy_stall_priority;
1460 }
1461
1462 /*
1463  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1464  * of reclaimed pages
1465  */
1466 static noinline_for_stack unsigned long
1467 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1468                         struct scan_control *sc, int priority, int file)
1469 {
1470         LIST_HEAD(page_list);
1471         unsigned long nr_scanned;
1472         unsigned long nr_reclaimed = 0;
1473         unsigned long nr_taken;
1474         unsigned long nr_anon;
1475         unsigned long nr_file;
1476         unsigned long nr_dirty = 0;
1477         unsigned long nr_writeback = 0;
1478         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1479
1480         while (unlikely(too_many_isolated(zone, file, sc))) {
1481                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1482
1483                 /* We are about to die and free our memory. Return now. */
1484                 if (fatal_signal_pending(current))
1485                         return SWAP_CLUSTER_MAX;
1486         }
1487
1488         set_reclaim_mode(priority, sc, false);
1489         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1490                 reclaim_mode |= ISOLATE_ACTIVE;
1491
1492         lru_add_drain();
1493
1494         if (!sc->may_unmap)
1495                 reclaim_mode |= ISOLATE_UNMAPPED;
1496         if (!sc->may_writepage)
1497                 reclaim_mode |= ISOLATE_CLEAN;
1498
1499         spin_lock_irq(&zone->lru_lock);
1500
1501         if (scanning_global_lru(sc)) {
1502                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1503                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1504                 zone->pages_scanned += nr_scanned;
1505                 if (current_is_kswapd())
1506                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1507                                                nr_scanned);
1508                 else
1509                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1510                                                nr_scanned);
1511         } else {
1512                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1513                         &nr_scanned, sc->order, reclaim_mode, zone,
1514                         sc->mem_cgroup, 0, file);
1515                 /*
1516                  * mem_cgroup_isolate_pages() keeps track of
1517                  * scanned pages on its own.
1518                  */
1519         }
1520
1521         if (nr_taken == 0) {
1522                 spin_unlock_irq(&zone->lru_lock);
1523                 return 0;
1524         }
1525
1526         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1527
1528         spin_unlock_irq(&zone->lru_lock);
1529
1530         nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1531                                                 &nr_dirty, &nr_writeback);
1532
1533         /* Check if we should syncronously wait for writeback */
1534         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1535                 set_reclaim_mode(priority, sc, true);
1536                 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1537                                         priority, &nr_dirty, &nr_writeback);
1538         }
1539
1540         if (!scanning_global_lru(sc))
1541                 sc->memcg_record->nr_freed[file] += nr_reclaimed;
1542
1543         local_irq_disable();
1544         if (current_is_kswapd())
1545                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1546         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1547
1548         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1549
1550         /*
1551          * If we have encountered a high number of dirty pages under writeback
1552          * then we are reaching the end of the LRU too quickly and global
1553          * limits are not enough to throttle processes due to the page
1554          * distribution throughout zones. Scale the number of dirty pages that
1555          * must be under writeback before being throttled to priority.
1556          */
1557         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1558                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1559
1560         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1561                 zone_idx(zone),
1562                 nr_scanned, nr_reclaimed,
1563                 priority,
1564                 trace_shrink_flags(file, sc->reclaim_mode));
1565         return nr_reclaimed;
1566 }
1567
1568 /*
1569  * This moves pages from the active list to the inactive list.
1570  *
1571  * We move them the other way if the page is referenced by one or more
1572  * processes, from rmap.
1573  *
1574  * If the pages are mostly unmapped, the processing is fast and it is
1575  * appropriate to hold zone->lru_lock across the whole operation.  But if
1576  * the pages are mapped, the processing is slow (page_referenced()) so we
1577  * should drop zone->lru_lock around each page.  It's impossible to balance
1578  * this, so instead we remove the pages from the LRU while processing them.
1579  * It is safe to rely on PG_active against the non-LRU pages in here because
1580  * nobody will play with that bit on a non-LRU page.
1581  *
1582  * The downside is that we have to touch page->_count against each page.
1583  * But we had to alter page->flags anyway.
1584  */
1585
1586 static void move_active_pages_to_lru(struct zone *zone,
1587                                      struct list_head *list,
1588                                      enum lru_list lru)
1589 {
1590         unsigned long pgmoved = 0;
1591         struct pagevec pvec;
1592         struct page *page;
1593
1594         pagevec_init(&pvec, 1);
1595
1596         while (!list_empty(list)) {
1597                 page = lru_to_page(list);
1598
1599                 VM_BUG_ON(PageLRU(page));
1600                 SetPageLRU(page);
1601
1602                 list_move(&page->lru, &zone->lru[lru].list);
1603                 mem_cgroup_add_lru_list(page, lru);
1604                 pgmoved += hpage_nr_pages(page);
1605
1606                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1607                         spin_unlock_irq(&zone->lru_lock);
1608                         if (buffer_heads_over_limit)
1609                                 pagevec_strip(&pvec);
1610                         __pagevec_release(&pvec);
1611                         spin_lock_irq(&zone->lru_lock);
1612                 }
1613         }
1614         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1615         if (!is_active_lru(lru))
1616                 __count_vm_events(PGDEACTIVATE, pgmoved);
1617 }
1618
1619 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1620                         struct scan_control *sc, int priority, int file)
1621 {
1622         unsigned long nr_taken;
1623         unsigned long pgscanned;
1624         unsigned long vm_flags;
1625         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1626         LIST_HEAD(l_active);
1627         LIST_HEAD(l_inactive);
1628         struct page *page;
1629         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1630         unsigned long nr_rotated = 0;
1631         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1632
1633         lru_add_drain();
1634
1635         if (!sc->may_unmap)
1636                 reclaim_mode |= ISOLATE_UNMAPPED;
1637         if (!sc->may_writepage)
1638                 reclaim_mode |= ISOLATE_CLEAN;
1639
1640         spin_lock_irq(&zone->lru_lock);
1641         if (scanning_global_lru(sc)) {
1642                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1643                                                 &pgscanned, sc->order,
1644                                                 reclaim_mode, zone,
1645                                                 1, file);
1646                 zone->pages_scanned += pgscanned;
1647         } else {
1648                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1649                                                 &pgscanned, sc->order,
1650                                                 reclaim_mode, zone,
1651                                                 sc->mem_cgroup, 1, file);
1652                 /*
1653                  * mem_cgroup_isolate_pages() keeps track of
1654                  * scanned pages on its own.
1655                  */
1656         }
1657
1658         reclaim_stat->recent_scanned[file] += nr_taken;
1659         if (!scanning_global_lru(sc))
1660                 sc->memcg_record->nr_scanned[file] += nr_taken;
1661
1662         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1663         if (file)
1664                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1665         else
1666                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1667         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1668         spin_unlock_irq(&zone->lru_lock);
1669
1670         while (!list_empty(&l_hold)) {
1671                 cond_resched();
1672                 page = lru_to_page(&l_hold);
1673                 list_del(&page->lru);
1674
1675                 if (unlikely(!page_evictable(page, NULL))) {
1676                         putback_lru_page(page);
1677                         continue;
1678                 }
1679
1680                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1681                         nr_rotated += hpage_nr_pages(page);
1682                         /*
1683                          * Identify referenced, file-backed active pages and
1684                          * give them one more trip around the active list. So
1685                          * that executable code get better chances to stay in
1686                          * memory under moderate memory pressure.  Anon pages
1687                          * are not likely to be evicted by use-once streaming
1688                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1689                          * so we ignore them here.
1690                          */
1691                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1692                                 list_add(&page->lru, &l_active);
1693                                 continue;
1694                         }
1695                 }
1696
1697                 ClearPageActive(page);  /* we are de-activating */
1698                 list_add(&page->lru, &l_inactive);
1699         }
1700
1701         /*
1702          * Move pages back to the lru list.
1703          */
1704         spin_lock_irq(&zone->lru_lock);
1705         /*
1706          * Count referenced pages from currently used mappings as rotated,
1707          * even though only some of them are actually re-activated.  This
1708          * helps balance scan pressure between file and anonymous pages in
1709          * get_scan_ratio.
