]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmscan.c
Workloads that are allocating frequently and writing files place a large
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162                                                   struct scan_control *sc)
163 {
164         if (!scanning_global_lru(sc))
165                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167         return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171                                 struct scan_control *sc, enum lru_list lru)
172 {
173         if (!scanning_global_lru(sc))
174                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         shrinker->nr = 0;
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 unsigned long total_scan;
251                 unsigned long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 /*
259                  * copy the current shrinker scan count into a local variable
260                  * and zero it so that other concurrent shrinker invocations
261                  * don't also do this scanning work.
262                  */
263                 do {
264                         nr = shrinker->nr;
265                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267                 total_scan = nr;
268                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
270                 delta *= max_pass;
271                 do_div(delta, lru_pages + 1);
272                 total_scan += delta;
273                 if (total_scan < 0) {
274                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
275                                "delete nr=%ld\n",
276                                shrinker->shrink, total_scan);
277                         total_scan = max_pass;
278                 }
279
280                 /*
281                  * We need to avoid excessive windup on filesystem shrinkers
282                  * due to large numbers of GFP_NOFS allocations causing the
283                  * shrinkers to return -1 all the time. This results in a large
284                  * nr being built up so when a shrink that can do some work
285                  * comes along it empties the entire cache due to nr >>>
286                  * max_pass.  This is bad for sustaining a working set in
287                  * memory.
288                  *
289                  * Hence only allow the shrinker to scan the entire cache when
290                  * a large delta change is calculated directly.
291                  */
292                 if (delta < max_pass / 4)
293                         total_scan = min(total_scan, max_pass / 2);
294
295                 /*
296                  * Avoid risking looping forever due to too large nr value:
297                  * never try to free more than twice the estimate number of
298                  * freeable entries.
299                  */
300                 if (total_scan > max_pass * 2)
301                         total_scan = max_pass * 2;
302
303                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
304                                         nr_pages_scanned, lru_pages,
305                                         max_pass, delta, total_scan);
306
307                 while (total_scan >= batch_size) {
308                         int nr_before;
309
310                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
312                                                         batch_size);
313                         if (shrink_ret == -1)
314                                 break;
315                         if (shrink_ret < nr_before)
316                                 ret += nr_before - shrink_ret;
317                         count_vm_events(SLABS_SCANNED, batch_size);
318                         total_scan -= batch_size;
319
320                         cond_resched();
321                 }
322
323                 /*
324                  * move the unused scan count back into the shrinker in a
325                  * manner that handles concurrent updates. If we exhausted the
326                  * scan, there is no need to do an update.
327                  */
328                 do {
329                         nr = shrinker->nr;
330                         new_nr = total_scan + nr;
331                         if (total_scan <= 0)
332                                 break;
333                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 if (!PageWriteback(page)) {
499                         /* synchronous write or broken a_ops? */
500                         ClearPageReclaim(page);
501                 }
502                 trace_mm_vmscan_writepage(page,
503                         trace_reclaim_flags(page, sc->reclaim_mode));
504                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
505                 return PAGE_SUCCESS;
506         }
507
508         return PAGE_CLEAN;
509 }
510
511 /*
512  * Same as remove_mapping, but if the page is removed from the mapping, it
513  * gets returned with a refcount of 0.
514  */
515 static int __remove_mapping(struct address_space *mapping, struct page *page)
516 {
517         BUG_ON(!PageLocked(page));
518         BUG_ON(mapping != page_mapping(page));
519
520         spin_lock_irq(&mapping->tree_lock);
521         /*
522          * The non racy check for a busy page.
523          *
524          * Must be careful with the order of the tests. When someone has
525          * a ref to the page, it may be possible that they dirty it then
526          * drop the reference. So if PageDirty is tested before page_count
527          * here, then the following race may occur:
528          *
529          * get_user_pages(&page);
530          * [user mapping goes away]
531          * write_to(page);
532          *                              !PageDirty(page)    [good]
533          * SetPageDirty(page);
534          * put_page(page);
535          *                              !page_count(page)   [good, discard it]
536          *
537          * [oops, our write_to data is lost]
538          *
539          * Reversing the order of the tests ensures such a situation cannot
540          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541          * load is not satisfied before that of page->_count.
542          *
543          * Note that if SetPageDirty is always performed via set_page_dirty,
544          * and thus under tree_lock, then this ordering is not required.
545          */
546         if (!page_freeze_refs(page, 2))
547                 goto cannot_free;
548         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549         if (unlikely(PageDirty(page))) {
550                 page_unfreeze_refs(page, 2);
551                 goto cannot_free;
552         }
553
554         if (PageSwapCache(page)) {
555                 swp_entry_t swap = { .val = page_private(page) };
556                 __delete_from_swap_cache(page);
557                 spin_unlock_irq(&mapping->tree_lock);
558                 swapcache_free(swap, page);
559         } else {
560                 void (*freepage)(struct page *);
561
562                 freepage = mapping->a_ops->freepage;
563
564                 __delete_from_page_cache(page);
565                 spin_unlock_irq(&mapping->tree_lock);
566                 mem_cgroup_uncharge_cache_page(page);
567
568                 if (freepage != NULL)
569                         freepage(page);
570         }
571
572         return 1;
573
574 cannot_free:
575         spin_unlock_irq(&mapping->tree_lock);
576         return 0;
577 }
578
579 /*
580  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
581  * someone else has a ref on the page, abort and return 0.  If it was
582  * successfully detached, return 1.  Assumes the caller has a single ref on
583  * this page.
584  */
585 int remove_mapping(struct address_space *mapping, struct page *page)
586 {
587         if (__remove_mapping(mapping, page)) {
588                 /*
589                  * Unfreezing the refcount with 1 rather than 2 effectively
590                  * drops the pagecache ref for us without requiring another
591                  * atomic operation.
592                  */
593                 page_unfreeze_refs(page, 1);
594                 return 1;
595         }
596         return 0;
597 }
598
599 /**
600  * putback_lru_page - put previously isolated page onto appropriate LRU list
601  * @page: page to be put back to appropriate lru list
602  *
603  * Add previously isolated @page to appropriate LRU list.
604  * Page may still be unevictable for other reasons.
605  *
606  * lru_lock must not be held, interrupts must be enabled.
607  */
608 void putback_lru_page(struct page *page)
609 {
610         int lru;
611         int active = !!TestClearPageActive(page);
612         int was_unevictable = PageUnevictable(page);
613
614         VM_BUG_ON(PageLRU(page));
615
616 redo:
617         ClearPageUnevictable(page);
618
619         if (page_evictable(page, NULL)) {
620                 /*
621                  * For evictable pages, we can use the cache.
622                  * In event of a race, worst case is we end up with an
623                  * unevictable page on [in]active list.
624                  * We know how to handle that.
625                  */
626                 lru = active + page_lru_base_type(page);
627                 lru_cache_add_lru(page, lru);
628         } else {
629                 /*
630                  * Put unevictable pages directly on zone's unevictable
631                  * list.
632                  */
633                 lru = LRU_UNEVICTABLE;
634                 add_page_to_unevictable_list(page);
635                 /*
636                  * When racing with an mlock clearing (page is
637                  * unlocked), make sure that if the other thread does
638                  * not observe our setting of PG_lru and fails
639                  * isolation, we see PG_mlocked cleared below and move
640                  * the page back to the evictable list.
641                  *
642                  * The other side is TestClearPageMlocked().
643                  */
644                 smp_mb();
645         }
646
647         /*
648          * page's status can change while we move it among lru. If an evictable
649          * page is on unevictable list, it never be freed. To avoid that,
650          * check after we added it to the list, again.
651          */
652         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
653                 if (!isolate_lru_page(page)) {
654                         put_page(page);
655                         goto redo;
656                 }
657                 /* This means someone else dropped this page from LRU
658                  * So, it will be freed or putback to LRU again. There is
659                  * nothing to do here.
660                  */
661         }
662
663         if (was_unevictable && lru != LRU_UNEVICTABLE)
664                 count_vm_event(UNEVICTABLE_PGRESCUED);
665         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
666                 count_vm_event(UNEVICTABLE_PGCULLED);
667
668         put_page(page);         /* drop ref from isolate */
669 }
670
671 enum page_references {
672         PAGEREF_RECLAIM,
673         PAGEREF_RECLAIM_CLEAN,
674         PAGEREF_KEEP,
675         PAGEREF_ACTIVATE,
676 };
677
678 static enum page_references page_check_references(struct page *page,
679                                                   struct scan_control *sc)
680 {
681         int referenced_ptes, referenced_page;
682         unsigned long vm_flags;
683
684         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
685         referenced_page = TestClearPageReferenced(page);
686
687         /* Lumpy reclaim - ignore references */
688         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
689                 return PAGEREF_RECLAIM;
690
691         /*
692          * Mlock lost the isolation race with us.  Let try_to_unmap()
693          * move the page to the unevictable list.
694          */
695         if (vm_flags & VM_LOCKED)
696                 return PAGEREF_RECLAIM;
697
698         if (referenced_ptes) {
699                 if (PageAnon(page))
700                         return PAGEREF_ACTIVATE;
701                 /*
702                  * All mapped pages start out with page table
703                  * references from the instantiating fault, so we need
704                  * to look twice if a mapped file page is used more
705                  * than once.
706                  *
707                  * Mark it and spare it for another trip around the
708                  * inactive list.  Another page table reference will
709                  * lead to its activation.
710                  *
711                  * Note: the mark is set for activated pages as well
712                  * so that recently deactivated but used pages are
713                  * quickly recovered.
714                  */
715                 SetPageReferenced(page);
716
717                 if (referenced_page)
718                         return PAGEREF_ACTIVATE;
719
720                 return PAGEREF_KEEP;
721         }
722
723         /* Reclaim if clean, defer dirty pages to writeback */
724         if (referenced_page && !PageSwapBacked(page))
725                 return PAGEREF_RECLAIM_CLEAN;
726
727         return PAGEREF_RECLAIM;
728 }
729
730 static noinline_for_stack void free_page_list(struct list_head *free_pages)
731 {
732         struct pagevec freed_pvec;
733         struct page *page, *tmp;
734
735         pagevec_init(&freed_pvec, 1);
736
737         list_for_each_entry_safe(page, tmp, free_pages, lru) {
738                 list_del(&page->lru);
739                 if (!pagevec_add(&freed_pvec, page)) {
740                         __pagevec_free(&freed_pvec);
741                         pagevec_reinit(&freed_pvec);
742                 }
743         }
744
745         pagevec_free(&freed_pvec);
746 }
747
748 /*
749  * shrink_page_list() returns the number of reclaimed pages
750  */
751 static unsigned long shrink_page_list(struct list_head *page_list,
752                                       struct zone *zone,
753                                       struct scan_control *sc,
754                                       int priority,
755                                       unsigned long *ret_nr_dirty,
756                                       unsigned long *ret_nr_writeback)
757 {
758         LIST_HEAD(ret_pages);
759         LIST_HEAD(free_pages);
760         int pgactivate = 0;
761         unsigned long nr_dirty = 0;
762         unsigned long nr_congested = 0;
763         unsigned long nr_reclaimed = 0;
764         unsigned long nr_writeback = 0;
765
766         cond_resched();
767
768         while (!list_empty(page_list)) {
769                 enum page_references references;
770                 struct address_space *mapping;
771                 struct page *page;
772                 int may_enter_fs;
773
774                 cond_resched();
775
776                 page = lru_to_page(page_list);
777                 list_del(&page->lru);
778
779                 if (!trylock_page(page))
780                         goto keep;
781
782                 VM_BUG_ON(PageActive(page));
783                 VM_BUG_ON(page_zone(page) != zone);
784
785                 sc->nr_scanned++;
786
787                 if (unlikely(!page_evictable(page, NULL)))
788                         goto cull_mlocked;
789
790                 if (!sc->may_unmap && page_mapped(page))
791                         goto keep_locked;
792
793                 /* Double the slab pressure for mapped and swapcache pages */
794                 if (page_mapped(page) || PageSwapCache(page))
795                         sc->nr_scanned++;
796
797                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
798                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
799
800                 if (PageWriteback(page)) {
801                         nr_writeback++;
802                         /*
803                          * Synchronous reclaim cannot queue pages for
804                          * writeback due to the possibility of stack overflow
805                          * but if it encounters a page under writeback, wait
806                          * for the IO to complete.
