]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmscan.c
memcg: skip scanning active lists based on individual size
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162                                                   struct scan_control *sc)
163 {
164         if (!scanning_global_lru(sc))
165                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167         return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171                                 struct scan_control *sc, enum lru_list lru)
172 {
173         if (!scanning_global_lru(sc))
174                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         atomic_long_set(&shrinker->nr_in_batch, 0);
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 long total_scan;
251                 long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259                 if (max_pass <= 0)
260                         continue;
261
262                 /*
263                  * copy the current shrinker scan count into a local variable
264                  * and zero it so that other concurrent shrinker invocations
265                  * don't also do this scanning work.
266                  */
267                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
268
269                 total_scan = nr;
270                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271                 delta *= max_pass;
272                 do_div(delta, lru_pages + 1);
273                 total_scan += delta;
274                 if (total_scan < 0) {
275                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
276                                "delete nr=%ld\n",
277                                shrinker->shrink, total_scan);
278                         total_scan = max_pass;
279                 }
280
281                 /*
282                  * We need to avoid excessive windup on filesystem shrinkers
283                  * due to large numbers of GFP_NOFS allocations causing the
284                  * shrinkers to return -1 all the time. This results in a large
285                  * nr being built up so when a shrink that can do some work
286                  * comes along it empties the entire cache due to nr >>>
287                  * max_pass.  This is bad for sustaining a working set in
288                  * memory.
289                  *
290                  * Hence only allow the shrinker to scan the entire cache when
291                  * a large delta change is calculated directly.
292                  */
293                 if (delta < max_pass / 4)
294                         total_scan = min(total_scan, max_pass / 2);
295
296                 /*
297                  * Avoid risking looping forever due to too large nr value:
298                  * never try to free more than twice the estimate number of
299                  * freeable entries.
300                  */
301                 if (total_scan > max_pass * 2)
302                         total_scan = max_pass * 2;
303
304                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305                                         nr_pages_scanned, lru_pages,
306                                         max_pass, delta, total_scan);
307
308                 while (total_scan >= batch_size) {
309                         int nr_before;
310
311                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
313                                                         batch_size);
314                         if (shrink_ret == -1)
315                                 break;
316                         if (shrink_ret < nr_before)
317                                 ret += nr_before - shrink_ret;
318                         count_vm_events(SLABS_SCANNED, batch_size);
319                         total_scan -= batch_size;
320
321                         cond_resched();
322                 }
323
324                 /*
325                  * move the unused scan count back into the shrinker in a
326                  * manner that handles concurrent updates. If we exhausted the
327                  * scan, there is no need to do an update.
328                  */
329                 if (total_scan > 0)
330                         new_nr = atomic_long_add_return(total_scan,
331                                         &shrinker->nr_in_batch);
332                 else
333                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 if (!PageWriteback(page)) {
499                         /* synchronous write or broken a_ops? */
500                         ClearPageReclaim(page);
501                 }
502                 trace_mm_vmscan_writepage(page,
503                         trace_reclaim_flags(page, sc->reclaim_mode));
504                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
505                 return PAGE_SUCCESS;
506         }
507
508         return PAGE_CLEAN;
509 }
510
511 /*
512  * Same as remove_mapping, but if the page is removed from the mapping, it
513  * gets returned with a refcount of 0.
514  */
515 static int __remove_mapping(struct address_space *mapping, struct page *page)
516 {
517         BUG_ON(!PageLocked(page));
518         BUG_ON(mapping != page_mapping(page));
519
520         spin_lock_irq(&mapping->tree_lock);
521         /*
522          * The non racy check for a busy page.
523          *
524          * Must be careful with the order of the tests. When someone has
525          * a ref to the page, it may be possible that they dirty it then
526          * drop the reference. So if PageDirty is tested before page_count
527          * here, then the following race may occur:
528          *
529          * get_user_pages(&page);
530          * [user mapping goes away]
531          * write_to(page);
532          *                              !PageDirty(page)    [good]
533          * SetPageDirty(page);
534          * put_page(page);
535          *                              !page_count(page)   [good, discard it]
536          *
537          * [oops, our write_to data is lost]
538          *
539          * Reversing the order of the tests ensures such a situation cannot
540          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541          * load is not satisfied before that of page->_count.
542          *
543          * Note that if SetPageDirty is always performed via set_page_dirty,
544          * and thus under tree_lock, then this ordering is not required.
545          */
546         if (!page_freeze_refs(page, 2))
547                 goto cannot_free;
548         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549         if (unlikely(PageDirty(page))) {
550                 page_unfreeze_refs(page, 2);
551                 goto cannot_free;
552         }
553
554         if (PageSwapCache(page)) {
555                 swp_entry_t swap = { .val = page_private(page) };
556                 __delete_from_swap_cache(page);
557                 spin_unlock_irq(&mapping->tree_lock);
558                 swapcache_free(swap, page);
559         } else {
560                 void (*freepage)(struct page *);
561
562                 freepage = mapping->a_ops->freepage;
563
564                 __delete_from_page_cache(page);
565                 spin_unlock_irq(&mapping->tree_lock);
566                 mem_cgroup_uncharge_cache_page(page);
567
568                 if (freepage != NULL)
569                         freepage(page);
570         }
571
572         return 1;
573
574 cannot_free:
575         spin_unlock_irq(&mapping->tree_lock);
576         return 0;
577 }
578
579 /*
580  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
581  * someone else has a ref on the page, abort and return 0.  If it was
582  * successfully detached, return 1.  Assumes the caller has a single ref on
583  * this page.
584  */
585 int remove_mapping(struct address_space *mapping, struct page *page)
586 {
587         if (__remove_mapping(mapping, page)) {
588                 /*
589                  * Unfreezing the refcount with 1 rather than 2 effectively
590                  * drops the pagecache ref for us without requiring another
591                  * atomic operation.
592                  */
593                 page_unfreeze_refs(page, 1);
594                 return 1;
595         }
596         return 0;
597 }
598
599 /**
600  * putback_lru_page - put previously isolated page onto appropriate LRU list
601  * @page: page to be put back to appropriate lru list
602  *
603  * Add previously isolated @page to appropriate LRU list.
604  * Page may still be unevictable for other reasons.
605  *
606  * lru_lock must not be held, interrupts must be enabled.
607  */
608 void putback_lru_page(struct page *page)
609 {
610         int lru;
611         int active = !!TestClearPageActive(page);
612         int was_unevictable = PageUnevictable(page);
613
614         VM_BUG_ON(PageLRU(page));
615
616 redo:
617         ClearPageUnevictable(page);
618
619         if (page_evictable(page, NULL)) {
620                 /*
621                  * For evictable pages, we can use the cache.
622                  * In event of a race, worst case is we end up with an
623                  * unevictable page on [in]active list.
624                  * We know how to handle that.
625                  */
626                 lru = active + page_lru_base_type(page);
627                 lru_cache_add_lru(page, lru);
628         } else {
629                 /*
630                  * Put unevictable pages directly on zone's unevictable
631                  * list.
632                  */
633                 lru = LRU_UNEVICTABLE;
634                 add_page_to_unevictable_list(page);
635                 /*
636                  * When racing with an mlock clearing (page is
637                  * unlocked), make sure that if the other thread does
638                  * not observe our setting of PG_lru and fails
639                  * isolation, we see PG_mlocked cleared below and move
640                  * the page back to the evictable list.
641                  *
642                  * The other side is TestClearPageMlocked().
643                  */
644                 smp_mb();
645         }
646
647         /*
648          * page's status can change while we move it among lru. If an evictable
649          * page is on unevictable list, it never be freed. To avoid that,
650          * check after we added it to the list, again.
651          */
652         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
653                 if (!isolate_lru_page(page)) {
654                         put_page(page);
655                         goto redo;
656                 }
657                 /* This means someone else dropped this page from LRU
658                  * So, it will be freed or putback to LRU again. There is
659                  * nothing to do here.
660                  */
661         }
662
663         if (was_unevictable && lru != LRU_UNEVICTABLE)
664                 count_vm_event(UNEVICTABLE_PGRESCUED);
665         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
666                 count_vm_event(UNEVICTABLE_PGCULLED);
667
668         put_page(page);         /* drop ref from isolate */
669 }
670
671 enum page_references {
672         PAGEREF_RECLAIM,
673         PAGEREF_RECLAIM_CLEAN,
674         PAGEREF_KEEP,
675         PAGEREF_ACTIVATE,
676 };
677
678 static enum page_references page_check_references(struct page *page,
679                                                   struct scan_control *sc)
680 {
681         int referenced_ptes, referenced_page;
682         unsigned long vm_flags;
683
684         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
685         referenced_page = TestClearPageReferenced(page);
686
687         /* Lumpy reclaim - ignore references */
688         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
689                 return PAGEREF_RECLAIM;
690
691         /*
692          * Mlock lost the isolation race with us.  Let try_to_unmap()
693          * move the page to the unevictable list.
694          */
695         if (vm_flags & VM_LOCKED)
696                 return PAGEREF_RECLAIM;
697
698         if (referenced_ptes) {
699                 if (PageAnon(page))
700                         return PAGEREF_ACTIVATE;
701                 /*
702                  * All mapped pages start out with page table
703                  * references from the instantiating fault, so we need
704                  * to look twice if a mapped file page is used more
705                  * than once.
706                  *
707                  * Mark it and spare it for another trip around the
708                  * inactive list.  Another page table reference will
709                  * lead to its activation.
710                  *
711                  * Note: the mark is set for activated pages as well
712                  * so that recently deactivated but used pages are
713                  * quickly recovered.
714                  */
715                 SetPageReferenced(page);
716
717                 if (referenced_page || referenced_ptes > 1)
718                         return PAGEREF_ACTIVATE;
719
720                 /*
721                  * Activate file-backed executable pages after first usage.
722                  */
723                 if (vm_flags & VM_EXEC)
724                         return PAGEREF_ACTIVATE;
725
726                 return PAGEREF_KEEP;
727         }
728
729         /* Reclaim if clean, defer dirty pages to writeback */
730         if (referenced_page && !PageSwapBacked(page))
731                 return PAGEREF_RECLAIM_CLEAN;
732
733         return PAGEREF_RECLAIM;
734 }
735
736 /*
737  * shrink_page_list() returns the number of reclaimed pages
738  */
739 static unsigned long shrink_page_list(struct list_head *page_list,
740                                       struct zone *zone,
741                                       struct scan_control *sc,
742                                       int priority,
743                                       unsigned long *ret_nr_dirty,
744                                       unsigned long *ret_nr_writeback)
745 {
746         LIST_HEAD(ret_pages);
747         LIST_HEAD(free_pages);
748         int pgactivate = 0;
749         unsigned long nr_dirty = 0;
750         unsigned long nr_congested = 0;
751         unsigned long nr_reclaimed = 0;
752         unsigned long nr_writeback = 0;
753
754         cond_resched();
755
756         while (!list_empty(page_list)) {
757                 enum page_references references;
758                 struct address_space *mapping;
759                 struct page *page;
760                 int may_enter_fs;
761
762                 cond_resched();
763
764                 page = lru_to_page(page_list);
765                 list_del(&page->lru);
766
767                 if (!trylock_page(page))
768                         goto keep;
769
770                 VM_BUG_ON(PageActive(page));
771                 VM_BUG_ON(page_zone(page) != zone);
772
773                 sc->nr_scanned++;
774
775                 if (unlikely(!page_evictable(page, NULL)))
776                         goto cull_mlocked;
777
778                 if (!sc->may_unmap && page_mapped(page))
779                         goto keep_locked;
780
781                 /* Double the slab pressure for mapped and swapcache pages */
782                 if (page_mapped(page) || PageSwapCache(page))
783                         sc->nr_scanned++;
784
785                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
786                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
787
788                 if (PageWriteback(page)) {
789                         nr_writeback++;
790                         /*
791                          * Synchronous reclaim cannot queue pages for
792                          * writeback due to the possibility of stack overflow
793                          * but if it encounters a page under writeback, wait
794                          * for the IO to complete.