1710          */
1711         reclaim_stat->recent_rotated[file] += nr_rotated;
1712         if (!scanning_global_lru(sc))
1713                 sc->memcg_record->nr_rotated[file] += nr_rotated;
1714
1715         move_active_pages_to_lru(zone, &l_active,
1716                                                 LRU_ACTIVE + file * LRU_FILE);
1717         move_active_pages_to_lru(zone, &l_inactive,
1718                                                 LRU_BASE   + file * LRU_FILE);
1719         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1720         spin_unlock_irq(&zone->lru_lock);
1721 }
1722
1723 #ifdef CONFIG_SWAP
1724 static int inactive_anon_is_low_global(struct zone *zone)
1725 {
1726         unsigned long active, inactive;
1727
1728         active = zone_page_state(zone, NR_ACTIVE_ANON);
1729         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1730
1731         if (inactive * zone->inactive_ratio < active)
1732                 return 1;
1733
1734         return 0;
1735 }
1736
1737 /**
1738  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1739  * @zone: zone to check
1740  * @sc:   scan control of this context
1741  *
1742  * Returns true if the zone does not have enough inactive anon pages,
1743  * meaning some active anon pages need to be deactivated.
1744  */
1745 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1746 {
1747         int low;
1748
1749         /*
1750          * If we don't have swap space, anonymous page deactivation
1751          * is pointless.
1752          */
1753         if (!total_swap_pages)
1754                 return 0;
1755
1756         if (scanning_global_lru(sc))
1757                 low = inactive_anon_is_low_global(zone);
1758         else
1759                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1760         return low;
1761 }
1762 #else
1763 static inline int inactive_anon_is_low(struct zone *zone,
1764                                         struct scan_control *sc)
1765 {
1766         return 0;
1767 }
1768 #endif
1769
1770 static int inactive_file_is_low_global(struct zone *zone)
1771 {
1772         unsigned long active, inactive;
1773
1774         active = zone_page_state(zone, NR_ACTIVE_FILE);
1775         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1776
1777         return (active > inactive);
1778 }
1779
1780 /**
1781  * inactive_file_is_low - check if file pages need to be deactivated
1782  * @zone: zone to check
1783  * @sc:   scan control of this context
1784  *
1785  * When the system is doing streaming IO, memory pressure here
1786  * ensures that active file pages get deactivated, until more
1787  * than half of the file pages are on the inactive list.
1788  *
1789  * Once we get to that situation, protect the system's working
1790  * set from being evicted by disabling active file page aging.
1791  *
1792  * This uses a different ratio than the anonymous pages, because
1793  * the page cache uses a use-once replacement algorithm.
1794  */
1795 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1796 {
1797         int low;
1798
1799         if (scanning_global_lru(sc))
1800                 low = inactive_file_is_low_global(zone);
1801         else
1802                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1803         return low;
1804 }
1805
1806 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1807                                 int file)
1808 {
1809         if (file)
1810                 return inactive_file_is_low(zone, sc);
1811         else
1812                 return inactive_anon_is_low(zone, sc);
1813 }
1814
1815 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1816         struct zone *zone, struct scan_control *sc, int priority)
1817 {
1818         int file = is_file_lru(lru);
1819
1820         if (is_active_lru(lru)) {
1821                 if (inactive_list_is_low(zone, sc, file))
1822                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1823                 return 0;
1824         }
1825
1826         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1827 }
1828
1829 static int vmscan_swappiness(struct scan_control *sc)
1830 {
1831         if (scanning_global_lru(sc))
1832                 return vm_swappiness;
1833         return mem_cgroup_swappiness(sc->mem_cgroup);
1834 }
1835
1836 /*
1837  * Determine how aggressively the anon and file LRU lists should be
1838  * scanned.  The relative value of each set of LRU lists is determined
1839  * by looking at the fraction of the pages scanned we did rotate back
1840  * onto the active list instead of evict.
1841  *
1842  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1843  */
1844 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1845                                         unsigned long *nr, int priority)
1846 {
1847         unsigned long anon, file, free;
1848         unsigned long anon_prio, file_prio;
1849         unsigned long ap, fp;
1850         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1851         u64 fraction[2], denominator;
1852         enum lru_list l;
1853         int noswap = 0;
1854         bool force_scan = false;
1855
1856         /*
1857          * If the zone or memcg is small, nr[l] can be 0.  This
1858          * results in no scanning on this priority and a potential
1859          * priority drop.  Global direct reclaim can go to the next
1860          * zone and tends to have no problems. Global kswapd is for
1861          * zone balancing and it needs to scan a minimum amount. When
1862          * reclaiming for a memcg, a priority drop can cause high
1863          * latencies, so it's better to scan a minimum amount there as
1864          * well.
1865          */
1866         if (scanning_global_lru(sc) && current_is_kswapd())
1867                 force_scan = true;
1868         if (!scanning_global_lru(sc))
1869                 force_scan = true;
1870
1871         /* If we have no swap space, do not bother scanning anon pages. */
1872         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1873                 noswap = 1;
1874                 fraction[0] = 0;
1875                 fraction[1] = 1;
1876                 denominator = 1;
1877                 goto out;
1878         }
1879
1880         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1881                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1882         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1883                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1884
1885         if (scanning_global_lru(sc)) {
1886                 free  = zone_page_state(zone, NR_FREE_PAGES);
1887                 /* If we have very few page cache pages,
1888                    force-scan anon pages. */
1889                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1890                         fraction[0] = 1;
1891                         fraction[1] = 0;
1892                         denominator = 1;
1893                         goto out;
1894                 }
1895         }
1896
1897         /*
1898          * With swappiness at 100, anonymous and file have the same priority.
1899          * This scanning priority is essentially the inverse of IO cost.
1900          */
1901         anon_prio = vmscan_swappiness(sc);
1902         file_prio = 200 - vmscan_swappiness(sc);
1903
1904         /*
1905          * OK, so we have swap space and a fair amount of page cache
1906          * pages.  We use the recently rotated / recently scanned
1907          * ratios to determine how valuable each cache is.
1908          *
1909          * Because workloads change over time (and to avoid overflow)
1910          * we keep these statistics as a floating average, which ends
1911          * up weighing recent references more than old ones.
1912          *
1913          * anon in [0], file in [1]
1914          */
1915         spin_lock_irq(&zone->lru_lock);
1916         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1917                 reclaim_stat->recent_scanned[0] /= 2;
1918                 reclaim_stat->recent_rotated[0] /= 2;
1919         }
1920
1921         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1922                 reclaim_stat->recent_scanned[1] /= 2;
1923                 reclaim_stat->recent_rotated[1] /= 2;
1924         }
1925
1926         /*
1927          * The amount of pressure on anon vs file pages is inversely
1928          * proportional to the fraction of recently scanned pages on
1929          * each list that were recently referenced and in active use.