807                          */
808                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
809                             may_enter_fs)
810                                 wait_on_page_writeback(page);
811                         else {
812                                 unlock_page(page);
813                                 goto keep_lumpy;
814                         }
815                 }
816
817                 references = page_check_references(page, sc);
818                 switch (references) {
819                 case PAGEREF_ACTIVATE:
820                         goto activate_locked;
821                 case PAGEREF_KEEP:
822                         goto keep_locked;
823                 case PAGEREF_RECLAIM:
824                 case PAGEREF_RECLAIM_CLEAN:
825                         ; /* try to reclaim the page below */
826                 }
827
828                 /*
829                  * Anonymous process memory has backing store?
830                  * Try to allocate it some swap space here.
831                  */
832                 if (PageAnon(page) && !PageSwapCache(page)) {
833                         if (!(sc->gfp_mask & __GFP_IO))
834                                 goto keep_locked;
835                         if (!add_to_swap(page))
836                                 goto activate_locked;
837                         may_enter_fs = 1;
838                 }
839
840                 mapping = page_mapping(page);
841
842                 /*
843                  * The page is mapped into the page tables of one or more
844                  * processes. Try to unmap it here.
845                  */
846                 if (page_mapped(page) && mapping) {
847                         switch (try_to_unmap(page, TTU_UNMAP)) {
848                         case SWAP_FAIL:
849                                 goto activate_locked;
850                         case SWAP_AGAIN:
851                                 goto keep_locked;
852                         case SWAP_MLOCK:
853                                 goto cull_mlocked;
854                         case SWAP_SUCCESS:
855                                 ; /* try to free the page below */
856                         }
857                 }
858
859                 if (PageDirty(page)) {
860                         nr_dirty++;
861
862                         /*
863                          * Only kswapd can writeback filesystem pages to
864                          * avoid risk of stack overflow but do not writeback
865                          * unless under significant pressure.
866                          */
867                         if (page_is_file_cache(page) &&
868                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
869                                 inc_zone_page_state(page, NR_VMSCAN_WRITE_SKIP);
870                                 goto keep_locked;
871                         }
872
873                         if (references == PAGEREF_RECLAIM_CLEAN)
874                                 goto keep_locked;
875                         if (!may_enter_fs)
876                                 goto keep_locked;
877                         if (!sc->may_writepage)
878                                 goto keep_locked;
879
880                         /* Page is dirty, try to write it out here */
881                         switch (pageout(page, mapping, sc)) {
882                         case PAGE_KEEP:
883                                 nr_congested++;
884                                 goto keep_locked;
885                         case PAGE_ACTIVATE:
886                                 goto activate_locked;
887                         case PAGE_SUCCESS:
888                                 if (PageWriteback(page))
889                                         goto keep_lumpy;
890                                 if (PageDirty(page))
891                                         goto keep;
892
893                                 /*
894                                  * A synchronous write - probably a ramdisk.  Go
895                                  * ahead and try to reclaim the page.
896                                  */
897                                 if (!trylock_page(page))
898                                         goto keep;
899                                 if (PageDirty(page) || PageWriteback(page))
900                                         goto keep_locked;
901                                 mapping = page_mapping(page);
902                         case PAGE_CLEAN:
903                                 ; /* try to free the page below */
904                         }
905                 }
906
907                 /*
908                  * If the page has buffers, try to free the buffer mappings
909                  * associated with this page. If we succeed we try to free
910                  * the page as well.
911                  *
912                  * We do this even if the page is PageDirty().
913                  * try_to_release_page() does not perform I/O, but it is
914                  * possible for a page to have PageDirty set, but it is actually
915                  * clean (all its buffers are clean).  This happens if the
916                  * buffers were written out directly, with submit_bh(). ext3
917                  * will do this, as well as the blockdev mapping.
918                  * try_to_release_page() will discover that cleanness and will
919                  * drop the buffers and mark the page clean - it can be freed.
920                  *
921                  * Rarely, pages can have buffers and no ->mapping.  These are
922                  * the pages which were not successfully invalidated in
923                  * truncate_complete_page().  We try to drop those buffers here
924                  * and if that worked, and the page is no longer mapped into
925                  * process address space (page_count == 1) it can be freed.
926                  * Otherwise, leave the page on the LRU so it is swappable.
927                  */
928                 if (page_has_private(page)) {
929                         if (!try_to_release_page(page, sc->gfp_mask))
930                                 goto activate_locked;
931                         if (!mapping && page_count(page) == 1) {
932                                 unlock_page(page);
933                                 if (put_page_testzero(page))
934                                         goto free_it;
935                                 else {
936                                         /*
937                                          * rare race with speculative reference.
938                                          * the speculative reference will free
939                                          * this page shortly, so we may
940                                          * increment nr_reclaimed here (and
941                                          * leave it off the LRU).
942                                          */
943                                         nr_reclaimed++;
944                                         continue;
945                                 }
946                         }
947                 }
948
949                 if (!mapping || !__remove_mapping(mapping, page))
950                         goto keep_locked;
951
952                 /*
953                  * At this point, we have no other references and there is
954                  * no way to pick any more up (removed from LRU, removed
955                  * from pagecache). Can use non-atomic bitops now (and
956                  * we obviously don't have to worry about waking up a process
957                  * waiting on the page lock, because there are no references.
958                  */
959                 __clear_page_locked(page);
960 free_it:
961                 nr_reclaimed++;
962
963                 /*
964                  * Is there need to periodically free_page_list? It would
965                  * appear not as the counts should be low
966                  */
967                 list_add(&page->lru, &free_pages);
968                 continue;
969
970 cull_mlocked:
971                 if (PageSwapCache(page))
972                         try_to_free_swap(page);
973                 unlock_page(page);
974                 putback_lru_page(page);
975                 reset_reclaim_mode(sc);
976                 continue;
977
978 activate_locked:
979                 /* Not a candidate for swapping, so reclaim swap space. */
980                 if (PageSwapCache(page) && vm_swap_full())
981                         try_to_free_swap(page);
982                 VM_BUG_ON(PageActive(page));
983                 SetPageActive(page);
984                 pgactivate++;
985 keep_locked:
986                 unlock_page(page);
987 keep:
988                 reset_reclaim_mode(sc);
989 keep_lumpy:
990                 list_add(&page->lru, &ret_pages);
991                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
992         }
993
994         /*
995          * Tag a zone as congested if all the dirty pages encountered were
996          * backed by a congested BDI. In this case, reclaimers should just
997          * back off and wait for congestion to clear because further reclaim
998          * will encounter the same problem
999          */
1000         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1001                 zone_set_flag(zone, ZONE_CONGESTED);
1002
1003         free_page_list(&free_pages);
1004
1005         list_splice(&ret_pages, page_list);
1006         count_vm_events(PGACTIVATE, pgactivate);
1007         *ret_nr_dirty += nr_dirty;
1008         *ret_nr_writeback += nr_writeback;
1009         return nr_reclaimed;
1010 }
1011
1012 /*
1013  * Attempt to remove the specified page from its LRU.  Only take this page
1014  * if it is of the appropriate PageActive status.  Pages which are being
1015  * freed elsewhere are also ignored.
1016  *
1017  * page:        page to consider
1018  * mode:        one of the LRU isolation modes defined above
1019  *
1020  * returns 0 on success, -ve errno on failure.
1021  */
1022 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1023 {
1024         bool all_lru_mode;
1025         int ret = -EINVAL;
1026
1027         /* Only take pages on the LRU. */
1028         if (!PageLRU(page))
1029                 return ret;
1030
1031         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1032                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1033
1034         /*
1035          * When checking the active state, we need to be sure we are
1036          * dealing with comparible boolean values.  Take the logical not
1037          * of each.
1038          */
1039         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1040                 return ret;
1041
1042         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1043                 return ret;
1044
1045         /*
1046          * When this function is being called for lumpy reclaim, we
1047          * initially look into all LRU pages, active, inactive and
1048          * unevictable; only give shrink_page_list evictable pages.
1049          */
1050         if (PageUnevictable(page))
1051                 return ret;
1052
1053         ret = -EBUSY;
1054
1055         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1056                 return ret;
1057
1058         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1059                 return ret;
1060
1061         if (likely(get_page_unless_zero(page))) {
1062                 /*
1063                  * Be careful not to clear PageLRU until after we're
1064                  * sure the page is not being freed elsewhere -- the
1065                  * page release code relies on it.
1066                  */
1067                 ClearPageLRU(page);
1068                 ret = 0;
1069         }
1070
1071         return ret;
1072 }
1073
1074 /*
1075  * zone->lru_lock is heavily contended.  Some of the functions that
1076  * shrink the lists perform better by taking out a batch of pages
1077  * and working on them outside the LRU lock.
1078  *
1079  * For pagecache intensive workloads, this function is the hottest
1080  * spot in the kernel (apart from copy_*_user functions).
1081  *
1082  * Appropriate locks must be held before calling this function.
1083  *
1084  * @nr_to_scan: The number of pages to look through on the list.
1085  * @src:        The LRU list to pull pages off.
1086  * @dst:        The temp list to put pages on to.
1087  * @scanned:    The number of pages that were scanned.
1088  * @order:      The caller's attempted allocation order
1089  * @mode:       One of the LRU isolation modes
1090  * @file:       True [1] if isolating file [!anon] pages
1091  *
1092  * returns how many pages were moved onto *@dst.
1093  */
1094 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1095                 struct list_head *src, struct list_head *dst,
1096                 unsigned long *scanned, int order, isolate_mode_t mode,
1097                 int file)
1098 {
1099         unsigned long nr_taken = 0;
1100         unsigned long nr_lumpy_taken = 0;
1101         unsigned long nr_lumpy_dirty = 0;
1102         unsigned long nr_lumpy_failed = 0;
1103         unsigned long scan;
1104
1105         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1106                 struct page *page;
1107                 unsigned long pfn;
1108                 unsigned long end_pfn;
1109                 unsigned long page_pfn;
1110                 int zone_id;
1111
1112                 page = lru_to_page(src);
1113                 prefetchw_prev_lru_page(page, src, flags);
1114
1115                 VM_BUG_ON(!PageLRU(page));
1116
1117                 switch (__isolate_lru_page(page, mode, file)) {
1118                 case 0:
1119                         list_move(&page->lru, dst);
1120                         mem_cgroup_del_lru(page);
1121                         nr_taken += hpage_nr_pages(page);
1122                         break;
1123
1124                 case -EBUSY:
1125                         /* else it is being freed elsewhere */
1126                         list_move(&page->lru, src);
1127                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1128                         continue;
1129
1130                 default:
1131                         BUG();
1132                 }
1133
1134                 if (!order)
1135                         continue;
1136
1137                 /*
1138                  * Attempt to take all pages in the order aligned region
1139                  * surrounding the tag page.  Only take those pages of
1140                  * the same active state as that tag page.  We may safely
1141                  * round the target page pfn down to the requested order
1142                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1143                  * where that page is in a different zone we will detect
1144                  * it from its zone id and abort this block scan.
1145                  */
1146                 zone_id = page_zone_id(page);
1147                 page_pfn = page_to_pfn(page);
1148                 pfn = page_pfn & ~((1 << order) - 1);
1149                 end_pfn = pfn + (1 << order);
1150                 for (; pfn < end_pfn; pfn++) {
1151                         struct page *cursor_page;
1152
1153                         /* The target page is in the block, ignore it. */
1154                         if (unlikely(pfn == page_pfn))
1155                                 continue;
1156
1157                         /* Avoid holes within the zone. */
1158                         if (unlikely(!pfn_valid_within(pfn)))
1159                                 break;
1160
1161                         cursor_page = pfn_to_page(pfn);
1162
1163                         /* Check that we have not crossed a zone boundary. */
1164                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1165                                 break;
1166
1167                         /*
1168                          * If we don't have enough swap space, reclaiming of
1169                          * anon page which don't already have a swap slot is
1170                          * pointless.