795                          */
796                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
797                             may_enter_fs)
798                                 wait_on_page_writeback(page);
799                         else {
800                                 unlock_page(page);
801                                 goto keep_lumpy;
802                         }
803                 }
804
805                 references = page_check_references(page, sc);
806                 switch (references) {
807                 case PAGEREF_ACTIVATE:
808                         goto activate_locked;
809                 case PAGEREF_KEEP:
810                         goto keep_locked;
811                 case PAGEREF_RECLAIM:
812                 case PAGEREF_RECLAIM_CLEAN:
813                         ; /* try to reclaim the page below */
814                 }
815
816                 /*
817                  * Anonymous process memory has backing store?
818                  * Try to allocate it some swap space here.
819                  */
820                 if (PageAnon(page) && !PageSwapCache(page)) {
821                         if (!(sc->gfp_mask & __GFP_IO))
822                                 goto keep_locked;
823                         if (!add_to_swap(page))
824                                 goto activate_locked;
825                         may_enter_fs = 1;
826                 }
827
828                 mapping = page_mapping(page);
829
830                 /*
831                  * The page is mapped into the page tables of one or more
832                  * processes. Try to unmap it here.
833                  */
834                 if (page_mapped(page) && mapping) {
835                         switch (try_to_unmap(page, TTU_UNMAP)) {
836                         case SWAP_FAIL:
837                                 goto activate_locked;
838                         case SWAP_AGAIN:
839                                 goto keep_locked;
840                         case SWAP_MLOCK:
841                                 goto cull_mlocked;
842                         case SWAP_SUCCESS:
843                                 ; /* try to free the page below */
844                         }
845                 }
846
847                 if (PageDirty(page)) {
848                         nr_dirty++;
849
850                         /*
851                          * Only kswapd can writeback filesystem pages to
852                          * avoid risk of stack overflow but do not writeback
853                          * unless under significant pressure.
854                          */
855                         if (page_is_file_cache(page) &&
856                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
857                                 /*
858                                  * Immediately reclaim when written back.
859                                  * Similar in principal to deactivate_page()
860                                  * except we already have the page isolated
861                                  * and know it's dirty
862                                  */
863                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
864                                 SetPageReclaim(page);
865
866                                 goto keep_locked;
867                         }
868
869                         if (references == PAGEREF_RECLAIM_CLEAN)
870                                 goto keep_locked;
871                         if (!may_enter_fs)
872                                 goto keep_locked;
873                         if (!sc->may_writepage)
874                                 goto keep_locked;
875
876                         /* Page is dirty, try to write it out here */
877                         switch (pageout(page, mapping, sc)) {
878                         case PAGE_KEEP:
879                                 nr_congested++;
880                                 goto keep_locked;
881                         case PAGE_ACTIVATE:
882                                 goto activate_locked;
883                         case PAGE_SUCCESS:
884                                 if (PageWriteback(page))
885                                         goto keep_lumpy;
886                                 if (PageDirty(page))
887                                         goto keep;
888
889                                 /*
890                                  * A synchronous write - probably a ramdisk.  Go
891                                  * ahead and try to reclaim the page.
892                                  */
893                                 if (!trylock_page(page))
894                                         goto keep;
895                                 if (PageDirty(page) || PageWriteback(page))
896                                         goto keep_locked;
897                                 mapping = page_mapping(page);
898                         case PAGE_CLEAN:
899                                 ; /* try to free the page below */
900                         }
901                 }
902
903                 /*
904                  * If the page has buffers, try to free the buffer mappings
905                  * associated with this page. If we succeed we try to free
906                  * the page as well.
907                  *
908                  * We do this even if the page is PageDirty().
909                  * try_to_release_page() does not perform I/O, but it is
910                  * possible for a page to have PageDirty set, but it is actually
911                  * clean (all its buffers are clean).  This happens if the
912                  * buffers were written out directly, with submit_bh(). ext3
913                  * will do this, as well as the blockdev mapping.
914                  * try_to_release_page() will discover that cleanness and will
915                  * drop the buffers and mark the page clean - it can be freed.
916                  *
917                  * Rarely, pages can have buffers and no ->mapping.  These are
918                  * the pages which were not successfully invalidated in
919                  * truncate_complete_page().  We try to drop those buffers here
920                  * and if that worked, and the page is no longer mapped into
921                  * process address space (page_count == 1) it can be freed.
922                  * Otherwise, leave the page on the LRU so it is swappable.
923                  */
924                 if (page_has_private(page)) {
925                         if (!try_to_release_page(page, sc->gfp_mask))
926                                 goto activate_locked;
927                         if (!mapping && page_count(page) == 1) {
928                                 unlock_page(page);
929                                 if (put_page_testzero(page))
930                                         goto free_it;
931                                 else {
932                                         /*
933                                          * rare race with speculative reference.
934                                          * the speculative reference will free
935                                          * this page shortly, so we may
936                                          * increment nr_reclaimed here (and
937                                          * leave it off the LRU).
938                                          */
939                                         nr_reclaimed++;
940                                         continue;
941                                 }
942                         }
943                 }
944
945                 if (!mapping || !__remove_mapping(mapping, page))
946                         goto keep_locked;
947
948                 /*
949                  * At this point, we have no other references and there is
950                  * no way to pick any more up (removed from LRU, removed
951                  * from pagecache). Can use non-atomic bitops now (and
952                  * we obviously don't have to worry about waking up a process
953                  * waiting on the page lock, because there are no references.
954                  */
955                 __clear_page_locked(page);
956 free_it:
957                 nr_reclaimed++;
958
959                 /*
960                  * Is there need to periodically free_page_list? It would
961                  * appear not as the counts should be low
962                  */
963                 list_add(&page->lru, &free_pages);
964                 continue;
965
966 cull_mlocked:
967                 if (PageSwapCache(page))
968                         try_to_free_swap(page);
969                 unlock_page(page);
970                 putback_lru_page(page);
971                 reset_reclaim_mode(sc);
972                 continue;
973
974 activate_locked:
975                 /* Not a candidate for swapping, so reclaim swap space. */
976                 if (PageSwapCache(page) && vm_swap_full())
977                         try_to_free_swap(page);
978                 VM_BUG_ON(PageActive(page));
979                 SetPageActive(page);
980                 pgactivate++;
981 keep_locked:
982                 unlock_page(page);
983 keep:
984                 reset_reclaim_mode(sc);
985 keep_lumpy:
986                 list_add(&page->lru, &ret_pages);
987                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
988         }
989
990         /*
991          * Tag a zone as congested if all the dirty pages encountered were
992          * backed by a congested BDI. In this case, reclaimers should just
993          * back off and wait for congestion to clear because further reclaim
994          * will encounter the same problem
995          */
996         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
997                 zone_set_flag(zone, ZONE_CONGESTED);
998
999         free_hot_cold_page_list(&free_pages, 1);
1000
1001         list_splice(&ret_pages, page_list);
1002         count_vm_events(PGACTIVATE, pgactivate);
1003         *ret_nr_dirty += nr_dirty;
1004         *ret_nr_writeback += nr_writeback;
1005         return nr_reclaimed;
1006 }
1007
1008 /*
1009  * Attempt to remove the specified page from its LRU.  Only take this page
1010  * if it is of the appropriate PageActive status.  Pages which are being
1011  * freed elsewhere are also ignored.
1012  *
1013  * page:        page to consider
1014  * mode:        one of the LRU isolation modes defined above
1015  *
1016  * returns 0 on success, -ve errno on failure.
1017  */
1018 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1019 {
1020         bool all_lru_mode;
1021         int ret = -EINVAL;
1022
1023         /* Only take pages on the LRU. */
1024         if (!PageLRU(page))
1025                 return ret;
1026
1027         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1028                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1029
1030         /*
1031          * When checking the active state, we need to be sure we are
1032          * dealing with comparible boolean values.  Take the logical not
1033          * of each.
1034          */
1035         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1036                 return ret;
1037
1038         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1039                 return ret;
1040
1041         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1042                 return ret;
1043
1044         ret = -EBUSY;
1045
1046         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1047                 return ret;
1048
1049         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1050                 return ret;
1051
1052         if (likely(get_page_unless_zero(page))) {
1053                 /*
1054                  * Be careful not to clear PageLRU until after we're
1055                  * sure the page is not being freed elsewhere -- the
1056                  * page release code relies on it.
1057                  */
1058                 ClearPageLRU(page);
1059                 ret = 0;
1060         }
1061
1062         return ret;
1063 }
1064
1065 /*
1066  * zone->lru_lock is heavily contended.  Some of the functions that
1067  * shrink the lists perform better by taking out a batch of pages
1068  * and working on them outside the LRU lock.
1069  *
1070  * For pagecache intensive workloads, this function is the hottest
1071  * spot in the kernel (apart from copy_*_user functions).
1072  *
1073  * Appropriate locks must be held before calling this function.
1074  *
1075  * @nr_to_scan: The number of pages to look through on the list.
1076  * @src:        The LRU list to pull pages off.
1077  * @dst:        The temp list to put pages on to.
1078  * @scanned:    The number of pages that were scanned.
1079  * @order:      The caller's attempted allocation order
1080  * @mode:       One of the LRU isolation modes
1081  * @file:       True [1] if isolating file [!anon] pages
1082  *
1083  * returns how many pages were moved onto *@dst.
1084  */
1085 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1086                 struct list_head *src, struct list_head *dst,
1087                 unsigned long *scanned, int order, isolate_mode_t mode,
1088                 int file)
1089 {
1090         unsigned long nr_taken = 0;
1091         unsigned long nr_lumpy_taken = 0;
1092         unsigned long nr_lumpy_dirty = 0;
1093         unsigned long nr_lumpy_failed = 0;
1094         unsigned long scan;
1095
1096         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1097                 struct page *page;
1098                 unsigned long pfn;
1099                 unsigned long end_pfn;
1100                 unsigned long page_pfn;
1101                 int zone_id;
1102
1103                 page = lru_to_page(src);
1104                 prefetchw_prev_lru_page(page, src, flags);
1105
1106                 VM_BUG_ON(!PageLRU(page));
1107
1108                 switch (__isolate_lru_page(page, mode, file)) {
1109                 case 0:
1110                         list_move(&page->lru, dst);
1111                         mem_cgroup_del_lru(page);
1112                         nr_taken += hpage_nr_pages(page);
1113                         break;
1114
1115                 case -EBUSY:
1116                         /* else it is being freed elsewhere */
1117                         list_move(&page->lru, src);
1118                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1119                         continue;
1120
1121                 default:
1122                         BUG();
1123                 }
1124
1125                 if (!order)
1126                         continue;
1127
1128                 /*
1129                  * Attempt to take all pages in the order aligned region
1130                  * surrounding the tag page.  Only take those pages of
1131                  * the same active state as that tag page.  We may safely
1132                  * round the target page pfn down to the requested order
1133                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1134                  * where that page is in a different zone we will detect
1135                  * it from its zone id and abort this block scan.
1136                  */
1137                 zone_id = page_zone_id(page);
1138                 page_pfn = page_to_pfn(page);
1139                 pfn = page_pfn & ~((1 << order) - 1);
1140                 end_pfn = pfn + (1 << order);
1141                 for (; pfn < end_pfn; pfn++) {
1142                         struct page *cursor_page;
1143
1144                         /* The target page is in the block, ignore it. */
1145                         if (unlikely(pfn == page_pfn))
1146                                 continue;
1147
1148                         /* Avoid holes within the zone. */
1149                         if (unlikely(!pfn_valid_within(pfn)))
1150                                 break;
1151
1152                         cursor_page = pfn_to_page(pfn);
1153
1154                         /* Check that we have not crossed a zone boundary. */
1155                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1156                                 break;
1157
1158                         /*
1159                          * If we don't have enough swap space, reclaiming of
1160                          * anon page which don't already have a swap slot is
1161                          * pointless.
1162                          */
1163                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1164                             !PageSwapCache(cursor_page))
1165                                 break;
1166
1167                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1168                                 list_move(&cursor_page->lru, dst);
1169                                 mem_cgroup_del_lru(cursor_page);
1170                                 nr_taken += hpage_nr_pages(page);
1171                                 nr_lumpy_taken++;
1172                                 if (PageDirty(cursor_page))
1173                                         nr_lumpy_dirty++;
1174                                 scan++;
1175                         } else {
1176                                 /*
1177                                  * Check if the page is freed already.