1930          */
1931         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1932         ap /= reclaim_stat->recent_rotated[0] + 1;
1933
1934         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1935         fp /= reclaim_stat->recent_rotated[1] + 1;
1936         spin_unlock_irq(&zone->lru_lock);
1937
1938         fraction[0] = ap;
1939         fraction[1] = fp;
1940         denominator = ap + fp + 1;
1941 out:
1942         for_each_evictable_lru(l) {
1943                 int file = is_file_lru(l);
1944                 unsigned long scan;
1945
1946                 scan = zone_nr_lru_pages(zone, sc, l);
1947                 if (priority || noswap) {
1948                         scan >>= priority;
1949                         if (!scan && force_scan)
1950                                 scan = SWAP_CLUSTER_MAX;
1951                         scan = div64_u64(scan * fraction[file], denominator);
1952                 }
1953                 nr[l] = scan;
1954         }
1955 }
1956
1957 /*
1958  * Reclaim/compaction depends on a number of pages being freed. To avoid
1959  * disruption to the system, a small number of order-0 pages continue to be
1960  * rotated and reclaimed in the normal fashion. However, by the time we get
1961  * back to the allocator and call try_to_compact_zone(), we ensure that
1962  * there are enough free pages for it to be likely successful
1963  */
1964 static inline bool should_continue_reclaim(struct zone *zone,
1965                                         unsigned long nr_reclaimed,
1966                                         unsigned long nr_scanned,
1967                                         struct scan_control *sc)
1968 {
1969         unsigned long pages_for_compaction;
1970         unsigned long inactive_lru_pages;
1971
1972         /* If not in reclaim/compaction mode, stop */
1973         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1974                 return false;
1975
1976         /* Consider stopping depending on scan and reclaim activity */
1977         if (sc->gfp_mask & __GFP_REPEAT) {
1978                 /*
1979                  * For __GFP_REPEAT allocations, stop reclaiming if the
1980                  * full LRU list has been scanned and we are still failing
1981                  * to reclaim pages. This full LRU scan is potentially
1982                  * expensive but a __GFP_REPEAT caller really wants to succeed
1983                  */
1984                 if (!nr_reclaimed && !nr_scanned)
1985                         return false;
1986         } else {
1987                 /*
1988                  * For non-__GFP_REPEAT allocations which can presumably
1989                  * fail without consequence, stop if we failed to reclaim
1990                  * any pages from the last SWAP_CLUSTER_MAX number of
1991                  * pages that were scanned. This will return to the
1992                  * caller faster at the risk reclaim/compaction and
1993                  * the resulting allocation attempt fails
1994                  */
1995                 if (!nr_reclaimed)
1996                         return false;
1997         }
1998
1999         /*
2000          * If we have not reclaimed enough pages for compaction and the
2001          * inactive lists are large enough, continue reclaiming
2002          */
2003         pages_for_compaction = (2UL << sc->order);
2004         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2005                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2006         if (sc->nr_reclaimed < pages_for_compaction &&
2007                         inactive_lru_pages > pages_for_compaction)
2008                 return true;
2009
2010         /* If compaction would go ahead or the allocation would succeed, stop */
2011         switch (compaction_suitable(zone, sc->order)) {
2012         case COMPACT_PARTIAL:
2013         case COMPACT_CONTINUE:
2014                 return false;
2015         default:
2016                 return true;
2017         }
2018 }
2019
2020 /*
2021  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2022  */
2023 static void shrink_zone(int priority, struct zone *zone,
2024                                 struct scan_control *sc)
2025 {
2026         unsigned long nr[NR_LRU_LISTS];
2027         unsigned long nr_to_scan;
2028         enum lru_list l;
2029         unsigned long nr_reclaimed, nr_scanned;
2030         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2031         struct blk_plug plug;
2032
2033 restart:
2034         nr_reclaimed = 0;
2035         nr_scanned = sc->nr_scanned;
2036         get_scan_count(zone, sc, nr, priority);
2037
2038         blk_start_plug(&plug);
2039         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2040                                         nr[LRU_INACTIVE_FILE]) {
2041                 for_each_evictable_lru(l) {
2042                         if (nr[l]) {
2043                                 nr_to_scan = min_t(unsigned long,
2044                                                    nr[l], SWAP_CLUSTER_MAX);
2045                                 nr[l] -= nr_to_scan;
2046
2047                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2048                                                             zone, sc, priority);
2049                         }
2050                 }
2051                 /*
2052                  * On large memory systems, scan >> priority can become
2053                  * really large. This is fine for the starting priority;
2054                  * we want to put equal scanning pressure on each zone.
2055                  * However, if the VM has a harder time of freeing pages,
2056                  * with multiple processes reclaiming pages, the total
2057                  * freeing target can get unreasonably large.
2058                  */
2059                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2060                         break;
2061         }
2062         blk_finish_plug(&plug);
2063         sc->nr_reclaimed += nr_reclaimed;
2064
2065         /*
2066          * Even if we did not try to evict anon pages at all, we want to
2067          * rebalance the anon lru active/inactive ratio.
2068          */
2069         if (inactive_anon_is_low(zone, sc))
2070                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2071
2072         /* reclaim/compaction might need reclaim to continue */
2073         if (should_continue_reclaim(zone, nr_reclaimed,
2074                                         sc->nr_scanned - nr_scanned, sc))
2075                 goto restart;
2076
2077         throttle_vm_writeout(sc->gfp_mask);
2078 }
2079
2080 /*
2081  * This is the direct reclaim path, for page-allocating processes.  We only
2082  * try to reclaim pages from zones which will satisfy the caller's allocation
2083  * request.
2084  *
2085  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2086  * Because:
2087  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2088  *    allocation or
2089  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2090  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2091  *    zone defense algorithm.
2092  *
2093  * If a zone is deemed to be full of pinned pages then just give it a light
2094  * scan then give up on it.
2095  */
2096 static void shrink_zones(int priority, struct zonelist *zonelist,
2097                                         struct scan_control *sc)
2098 {
2099         struct zoneref *z;
2100         struct zone *zone;
2101         unsigned long nr_soft_reclaimed;
2102         unsigned long nr_soft_scanned;
2103
2104         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2105                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2106                 if (!populated_zone(zone))
2107                         continue;
2108                 /*
2109                  * Take care memory controller reclaiming has small influence
2110                  * to global LRU.
2111                  */
2112                 if (scanning_global_lru(sc)) {
2113                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2114                                 continue;
2115                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2116                                 continue;       /* Let kswapd poll it */
2117                         /*
2118                          * This steals pages from memory cgroups over softlimit
2119                          * and returns the number of reclaimed pages and
2120                          * scanned pages. This works for global memory pressure
2121                          * and balancing, not for a memcg's limit.
2122                          */
2123                         nr_soft_scanned = 0;
2124                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2125                                                 sc->order, sc->gfp_mask,
2126                                                 &nr_soft_scanned);
2127                         sc->nr_reclaimed += nr_soft_reclaimed;
2128                         sc->nr_scanned += nr_soft_scanned;
2129                         /* need some check for avoid more shrink_zone() */
2130                 }
2131
2132                 shrink_zone(priority, zone, sc);
2133         }
2134 }
2135
2136 static bool zone_reclaimable(struct zone *zone)
2137 {
2138         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2139 }
2140
2141 /* All zones in zonelist are unreclaimable? */
2142 static bool all_unreclaimable(struct zonelist *zonelist,
2143                 struct scan_control *sc)
2144 {
2145         struct zoneref *z;
2146         struct zone *zone;
2147
2148         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2149                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2150                 if (!populated_zone(zone))
2151                         continue;
2152                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2153                         continue;
2154                 if (!zone->all_unreclaimable)
2155                         return false;
2156         }
2157
2158         return true;
2159 }
2160
2161 /*
2162  * This is the main entry point to direct page reclaim.
2163  *
2164  * If a full scan of the inactive list fails to free enough memory then we
2165  * are "out of memory" and something needs to be killed.
2166  *
2167  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2168  * high - the zone may be full of dirty or under-writeback pages, which this
2169  * caller can't do much about.  We kick the writeback threads and take explicit
2170  * naps in the hope that some of these pages can be written.  But if the
2171  * allocating task holds filesystem locks which prevent writeout this might not
2172  * work, and the allocation attempt will fail.
2173  *
2174  * returns:     0, if no pages reclaimed
2175  *              else, the number of pages reclaimed
2176  */
2177 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2178                                         struct scan_control *sc,
2179                                         struct shrink_control *shrink)
2180 {
2181         int priority;
2182         unsigned long total_scanned = 0;
2183         struct reclaim_state *reclaim_state = current->reclaim_state;
2184         struct zoneref *z;
2185         struct zone *zone;
2186         unsigned long writeback_threshold;
2187
2188         get_mems_allowed();
2189         delayacct_freepages_start();
2190
2191         if (scanning_global_lru(sc))
2192                 count_vm_event(ALLOCSTALL);
2193
2194         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2195                 sc->nr_scanned = 0;
2196                 if (!priority)
2197                         disable_swap_token(sc->mem_cgroup);
2198                 shrink_zones(priority, zonelist, sc);
2199                 /*
2200                  * Don't shrink slabs when reclaiming memory from
2201                  * over limit cgroups
2202                  */
2203                 if (scanning_global_lru(sc)) {
2204                         unsigned long lru_pages = 0;
2205                         for_each_zone_zonelist(zone, z, zonelist,
2206                                         gfp_zone(sc->gfp_mask)) {
2207                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2208                                         continue;
2209
2210                                 lru_pages += zone_reclaimable_pages(zone);
2211                         }
2212
2213                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2214                         if (reclaim_state) {
2215                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2216                                 reclaim_state->reclaimed_slab = 0;
2217                         }
2218                 }
2219                 total_scanned += sc->nr_scanned;
2220                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2221                         goto out;
2222
2223                 /*
2224                  * Try to write back as many pages as we just scanned.  This
2225                  * tends to cause slow streaming writers to write data to the
2226                  * disk smoothly, at the dirtying rate, which is nice.   But
2227                  * that's undesirable in laptop mode, where we *want* lumpy
2228                  * writeout.  So in laptop mode, write out the whole world.
