]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmscan.c
Change ISOLATE_XXX macro with bitwise isolate_mode_t type. Normally,
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108         struct memcg_scanrecord *memcg_record;
109
110         /*
111          * Nodemask of nodes allowed by the caller. If NULL, all nodes
112          * are scanned.
113          */
114         nodemask_t      *nodemask;
115 };
116
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field)                    \
121         do {                                                            \
122                 if ((_page)->lru.prev != _base) {                       \
123                         struct page *prev;                              \
124                                                                         \
125                         prev = lru_to_page(&(_page->lru));              \
126                         prefetch(&prev->_field);                        \
127                 }                                                       \
128         } while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
132
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
135         do {                                                            \
136                 if ((_page)->lru.prev != _base) {                       \
137                         struct page *prev;                              \
138                                                                         \
139                         prev = lru_to_page(&(_page->lru));              \
140                         prefetchw(&prev->_field);                       \
141                 }                                                       \
142         } while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
146
147 /*
148  * From 0 .. 100.  Higher means more swappy.
149  */
150 int vm_swappiness = 60;
151 long vm_total_pages;    /* The total number of pages which the VM controls */
152
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
155
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc) (1)
160 #endif
161
162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163                                                   struct scan_control *sc)
164 {
165         if (!scanning_global_lru(sc))
166                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167
168         return &zone->reclaim_stat;
169 }
170
171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172                                 struct scan_control *sc, enum lru_list lru)
173 {
174         if (!scanning_global_lru(sc))
175                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
176                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
177
178         return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180
181
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187         shrinker->nr = 0;
188         down_write(&shrinker_rwsem);
189         list_add_tail(&shrinker->list, &shrinker_list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199         down_write(&shrinker_rwsem);
200         list_del(&shrinker->list);
201         up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206                                      struct shrink_control *sc,
207                                      unsigned long nr_to_scan)
208 {
209         sc->nr_to_scan = nr_to_scan;
210         return (*shrinker->shrink)(shrinker, sc);
211 }
212
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234                           unsigned long nr_pages_scanned,
235                           unsigned long lru_pages)
236 {
237         struct shrinker *shrinker;
238         unsigned long ret = 0;
239
240         if (nr_pages_scanned == 0)
241                 nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243         if (!down_read_trylock(&shrinker_rwsem)) {
244                 /* Assume we'll be able to shrink next time */
245                 ret = 1;
246                 goto out;
247         }
248
249         list_for_each_entry(shrinker, &shrinker_list, list) {
250                 unsigned long long delta;
251                 unsigned long total_scan;
252                 unsigned long max_pass;
253                 int shrink_ret = 0;
254                 long nr;
255                 long new_nr;
256                 long batch_size = shrinker->batch ? shrinker->batch
257                                                   : SHRINK_BATCH;
258
259                 /*
260                  * copy the current shrinker scan count into a local variable
261                  * and zero it so that other concurrent shrinker invocations
262                  * don't also do this scanning work.
263                  */
264                 do {
265                         nr = shrinker->nr;
266                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
267
268                 total_scan = nr;
269                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
270                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271                 delta *= max_pass;
272                 do_div(delta, lru_pages + 1);
273                 total_scan += delta;
274                 if (total_scan < 0) {
275                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
276                                "delete nr=%ld\n",
277                                shrinker->shrink, total_scan);
278                         total_scan = max_pass;
279                 }
280
281                 /*
282                  * We need to avoid excessive windup on filesystem shrinkers
283                  * due to large numbers of GFP_NOFS allocations causing the
284                  * shrinkers to return -1 all the time. This results in a large
285                  * nr being built up so when a shrink that can do some work
286                  * comes along it empties the entire cache due to nr >>>
287                  * max_pass.  This is bad for sustaining a working set in
288                  * memory.
289                  *
290                  * Hence only allow the shrinker to scan the entire cache when
291                  * a large delta change is calculated directly.
292                  */
293                 if (delta < max_pass / 4)
294                         total_scan = min(total_scan, max_pass / 2);
295
296                 /*
297                  * Avoid risking looping forever due to too large nr value:
298                  * never try to free more than twice the estimate number of
299                  * freeable entries.
300                  */
301                 if (total_scan > max_pass * 2)
302                         total_scan = max_pass * 2;
303
304                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305                                         nr_pages_scanned, lru_pages,
306                                         max_pass, delta, total_scan);
307
308                 while (total_scan >= batch_size) {
309                         int nr_before;
310
311                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
313                                                         batch_size);
314                         if (shrink_ret == -1)
315                                 break;
316                         if (shrink_ret < nr_before)
317                                 ret += nr_before - shrink_ret;
318                         count_vm_events(SLABS_SCANNED, batch_size);
319                         total_scan -= batch_size;
320
321                         cond_resched();
322                 }
323
324                 /*
325                  * move the unused scan count back into the shrinker in a
326                  * manner that handles concurrent updates. If we exhausted the
327                  * scan, there is no need to do an update.