1178                                  *
1179                                  * We can't use page_count() as that
1180                                  * requires compound_head and we don't
1181                                  * have a pin on the page here. If a
1182                                  * page is tail, we may or may not
1183                                  * have isolated the head, so assume
1184                                  * it's not free, it'd be tricky to
1185                                  * track the head status without a
1186                                  * page pin.
1187                                  */
1188                                 if (!PageTail(cursor_page) &&
1189                                     !atomic_read(&cursor_page->_count))
1190                                         continue;
1191                                 break;
1192                         }
1193                 }
1194
1195                 /* If we break out of the loop above, lumpy reclaim failed */
1196                 if (pfn < end_pfn)
1197                         nr_lumpy_failed++;
1198         }
1199
1200         *scanned = scan;
1201
1202         trace_mm_vmscan_lru_isolate(order,
1203                         nr_to_scan, scan,
1204                         nr_taken,
1205                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1206                         mode);
1207         return nr_taken;
1208 }
1209
1210 static unsigned long isolate_pages_global(unsigned long nr,
1211                                         struct list_head *dst,
1212                                         unsigned long *scanned, int order,
1213                                         isolate_mode_t mode,
1214                                         struct zone *z, int active, int file)
1215 {
1216         int lru = LRU_BASE;
1217         if (active)
1218                 lru += LRU_ACTIVE;
1219         if (file)
1220                 lru += LRU_FILE;
1221         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1222                                                                 mode, file);
1223 }
1224
1225 /*
1226  * clear_active_flags() is a helper for shrink_active_list(), clearing
1227  * any active bits from the pages in the list.
1228  */
1229 static unsigned long clear_active_flags(struct list_head *page_list,
1230                                         unsigned int *count)
1231 {
1232         int nr_active = 0;
1233         int lru;
1234         struct page *page;
1235
1236         list_for_each_entry(page, page_list, lru) {
1237                 int numpages = hpage_nr_pages(page);
1238                 lru = page_lru_base_type(page);
1239                 if (PageActive(page)) {
1240                         lru += LRU_ACTIVE;
1241                         ClearPageActive(page);
1242                         nr_active += numpages;
1243                 }
1244                 if (count)
1245                         count[lru] += numpages;
1246         }
1247
1248         return nr_active;
1249 }
1250
1251 /**
1252  * isolate_lru_page - tries to isolate a page from its LRU list
1253  * @page: page to isolate from its LRU list
1254  *
1255  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1256  * vmstat statistic corresponding to whatever LRU list the page was on.
1257  *
1258  * Returns 0 if the page was removed from an LRU list.
1259  * Returns -EBUSY if the page was not on an LRU list.
1260  *
1261  * The returned page will have PageLRU() cleared.  If it was found on
1262  * the active list, it will have PageActive set.  If it was found on
1263  * the unevictable list, it will have the PageUnevictable bit set. That flag
1264  * may need to be cleared by the caller before letting the page go.
1265  *
1266  * The vmstat statistic corresponding to the list on which the page was
1267  * found will be decremented.
1268  *
1269  * Restrictions:
1270  * (1) Must be called with an elevated refcount on the page. This is a
1271  *     fundamentnal difference from isolate_lru_pages (which is called
1272  *     without a stable reference).
1273  * (2) the lru_lock must not be held.
1274  * (3) interrupts must be enabled.
1275  */
1276 int isolate_lru_page(struct page *page)
1277 {
1278         int ret = -EBUSY;
1279
1280         VM_BUG_ON(!page_count(page));
1281
1282         if (PageLRU(page)) {
1283                 struct zone *zone = page_zone(page);
1284
1285                 spin_lock_irq(&zone->lru_lock);
1286                 if (PageLRU(page)) {
1287                         int lru = page_lru(page);
1288                         ret = 0;
1289                         get_page(page);
1290                         ClearPageLRU(page);
1291
1292                         del_page_from_lru_list(zone, page, lru);
1293                 }
1294                 spin_unlock_irq(&zone->lru_lock);
1295         }
1296         return ret;
1297 }
1298
1299 /*
1300  * Are there way too many processes in the direct reclaim path already?
1301  */
1302 static int too_many_isolated(struct zone *zone, int file,
1303                 struct scan_control *sc)
1304 {
1305         unsigned long inactive, isolated;
1306
1307         if (current_is_kswapd())
1308                 return 0;
1309
1310         if (!scanning_global_lru(sc))
1311                 return 0;
1312
1313         if (file) {
1314                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1315                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1316         } else {
1317                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1318                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1319         }
1320
1321         return isolated > inactive;
1322 }
1323
1324 /*
1325  * TODO: Try merging with migrations version of putback_lru_pages
1326  */
1327 static noinline_for_stack void
1328 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1329                                 unsigned long nr_anon, unsigned long nr_file,
1330                                 struct list_head *page_list)
1331 {
1332         struct page *page;
1333         struct pagevec pvec;
1334         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1335
1336         pagevec_init(&pvec, 1);
1337
1338         /*
1339          * Put back any unfreeable pages.
1340          */
1341         spin_lock(&zone->lru_lock);
1342         while (!list_empty(page_list)) {
1343                 int lru;
1344                 page = lru_to_page(page_list);
1345                 VM_BUG_ON(PageLRU(page));
1346                 list_del(&page->lru);
1347                 if (unlikely(!page_evictable(page, NULL))) {
1348                         spin_unlock_irq(&zone->lru_lock);
1349                         putback_lru_page(page);
1350                         spin_lock_irq(&zone->lru_lock);
1351                         continue;
1352                 }
1353                 SetPageLRU(page);
1354                 lru = page_lru(page);
1355                 add_page_to_lru_list(zone, page, lru);
1356                 if (is_active_lru(lru)) {
1357                         int file = is_file_lru(lru);
1358                         int numpages = hpage_nr_pages(page);
1359                         reclaim_stat->recent_rotated[file] += numpages;
1360                 }
1361                 if (!pagevec_add(&pvec, page)) {
1362                         spin_unlock_irq(&zone->lru_lock);
1363                         __pagevec_release(&pvec);
1364                         spin_lock_irq(&zone->lru_lock);
1365                 }
1366         }
1367         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1368         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1369
1370         spin_unlock_irq(&zone->lru_lock);
1371         pagevec_release(&pvec);
1372 }
1373
1374 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1375                                         struct scan_control *sc,
1376                                         unsigned long *nr_anon,
1377                                         unsigned long *nr_file,
1378                                         struct list_head *isolated_list)
1379 {
1380         unsigned long nr_active;
1381         unsigned int count[NR_LRU_LISTS] = { 0, };
1382         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1383
1384         nr_active = clear_active_flags(isolated_list, count);
1385         __count_vm_events(PGDEACTIVATE, nr_active);
1386
1387         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1388                               -count[LRU_ACTIVE_FILE]);
1389         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1390                               -count[LRU_INACTIVE_FILE]);
1391         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1392                               -count[LRU_ACTIVE_ANON]);
1393         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1394                               -count[LRU_INACTIVE_ANON]);
1395
1396         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1397         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1398         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1399         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1400
1401         reclaim_stat->recent_scanned[0] += *nr_anon;
1402         reclaim_stat->recent_scanned[1] += *nr_file;
1403 }
1404
1405 /*
1406  * Returns true if a direct reclaim should wait on pages under writeback.
1407  *
1408  * If we are direct reclaiming for contiguous pages and we do not reclaim
1409  * everything in the list, try again and wait for writeback IO to complete.
1410  * This will stall high-order allocations noticeably. Only do that when really
1411  * need to free the pages under high memory pressure.
1412  */
1413 static inline bool should_reclaim_stall(unsigned long nr_taken,
1414                                         unsigned long nr_freed,
1415                                         int priority,
1416                                         struct scan_control *sc)
1417 {
1418         int lumpy_stall_priority;
1419
1420         /* kswapd should not stall on sync IO */
1421         if (current_is_kswapd())
1422                 return false;
1423
1424         /* Only stall on lumpy reclaim */
1425         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1426                 return false;
1427
1428         /* If we have reclaimed everything on the isolated list, no stall */
1429         if (nr_freed == nr_taken)
1430                 return false;
1431
1432         /*
1433          * For high-order allocations, there are two stall thresholds.
1434          * High-cost allocations stall immediately where as lower
1435          * order allocations such as stacks require the scanning
1436          * priority to be much higher before stalling.
1437          */
1438         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1439                 lumpy_stall_priority = DEF_PRIORITY;
1440         else
1441                 lumpy_stall_priority = DEF_PRIORITY / 3;
1442
1443         return priority <= lumpy_stall_priority;
1444 }
1445
1446 /*
1447  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1448  * of reclaimed pages
1449  */
1450 static noinline_for_stack unsigned long
1451 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1452                         struct scan_control *sc, int priority, int file)
1453 {
1454         LIST_HEAD(page_list);
1455         unsigned long nr_scanned;
1456         unsigned long nr_reclaimed = 0;
1457         unsigned long nr_taken;
1458         unsigned long nr_anon;
1459         unsigned long nr_file;
1460         unsigned long nr_dirty = 0;
1461         unsigned long nr_writeback = 0;
1462         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1463
1464         while (unlikely(too_many_isolated(zone, file, sc))) {
1465                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1466
1467                 /* We are about to die and free our memory. Return now. */
1468                 if (fatal_signal_pending(current))
1469                         return SWAP_CLUSTER_MAX;
1470         }
1471
1472         set_reclaim_mode(priority, sc, false);
1473         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1474                 reclaim_mode |= ISOLATE_ACTIVE;
1475
1476         lru_add_drain();
1477
1478         if (!sc->may_unmap)
1479                 reclaim_mode |= ISOLATE_UNMAPPED;
1480         if (!sc->may_writepage)
1481                 reclaim_mode |= ISOLATE_CLEAN;
1482
1483         spin_lock_irq(&zone->lru_lock);
1484
1485         if (scanning_global_lru(sc)) {
1486                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1487                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1488                 zone->pages_scanned += nr_scanned;
1489                 if (current_is_kswapd())
1490                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1491                                                nr_scanned);
1492                 else
1493                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1494                                                nr_scanned);
1495         } else {
1496                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1497                         &nr_scanned, sc->order, reclaim_mode, zone,
1498                         sc->mem_cgroup, 0, file);
1499                 /*
1500                  * mem_cgroup_isolate_pages() keeps track of
1501                  * scanned pages on its own.
1502                  */
1503         }
1504
1505         if (nr_taken == 0) {
1506                 spin_unlock_irq(&zone->lru_lock);
1507                 return 0;
1508         }
1509
1510         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1511
1512         spin_unlock_irq(&zone->lru_lock);
1513
1514         nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1515                                                 &nr_dirty, &nr_writeback);
1516
1517         /* Check if we should syncronously wait for writeback */
1518         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1519                 set_reclaim_mode(priority, sc, true);
1520                 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1521                                         priority, &nr_dirty, &nr_writeback);
1522         }
1523
1524         local_irq_disable();
1525         if (current_is_kswapd())
1526                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1527         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1528
1529         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1530
1531         /*
1532          * If reclaim is isolating dirty pages under writeback, it implies
1533          * that the long-lived page allocation rate is exceeding the page
1534          * laundering rate. Either the global limits are not being effective
1535          * at throttling processes due to the page distribution throughout
1536          * zones or there is heavy usage of a slow backing device. The
1537          * only option is to throttle from reclaim context which is not ideal
1538          * as there is no guarantee the dirtying process is throttled in the
1539          * same way balance_dirty_pages() manages.
1540          *
1541          * This scales the number of dirty pages that must be under writeback
1542          * before throttling depending on priority. It is a simple backoff
1543          * function that has the most effect in the range DEF_PRIORITY to
1544          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1545          * in trouble and reclaim is considered to be in trouble.
1546          *
1547          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1548          * DEF_PRIORITY-1  50% must be PageWriteback
1549          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1550          * ...
1551          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1552          *                     isolated page is PageWriteback
1553          */
1554         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1555                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1556
1557         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1558                 zone_idx(zone),
1559                 nr_scanned, nr_reclaimed,
1560                 priority,
1561                 trace_shrink_flags(file, sc->reclaim_mode));
1562         return nr_reclaimed;
1563 }
1564
1565 /*
1566  * This moves pages from the active list to the inactive list.
1567  *
1568  * We move them the other way if the page is referenced by one or more
1569  * processes, from rmap.
