]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmscan.c
When direct reclaim encounters a dirty page, it gets recycled around the
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108         struct memcg_scanrecord *memcg_record;
109
110         /*
111          * Nodemask of nodes allowed by the caller. If NULL, all nodes
112          * are scanned.
113          */
114         nodemask_t      *nodemask;
115 };
116
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field)                    \
121         do {                                                            \
122                 if ((_page)->lru.prev != _base) {                       \
123                         struct page *prev;                              \
124                                                                         \
125                         prev = lru_to_page(&(_page->lru));              \
126                         prefetch(&prev->_field);                        \
127                 }                                                       \
128         } while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
132
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
135         do {                                                            \
136                 if ((_page)->lru.prev != _base) {                       \
137                         struct page *prev;                              \
138                                                                         \
139                         prev = lru_to_page(&(_page->lru));              \
140                         prefetchw(&prev->_field);                       \
141                 }                                                       \
142         } while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
146
147 /*
148  * From 0 .. 100.  Higher means more swappy.
149  */
150 int vm_swappiness = 60;
151 long vm_total_pages;    /* The total number of pages which the VM controls */
152
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
155
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc) (1)
160 #endif
161
162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163                                                   struct scan_control *sc)
164 {
165         if (!scanning_global_lru(sc))
166                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167
168         return &zone->reclaim_stat;
169 }
170
171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172                                 struct scan_control *sc, enum lru_list lru)
173 {
174         if (!scanning_global_lru(sc))
175                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
176                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
177
178         return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180
181
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187         shrinker->nr = 0;
188         down_write(&shrinker_rwsem);
189         list_add_tail(&shrinker->list, &shrinker_list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199         down_write(&shrinker_rwsem);
200         list_del(&shrinker->list);
201         up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206                                      struct shrink_control *sc,
207                                      unsigned long nr_to_scan)
208 {
209         sc->nr_to_scan = nr_to_scan;
210         return (*shrinker->shrink)(shrinker, sc);
211 }
212
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234                           unsigned long nr_pages_scanned,
235                           unsigned long lru_pages)
236 {
237         struct shrinker *shrinker;
238         unsigned long ret = 0;
239
240         if (nr_pages_scanned == 0)
241                 nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243         if (!down_read_trylock(&shrinker_rwsem)) {
244                 /* Assume we'll be able to shrink next time */
245                 ret = 1;
246                 goto out;
247         }
248
249         list_for_each_entry(shrinker, &shrinker_list, list) {
250                 unsigned long long delta;
251                 unsigned long total_scan;
252                 unsigned long max_pass;
253                 int shrink_ret = 0;
254                 long nr;
255                 long new_nr;
256                 long batch_size = shrinker->batch ? shrinker->batch
257                                                   : SHRINK_BATCH;
258
259                 /*
260                  * copy the current shrinker scan count into a local variable
261                  * and zero it so that other concurrent shrinker invocations
262                  * don't also do this scanning work.
263                  */
264                 do {
265                         nr = shrinker->nr;
266                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
267
268                 total_scan = nr;
269                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
270                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271                 delta *= max_pass;
272                 do_div(delta, lru_pages + 1);
273                 total_scan += delta;
274                 if (total_scan < 0) {
275                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
276                                "delete nr=%ld\n",
277                                shrinker->shrink, total_scan);
278                         total_scan = max_pass;
279                 }
280
281                 /*
282                  * We need to avoid excessive windup on filesystem shrinkers
283                  * due to large numbers of GFP_NOFS allocations causing the
284                  * shrinkers to return -1 all the time. This results in a large
285                  * nr being built up so when a shrink that can do some work
286                  * comes along it empties the entire cache due to nr >>>
287                  * max_pass.  This is bad for sustaining a working set in
288                  * memory.
289                  *
290                  * Hence only allow the shrinker to scan the entire cache when
291                  * a large delta change is calculated directly.
292                  */
293                 if (delta < max_pass / 4)
294                         total_scan = min(total_scan, max_pass / 2);
295
296                 /*
297                  * Avoid risking looping forever due to too large nr value:
298                  * never try to free more than twice the estimate number of
299                  * freeable entries.
300                  */
301                 if (total_scan > max_pass * 2)
302                         total_scan = max_pass * 2;
303
304                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305                                         nr_pages_scanned, lru_pages,
306                                         max_pass, delta, total_scan);
307
308                 while (total_scan >= batch_size) {
309                         int nr_before;
310
311                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
313                                                         batch_size);
314                         if (shrink_ret == -1)
315                                 break;
316                         if (shrink_ret < nr_before)
317                                 ret += nr_before - shrink_ret;
318                         count_vm_events(SLABS_SCANNED, batch_size);
319                         total_scan -= batch_size;
320
321                         cond_resched();
322                 }
323
324                 /*
325                  * move the unused scan count back into the shrinker in a
326                  * manner that handles concurrent updates. If we exhausted the
327                  * scan, there is no need to do an update.
328                  */
329                 do {
330                         nr = shrinker->nr;
331                         new_nr = total_scan + nr;
332                         if (total_scan <= 0)
333                                 break;
334                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
335
336                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
337         }
338         up_read(&shrinker_rwsem);
339 out:
340         cond_resched();
341         return ret;
342 }
343
344 static void set_reclaim_mode(int priority, struct scan_control *sc,
345                                    bool sync)
346 {
347         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
348
349         /*
350          * Initially assume we are entering either lumpy reclaim or
351          * reclaim/compaction.Depending on the order, we will either set the
352          * sync mode or just reclaim order-0 pages later.
353          */
354         if (COMPACTION_BUILD)
355                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
356         else
357                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
358
359         /*
360          * Avoid using lumpy reclaim or reclaim/compaction if possible by
361          * restricting when its set to either costly allocations or when
362          * under memory pressure
363          */
364         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
365                 sc->reclaim_mode |= syncmode;
366         else if (sc->order && priority < DEF_PRIORITY - 2)
367                 sc->reclaim_mode |= syncmode;
368         else
369                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
370 }
371
372 static void reset_reclaim_mode(struct scan_control *sc)
373 {
374         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
375 }
376
377 static inline int is_page_cache_freeable(struct page *page)
378 {
379         /*
380          * A freeable page cache page is referenced only by the caller
381          * that isolated the page, the page cache radix tree and
382          * optional buffer heads at page->private.
383          */
384         return page_count(page) - page_has_private(page) == 2;
385 }
386
387 static int may_write_to_queue(struct backing_dev_info *bdi,
388                               struct scan_control *sc)
389 {
390         if (current->flags & PF_SWAPWRITE)
391                 return 1;
392         if (!bdi_write_congested(bdi))
393                 return 1;
394         if (bdi == current->backing_dev_info)
395                 return 1;
396
397         /* lumpy reclaim for hugepage often need a lot of write */
398         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
399                 return 1;
400         return 0;
401 }
402
403 /*
404  * We detected a synchronous write error writing a page out.  Probably
405  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
406  * fsync(), msync() or close().
407  *
408  * The tricky part is that after writepage we cannot touch the mapping: nothing
409  * prevents it from being freed up.  But we have a ref on the page and once
410  * that page is locked, the mapping is pinned.
411  *
412  * We're allowed to run sleeping lock_page() here because we know the caller has
413  * __GFP_FS.
414  */
415 static void handle_write_error(struct address_space *mapping,
416                                 struct page *page, int error)
417 {
418         lock_page(page);
419         if (page_mapping(page) == mapping)
420                 mapping_set_error(mapping, error);
421         unlock_page(page);
422 }
423
424 /* possible outcome of pageout() */
425 typedef enum {
426         /* failed to write page out, page is locked */
427         PAGE_KEEP,
428         /* move page to the active list, page is locked */
429         PAGE_ACTIVATE,
430         /* page has been sent to the disk successfully, page is unlocked */
431         PAGE_SUCCESS,
432         /* page is clean and locked */
433         PAGE_CLEAN,
434 } pageout_t;
435
436 /*
437  * pageout is called by shrink_page_list() for each dirty page.
438  * Calls ->writepage().
439  */
440 static pageout_t pageout(struct page *page, struct address_space *mapping,
441                          struct scan_control *sc)
442 {
443         /*
444          * If the page is dirty, only perform writeback if that write
445          * will be non-blocking.  To prevent this allocation from being
446          * stalled by pagecache activity.  But note that there may be
447          * stalls if we need to run get_block().  We could test
448          * PagePrivate for that.
449          *
450          * If this process is currently in __generic_file_aio_write() against
451          * this page's queue, we can perform writeback even if that
452          * will block.
453          *
454          * If the page is swapcache, write it back even if that would
455          * block, for some throttling. This happens by accident, because
456          * swap_backing_dev_info is bust: it doesn't reflect the
457          * congestion state of the swapdevs.  Easy to fix, if needed.
458          */
459         if (!is_page_cache_freeable(page))
460                 return PAGE_KEEP;
461         if (!mapping) {
462                 /*
463                  * Some data journaling orphaned pages can have
464                  * page->mapping == NULL while being dirty with clean buffers.
465                  */
466                 if (page_has_private(page)) {
467                         if (try_to_free_buffers(page)) {
468                                 ClearPageDirty(page);
469                                 printk("%s: orphaned page\n", __func__);
470                                 return PAGE_CLEAN;
471                         }
472                 }
473                 return PAGE_KEEP;
474         }
475         if (mapping->a_ops->writepage == NULL)
476                 return PAGE_ACTIVATE;
477         if (!may_write_to_queue(mapping->backing_dev_info, sc))
478                 return PAGE_KEEP;
479
480         if (clear_page_dirty_for_io(page)) {
481                 int res;
482                 struct writeback_control wbc = {
483                         .sync_mode = WB_SYNC_NONE,
484                         .nr_to_write = SWAP_CLUSTER_MAX,
485                         .range_start = 0,
486                         .range_end = LLONG_MAX,
487                         .for_reclaim = 1,
488                 };
489
490                 SetPageReclaim(page);
491                 res = mapping->a_ops->writepage(page, &wbc);
492                 if (res < 0)
493                         handle_write_error(mapping, page, res);
494                 if (res == AOP_WRITEPAGE_ACTIVATE) {
495                         ClearPageReclaim(page);
496                         return PAGE_ACTIVATE;
497                 }
498
499                 if (!PageWriteback(page)) {
500                         /* synchronous write or broken a_ops? */
501                         ClearPageReclaim(page);
502                 }
503                 trace_mm_vmscan_writepage(page,
504                         trace_reclaim_flags(page, sc->reclaim_mode));
505                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
506                 return PAGE_SUCCESS;
507         }
508
509         return PAGE_CLEAN;
510 }
511
512 /*
513  * Same as remove_mapping, but if the page is removed from the mapping, it
514  * gets returned with a refcount of 0.
515  */
516 static int __remove_mapping(struct address_space *mapping, struct page *page)
517 {
518         BUG_ON(!PageLocked(page));
519         BUG_ON(mapping != page_mapping(page));
520
521         spin_lock_irq(&mapping->tree_lock);
522         /*
523          * The non racy check for a busy page.
524          *
525          * Must be careful with the order of the tests. When someone has
526          * a ref to the page, it may be possible that they dirty it then
527          * drop the reference. So if PageDirty is tested before page_count
528          * here, then the following race may occur:
529          *
530          * get_user_pages(&page);
531          * [user mapping goes away]
532          * write_to(page);
533          *                              !PageDirty(page)    [good]
534          * SetPageDirty(page);
535          * put_page(page);
536          *                              !page_count(page)   [good, discard it]
537          *
538          * [oops, our write_to data is lost]
539          *
540          * Reversing the order of the tests ensures such a situation cannot
541          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
542          * load is not satisfied before that of page->_count.
543          *
544          * Note that if SetPageDirty is always performed via set_page_dirty,
545          * and thus under tree_lock, then this ordering is not required.
546          */
547         if (!page_freeze_refs(page, 2))
548                 goto cannot_free;
549         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
550         if (unlikely(PageDirty(page))) {
551                 page_unfreeze_refs(page, 2);
552                 goto cannot_free;
553         }
554
555         if (PageSwapCache(page)) {
556                 swp_entry_t swap = { .val = page_private(page) };
557                 __delete_from_swap_cache(page);
558                 spin_unlock_irq(&mapping->tree_lock);
559                 swapcache_free(swap, page);
560         } else {
561                 void (*freepage)(struct page *);
562
563                 freepage = mapping->a_ops->freepage;
564
565                 __delete_from_page_cache(page);
566                 spin_unlock_irq(&mapping->tree_lock);
567                 mem_cgroup_uncharge_cache_page(page);
568
569                 if (freepage != NULL)
570                         freepage(page);
571         }
572
573         return 1;
574
575 cannot_free:
576         spin_unlock_irq(&mapping->tree_lock);
577         return 0;
578 }
579
580 /*
581  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
582  * someone else has a ref on the page, abort and return 0.  If it was
583  * successfully detached, return 1.  Assumes the caller has a single ref on
584  * this page.
585  */
586 int remove_mapping(struct address_space *mapping, struct page *page)
587 {
588         if (__remove_mapping(mapping, page)) {
589                 /*
590                  * Unfreezing the refcount with 1 rather than 2 effectively
591                  * drops the pagecache ref for us without requiring another
592                  * atomic operation.