2229                  */
2230                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2231                 if (total_scanned > writeback_threshold) {
2232                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2233                         sc->may_writepage = 1;
2234                 }
2235
2236                 /* Take a nap, wait for some writeback to complete */
2237                 if (!sc->hibernation_mode && sc->nr_scanned &&
2238                     priority < DEF_PRIORITY - 2) {
2239                         struct zone *preferred_zone;
2240
2241                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2242                                                 &cpuset_current_mems_allowed,
2243                                                 &preferred_zone);
2244                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2245                 }
2246         }
2247
2248 out:
2249         delayacct_freepages_end();
2250         put_mems_allowed();
2251
2252         if (sc->nr_reclaimed)
2253                 return sc->nr_reclaimed;
2254
2255         /*
2256          * As hibernation is going on, kswapd is freezed so that it can't mark
2257          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2258          * check.
2259          */
2260         if (oom_killer_disabled)
2261                 return 0;
2262
2263         /* top priority shrink_zones still had more to do? don't OOM, then */
2264         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2265                 return 1;
2266
2267         return 0;
2268 }
2269
2270 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2271                                 gfp_t gfp_mask, nodemask_t *nodemask)
2272 {
2273         unsigned long nr_reclaimed;
2274         struct scan_control sc = {
2275                 .gfp_mask = gfp_mask,
2276                 .may_writepage = !laptop_mode,
2277                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2278                 .may_unmap = 1,
2279                 .may_swap = 1,
2280                 .order = order,
2281                 .mem_cgroup = NULL,
2282                 .nodemask = nodemask,
2283         };
2284         struct shrink_control shrink = {
2285                 .gfp_mask = sc.gfp_mask,
2286         };
2287
2288         trace_mm_vmscan_direct_reclaim_begin(order,
2289                                 sc.may_writepage,
2290                                 gfp_mask);
2291
2292         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2293
2294         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2295
2296         return nr_reclaimed;
2297 }
2298
2299 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2300
2301 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2302                                         gfp_t gfp_mask, bool noswap,
2303                                         struct zone *zone,
2304                                         struct memcg_scanrecord *rec,
2305                                         unsigned long *scanned)
2306 {
2307         struct scan_control sc = {
2308                 .nr_scanned = 0,
2309                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2310                 .may_writepage = !laptop_mode,
2311                 .may_unmap = 1,
2312                 .may_swap = !noswap,
2313                 .order = 0,
2314                 .mem_cgroup = mem,
2315                 .memcg_record = rec,
2316         };
2317         ktime_t start, end;
2318
2319         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2320                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2321
2322         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2323                                                       sc.may_writepage,
2324                                                       sc.gfp_mask);
2325
2326         start = ktime_get();
2327         /*
2328          * NOTE: Although we can get the priority field, using it
2329          * here is not a good idea, since it limits the pages we can scan.
2330          * if we don't reclaim here, the shrink_zone from balance_pgdat
2331          * will pick up pages from other mem cgroup's as well. We hack
2332          * the priority and make it zero.
2333          */
2334         shrink_zone(0, zone, &sc);
2335         end = ktime_get();
2336
2337         if (rec)
2338                 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2339         *scanned = sc.nr_scanned;
2340
2341         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2342
2343         return sc.nr_reclaimed;
2344 }
2345
2346 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2347                                            gfp_t gfp_mask,
2348                                            bool noswap,
2349                                            struct memcg_scanrecord *rec)
2350 {
2351         struct zonelist *zonelist;
2352         unsigned long nr_reclaimed;
2353         ktime_t start, end;
2354         int nid;
2355         struct scan_control sc = {
2356                 .may_writepage = !laptop_mode,
2357                 .may_unmap = 1,
2358                 .may_swap = !noswap,
2359                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2360                 .order = 0,
2361                 .mem_cgroup = mem_cont,
2362                 .memcg_record = rec,
2363                 .nodemask = NULL, /* we don't care the placement */
2364                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2365                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2366         };
2367         struct shrink_control shrink = {
2368                 .gfp_mask = sc.gfp_mask,
2369         };
2370
2371         start = ktime_get();
2372         /*
2373          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2374          * take care of from where we get pages. So the node where we start the
2375          * scan does not need to be the current node.
2376          */
2377         nid = mem_cgroup_select_victim_node(mem_cont);
2378
2379         zonelist = NODE_DATA(nid)->node_zonelists;
2380
2381         trace_mm_vmscan_memcg_reclaim_begin(0,
2382                                             sc.may_writepage,
2383                                             sc.gfp_mask);
2384
2385         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2386         end = ktime_get();
2387         if (rec)
2388                 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2389
2390         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2391
2392         return nr_reclaimed;
2393 }
2394 #endif
2395
2396 /*
2397  * pgdat_balanced is used when checking if a node is balanced for high-order
2398  * allocations. Only zones that meet watermarks and are in a zone allowed
2399  * by the callers classzone_idx are added to balanced_pages. The total of
2400  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2401  * for the node to be considered balanced. Forcing all zones to be balanced
2402  * for high orders can cause excessive reclaim when there are imbalanced zones.
2403  * The choice of 25% is due to
2404  *   o a 16M DMA zone that is balanced will not balance a zone on any
2405  *     reasonable sized machine
2406  *   o On all other machines, the top zone must be at least a reasonable
2407  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2408  *     would need to be at least 256M for it to be balance a whole node.
2409  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2410  *     to balance a node on its own. These seemed like reasonable ratios.
2411  */
2412 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2413                                                 int classzone_idx)
2414 {
2415         unsigned long present_pages = 0;
2416         int i;
2417
2418         for (i = 0; i <= classzone_idx; i++)
2419                 present_pages += pgdat->node_zones[i].present_pages;
2420
2421         /* A special case here: if zone has no page, we think it's balanced */
2422         return balanced_pages >= (present_pages >> 2);
2423 }
2424
2425 /* is kswapd sleeping prematurely? */
2426 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2427                                         int classzone_idx)
2428 {
2429         int i;
2430         unsigned long balanced = 0;
2431         bool all_zones_ok = true;
2432
2433         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2434         if (remaining)
2435                 return true;
2436
2437         /* Check the watermark levels */
2438         for (i = 0; i <= classzone_idx; i++) {
2439                 struct zone *zone = pgdat->node_zones + i;
2440
2441                 if (!populated_zone(zone))
2442                         continue;
2443
2444                 /*
2445                  * balance_pgdat() skips over all_unreclaimable after
2446                  * DEF_PRIORITY. Effectively, it considers them balanced so
2447                  * they must be considered balanced here as well if kswapd
2448                  * is to sleep
2449                  */
2450                 if (zone->all_unreclaimable) {
2451                         balanced += zone->present_pages;
2452                         continue;
2453                 }
2454
2455                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2456                                                         i, 0))
2457                         all_zones_ok = false;
2458                 else
2459                         balanced += zone->present_pages;
2460         }
2461
2462         /*
2463          * For high-order requests, the balanced zones must contain at least
2464          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2465          * must be balanced
2466          */
2467         if (order)
2468                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2469         else
2470                 return !all_zones_ok;
2471 }
2472
2473 /*
2474  * For kswapd, balance_pgdat() will work across all this node's zones until
2475  * they are all at high_wmark_pages(zone).
2476  *
2477  * Returns the final order kswapd was reclaiming at
2478  *
2479  * There is special handling here for zones which are full of pinned pages.