1570  *
1571  * If the pages are mostly unmapped, the processing is fast and it is
1572  * appropriate to hold zone->lru_lock across the whole operation.  But if
1573  * the pages are mapped, the processing is slow (page_referenced()) so we
1574  * should drop zone->lru_lock around each page.  It's impossible to balance
1575  * this, so instead we remove the pages from the LRU while processing them.
1576  * It is safe to rely on PG_active against the non-LRU pages in here because
1577  * nobody will play with that bit on a non-LRU page.
1578  *
1579  * The downside is that we have to touch page->_count against each page.
1580  * But we had to alter page->flags anyway.
1581  */
1582
1583 static void move_active_pages_to_lru(struct zone *zone,
1584                                      struct list_head *list,
1585                                      enum lru_list lru)
1586 {
1587         unsigned long pgmoved = 0;
1588         struct pagevec pvec;
1589         struct page *page;
1590
1591         pagevec_init(&pvec, 1);
1592
1593         while (!list_empty(list)) {
1594                 page = lru_to_page(list);
1595
1596                 VM_BUG_ON(PageLRU(page));
1597                 SetPageLRU(page);
1598
1599                 list_move(&page->lru, &zone->lru[lru].list);
1600                 mem_cgroup_add_lru_list(page, lru);
1601                 pgmoved += hpage_nr_pages(page);
1602
1603                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1604                         spin_unlock_irq(&zone->lru_lock);
1605                         if (buffer_heads_over_limit)
1606                                 pagevec_strip(&pvec);
1607                         __pagevec_release(&pvec);
1608                         spin_lock_irq(&zone->lru_lock);
1609                 }
1610         }
1611         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1612         if (!is_active_lru(lru))
1613                 __count_vm_events(PGDEACTIVATE, pgmoved);
1614 }
1615
1616 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1617                         struct scan_control *sc, int priority, int file)
1618 {
1619         unsigned long nr_taken;
1620         unsigned long pgscanned;
1621         unsigned long vm_flags;
1622         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1623         LIST_HEAD(l_active);
1624         LIST_HEAD(l_inactive);
1625         struct page *page;
1626         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1627         unsigned long nr_rotated = 0;
1628         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1629
1630         lru_add_drain();
1631
1632         if (!sc->may_unmap)
1633                 reclaim_mode |= ISOLATE_UNMAPPED;
1634         if (!sc->may_writepage)
1635                 reclaim_mode |= ISOLATE_CLEAN;
1636
1637         spin_lock_irq(&zone->lru_lock);
1638         if (scanning_global_lru(sc)) {
1639                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1640                                                 &pgscanned, sc->order,
1641                                                 reclaim_mode, zone,
1642                                                 1, file);
1643                 zone->pages_scanned += pgscanned;
1644         } else {
1645                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1646                                                 &pgscanned, sc->order,
1647                                                 reclaim_mode, zone,
1648                                                 sc->mem_cgroup, 1, file);
1649                 /*
1650                  * mem_cgroup_isolate_pages() keeps track of
1651                  * scanned pages on its own.
1652                  */
1653         }
1654
1655         reclaim_stat->recent_scanned[file] += nr_taken;
1656
1657         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1658         if (file)
1659                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1660         else
1661                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1662         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1663         spin_unlock_irq(&zone->lru_lock);
1664
1665         while (!list_empty(&l_hold)) {
1666                 cond_resched();
1667                 page = lru_to_page(&l_hold);
1668                 list_del(&page->lru);
1669
1670                 if (unlikely(!page_evictable(page, NULL))) {
1671                         putback_lru_page(page);
1672                         continue;
1673                 }
1674
1675                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1676                         nr_rotated += hpage_nr_pages(page);
1677                         /*
1678                          * Identify referenced, file-backed active pages and
1679                          * give them one more trip around the active list. So
1680                          * that executable code get better chances to stay in
1681                          * memory under moderate memory pressure.  Anon pages
1682                          * are not likely to be evicted by use-once streaming
1683                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1684                          * so we ignore them here.
1685                          */
1686                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1687                                 list_add(&page->lru, &l_active);
1688                                 continue;
1689                         }
1690                 }
1691
1692                 ClearPageActive(page);  /* we are de-activating */
1693                 list_add(&page->lru, &l_inactive);
1694         }
1695
1696         /*
1697          * Move pages back to the lru list.
1698          */
1699         spin_lock_irq(&zone->lru_lock);
1700         /*
1701          * Count referenced pages from currently used mappings as rotated,
1702          * even though only some of them are actually re-activated.  This
1703          * helps balance scan pressure between file and anonymous pages in
1704          * get_scan_ratio.
1705          */
1706         reclaim_stat->recent_rotated[file] += nr_rotated;
1707
1708         move_active_pages_to_lru(zone, &l_active,
1709                                                 LRU_ACTIVE + file * LRU_FILE);
1710         move_active_pages_to_lru(zone, &l_inactive,
1711                                                 LRU_BASE   + file * LRU_FILE);
1712         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1713         spin_unlock_irq(&zone->lru_lock);
1714 }
1715
1716 #ifdef CONFIG_SWAP
1717 static int inactive_anon_is_low_global(struct zone *zone)
1718 {
1719         unsigned long active, inactive;
1720
1721         active = zone_page_state(zone, NR_ACTIVE_ANON);
1722         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1723
1724         if (inactive * zone->inactive_ratio < active)
1725                 return 1;
1726
1727         return 0;
1728 }
1729
1730 /**
1731  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1732  * @zone: zone to check
1733  * @sc:   scan control of this context
1734  *
1735  * Returns true if the zone does not have enough inactive anon pages,
1736  * meaning some active anon pages need to be deactivated.
1737  */
1738 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1739 {
1740         int low;
1741
1742         /*
1743          * If we don't have swap space, anonymous page deactivation
1744          * is pointless.
1745          */
1746         if (!total_swap_pages)
1747                 return 0;
1748
1749         if (scanning_global_lru(sc))
1750                 low = inactive_anon_is_low_global(zone);
1751         else
1752                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1753         return low;
1754 }
1755 #else
1756 static inline int inactive_anon_is_low(struct zone *zone,
1757                                         struct scan_control *sc)
1758 {
1759         return 0;
1760 }
1761 #endif
1762
1763 static int inactive_file_is_low_global(struct zone *zone)
1764 {
1765         unsigned long active, inactive;
1766
1767         active = zone_page_state(zone, NR_ACTIVE_FILE);
1768         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1769
1770         return (active > inactive);
1771 }
1772
1773 /**
1774  * inactive_file_is_low - check if file pages need to be deactivated
1775  * @zone: zone to check
1776  * @sc:   scan control of this context
1777  *
1778  * When the system is doing streaming IO, memory pressure here
1779  * ensures that active file pages get deactivated, until more
1780  * than half of the file pages are on the inactive list.
1781  *
1782  * Once we get to that situation, protect the system's working
1783  * set from being evicted by disabling active file page aging.
1784  *
1785  * This uses a different ratio than the anonymous pages, because
1786  * the page cache uses a use-once replacement algorithm.
1787  */
1788 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1789 {
1790         int low;
1791
1792         if (scanning_global_lru(sc))
1793                 low = inactive_file_is_low_global(zone);
1794         else
1795                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1796         return low;
1797 }
1798
1799 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1800                                 int file)
1801 {
1802         if (file)
1803                 return inactive_file_is_low(zone, sc);
1804         else
1805                 return inactive_anon_is_low(zone, sc);
1806 }
1807
1808 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1809         struct zone *zone, struct scan_control *sc, int priority)
1810 {
1811         int file = is_file_lru(lru);
1812
1813         if (is_active_lru(lru)) {
1814                 if (inactive_list_is_low(zone, sc, file))
1815                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1816                 return 0;
1817         }
1818
1819         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1820 }
1821
1822 static int vmscan_swappiness(struct scan_control *sc)
1823 {
1824         if (scanning_global_lru(sc))
1825                 return vm_swappiness;
1826         return mem_cgroup_swappiness(sc->mem_cgroup);
1827 }
1828
1829 /*
1830  * Determine how aggressively the anon and file LRU lists should be
1831  * scanned.  The relative value of each set of LRU lists is determined
1832  * by looking at the fraction of the pages scanned we did rotate back
1833  * onto the active list instead of evict.
1834  *
1835  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1836  */
1837 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1838                                         unsigned long *nr, int priority)
1839 {
1840         unsigned long anon, file, free;
1841         unsigned long anon_prio, file_prio;
1842         unsigned long ap, fp;
1843         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1844         u64 fraction[2], denominator;
1845         enum lru_list l;
1846         int noswap = 0;
1847         bool force_scan = false;
1848
1849         /*
1850          * If the zone or memcg is small, nr[l] can be 0.  This
1851          * results in no scanning on this priority and a potential
1852          * priority drop.  Global direct reclaim can go to the next
1853          * zone and tends to have no problems. Global kswapd is for
1854          * zone balancing and it needs to scan a minimum amount. When
1855          * reclaiming for a memcg, a priority drop can cause high
1856          * latencies, so it's better to scan a minimum amount there as
1857          * well.
1858          */
1859         if (scanning_global_lru(sc) && current_is_kswapd())
1860                 force_scan = true;
1861         if (!scanning_global_lru(sc))
1862                 force_scan = true;
1863
1864         /* If we have no swap space, do not bother scanning anon pages. */
1865         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1866                 noswap = 1;
1867                 fraction[0] = 0;
1868                 fraction[1] = 1;
1869                 denominator = 1;
1870                 goto out;
1871         }
1872
1873         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1874                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1875         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1876                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1877
1878         if (scanning_global_lru(sc)) {
1879                 free  = zone_page_state(zone, NR_FREE_PAGES);
1880                 /* If we have very few page cache pages,
1881                    force-scan anon pages. */
1882                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1883                         fraction[0] = 1;
1884                         fraction[1] = 0;
1885                         denominator = 1;
1886                         goto out;
1887                 }
1888         }
1889
1890         /*
1891          * With swappiness at 100, anonymous and file have the same priority.
1892          * This scanning priority is essentially the inverse of IO cost.
1893          */
1894         anon_prio = vmscan_swappiness(sc);
1895         file_prio = 200 - vmscan_swappiness(sc);
1896
1897         /*
1898          * OK, so we have swap space and a fair amount of page cache
1899          * pages.  We use the recently rotated / recently scanned
1900          * ratios to determine how valuable each cache is.
1901          *
1902          * Because workloads change over time (and to avoid overflow)
1903          * we keep these statistics as a floating average, which ends
1904          * up weighing recent references more than old ones.
1905          *
1906          * anon in [0], file in [1]
1907          */
1908         spin_lock_irq(&zone->lru_lock);
1909         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1910                 reclaim_stat->recent_scanned[0] /= 2;
1911                 reclaim_stat->recent_rotated[0] /= 2;
1912         }
1913
1914         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1915                 reclaim_stat->recent_scanned[1] /= 2;
1916                 reclaim_stat->recent_rotated[1] /= 2;
1917         }
1918
1919         /*
1920          * The amount of pressure on anon vs file pages is inversely
1921          * proportional to the fraction of recently scanned pages on
1922          * each list that were recently referenced and in active use.