1171                          */
1172                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1173                             !PageSwapCache(cursor_page))
1174                                 break;
1175
1176                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1177                                 list_move(&cursor_page->lru, dst);
1178                                 mem_cgroup_del_lru(cursor_page);
1179                                 nr_taken += hpage_nr_pages(page);
1180                                 nr_lumpy_taken++;
1181                                 if (PageDirty(cursor_page))
1182                                         nr_lumpy_dirty++;
1183                                 scan++;
1184                         } else {
1185                                 /*
1186                                  * Check if the page is freed already.
1187                                  *
1188                                  * We can't use page_count() as that
1189                                  * requires compound_head and we don't
1190                                  * have a pin on the page here. If a
1191                                  * page is tail, we may or may not
1192                                  * have isolated the head, so assume
1193                                  * it's not free, it'd be tricky to
1194                                  * track the head status without a
1195                                  * page pin.
1196                                  */
1197                                 if (!PageTail(cursor_page) &&
1198                                     !atomic_read(&cursor_page->_count))
1199                                         continue;
1200                                 break;
1201                         }
1202                 }
1203
1204                 /* If we break out of the loop above, lumpy reclaim failed */
1205                 if (pfn < end_pfn)
1206                         nr_lumpy_failed++;
1207         }
1208
1209         *scanned = scan;
1210
1211         trace_mm_vmscan_lru_isolate(order,
1212                         nr_to_scan, scan,
1213                         nr_taken,
1214                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1215                         mode);
1216         return nr_taken;
1217 }
1218
1219 static unsigned long isolate_pages_global(unsigned long nr,
1220                                         struct list_head *dst,
1221                                         unsigned long *scanned, int order,
1222                                         isolate_mode_t mode,
1223                                         struct zone *z, int active, int file)
1224 {
1225         int lru = LRU_BASE;
1226         if (active)
1227                 lru += LRU_ACTIVE;
1228         if (file)
1229                 lru += LRU_FILE;
1230         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1231                                                                 mode, file);
1232 }
1233
1234 /*
1235  * clear_active_flags() is a helper for shrink_active_list(), clearing
1236  * any active bits from the pages in the list.
1237  */
1238 static unsigned long clear_active_flags(struct list_head *page_list,
1239                                         unsigned int *count)
1240 {
1241         int nr_active = 0;
1242         int lru;
1243         struct page *page;
1244
1245         list_for_each_entry(page, page_list, lru) {
1246                 int numpages = hpage_nr_pages(page);
1247                 lru = page_lru_base_type(page);
1248                 if (PageActive(page)) {
1249                         lru += LRU_ACTIVE;
1250                         ClearPageActive(page);
1251                         nr_active += numpages;
1252                 }
1253                 if (count)
1254                         count[lru] += numpages;
1255         }
1256
1257         return nr_active;
1258 }
1259
1260 /**
1261  * isolate_lru_page - tries to isolate a page from its LRU list
1262  * @page: page to isolate from its LRU list
1263  *
1264  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1265  * vmstat statistic corresponding to whatever LRU list the page was on.
1266  *
1267  * Returns 0 if the page was removed from an LRU list.
1268  * Returns -EBUSY if the page was not on an LRU list.
1269  *
1270  * The returned page will have PageLRU() cleared.  If it was found on
1271  * the active list, it will have PageActive set.  If it was found on
1272  * the unevictable list, it will have the PageUnevictable bit set. That flag
1273  * may need to be cleared by the caller before letting the page go.
1274  *
1275  * The vmstat statistic corresponding to the list on which the page was
1276  * found will be decremented.
1277  *
1278  * Restrictions:
1279  * (1) Must be called with an elevated refcount on the page. This is a
1280  *     fundamentnal difference from isolate_lru_pages (which is called
1281  *     without a stable reference).
1282  * (2) the lru_lock must not be held.
1283  * (3) interrupts must be enabled.
1284  */
1285 int isolate_lru_page(struct page *page)
1286 {
1287         int ret = -EBUSY;
1288
1289         VM_BUG_ON(!page_count(page));
1290
1291         if (PageLRU(page)) {
1292                 struct zone *zone = page_zone(page);
1293
1294                 spin_lock_irq(&zone->lru_lock);
1295                 if (PageLRU(page)) {
1296                         int lru = page_lru(page);
1297                         ret = 0;
1298                         get_page(page);
1299                         ClearPageLRU(page);
1300
1301                         del_page_from_lru_list(zone, page, lru);
1302                 }
1303                 spin_unlock_irq(&zone->lru_lock);
1304         }
1305         return ret;
1306 }
1307
1308 /*
1309  * Are there way too many processes in the direct reclaim path already?
1310  */
1311 static int too_many_isolated(struct zone *zone, int file,
1312                 struct scan_control *sc)
1313 {
1314         unsigned long inactive, isolated;
1315
1316         if (current_is_kswapd())
1317                 return 0;
1318
1319         if (!scanning_global_lru(sc))
1320                 return 0;
1321
1322         if (file) {
1323                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1324                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1325         } else {
1326                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1327                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1328         }
1329
1330         return isolated > inactive;
1331 }
1332
1333 /*
1334  * TODO: Try merging with migrations version of putback_lru_pages
1335  */
1336 static noinline_for_stack void
1337 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1338                                 unsigned long nr_anon, unsigned long nr_file,
1339                                 struct list_head *page_list)
1340 {
1341         struct page *page;
1342         struct pagevec pvec;
1343         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1344
1345         pagevec_init(&pvec, 1);
1346
1347         /*
1348          * Put back any unfreeable pages.
1349          */
1350         spin_lock(&zone->lru_lock);
1351         while (!list_empty(page_list)) {
1352                 int lru;
1353                 page = lru_to_page(page_list);
1354                 VM_BUG_ON(PageLRU(page));
1355                 list_del(&page->lru);
1356                 if (unlikely(!page_evictable(page, NULL))) {
1357                         spin_unlock_irq(&zone->lru_lock);
1358                         putback_lru_page(page);
1359                         spin_lock_irq(&zone->lru_lock);
1360                         continue;
1361                 }
1362                 SetPageLRU(page);
1363                 lru = page_lru(page);
1364                 add_page_to_lru_list(zone, page, lru);
1365                 if (is_active_lru(lru)) {
1366                         int file = is_file_lru(lru);
1367                         int numpages = hpage_nr_pages(page);
1368                         reclaim_stat->recent_rotated[file] += numpages;
1369                 }
1370                 if (!pagevec_add(&pvec, page)) {
1371                         spin_unlock_irq(&zone->lru_lock);
1372                         __pagevec_release(&pvec);
1373                         spin_lock_irq(&zone->lru_lock);
1374                 }
1375         }
1376         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1377         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1378
1379         spin_unlock_irq(&zone->lru_lock);
1380         pagevec_release(&pvec);
1381 }
1382
1383 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1384                                         struct scan_control *sc,
1385                                         unsigned long *nr_anon,
1386                                         unsigned long *nr_file,
1387                                         struct list_head *isolated_list)
1388 {
1389         unsigned long nr_active;
1390         unsigned int count[NR_LRU_LISTS] = { 0, };
1391         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1392
1393         nr_active = clear_active_flags(isolated_list, count);
1394         __count_vm_events(PGDEACTIVATE, nr_active);
1395
1396         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1397                               -count[LRU_ACTIVE_FILE]);
1398         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1399                               -count[LRU_INACTIVE_FILE]);
1400         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1401                               -count[LRU_ACTIVE_ANON]);
1402         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1403                               -count[LRU_INACTIVE_ANON]);
1404
1405         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1406         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1407         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1408         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1409
1410         reclaim_stat->recent_scanned[0] += *nr_anon;
1411         reclaim_stat->recent_scanned[1] += *nr_file;
1412 }
1413
1414 /*
1415  * Returns true if a direct reclaim should wait on pages under writeback.
1416  *
1417  * If we are direct reclaiming for contiguous pages and we do not reclaim
1418  * everything in the list, try again and wait for writeback IO to complete.
1419  * This will stall high-order allocations noticeably. Only do that when really
1420  * need to free the pages under high memory pressure.
1421  */
1422 static inline bool should_reclaim_stall(unsigned long nr_taken,
1423                                         unsigned long nr_freed,
1424                                         int priority,
1425                                         struct scan_control *sc)
1426 {
1427         int lumpy_stall_priority;
1428
1429         /* kswapd should not stall on sync IO */
1430         if (current_is_kswapd())
1431                 return false;
1432
1433         /* Only stall on lumpy reclaim */
1434         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1435                 return false;
1436
1437         /* If we have reclaimed everything on the isolated list, no stall */
1438         if (nr_freed == nr_taken)
1439                 return false;
1440
1441         /*
1442          * For high-order allocations, there are two stall thresholds.
1443          * High-cost allocations stall immediately where as lower
1444          * order allocations such as stacks require the scanning
1445          * priority to be much higher before stalling.
1446          */
1447         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1448                 lumpy_stall_priority = DEF_PRIORITY;
1449         else
1450                 lumpy_stall_priority = DEF_PRIORITY / 3;
1451
1452         return priority <= lumpy_stall_priority;
1453 }
1454
1455 /*
1456  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1457  * of reclaimed pages
1458  */
1459 static noinline_for_stack unsigned long
1460 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1461                         struct scan_control *sc, int priority, int file)
1462 {
1463         LIST_HEAD(page_list);
1464         unsigned long nr_scanned;
1465         unsigned long nr_reclaimed = 0;
1466         unsigned long nr_taken;
1467         unsigned long nr_anon;
1468         unsigned long nr_file;
1469         unsigned long nr_dirty = 0;
1470         unsigned long nr_writeback = 0;
1471         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1472
1473         while (unlikely(too_many_isolated(zone, file, sc))) {
1474                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1475
1476                 /* We are about to die and free our memory. Return now. */
1477                 if (fatal_signal_pending(current))
1478                         return SWAP_CLUSTER_MAX;
1479         }
1480
1481         set_reclaim_mode(priority, sc, false);
1482         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1483                 reclaim_mode |= ISOLATE_ACTIVE;
1484
1485         lru_add_drain();
1486
1487         if (!sc->may_unmap)
1488                 reclaim_mode |= ISOLATE_UNMAPPED;
1489         if (!sc->may_writepage)
1490                 reclaim_mode |= ISOLATE_CLEAN;
1491
1492         spin_lock_irq(&zone->lru_lock);
1493
1494         if (scanning_global_lru(sc)) {
1495                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1496                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1497                 zone->pages_scanned += nr_scanned;
1498                 if (current_is_kswapd())
1499                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1500                                                nr_scanned);
1501                 else
1502                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1503                                                nr_scanned);
1504         } else {
1505                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1506                         &nr_scanned, sc->order, reclaim_mode, zone,
1507                         sc->mem_cgroup, 0, file);
1508                 /*
1509                  * mem_cgroup_isolate_pages() keeps track of
1510                  * scanned pages on its own.
1511                  */
1512         }
1513
1514         if (nr_taken == 0) {
1515                 spin_unlock_irq(&zone->lru_lock);
1516                 return 0;
1517         }
1518
1519         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1520
1521         spin_unlock_irq(&zone->lru_lock);
1522
1523         nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1524                                                 &nr_dirty, &nr_writeback);
1525
1526         /* Check if we should syncronously wait for writeback */
1527         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1528                 set_reclaim_mode(priority, sc, true);
1529                 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1530                                         priority, &nr_dirty, &nr_writeback);
1531         }
1532
1533         local_irq_disable();
1534         if (current_is_kswapd())
1535                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1536         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1537
1538         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1539
1540         /*
1541          * If we have encountered a high number of dirty pages under writeback
1542          * then we are reaching the end of the LRU too quickly and global
1543          * limits are not enough to throttle processes due to the page
1544          * distribution throughout zones. Scale the number of dirty pages that
1545          * must be under writeback before being throttled to priority.
1546          */
1547         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1548                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1549
1550         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1551                 zone_idx(zone),
1552                 nr_scanned, nr_reclaimed,
1553                 priority,
1554                 trace_shrink_flags(file, sc->reclaim_mode));
1555         return nr_reclaimed;
1556 }
1557
1558 /*
1559  * This moves pages from the active list to the inactive list.