593                  */
594                 page_unfreeze_refs(page, 1);
595                 return 1;
596         }
597         return 0;
598 }
599
600 /**
601  * putback_lru_page - put previously isolated page onto appropriate LRU list
602  * @page: page to be put back to appropriate lru list
603  *
604  * Add previously isolated @page to appropriate LRU list.
605  * Page may still be unevictable for other reasons.
606  *
607  * lru_lock must not be held, interrupts must be enabled.
608  */
609 void putback_lru_page(struct page *page)
610 {
611         int lru;
612         int active = !!TestClearPageActive(page);
613         int was_unevictable = PageUnevictable(page);
614
615         VM_BUG_ON(PageLRU(page));
616
617 redo:
618         ClearPageUnevictable(page);
619
620         if (page_evictable(page, NULL)) {
621                 /*
622                  * For evictable pages, we can use the cache.
623                  * In event of a race, worst case is we end up with an
624                  * unevictable page on [in]active list.
625                  * We know how to handle that.
626                  */
627                 lru = active + page_lru_base_type(page);
628                 lru_cache_add_lru(page, lru);
629         } else {
630                 /*
631                  * Put unevictable pages directly on zone's unevictable
632                  * list.
633                  */
634                 lru = LRU_UNEVICTABLE;
635                 add_page_to_unevictable_list(page);
636                 /*
637                  * When racing with an mlock clearing (page is
638                  * unlocked), make sure that if the other thread does
639                  * not observe our setting of PG_lru and fails
640                  * isolation, we see PG_mlocked cleared below and move
641                  * the page back to the evictable list.
642                  *
643                  * The other side is TestClearPageMlocked().
644                  */
645                 smp_mb();
646         }
647
648         /*
649          * page's status can change while we move it among lru. If an evictable
650          * page is on unevictable list, it never be freed. To avoid that,
651          * check after we added it to the list, again.
652          */
653         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654                 if (!isolate_lru_page(page)) {
655                         put_page(page);
656                         goto redo;
657                 }
658                 /* This means someone else dropped this page from LRU
659                  * So, it will be freed or putback to LRU again. There is
660                  * nothing to do here.
661                  */
662         }
663
664         if (was_unevictable && lru != LRU_UNEVICTABLE)
665                 count_vm_event(UNEVICTABLE_PGRESCUED);
666         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667                 count_vm_event(UNEVICTABLE_PGCULLED);
668
669         put_page(page);         /* drop ref from isolate */
670 }
671
672 enum page_references {
673         PAGEREF_RECLAIM,
674         PAGEREF_RECLAIM_CLEAN,
675         PAGEREF_KEEP,
676         PAGEREF_ACTIVATE,
677 };
678
679 static enum page_references page_check_references(struct page *page,
680                                                   struct scan_control *sc)
681 {
682         int referenced_ptes, referenced_page;
683         unsigned long vm_flags;
684
685         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686         referenced_page = TestClearPageReferenced(page);
687
688         /* Lumpy reclaim - ignore references */
689         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690                 return PAGEREF_RECLAIM;
691
692         /*
693          * Mlock lost the isolation race with us.  Let try_to_unmap()
694          * move the page to the unevictable list.
695          */
696         if (vm_flags & VM_LOCKED)
697                 return PAGEREF_RECLAIM;
698
699         if (referenced_ptes) {
700                 if (PageAnon(page))
701                         return PAGEREF_ACTIVATE;
702                 /*
703                  * All mapped pages start out with page table
704                  * references from the instantiating fault, so we need
705                  * to look twice if a mapped file page is used more
706                  * than once.
707                  *
708                  * Mark it and spare it for another trip around the
709                  * inactive list.  Another page table reference will
710                  * lead to its activation.
711                  *
712                  * Note: the mark is set for activated pages as well
713                  * so that recently deactivated but used pages are
714                  * quickly recovered.
715                  */
716                 SetPageReferenced(page);
717
718                 if (referenced_page)
719                         return PAGEREF_ACTIVATE;
720
721                 return PAGEREF_KEEP;
722         }
723
724         /* Reclaim if clean, defer dirty pages to writeback */
725         if (referenced_page && !PageSwapBacked(page))
726                 return PAGEREF_RECLAIM_CLEAN;
727
728         return PAGEREF_RECLAIM;
729 }
730
731 static noinline_for_stack void free_page_list(struct list_head *free_pages)
732 {
733         struct pagevec freed_pvec;
734         struct page *page, *tmp;
735
736         pagevec_init(&freed_pvec, 1);
737
738         list_for_each_entry_safe(page, tmp, free_pages, lru) {
739                 list_del(&page->lru);
740                 if (!pagevec_add(&freed_pvec, page)) {
741                         __pagevec_free(&freed_pvec);
742                         pagevec_reinit(&freed_pvec);
743                 }
744         }
745
746         pagevec_free(&freed_pvec);
747 }
748
749 /*
750  * shrink_page_list() returns the number of reclaimed pages
751  */
752 static unsigned long shrink_page_list(struct list_head *page_list,
753                                       struct zone *zone,
754                                       struct scan_control *sc,
755                                       int priority,
756                                       unsigned long *ret_nr_dirty,
757                                       unsigned long *ret_nr_writeback)
758 {
759         LIST_HEAD(ret_pages);
760         LIST_HEAD(free_pages);
761         int pgactivate = 0;
762         unsigned long nr_dirty = 0;
763         unsigned long nr_congested = 0;
764         unsigned long nr_reclaimed = 0;
765         unsigned long nr_writeback = 0;
766
767         cond_resched();
768
769         while (!list_empty(page_list)) {
770                 enum page_references references;
771                 struct address_space *mapping;
772                 struct page *page;
773                 int may_enter_fs;
774
775                 cond_resched();
776
777                 page = lru_to_page(page_list);
778                 list_del(&page->lru);
779
780                 if (!trylock_page(page))
781                         goto keep;
782
783                 VM_BUG_ON(PageActive(page));
784                 VM_BUG_ON(page_zone(page) != zone);
785
786                 sc->nr_scanned++;
787
788                 if (unlikely(!page_evictable(page, NULL)))
789                         goto cull_mlocked;
790
791                 if (!sc->may_unmap && page_mapped(page))
792                         goto keep_locked;
793
794                 /* Double the slab pressure for mapped and swapcache pages */
795                 if (page_mapped(page) || PageSwapCache(page))
796                         sc->nr_scanned++;
797
798                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
799                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
800
801                 if (PageWriteback(page)) {
802                         nr_writeback++;
803                         /*
804                          * Synchronous reclaim cannot queue pages for
805                          * writeback due to the possibility of stack overflow
806                          * but if it encounters a page under writeback, wait
807                          * for the IO to complete.
808                          */
809                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
810                             may_enter_fs)
811                                 wait_on_page_writeback(page);
812                         else {
813                                 unlock_page(page);
814                                 goto keep_lumpy;
815                         }
816                 }
817
818                 references = page_check_references(page, sc);
819                 switch (references) {
820                 case PAGEREF_ACTIVATE:
821                         goto activate_locked;
822                 case PAGEREF_KEEP:
823                         goto keep_locked;
824                 case PAGEREF_RECLAIM:
825                 case PAGEREF_RECLAIM_CLEAN:
826                         ; /* try to reclaim the page below */
827                 }
828
829                 /*
830                  * Anonymous process memory has backing store?
831                  * Try to allocate it some swap space here.
832                  */
833                 if (PageAnon(page) && !PageSwapCache(page)) {
834                         if (!(sc->gfp_mask & __GFP_IO))
835                                 goto keep_locked;
836                         if (!add_to_swap(page))
837                                 goto activate_locked;
838                         may_enter_fs = 1;
839                 }
840
841                 mapping = page_mapping(page);
842
843                 /*
844                  * The page is mapped into the page tables of one or more
845                  * processes. Try to unmap it here.
846                  */
847                 if (page_mapped(page) && mapping) {
848                         switch (try_to_unmap(page, TTU_UNMAP)) {
849                         case SWAP_FAIL:
850                                 goto activate_locked;
851                         case SWAP_AGAIN:
852                                 goto keep_locked;
853                         case SWAP_MLOCK:
854                                 goto cull_mlocked;
855                         case SWAP_SUCCESS:
856                                 ; /* try to free the page below */
857                         }
858                 }
859
860                 if (PageDirty(page)) {
861                         nr_dirty++;
862
863                         /*
864                          * Only kswapd can writeback filesystem pages to
865                          * avoid risk of stack overflow but do not writeback
866                          * unless under significant pressure.
867                          */
868                         if (page_is_file_cache(page) &&
869                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
870                                 /*
871                                  * Immediately reclaim when written back.
872                                  * Similar in principal to deactivate_page()
873                                  * except we already have the page isolated
874                                  * and know it's dirty
875                                  */
876                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
877                                 SetPageReclaim(page);
878
879                                 goto keep_locked;
880                         }
881
882                         if (references == PAGEREF_RECLAIM_CLEAN)
883                                 goto keep_locked;
884                         if (!may_enter_fs)
885                                 goto keep_locked;
886                         if (!sc->may_writepage)
887                                 goto keep_locked;
888
889                         /* Page is dirty, try to write it out here */
890                         switch (pageout(page, mapping, sc)) {
891                         case PAGE_KEEP:
892                                 nr_congested++;
893                                 goto keep_locked;
894                         case PAGE_ACTIVATE:
895                                 goto activate_locked;
896                         case PAGE_SUCCESS:
897                                 if (PageWriteback(page))
898                                         goto keep_lumpy;
899                                 if (PageDirty(page))
900                                         goto keep;
901
902                                 /*
903                                  * A synchronous write - probably a ramdisk.  Go
904                                  * ahead and try to reclaim the page.
905                                  */
906                                 if (!trylock_page(page))
907                                         goto keep;
908                                 if (PageDirty(page) || PageWriteback(page))
909                                         goto keep_locked;
910                                 mapping = page_mapping(page);
911                         case PAGE_CLEAN:
912                                 ; /* try to free the page below */
913                         }
914                 }
915
916                 /*
917                  * If the page has buffers, try to free the buffer mappings
918                  * associated with this page. If we succeed we try to free
919                  * the page as well.
920                  *
921                  * We do this even if the page is PageDirty().
922                  * try_to_release_page() does not perform I/O, but it is
923                  * possible for a page to have PageDirty set, but it is actually
924                  * clean (all its buffers are clean).  This happens if the
925                  * buffers were written out directly, with submit_bh(). ext3
926                  * will do this, as well as the blockdev mapping.
927                  * try_to_release_page() will discover that cleanness and will
928                  * drop the buffers and mark the page clean - it can be freed.
929                  *
930                  * Rarely, pages can have buffers and no ->mapping.  These are
931                  * the pages which were not successfully invalidated in
932                  * truncate_complete_page().  We try to drop those buffers here
933                  * and if that worked, and the page is no longer mapped into
934                  * process address space (page_count == 1) it can be freed.
935                  * Otherwise, leave the page on the LRU so it is swappable.
936                  */
937                 if (page_has_private(page)) {
938                         if (!try_to_release_page(page, sc->gfp_mask))
939                                 goto activate_locked;
940                         if (!mapping && page_count(page) == 1) {
941                                 unlock_page(page);
942                                 if (put_page_testzero(page))
943                                         goto free_it;
944                                 else {
945                                         /*
946                                          * rare race with speculative reference.
947                                          * the speculative reference will free
948                                          * this page shortly, so we may
949                                          * increment nr_reclaimed here (and
950                                          * leave it off the LRU).
951                                          */
952                                         nr_reclaimed++;
953                                         continue;
954                                 }
955                         }
956                 }
957
958                 if (!mapping || !__remove_mapping(mapping, page))
959                         goto keep_locked;
960
961                 /*
962                  * At this point, we have no other references and there is
963                  * no way to pick any more up (removed from LRU, removed
964                  * from pagecache). Can use non-atomic bitops now (and
965                  * we obviously don't have to worry about waking up a process
966                  * waiting on the page lock, because there are no references.
967                  */
968                 __clear_page_locked(page);
969 free_it:
970                 nr_reclaimed++;
971
972                 /*
973                  * Is there need to periodically free_page_list? It would
974                  * appear not as the counts should be low
975                  */
976                 list_add(&page->lru, &free_pages);
977                 continue;
978
979 cull_mlocked:
980                 if (PageSwapCache(page))
981                         try_to_free_swap(page);
982                 unlock_page(page);
983                 putback_lru_page(page);
984                 reset_reclaim_mode(sc);
985                 continue;
986
987 activate_locked:
988                 /* Not a candidate for swapping, so reclaim swap space. */
989                 if (PageSwapCache(page) && vm_swap_full())
990                         try_to_free_swap(page);
991                 VM_BUG_ON(PageActive(page));
992                 SetPageActive(page);
993                 pgactivate++;
994 keep_locked:
995                 unlock_page(page);
996 keep:
997                 reset_reclaim_mode(sc);
998 keep_lumpy:
999                 list_add(&page->lru, &ret_pages);
1000                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1001         }
1002
1003         /*
1004          * Tag a zone as congested if all the dirty pages encountered were
1005          * backed by a congested BDI. In this case, reclaimers should just
1006          * back off and wait for congestion to clear because further reclaim
1007          * will encounter the same problem
1008          */
1009         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1010                 zone_set_flag(zone, ZONE_CONGESTED);
1011
1012         free_page_list(&free_pages);
1013
1014         list_splice(&ret_pages, page_list);
1015         count_vm_events(PGACTIVATE, pgactivate);
1016         *ret_nr_dirty += nr_dirty;
1017         *ret_nr_writeback += nr_writeback;
1018         return nr_reclaimed;
1019 }
1020
1021 /*
1022  * Attempt to remove the specified page from its LRU.  Only take this page
1023  * if it is of the appropriate PageActive status.  Pages which are being
1024  * freed elsewhere are also ignored.