2480  * This can happen if the pages are all mlocked, or if they are all used by
2481  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2482  * What we do is to detect the case where all pages in the zone have been
2483  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2484  * dead and from now on, only perform a short scan.  Basically we're polling
2485  * the zone for when the problem goes away.
2486  *
2487  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2488  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2489  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2490  * lower zones regardless of the number of free pages in the lower zones. This
2491  * interoperates with the page allocator fallback scheme to ensure that aging
2492  * of pages is balanced across the zones.
2493  */
2494 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2495                                                         int *classzone_idx)
2496 {
2497         int all_zones_ok;
2498         unsigned long balanced;
2499         int priority;
2500         int i;
2501         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2502         unsigned long total_scanned;
2503         struct reclaim_state *reclaim_state = current->reclaim_state;
2504         unsigned long nr_soft_reclaimed;
2505         unsigned long nr_soft_scanned;
2506         struct scan_control sc = {
2507                 .gfp_mask = GFP_KERNEL,
2508                 .may_unmap = 1,
2509                 .may_swap = 1,
2510                 /*
2511                  * kswapd doesn't want to be bailed out while reclaim. because
2512                  * we want to put equal scanning pressure on each zone.
2513                  */
2514                 .nr_to_reclaim = ULONG_MAX,
2515                 .order = order,
2516                 .mem_cgroup = NULL,
2517         };
2518         struct shrink_control shrink = {
2519                 .gfp_mask = sc.gfp_mask,
2520         };
2521 loop_again:
2522         total_scanned = 0;
2523         sc.nr_reclaimed = 0;
2524         sc.may_writepage = !laptop_mode;
2525         count_vm_event(PAGEOUTRUN);
2526
2527         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2528                 unsigned long lru_pages = 0;
2529                 int has_under_min_watermark_zone = 0;
2530
2531                 /* The swap token gets in the way of swapout... */
2532                 if (!priority)
2533                         disable_swap_token(NULL);
2534
2535                 all_zones_ok = 1;
2536                 balanced = 0;
2537
2538                 /*
2539                  * Scan in the highmem->dma direction for the highest
2540                  * zone which needs scanning
2541                  */
2542                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2543                         struct zone *zone = pgdat->node_zones + i;
2544
2545                         if (!populated_zone(zone))
2546                                 continue;
2547
2548                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2549                                 continue;
2550
2551                         /*
2552                          * Do some background aging of the anon list, to give
2553                          * pages a chance to be referenced before reclaiming.
2554                          */
2555                         if (inactive_anon_is_low(zone, &sc))
2556                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2557                                                         &sc, priority, 0);
2558
2559                         if (!zone_watermark_ok_safe(zone, order,
2560                                         high_wmark_pages(zone), 0, 0)) {
2561                                 end_zone = i;
2562                                 break;
2563                         } else {
2564                                 /* If balanced, clear the congested flag */
2565                                 zone_clear_flag(zone, ZONE_CONGESTED);
2566                         }
2567                 }
2568                 if (i < 0)
2569                         goto out;
2570
2571                 for (i = 0; i <= end_zone; i++) {
2572                         struct zone *zone = pgdat->node_zones + i;
2573
2574                         lru_pages += zone_reclaimable_pages(zone);
2575                 }
2576
2577                 /*
2578                  * Now scan the zone in the dma->highmem direction, stopping
2579                  * at the last zone which needs scanning.
2580                  *
2581                  * We do this because the page allocator works in the opposite
2582                  * direction.  This prevents the page allocator from allocating
2583                  * pages behind kswapd's direction of progress, which would
2584                  * cause too much scanning of the lower zones.
2585                  */
2586                 for (i = 0; i <= end_zone; i++) {
2587                         struct zone *zone = pgdat->node_zones + i;
2588                         int nr_slab;
2589                         unsigned long balance_gap;
2590
2591                         if (!populated_zone(zone))
2592                                 continue;
2593
2594                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2595                                 continue;
2596
2597                         sc.nr_scanned = 0;
2598
2599                         nr_soft_scanned = 0;
2600                         /*
2601                          * Call soft limit reclaim before calling shrink_zone.
2602                          */
2603                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2604                                                         order, sc.gfp_mask,
2605                                                         &nr_soft_scanned);
2606                         sc.nr_reclaimed += nr_soft_reclaimed;
2607                         total_scanned += nr_soft_scanned;
2608
2609                         /*
2610                          * We put equal pressure on every zone, unless
2611                          * one zone has way too many pages free
2612                          * already. The "too many pages" is defined
2613                          * as the high wmark plus a "gap" where the
2614                          * gap is either the low watermark or 1%
2615                          * of the zone, whichever is smaller.
2616                          */
2617                         balance_gap = min(low_wmark_pages(zone),
2618                                 (zone->present_pages +
2619                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2620                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2621                         if (!zone_watermark_ok_safe(zone, order,
2622                                         high_wmark_pages(zone) + balance_gap,
2623                                         end_zone, 0)) {
2624                                 shrink_zone(priority, zone, &sc);
2625
2626                                 reclaim_state->reclaimed_slab = 0;
2627                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2628                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2629                                 total_scanned += sc.nr_scanned;
2630
2631                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2632                                         zone->all_unreclaimable = 1;
2633                         }
2634
2635                         /*
2636                          * If we've done a decent amount of scanning and
2637                          * the reclaim ratio is low, start doing writepage
2638                          * even in laptop mode
2639                          */
2640                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2641                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2642                                 sc.may_writepage = 1;
2643
2644                         if (zone->all_unreclaimable) {
2645                                 if (end_zone && end_zone == i)
2646                                         end_zone--;
2647                                 continue;
2648                         }
2649
2650                         if (!zone_watermark_ok_safe(zone, order,
2651                                         high_wmark_pages(zone), end_zone, 0)) {
2652                                 all_zones_ok = 0;
2653                                 /*
2654                                  * We are still under min water mark.  This
2655                                  * means that we have a GFP_ATOMIC allocation
2656                                  * failure risk. Hurry up!
2657                                  */
2658                                 if (!zone_watermark_ok_safe(zone, order,
2659                                             min_wmark_pages(zone), end_zone, 0))
2660                                         has_under_min_watermark_zone = 1;
2661                         } else {
2662                                 /*
2663                                  * If a zone reaches its high watermark,
2664                                  * consider it to be no longer congested. It's
2665                                  * possible there are dirty pages backed by
2666                                  * congested BDIs but as pressure is relieved,
2667                                  * spectulatively avoid congestion waits
2668                                  */
2669                                 zone_clear_flag(zone, ZONE_CONGESTED);
2670                                 if (i <= *classzone_idx)
2671                                         balanced += zone->present_pages;
2672                         }
2673
2674                 }
2675                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2676                         break;          /* kswapd: all done */
2677                 /*
2678                  * OK, kswapd is getting into trouble.  Take a nap, then take
2679                  * another pass across the zones.
2680                  */
2681                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2682                         if (has_under_min_watermark_zone)
2683                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2684                         else
2685                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2686                 }
2687
2688                 /*
2689                  * We do this so kswapd doesn't build up large priorities for
2690                  * example when it is freeing in parallel with allocators. It
2691                  * matches the direct reclaim path behaviour in terms of impact
2692                  * on zone->*_priority.
2693                  */
2694                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2695                         break;
2696         }
2697 out:
2698
2699         /*
2700          * order-0: All zones must meet high watermark for a balanced node
2701          * high-order: Balanced zones must make up at least 25% of the node
2702          *             for the node to be balanced
2703          */
2704         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2705                 cond_resched();
2706
2707                 try_to_freeze();
2708
2709                 /*
2710                  * Fragmentation may mean that the system cannot be
2711                  * rebalanced for high-order allocations in all zones.
2712                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2713                  * it means the zones have been fully scanned and are still
2714                  * not balanced. For high-order allocations, there is
2715                  * little point trying all over again as kswapd may
2716                  * infinite loop.
2717                  *
2718                  * Instead, recheck all watermarks at order-0 as they
2719                  * are the most important. If watermarks are ok, kswapd will go
2720                  * back to sleep. High-order users can still perform direct
2721                  * reclaim if they wish.