1560  *
1561  * We move them the other way if the page is referenced by one or more
1562  * processes, from rmap.
1563  *
1564  * If the pages are mostly unmapped, the processing is fast and it is
1565  * appropriate to hold zone->lru_lock across the whole operation.  But if
1566  * the pages are mapped, the processing is slow (page_referenced()) so we
1567  * should drop zone->lru_lock around each page.  It's impossible to balance
1568  * this, so instead we remove the pages from the LRU while processing them.
1569  * It is safe to rely on PG_active against the non-LRU pages in here because
1570  * nobody will play with that bit on a non-LRU page.
1571  *
1572  * The downside is that we have to touch page->_count against each page.
1573  * But we had to alter page->flags anyway.
1574  */
1575
1576 static void move_active_pages_to_lru(struct zone *zone,
1577                                      struct list_head *list,
1578                                      enum lru_list lru)
1579 {
1580         unsigned long pgmoved = 0;
1581         struct pagevec pvec;
1582         struct page *page;
1583
1584         pagevec_init(&pvec, 1);
1585
1586         while (!list_empty(list)) {
1587                 page = lru_to_page(list);
1588
1589                 VM_BUG_ON(PageLRU(page));
1590                 SetPageLRU(page);
1591
1592                 list_move(&page->lru, &zone->lru[lru].list);
1593                 mem_cgroup_add_lru_list(page, lru);
1594                 pgmoved += hpage_nr_pages(page);
1595
1596                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1597                         spin_unlock_irq(&zone->lru_lock);
1598                         if (buffer_heads_over_limit)
1599                                 pagevec_strip(&pvec);
1600                         __pagevec_release(&pvec);
1601                         spin_lock_irq(&zone->lru_lock);
1602                 }
1603         }
1604         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1605         if (!is_active_lru(lru))
1606                 __count_vm_events(PGDEACTIVATE, pgmoved);
1607 }
1608
1609 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1610                         struct scan_control *sc, int priority, int file)
1611 {
1612         unsigned long nr_taken;
1613         unsigned long pgscanned;
1614         unsigned long vm_flags;
1615         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1616         LIST_HEAD(l_active);
1617         LIST_HEAD(l_inactive);
1618         struct page *page;
1619         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1620         unsigned long nr_rotated = 0;
1621         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1622
1623         lru_add_drain();
1624
1625         if (!sc->may_unmap)
1626                 reclaim_mode |= ISOLATE_UNMAPPED;
1627         if (!sc->may_writepage)
1628                 reclaim_mode |= ISOLATE_CLEAN;
1629
1630         spin_lock_irq(&zone->lru_lock);
1631         if (scanning_global_lru(sc)) {
1632                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1633                                                 &pgscanned, sc->order,
1634                                                 reclaim_mode, zone,
1635                                                 1, file);
1636                 zone->pages_scanned += pgscanned;
1637         } else {
1638                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1639                                                 &pgscanned, sc->order,
1640                                                 reclaim_mode, zone,
1641                                                 sc->mem_cgroup, 1, file);
1642                 /*
1643                  * mem_cgroup_isolate_pages() keeps track of
1644                  * scanned pages on its own.
1645                  */
1646         }
1647
1648         reclaim_stat->recent_scanned[file] += nr_taken;
1649
1650         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1651         if (file)
1652                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1653         else
1654                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1655         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1656         spin_unlock_irq(&zone->lru_lock);
1657
1658         while (!list_empty(&l_hold)) {
1659                 cond_resched();
1660                 page = lru_to_page(&l_hold);
1661                 list_del(&page->lru);
1662
1663                 if (unlikely(!page_evictable(page, NULL))) {
1664                         putback_lru_page(page);
1665                         continue;
1666                 }
1667
1668                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1669                         nr_rotated += hpage_nr_pages(page);
1670                         /*
1671                          * Identify referenced, file-backed active pages and
1672                          * give them one more trip around the active list. So
1673                          * that executable code get better chances to stay in
1674                          * memory under moderate memory pressure.  Anon pages
1675                          * are not likely to be evicted by use-once streaming
1676                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1677                          * so we ignore them here.
1678                          */
1679                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1680                                 list_add(&page->lru, &l_active);
1681                                 continue;
1682                         }
1683                 }
1684
1685                 ClearPageActive(page);  /* we are de-activating */
1686                 list_add(&page->lru, &l_inactive);
1687         }
1688
1689         /*
1690          * Move pages back to the lru list.
1691          */
1692         spin_lock_irq(&zone->lru_lock);
1693         /*
1694          * Count referenced pages from currently used mappings as rotated,
1695          * even though only some of them are actually re-activated.  This
1696          * helps balance scan pressure between file and anonymous pages in
1697          * get_scan_ratio.
1698          */
1699         reclaim_stat->recent_rotated[file] += nr_rotated;
1700
1701         move_active_pages_to_lru(zone, &l_active,
1702                                                 LRU_ACTIVE + file * LRU_FILE);
1703         move_active_pages_to_lru(zone, &l_inactive,
1704                                                 LRU_BASE   + file * LRU_FILE);
1705         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1706         spin_unlock_irq(&zone->lru_lock);
1707 }
1708
1709 #ifdef CONFIG_SWAP
1710 static int inactive_anon_is_low_global(struct zone *zone)
1711 {
1712         unsigned long active, inactive;
1713
1714         active = zone_page_state(zone, NR_ACTIVE_ANON);
1715         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1716
1717         if (inactive * zone->inactive_ratio < active)
1718                 return 1;
1719
1720         return 0;
1721 }
1722
1723 /**
1724  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1725  * @zone: zone to check
1726  * @sc:   scan control of this context
1727  *
1728  * Returns true if the zone does not have enough inactive anon pages,
1729  * meaning some active anon pages need to be deactivated.
1730  */
1731 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1732 {
1733         int low;
1734
1735         /*
1736          * If we don't have swap space, anonymous page deactivation
1737          * is pointless.
1738          */
1739         if (!total_swap_pages)
1740                 return 0;
1741
1742         if (scanning_global_lru(sc))
1743                 low = inactive_anon_is_low_global(zone);
1744         else
1745                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1746         return low;
1747 }
1748 #else
1749 static inline int inactive_anon_is_low(struct zone *zone,
1750                                         struct scan_control *sc)
1751 {
1752         return 0;
1753 }
1754 #endif
1755
1756 static int inactive_file_is_low_global(struct zone *zone)
1757 {
1758         unsigned long active, inactive;
1759
1760         active = zone_page_state(zone, NR_ACTIVE_FILE);
1761         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1762
1763         return (active > inactive);
1764 }
1765
1766 /**
1767  * inactive_file_is_low - check if file pages need to be deactivated
1768  * @zone: zone to check
1769  * @sc:   scan control of this context
1770  *
1771  * When the system is doing streaming IO, memory pressure here
1772  * ensures that active file pages get deactivated, until more
1773  * than half of the file pages are on the inactive list.
1774  *
1775  * Once we get to that situation, protect the system's working
1776  * set from being evicted by disabling active file page aging.
1777  *
1778  * This uses a different ratio than the anonymous pages, because
1779  * the page cache uses a use-once replacement algorithm.
1780  */
1781 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1782 {
1783         int low;
1784
1785         if (scanning_global_lru(sc))
1786                 low = inactive_file_is_low_global(zone);
1787         else
1788                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1789         return low;
1790 }
1791
1792 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1793                                 int file)
1794 {
1795         if (file)
1796                 return inactive_file_is_low(zone, sc);
1797         else
1798                 return inactive_anon_is_low(zone, sc);
1799 }
1800
1801 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1802         struct zone *zone, struct scan_control *sc, int priority)
1803 {
1804         int file = is_file_lru(lru);
1805
1806         if (is_active_lru(lru)) {
1807                 if (inactive_list_is_low(zone, sc, file))
1808                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1809                 return 0;
1810         }
1811
1812         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1813 }
1814
1815 static int vmscan_swappiness(struct scan_control *sc)
1816 {
1817         if (scanning_global_lru(sc))
1818                 return vm_swappiness;
1819         return mem_cgroup_swappiness(sc->mem_cgroup);
1820 }
1821
1822 /*
1823  * Determine how aggressively the anon and file LRU lists should be
1824  * scanned.  The relative value of each set of LRU lists is determined
1825  * by looking at the fraction of the pages scanned we did rotate back
1826  * onto the active list instead of evict.
1827  *
1828  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1829  */
1830 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1831                                         unsigned long *nr, int priority)
1832 {
1833         unsigned long anon, file, free;
1834         unsigned long anon_prio, file_prio;
1835         unsigned long ap, fp;
1836         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1837         u64 fraction[2], denominator;
1838         enum lru_list l;
1839         int noswap = 0;
1840         bool force_scan = false;
1841
1842         /*
1843          * If the zone or memcg is small, nr[l] can be 0.  This
1844          * results in no scanning on this priority and a potential
1845          * priority drop.  Global direct reclaim can go to the next
1846          * zone and tends to have no problems. Global kswapd is for
1847          * zone balancing and it needs to scan a minimum amount. When
1848          * reclaiming for a memcg, a priority drop can cause high
1849          * latencies, so it's better to scan a minimum amount there as
1850          * well.
1851          */
1852         if (scanning_global_lru(sc) && current_is_kswapd())
1853                 force_scan = true;
1854         if (!scanning_global_lru(sc))
1855                 force_scan = true;
1856
1857         /* If we have no swap space, do not bother scanning anon pages. */
1858         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1859                 noswap = 1;
1860                 fraction[0] = 0;
1861                 fraction[1] = 1;
1862                 denominator = 1;
1863                 goto out;
1864         }
1865
1866         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1867                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1868         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1869                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1870
1871         if (scanning_global_lru(sc)) {
1872                 free  = zone_page_state(zone, NR_FREE_PAGES);
1873                 /* If we have very few page cache pages,
1874                    force-scan anon pages. */
1875                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1876                         fraction[0] = 1;
1877                         fraction[1] = 0;
1878                         denominator = 1;
1879                         goto out;
1880                 }
1881         }
1882
1883         /*
1884          * With swappiness at 100, anonymous and file have the same priority.
1885          * This scanning priority is essentially the inverse of IO cost.
1886          */
1887         anon_prio = vmscan_swappiness(sc);
1888         file_prio = 200 - vmscan_swappiness(sc);
1889
1890         /*
1891          * OK, so we have swap space and a fair amount of page cache
1892          * pages.  We use the recently rotated / recently scanned
1893          * ratios to determine how valuable each cache is.
1894          *
1895          * Because workloads change over time (and to avoid overflow)
1896          * we keep these statistics as a floating average, which ends
1897          * up weighing recent references more than old ones.
1898          *
1899          * anon in [0], file in [1]
1900          */
1901         spin_lock_irq(&zone->lru_lock);
1902         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1903                 reclaim_stat->recent_scanned[0] /= 2;
1904                 reclaim_stat->recent_rotated[0] /= 2;
1905         }
1906
1907         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1908                 reclaim_stat->recent_scanned[1] /= 2;
1909                 reclaim_stat->recent_rotated[1] /= 2;
1910         }
1911
1912         /*
1913          * The amount of pressure on anon vs file pages is inversely
1914          * proportional to the fraction of recently scanned pages on
1915          * each list that were recently referenced and in active use.