1025  *
1026  * page:        page to consider
1027  * mode:        one of the LRU isolation modes defined above
1028  *
1029  * returns 0 on success, -ve errno on failure.
1030  */
1031 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1032 {
1033         bool all_lru_mode;
1034         int ret = -EINVAL;
1035
1036         /* Only take pages on the LRU. */
1037         if (!PageLRU(page))
1038                 return ret;
1039
1040         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1041                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1042
1043         /*
1044          * When checking the active state, we need to be sure we are
1045          * dealing with comparible boolean values.  Take the logical not
1046          * of each.
1047          */
1048         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1049                 return ret;
1050
1051         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1052                 return ret;
1053
1054         /*
1055          * When this function is being called for lumpy reclaim, we
1056          * initially look into all LRU pages, active, inactive and
1057          * unevictable; only give shrink_page_list evictable pages.
1058          */
1059         if (PageUnevictable(page))
1060                 return ret;
1061
1062         ret = -EBUSY;
1063
1064         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1065                 return ret;
1066
1067         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1068                 return ret;
1069
1070         if (likely(get_page_unless_zero(page))) {
1071                 /*
1072                  * Be careful not to clear PageLRU until after we're
1073                  * sure the page is not being freed elsewhere -- the
1074                  * page release code relies on it.
1075                  */
1076                 ClearPageLRU(page);
1077                 ret = 0;
1078         }
1079
1080         return ret;
1081 }
1082
1083 /*
1084  * zone->lru_lock is heavily contended.  Some of the functions that
1085  * shrink the lists perform better by taking out a batch of pages
1086  * and working on them outside the LRU lock.
1087  *
1088  * For pagecache intensive workloads, this function is the hottest
1089  * spot in the kernel (apart from copy_*_user functions).
1090  *
1091  * Appropriate locks must be held before calling this function.
1092  *
1093  * @nr_to_scan: The number of pages to look through on the list.
1094  * @src:        The LRU list to pull pages off.
1095  * @dst:        The temp list to put pages on to.
1096  * @scanned:    The number of pages that were scanned.
1097  * @order:      The caller's attempted allocation order
1098  * @mode:       One of the LRU isolation modes
1099  * @file:       True [1] if isolating file [!anon] pages
1100  *
1101  * returns how many pages were moved onto *@dst.
1102  */
1103 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1104                 struct list_head *src, struct list_head *dst,
1105                 unsigned long *scanned, int order, isolate_mode_t mode,
1106                 int file)
1107 {
1108         unsigned long nr_taken = 0;
1109         unsigned long nr_lumpy_taken = 0;
1110         unsigned long nr_lumpy_dirty = 0;
1111         unsigned long nr_lumpy_failed = 0;
1112         unsigned long scan;
1113
1114         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1115                 struct page *page;
1116                 unsigned long pfn;
1117                 unsigned long end_pfn;
1118                 unsigned long page_pfn;
1119                 int zone_id;
1120
1121                 page = lru_to_page(src);
1122                 prefetchw_prev_lru_page(page, src, flags);
1123
1124                 VM_BUG_ON(!PageLRU(page));
1125
1126                 switch (__isolate_lru_page(page, mode, file)) {
1127                 case 0:
1128                         list_move(&page->lru, dst);
1129                         mem_cgroup_del_lru(page);
1130                         nr_taken += hpage_nr_pages(page);
1131                         break;
1132
1133                 case -EBUSY:
1134                         /* else it is being freed elsewhere */
1135                         list_move(&page->lru, src);
1136                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1137                         continue;
1138
1139                 default:
1140                         BUG();
1141                 }
1142
1143                 if (!order)
1144                         continue;
1145
1146                 /*
1147                  * Attempt to take all pages in the order aligned region
1148                  * surrounding the tag page.  Only take those pages of
1149                  * the same active state as that tag page.  We may safely
1150                  * round the target page pfn down to the requested order
1151                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1152                  * where that page is in a different zone we will detect
1153                  * it from its zone id and abort this block scan.
1154                  */
1155                 zone_id = page_zone_id(page);
1156                 page_pfn = page_to_pfn(page);
1157                 pfn = page_pfn & ~((1 << order) - 1);
1158                 end_pfn = pfn + (1 << order);
1159                 for (; pfn < end_pfn; pfn++) {
1160                         struct page *cursor_page;
1161
1162                         /* The target page is in the block, ignore it. */
1163                         if (unlikely(pfn == page_pfn))
1164                                 continue;
1165
1166                         /* Avoid holes within the zone. */
1167                         if (unlikely(!pfn_valid_within(pfn)))
1168                                 break;
1169
1170                         cursor_page = pfn_to_page(pfn);
1171
1172                         /* Check that we have not crossed a zone boundary. */
1173                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1174                                 break;
1175
1176                         /*
1177                          * If we don't have enough swap space, reclaiming of
1178                          * anon page which don't already have a swap slot is
1179                          * pointless.
1180                          */
1181                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1182                             !PageSwapCache(cursor_page))
1183                                 break;
1184
1185                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1186                                 list_move(&cursor_page->lru, dst);
1187                                 mem_cgroup_del_lru(cursor_page);
1188                                 nr_taken += hpage_nr_pages(page);
1189                                 nr_lumpy_taken++;
1190                                 if (PageDirty(cursor_page))
1191                                         nr_lumpy_dirty++;
1192                                 scan++;
1193                         } else {
1194                                 /*
1195                                  * Check if the page is freed already.
1196                                  *
1197                                  * We can't use page_count() as that
1198                                  * requires compound_head and we don't
1199                                  * have a pin on the page here. If a
1200                                  * page is tail, we may or may not
1201                                  * have isolated the head, so assume
1202                                  * it's not free, it'd be tricky to
1203                                  * track the head status without a
1204                                  * page pin.
1205                                  */
1206                                 if (!PageTail(cursor_page) &&
1207                                     !atomic_read(&cursor_page->_count))
1208                                         continue;
1209                                 break;
1210                         }
1211                 }
1212
1213                 /* If we break out of the loop above, lumpy reclaim failed */
1214                 if (pfn < end_pfn)
1215                         nr_lumpy_failed++;
1216         }
1217
1218         *scanned = scan;
1219
1220         trace_mm_vmscan_lru_isolate(order,
1221                         nr_to_scan, scan,
1222                         nr_taken,
1223                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1224                         mode);
1225         return nr_taken;
1226 }
1227
1228 static unsigned long isolate_pages_global(unsigned long nr,
1229                                         struct list_head *dst,
1230                                         unsigned long *scanned, int order,
1231                                         isolate_mode_t mode,
1232                                         struct zone *z, int active, int file)
1233 {
1234         int lru = LRU_BASE;
1235         if (active)
1236                 lru += LRU_ACTIVE;
1237         if (file)
1238                 lru += LRU_FILE;
1239         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1240                                                                 mode, file);
1241 }
1242
1243 /*
1244  * clear_active_flags() is a helper for shrink_active_list(), clearing
1245  * any active bits from the pages in the list.
1246  */
1247 static unsigned long clear_active_flags(struct list_head *page_list,
1248                                         unsigned int *count)
1249 {
1250         int nr_active = 0;
1251         int lru;
1252         struct page *page;
1253
1254         list_for_each_entry(page, page_list, lru) {
1255                 int numpages = hpage_nr_pages(page);
1256                 lru = page_lru_base_type(page);
1257                 if (PageActive(page)) {
1258                         lru += LRU_ACTIVE;
1259                         ClearPageActive(page);
1260                         nr_active += numpages;
1261                 }
1262                 if (count)
1263                         count[lru] += numpages;
1264         }
1265
1266         return nr_active;
1267 }
1268
1269 /**
1270  * isolate_lru_page - tries to isolate a page from its LRU list
1271  * @page: page to isolate from its LRU list
1272  *
1273  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1274  * vmstat statistic corresponding to whatever LRU list the page was on.
1275  *
1276  * Returns 0 if the page was removed from an LRU list.
1277  * Returns -EBUSY if the page was not on an LRU list.
1278  *
1279  * The returned page will have PageLRU() cleared.  If it was found on
1280  * the active list, it will have PageActive set.  If it was found on
1281  * the unevictable list, it will have the PageUnevictable bit set. That flag
1282  * may need to be cleared by the caller before letting the page go.
1283  *
1284  * The vmstat statistic corresponding to the list on which the page was
1285  * found will be decremented.
1286  *
1287  * Restrictions:
1288  * (1) Must be called with an elevated refcount on the page. This is a
1289  *     fundamentnal difference from isolate_lru_pages (which is called
1290  *     without a stable reference).
1291  * (2) the lru_lock must not be held.
1292  * (3) interrupts must be enabled.
1293  */
1294 int isolate_lru_page(struct page *page)
1295 {
1296         int ret = -EBUSY;
1297
1298         VM_BUG_ON(!page_count(page));
1299
1300         if (PageLRU(page)) {
1301                 struct zone *zone = page_zone(page);
1302
1303                 spin_lock_irq(&zone->lru_lock);
1304                 if (PageLRU(page)) {
1305                         int lru = page_lru(page);
1306                         ret = 0;
1307                         get_page(page);
1308                         ClearPageLRU(page);
1309
1310                         del_page_from_lru_list(zone, page, lru);
1311                 }
1312                 spin_unlock_irq(&zone->lru_lock);
1313         }
1314         return ret;
1315 }
1316
1317 /*
1318  * Are there way too many processes in the direct reclaim path already?
1319  */
1320 static int too_many_isolated(struct zone *zone, int file,
1321                 struct scan_control *sc)
1322 {
1323         unsigned long inactive, isolated;
1324
1325         if (current_is_kswapd())
1326                 return 0;
1327
1328         if (!scanning_global_lru(sc))
1329                 return 0;
1330
1331         if (file) {
1332                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1333                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1334         } else {
1335                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1336                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1337         }
1338
1339         return isolated > inactive;
1340 }
1341
1342 /*
1343  * TODO: Try merging with migrations version of putback_lru_pages
1344  */
1345 static noinline_for_stack void
1346 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1347                                 unsigned long nr_anon, unsigned long nr_file,
1348                                 struct list_head *page_list)
1349 {
1350         struct page *page;
1351         struct pagevec pvec;
1352         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1353
1354         pagevec_init(&pvec, 1);
1355
1356         /*
1357          * Put back any unfreeable pages.
1358          */
1359         spin_lock(&zone->lru_lock);
1360         while (!list_empty(page_list)) {
1361                 int lru;
1362                 page = lru_to_page(page_list);
1363                 VM_BUG_ON(PageLRU(page));
1364                 list_del(&page->lru);
1365                 if (unlikely(!page_evictable(page, NULL))) {
1366                         spin_unlock_irq(&zone->lru_lock);
1367                         putback_lru_page(page);
1368                         spin_lock_irq(&zone->lru_lock);
1369                         continue;
1370                 }
1371                 SetPageLRU(page);
1372                 lru = page_lru(page);
1373                 add_page_to_lru_list(zone, page, lru);
1374                 if (is_active_lru(lru)) {
1375                         int file = is_file_lru(lru);
1376                         int numpages = hpage_nr_pages(page);
1377                         reclaim_stat->recent_rotated[file] += numpages;
1378                         if (!scanning_global_lru(sc))
1379                                 sc->memcg_record->nr_rotated[file] += numpages;
1380                 }
1381                 if (!pagevec_add(&pvec, page)) {
1382                         spin_unlock_irq(&zone->lru_lock);
1383                         __pagevec_release(&pvec);
1384                         spin_lock_irq(&zone->lru_lock);
1385                 }
1386         }
1387         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1388         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1389
1390         spin_unlock_irq(&zone->lru_lock);
1391         pagevec_release(&pvec);
1392 }
1393
1394 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1395                                         struct scan_control *sc,
1396                                         unsigned long *nr_anon,
1397                                         unsigned long *nr_file,
1398                                         struct list_head *isolated_list)
1399 {
1400         unsigned long nr_active;
1401         unsigned int count[NR_LRU_LISTS] = { 0, };
1402         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1403
1404         nr_active = clear_active_flags(isolated_list, count);
1405         __count_vm_events(PGDEACTIVATE, nr_active);
1406
1407         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1408                               -count[LRU_ACTIVE_FILE]);
1409         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1410                               -count[LRU_INACTIVE_FILE]);
1411         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1412                               -count[LRU_ACTIVE_ANON]);
1413         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1414                               -count[LRU_INACTIVE_ANON]);
1415
1416         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1417         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1418         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1419         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1420
1421         reclaim_stat->recent_scanned[0] += *nr_anon;
1422         reclaim_stat->recent_scanned[1] += *nr_file;
1423         if (!scanning_global_lru(sc)) {
1424                 sc->memcg_record->nr_scanned[0] += *nr_anon;
1425                 sc->memcg_record->nr_scanned[1] += *nr_file;
1426         }
1427 }
1428
1429 /*
1430  * Returns true if a direct reclaim should wait on pages under writeback.