1923          */
1924         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1925         ap /= reclaim_stat->recent_rotated[0] + 1;
1926
1927         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1928         fp /= reclaim_stat->recent_rotated[1] + 1;
1929         spin_unlock_irq(&zone->lru_lock);
1930
1931         fraction[0] = ap;
1932         fraction[1] = fp;
1933         denominator = ap + fp + 1;
1934 out:
1935         for_each_evictable_lru(l) {
1936                 int file = is_file_lru(l);
1937                 unsigned long scan;
1938
1939                 scan = zone_nr_lru_pages(zone, sc, l);
1940                 if (priority || noswap) {
1941                         scan >>= priority;
1942                         if (!scan && force_scan)
1943                                 scan = SWAP_CLUSTER_MAX;
1944                         scan = div64_u64(scan * fraction[file], denominator);
1945                 }
1946                 nr[l] = scan;
1947         }
1948 }
1949
1950 /*
1951  * Reclaim/compaction depends on a number of pages being freed. To avoid
1952  * disruption to the system, a small number of order-0 pages continue to be
1953  * rotated and reclaimed in the normal fashion. However, by the time we get
1954  * back to the allocator and call try_to_compact_zone(), we ensure that
1955  * there are enough free pages for it to be likely successful
1956  */
1957 static inline bool should_continue_reclaim(struct zone *zone,
1958                                         unsigned long nr_reclaimed,
1959                                         unsigned long nr_scanned,
1960                                         struct scan_control *sc)
1961 {
1962         unsigned long pages_for_compaction;
1963         unsigned long inactive_lru_pages;
1964
1965         /* If not in reclaim/compaction mode, stop */
1966         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1967                 return false;
1968
1969         /* Consider stopping depending on scan and reclaim activity */
1970         if (sc->gfp_mask & __GFP_REPEAT) {
1971                 /*
1972                  * For __GFP_REPEAT allocations, stop reclaiming if the
1973                  * full LRU list has been scanned and we are still failing
1974                  * to reclaim pages. This full LRU scan is potentially
1975                  * expensive but a __GFP_REPEAT caller really wants to succeed
1976                  */
1977                 if (!nr_reclaimed && !nr_scanned)
1978                         return false;
1979         } else {
1980                 /*
1981                  * For non-__GFP_REPEAT allocations which can presumably
1982                  * fail without consequence, stop if we failed to reclaim
1983                  * any pages from the last SWAP_CLUSTER_MAX number of
1984                  * pages that were scanned. This will return to the
1985                  * caller faster at the risk reclaim/compaction and
1986                  * the resulting allocation attempt fails
1987                  */
1988                 if (!nr_reclaimed)
1989                         return false;
1990         }
1991
1992         /*
1993          * If we have not reclaimed enough pages for compaction and the
1994          * inactive lists are large enough, continue reclaiming
1995          */
1996         pages_for_compaction = (2UL << sc->order);
1997         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1998                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1999         if (sc->nr_reclaimed < pages_for_compaction &&
2000                         inactive_lru_pages > pages_for_compaction)
2001                 return true;
2002
2003         /* If compaction would go ahead or the allocation would succeed, stop */
2004         switch (compaction_suitable(zone, sc->order)) {
2005         case COMPACT_PARTIAL:
2006         case COMPACT_CONTINUE:
2007                 return false;
2008         default:
2009                 return true;
2010         }
2011 }
2012
2013 /*
2014  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2015  */
2016 static void shrink_zone(int priority, struct zone *zone,
2017                                 struct scan_control *sc)
2018 {
2019         unsigned long nr[NR_LRU_LISTS];
2020         unsigned long nr_to_scan;
2021         enum lru_list l;
2022         unsigned long nr_reclaimed, nr_scanned;
2023         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2024         struct blk_plug plug;
2025
2026 restart:
2027         nr_reclaimed = 0;
2028         nr_scanned = sc->nr_scanned;
2029         get_scan_count(zone, sc, nr, priority);
2030
2031         blk_start_plug(&plug);
2032         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2033                                         nr[LRU_INACTIVE_FILE]) {
2034                 for_each_evictable_lru(l) {
2035                         if (nr[l]) {
2036                                 nr_to_scan = min_t(unsigned long,
2037                                                    nr[l], SWAP_CLUSTER_MAX);
2038                                 nr[l] -= nr_to_scan;
2039
2040                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2041                                                             zone, sc, priority);
2042                         }
2043                 }
2044                 /*
2045                  * On large memory systems, scan >> priority can become
2046                  * really large. This is fine for the starting priority;
2047                  * we want to put equal scanning pressure on each zone.
2048                  * However, if the VM has a harder time of freeing pages,
2049                  * with multiple processes reclaiming pages, the total
2050                  * freeing target can get unreasonably large.
2051                  */
2052                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2053                         break;
2054         }
2055         blk_finish_plug(&plug);
2056         sc->nr_reclaimed += nr_reclaimed;
2057
2058         /*
2059          * Even if we did not try to evict anon pages at all, we want to
2060          * rebalance the anon lru active/inactive ratio.
2061          */
2062         if (inactive_anon_is_low(zone, sc))
2063                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2064
2065         /* reclaim/compaction might need reclaim to continue */
2066         if (should_continue_reclaim(zone, nr_reclaimed,
2067                                         sc->nr_scanned - nr_scanned, sc))
2068                 goto restart;
2069
2070         throttle_vm_writeout(sc->gfp_mask);
2071 }
2072
2073 /*
2074  * This is the direct reclaim path, for page-allocating processes.  We only
2075  * try to reclaim pages from zones which will satisfy the caller's allocation
2076  * request.
2077  *
2078  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2079  * Because:
2080  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2081  *    allocation or
2082  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2083  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2084  *    zone defense algorithm.
2085  *
2086  * If a zone is deemed to be full of pinned pages then just give it a light
2087  * scan then give up on it.
2088  */
2089 static void shrink_zones(int priority, struct zonelist *zonelist,
2090                                         struct scan_control *sc)
2091 {
2092         struct zoneref *z;
2093         struct zone *zone;
2094         unsigned long nr_soft_reclaimed;
2095         unsigned long nr_soft_scanned;
2096
2097         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2098                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2099                 if (!populated_zone(zone))
2100                         continue;
2101                 /*
2102                  * Take care memory controller reclaiming has small influence
2103                  * to global LRU.
2104                  */
2105                 if (scanning_global_lru(sc)) {
2106                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2107                                 continue;
2108                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2109                                 continue;       /* Let kswapd poll it */
2110                         /*
2111                          * This steals pages from memory cgroups over softlimit
2112                          * and returns the number of reclaimed pages and
2113                          * scanned pages. This works for global memory pressure
2114                          * and balancing, not for a memcg's limit.
2115                          */
2116                         nr_soft_scanned = 0;
2117                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2118                                                 sc->order, sc->gfp_mask,
2119                                                 &nr_soft_scanned);
2120                         sc->nr_reclaimed += nr_soft_reclaimed;
2121                         sc->nr_scanned += nr_soft_scanned;
2122                         /* need some check for avoid more shrink_zone() */
2123                 }
2124
2125                 shrink_zone(priority, zone, sc);
2126         }
2127 }
2128
2129 static bool zone_reclaimable(struct zone *zone)
2130 {
2131         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2132 }
2133
2134 /* All zones in zonelist are unreclaimable? */
2135 static bool all_unreclaimable(struct zonelist *zonelist,
2136                 struct scan_control *sc)
2137 {
2138         struct zoneref *z;
2139         struct zone *zone;
2140
2141         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2142                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2143                 if (!populated_zone(zone))
2144                         continue;
2145                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2146                         continue;
2147                 if (!zone->all_unreclaimable)
2148                         return false;
2149         }
2150
2151         return true;
2152 }
2153
2154 /*
2155  * This is the main entry point to direct page reclaim.
2156  *
2157  * If a full scan of the inactive list fails to free enough memory then we
2158  * are "out of memory" and something needs to be killed.
2159  *
2160  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2161  * high - the zone may be full of dirty or under-writeback pages, which this
2162  * caller can't do much about.  We kick the writeback threads and take explicit
2163  * naps in the hope that some of these pages can be written.  But if the
2164  * allocating task holds filesystem locks which prevent writeout this might not
2165  * work, and the allocation attempt will fail.
2166  *
2167  * returns:     0, if no pages reclaimed
2168  *              else, the number of pages reclaimed
2169  */
2170 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2171                                         struct scan_control *sc,
2172                                         struct shrink_control *shrink)
2173 {
2174         int priority;
2175         unsigned long total_scanned = 0;
2176         struct reclaim_state *reclaim_state = current->reclaim_state;
2177         struct zoneref *z;
2178         struct zone *zone;
2179         unsigned long writeback_threshold;
2180
2181         get_mems_allowed();
2182         delayacct_freepages_start();
2183
2184         if (scanning_global_lru(sc))
2185                 count_vm_event(ALLOCSTALL);
2186
2187         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2188                 sc->nr_scanned = 0;
2189                 if (!priority)
2190                         disable_swap_token(sc->mem_cgroup);
2191                 shrink_zones(priority, zonelist, sc);
2192                 /*
2193                  * Don't shrink slabs when reclaiming memory from
2194                  * over limit cgroups
2195                  */
2196                 if (scanning_global_lru(sc)) {
2197                         unsigned long lru_pages = 0;
2198                         for_each_zone_zonelist(zone, z, zonelist,
2199                                         gfp_zone(sc->gfp_mask)) {
2200                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2201                                         continue;
2202
2203                                 lru_pages += zone_reclaimable_pages(zone);
2204                         }
2205
2206                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2207                         if (reclaim_state) {
2208                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2209                                 reclaim_state->reclaimed_slab = 0;
2210                         }
2211                 }
2212                 total_scanned += sc->nr_scanned;
2213                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2214                         goto out;
2215
2216                 /*
2217                  * Try to write back as many pages as we just scanned.  This
2218                  * tends to cause slow streaming writers to write data to the
2219                  * disk smoothly, at the dirtying rate, which is nice.   But
2220                  * that's undesirable in laptop mode, where we *want* lumpy
2221                  * writeout.  So in laptop mode, write out the whole world.
2222                  */
2223                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2224                 if (total_scanned > writeback_threshold) {
2225                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2226                         sc->may_writepage = 1;
2227                 }
2228
2229                 /* Take a nap, wait for some writeback to complete */
2230                 if (!sc->hibernation_mode && sc->nr_scanned &&
2231                     priority < DEF_PRIORITY - 2) {
2232                         struct zone *preferred_zone;
2233
2234                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2235                                                 &cpuset_current_mems_allowed,
2236                                                 &preferred_zone);
2237                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2238                 }
2239         }
2240
2241 out:
2242         delayacct_freepages_end();
2243         put_mems_allowed();
2244
2245         if (sc->nr_reclaimed)
2246                 return sc->nr_reclaimed;
2247
2248         /*
2249          * As hibernation is going on, kswapd is freezed so that it can't mark
2250          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2251          * check.
2252          */
2253         if (oom_killer_disabled)
2254                 return 0;
2255
2256         /* top priority shrink_zones still had more to do? don't OOM, then */
2257         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2258                 return 1;
2259
2260         return 0;
2261 }
2262
2263 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2264                                 gfp_t gfp_mask, nodemask_t *nodemask)
2265 {
2266         unsigned long nr_reclaimed;
2267         struct scan_control sc = {
2268                 .gfp_mask = gfp_mask,
2269                 .may_writepage = !laptop_mode,
2270                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2271                 .may_unmap = 1,
2272                 .may_swap = 1,
2273                 .order = order,
2274                 .mem_cgroup = NULL,
2275                 .nodemask = nodemask,
2276         };
2277         struct shrink_control shrink = {
2278                 .gfp_mask = sc.gfp_mask,
2279         };
2280
2281         trace_mm_vmscan_direct_reclaim_begin(order,
2282                                 sc.may_writepage,
2283                                 gfp_mask);
2284
2285         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2286
2287         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2288
2289         return nr_reclaimed;
2290 }
2291
2292 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2293
2294 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2295                                                 gfp_t gfp_mask, bool noswap,
2296                                                 struct zone *zone,
2297                                                 unsigned long *nr_scanned)
2298 {
2299         struct scan_control sc = {
2300                 .nr_scanned = 0,
2301                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2302                 .may_writepage = !laptop_mode,
2303                 .may_unmap = 1,
2304                 .may_swap = !noswap,
2305                 .order = 0,
2306                 .mem_cgroup = mem,
2307         };
2308
2309         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2310                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2311
2312         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2313                                                       sc.may_writepage,
2314                                                       sc.gfp_mask);
2315
2316         /*
2317          * NOTE: Although we can get the priority field, using it
2318          * here is not a good idea, since it limits the pages we can scan.
2319          * if we don't reclaim here, the shrink_zone from balance_pgdat
2320          * will pick up pages from other mem cgroup's as well. We hack
2321          * the priority and make it zero.