1916          */
1917         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1918         ap /= reclaim_stat->recent_rotated[0] + 1;
1919
1920         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1921         fp /= reclaim_stat->recent_rotated[1] + 1;
1922         spin_unlock_irq(&zone->lru_lock);
1923
1924         fraction[0] = ap;
1925         fraction[1] = fp;
1926         denominator = ap + fp + 1;
1927 out:
1928         for_each_evictable_lru(l) {
1929                 int file = is_file_lru(l);
1930                 unsigned long scan;
1931
1932                 scan = zone_nr_lru_pages(zone, sc, l);
1933                 if (priority || noswap) {
1934                         scan >>= priority;
1935                         if (!scan && force_scan)
1936                                 scan = SWAP_CLUSTER_MAX;
1937                         scan = div64_u64(scan * fraction[file], denominator);
1938                 }
1939                 nr[l] = scan;
1940         }
1941 }
1942
1943 /*
1944  * Reclaim/compaction depends on a number of pages being freed. To avoid
1945  * disruption to the system, a small number of order-0 pages continue to be
1946  * rotated and reclaimed in the normal fashion. However, by the time we get
1947  * back to the allocator and call try_to_compact_zone(), we ensure that
1948  * there are enough free pages for it to be likely successful
1949  */
1950 static inline bool should_continue_reclaim(struct zone *zone,
1951                                         unsigned long nr_reclaimed,
1952                                         unsigned long nr_scanned,
1953                                         struct scan_control *sc)
1954 {
1955         unsigned long pages_for_compaction;
1956         unsigned long inactive_lru_pages;
1957
1958         /* If not in reclaim/compaction mode, stop */
1959         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1960                 return false;
1961
1962         /* Consider stopping depending on scan and reclaim activity */
1963         if (sc->gfp_mask & __GFP_REPEAT) {
1964                 /*
1965                  * For __GFP_REPEAT allocations, stop reclaiming if the
1966                  * full LRU list has been scanned and we are still failing
1967                  * to reclaim pages. This full LRU scan is potentially
1968                  * expensive but a __GFP_REPEAT caller really wants to succeed
1969                  */
1970                 if (!nr_reclaimed && !nr_scanned)
1971                         return false;
1972         } else {
1973                 /*
1974                  * For non-__GFP_REPEAT allocations which can presumably
1975                  * fail without consequence, stop if we failed to reclaim
1976                  * any pages from the last SWAP_CLUSTER_MAX number of
1977                  * pages that were scanned. This will return to the
1978                  * caller faster at the risk reclaim/compaction and
1979                  * the resulting allocation attempt fails
1980                  */
1981                 if (!nr_reclaimed)
1982                         return false;
1983         }
1984
1985         /*
1986          * If we have not reclaimed enough pages for compaction and the
1987          * inactive lists are large enough, continue reclaiming
1988          */
1989         pages_for_compaction = (2UL << sc->order);
1990         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1991                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1992         if (sc->nr_reclaimed < pages_for_compaction &&
1993                         inactive_lru_pages > pages_for_compaction)
1994                 return true;
1995
1996         /* If compaction would go ahead or the allocation would succeed, stop */
1997         switch (compaction_suitable(zone, sc->order)) {
1998         case COMPACT_PARTIAL:
1999         case COMPACT_CONTINUE:
2000                 return false;
2001         default:
2002                 return true;
2003         }
2004 }
2005
2006 /*
2007  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2008  */
2009 static void shrink_zone(int priority, struct zone *zone,
2010                                 struct scan_control *sc)
2011 {
2012         unsigned long nr[NR_LRU_LISTS];
2013         unsigned long nr_to_scan;
2014         enum lru_list l;
2015         unsigned long nr_reclaimed, nr_scanned;
2016         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2017         struct blk_plug plug;
2018
2019 restart:
2020         nr_reclaimed = 0;
2021         nr_scanned = sc->nr_scanned;
2022         get_scan_count(zone, sc, nr, priority);
2023
2024         blk_start_plug(&plug);
2025         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2026                                         nr[LRU_INACTIVE_FILE]) {
2027                 for_each_evictable_lru(l) {
2028                         if (nr[l]) {
2029                                 nr_to_scan = min_t(unsigned long,
2030                                                    nr[l], SWAP_CLUSTER_MAX);
2031                                 nr[l] -= nr_to_scan;
2032
2033                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2034                                                             zone, sc, priority);
2035                         }
2036                 }
2037                 /*
2038                  * On large memory systems, scan >> priority can become
2039                  * really large. This is fine for the starting priority;
2040                  * we want to put equal scanning pressure on each zone.
2041                  * However, if the VM has a harder time of freeing pages,
2042                  * with multiple processes reclaiming pages, the total
2043                  * freeing target can get unreasonably large.
2044                  */
2045                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2046                         break;
2047         }
2048         blk_finish_plug(&plug);
2049         sc->nr_reclaimed += nr_reclaimed;
2050
2051         /*
2052          * Even if we did not try to evict anon pages at all, we want to
2053          * rebalance the anon lru active/inactive ratio.
2054          */
2055         if (inactive_anon_is_low(zone, sc))
2056                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2057
2058         /* reclaim/compaction might need reclaim to continue */
2059         if (should_continue_reclaim(zone, nr_reclaimed,
2060                                         sc->nr_scanned - nr_scanned, sc))
2061                 goto restart;
2062
2063         throttle_vm_writeout(sc->gfp_mask);
2064 }
2065
2066 /*
2067  * This is the direct reclaim path, for page-allocating processes.  We only
2068  * try to reclaim pages from zones which will satisfy the caller's allocation
2069  * request.
2070  *
2071  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2072  * Because:
2073  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2074  *    allocation or
2075  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2076  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2077  *    zone defense algorithm.
2078  *
2079  * If a zone is deemed to be full of pinned pages then just give it a light
2080  * scan then give up on it.
2081  */
2082 static void shrink_zones(int priority, struct zonelist *zonelist,
2083                                         struct scan_control *sc)
2084 {
2085         struct zoneref *z;
2086         struct zone *zone;
2087         unsigned long nr_soft_reclaimed;
2088         unsigned long nr_soft_scanned;
2089
2090         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2091                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2092                 if (!populated_zone(zone))
2093                         continue;
2094                 /*
2095                  * Take care memory controller reclaiming has small influence
2096                  * to global LRU.
2097                  */
2098                 if (scanning_global_lru(sc)) {
2099                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2100                                 continue;
2101                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2102                                 continue;       /* Let kswapd poll it */
2103                         /*
2104                          * This steals pages from memory cgroups over softlimit
2105                          * and returns the number of reclaimed pages and
2106                          * scanned pages. This works for global memory pressure
2107                          * and balancing, not for a memcg's limit.
2108                          */
2109                         nr_soft_scanned = 0;
2110                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2111                                                 sc->order, sc->gfp_mask,
2112                                                 &nr_soft_scanned);
2113                         sc->nr_reclaimed += nr_soft_reclaimed;
2114                         sc->nr_scanned += nr_soft_scanned;
2115                         /* need some check for avoid more shrink_zone() */
2116                 }
2117
2118                 shrink_zone(priority, zone, sc);
2119         }
2120 }
2121
2122 static bool zone_reclaimable(struct zone *zone)
2123 {
2124         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2125 }
2126
2127 /* All zones in zonelist are unreclaimable? */
2128 static bool all_unreclaimable(struct zonelist *zonelist,
2129                 struct scan_control *sc)
2130 {
2131         struct zoneref *z;
2132         struct zone *zone;
2133
2134         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2135                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2136                 if (!populated_zone(zone))
2137                         continue;
2138                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2139                         continue;
2140                 if (!zone->all_unreclaimable)
2141                         return false;
2142         }
2143
2144         return true;
2145 }
2146
2147 /*
2148  * This is the main entry point to direct page reclaim.
2149  *
2150  * If a full scan of the inactive list fails to free enough memory then we
2151  * are "out of memory" and something needs to be killed.
2152  *
2153  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2154  * high - the zone may be full of dirty or under-writeback pages, which this
2155  * caller can't do much about.  We kick the writeback threads and take explicit
2156  * naps in the hope that some of these pages can be written.  But if the
2157  * allocating task holds filesystem locks which prevent writeout this might not
2158  * work, and the allocation attempt will fail.
2159  *
2160  * returns:     0, if no pages reclaimed
2161  *              else, the number of pages reclaimed
2162  */
2163 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2164                                         struct scan_control *sc,
2165                                         struct shrink_control *shrink)
2166 {
2167         int priority;
2168         unsigned long total_scanned = 0;
2169         struct reclaim_state *reclaim_state = current->reclaim_state;
2170         struct zoneref *z;
2171         struct zone *zone;
2172         unsigned long writeback_threshold;
2173
2174         get_mems_allowed();
2175         delayacct_freepages_start();
2176
2177         if (scanning_global_lru(sc))
2178                 count_vm_event(ALLOCSTALL);
2179
2180         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2181                 sc->nr_scanned = 0;
2182                 if (!priority)
2183                         disable_swap_token(sc->mem_cgroup);
2184                 shrink_zones(priority, zonelist, sc);
2185                 /*
2186                  * Don't shrink slabs when reclaiming memory from
2187                  * over limit cgroups
2188                  */
2189                 if (scanning_global_lru(sc)) {
2190                         unsigned long lru_pages = 0;
2191                         for_each_zone_zonelist(zone, z, zonelist,
2192                                         gfp_zone(sc->gfp_mask)) {
2193                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2194                                         continue;
2195
2196                                 lru_pages += zone_reclaimable_pages(zone);
2197                         }
2198
2199                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2200                         if (reclaim_state) {
2201                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2202                                 reclaim_state->reclaimed_slab = 0;
2203                         }
2204                 }
2205                 total_scanned += sc->nr_scanned;
2206                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2207                         goto out;
2208
2209                 /*
2210                  * Try to write back as many pages as we just scanned.  This
2211                  * tends to cause slow streaming writers to write data to the
2212                  * disk smoothly, at the dirtying rate, which is nice.   But
2213                  * that's undesirable in laptop mode, where we *want* lumpy
2214                  * writeout.  So in laptop mode, write out the whole world.
2215                  */
2216                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2217                 if (total_scanned > writeback_threshold) {
2218                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2219                         sc->may_writepage = 1;
2220                 }
2221
2222                 /* Take a nap, wait for some writeback to complete */
2223                 if (!sc->hibernation_mode && sc->nr_scanned &&
2224                     priority < DEF_PRIORITY - 2) {
2225                         struct zone *preferred_zone;
2226
2227                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2228                                                 &cpuset_current_mems_allowed,
2229                                                 &preferred_zone);
2230                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2231                 }
2232         }
2233
2234 out:
2235         delayacct_freepages_end();
2236         put_mems_allowed();
2237
2238         if (sc->nr_reclaimed)
2239                 return sc->nr_reclaimed;
2240
2241         /*
2242          * As hibernation is going on, kswapd is freezed so that it can't mark
2243          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2244          * check.
2245          */
2246         if (oom_killer_disabled)
2247                 return 0;
2248
2249         /* top priority shrink_zones still had more to do? don't OOM, then */
2250         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2251                 return 1;
2252
2253         return 0;
2254 }
2255
2256 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2257                                 gfp_t gfp_mask, nodemask_t *nodemask)
2258 {
2259         unsigned long nr_reclaimed;
2260         struct scan_control sc = {
2261                 .gfp_mask = gfp_mask,
2262                 .may_writepage = !laptop_mode,
2263                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2264                 .may_unmap = 1,
2265                 .may_swap = 1,
2266                 .order = order,
2267                 .mem_cgroup = NULL,
2268                 .nodemask = nodemask,
2269         };
2270         struct shrink_control shrink = {
2271                 .gfp_mask = sc.gfp_mask,
2272         };
2273
2274         trace_mm_vmscan_direct_reclaim_begin(order,
2275                                 sc.may_writepage,
2276                                 gfp_mask);
2277
2278         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2279
2280         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2281
2282         return nr_reclaimed;
2283 }
2284
2285 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2286
2287 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2288                                                 gfp_t gfp_mask, bool noswap,
2289                                                 struct zone *zone,
2290                                                 unsigned long *nr_scanned)
2291 {
2292         struct scan_control sc = {
2293                 .nr_scanned = 0,
2294                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2295                 .may_writepage = !laptop_mode,
2296                 .may_unmap = 1,
2297                 .may_swap = !noswap,
2298                 .order = 0,
2299                 .mem_cgroup = mem,
2300         };
2301
2302         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2303                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2304
2305         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2306                                                       sc.may_writepage,
2307                                                       sc.gfp_mask);
2308
2309         /*
2310          * NOTE: Although we can get the priority field, using it
2311          * here is not a good idea, since it limits the pages we can scan.
2312          * if we don't reclaim here, the shrink_zone from balance_pgdat
2313          * will pick up pages from other mem cgroup's as well. We hack
2314          * the priority and make it zero.