1431  *
1432  * If we are direct reclaiming for contiguous pages and we do not reclaim
1433  * everything in the list, try again and wait for writeback IO to complete.
1434  * This will stall high-order allocations noticeably. Only do that when really
1435  * need to free the pages under high memory pressure.
1436  */
1437 static inline bool should_reclaim_stall(unsigned long nr_taken,
1438                                         unsigned long nr_freed,
1439                                         int priority,
1440                                         struct scan_control *sc)
1441 {
1442         int lumpy_stall_priority;
1443
1444         /* kswapd should not stall on sync IO */
1445         if (current_is_kswapd())
1446                 return false;
1447
1448         /* Only stall on lumpy reclaim */
1449         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1450                 return false;
1451
1452         /* If we have reclaimed everything on the isolated list, no stall */
1453         if (nr_freed == nr_taken)
1454                 return false;
1455
1456         /*
1457          * For high-order allocations, there are two stall thresholds.
1458          * High-cost allocations stall immediately where as lower
1459          * order allocations such as stacks require the scanning
1460          * priority to be much higher before stalling.
1461          */
1462         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1463                 lumpy_stall_priority = DEF_PRIORITY;
1464         else
1465                 lumpy_stall_priority = DEF_PRIORITY / 3;
1466
1467         return priority <= lumpy_stall_priority;
1468 }
1469
1470 /*
1471  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1472  * of reclaimed pages
1473  */
1474 static noinline_for_stack unsigned long
1475 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1476                         struct scan_control *sc, int priority, int file)
1477 {
1478         LIST_HEAD(page_list);
1479         unsigned long nr_scanned;
1480         unsigned long nr_reclaimed = 0;
1481         unsigned long nr_taken;
1482         unsigned long nr_anon;
1483         unsigned long nr_file;
1484         unsigned long nr_dirty = 0;
1485         unsigned long nr_writeback = 0;
1486         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1487
1488         while (unlikely(too_many_isolated(zone, file, sc))) {
1489                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1490
1491                 /* We are about to die and free our memory. Return now. */
1492                 if (fatal_signal_pending(current))
1493                         return SWAP_CLUSTER_MAX;
1494         }
1495
1496         set_reclaim_mode(priority, sc, false);
1497         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1498                 reclaim_mode |= ISOLATE_ACTIVE;
1499
1500         lru_add_drain();
1501
1502         if (!sc->may_unmap)
1503                 reclaim_mode |= ISOLATE_UNMAPPED;
1504         if (!sc->may_writepage)
1505                 reclaim_mode |= ISOLATE_CLEAN;
1506
1507         spin_lock_irq(&zone->lru_lock);
1508
1509         if (scanning_global_lru(sc)) {
1510                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1511                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1512                 zone->pages_scanned += nr_scanned;
1513                 if (current_is_kswapd())
1514                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1515                                                nr_scanned);
1516                 else
1517                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1518                                                nr_scanned);
1519         } else {
1520                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1521                         &nr_scanned, sc->order, reclaim_mode, zone,
1522                         sc->mem_cgroup, 0, file);
1523                 /*
1524                  * mem_cgroup_isolate_pages() keeps track of
1525                  * scanned pages on its own.
1526                  */
1527         }
1528
1529         if (nr_taken == 0) {
1530                 spin_unlock_irq(&zone->lru_lock);
1531                 return 0;
1532         }
1533
1534         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1535
1536         spin_unlock_irq(&zone->lru_lock);
1537
1538         nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1539                                                 &nr_dirty, &nr_writeback);
1540
1541         /* Check if we should syncronously wait for writeback */
1542         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1543                 set_reclaim_mode(priority, sc, true);
1544                 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1545                                         priority, &nr_dirty, &nr_writeback);
1546         }
1547
1548         if (!scanning_global_lru(sc))
1549                 sc->memcg_record->nr_freed[file] += nr_reclaimed;
1550
1551         local_irq_disable();
1552         if (current_is_kswapd())
1553                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1554         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1555
1556         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1557
1558         /*
1559          * If we have encountered a high number of dirty pages under writeback
1560          * then we are reaching the end of the LRU too quickly and global
1561          * limits are not enough to throttle processes due to the page
1562          * distribution throughout zones. Scale the number of dirty pages that
1563          * must be under writeback before being throttled to priority.
1564          */
1565         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1566                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1567
1568         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1569                 zone_idx(zone),
1570                 nr_scanned, nr_reclaimed,
1571                 priority,
1572                 trace_shrink_flags(file, sc->reclaim_mode));
1573         return nr_reclaimed;
1574 }
1575
1576 /*
1577  * This moves pages from the active list to the inactive list.
1578  *
1579  * We move them the other way if the page is referenced by one or more
1580  * processes, from rmap.
1581  *
1582  * If the pages are mostly unmapped, the processing is fast and it is
1583  * appropriate to hold zone->lru_lock across the whole operation.  But if
1584  * the pages are mapped, the processing is slow (page_referenced()) so we
1585  * should drop zone->lru_lock around each page.  It's impossible to balance
1586  * this, so instead we remove the pages from the LRU while processing them.
1587  * It is safe to rely on PG_active against the non-LRU pages in here because
1588  * nobody will play with that bit on a non-LRU page.
1589  *
1590  * The downside is that we have to touch page->_count against each page.
1591  * But we had to alter page->flags anyway.
1592  */
1593
1594 static void move_active_pages_to_lru(struct zone *zone,
1595                                      struct list_head *list,
1596                                      enum lru_list lru)
1597 {
1598         unsigned long pgmoved = 0;
1599         struct pagevec pvec;
1600         struct page *page;
1601
1602         pagevec_init(&pvec, 1);
1603
1604         while (!list_empty(list)) {
1605                 page = lru_to_page(list);
1606
1607                 VM_BUG_ON(PageLRU(page));
1608                 SetPageLRU(page);
1609
1610                 list_move(&page->lru, &zone->lru[lru].list);
1611                 mem_cgroup_add_lru_list(page, lru);
1612                 pgmoved += hpage_nr_pages(page);
1613
1614                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1615                         spin_unlock_irq(&zone->lru_lock);
1616                         if (buffer_heads_over_limit)
1617                                 pagevec_strip(&pvec);
1618                         __pagevec_release(&pvec);
1619                         spin_lock_irq(&zone->lru_lock);
1620                 }
1621         }
1622         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1623         if (!is_active_lru(lru))
1624                 __count_vm_events(PGDEACTIVATE, pgmoved);
1625 }
1626
1627 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1628                         struct scan_control *sc, int priority, int file)
1629 {
1630         unsigned long nr_taken;
1631         unsigned long pgscanned;
1632         unsigned long vm_flags;
1633         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1634         LIST_HEAD(l_active);
1635         LIST_HEAD(l_inactive);
1636         struct page *page;
1637         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1638         unsigned long nr_rotated = 0;
1639         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1640
1641         lru_add_drain();
1642
1643         if (!sc->may_unmap)
1644                 reclaim_mode |= ISOLATE_UNMAPPED;
1645         if (!sc->may_writepage)
1646                 reclaim_mode |= ISOLATE_CLEAN;
1647
1648         spin_lock_irq(&zone->lru_lock);
1649         if (scanning_global_lru(sc)) {
1650                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1651                                                 &pgscanned, sc->order,
1652                                                 reclaim_mode, zone,
1653                                                 1, file);
1654                 zone->pages_scanned += pgscanned;
1655         } else {
1656                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1657                                                 &pgscanned, sc->order,
1658                                                 reclaim_mode, zone,
1659                                                 sc->mem_cgroup, 1, file);
1660                 /*
1661                  * mem_cgroup_isolate_pages() keeps track of
1662                  * scanned pages on its own.
1663                  */
1664         }
1665
1666         reclaim_stat->recent_scanned[file] += nr_taken;
1667         if (!scanning_global_lru(sc))
1668                 sc->memcg_record->nr_scanned[file] += nr_taken;
1669
1670         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1671         if (file)
1672                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1673         else
1674                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1675         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1676         spin_unlock_irq(&zone->lru_lock);
1677
1678         while (!list_empty(&l_hold)) {
1679                 cond_resched();
1680                 page = lru_to_page(&l_hold);
1681                 list_del(&page->lru);
1682
1683                 if (unlikely(!page_evictable(page, NULL))) {
1684                         putback_lru_page(page);
1685                         continue;
1686                 }
1687
1688                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1689                         nr_rotated += hpage_nr_pages(page);
1690                         /*
1691                          * Identify referenced, file-backed active pages and
1692                          * give them one more trip around the active list. So
1693                          * that executable code get better chances to stay in
1694                          * memory under moderate memory pressure.  Anon pages
1695                          * are not likely to be evicted by use-once streaming
1696                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1697                          * so we ignore them here.
1698                          */
1699                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1700                                 list_add(&page->lru, &l_active);
1701                                 continue;
1702                         }
1703                 }
1704
1705                 ClearPageActive(page);  /* we are de-activating */
1706                 list_add(&page->lru, &l_inactive);
1707         }
1708
1709         /*
1710          * Move pages back to the lru list.
1711          */
1712         spin_lock_irq(&zone->lru_lock);
1713         /*
1714          * Count referenced pages from currently used mappings as rotated,
1715          * even though only some of them are actually re-activated.  This
1716          * helps balance scan pressure between file and anonymous pages in
1717          * get_scan_ratio.
1718          */
1719         reclaim_stat->recent_rotated[file] += nr_rotated;
1720         if (!scanning_global_lru(sc))
1721                 sc->memcg_record->nr_rotated[file] += nr_rotated;
1722
1723         move_active_pages_to_lru(zone, &l_active,
1724                                                 LRU_ACTIVE + file * LRU_FILE);
1725         move_active_pages_to_lru(zone, &l_inactive,
1726                                                 LRU_BASE   + file * LRU_FILE);
1727         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1728         spin_unlock_irq(&zone->lru_lock);
1729 }
1730
1731 #ifdef CONFIG_SWAP
1732 static int inactive_anon_is_low_global(struct zone *zone)
1733 {
1734         unsigned long active, inactive;
1735
1736         active = zone_page_state(zone, NR_ACTIVE_ANON);
1737         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1738
1739         if (inactive * zone->inactive_ratio < active)
1740                 return 1;
1741
1742         return 0;
1743 }
1744
1745 /**
1746  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1747  * @zone: zone to check
1748  * @sc:   scan control of this context
1749  *
1750  * Returns true if the zone does not have enough inactive anon pages,
1751  * meaning some active anon pages need to be deactivated.
1752  */
1753 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1754 {
1755         int low;
1756
1757         /*
1758          * If we don't have swap space, anonymous page deactivation
1759          * is pointless.
1760          */
1761         if (!total_swap_pages)
1762                 return 0;
1763
1764         if (scanning_global_lru(sc))
1765                 low = inactive_anon_is_low_global(zone);
1766         else
1767                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1768         return low;
1769 }
1770 #else
1771 static inline int inactive_anon_is_low(struct zone *zone,
1772                                         struct scan_control *sc)
1773 {
1774         return 0;
1775 }
1776 #endif
1777
1778 static int inactive_file_is_low_global(struct zone *zone)
1779 {
1780         unsigned long active, inactive;
1781
1782         active = zone_page_state(zone, NR_ACTIVE_FILE);
1783         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1784
1785         return (active > inactive);
1786 }
1787
1788 /**
1789  * inactive_file_is_low - check if file pages need to be deactivated
1790  * @zone: zone to check
1791  * @sc:   scan control of this context
1792  *
1793  * When the system is doing streaming IO, memory pressure here
1794  * ensures that active file pages get deactivated, until more
1795  * than half of the file pages are on the inactive list.
1796  *
1797  * Once we get to that situation, protect the system's working
1798  * set from being evicted by disabling active file page aging.
1799  *
1800  * This uses a different ratio than the anonymous pages, because
1801  * the page cache uses a use-once replacement algorithm.
1802  */
1803 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1804 {
1805         int low;
1806
1807         if (scanning_global_lru(sc))
1808                 low = inactive_file_is_low_global(zone);
1809         else
1810                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1811         return low;
1812 }
1813
1814 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1815                                 int file)
1816 {
1817         if (file)
1818                 return inactive_file_is_low(zone, sc);
1819         else
1820                 return inactive_anon_is_low(zone, sc);
1821 }
1822
1823 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1824         struct zone *zone, struct scan_control *sc, int priority)
1825 {
1826         int file = is_file_lru(lru);
1827
1828         if (is_active_lru(lru)) {
1829                 if (inactive_list_is_low(zone, sc, file))
1830                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1831                 return 0;
1832         }
1833
1834         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1835 }
1836
1837 static int vmscan_swappiness(struct scan_control *sc)
1838 {
1839         if (scanning_global_lru(sc))
1840                 return vm_swappiness;
1841         return mem_cgroup_swappiness(sc->mem_cgroup);
1842 }
1843
1844 /*
1845  * Determine how aggressively the anon and file LRU lists should be
1846  * scanned.  The relative value of each set of LRU lists is determined
1847  * by looking at the fraction of the pages scanned we did rotate back
1848  * onto the active list instead of evict.