2722                  */
2723                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2724                         order = sc.order = 0;
2725
2726                 goto loop_again;
2727         }
2728
2729         /*
2730          * If kswapd was reclaiming at a higher order, it has the option of
2731          * sleeping without all zones being balanced. Before it does, it must
2732          * ensure that the watermarks for order-0 on *all* zones are met and
2733          * that the congestion flags are cleared. The congestion flag must
2734          * be cleared as kswapd is the only mechanism that clears the flag
2735          * and it is potentially going to sleep here.
2736          */
2737         if (order) {
2738                 for (i = 0; i <= end_zone; i++) {
2739                         struct zone *zone = pgdat->node_zones + i;
2740
2741                         if (!populated_zone(zone))
2742                                 continue;
2743
2744                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2745                                 continue;
2746
2747                         /* Confirm the zone is balanced for order-0 */
2748                         if (!zone_watermark_ok(zone, 0,
2749                                         high_wmark_pages(zone), 0, 0)) {
2750                                 order = sc.order = 0;
2751                                 goto loop_again;
2752                         }
2753
2754                         /* If balanced, clear the congested flag */
2755                         zone_clear_flag(zone, ZONE_CONGESTED);
2756                 }
2757         }
2758
2759         /*
2760          * Return the order we were reclaiming at so sleeping_prematurely()
2761          * makes a decision on the order we were last reclaiming at. However,
2762          * if another caller entered the allocator slow path while kswapd
2763          * was awake, order will remain at the higher level
2764          */
2765         *classzone_idx = end_zone;
2766         return order;
2767 }
2768
2769 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2770 {
2771         long remaining = 0;
2772         DEFINE_WAIT(wait);
2773
2774         if (freezing(current) || kthread_should_stop())
2775                 return;
2776
2777         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2778
2779         /* Try to sleep for a short interval */
2780         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2781                 remaining = schedule_timeout(HZ/10);
2782                 finish_wait(&pgdat->kswapd_wait, &wait);
2783                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2784         }
2785
2786         /*
2787          * After a short sleep, check if it was a premature sleep. If not, then
2788          * go fully to sleep until explicitly woken up.
2789          */
2790         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2791                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2792
2793                 /*
2794                  * vmstat counters are not perfectly accurate and the estimated
2795                  * value for counters such as NR_FREE_PAGES can deviate from the
2796                  * true value by nr_online_cpus * threshold. To avoid the zone
2797                  * watermarks being breached while under pressure, we reduce the
2798                  * per-cpu vmstat threshold while kswapd is awake and restore
2799                  * them before going back to sleep.
2800                  */
2801                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2802                 schedule();
2803                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2804         } else {
2805                 if (remaining)
2806                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2807                 else
2808                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2809         }
2810         finish_wait(&pgdat->kswapd_wait, &wait);
2811 }
2812
2813 /*
2814  * The background pageout daemon, started as a kernel thread
2815  * from the init process.
2816  *
2817  * This basically trickles out pages so that we have _some_
2818  * free memory available even if there is no other activity
2819  * that frees anything up. This is needed for things like routing
2820  * etc, where we otherwise might have all activity going on in
2821  * asynchronous contexts that cannot page things out.
2822  *
2823  * If there are applications that are active memory-allocators
2824  * (most normal use), this basically shouldn't matter.
2825  */
2826 static int kswapd(void *p)
2827 {
2828         unsigned long order, new_order;
2829         int classzone_idx, new_classzone_idx;
2830         pg_data_t *pgdat = (pg_data_t*)p;
2831         struct task_struct *tsk = current;
2832
2833         struct reclaim_state reclaim_state = {
2834                 .reclaimed_slab = 0,
2835         };
2836         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2837
2838         lockdep_set_current_reclaim_state(GFP_KERNEL);
2839
2840         if (!cpumask_empty(cpumask))
2841                 set_cpus_allowed_ptr(tsk, cpumask);
2842         current->reclaim_state = &reclaim_state;
2843
2844         /*
2845          * Tell the memory management that we're a "memory allocator",
2846          * and that if we need more memory we should get access to it
2847          * regardless (see "__alloc_pages()"). "kswapd" should
2848          * never get caught in the normal page freeing logic.
2849          *
2850          * (Kswapd normally doesn't need memory anyway, but sometimes
2851          * you need a small amount of memory in order to be able to
2852          * page out something else, and this flag essentially protects
2853          * us from recursively trying to free more memory as we're
2854          * trying to free the first piece of memory in the first place).
2855          */
2856         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2857         set_freezable();
2858
2859         order = new_order = 0;
2860         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2861         for ( ; ; ) {
2862                 int ret;
2863
2864                 /*
2865                  * If the last balance_pgdat was unsuccessful it's unlikely a
2866                  * new request of a similar or harder type will succeed soon
2867                  * so consider going to sleep on the basis we reclaimed at
2868                  */
2869                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2870                         new_order = pgdat->kswapd_max_order;
2871                         new_classzone_idx = pgdat->classzone_idx;
2872                         pgdat->kswapd_max_order =  0;
2873                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2874                 }
2875
2876                 if (order < new_order || classzone_idx > new_classzone_idx) {
2877                         /*
2878                          * Don't sleep if someone wants a larger 'order'
2879                          * allocation or has tigher zone constraints
2880                          */
2881                         order = new_order;
2882                         classzone_idx = new_classzone_idx;
2883                 } else {
2884                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2885                         order = pgdat->kswapd_max_order;
2886                         classzone_idx = pgdat->classzone_idx;
2887                         pgdat->kswapd_max_order = 0;
2888                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2889                 }
2890
2891                 ret = try_to_freeze();
2892                 if (kthread_should_stop())
2893                         break;
2894
2895                 /*
2896                  * We can speed up thawing tasks if we don't call balance_pgdat
2897                  * after returning from the refrigerator
2898                  */
2899                 if (!ret) {
2900                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2901                         order = balance_pgdat(pgdat, order, &classzone_idx);
2902                 }
2903         }
2904         return 0;
2905 }
2906
2907 /*
2908  * A zone is low on free memory, so wake its kswapd task to service it.
2909  */
2910 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2911 {
2912         pg_data_t *pgdat;
2913
2914         if (!populated_zone(zone))
2915                 return;
2916
2917         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2918                 return;
2919         pgdat = zone->zone_pgdat;
2920         if (pgdat->kswapd_max_order < order) {
2921                 pgdat->kswapd_max_order = order;
2922                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2923         }
2924         if (!waitqueue_active(&pgdat->kswapd_wait))
2925                 return;
2926         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2927                 return;
2928
2929         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2930         wake_up_interruptible(&pgdat->kswapd_wait);
2931 }
2932
2933 /*
2934  * The reclaimable count would be mostly accurate.
2935  * The less reclaimable pages may be
2936  * - mlocked pages, which will be moved to unevictable list when encountered
2937  * - mapped pages, which may require several travels to be reclaimed
2938  * - dirty pages, which is not "instantly" reclaimable
2939  */
2940 unsigned long global_reclaimable_pages(void)
2941 {
2942         int nr;
2943
2944         nr = global_page_state(NR_ACTIVE_FILE) +
2945              global_page_state(NR_INACTIVE_FILE);
2946
2947         if (nr_swap_pages > 0)
2948                 nr += global_page_state(NR_ACTIVE_ANON) +
2949                       global_page_state(NR_INACTIVE_ANON);
2950
2951         return nr;
2952 }
2953
2954 unsigned long zone_reclaimable_pages(struct zone *zone)
2955 {
2956         int nr;
2957
2958         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2959              zone_page_state(zone, NR_INACTIVE_FILE);
2960
2961         if (nr_swap_pages > 0)
2962                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2963                       zone_page_state(zone, NR_INACTIVE_ANON);
2964
2965         return nr;
2966 }
2967
2968 #ifdef CONFIG_HIBERNATION
2969 /*
2970  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2971  * freed pages.