2315          */
2316         shrink_zone(0, zone, &sc);
2317
2318         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2319
2320         *nr_scanned = sc.nr_scanned;
2321         return sc.nr_reclaimed;
2322 }
2323
2324 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2325                                            gfp_t gfp_mask,
2326                                            bool noswap)
2327 {
2328         struct zonelist *zonelist;
2329         unsigned long nr_reclaimed;
2330         int nid;
2331         struct scan_control sc = {
2332                 .may_writepage = !laptop_mode,
2333                 .may_unmap = 1,
2334                 .may_swap = !noswap,
2335                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2336                 .order = 0,
2337                 .mem_cgroup = mem_cont,
2338                 .nodemask = NULL, /* we don't care the placement */
2339                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2340                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2341         };
2342         struct shrink_control shrink = {
2343                 .gfp_mask = sc.gfp_mask,
2344         };
2345
2346         /*
2347          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2348          * take care of from where we get pages. So the node where we start the
2349          * scan does not need to be the current node.
2350          */
2351         nid = mem_cgroup_select_victim_node(mem_cont);
2352
2353         zonelist = NODE_DATA(nid)->node_zonelists;
2354
2355         trace_mm_vmscan_memcg_reclaim_begin(0,
2356                                             sc.may_writepage,
2357                                             sc.gfp_mask);
2358
2359         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2360
2361         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2362
2363         return nr_reclaimed;
2364 }
2365 #endif
2366
2367 /*
2368  * pgdat_balanced is used when checking if a node is balanced for high-order
2369  * allocations. Only zones that meet watermarks and are in a zone allowed
2370  * by the callers classzone_idx are added to balanced_pages. The total of
2371  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2372  * for the node to be considered balanced. Forcing all zones to be balanced
2373  * for high orders can cause excessive reclaim when there are imbalanced zones.
2374  * The choice of 25% is due to
2375  *   o a 16M DMA zone that is balanced will not balance a zone on any
2376  *     reasonable sized machine
2377  *   o On all other machines, the top zone must be at least a reasonable
2378  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2379  *     would need to be at least 256M for it to be balance a whole node.
2380  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2381  *     to balance a node on its own. These seemed like reasonable ratios.
2382  */
2383 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2384                                                 int classzone_idx)
2385 {
2386         unsigned long present_pages = 0;
2387         int i;
2388
2389         for (i = 0; i <= classzone_idx; i++)
2390                 present_pages += pgdat->node_zones[i].present_pages;
2391
2392         /* A special case here: if zone has no page, we think it's balanced */
2393         return balanced_pages >= (present_pages >> 2);
2394 }
2395
2396 /* is kswapd sleeping prematurely? */
2397 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2398                                         int classzone_idx)
2399 {
2400         int i;
2401         unsigned long balanced = 0;
2402         bool all_zones_ok = true;
2403
2404         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2405         if (remaining)
2406                 return true;
2407
2408         /* Check the watermark levels */
2409         for (i = 0; i <= classzone_idx; i++) {
2410                 struct zone *zone = pgdat->node_zones + i;
2411
2412                 if (!populated_zone(zone))
2413                         continue;
2414
2415                 /*
2416                  * balance_pgdat() skips over all_unreclaimable after
2417                  * DEF_PRIORITY. Effectively, it considers them balanced so
2418                  * they must be considered balanced here as well if kswapd
2419                  * is to sleep
2420                  */
2421                 if (zone->all_unreclaimable) {
2422                         balanced += zone->present_pages;
2423                         continue;
2424                 }
2425
2426                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2427                                                         i, 0))
2428                         all_zones_ok = false;
2429                 else
2430                         balanced += zone->present_pages;
2431         }
2432
2433         /*
2434          * For high-order requests, the balanced zones must contain at least
2435          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2436          * must be balanced
2437          */
2438         if (order)
2439                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2440         else
2441                 return !all_zones_ok;
2442 }
2443
2444 /*
2445  * For kswapd, balance_pgdat() will work across all this node's zones until
2446  * they are all at high_wmark_pages(zone).
2447  *
2448  * Returns the final order kswapd was reclaiming at
2449  *
2450  * There is special handling here for zones which are full of pinned pages.
2451  * This can happen if the pages are all mlocked, or if they are all used by
2452  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2453  * What we do is to detect the case where all pages in the zone have been
2454  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2455  * dead and from now on, only perform a short scan.  Basically we're polling
2456  * the zone for when the problem goes away.
2457  *
2458  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2459  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2460  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2461  * lower zones regardless of the number of free pages in the lower zones. This
2462  * interoperates with the page allocator fallback scheme to ensure that aging
2463  * of pages is balanced across the zones.
2464  */
2465 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2466                                                         int *classzone_idx)
2467 {
2468         int all_zones_ok;
2469         unsigned long balanced;
2470         int priority;
2471         int i;
2472         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2473         unsigned long total_scanned;
2474         struct reclaim_state *reclaim_state = current->reclaim_state;
2475         unsigned long nr_soft_reclaimed;
2476         unsigned long nr_soft_scanned;
2477         struct scan_control sc = {
2478                 .gfp_mask = GFP_KERNEL,
2479                 .may_unmap = 1,
2480                 .may_swap = 1,
2481                 /*
2482                  * kswapd doesn't want to be bailed out while reclaim. because
2483                  * we want to put equal scanning pressure on each zone.
2484                  */
2485                 .nr_to_reclaim = ULONG_MAX,
2486                 .order = order,
2487                 .mem_cgroup = NULL,
2488         };
2489         struct shrink_control shrink = {
2490                 .gfp_mask = sc.gfp_mask,
2491         };
2492 loop_again:
2493         total_scanned = 0;
2494         sc.nr_reclaimed = 0;
2495         sc.may_writepage = !laptop_mode;
2496         count_vm_event(PAGEOUTRUN);
2497
2498         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2499                 unsigned long lru_pages = 0;
2500                 int has_under_min_watermark_zone = 0;
2501
2502                 /* The swap token gets in the way of swapout... */
2503                 if (!priority)
2504                         disable_swap_token(NULL);
2505
2506                 all_zones_ok = 1;
2507                 balanced = 0;
2508
2509                 /*
2510                  * Scan in the highmem->dma direction for the highest
2511                  * zone which needs scanning
2512                  */
2513                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2514                         struct zone *zone = pgdat->node_zones + i;
2515
2516                         if (!populated_zone(zone))
2517                                 continue;
2518
2519                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2520                                 continue;
2521
2522                         /*
2523                          * Do some background aging of the anon list, to give
2524                          * pages a chance to be referenced before reclaiming.
2525                          */
2526                         if (inactive_anon_is_low(zone, &sc))
2527                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2528                                                         &sc, priority, 0);
2529
2530                         if (!zone_watermark_ok_safe(zone, order,
2531                                         high_wmark_pages(zone), 0, 0)) {
2532                                 end_zone = i;
2533                                 break;
2534                         } else {
2535                                 /* If balanced, clear the congested flag */
2536                                 zone_clear_flag(zone, ZONE_CONGESTED);
2537                         }
2538                 }
2539                 if (i < 0)
2540                         goto out;
2541
2542                 for (i = 0; i <= end_zone; i++) {
2543                         struct zone *zone = pgdat->node_zones + i;
2544
2545                         lru_pages += zone_reclaimable_pages(zone);
2546                 }
2547
2548                 /*
2549                  * Now scan the zone in the dma->highmem direction, stopping
2550                  * at the last zone which needs scanning.
2551                  *
2552                  * We do this because the page allocator works in the opposite
2553                  * direction.  This prevents the page allocator from allocating
2554                  * pages behind kswapd's direction of progress, which would
2555                  * cause too much scanning of the lower zones.
2556                  */
2557                 for (i = 0; i <= end_zone; i++) {
2558                         struct zone *zone = pgdat->node_zones + i;
2559                         int nr_slab;
2560                         unsigned long balance_gap;
2561
2562                         if (!populated_zone(zone))
2563                                 continue;
2564
2565                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2566                                 continue;
2567
2568                         sc.nr_scanned = 0;
2569
2570                         nr_soft_scanned = 0;
2571                         /*
2572                          * Call soft limit reclaim before calling shrink_zone.
2573                          */
2574                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2575                                                         order, sc.gfp_mask,
2576                                                         &nr_soft_scanned);
2577                         sc.nr_reclaimed += nr_soft_reclaimed;
2578                         total_scanned += nr_soft_scanned;
2579
2580                         /*
2581                          * We put equal pressure on every zone, unless
2582                          * one zone has way too many pages free
2583                          * already. The "too many pages" is defined
2584                          * as the high wmark plus a "gap" where the
2585                          * gap is either the low watermark or 1%
2586                          * of the zone, whichever is smaller.
2587                          */
2588                         balance_gap = min(low_wmark_pages(zone),
2589                                 (zone->present_pages +
2590                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2591                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2592                         if (!zone_watermark_ok_safe(zone, order,
2593                                         high_wmark_pages(zone) + balance_gap,
2594                                         end_zone, 0)) {
2595                                 shrink_zone(priority, zone, &sc);
2596
2597                                 reclaim_state->reclaimed_slab = 0;
2598                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2599                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2600                                 total_scanned += sc.nr_scanned;
2601
2602                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2603                                         zone->all_unreclaimable = 1;
2604                         }
2605
2606                         /*
2607                          * If we've done a decent amount of scanning and
2608                          * the reclaim ratio is low, start doing writepage
2609                          * even in laptop mode
2610                          */
2611                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2612                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2613                                 sc.may_writepage = 1;
2614
2615                         if (zone->all_unreclaimable) {
2616                                 if (end_zone && end_zone == i)
2617                                         end_zone--;
2618                                 continue;
2619                         }
2620
2621                         if (!zone_watermark_ok_safe(zone, order,
2622                                         high_wmark_pages(zone), end_zone, 0)) {
2623                                 all_zones_ok = 0;
2624                                 /*
2625                                  * We are still under min water mark.  This
2626                                  * means that we have a GFP_ATOMIC allocation
2627                                  * failure risk. Hurry up!
2628                                  */
2629                                 if (!zone_watermark_ok_safe(zone, order,
2630                                             min_wmark_pages(zone), end_zone, 0))
2631                                         has_under_min_watermark_zone = 1;
2632                         } else {
2633                                 /*
2634                                  * If a zone reaches its high watermark,
2635                                  * consider it to be no longer congested. It's
2636                                  * possible there are dirty pages backed by
2637                                  * congested BDIs but as pressure is relieved,
2638                                  * spectulatively avoid congestion waits
2639                                  */
2640                                 zone_clear_flag(zone, ZONE_CONGESTED);
2641                                 if (i <= *classzone_idx)
2642                                         balanced += zone->present_pages;
2643                         }
2644
2645                 }
2646                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2647                         break;          /* kswapd: all done */
2648                 /*
2649                  * OK, kswapd is getting into trouble.  Take a nap, then take
2650                  * another pass across the zones.
2651                  */
2652                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2653                         if (has_under_min_watermark_zone)
2654                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2655                         else
2656                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2657                 }
2658
2659                 /*
2660                  * We do this so kswapd doesn't build up large priorities for
2661                  * example when it is freeing in parallel with allocators. It
2662                  * matches the direct reclaim path behaviour in terms of impact
2663                  * on zone->*_priority.
2664                  */
2665                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2666                         break;
2667         }
2668 out:
2669
2670         /*
2671          * order-0: All zones must meet high watermark for a balanced node
2672          * high-order: Balanced zones must make up at least 25% of the node
2673          *             for the node to be balanced
2674          */
2675         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2676                 cond_resched();
2677
2678                 try_to_freeze();
2679
2680                 /*
2681                  * Fragmentation may mean that the system cannot be
2682                  * rebalanced for high-order allocations in all zones.
2683                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2684                  * it means the zones have been fully scanned and are still
2685                  * not balanced. For high-order allocations, there is
2686                  * little point trying all over again as kswapd may
2687                  * infinite loop.
2688                  *
2689                  * Instead, recheck all watermarks at order-0 as they
2690                  * are the most important. If watermarks are ok, kswapd will go
2691                  * back to sleep. High-order users can still perform direct
2692                  * reclaim if they wish.