1849  *
1850  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1851  */
1852 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1853                                         unsigned long *nr, int priority)
1854 {
1855         unsigned long anon, file, free;
1856         unsigned long anon_prio, file_prio;
1857         unsigned long ap, fp;
1858         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1859         u64 fraction[2], denominator;
1860         enum lru_list l;
1861         int noswap = 0;
1862         bool force_scan = false;
1863
1864         /*
1865          * If the zone or memcg is small, nr[l] can be 0.  This
1866          * results in no scanning on this priority and a potential
1867          * priority drop.  Global direct reclaim can go to the next
1868          * zone and tends to have no problems. Global kswapd is for
1869          * zone balancing and it needs to scan a minimum amount. When
1870          * reclaiming for a memcg, a priority drop can cause high
1871          * latencies, so it's better to scan a minimum amount there as
1872          * well.
1873          */
1874         if (scanning_global_lru(sc) && current_is_kswapd())
1875                 force_scan = true;
1876         if (!scanning_global_lru(sc))
1877                 force_scan = true;
1878
1879         /* If we have no swap space, do not bother scanning anon pages. */
1880         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1881                 noswap = 1;
1882                 fraction[0] = 0;
1883                 fraction[1] = 1;
1884                 denominator = 1;
1885                 goto out;
1886         }
1887
1888         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1889                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1890         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1891                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1892
1893         if (scanning_global_lru(sc)) {
1894                 free  = zone_page_state(zone, NR_FREE_PAGES);
1895                 /* If we have very few page cache pages,
1896                    force-scan anon pages. */
1897                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1898                         fraction[0] = 1;
1899                         fraction[1] = 0;
1900                         denominator = 1;
1901                         goto out;
1902                 }
1903         }
1904
1905         /*
1906          * With swappiness at 100, anonymous and file have the same priority.
1907          * This scanning priority is essentially the inverse of IO cost.
1908          */
1909         anon_prio = vmscan_swappiness(sc);
1910         file_prio = 200 - vmscan_swappiness(sc);
1911
1912         /*
1913          * OK, so we have swap space and a fair amount of page cache
1914          * pages.  We use the recently rotated / recently scanned
1915          * ratios to determine how valuable each cache is.
1916          *
1917          * Because workloads change over time (and to avoid overflow)
1918          * we keep these statistics as a floating average, which ends
1919          * up weighing recent references more than old ones.
1920          *
1921          * anon in [0], file in [1]
1922          */
1923         spin_lock_irq(&zone->lru_lock);
1924         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1925                 reclaim_stat->recent_scanned[0] /= 2;
1926                 reclaim_stat->recent_rotated[0] /= 2;
1927         }
1928
1929         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1930                 reclaim_stat->recent_scanned[1] /= 2;
1931                 reclaim_stat->recent_rotated[1] /= 2;
1932         }
1933
1934         /*
1935          * The amount of pressure on anon vs file pages is inversely
1936          * proportional to the fraction of recently scanned pages on
1937          * each list that were recently referenced and in active use.
1938          */
1939         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1940         ap /= reclaim_stat->recent_rotated[0] + 1;
1941
1942         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1943         fp /= reclaim_stat->recent_rotated[1] + 1;
1944         spin_unlock_irq(&zone->lru_lock);
1945
1946         fraction[0] = ap;
1947         fraction[1] = fp;
1948         denominator = ap + fp + 1;
1949 out:
1950         for_each_evictable_lru(l) {
1951                 int file = is_file_lru(l);
1952                 unsigned long scan;
1953
1954                 scan = zone_nr_lru_pages(zone, sc, l);
1955                 if (priority || noswap) {
1956                         scan >>= priority;
1957                         if (!scan && force_scan)
1958                                 scan = SWAP_CLUSTER_MAX;
1959                         scan = div64_u64(scan * fraction[file], denominator);
1960                 }
1961                 nr[l] = scan;
1962         }
1963 }
1964
1965 /*
1966  * Reclaim/compaction depends on a number of pages being freed. To avoid
1967  * disruption to the system, a small number of order-0 pages continue to be
1968  * rotated and reclaimed in the normal fashion. However, by the time we get
1969  * back to the allocator and call try_to_compact_zone(), we ensure that
1970  * there are enough free pages for it to be likely successful
1971  */
1972 static inline bool should_continue_reclaim(struct zone *zone,
1973                                         unsigned long nr_reclaimed,
1974                                         unsigned long nr_scanned,
1975                                         struct scan_control *sc)
1976 {
1977         unsigned long pages_for_compaction;
1978         unsigned long inactive_lru_pages;
1979
1980         /* If not in reclaim/compaction mode, stop */
1981         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1982                 return false;
1983
1984         /* Consider stopping depending on scan and reclaim activity */
1985         if (sc->gfp_mask & __GFP_REPEAT) {
1986                 /*
1987                  * For __GFP_REPEAT allocations, stop reclaiming if the
1988                  * full LRU list has been scanned and we are still failing
1989                  * to reclaim pages. This full LRU scan is potentially
1990                  * expensive but a __GFP_REPEAT caller really wants to succeed
1991                  */
1992                 if (!nr_reclaimed && !nr_scanned)
1993                         return false;
1994         } else {
1995                 /*
1996                  * For non-__GFP_REPEAT allocations which can presumably
1997                  * fail without consequence, stop if we failed to reclaim
1998                  * any pages from the last SWAP_CLUSTER_MAX number of
1999                  * pages that were scanned. This will return to the
2000                  * caller faster at the risk reclaim/compaction and
2001                  * the resulting allocation attempt fails
2002                  */
2003                 if (!nr_reclaimed)
2004                         return false;
2005         }
2006
2007         /*
2008          * If we have not reclaimed enough pages for compaction and the
2009          * inactive lists are large enough, continue reclaiming
2010          */
2011         pages_for_compaction = (2UL << sc->order);
2012         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2013                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2014         if (sc->nr_reclaimed < pages_for_compaction &&
2015                         inactive_lru_pages > pages_for_compaction)
2016                 return true;
2017
2018         /* If compaction would go ahead or the allocation would succeed, stop */
2019         switch (compaction_suitable(zone, sc->order)) {
2020         case COMPACT_PARTIAL:
2021         case COMPACT_CONTINUE:
2022                 return false;
2023         default:
2024                 return true;
2025         }
2026 }
2027
2028 /*
2029  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2030  */
2031 static void shrink_zone(int priority, struct zone *zone,
2032                                 struct scan_control *sc)
2033 {
2034         unsigned long nr[NR_LRU_LISTS];
2035         unsigned long nr_to_scan;
2036         enum lru_list l;
2037         unsigned long nr_reclaimed, nr_scanned;
2038         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2039         struct blk_plug plug;
2040
2041 restart:
2042         nr_reclaimed = 0;
2043         nr_scanned = sc->nr_scanned;
2044         get_scan_count(zone, sc, nr, priority);
2045
2046         blk_start_plug(&plug);
2047         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2048                                         nr[LRU_INACTIVE_FILE]) {
2049                 for_each_evictable_lru(l) {
2050                         if (nr[l]) {
2051                                 nr_to_scan = min_t(unsigned long,
2052                                                    nr[l], SWAP_CLUSTER_MAX);
2053                                 nr[l] -= nr_to_scan;
2054
2055                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2056                                                             zone, sc, priority);
2057                         }
2058                 }
2059                 /*
2060                  * On large memory systems, scan >> priority can become
2061                  * really large. This is fine for the starting priority;
2062                  * we want to put equal scanning pressure on each zone.
2063                  * However, if the VM has a harder time of freeing pages,
2064                  * with multiple processes reclaiming pages, the total
2065                  * freeing target can get unreasonably large.
2066                  */
2067                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2068                         break;
2069         }
2070         blk_finish_plug(&plug);
2071         sc->nr_reclaimed += nr_reclaimed;
2072
2073         /*
2074          * Even if we did not try to evict anon pages at all, we want to
2075          * rebalance the anon lru active/inactive ratio.
2076          */
2077         if (inactive_anon_is_low(zone, sc))
2078                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2079
2080         /* reclaim/compaction might need reclaim to continue */
2081         if (should_continue_reclaim(zone, nr_reclaimed,
2082                                         sc->nr_scanned - nr_scanned, sc))
2083                 goto restart;
2084
2085         throttle_vm_writeout(sc->gfp_mask);
2086 }
2087
2088 /*
2089  * This is the direct reclaim path, for page-allocating processes.  We only
2090  * try to reclaim pages from zones which will satisfy the caller's allocation
2091  * request.
2092  *
2093  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2094  * Because:
2095  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2096  *    allocation or
2097  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2098  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2099  *    zone defense algorithm.
2100  *
2101  * If a zone is deemed to be full of pinned pages then just give it a light
2102  * scan then give up on it.
2103  */
2104 static void shrink_zones(int priority, struct zonelist *zonelist,
2105                                         struct scan_control *sc)
2106 {
2107         struct zoneref *z;
2108         struct zone *zone;
2109         unsigned long nr_soft_reclaimed;
2110         unsigned long nr_soft_scanned;
2111
2112         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2113                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2114                 if (!populated_zone(zone))
2115                         continue;
2116                 /*
2117                  * Take care memory controller reclaiming has small influence
2118                  * to global LRU.
2119                  */
2120                 if (scanning_global_lru(sc)) {
2121                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2122                                 continue;
2123                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2124                                 continue;       /* Let kswapd poll it */
2125                         /*
2126                          * This steals pages from memory cgroups over softlimit
2127                          * and returns the number of reclaimed pages and
2128                          * scanned pages. This works for global memory pressure
2129                          * and balancing, not for a memcg's limit.
2130                          */
2131                         nr_soft_scanned = 0;
2132                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2133                                                 sc->order, sc->gfp_mask,
2134                                                 &nr_soft_scanned);
2135                         sc->nr_reclaimed += nr_soft_reclaimed;
2136                         sc->nr_scanned += nr_soft_scanned;
2137                         /* need some check for avoid more shrink_zone() */
2138                 }
2139
2140                 shrink_zone(priority, zone, sc);
2141         }
2142 }
2143
2144 static bool zone_reclaimable(struct zone *zone)
2145 {
2146         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2147 }
2148
2149 /* All zones in zonelist are unreclaimable? */
2150 static bool all_unreclaimable(struct zonelist *zonelist,
2151                 struct scan_control *sc)
2152 {
2153         struct zoneref *z;
2154         struct zone *zone;
2155
2156         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2157                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2158                 if (!populated_zone(zone))
2159                         continue;
2160                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2161                         continue;
2162                 if (!zone->all_unreclaimable)
2163                         return false;
2164         }
2165
2166         return true;
2167 }
2168
2169 /*
2170  * This is the main entry point to direct page reclaim.
2171  *
2172  * If a full scan of the inactive list fails to free enough memory then we
2173  * are "out of memory" and something needs to be killed.
2174  *
2175  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2176  * high - the zone may be full of dirty or under-writeback pages, which this
2177  * caller can't do much about.  We kick the writeback threads and take explicit
2178  * naps in the hope that some of these pages can be written.  But if the
2179  * allocating task holds filesystem locks which prevent writeout this might not
2180  * work, and the allocation attempt will fail.
2181  *
2182  * returns:     0, if no pages reclaimed
2183  *              else, the number of pages reclaimed
2184  */
2185 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2186                                         struct scan_control *sc,
2187                                         struct shrink_control *shrink)
2188 {
2189         int priority;
2190         unsigned long total_scanned = 0;
2191         struct reclaim_state *reclaim_state = current->reclaim_state;
2192         struct zoneref *z;
2193         struct zone *zone;
2194         unsigned long writeback_threshold;
2195
2196         get_mems_allowed();
2197         delayacct_freepages_start();
2198
2199         if (scanning_global_lru(sc))
2200                 count_vm_event(ALLOCSTALL);
2201
2202         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2203                 sc->nr_scanned = 0;
2204                 if (!priority)
2205                         disable_swap_token(sc->mem_cgroup);
2206                 shrink_zones(priority, zonelist, sc);
2207                 /*
2208                  * Don't shrink slabs when reclaiming memory from
2209                  * over limit cgroups
2210                  */
2211                 if (scanning_global_lru(sc)) {
2212                         unsigned long lru_pages = 0;
2213                         for_each_zone_zonelist(zone, z, zonelist,
2214                                         gfp_zone(sc->gfp_mask)) {
2215                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2216                                         continue;
2217
2218                                 lru_pages += zone_reclaimable_pages(zone);
2219                         }
2220
2221                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2222                         if (reclaim_state) {
2223                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2224                                 reclaim_state->reclaimed_slab = 0;
2225                         }
2226                 }
2227                 total_scanned += sc->nr_scanned;
2228                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2229                         goto out;
2230
2231                 /*
2232                  * Try to write back as many pages as we just scanned.  This
2233                  * tends to cause slow streaming writers to write data to the
2234                  * disk smoothly, at the dirtying rate, which is nice.   But
2235                  * that's undesirable in laptop mode, where we *want* lumpy
2236                  * writeout.  So in laptop mode, write out the whole world.