2972  *
2973  * Rather than trying to age LRUs the aim is to preserve the overall
2974  * LRU order by reclaiming preferentially
2975  * inactive > active > active referenced > active mapped
2976  */
2977 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2978 {
2979         struct reclaim_state reclaim_state;
2980         struct scan_control sc = {
2981                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2982                 .may_swap = 1,
2983                 .may_unmap = 1,
2984                 .may_writepage = 1,
2985                 .nr_to_reclaim = nr_to_reclaim,
2986                 .hibernation_mode = 1,
2987                 .order = 0,
2988         };
2989         struct shrink_control shrink = {
2990                 .gfp_mask = sc.gfp_mask,
2991         };
2992         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2993         struct task_struct *p = current;
2994         unsigned long nr_reclaimed;
2995
2996         p->flags |= PF_MEMALLOC;
2997         lockdep_set_current_reclaim_state(sc.gfp_mask);
2998         reclaim_state.reclaimed_slab = 0;
2999         p->reclaim_state = &reclaim_state;
3000
3001         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3002
3003         p->reclaim_state = NULL;
3004         lockdep_clear_current_reclaim_state();
3005         p->flags &= ~PF_MEMALLOC;
3006
3007         return nr_reclaimed;
3008 }
3009 #endif /* CONFIG_HIBERNATION */
3010
3011 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3012    not required for correctness.  So if the last cpu in a node goes
3013    away, we get changed to run anywhere: as the first one comes back,
3014    restore their cpu bindings. */
3015 static int __devinit cpu_callback(struct notifier_block *nfb,
3016                                   unsigned long action, void *hcpu)
3017 {
3018         int nid;
3019
3020         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3021                 for_each_node_state(nid, N_HIGH_MEMORY) {
3022                         pg_data_t *pgdat = NODE_DATA(nid);
3023                         const struct cpumask *mask;
3024
3025                         mask = cpumask_of_node(pgdat->node_id);
3026
3027                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3028                                 /* One of our CPUs online: restore mask */
3029                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3030                 }
3031         }
3032         return NOTIFY_OK;
3033 }
3034
3035 /*
3036  * This kswapd start function will be called by init and node-hot-add.
3037  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3038  */
3039 int kswapd_run(int nid)
3040 {
3041         pg_data_t *pgdat = NODE_DATA(nid);
3042         int ret = 0;
3043
3044         if (pgdat->kswapd)
3045                 return 0;
3046
3047         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3048         if (IS_ERR(pgdat->kswapd)) {
3049                 /* failure at boot is fatal */
3050                 BUG_ON(system_state == SYSTEM_BOOTING);
3051                 printk("Failed to start kswapd on node %d\n",nid);
3052                 ret = -1;
3053         }
3054         return ret;
3055 }
3056
3057 /*
3058  * Called by memory hotplug when all memory in a node is offlined.
3059  */
3060 void kswapd_stop(int nid)
3061 {
3062         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3063
3064         if (kswapd)
3065                 kthread_stop(kswapd);
3066 }
3067
3068 static int __init kswapd_init(void)
3069 {
3070         int nid;
3071
3072         swap_setup();
3073         for_each_node_state(nid, N_HIGH_MEMORY)
3074                 kswapd_run(nid);
3075         hotcpu_notifier(cpu_callback, 0);
3076         return 0;
3077 }
3078
3079 module_init(kswapd_init)
3080
3081 #ifdef CONFIG_NUMA
3082 /*
3083  * Zone reclaim mode
3084  *
3085  * If non-zero call zone_reclaim when the number of free pages falls below
3086  * the watermarks.
3087  */
3088 int zone_reclaim_mode __read_mostly;
3089
3090 #define RECLAIM_OFF 0
3091 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3092 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3093 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3094
3095 /*
3096  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3097  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3098  * a zone.
3099  */
3100 #define ZONE_RECLAIM_PRIORITY 4
3101
3102 /*
3103  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3104  * occur.
3105  */
3106 int sysctl_min_unmapped_ratio = 1;
3107
3108 /*
3109  * If the number of slab pages in a zone grows beyond this percentage then
3110  * slab reclaim needs to occur.
3111  */
3112 int sysctl_min_slab_ratio = 5;
3113
3114 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3115 {
3116         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3117         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3118                 zone_page_state(zone, NR_ACTIVE_FILE);
3119
3120         /*
3121          * It's possible for there to be more file mapped pages than
3122          * accounted for by the pages on the file LRU lists because
3123          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3124          */
3125         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3126 }
3127
3128 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3129 static long zone_pagecache_reclaimable(struct zone *zone)
3130 {
3131         long nr_pagecache_reclaimable;
3132         long delta = 0;
3133
3134         /*
3135          * If RECLAIM_SWAP is set, then all file pages are considered
3136          * potentially reclaimable. Otherwise, we have to worry about
3137          * pages like swapcache and zone_unmapped_file_pages() provides
3138          * a better estimate
3139          */
3140         if (zone_reclaim_mode & RECLAIM_SWAP)
3141                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3142         else
3143                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3144
3145         /* If we can't clean pages, remove dirty pages from consideration */
3146         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3147                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3148
3149         /* Watch for any possible underflows due to delta */
3150         if (unlikely(delta > nr_pagecache_reclaimable))
3151                 delta = nr_pagecache_reclaimable;
3152
3153         return nr_pagecache_reclaimable - delta;
3154 }
3155
3156 /*
3157  * Try to free up some pages from this zone through reclaim.
3158  */
3159 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3160 {
3161         /* Minimum pages needed in order to stay on node */
3162         const unsigned long nr_pages = 1 << order;
3163         struct task_struct *p = current;
3164         struct reclaim_state reclaim_state;
3165         int priority;
3166         struct scan_control sc = {
3167                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3168                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3169                 .may_swap = 1,
3170                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3171                                        SWAP_CLUSTER_MAX),
3172                 .gfp_mask = gfp_mask,
3173                 .order = order,
3174         };
3175         struct shrink_control shrink = {
3176                 .gfp_mask = sc.gfp_mask,
3177         };
3178         unsigned long nr_slab_pages0, nr_slab_pages1;
3179
3180         cond_resched();
3181         /*
3182          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3183          * and we also need to be able to write out pages for RECLAIM_WRITE
3184          * and RECLAIM_SWAP.
3185          */
3186         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3187         lockdep_set_current_reclaim_state(gfp_mask);
3188         reclaim_state.reclaimed_slab = 0;
3189         p->reclaim_state = &reclaim_state;
3190
3191         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3192                 /*
3193                  * Free memory by calling shrink zone with increasing
3194                  * priorities until we have enough memory freed.
3195                  */
3196                 priority = ZONE_RECLAIM_PRIORITY;
3197                 do {
3198                         shrink_zone(priority, zone, &sc);
3199                         priority--;
3200                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3201         }
3202
3203         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3204         if (nr_slab_pages0 > zone->min_slab_pages) {
3205                 /*
3206                  * shrink_slab() does not currently allow us to determine how
3207                  * many pages were freed in this zone. So we take the current
3208                  * number of slab pages and shake the slab until it is reduced
3209                  * by the same nr_pages that we used for reclaiming unmapped
3210                  * pages.
3211                  *
3212                  * Note that shrink_slab will free memory on all zones and may
3213                  * take a long time.
3214                  */
3215                 for (;;) {
3216                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3217
3218                         /* No reclaimable slab or very low memory pressure */
3219                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3220                                 break;
3221
3222                         /* Freed enough memory */
3223                         nr_slab_pages1 = zone_page_state(zone,
3224                                                         NR_SLAB_RECLAIMABLE);
3225                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3226                                 break;
3227                 }
3228
3229                 /*
3230                  * Update nr_reclaimed by the number of slab pages we
3231                  * reclaimed from this zone.
3232                  */
3233                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3234                 if (nr_slab_pages1 < nr_slab_pages0)
3235                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3236         }
3237
3238         p->reclaim_state = NULL;
3239         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3240         lockdep_clear_current_reclaim_state();
3241         return sc.nr_reclaimed >= nr_pages;
3242 }
3243
3244 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3245 {
3246         int node_id;
3247         int ret;
3248
3249         /*
3250          * Zone reclaim reclaims unmapped file backed pages and
3251          * slab pages if we are over the defined limits.
3252          *
3253          * A small portion of unmapped file backed pages is needed for
3254          * file I/O otherwise pages read by file I/O will be immediately
3255          * thrown out if the zone is overallocated. So we do not reclaim
3256          * if less than a specified percentage of the zone is used by
3257          * unmapped file backed pages.