2693                  */
2694                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2695                         order = sc.order = 0;
2696
2697                 goto loop_again;
2698         }
2699
2700         /*
2701          * If kswapd was reclaiming at a higher order, it has the option of
2702          * sleeping without all zones being balanced. Before it does, it must
2703          * ensure that the watermarks for order-0 on *all* zones are met and
2704          * that the congestion flags are cleared. The congestion flag must
2705          * be cleared as kswapd is the only mechanism that clears the flag
2706          * and it is potentially going to sleep here.
2707          */
2708         if (order) {
2709                 for (i = 0; i <= end_zone; i++) {
2710                         struct zone *zone = pgdat->node_zones + i;
2711
2712                         if (!populated_zone(zone))
2713                                 continue;
2714
2715                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2716                                 continue;
2717
2718                         /* Confirm the zone is balanced for order-0 */
2719                         if (!zone_watermark_ok(zone, 0,
2720                                         high_wmark_pages(zone), 0, 0)) {
2721                                 order = sc.order = 0;
2722                                 goto loop_again;
2723                         }
2724
2725                         /* If balanced, clear the congested flag */
2726                         zone_clear_flag(zone, ZONE_CONGESTED);
2727                 }
2728         }
2729
2730         /*
2731          * Return the order we were reclaiming at so sleeping_prematurely()
2732          * makes a decision on the order we were last reclaiming at. However,
2733          * if another caller entered the allocator slow path while kswapd
2734          * was awake, order will remain at the higher level
2735          */
2736         *classzone_idx = end_zone;
2737         return order;
2738 }
2739
2740 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2741 {
2742         long remaining = 0;
2743         DEFINE_WAIT(wait);
2744
2745         if (freezing(current) || kthread_should_stop())
2746                 return;
2747
2748         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2749
2750         /* Try to sleep for a short interval */
2751         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2752                 remaining = schedule_timeout(HZ/10);
2753                 finish_wait(&pgdat->kswapd_wait, &wait);
2754                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2755         }
2756
2757         /*
2758          * After a short sleep, check if it was a premature sleep. If not, then
2759          * go fully to sleep until explicitly woken up.
2760          */
2761         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2762                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2763
2764                 /*
2765                  * vmstat counters are not perfectly accurate and the estimated
2766                  * value for counters such as NR_FREE_PAGES can deviate from the
2767                  * true value by nr_online_cpus * threshold. To avoid the zone
2768                  * watermarks being breached while under pressure, we reduce the
2769                  * per-cpu vmstat threshold while kswapd is awake and restore
2770                  * them before going back to sleep.
2771                  */
2772                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2773                 schedule();
2774                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2775         } else {
2776                 if (remaining)
2777                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2778                 else
2779                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2780         }
2781         finish_wait(&pgdat->kswapd_wait, &wait);
2782 }
2783
2784 /*
2785  * The background pageout daemon, started as a kernel thread
2786  * from the init process.
2787  *
2788  * This basically trickles out pages so that we have _some_
2789  * free memory available even if there is no other activity
2790  * that frees anything up. This is needed for things like routing
2791  * etc, where we otherwise might have all activity going on in
2792  * asynchronous contexts that cannot page things out.
2793  *
2794  * If there are applications that are active memory-allocators
2795  * (most normal use), this basically shouldn't matter.
2796  */
2797 static int kswapd(void *p)
2798 {
2799         unsigned long order, new_order;
2800         int classzone_idx, new_classzone_idx;
2801         pg_data_t *pgdat = (pg_data_t*)p;
2802         struct task_struct *tsk = current;
2803
2804         struct reclaim_state reclaim_state = {
2805                 .reclaimed_slab = 0,
2806         };
2807         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2808
2809         lockdep_set_current_reclaim_state(GFP_KERNEL);
2810
2811         if (!cpumask_empty(cpumask))
2812                 set_cpus_allowed_ptr(tsk, cpumask);
2813         current->reclaim_state = &reclaim_state;
2814
2815         /*
2816          * Tell the memory management that we're a "memory allocator",
2817          * and that if we need more memory we should get access to it
2818          * regardless (see "__alloc_pages()"). "kswapd" should
2819          * never get caught in the normal page freeing logic.
2820          *
2821          * (Kswapd normally doesn't need memory anyway, but sometimes
2822          * you need a small amount of memory in order to be able to
2823          * page out something else, and this flag essentially protects
2824          * us from recursively trying to free more memory as we're
2825          * trying to free the first piece of memory in the first place).
2826          */
2827         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2828         set_freezable();
2829
2830         order = new_order = 0;
2831         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2832         for ( ; ; ) {
2833                 int ret;
2834
2835                 /*
2836                  * If the last balance_pgdat was unsuccessful it's unlikely a
2837                  * new request of a similar or harder type will succeed soon
2838                  * so consider going to sleep on the basis we reclaimed at
2839                  */
2840                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2841                         new_order = pgdat->kswapd_max_order;
2842                         new_classzone_idx = pgdat->classzone_idx;
2843                         pgdat->kswapd_max_order =  0;
2844                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2845                 }
2846
2847                 if (order < new_order || classzone_idx > new_classzone_idx) {
2848                         /*
2849                          * Don't sleep if someone wants a larger 'order'
2850                          * allocation or has tigher zone constraints
2851                          */
2852                         order = new_order;
2853                         classzone_idx = new_classzone_idx;
2854                 } else {
2855                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2856                         order = pgdat->kswapd_max_order;
2857                         classzone_idx = pgdat->classzone_idx;
2858                         pgdat->kswapd_max_order = 0;
2859                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2860                 }
2861
2862                 ret = try_to_freeze();
2863                 if (kthread_should_stop())
2864                         break;
2865
2866                 /*
2867                  * We can speed up thawing tasks if we don't call balance_pgdat
2868                  * after returning from the refrigerator
2869                  */
2870                 if (!ret) {
2871                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2872                         order = balance_pgdat(pgdat, order, &classzone_idx);
2873                 }
2874         }
2875         return 0;
2876 }
2877
2878 /*
2879  * A zone is low on free memory, so wake its kswapd task to service it.
2880  */
2881 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2882 {
2883         pg_data_t *pgdat;
2884
2885         if (!populated_zone(zone))
2886                 return;
2887
2888         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2889                 return;
2890         pgdat = zone->zone_pgdat;
2891         if (pgdat->kswapd_max_order < order) {
2892                 pgdat->kswapd_max_order = order;
2893                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2894         }
2895         if (!waitqueue_active(&pgdat->kswapd_wait))
2896                 return;
2897         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2898                 return;
2899
2900         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2901         wake_up_interruptible(&pgdat->kswapd_wait);
2902 }
2903
2904 /*
2905  * The reclaimable count would be mostly accurate.
2906  * The less reclaimable pages may be
2907  * - mlocked pages, which will be moved to unevictable list when encountered
2908  * - mapped pages, which may require several travels to be reclaimed
2909  * - dirty pages, which is not "instantly" reclaimable
2910  */
2911 unsigned long global_reclaimable_pages(void)
2912 {
2913         int nr;
2914
2915         nr = global_page_state(NR_ACTIVE_FILE) +
2916              global_page_state(NR_INACTIVE_FILE);
2917
2918         if (nr_swap_pages > 0)
2919                 nr += global_page_state(NR_ACTIVE_ANON) +
2920                       global_page_state(NR_INACTIVE_ANON);
2921
2922         return nr;
2923 }
2924
2925 unsigned long zone_reclaimable_pages(struct zone *zone)
2926 {
2927         int nr;
2928
2929         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2930              zone_page_state(zone, NR_INACTIVE_FILE);
2931
2932         if (nr_swap_pages > 0)
2933                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2934                       zone_page_state(zone, NR_INACTIVE_ANON);
2935
2936         return nr;
2937 }
2938
2939 #ifdef CONFIG_HIBERNATION
2940 /*
2941  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2942  * freed pages.
2943  *
2944  * Rather than trying to age LRUs the aim is to preserve the overall
2945  * LRU order by reclaiming preferentially
2946  * inactive > active > active referenced > active mapped
2947  */
2948 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2949 {
2950         struct reclaim_state reclaim_state;
2951         struct scan_control sc = {
2952                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2953                 .may_swap = 1,
2954                 .may_unmap = 1,
2955                 .may_writepage = 1,
2956                 .nr_to_reclaim = nr_to_reclaim,
2957                 .hibernation_mode = 1,
2958                 .order = 0,
2959         };
2960         struct shrink_control shrink = {
2961                 .gfp_mask = sc.gfp_mask,
2962         };
2963         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2964         struct task_struct *p = current;
2965         unsigned long nr_reclaimed;
2966
2967         p->flags |= PF_MEMALLOC;
2968         lockdep_set_current_reclaim_state(sc.gfp_mask);
2969         reclaim_state.reclaimed_slab = 0;
2970         p->reclaim_state = &reclaim_state;
2971
2972         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2973
2974         p->reclaim_state = NULL;
2975         lockdep_clear_current_reclaim_state();
2976         p->flags &= ~PF_MEMALLOC;
2977
2978         return nr_reclaimed;
2979 }
2980 #endif /* CONFIG_HIBERNATION */
2981
2982 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2983    not required for correctness.  So if the last cpu in a node goes
2984    away, we get changed to run anywhere: as the first one comes back,
2985    restore their cpu bindings. */
2986 static int __devinit cpu_callback(struct notifier_block *nfb,
2987                                   unsigned long action, void *hcpu)
2988 {
2989         int nid;
2990
2991         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2992                 for_each_node_state(nid, N_HIGH_MEMORY) {
2993                         pg_data_t *pgdat = NODE_DATA(nid);
2994                         const struct cpumask *mask;
2995
2996                         mask = cpumask_of_node(pgdat->node_id);
2997
2998                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2999                                 /* One of our CPUs online: restore mask */
3000                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3001                 }
3002         }
3003         return NOTIFY_OK;
3004 }
3005
3006 /*
3007  * This kswapd start function will be called by init and node-hot-add.
3008  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3009  */
3010 int kswapd_run(int nid)
3011 {
3012         pg_data_t *pgdat = NODE_DATA(nid);
3013         int ret = 0;
3014
3015         if (pgdat->kswapd)
3016                 return 0;
3017
3018         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3019         if (IS_ERR(pgdat->kswapd)) {
3020                 /* failure at boot is fatal */
3021                 BUG_ON(system_state == SYSTEM_BOOTING);
3022                 printk("Failed to start kswapd on node %d\n",nid);
3023                 ret = -1;
3024         }
3025         return ret;
3026 }
3027
3028 /*
3029  * Called by memory hotplug when all memory in a node is offlined.
3030  */
3031 void kswapd_stop(int nid)
3032 {
3033         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3034
3035         if (kswapd)
3036                 kthread_stop(kswapd);
3037 }
3038
3039 static int __init kswapd_init(void)
3040 {
3041         int nid;
3042
3043         swap_setup();
3044         for_each_node_state(nid, N_HIGH_MEMORY)
3045                 kswapd_run(nid);
3046         hotcpu_notifier(cpu_callback, 0);
3047         return 0;
3048 }
3049
3050 module_init(kswapd_init)
3051
3052 #ifdef CONFIG_NUMA
3053 /*
3054  * Zone reclaim mode
3055  *
3056  * If non-zero call zone_reclaim when the number of free pages falls below
3057  * the watermarks.
3058  */
3059 int zone_reclaim_mode __read_mostly;
3060
3061 #define RECLAIM_OFF 0
3062 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3063 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3064 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3065
3066 /*
3067  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3068  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3069  * a zone.
3070  */
3071 #define ZONE_RECLAIM_PRIORITY 4
3072
3073 /*
3074  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3075  * occur.
3076  */
3077 int sysctl_min_unmapped_ratio = 1;
3078
3079 /*
3080  * If the number of slab pages in a zone grows beyond this percentage then
3081  * slab reclaim needs to occur.