2237                  */
2238                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2239                 if (total_scanned > writeback_threshold) {
2240                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2241                         sc->may_writepage = 1;
2242                 }
2243
2244                 /* Take a nap, wait for some writeback to complete */
2245                 if (!sc->hibernation_mode && sc->nr_scanned &&
2246                     priority < DEF_PRIORITY - 2) {
2247                         struct zone *preferred_zone;
2248
2249                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2250                                                 &cpuset_current_mems_allowed,
2251                                                 &preferred_zone);
2252                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2253                 }
2254         }
2255
2256 out:
2257         delayacct_freepages_end();
2258         put_mems_allowed();
2259
2260         if (sc->nr_reclaimed)
2261                 return sc->nr_reclaimed;
2262
2263         /*
2264          * As hibernation is going on, kswapd is freezed so that it can't mark
2265          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2266          * check.
2267          */
2268         if (oom_killer_disabled)
2269                 return 0;
2270
2271         /* top priority shrink_zones still had more to do? don't OOM, then */
2272         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2273                 return 1;
2274
2275         return 0;
2276 }
2277
2278 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2279                                 gfp_t gfp_mask, nodemask_t *nodemask)
2280 {
2281         unsigned long nr_reclaimed;
2282         struct scan_control sc = {
2283                 .gfp_mask = gfp_mask,
2284                 .may_writepage = !laptop_mode,
2285                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2286                 .may_unmap = 1,
2287                 .may_swap = 1,
2288                 .order = order,
2289                 .mem_cgroup = NULL,
2290                 .nodemask = nodemask,
2291         };
2292         struct shrink_control shrink = {
2293                 .gfp_mask = sc.gfp_mask,
2294         };
2295
2296         trace_mm_vmscan_direct_reclaim_begin(order,
2297                                 sc.may_writepage,
2298                                 gfp_mask);
2299
2300         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2301
2302         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2303
2304         return nr_reclaimed;
2305 }
2306
2307 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2308
2309 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2310                                         gfp_t gfp_mask, bool noswap,
2311                                         struct zone *zone,
2312                                         struct memcg_scanrecord *rec,
2313                                         unsigned long *scanned)
2314 {
2315         struct scan_control sc = {
2316                 .nr_scanned = 0,
2317                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2318                 .may_writepage = !laptop_mode,
2319                 .may_unmap = 1,
2320                 .may_swap = !noswap,
2321                 .order = 0,
2322                 .mem_cgroup = mem,
2323                 .memcg_record = rec,
2324         };
2325         ktime_t start, end;
2326
2327         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2328                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2329
2330         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2331                                                       sc.may_writepage,
2332                                                       sc.gfp_mask);
2333
2334         start = ktime_get();
2335         /*
2336          * NOTE: Although we can get the priority field, using it
2337          * here is not a good idea, since it limits the pages we can scan.
2338          * if we don't reclaim here, the shrink_zone from balance_pgdat
2339          * will pick up pages from other mem cgroup's as well. We hack
2340          * the priority and make it zero.
2341          */
2342         shrink_zone(0, zone, &sc);
2343         end = ktime_get();
2344
2345         if (rec)
2346                 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2347         *scanned = sc.nr_scanned;
2348
2349         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2350
2351         return sc.nr_reclaimed;
2352 }
2353
2354 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2355                                            gfp_t gfp_mask,
2356                                            bool noswap,
2357                                            struct memcg_scanrecord *rec)
2358 {
2359         struct zonelist *zonelist;
2360         unsigned long nr_reclaimed;
2361         ktime_t start, end;
2362         int nid;
2363         struct scan_control sc = {
2364                 .may_writepage = !laptop_mode,
2365                 .may_unmap = 1,
2366                 .may_swap = !noswap,
2367                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2368                 .order = 0,
2369                 .mem_cgroup = mem_cont,
2370                 .memcg_record = rec,
2371                 .nodemask = NULL, /* we don't care the placement */
2372                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2373                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2374         };
2375         struct shrink_control shrink = {
2376                 .gfp_mask = sc.gfp_mask,
2377         };
2378
2379         start = ktime_get();
2380         /*
2381          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2382          * take care of from where we get pages. So the node where we start the
2383          * scan does not need to be the current node.
2384          */
2385         nid = mem_cgroup_select_victim_node(mem_cont);
2386
2387         zonelist = NODE_DATA(nid)->node_zonelists;
2388
2389         trace_mm_vmscan_memcg_reclaim_begin(0,
2390                                             sc.may_writepage,
2391                                             sc.gfp_mask);
2392
2393         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2394         end = ktime_get();
2395         if (rec)
2396                 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2397
2398         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2399
2400         return nr_reclaimed;
2401 }
2402 #endif
2403
2404 /*
2405  * pgdat_balanced is used when checking if a node is balanced for high-order
2406  * allocations. Only zones that meet watermarks and are in a zone allowed
2407  * by the callers classzone_idx are added to balanced_pages. The total of
2408  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2409  * for the node to be considered balanced. Forcing all zones to be balanced
2410  * for high orders can cause excessive reclaim when there are imbalanced zones.
2411  * The choice of 25% is due to
2412  *   o a 16M DMA zone that is balanced will not balance a zone on any
2413  *     reasonable sized machine
2414  *   o On all other machines, the top zone must be at least a reasonable
2415  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2416  *     would need to be at least 256M for it to be balance a whole node.
2417  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2418  *     to balance a node on its own. These seemed like reasonable ratios.
2419  */
2420 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2421                                                 int classzone_idx)
2422 {
2423         unsigned long present_pages = 0;
2424         int i;
2425
2426         for (i = 0; i <= classzone_idx; i++)
2427                 present_pages += pgdat->node_zones[i].present_pages;
2428
2429         /* A special case here: if zone has no page, we think it's balanced */
2430         return balanced_pages >= (present_pages >> 2);
2431 }
2432
2433 /* is kswapd sleeping prematurely? */
2434 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2435                                         int classzone_idx)
2436 {
2437         int i;
2438         unsigned long balanced = 0;
2439         bool all_zones_ok = true;
2440
2441         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2442         if (remaining)
2443                 return true;
2444
2445         /* Check the watermark levels */
2446         for (i = 0; i <= classzone_idx; i++) {
2447                 struct zone *zone = pgdat->node_zones + i;
2448
2449                 if (!populated_zone(zone))
2450                         continue;
2451
2452                 /*
2453                  * balance_pgdat() skips over all_unreclaimable after
2454                  * DEF_PRIORITY. Effectively, it considers them balanced so
2455                  * they must be considered balanced here as well if kswapd
2456                  * is to sleep
2457                  */
2458                 if (zone->all_unreclaimable) {
2459                         balanced += zone->present_pages;
2460                         continue;
2461                 }
2462
2463                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2464                                                         i, 0))
2465                         all_zones_ok = false;
2466                 else
2467                         balanced += zone->present_pages;
2468         }
2469
2470         /*
2471          * For high-order requests, the balanced zones must contain at least
2472          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2473          * must be balanced
2474          */
2475         if (order)
2476                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2477         else
2478                 return !all_zones_ok;
2479 }
2480
2481 /*
2482  * For kswapd, balance_pgdat() will work across all this node's zones until
2483  * they are all at high_wmark_pages(zone).
2484  *
2485  * Returns the final order kswapd was reclaiming at
2486  *
2487  * There is special handling here for zones which are full of pinned pages.
2488  * This can happen if the pages are all mlocked, or if they are all used by
2489  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2490  * What we do is to detect the case where all pages in the zone have been
2491  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2492  * dead and from now on, only perform a short scan.  Basically we're polling
2493  * the zone for when the problem goes away.
2494  *
2495  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2496  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2497  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2498  * lower zones regardless of the number of free pages in the lower zones. This
2499  * interoperates with the page allocator fallback scheme to ensure that aging
2500  * of pages is balanced across the zones.
2501  */
2502 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2503                                                         int *classzone_idx)
2504 {
2505         int all_zones_ok;
2506         unsigned long balanced;
2507         int priority;
2508         int i;
2509         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2510         unsigned long total_scanned;
2511         struct reclaim_state *reclaim_state = current->reclaim_state;
2512         unsigned long nr_soft_reclaimed;
2513         unsigned long nr_soft_scanned;
2514         struct scan_control sc = {
2515                 .gfp_mask = GFP_KERNEL,
2516                 .may_unmap = 1,
2517                 .may_swap = 1,
2518                 /*
2519                  * kswapd doesn't want to be bailed out while reclaim. because
2520                  * we want to put equal scanning pressure on each zone.
2521                  */
2522                 .nr_to_reclaim = ULONG_MAX,
2523                 .order = order,
2524                 .mem_cgroup = NULL,
2525         };
2526         struct shrink_control shrink = {
2527                 .gfp_mask = sc.gfp_mask,
2528         };
2529 loop_again:
2530         total_scanned = 0;
2531         sc.nr_reclaimed = 0;
2532         sc.may_writepage = !laptop_mode;
2533         count_vm_event(PAGEOUTRUN);
2534
2535         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2536                 unsigned long lru_pages = 0;
2537                 int has_under_min_watermark_zone = 0;
2538
2539                 /* The swap token gets in the way of swapout... */
2540                 if (!priority)
2541                         disable_swap_token(NULL);
2542
2543                 all_zones_ok = 1;
2544                 balanced = 0;
2545
2546                 /*
2547                  * Scan in the highmem->dma direction for the highest
2548                  * zone which needs scanning
2549                  */
2550                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2551                         struct zone *zone = pgdat->node_zones + i;
2552
2553                         if (!populated_zone(zone))
2554                                 continue;
2555
2556                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2557                                 continue;
2558
2559                         /*
2560                          * Do some background aging of the anon list, to give
2561                          * pages a chance to be referenced before reclaiming.
2562                          */
2563                         if (inactive_anon_is_low(zone, &sc))
2564                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2565                                                         &sc, priority, 0);
2566
2567                         if (!zone_watermark_ok_safe(zone, order,
2568                                         high_wmark_pages(zone), 0, 0)) {
2569                                 end_zone = i;
2570                                 break;
2571                         } else {
2572                                 /* If balanced, clear the congested flag */
2573                                 zone_clear_flag(zone, ZONE_CONGESTED);
2574                         }
2575                 }
2576                 if (i < 0)
2577                         goto out;
2578
2579                 for (i = 0; i <= end_zone; i++) {
2580                         struct zone *zone = pgdat->node_zones + i;
2581
2582                         lru_pages += zone_reclaimable_pages(zone);
2583                 }
2584
2585                 /*
2586                  * Now scan the zone in the dma->highmem direction, stopping
2587                  * at the last zone which needs scanning.
2588                  *
2589                  * We do this because the page allocator works in the opposite
2590                  * direction.  This prevents the page allocator from allocating
2591                  * pages behind kswapd's direction of progress, which would
2592                  * cause too much scanning of the lower zones.
2593                  */
2594                 for (i = 0; i <= end_zone; i++) {
2595                         struct zone *zone = pgdat->node_zones + i;
2596                         int nr_slab;
2597                         unsigned long balance_gap;
2598
2599                         if (!populated_zone(zone))
2600                                 continue;
2601
2602                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2603                                 continue;
2604
2605                         sc.nr_scanned = 0;
2606
2607                         nr_soft_scanned = 0;
2608                         /*
2609                          * Call soft limit reclaim before calling shrink_zone.
2610                          */
2611                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2612                                                         order, sc.gfp_mask,
2613                                                         &nr_soft_scanned);
2614                         sc.nr_reclaimed += nr_soft_reclaimed;
2615                         total_scanned += nr_soft_scanned;
2616
2617                         /*
2618                          * We put equal pressure on every zone, unless
2619                          * one zone has way too many pages free
2620                          * already. The "too many pages" is defined
2621                          * as the high wmark plus a "gap" where the
2622                          * gap is either the low watermark or 1%
2623                          * of the zone, whichever is smaller.
2624                          */
2625                         balance_gap = min(low_wmark_pages(zone),
2626                                 (zone->present_pages +
2627                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2628                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2629                         if (!zone_watermark_ok_safe(zone, order,
2630                                         high_wmark_pages(zone) + balance_gap,
2631                                         end_zone, 0)) {
2632                                 shrink_zone(priority, zone, &sc);
2633
2634                                 reclaim_state->reclaimed_slab = 0;
2635                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2636                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2637                                 total_scanned += sc.nr_scanned;
2638
2639                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2640                                         zone->all_unreclaimable = 1;
2641                         }
2642
2643                         /*
2644                          * If we've done a decent amount of scanning and
2645                          * the reclaim ratio is low, start doing writepage
2646                          * even in laptop mode
2647                          */
2648                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2649                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2650                                 sc.may_writepage = 1;
2651
2652                         if (zone->all_unreclaimable) {
2653                                 if (end_zone && end_zone == i)
2654                                         end_zone--;
2655                                 continue;
2656                         }
2657
2658                         if (!zone_watermark_ok_safe(zone, order,
2659                                         high_wmark_pages(zone), end_zone, 0)) {
2660                                 all_zones_ok = 0;
2661                                 /*
2662                                  * We are still under min water mark.  This
2663                                  * means that we have a GFP_ATOMIC allocation
2664                                  * failure risk. Hurry up!