2322          */
2323         shrink_zone(0, zone, &sc);
2324
2325         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2326
2327         *nr_scanned = sc.nr_scanned;
2328         return sc.nr_reclaimed;
2329 }
2330
2331 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2332                                            gfp_t gfp_mask,
2333                                            bool noswap)
2334 {
2335         struct zonelist *zonelist;
2336         unsigned long nr_reclaimed;
2337         int nid;
2338         struct scan_control sc = {
2339                 .may_writepage = !laptop_mode,
2340                 .may_unmap = 1,
2341                 .may_swap = !noswap,
2342                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2343                 .order = 0,
2344                 .mem_cgroup = mem_cont,
2345                 .nodemask = NULL, /* we don't care the placement */
2346                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2347                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2348         };
2349         struct shrink_control shrink = {
2350                 .gfp_mask = sc.gfp_mask,
2351         };
2352
2353         /*
2354          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2355          * take care of from where we get pages. So the node where we start the
2356          * scan does not need to be the current node.
2357          */
2358         nid = mem_cgroup_select_victim_node(mem_cont);
2359
2360         zonelist = NODE_DATA(nid)->node_zonelists;
2361
2362         trace_mm_vmscan_memcg_reclaim_begin(0,
2363                                             sc.may_writepage,
2364                                             sc.gfp_mask);
2365
2366         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2367
2368         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2369
2370         return nr_reclaimed;
2371 }
2372 #endif
2373
2374 /*
2375  * pgdat_balanced is used when checking if a node is balanced for high-order
2376  * allocations. Only zones that meet watermarks and are in a zone allowed
2377  * by the callers classzone_idx are added to balanced_pages. The total of
2378  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2379  * for the node to be considered balanced. Forcing all zones to be balanced
2380  * for high orders can cause excessive reclaim when there are imbalanced zones.
2381  * The choice of 25% is due to
2382  *   o a 16M DMA zone that is balanced will not balance a zone on any
2383  *     reasonable sized machine
2384  *   o On all other machines, the top zone must be at least a reasonable
2385  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2386  *     would need to be at least 256M for it to be balance a whole node.
2387  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2388  *     to balance a node on its own. These seemed like reasonable ratios.
2389  */
2390 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2391                                                 int classzone_idx)
2392 {
2393         unsigned long present_pages = 0;
2394         int i;
2395
2396         for (i = 0; i <= classzone_idx; i++)
2397                 present_pages += pgdat->node_zones[i].present_pages;
2398
2399         /* A special case here: if zone has no page, we think it's balanced */
2400         return balanced_pages >= (present_pages >> 2);
2401 }
2402
2403 /* is kswapd sleeping prematurely? */
2404 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2405                                         int classzone_idx)
2406 {
2407         int i;
2408         unsigned long balanced = 0;
2409         bool all_zones_ok = true;
2410
2411         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2412         if (remaining)
2413                 return true;
2414
2415         /* Check the watermark levels */
2416         for (i = 0; i <= classzone_idx; i++) {
2417                 struct zone *zone = pgdat->node_zones + i;
2418
2419                 if (!populated_zone(zone))
2420                         continue;
2421
2422                 /*
2423                  * balance_pgdat() skips over all_unreclaimable after
2424                  * DEF_PRIORITY. Effectively, it considers them balanced so
2425                  * they must be considered balanced here as well if kswapd
2426                  * is to sleep
2427                  */
2428                 if (zone->all_unreclaimable) {
2429                         balanced += zone->present_pages;
2430                         continue;
2431                 }
2432
2433                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2434                                                         i, 0))
2435                         all_zones_ok = false;
2436                 else
2437                         balanced += zone->present_pages;
2438         }
2439
2440         /*
2441          * For high-order requests, the balanced zones must contain at least
2442          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2443          * must be balanced
2444          */
2445         if (order)
2446                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2447         else
2448                 return !all_zones_ok;
2449 }
2450
2451 /*
2452  * For kswapd, balance_pgdat() will work across all this node's zones until
2453  * they are all at high_wmark_pages(zone).
2454  *
2455  * Returns the final order kswapd was reclaiming at
2456  *
2457  * There is special handling here for zones which are full of pinned pages.
2458  * This can happen if the pages are all mlocked, or if they are all used by
2459  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2460  * What we do is to detect the case where all pages in the zone have been
2461  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2462  * dead and from now on, only perform a short scan.  Basically we're polling
2463  * the zone for when the problem goes away.
2464  *
2465  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2466  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2467  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2468  * lower zones regardless of the number of free pages in the lower zones. This
2469  * interoperates with the page allocator fallback scheme to ensure that aging
2470  * of pages is balanced across the zones.
2471  */
2472 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2473                                                         int *classzone_idx)
2474 {
2475         int all_zones_ok;
2476         unsigned long balanced;
2477         int priority;
2478         int i;
2479         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2480         unsigned long total_scanned;
2481         struct reclaim_state *reclaim_state = current->reclaim_state;
2482         unsigned long nr_soft_reclaimed;
2483         unsigned long nr_soft_scanned;
2484         struct scan_control sc = {
2485                 .gfp_mask = GFP_KERNEL,
2486                 .may_unmap = 1,
2487                 .may_swap = 1,
2488                 /*
2489                  * kswapd doesn't want to be bailed out while reclaim. because
2490                  * we want to put equal scanning pressure on each zone.
2491                  */
2492                 .nr_to_reclaim = ULONG_MAX,
2493                 .order = order,
2494                 .mem_cgroup = NULL,
2495         };
2496         struct shrink_control shrink = {
2497                 .gfp_mask = sc.gfp_mask,
2498         };
2499 loop_again:
2500         total_scanned = 0;
2501         sc.nr_reclaimed = 0;
2502         sc.may_writepage = !laptop_mode;
2503         count_vm_event(PAGEOUTRUN);
2504
2505         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2506                 unsigned long lru_pages = 0;
2507                 int has_under_min_watermark_zone = 0;
2508
2509                 /* The swap token gets in the way of swapout... */
2510                 if (!priority)
2511                         disable_swap_token(NULL);
2512
2513                 all_zones_ok = 1;
2514                 balanced = 0;
2515
2516                 /*
2517                  * Scan in the highmem->dma direction for the highest
2518                  * zone which needs scanning
2519                  */
2520                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2521                         struct zone *zone = pgdat->node_zones + i;
2522
2523                         if (!populated_zone(zone))
2524                                 continue;
2525
2526                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2527                                 continue;
2528
2529                         /*
2530                          * Do some background aging of the anon list, to give
2531                          * pages a chance to be referenced before reclaiming.
2532                          */
2533                         if (inactive_anon_is_low(zone, &sc))
2534                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2535                                                         &sc, priority, 0);
2536
2537                         if (!zone_watermark_ok_safe(zone, order,
2538                                         high_wmark_pages(zone), 0, 0)) {
2539                                 end_zone = i;
2540                                 break;
2541                         } else {
2542                                 /* If balanced, clear the congested flag */
2543                                 zone_clear_flag(zone, ZONE_CONGESTED);
2544                         }
2545                 }
2546                 if (i < 0)
2547                         goto out;
2548
2549                 for (i = 0; i <= end_zone; i++) {
2550                         struct zone *zone = pgdat->node_zones + i;
2551
2552                         lru_pages += zone_reclaimable_pages(zone);
2553                 }
2554
2555                 /*
2556                  * Now scan the zone in the dma->highmem direction, stopping
2557                  * at the last zone which needs scanning.
2558                  *
2559                  * We do this because the page allocator works in the opposite
2560                  * direction.  This prevents the page allocator from allocating
2561                  * pages behind kswapd's direction of progress, which would
2562                  * cause too much scanning of the lower zones.
2563                  */
2564                 for (i = 0; i <= end_zone; i++) {
2565                         struct zone *zone = pgdat->node_zones + i;
2566                         int nr_slab;
2567                         unsigned long balance_gap;
2568
2569                         if (!populated_zone(zone))
2570                                 continue;
2571
2572                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2573                                 continue;
2574
2575                         sc.nr_scanned = 0;
2576
2577                         nr_soft_scanned = 0;
2578                         /*
2579                          * Call soft limit reclaim before calling shrink_zone.
2580                          */
2581                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2582                                                         order, sc.gfp_mask,
2583                                                         &nr_soft_scanned);
2584                         sc.nr_reclaimed += nr_soft_reclaimed;
2585                         total_scanned += nr_soft_scanned;
2586
2587                         /*
2588                          * We put equal pressure on every zone, unless
2589                          * one zone has way too many pages free
2590                          * already. The "too many pages" is defined
2591                          * as the high wmark plus a "gap" where the
2592                          * gap is either the low watermark or 1%
2593                          * of the zone, whichever is smaller.
2594                          */
2595                         balance_gap = min(low_wmark_pages(zone),
2596                                 (zone->present_pages +
2597                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2598                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2599                         if (!zone_watermark_ok_safe(zone, order,
2600                                         high_wmark_pages(zone) + balance_gap,
2601                                         end_zone, 0)) {
2602                                 shrink_zone(priority, zone, &sc);
2603
2604                                 reclaim_state->reclaimed_slab = 0;
2605                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2606                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2607                                 total_scanned += sc.nr_scanned;
2608
2609                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2610                                         zone->all_unreclaimable = 1;
2611                         }
2612
2613                         /*
2614                          * If we've done a decent amount of scanning and
2615                          * the reclaim ratio is low, start doing writepage
2616                          * even in laptop mode
2617                          */
2618                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2619                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2620                                 sc.may_writepage = 1;
2621
2622                         if (zone->all_unreclaimable) {
2623                                 if (end_zone && end_zone == i)
2624                                         end_zone--;
2625                                 continue;
2626                         }
2627
2628                         if (!zone_watermark_ok_safe(zone, order,
2629                                         high_wmark_pages(zone), end_zone, 0)) {
2630                                 all_zones_ok = 0;
2631                                 /*
2632                                  * We are still under min water mark.  This
2633                                  * means that we have a GFP_ATOMIC allocation
2634                                  * failure risk. Hurry up!
2635                                  */
2636                                 if (!zone_watermark_ok_safe(zone, order,
2637                                             min_wmark_pages(zone), end_zone, 0))
2638                                         has_under_min_watermark_zone = 1;
2639                         } else {
2640                                 /*
2641                                  * If a zone reaches its high watermark,
2642                                  * consider it to be no longer congested. It's
2643                                  * possible there are dirty pages backed by
2644                                  * congested BDIs but as pressure is relieved,
2645                                  * spectulatively avoid congestion waits
2646                                  */
2647                                 zone_clear_flag(zone, ZONE_CONGESTED);
2648                                 if (i <= *classzone_idx)
2649                                         balanced += zone->present_pages;
2650                         }
2651
2652                 }
2653                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2654                         break;          /* kswapd: all done */
2655                 /*
2656                  * OK, kswapd is getting into trouble.  Take a nap, then take
2657                  * another pass across the zones.
2658                  */
2659                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2660                         if (has_under_min_watermark_zone)
2661                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2662                         else
2663                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2664                 }
2665
2666                 /*
2667                  * We do this so kswapd doesn't build up large priorities for
2668                  * example when it is freeing in parallel with allocators. It
2669                  * matches the direct reclaim path behaviour in terms of impact
2670                  * on zone->*_priority.
2671                  */
2672                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2673                         break;
2674         }
2675 out:
2676
2677         /*
2678          * order-0: All zones must meet high watermark for a balanced node
2679          * high-order: Balanced zones must make up at least 25% of the node
2680          *             for the node to be balanced
2681          */
2682         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2683                 cond_resched();
2684
2685                 try_to_freeze();
2686
2687                 /*
2688                  * Fragmentation may mean that the system cannot be
2689                  * rebalanced for high-order allocations in all zones.
2690                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2691                  * it means the zones have been fully scanned and are still
2692                  * not balanced. For high-order allocations, there is
2693                  * little point trying all over again as kswapd may
2694                  * infinite loop.
2695                  *
2696                  * Instead, recheck all watermarks at order-0 as they
2697                  * are the most important. If watermarks are ok, kswapd will go
2698                  * back to sleep. High-order users can still perform direct
2699                  * reclaim if they wish.
2700                  */
2701                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2702                         order = sc.order = 0;
2703
2704                 goto loop_again;
2705         }
2706
2707         /*
2708          * If kswapd was reclaiming at a higher order, it has the option of
2709          * sleeping without all zones being balanced. Before it does, it must
2710          * ensure that the watermarks for order-0 on *all* zones are met and
2711          * that the congestion flags are cleared. The congestion flag must
2712          * be cleared as kswapd is the only mechanism that clears the flag
2713          * and it is potentially going to sleep here.