3082  */
3083 int sysctl_min_slab_ratio = 5;
3084
3085 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3086 {
3087         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3088         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3089                 zone_page_state(zone, NR_ACTIVE_FILE);
3090
3091         /*
3092          * It's possible for there to be more file mapped pages than
3093          * accounted for by the pages on the file LRU lists because
3094          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3095          */
3096         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3097 }
3098
3099 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3100 static long zone_pagecache_reclaimable(struct zone *zone)
3101 {
3102         long nr_pagecache_reclaimable;
3103         long delta = 0;
3104
3105         /*
3106          * If RECLAIM_SWAP is set, then all file pages are considered
3107          * potentially reclaimable. Otherwise, we have to worry about
3108          * pages like swapcache and zone_unmapped_file_pages() provides
3109          * a better estimate
3110          */
3111         if (zone_reclaim_mode & RECLAIM_SWAP)
3112                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3113         else
3114                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3115
3116         /* If we can't clean pages, remove dirty pages from consideration */
3117         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3118                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3119
3120         /* Watch for any possible underflows due to delta */
3121         if (unlikely(delta > nr_pagecache_reclaimable))
3122                 delta = nr_pagecache_reclaimable;
3123
3124         return nr_pagecache_reclaimable - delta;
3125 }
3126
3127 /*
3128  * Try to free up some pages from this zone through reclaim.
3129  */
3130 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3131 {
3132         /* Minimum pages needed in order to stay on node */
3133         const unsigned long nr_pages = 1 << order;
3134         struct task_struct *p = current;
3135         struct reclaim_state reclaim_state;
3136         int priority;
3137         struct scan_control sc = {
3138                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3139                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3140                 .may_swap = 1,
3141                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3142                                        SWAP_CLUSTER_MAX),
3143                 .gfp_mask = gfp_mask,
3144                 .order = order,
3145         };
3146         struct shrink_control shrink = {
3147                 .gfp_mask = sc.gfp_mask,
3148         };
3149         unsigned long nr_slab_pages0, nr_slab_pages1;
3150
3151         cond_resched();
3152         /*
3153          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3154          * and we also need to be able to write out pages for RECLAIM_WRITE
3155          * and RECLAIM_SWAP.
3156          */
3157         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3158         lockdep_set_current_reclaim_state(gfp_mask);
3159         reclaim_state.reclaimed_slab = 0;
3160         p->reclaim_state = &reclaim_state;
3161
3162         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3163                 /*
3164                  * Free memory by calling shrink zone with increasing
3165                  * priorities until we have enough memory freed.
3166                  */
3167                 priority = ZONE_RECLAIM_PRIORITY;
3168                 do {
3169                         shrink_zone(priority, zone, &sc);
3170                         priority--;
3171                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3172         }
3173
3174         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3175         if (nr_slab_pages0 > zone->min_slab_pages) {
3176                 /*
3177                  * shrink_slab() does not currently allow us to determine how
3178                  * many pages were freed in this zone. So we take the current
3179                  * number of slab pages and shake the slab until it is reduced
3180                  * by the same nr_pages that we used for reclaiming unmapped
3181                  * pages.
3182                  *
3183                  * Note that shrink_slab will free memory on all zones and may
3184                  * take a long time.
3185                  */
3186                 for (;;) {
3187                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3188
3189                         /* No reclaimable slab or very low memory pressure */
3190                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3191                                 break;
3192
3193                         /* Freed enough memory */
3194                         nr_slab_pages1 = zone_page_state(zone,
3195                                                         NR_SLAB_RECLAIMABLE);
3196                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3197                                 break;
3198                 }
3199
3200                 /*
3201                  * Update nr_reclaimed by the number of slab pages we
3202                  * reclaimed from this zone.
3203                  */
3204                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3205                 if (nr_slab_pages1 < nr_slab_pages0)
3206                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3207         }
3208
3209         p->reclaim_state = NULL;
3210         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3211         lockdep_clear_current_reclaim_state();
3212         return sc.nr_reclaimed >= nr_pages;
3213 }
3214
3215 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3216 {
3217         int node_id;
3218         int ret;
3219
3220         /*
3221          * Zone reclaim reclaims unmapped file backed pages and
3222          * slab pages if we are over the defined limits.
3223          *
3224          * A small portion of unmapped file backed pages is needed for
3225          * file I/O otherwise pages read by file I/O will be immediately
3226          * thrown out if the zone is overallocated. So we do not reclaim
3227          * if less than a specified percentage of the zone is used by
3228          * unmapped file backed pages.
3229          */
3230         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3231             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3232                 return ZONE_RECLAIM_FULL;
3233
3234         if (zone->all_unreclaimable)
3235                 return ZONE_RECLAIM_FULL;
3236
3237         /*
3238          * Do not scan if the allocation should not be delayed.
3239          */
3240         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3241                 return ZONE_RECLAIM_NOSCAN;
3242
3243         /*
3244          * Only run zone reclaim on the local zone or on zones that do not
3245          * have associated processors. This will favor the local processor
3246          * over remote processors and spread off node memory allocations
3247          * as wide as possible.
3248          */
3249         node_id = zone_to_nid(zone);
3250         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3251                 return ZONE_RECLAIM_NOSCAN;
3252
3253         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3254                 return ZONE_RECLAIM_NOSCAN;
3255
3256         ret = __zone_reclaim(zone, gfp_mask, order);
3257         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3258
3259         if (!ret)
3260                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3261
3262         return ret;
3263 }
3264 #endif
3265
3266 /*
3267  * page_evictable - test whether a page is evictable
3268  * @page: the page to test
3269  * @vma: the VMA in which the page is or will be mapped, may be NULL
3270  *
3271  * Test whether page is evictable--i.e., should be placed on active/inactive
3272  * lists vs unevictable list.  The vma argument is !NULL when called from the
3273  * fault path to determine how to instantate a new page.
3274  *
3275  * Reasons page might not be evictable:
3276  * (1) page's mapping marked unevictable
3277  * (2) page is part of an mlocked VMA
3278  *
3279  */
3280 int page_evictable(struct page *page, struct vm_area_struct *vma)
3281 {
3282
3283         if (mapping_unevictable(page_mapping(page)))
3284                 return 0;
3285
3286         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3287                 return 0;
3288
3289         return 1;
3290 }
3291
3292 /**
3293  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3294  * @page: page to check evictability and move to appropriate lru list
3295  * @zone: zone page is in
3296  *
3297  * Checks a page for evictability and moves the page to the appropriate
3298  * zone lru list.
3299  *
3300  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3301  * have PageUnevictable set.
3302  */
3303 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3304 {
3305         VM_BUG_ON(PageActive(page));
3306
3307 retry:
3308         ClearPageUnevictable(page);
3309         if (page_evictable(page, NULL)) {
3310                 enum lru_list l = page_lru_base_type(page);
3311
3312                 __dec_zone_state(zone, NR_UNEVICTABLE);
3313                 list_move(&page->lru, &zone->lru[l].list);
3314                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3315                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3316                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3317         } else {
3318                 /*
3319                  * rotate unevictable list
3320                  */
3321                 SetPageUnevictable(page);
3322                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3323                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3324                 if (page_evictable(page, NULL))
3325                         goto retry;
3326         }
3327 }
3328
3329 /**
3330  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3331  * @mapping: struct address_space to scan for evictable pages
3332  *
3333  * Scan all pages in mapping.  Check unevictable pages for
3334  * evictability and move them to the appropriate zone lru list.
3335  */
3336 void scan_mapping_unevictable_pages(struct address_space *mapping)
3337 {
3338         pgoff_t next = 0;
3339         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3340                          PAGE_CACHE_SHIFT;
3341         struct zone *zone;
3342         struct pagevec pvec;
3343
3344         if (mapping->nrpages == 0)
3345                 return;
3346
3347         pagevec_init(&pvec, 0);
3348         while (next < end &&
3349                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3350                 int i;
3351                 int pg_scanned = 0;
3352
3353                 zone = NULL;
3354
3355                 for (i = 0; i < pagevec_count(&pvec); i++) {
3356                         struct page *page = pvec.pages[i];
3357                         pgoff_t page_index = page->index;
3358                         struct zone *pagezone = page_zone(page);
3359
3360                         pg_scanned++;
3361                         if (page_index > next)
3362                                 next = page_index;
3363                         next++;
3364
3365                         if (pagezone != zone) {
3366                                 if (zone)
3367                                         spin_unlock_irq(&zone->lru_lock);
3368                                 zone = pagezone;
3369                                 spin_lock_irq(&zone->lru_lock);
3370                         }
3371
3372                         if (PageLRU(page) && PageUnevictable(page))
3373                                 check_move_unevictable_page(page, zone);
3374                 }
3375                 if (zone)
3376                         spin_unlock_irq(&zone->lru_lock);
3377                 pagevec_release(&pvec);
3378
3379                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3380         }
3381
3382 }
3383
3384 /**
3385  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3386  * @zone - zone of which to scan the unevictable list
3387  *
3388  * Scan @zone's unevictable LRU lists to check for pages that have become
3389  * evictable.  Move those that have to @zone's inactive list where they
3390  * become candidates for reclaim, unless shrink_inactive_zone() decides
3391  * to reactivate them.  Pages that are still unevictable are rotated
3392  * back onto @zone's unevictable list.
3393  */
3394 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3395 static void scan_zone_unevictable_pages(struct zone *zone)
3396 {
3397         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3398         unsigned long scan;
3399         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3400
3401         while (nr_to_scan > 0) {
3402                 unsigned long batch_size = min(nr_to_scan,
3403                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3404
3405                 spin_lock_irq(&zone->lru_lock);
3406                 for (scan = 0;  scan < batch_size; scan++) {
3407                         struct page *page = lru_to_page(l_unevictable);
3408
3409                         if (!trylock_page(page))
3410                                 continue;
3411
3412                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3413
3414                         if (likely(PageLRU(page) && PageUnevictable(page)))
3415                                 check_move_unevictable_page(page, zone);
3416
3417                         unlock_page(page);
3418                 }
3419                 spin_unlock_irq(&zone->lru_lock);
3420
3421                 nr_to_scan -= batch_size;
3422         }
3423 }
3424
3425
3426 /**
3427  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3428  *
3429  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3430  * pages that have become evictable.  Move those back to the zones'
3431  * inactive list where they become candidates for reclaim.
3432  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3433  * and we add swap to the system.  As such, it runs in the context of a task
3434  * that has possibly/probably made some previously unevictable pages
3435  * evictable.
3436  */
3437 static void scan_all_zones_unevictable_pages(void)
3438 {
3439         struct zone *zone;
3440
3441         for_each_zone(zone) {
3442                 scan_zone_unevictable_pages(zone);
3443         }
3444 }
3445
3446 /*
3447  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3448  * all nodes' unevictable lists for evictable pages
3449  */
3450 unsigned long scan_unevictable_pages;
3451
3452 int scan_unevictable_handler(struct ctl_table *table, int write,
3453                            void __user *buffer,
3454                            size_t *length, loff_t *ppos)
3455 {
3456         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3457
3458         if (write && *(unsigned long *)table->data)
3459                 scan_all_zones_unevictable_pages();
3460
3461         scan_unevictable_pages = 0;
3462         return 0;
3463 }
3464
3465 #ifdef CONFIG_NUMA
3466 /*
3467  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3468  * a specified node's per zone unevictable lists for evictable pages.
3469  */
3470
3471 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3472                                           struct sysdev_attribute *attr,
3473                                           char *buf)
3474 {
3475         return sprintf(buf, "0\n");     /* always zero; should fit... */
3476 }
3477
3478 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3479                                            struct sysdev_attribute *attr,
3480                                         const char *buf, size_t count)
3481 {
3482         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3483         struct zone *zone;
3484         unsigned long res;
3485         unsigned long req = strict_strtoul(buf, 10, &res);
3486
3487         if (!req)
3488                 return 1;       /* zero is no-op */
3489
3490         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3491                 if (!populated_zone(zone))
3492                         continue;
3493                 scan_zone_unevictable_pages(zone);
3494         }
3495         return 1;
3496 }
3497
3498
3499 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3500                         read_scan_unevictable_node,
3501                         write_scan_unevictable_node);
3502
3503 int scan_unevictable_register_node(struct node *node)
3504 {
3505         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3506 }
3507
3508 void scan_unevictable_unregister_node(struct node *node)
3509 {
3510         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3511 }
3512 #endif