3258          */
3259         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3260             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3261                 return ZONE_RECLAIM_FULL;
3262
3263         if (zone->all_unreclaimable)
3264                 return ZONE_RECLAIM_FULL;
3265
3266         /*
3267          * Do not scan if the allocation should not be delayed.
3268          */
3269         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3270                 return ZONE_RECLAIM_NOSCAN;
3271
3272         /*
3273          * Only run zone reclaim on the local zone or on zones that do not
3274          * have associated processors. This will favor the local processor
3275          * over remote processors and spread off node memory allocations
3276          * as wide as possible.
3277          */
3278         node_id = zone_to_nid(zone);
3279         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3280                 return ZONE_RECLAIM_NOSCAN;
3281
3282         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3283                 return ZONE_RECLAIM_NOSCAN;
3284
3285         ret = __zone_reclaim(zone, gfp_mask, order);
3286         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3287
3288         if (!ret)
3289                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3290
3291         return ret;
3292 }
3293 #endif
3294
3295 /*
3296  * page_evictable - test whether a page is evictable
3297  * @page: the page to test
3298  * @vma: the VMA in which the page is or will be mapped, may be NULL
3299  *
3300  * Test whether page is evictable--i.e., should be placed on active/inactive
3301  * lists vs unevictable list.  The vma argument is !NULL when called from the
3302  * fault path to determine how to instantate a new page.
3303  *
3304  * Reasons page might not be evictable:
3305  * (1) page's mapping marked unevictable
3306  * (2) page is part of an mlocked VMA
3307  *
3308  */
3309 int page_evictable(struct page *page, struct vm_area_struct *vma)
3310 {
3311
3312         if (mapping_unevictable(page_mapping(page)))
3313                 return 0;
3314
3315         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3316                 return 0;
3317
3318         return 1;
3319 }
3320
3321 /**
3322  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3323  * @page: page to check evictability and move to appropriate lru list
3324  * @zone: zone page is in
3325  *
3326  * Checks a page for evictability and moves the page to the appropriate
3327  * zone lru list.
3328  *
3329  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3330  * have PageUnevictable set.
3331  */
3332 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3333 {
3334         VM_BUG_ON(PageActive(page));
3335
3336 retry:
3337         ClearPageUnevictable(page);
3338         if (page_evictable(page, NULL)) {
3339                 enum lru_list l = page_lru_base_type(page);
3340
3341                 __dec_zone_state(zone, NR_UNEVICTABLE);
3342                 list_move(&page->lru, &zone->lru[l].list);
3343                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3344                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3345                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3346         } else {
3347                 /*
3348                  * rotate unevictable list
3349                  */
3350                 SetPageUnevictable(page);
3351                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3352                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3353                 if (page_evictable(page, NULL))
3354                         goto retry;
3355         }
3356 }
3357
3358 /**
3359  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3360  * @mapping: struct address_space to scan for evictable pages
3361  *
3362  * Scan all pages in mapping.  Check unevictable pages for
3363  * evictability and move them to the appropriate zone lru list.
3364  */
3365 void scan_mapping_unevictable_pages(struct address_space *mapping)
3366 {
3367         pgoff_t next = 0;
3368         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3369                          PAGE_CACHE_SHIFT;
3370         struct zone *zone;
3371         struct pagevec pvec;
3372
3373         if (mapping->nrpages == 0)
3374                 return;
3375
3376         pagevec_init(&pvec, 0);
3377         while (next < end &&
3378                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3379                 int i;
3380                 int pg_scanned = 0;
3381
3382                 zone = NULL;
3383
3384                 for (i = 0; i < pagevec_count(&pvec); i++) {
3385                         struct page *page = pvec.pages[i];
3386                         pgoff_t page_index = page->index;
3387                         struct zone *pagezone = page_zone(page);
3388
3389                         pg_scanned++;
3390                         if (page_index > next)
3391                                 next = page_index;
3392                         next++;
3393
3394                         if (pagezone != zone) {
3395                                 if (zone)
3396                                         spin_unlock_irq(&zone->lru_lock);
3397                                 zone = pagezone;
3398                                 spin_lock_irq(&zone->lru_lock);
3399                         }
3400
3401                         if (PageLRU(page) && PageUnevictable(page))
3402                                 check_move_unevictable_page(page, zone);
3403                 }
3404                 if (zone)
3405                         spin_unlock_irq(&zone->lru_lock);
3406                 pagevec_release(&pvec);
3407
3408                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3409         }
3410
3411 }
3412
3413 /**
3414  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3415  * @zone - zone of which to scan the unevictable list
3416  *
3417  * Scan @zone's unevictable LRU lists to check for pages that have become
3418  * evictable.  Move those that have to @zone's inactive list where they
3419  * become candidates for reclaim, unless shrink_inactive_zone() decides
3420  * to reactivate them.  Pages that are still unevictable are rotated
3421  * back onto @zone's unevictable list.
3422  */
3423 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3424 static void scan_zone_unevictable_pages(struct zone *zone)
3425 {
3426         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3427         unsigned long scan;
3428         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3429
3430         while (nr_to_scan > 0) {
3431                 unsigned long batch_size = min(nr_to_scan,
3432                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3433
3434                 spin_lock_irq(&zone->lru_lock);
3435                 for (scan = 0;  scan < batch_size; scan++) {
3436                         struct page *page = lru_to_page(l_unevictable);
3437
3438                         if (!trylock_page(page))
3439                                 continue;
3440
3441                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3442
3443                         if (likely(PageLRU(page) && PageUnevictable(page)))
3444                                 check_move_unevictable_page(page, zone);
3445
3446                         unlock_page(page);
3447                 }
3448                 spin_unlock_irq(&zone->lru_lock);
3449
3450                 nr_to_scan -= batch_size;
3451         }
3452 }
3453
3454
3455 /**
3456  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3457  *
3458  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3459  * pages that have become evictable.  Move those back to the zones'
3460  * inactive list where they become candidates for reclaim.
3461  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3462  * and we add swap to the system.  As such, it runs in the context of a task
3463  * that has possibly/probably made some previously unevictable pages
3464  * evictable.
3465  */
3466 static void scan_all_zones_unevictable_pages(void)
3467 {
3468         struct zone *zone;
3469
3470         for_each_zone(zone) {
3471                 scan_zone_unevictable_pages(zone);
3472         }
3473 }
3474
3475 /*
3476  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3477  * all nodes' unevictable lists for evictable pages
3478  */
3479 unsigned long scan_unevictable_pages;
3480
3481 int scan_unevictable_handler(struct ctl_table *table, int write,
3482                            void __user *buffer,
3483                            size_t *length, loff_t *ppos)
3484 {
3485         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3486
3487         if (write && *(unsigned long *)table->data)
3488                 scan_all_zones_unevictable_pages();
3489
3490         scan_unevictable_pages = 0;
3491         return 0;
3492 }
3493
3494 #ifdef CONFIG_NUMA
3495 /*
3496  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3497  * a specified node's per zone unevictable lists for evictable pages.
3498  */
3499
3500 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3501                                           struct sysdev_attribute *attr,
3502                                           char *buf)
3503 {
3504         return sprintf(buf, "0\n");     /* always zero; should fit... */
3505 }
3506
3507 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3508                                            struct sysdev_attribute *attr,
3509                                         const char *buf, size_t count)
3510 {
3511         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3512         struct zone *zone;
3513         unsigned long res;
3514         unsigned long req = strict_strtoul(buf, 10, &res);
3515
3516         if (!req)
3517                 return 1;       /* zero is no-op */
3518
3519         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3520                 if (!populated_zone(zone))
3521                         continue;
3522                 scan_zone_unevictable_pages(zone);
3523         }
3524         return 1;
3525 }
3526
3527
3528 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3529                         read_scan_unevictable_node,
3530                         write_scan_unevictable_node);
3531
3532 int scan_unevictable_register_node(struct node *node)
3533 {
3534         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3535 }
3536
3537 void scan_unevictable_unregister_node(struct node *node)
3538 {
3539         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3540 }
3541 #endif