2665                                  */
2666                                 if (!zone_watermark_ok_safe(zone, order,
2667                                             min_wmark_pages(zone), end_zone, 0))
2668                                         has_under_min_watermark_zone = 1;
2669                         } else {
2670                                 /*
2671                                  * If a zone reaches its high watermark,
2672                                  * consider it to be no longer congested. It's
2673                                  * possible there are dirty pages backed by
2674                                  * congested BDIs but as pressure is relieved,
2675                                  * spectulatively avoid congestion waits
2676                                  */
2677                                 zone_clear_flag(zone, ZONE_CONGESTED);
2678                                 if (i <= *classzone_idx)
2679                                         balanced += zone->present_pages;
2680                         }
2681
2682                 }
2683                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2684                         break;          /* kswapd: all done */
2685                 /*
2686                  * OK, kswapd is getting into trouble.  Take a nap, then take
2687                  * another pass across the zones.
2688                  */
2689                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2690                         if (has_under_min_watermark_zone)
2691                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2692                         else
2693                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2694                 }
2695
2696                 /*
2697                  * We do this so kswapd doesn't build up large priorities for
2698                  * example when it is freeing in parallel with allocators. It
2699                  * matches the direct reclaim path behaviour in terms of impact
2700                  * on zone->*_priority.
2701                  */
2702                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2703                         break;
2704         }
2705 out:
2706
2707         /*
2708          * order-0: All zones must meet high watermark for a balanced node
2709          * high-order: Balanced zones must make up at least 25% of the node
2710          *             for the node to be balanced
2711          */
2712         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2713                 cond_resched();
2714
2715                 try_to_freeze();
2716
2717                 /*
2718                  * Fragmentation may mean that the system cannot be
2719                  * rebalanced for high-order allocations in all zones.
2720                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2721                  * it means the zones have been fully scanned and are still
2722                  * not balanced. For high-order allocations, there is
2723                  * little point trying all over again as kswapd may
2724                  * infinite loop.
2725                  *
2726                  * Instead, recheck all watermarks at order-0 as they
2727                  * are the most important. If watermarks are ok, kswapd will go
2728                  * back to sleep. High-order users can still perform direct
2729                  * reclaim if they wish.
2730                  */
2731                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2732                         order = sc.order = 0;
2733
2734                 goto loop_again;
2735         }
2736
2737         /*
2738          * If kswapd was reclaiming at a higher order, it has the option of
2739          * sleeping without all zones being balanced. Before it does, it must
2740          * ensure that the watermarks for order-0 on *all* zones are met and
2741          * that the congestion flags are cleared. The congestion flag must
2742          * be cleared as kswapd is the only mechanism that clears the flag
2743          * and it is potentially going to sleep here.
2744          */
2745         if (order) {
2746                 for (i = 0; i <= end_zone; i++) {
2747                         struct zone *zone = pgdat->node_zones + i;
2748
2749                         if (!populated_zone(zone))
2750                                 continue;
2751
2752                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2753                                 continue;
2754
2755                         /* Confirm the zone is balanced for order-0 */
2756                         if (!zone_watermark_ok(zone, 0,
2757                                         high_wmark_pages(zone), 0, 0)) {
2758                                 order = sc.order = 0;
2759                                 goto loop_again;
2760                         }
2761
2762                         /* If balanced, clear the congested flag */
2763                         zone_clear_flag(zone, ZONE_CONGESTED);
2764                 }
2765         }
2766
2767         /*
2768          * Return the order we were reclaiming at so sleeping_prematurely()
2769          * makes a decision on the order we were last reclaiming at. However,
2770          * if another caller entered the allocator slow path while kswapd
2771          * was awake, order will remain at the higher level
2772          */
2773         *classzone_idx = end_zone;
2774         return order;
2775 }
2776
2777 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2778 {
2779         long remaining = 0;
2780         DEFINE_WAIT(wait);
2781
2782         if (freezing(current) || kthread_should_stop())
2783                 return;
2784
2785         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2786
2787         /* Try to sleep for a short interval */
2788         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2789                 remaining = schedule_timeout(HZ/10);
2790                 finish_wait(&pgdat->kswapd_wait, &wait);
2791                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2792         }
2793
2794         /*
2795          * After a short sleep, check if it was a premature sleep. If not, then
2796          * go fully to sleep until explicitly woken up.
2797          */
2798         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2799                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2800
2801                 /*
2802                  * vmstat counters are not perfectly accurate and the estimated
2803                  * value for counters such as NR_FREE_PAGES can deviate from the
2804                  * true value by nr_online_cpus * threshold. To avoid the zone
2805                  * watermarks being breached while under pressure, we reduce the
2806                  * per-cpu vmstat threshold while kswapd is awake and restore
2807                  * them before going back to sleep.
2808                  */
2809                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2810                 schedule();
2811                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2812         } else {
2813                 if (remaining)
2814                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2815                 else
2816                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2817         }
2818         finish_wait(&pgdat->kswapd_wait, &wait);
2819 }
2820
2821 /*
2822  * The background pageout daemon, started as a kernel thread
2823  * from the init process.
2824  *
2825  * This basically trickles out pages so that we have _some_
2826  * free memory available even if there is no other activity
2827  * that frees anything up. This is needed for things like routing
2828  * etc, where we otherwise might have all activity going on in
2829  * asynchronous contexts that cannot page things out.
2830  *
2831  * If there are applications that are active memory-allocators
2832  * (most normal use), this basically shouldn't matter.
2833  */
2834 static int kswapd(void *p)
2835 {
2836         unsigned long order, new_order;
2837         int classzone_idx, new_classzone_idx;
2838         pg_data_t *pgdat = (pg_data_t*)p;
2839         struct task_struct *tsk = current;
2840
2841         struct reclaim_state reclaim_state = {
2842                 .reclaimed_slab = 0,
2843         };
2844         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2845
2846         lockdep_set_current_reclaim_state(GFP_KERNEL);
2847
2848         if (!cpumask_empty(cpumask))
2849                 set_cpus_allowed_ptr(tsk, cpumask);
2850         current->reclaim_state = &reclaim_state;
2851
2852         /*
2853          * Tell the memory management that we're a "memory allocator",
2854          * and that if we need more memory we should get access to it
2855          * regardless (see "__alloc_pages()"). "kswapd" should
2856          * never get caught in the normal page freeing logic.
2857          *
2858          * (Kswapd normally doesn't need memory anyway, but sometimes
2859          * you need a small amount of memory in order to be able to
2860          * page out something else, and this flag essentially protects
2861          * us from recursively trying to free more memory as we're
2862          * trying to free the first piece of memory in the first place).
2863          */
2864         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2865         set_freezable();
2866
2867         order = new_order = 0;
2868         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2869         for ( ; ; ) {
2870                 int ret;
2871
2872                 /*
2873                  * If the last balance_pgdat was unsuccessful it's unlikely a
2874                  * new request of a similar or harder type will succeed soon
2875                  * so consider going to sleep on the basis we reclaimed at
2876                  */
2877                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2878                         new_order = pgdat->kswapd_max_order;
2879                         new_classzone_idx = pgdat->classzone_idx;
2880                         pgdat->kswapd_max_order =  0;
2881                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2882                 }
2883
2884                 if (order < new_order || classzone_idx > new_classzone_idx) {
2885                         /*
2886                          * Don't sleep if someone wants a larger 'order'
2887                          * allocation or has tigher zone constraints
2888                          */
2889                         order = new_order;
2890                         classzone_idx = new_classzone_idx;
2891                 } else {
2892                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2893                         order = pgdat->kswapd_max_order;
2894                         classzone_idx = pgdat->classzone_idx;
2895                         pgdat->kswapd_max_order = 0;
2896                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2897                 }
2898
2899                 ret = try_to_freeze();
2900                 if (kthread_should_stop())
2901                         break;
2902
2903                 /*
2904                  * We can speed up thawing tasks if we don't call balance_pgdat
2905                  * after returning from the refrigerator
2906                  */
2907                 if (!ret) {
2908                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2909                         order = balance_pgdat(pgdat, order, &classzone_idx);
2910                 }
2911         }
2912         return 0;
2913 }
2914
2915 /*
2916  * A zone is low on free memory, so wake its kswapd task to service it.
2917  */
2918 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2919 {
2920         pg_data_t *pgdat;
2921
2922         if (!populated_zone(zone))
2923                 return;
2924
2925         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2926                 return;
2927         pgdat = zone->zone_pgdat;
2928         if (pgdat->kswapd_max_order < order) {
2929                 pgdat->kswapd_max_order = order;
2930                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2931         }
2932         if (!waitqueue_active(&pgdat->kswapd_wait))
2933                 return;
2934         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2935                 return;
2936
2937         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2938         wake_up_interruptible(&pgdat->kswapd_wait);
2939 }
2940
2941 /*
2942  * The reclaimable count would be mostly accurate.
2943  * The less reclaimable pages may be
2944  * - mlocked pages, which will be moved to unevictable list when encountered
2945  * - mapped pages, which may require several travels to be reclaimed
2946  * - dirty pages, which is not "instantly" reclaimable
2947  */
2948 unsigned long global_reclaimable_pages(void)
2949 {
2950         int nr;
2951
2952         nr = global_page_state(NR_ACTIVE_FILE) +
2953              global_page_state(NR_INACTIVE_FILE);
2954
2955         if (nr_swap_pages > 0)
2956                 nr += global_page_state(NR_ACTIVE_ANON) +
2957                       global_page_state(NR_INACTIVE_ANON);
2958
2959         return nr;
2960 }
2961
2962 unsigned long zone_reclaimable_pages(struct zone *zone)
2963 {
2964         int nr;
2965
2966         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2967              zone_page_state(zone, NR_INACTIVE_FILE);
2968
2969         if (nr_swap_pages > 0)
2970                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2971                       zone_page_state(zone, NR_INACTIVE_ANON);
2972
2973         return nr;
2974 }
2975
2976 #ifdef CONFIG_HIBERNATION
2977 /*
2978  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2979  * freed pages.
2980  *
2981  * Rather than trying to age LRUs the aim is to preserve the overall
2982  * LRU order by reclaiming preferentially
2983  * inactive > active > active referenced > active mapped
2984  */
2985 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2986 {
2987         struct reclaim_state reclaim_state;
2988         struct scan_control sc = {
2989                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2990                 .may_swap = 1,
2991                 .may_unmap = 1,
2992                 .may_writepage = 1,
2993                 .nr_to_reclaim = nr_to_reclaim,
2994                 .hibernation_mode = 1,
2995                 .order = 0,
2996         };
2997         struct shrink_control shrink = {
2998                 .gfp_mask = sc.gfp_mask,
2999         };
3000         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3001         struct task_struct *p = current;
3002         unsigned long nr_reclaimed;
3003
3004         p->flags |= PF_MEMALLOC;
3005         lockdep_set_current_reclaim_state(sc.gfp_mask);
3006         reclaim_state.reclaimed_slab = 0;
3007         p->reclaim_state = &reclaim_state;
3008
3009         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3010
3011         p->reclaim_state = NULL;
3012         lockdep_clear_current_reclaim_state();
3013         p->flags &= ~PF_MEMALLOC;
3014
3015         return nr_reclaimed;
3016 }
3017 #endif /* CONFIG_HIBERNATION */
3018
3019 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3020    not required for correctness.  So if the last cpu in a node goes
3021    away, we get changed to run anywhere: as the first one comes back,
3022    restore their cpu bindings. */
3023 static int __devinit cpu_callback(struct notifier_block *nfb,
3024                                   unsigned long action, void *hcpu)
3025 {
3026         int nid;
3027
3028         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3029                 for_each_node_state(nid, N_HIGH_MEMORY) {
3030                         pg_data_t *pgdat = NODE_DATA(nid);
3031                         const struct cpumask *mask;
3032
3033                         mask = cpumask_of_node(pgdat->node_id);
3034
3035                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3036                                 /* One of our CPUs online: restore mask */
3037                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3038                 }
3039         }
3040         return NOTIFY_OK;
3041 }
3042
3043 /*
3044  * This kswapd start function will be called by init and node-hot-add.
3045  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3046  */
3047 int kswapd_run(int nid)
3048 {
3049         pg_data_t *pgdat = NODE_DATA(nid);
3050         int ret = 0;
3051
3052         if (pgdat->kswapd)
3053                 return 0;
3054
3055         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3056         if (IS_ERR(pgdat->kswapd)) {
3057                 /* failure at boot is fatal */
3058                 BUG_ON(system_state == SYSTEM_BOOTING);
3059                 printk("Failed to start kswapd on node %d\n",nid);
3060                 ret = -1;
3061         }
3062         return ret;
3063 }
3064
3065 /*
3066  * Called by memory hotplug when all memory in a node is offlined.
3067  */
3068 void kswapd_stop(int nid)
3069 {
3070         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3071
3072         if (kswapd)
3073                 kthread_stop(kswapd);
3074 }
3075
3076 static int __init kswapd_init(void)
3077 {
3078         int nid;
3079
3080         swap_setup();
3081         for_each_node_state(nid, N_HIGH_MEMORY)
3082                 kswapd_run(nid);
3083         hotcpu_notifier(cpu_callback, 0);
3084         return 0;
3085 }
3086
3087 module_init(kswapd_init)
3088
3089 #ifdef CONFIG_NUMA
3090 /*
3091  * Zone reclaim mode
3092  *
3093  * If non-zero call zone_reclaim when the number of free pages falls below
3094  * the watermarks.