2714          */
2715         if (order) {
2716                 for (i = 0; i <= end_zone; i++) {
2717                         struct zone *zone = pgdat->node_zones + i;
2718
2719                         if (!populated_zone(zone))
2720                                 continue;
2721
2722                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2723                                 continue;
2724
2725                         /* Confirm the zone is balanced for order-0 */
2726                         if (!zone_watermark_ok(zone, 0,
2727                                         high_wmark_pages(zone), 0, 0)) {
2728                                 order = sc.order = 0;
2729                                 goto loop_again;
2730                         }
2731
2732                         /* If balanced, clear the congested flag */
2733                         zone_clear_flag(zone, ZONE_CONGESTED);
2734                         if (i <= *classzone_idx)
2735                                 balanced += zone->present_pages;
2736                 }
2737         }
2738
2739         /*
2740          * Return the order we were reclaiming at so sleeping_prematurely()
2741          * makes a decision on the order we were last reclaiming at. However,
2742          * if another caller entered the allocator slow path while kswapd
2743          * was awake, order will remain at the higher level
2744          */
2745         *classzone_idx = end_zone;
2746         return order;
2747 }
2748
2749 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2750 {
2751         long remaining = 0;
2752         DEFINE_WAIT(wait);
2753
2754         if (freezing(current) || kthread_should_stop())
2755                 return;
2756
2757         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2758
2759         /* Try to sleep for a short interval */
2760         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2761                 remaining = schedule_timeout(HZ/10);
2762                 finish_wait(&pgdat->kswapd_wait, &wait);
2763                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2764         }
2765
2766         /*
2767          * After a short sleep, check if it was a premature sleep. If not, then
2768          * go fully to sleep until explicitly woken up.
2769          */
2770         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2771                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2772
2773                 /*
2774                  * vmstat counters are not perfectly accurate and the estimated
2775                  * value for counters such as NR_FREE_PAGES can deviate from the
2776                  * true value by nr_online_cpus * threshold. To avoid the zone
2777                  * watermarks being breached while under pressure, we reduce the
2778                  * per-cpu vmstat threshold while kswapd is awake and restore
2779                  * them before going back to sleep.
2780                  */
2781                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2782                 schedule();
2783                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2784         } else {
2785                 if (remaining)
2786                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2787                 else
2788                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2789         }
2790         finish_wait(&pgdat->kswapd_wait, &wait);
2791 }
2792
2793 /*
2794  * The background pageout daemon, started as a kernel thread
2795  * from the init process.
2796  *
2797  * This basically trickles out pages so that we have _some_
2798  * free memory available even if there is no other activity
2799  * that frees anything up. This is needed for things like routing
2800  * etc, where we otherwise might have all activity going on in
2801  * asynchronous contexts that cannot page things out.
2802  *
2803  * If there are applications that are active memory-allocators
2804  * (most normal use), this basically shouldn't matter.
2805  */
2806 static int kswapd(void *p)
2807 {
2808         unsigned long order, new_order;
2809         unsigned balanced_order;
2810         int classzone_idx, new_classzone_idx;
2811         int balanced_classzone_idx;
2812         pg_data_t *pgdat = (pg_data_t*)p;
2813         struct task_struct *tsk = current;
2814
2815         struct reclaim_state reclaim_state = {
2816                 .reclaimed_slab = 0,
2817         };
2818         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2819
2820         lockdep_set_current_reclaim_state(GFP_KERNEL);
2821
2822         if (!cpumask_empty(cpumask))
2823                 set_cpus_allowed_ptr(tsk, cpumask);
2824         current->reclaim_state = &reclaim_state;
2825
2826         /*
2827          * Tell the memory management that we're a "memory allocator",
2828          * and that if we need more memory we should get access to it
2829          * regardless (see "__alloc_pages()"). "kswapd" should
2830          * never get caught in the normal page freeing logic.
2831          *
2832          * (Kswapd normally doesn't need memory anyway, but sometimes
2833          * you need a small amount of memory in order to be able to
2834          * page out something else, and this flag essentially protects
2835          * us from recursively trying to free more memory as we're
2836          * trying to free the first piece of memory in the first place).
2837          */
2838         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2839         set_freezable();
2840
2841         order = new_order = 0;
2842         balanced_order = 0;
2843         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2844         balanced_classzone_idx = classzone_idx;
2845         for ( ; ; ) {
2846                 int ret;
2847
2848                 /*
2849                  * If the last balance_pgdat was unsuccessful it's unlikely a
2850                  * new request of a similar or harder type will succeed soon
2851                  * so consider going to sleep on the basis we reclaimed at
2852                  */
2853                 if (balanced_classzone_idx >= new_classzone_idx &&
2854                                         balanced_order == new_order) {
2855                         new_order = pgdat->kswapd_max_order;
2856                         new_classzone_idx = pgdat->classzone_idx;
2857                         pgdat->kswapd_max_order =  0;
2858                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2859                 }
2860
2861                 if (order < new_order || classzone_idx > new_classzone_idx) {
2862                         /*
2863                          * Don't sleep if someone wants a larger 'order'
2864                          * allocation or has tigher zone constraints
2865                          */
2866                         order = new_order;
2867                         classzone_idx = new_classzone_idx;
2868                 } else {
2869                         kswapd_try_to_sleep(pgdat, balanced_order,
2870                                                 balanced_classzone_idx);
2871                         order = pgdat->kswapd_max_order;
2872                         classzone_idx = pgdat->classzone_idx;
2873                         new_order = order;
2874                         new_classzone_idx = classzone_idx;
2875                         pgdat->kswapd_max_order = 0;
2876                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2877                 }
2878
2879                 ret = try_to_freeze();
2880                 if (kthread_should_stop())
2881                         break;
2882
2883                 /*
2884                  * We can speed up thawing tasks if we don't call balance_pgdat
2885                  * after returning from the refrigerator
2886                  */
2887                 if (!ret) {
2888                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2889                         balanced_classzone_idx = classzone_idx;
2890                         balanced_order = balance_pgdat(pgdat, order,
2891                                                 &balanced_classzone_idx);
2892                 }
2893         }
2894         return 0;
2895 }
2896
2897 /*
2898  * A zone is low on free memory, so wake its kswapd task to service it.
2899  */
2900 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2901 {
2902         pg_data_t *pgdat;
2903
2904         if (!populated_zone(zone))
2905                 return;
2906
2907         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2908                 return;
2909         pgdat = zone->zone_pgdat;
2910         if (pgdat->kswapd_max_order < order) {
2911                 pgdat->kswapd_max_order = order;
2912                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2913         }
2914         if (!waitqueue_active(&pgdat->kswapd_wait))
2915                 return;
2916         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2917                 return;
2918
2919         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2920         wake_up_interruptible(&pgdat->kswapd_wait);
2921 }
2922
2923 /*
2924  * The reclaimable count would be mostly accurate.
2925  * The less reclaimable pages may be
2926  * - mlocked pages, which will be moved to unevictable list when encountered
2927  * - mapped pages, which may require several travels to be reclaimed
2928  * - dirty pages, which is not "instantly" reclaimable
2929  */
2930 unsigned long global_reclaimable_pages(void)
2931 {
2932         int nr;
2933
2934         nr = global_page_state(NR_ACTIVE_FILE) +
2935              global_page_state(NR_INACTIVE_FILE);
2936
2937         if (nr_swap_pages > 0)
2938                 nr += global_page_state(NR_ACTIVE_ANON) +
2939                       global_page_state(NR_INACTIVE_ANON);
2940
2941         return nr;
2942 }
2943
2944 unsigned long zone_reclaimable_pages(struct zone *zone)
2945 {
2946         int nr;
2947
2948         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2949              zone_page_state(zone, NR_INACTIVE_FILE);
2950
2951         if (nr_swap_pages > 0)
2952                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2953                       zone_page_state(zone, NR_INACTIVE_ANON);
2954
2955         return nr;
2956 }
2957
2958 #ifdef CONFIG_HIBERNATION
2959 /*
2960  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2961  * freed pages.
2962  *
2963  * Rather than trying to age LRUs the aim is to preserve the overall
2964  * LRU order by reclaiming preferentially
2965  * inactive > active > active referenced > active mapped
2966  */
2967 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2968 {
2969         struct reclaim_state reclaim_state;
2970         struct scan_control sc = {
2971                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2972                 .may_swap = 1,
2973                 .may_unmap = 1,
2974                 .may_writepage = 1,
2975                 .nr_to_reclaim = nr_to_reclaim,
2976                 .hibernation_mode = 1,
2977                 .order = 0,
2978         };
2979         struct shrink_control shrink = {
2980                 .gfp_mask = sc.gfp_mask,
2981         };
2982         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2983         struct task_struct *p = current;
2984         unsigned long nr_reclaimed;
2985
2986         p->flags |= PF_MEMALLOC;
2987         lockdep_set_current_reclaim_state(sc.gfp_mask);
2988         reclaim_state.reclaimed_slab = 0;
2989         p->reclaim_state = &reclaim_state;
2990
2991         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2992
2993         p->reclaim_state = NULL;
2994         lockdep_clear_current_reclaim_state();
2995         p->flags &= ~PF_MEMALLOC;
2996
2997         return nr_reclaimed;
2998 }
2999 #endif /* CONFIG_HIBERNATION */
3000
3001 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3002    not required for correctness.  So if the last cpu in a node goes
3003    away, we get changed to run anywhere: as the first one comes back,
3004    restore their cpu bindings. */
3005 static int __devinit cpu_callback(struct notifier_block *nfb,
3006                                   unsigned long action, void *hcpu)
3007 {
3008         int nid;
3009
3010         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3011                 for_each_node_state(nid, N_HIGH_MEMORY) {
3012                         pg_data_t *pgdat = NODE_DATA(nid);
3013                         const struct cpumask *mask;
3014
3015                         mask = cpumask_of_node(pgdat->node_id);
3016
3017                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3018                                 /* One of our CPUs online: restore mask */
3019                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3020                 }
3021         }
3022         return NOTIFY_OK;
3023 }
3024
3025 /*
3026  * This kswapd start function will be called by init and node-hot-add.
3027  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3028  */
3029 int kswapd_run(int nid)
3030 {
3031         pg_data_t *pgdat = NODE_DATA(nid);
3032         int ret = 0;
3033
3034         if (pgdat->kswapd)
3035                 return 0;
3036
3037         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3038         if (IS_ERR(pgdat->kswapd)) {
3039                 /* failure at boot is fatal */
3040                 BUG_ON(system_state == SYSTEM_BOOTING);
3041                 printk("Failed to start kswapd on node %d\n",nid);
3042                 ret = -1;
3043         }
3044         return ret;
3045 }
3046
3047 /*
3048  * Called by memory hotplug when all memory in a node is offlined.
3049  */
3050 void kswapd_stop(int nid)
3051 {
3052         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3053
3054         if (kswapd)
3055                 kthread_stop(kswapd);
3056 }
3057
3058 static int __init kswapd_init(void)
3059 {
3060         int nid;
3061
3062         swap_setup();
3063         for_each_node_state(nid, N_HIGH_MEMORY)
3064                 kswapd_run(nid);
3065         hotcpu_notifier(cpu_callback, 0);
3066         return 0;
3067 }
3068
3069 module_init(kswapd_init)
3070
3071 #ifdef CONFIG_NUMA
3072 /*
3073  * Zone reclaim mode
3074  *
3075  * If non-zero call zone_reclaim when the number of free pages falls below
3076  * the watermarks.
3077  */
3078 int zone_reclaim_mode __read_mostly;
3079
3080 #define RECLAIM_OFF 0
3081 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3082 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3083 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3084
3085 /*
3086  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3087  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3088  * a zone.
3089  */
3090 #define ZONE_RECLAIM_PRIORITY 4
3091
3092 /*
3093  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3094  * occur.
3095  */
3096 int sysctl_min_unmapped_ratio = 1;
3097
3098 /*
3099  * If the number of slab pages in a zone grows beyond this percentage then
3100  * slab reclaim needs to occur.