3095  */
3096 int zone_reclaim_mode __read_mostly;
3097
3098 #define RECLAIM_OFF 0
3099 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3100 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3101 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3102
3103 /*
3104  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3105  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3106  * a zone.
3107  */
3108 #define ZONE_RECLAIM_PRIORITY 4
3109
3110 /*
3111  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3112  * occur.
3113  */
3114 int sysctl_min_unmapped_ratio = 1;
3115
3116 /*
3117  * If the number of slab pages in a zone grows beyond this percentage then
3118  * slab reclaim needs to occur.
3119  */
3120 int sysctl_min_slab_ratio = 5;
3121
3122 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3123 {
3124         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3125         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3126                 zone_page_state(zone, NR_ACTIVE_FILE);
3127
3128         /*
3129          * It's possible for there to be more file mapped pages than
3130          * accounted for by the pages on the file LRU lists because
3131          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3132          */
3133         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3134 }
3135
3136 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3137 static long zone_pagecache_reclaimable(struct zone *zone)
3138 {
3139         long nr_pagecache_reclaimable;
3140         long delta = 0;
3141
3142         /*
3143          * If RECLAIM_SWAP is set, then all file pages are considered
3144          * potentially reclaimable. Otherwise, we have to worry about
3145          * pages like swapcache and zone_unmapped_file_pages() provides
3146          * a better estimate
3147          */
3148         if (zone_reclaim_mode & RECLAIM_SWAP)
3149                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3150         else
3151                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3152
3153         /* If we can't clean pages, remove dirty pages from consideration */
3154         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3155                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3156
3157         /* Watch for any possible underflows due to delta */
3158         if (unlikely(delta > nr_pagecache_reclaimable))
3159                 delta = nr_pagecache_reclaimable;
3160
3161         return nr_pagecache_reclaimable - delta;
3162 }
3163
3164 /*
3165  * Try to free up some pages from this zone through reclaim.
3166  */
3167 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3168 {
3169         /* Minimum pages needed in order to stay on node */
3170         const unsigned long nr_pages = 1 << order;
3171         struct task_struct *p = current;
3172         struct reclaim_state reclaim_state;
3173         int priority;
3174         struct scan_control sc = {
3175                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3176                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3177                 .may_swap = 1,
3178                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3179                                        SWAP_CLUSTER_MAX),
3180                 .gfp_mask = gfp_mask,
3181                 .order = order,
3182         };
3183         struct shrink_control shrink = {
3184                 .gfp_mask = sc.gfp_mask,
3185         };
3186         unsigned long nr_slab_pages0, nr_slab_pages1;
3187
3188         cond_resched();
3189         /*
3190          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3191          * and we also need to be able to write out pages for RECLAIM_WRITE
3192          * and RECLAIM_SWAP.
3193          */
3194         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3195         lockdep_set_current_reclaim_state(gfp_mask);
3196         reclaim_state.reclaimed_slab = 0;
3197         p->reclaim_state = &reclaim_state;
3198
3199         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3200                 /*
3201                  * Free memory by calling shrink zone with increasing
3202                  * priorities until we have enough memory freed.
3203                  */
3204                 priority = ZONE_RECLAIM_PRIORITY;
3205                 do {
3206                         shrink_zone(priority, zone, &sc);
3207                         priority--;
3208                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3209         }
3210
3211         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3212         if (nr_slab_pages0 > zone->min_slab_pages) {
3213                 /*
3214                  * shrink_slab() does not currently allow us to determine how
3215                  * many pages were freed in this zone. So we take the current
3216                  * number of slab pages and shake the slab until it is reduced
3217                  * by the same nr_pages that we used for reclaiming unmapped
3218                  * pages.
3219                  *
3220                  * Note that shrink_slab will free memory on all zones and may
3221                  * take a long time.
3222                  */
3223                 for (;;) {
3224                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3225
3226                         /* No reclaimable slab or very low memory pressure */
3227                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3228                                 break;
3229
3230                         /* Freed enough memory */
3231                         nr_slab_pages1 = zone_page_state(zone,
3232                                                         NR_SLAB_RECLAIMABLE);
3233                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3234                                 break;
3235                 }
3236
3237                 /*
3238                  * Update nr_reclaimed by the number of slab pages we
3239                  * reclaimed from this zone.
3240                  */
3241                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3242                 if (nr_slab_pages1 < nr_slab_pages0)
3243                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3244         }
3245
3246         p->reclaim_state = NULL;
3247         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3248         lockdep_clear_current_reclaim_state();
3249         return sc.nr_reclaimed >= nr_pages;
3250 }
3251
3252 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3253 {
3254         int node_id;
3255         int ret;
3256
3257         /*
3258          * Zone reclaim reclaims unmapped file backed pages and
3259          * slab pages if we are over the defined limits.
3260          *
3261          * A small portion of unmapped file backed pages is needed for
3262          * file I/O otherwise pages read by file I/O will be immediately
3263          * thrown out if the zone is overallocated. So we do not reclaim
3264          * if less than a specified percentage of the zone is used by
3265          * unmapped file backed pages.
3266          */
3267         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3268             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3269                 return ZONE_RECLAIM_FULL;
3270
3271         if (zone->all_unreclaimable)
3272                 return ZONE_RECLAIM_FULL;
3273
3274         /*
3275          * Do not scan if the allocation should not be delayed.
3276          */
3277         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3278                 return ZONE_RECLAIM_NOSCAN;
3279
3280         /*
3281          * Only run zone reclaim on the local zone or on zones that do not
3282          * have associated processors. This will favor the local processor
3283          * over remote processors and spread off node memory allocations
3284          * as wide as possible.
3285          */
3286         node_id = zone_to_nid(zone);
3287         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3288                 return ZONE_RECLAIM_NOSCAN;
3289
3290         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3291                 return ZONE_RECLAIM_NOSCAN;
3292
3293         ret = __zone_reclaim(zone, gfp_mask, order);
3294         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3295
3296         if (!ret)
3297                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3298
3299         return ret;
3300 }
3301 #endif
3302
3303 /*
3304  * page_evictable - test whether a page is evictable
3305  * @page: the page to test
3306  * @vma: the VMA in which the page is or will be mapped, may be NULL
3307  *
3308  * Test whether page is evictable--i.e., should be placed on active/inactive
3309  * lists vs unevictable list.  The vma argument is !NULL when called from the
3310  * fault path to determine how to instantate a new page.
3311  *
3312  * Reasons page might not be evictable:
3313  * (1) page's mapping marked unevictable
3314  * (2) page is part of an mlocked VMA
3315  *
3316  */
3317 int page_evictable(struct page *page, struct vm_area_struct *vma)
3318 {
3319
3320         if (mapping_unevictable(page_mapping(page)))
3321                 return 0;
3322
3323         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3324                 return 0;
3325
3326         return 1;
3327 }
3328
3329 /**
3330  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3331  * @page: page to check evictability and move to appropriate lru list
3332  * @zone: zone page is in
3333  *
3334  * Checks a page for evictability and moves the page to the appropriate
3335  * zone lru list.
3336  *
3337  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3338  * have PageUnevictable set.
3339  */
3340 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3341 {
3342         VM_BUG_ON(PageActive(page));
3343
3344 retry:
3345         ClearPageUnevictable(page);
3346         if (page_evictable(page, NULL)) {
3347                 enum lru_list l = page_lru_base_type(page);
3348
3349                 __dec_zone_state(zone, NR_UNEVICTABLE);
3350                 list_move(&page->lru, &zone->lru[l].list);
3351                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3352                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3353                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3354         } else {
3355                 /*
3356                  * rotate unevictable list
3357                  */
3358                 SetPageUnevictable(page);
3359                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3360                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3361                 if (page_evictable(page, NULL))
3362                         goto retry;
3363         }
3364 }
3365
3366 /**
3367  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3368  * @mapping: struct address_space to scan for evictable pages
3369  *
3370  * Scan all pages in mapping.  Check unevictable pages for
3371  * evictability and move them to the appropriate zone lru list.
3372  */
3373 void scan_mapping_unevictable_pages(struct address_space *mapping)
3374 {
3375         pgoff_t next = 0;
3376         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3377                          PAGE_CACHE_SHIFT;
3378         struct zone *zone;
3379         struct pagevec pvec;
3380
3381         if (mapping->nrpages == 0)
3382                 return;
3383
3384         pagevec_init(&pvec, 0);
3385         while (next < end &&
3386                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3387                 int i;
3388                 int pg_scanned = 0;
3389
3390                 zone = NULL;
3391
3392                 for (i = 0; i < pagevec_count(&pvec); i++) {
3393                         struct page *page = pvec.pages[i];
3394                         pgoff_t page_index = page->index;
3395                         struct zone *pagezone = page_zone(page);
3396
3397                         pg_scanned++;
3398                         if (page_index > next)
3399                                 next = page_index;
3400                         next++;
3401
3402                         if (pagezone != zone) {
3403                                 if (zone)
3404                                         spin_unlock_irq(&zone->lru_lock);
3405                                 zone = pagezone;
3406                                 spin_lock_irq(&zone->lru_lock);
3407                         }
3408
3409                         if (PageLRU(page) && PageUnevictable(page))
3410                                 check_move_unevictable_page(page, zone);
3411                 }
3412                 if (zone)
3413                         spin_unlock_irq(&zone->lru_lock);
3414                 pagevec_release(&pvec);
3415
3416                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3417         }
3418
3419 }
3420
3421 /**
3422  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3423  * @zone - zone of which to scan the unevictable list
3424  *
3425  * Scan @zone's unevictable LRU lists to check for pages that have become
3426  * evictable.  Move those that have to @zone's inactive list where they
3427  * become candidates for reclaim, unless shrink_inactive_zone() decides
3428  * to reactivate them.  Pages that are still unevictable are rotated
3429  * back onto @zone's unevictable list.
3430  */
3431 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3432 static void scan_zone_unevictable_pages(struct zone *zone)
3433 {
3434         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3435         unsigned long scan;
3436         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3437
3438         while (nr_to_scan > 0) {
3439                 unsigned long batch_size = min(nr_to_scan,
3440                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3441
3442                 spin_lock_irq(&zone->lru_lock);
3443                 for (scan = 0;  scan < batch_size; scan++) {
3444                         struct page *page = lru_to_page(l_unevictable);
3445
3446                         if (!trylock_page(page))
3447                                 continue;
3448
3449                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3450
3451                         if (likely(PageLRU(page) && PageUnevictable(page)))
3452                                 check_move_unevictable_page(page, zone);
3453
3454                         unlock_page(page);
3455                 }
3456                 spin_unlock_irq(&zone->lru_lock);
3457
3458                 nr_to_scan -= batch_size;
3459         }
3460 }
3461
3462
3463 /**
3464  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3465  *
3466  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3467  * pages that have become evictable.  Move those back to the zones'
3468  * inactive list where they become candidates for reclaim.
3469  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3470  * and we add swap to the system.  As such, it runs in the context of a task
3471  * that has possibly/probably made some previously unevictable pages
3472  * evictable.
3473  */
3474 static void scan_all_zones_unevictable_pages(void)
3475 {
3476         struct zone *zone;
3477
3478         for_each_zone(zone) {
3479                 scan_zone_unevictable_pages(zone);
3480         }
3481 }
3482
3483 /*
3484  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3485  * all nodes' unevictable lists for evictable pages
3486  */
3487 unsigned long scan_unevictable_pages;
3488
3489 int scan_unevictable_handler(struct ctl_table *table, int write,
3490                            void __user *buffer,
3491                            size_t *length, loff_t *ppos)
3492 {
3493         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3494
3495         if (write && *(unsigned long *)table->data)
3496                 scan_all_zones_unevictable_pages();
3497
3498         scan_unevictable_pages = 0;
3499         return 0;
3500 }
3501
3502 #ifdef CONFIG_NUMA
3503 /*
3504  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3505  * a specified node's per zone unevictable lists for evictable pages.
3506  */
3507
3508 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3509                                           struct sysdev_attribute *attr,
3510                                           char *buf)
3511 {
3512         return sprintf(buf, "0\n");     /* always zero; should fit... */
3513 }
3514
3515 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3516                                            struct sysdev_attribute *attr,
3517                                         const char *buf, size_t count)
3518 {
3519         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3520         struct zone *zone;
3521         unsigned long res;
3522         unsigned long req = strict_strtoul(buf, 10, &res);
3523
3524         if (!req)
3525                 return 1;       /* zero is no-op */
3526
3527         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3528                 if (!populated_zone(zone))
3529                         continue;
3530                 scan_zone_unevictable_pages(zone);
3531         }
3532         return 1;
3533 }
3534
3535
3536 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3537                         read_scan_unevictable_node,
3538                         write_scan_unevictable_node);
3539
3540 int scan_unevictable_register_node(struct node *node)
3541 {
3542         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3543 }
3544
3545 void scan_unevictable_unregister_node(struct node *node)
3546 {
3547         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3548 }
3549 #endif