3101  */
3102 int sysctl_min_slab_ratio = 5;
3103
3104 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3105 {
3106         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3107         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3108                 zone_page_state(zone, NR_ACTIVE_FILE);
3109
3110         /*
3111          * It's possible for there to be more file mapped pages than
3112          * accounted for by the pages on the file LRU lists because
3113          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3114          */
3115         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3116 }
3117
3118 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3119 static long zone_pagecache_reclaimable(struct zone *zone)
3120 {
3121         long nr_pagecache_reclaimable;
3122         long delta = 0;
3123
3124         /*
3125          * If RECLAIM_SWAP is set, then all file pages are considered
3126          * potentially reclaimable. Otherwise, we have to worry about
3127          * pages like swapcache and zone_unmapped_file_pages() provides
3128          * a better estimate
3129          */
3130         if (zone_reclaim_mode & RECLAIM_SWAP)
3131                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3132         else
3133                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3134
3135         /* If we can't clean pages, remove dirty pages from consideration */
3136         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3137                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3138
3139         /* Watch for any possible underflows due to delta */
3140         if (unlikely(delta > nr_pagecache_reclaimable))
3141                 delta = nr_pagecache_reclaimable;
3142
3143         return nr_pagecache_reclaimable - delta;
3144 }
3145
3146 /*
3147  * Try to free up some pages from this zone through reclaim.
3148  */
3149 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3150 {
3151         /* Minimum pages needed in order to stay on node */
3152         const unsigned long nr_pages = 1 << order;
3153         struct task_struct *p = current;
3154         struct reclaim_state reclaim_state;
3155         int priority;
3156         struct scan_control sc = {
3157                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3158                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3159                 .may_swap = 1,
3160                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3161                                        SWAP_CLUSTER_MAX),
3162                 .gfp_mask = gfp_mask,
3163                 .order = order,
3164         };
3165         struct shrink_control shrink = {
3166                 .gfp_mask = sc.gfp_mask,
3167         };
3168         unsigned long nr_slab_pages0, nr_slab_pages1;
3169
3170         cond_resched();
3171         /*
3172          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3173          * and we also need to be able to write out pages for RECLAIM_WRITE
3174          * and RECLAIM_SWAP.
3175          */
3176         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3177         lockdep_set_current_reclaim_state(gfp_mask);
3178         reclaim_state.reclaimed_slab = 0;
3179         p->reclaim_state = &reclaim_state;
3180
3181         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3182                 /*
3183                  * Free memory by calling shrink zone with increasing
3184                  * priorities until we have enough memory freed.
3185                  */
3186                 priority = ZONE_RECLAIM_PRIORITY;
3187                 do {
3188                         shrink_zone(priority, zone, &sc);
3189                         priority--;
3190                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3191         }
3192
3193         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3194         if (nr_slab_pages0 > zone->min_slab_pages) {
3195                 /*
3196                  * shrink_slab() does not currently allow us to determine how
3197                  * many pages were freed in this zone. So we take the current
3198                  * number of slab pages and shake the slab until it is reduced
3199                  * by the same nr_pages that we used for reclaiming unmapped
3200                  * pages.
3201                  *
3202                  * Note that shrink_slab will free memory on all zones and may
3203                  * take a long time.
3204                  */
3205                 for (;;) {
3206                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3207
3208                         /* No reclaimable slab or very low memory pressure */
3209                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3210                                 break;
3211
3212                         /* Freed enough memory */
3213                         nr_slab_pages1 = zone_page_state(zone,
3214                                                         NR_SLAB_RECLAIMABLE);
3215                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3216                                 break;
3217                 }
3218
3219                 /*
3220                  * Update nr_reclaimed by the number of slab pages we
3221                  * reclaimed from this zone.
3222                  */
3223                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3224                 if (nr_slab_pages1 < nr_slab_pages0)
3225                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3226         }
3227
3228         p->reclaim_state = NULL;
3229         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3230         lockdep_clear_current_reclaim_state();
3231         return sc.nr_reclaimed >= nr_pages;
3232 }
3233
3234 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3235 {
3236         int node_id;
3237         int ret;
3238
3239         /*
3240          * Zone reclaim reclaims unmapped file backed pages and
3241          * slab pages if we are over the defined limits.
3242          *
3243          * A small portion of unmapped file backed pages is needed for
3244          * file I/O otherwise pages read by file I/O will be immediately
3245          * thrown out if the zone is overallocated. So we do not reclaim
3246          * if less than a specified percentage of the zone is used by
3247          * unmapped file backed pages.
3248          */
3249         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3250             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3251                 return ZONE_RECLAIM_FULL;
3252
3253         if (zone->all_unreclaimable)
3254                 return ZONE_RECLAIM_FULL;
3255
3256         /*
3257          * Do not scan if the allocation should not be delayed.
3258          */
3259         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3260                 return ZONE_RECLAIM_NOSCAN;
3261
3262         /*
3263          * Only run zone reclaim on the local zone or on zones that do not
3264          * have associated processors. This will favor the local processor
3265          * over remote processors and spread off node memory allocations
3266          * as wide as possible.
3267          */
3268         node_id = zone_to_nid(zone);
3269         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3270                 return ZONE_RECLAIM_NOSCAN;
3271
3272         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3273                 return ZONE_RECLAIM_NOSCAN;
3274
3275         ret = __zone_reclaim(zone, gfp_mask, order);
3276         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3277
3278         if (!ret)
3279                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3280
3281         return ret;
3282 }
3283 #endif
3284
3285 /*
3286  * page_evictable - test whether a page is evictable
3287  * @page: the page to test
3288  * @vma: the VMA in which the page is or will be mapped, may be NULL
3289  *
3290  * Test whether page is evictable--i.e., should be placed on active/inactive
3291  * lists vs unevictable list.  The vma argument is !NULL when called from the
3292  * fault path to determine how to instantate a new page.
3293  *
3294  * Reasons page might not be evictable:
3295  * (1) page's mapping marked unevictable
3296  * (2) page is part of an mlocked VMA
3297  *
3298  */
3299 int page_evictable(struct page *page, struct vm_area_struct *vma)
3300 {
3301
3302         if (mapping_unevictable(page_mapping(page)))
3303                 return 0;
3304
3305         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3306                 return 0;
3307
3308         return 1;
3309 }
3310
3311 /**
3312  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3313  * @page: page to check evictability and move to appropriate lru list
3314  * @zone: zone page is in
3315  *
3316  * Checks a page for evictability and moves the page to the appropriate
3317  * zone lru list.
3318  *
3319  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3320  * have PageUnevictable set.
3321  */
3322 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3323 {
3324         VM_BUG_ON(PageActive(page));
3325
3326 retry:
3327         ClearPageUnevictable(page);
3328         if (page_evictable(page, NULL)) {
3329                 enum lru_list l = page_lru_base_type(page);
3330
3331                 __dec_zone_state(zone, NR_UNEVICTABLE);
3332                 list_move(&page->lru, &zone->lru[l].list);
3333                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3334                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3335                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3336         } else {
3337                 /*
3338                  * rotate unevictable list
3339                  */
3340                 SetPageUnevictable(page);
3341                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3342                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3343                 if (page_evictable(page, NULL))
3344                         goto retry;
3345         }
3346 }
3347
3348 /**
3349  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3350  * @mapping: struct address_space to scan for evictable pages
3351  *
3352  * Scan all pages in mapping.  Check unevictable pages for
3353  * evictability and move them to the appropriate zone lru list.
3354  */
3355 void scan_mapping_unevictable_pages(struct address_space *mapping)
3356 {
3357         pgoff_t next = 0;
3358         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3359                          PAGE_CACHE_SHIFT;
3360         struct zone *zone;
3361         struct pagevec pvec;
3362
3363         if (mapping->nrpages == 0)
3364                 return;
3365
3366         pagevec_init(&pvec, 0);
3367         while (next < end &&
3368                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3369                 int i;
3370                 int pg_scanned = 0;
3371
3372                 zone = NULL;
3373
3374                 for (i = 0; i < pagevec_count(&pvec); i++) {
3375                         struct page *page = pvec.pages[i];
3376                         pgoff_t page_index = page->index;
3377                         struct zone *pagezone = page_zone(page);
3378
3379                         pg_scanned++;
3380                         if (page_index > next)
3381                                 next = page_index;
3382                         next++;
3383
3384                         if (pagezone != zone) {
3385                                 if (zone)
3386                                         spin_unlock_irq(&zone->lru_lock);
3387                                 zone = pagezone;
3388                                 spin_lock_irq(&zone->lru_lock);
3389                         }
3390
3391                         if (PageLRU(page) && PageUnevictable(page))
3392                                 check_move_unevictable_page(page, zone);
3393                 }
3394                 if (zone)
3395                         spin_unlock_irq(&zone->lru_lock);
3396                 pagevec_release(&pvec);
3397
3398                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3399         }
3400
3401 }
3402
3403 /**
3404  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3405  * @zone - zone of which to scan the unevictable list
3406  *
3407  * Scan @zone's unevictable LRU lists to check for pages that have become
3408  * evictable.  Move those that have to @zone's inactive list where they
3409  * become candidates for reclaim, unless shrink_inactive_zone() decides
3410  * to reactivate them.  Pages that are still unevictable are rotated
3411  * back onto @zone's unevictable list.
3412  */
3413 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3414 static void scan_zone_unevictable_pages(struct zone *zone)
3415 {
3416         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3417         unsigned long scan;
3418         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3419
3420         while (nr_to_scan > 0) {
3421                 unsigned long batch_size = min(nr_to_scan,
3422                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3423
3424                 spin_lock_irq(&zone->lru_lock);
3425                 for (scan = 0;  scan < batch_size; scan++) {
3426                         struct page *page = lru_to_page(l_unevictable);
3427
3428                         if (!trylock_page(page))
3429                                 continue;
3430
3431                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3432
3433                         if (likely(PageLRU(page) && PageUnevictable(page)))
3434                                 check_move_unevictable_page(page, zone);
3435
3436                         unlock_page(page);
3437                 }
3438                 spin_unlock_irq(&zone->lru_lock);
3439
3440                 nr_to_scan -= batch_size;
3441         }
3442 }
3443
3444
3445 /**
3446  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3447  *
3448  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3449  * pages that have become evictable.  Move those back to the zones'
3450  * inactive list where they become candidates for reclaim.
3451  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3452  * and we add swap to the system.  As such, it runs in the context of a task
3453  * that has possibly/probably made some previously unevictable pages
3454  * evictable.
3455  */
3456 static void scan_all_zones_unevictable_pages(void)
3457 {
3458         struct zone *zone;
3459
3460         for_each_zone(zone) {
3461                 scan_zone_unevictable_pages(zone);
3462         }
3463 }
3464
3465 /*
3466  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3467  * all nodes' unevictable lists for evictable pages
3468  */
3469 unsigned long scan_unevictable_pages;
3470
3471 int scan_unevictable_handler(struct ctl_table *table, int write,
3472                            void __user *buffer,
3473                            size_t *length, loff_t *ppos)
3474 {
3475         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3476
3477         if (write && *(unsigned long *)table->data)
3478                 scan_all_zones_unevictable_pages();
3479
3480         scan_unevictable_pages = 0;
3481         return 0;
3482 }
3483
3484 #ifdef CONFIG_NUMA
3485 /*
3486  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3487  * a specified node's per zone unevictable lists for evictable pages.
3488  */
3489
3490 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3491                                           struct sysdev_attribute *attr,
3492                                           char *buf)
3493 {
3494         return sprintf(buf, "0\n");     /* always zero; should fit... */
3495 }
3496
3497 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3498                                            struct sysdev_attribute *attr,
3499                                         const char *buf, size_t count)
3500 {
3501         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3502         struct zone *zone;
3503         unsigned long res;
3504         unsigned long req = strict_strtoul(buf, 10, &res);
3505
3506         if (req || !res)
3507                 return 1; /* Invalid input or zero is no-op */
3508
3509         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3510                 if (!populated_zone(zone))
3511                         continue;
3512                 scan_zone_unevictable_pages(zone);
3513         }
3514         return 1;
3515 }
3516
3517
3518 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3519                         read_scan_unevictable_node,
3520                         write_scan_unevictable_node);
3521
3522 int scan_unevictable_register_node(struct node *node)
3523 {
3524         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3525 }
3526
3527 void scan_unevictable_unregister_node(struct node *node)
3528 {
3529         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3530 }
3531 #endif