328                  */
329                 do {
330                         nr = shrinker->nr;
331                         new_nr = total_scan + nr;
332                         if (total_scan <= 0)
333                                 break;
334                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
335
336                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
337         }
338         up_read(&shrinker_rwsem);
339 out:
340         cond_resched();
341         return ret;
342 }
343
344 static void set_reclaim_mode(int priority, struct scan_control *sc,
345                                    bool sync)
346 {
347         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
348
349         /*
350          * Initially assume we are entering either lumpy reclaim or
351          * reclaim/compaction.Depending on the order, we will either set the
352          * sync mode or just reclaim order-0 pages later.
353          */
354         if (COMPACTION_BUILD)
355                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
356         else
357                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
358
359         /*
360          * Avoid using lumpy reclaim or reclaim/compaction if possible by
361          * restricting when its set to either costly allocations or when
362          * under memory pressure
363          */
364         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
365                 sc->reclaim_mode |= syncmode;
366         else if (sc->order && priority < DEF_PRIORITY - 2)
367                 sc->reclaim_mode |= syncmode;
368         else
369                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
370 }
371
372 static void reset_reclaim_mode(struct scan_control *sc)
373 {
374         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
375 }
376
377 static inline int is_page_cache_freeable(struct page *page)
378 {
379         /*
380          * A freeable page cache page is referenced only by the caller
381          * that isolated the page, the page cache radix tree and
382          * optional buffer heads at page->private.
383          */
384         return page_count(page) - page_has_private(page) == 2;
385 }
386
387 static int may_write_to_queue(struct backing_dev_info *bdi,
388                               struct scan_control *sc)
389 {
390         if (current->flags & PF_SWAPWRITE)
391                 return 1;
392         if (!bdi_write_congested(bdi))
393                 return 1;
394         if (bdi == current->backing_dev_info)
395                 return 1;
396
397         /* lumpy reclaim for hugepage often need a lot of write */
398         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
399                 return 1;
400         return 0;
401 }
402
403 /*
404  * We detected a synchronous write error writing a page out.  Probably
405  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
406  * fsync(), msync() or close().
407  *
408  * The tricky part is that after writepage we cannot touch the mapping: nothing
409  * prevents it from being freed up.  But we have a ref on the page and once
410  * that page is locked, the mapping is pinned.
411  *
412  * We're allowed to run sleeping lock_page() here because we know the caller has
413  * __GFP_FS.
414  */
415 static void handle_write_error(struct address_space *mapping,
416                                 struct page *page, int error)
417 {
418         lock_page(page);
419         if (page_mapping(page) == mapping)
420                 mapping_set_error(mapping, error);
421         unlock_page(page);
422 }
423
424 /* possible outcome of pageout() */
425 typedef enum {
426         /* failed to write page out, page is locked */
427         PAGE_KEEP,
428         /* move page to the active list, page is locked */
429         PAGE_ACTIVATE,
430         /* page has been sent to the disk successfully, page is unlocked */
431         PAGE_SUCCESS,
432         /* page is clean and locked */
433         PAGE_CLEAN,
434 } pageout_t;
435
436 /*
437  * pageout is called by shrink_page_list() for each dirty page.
438  * Calls ->writepage().
439  */
440 static pageout_t pageout(struct page *page, struct address_space *mapping,
441                          struct scan_control *sc)
442 {
443         /*
444          * If the page is dirty, only perform writeback if that write
445          * will be non-blocking.  To prevent this allocation from being
446          * stalled by pagecache activity.  But note that there may be
447          * stalls if we need to run get_block().  We could test
448          * PagePrivate for that.
449          *
450          * If this process is currently in __generic_file_aio_write() against
451          * this page's queue, we can perform writeback even if that
452          * will block.
453          *
454          * If the page is swapcache, write it back even if that would
455          * block, for some throttling. This happens by accident, because
456          * swap_backing_dev_info is bust: it doesn't reflect the
457          * congestion state of the swapdevs.  Easy to fix, if needed.
458          */
459         if (!is_page_cache_freeable(page))
460                 return PAGE_KEEP;
461         if (!mapping) {
462                 /*
463                  * Some data journaling orphaned pages can have
464                  * page->mapping == NULL while being dirty with clean buffers.
465                  */
466                 if (page_has_private(page)) {
467                         if (try_to_free_buffers(page)) {
468                                 ClearPageDirty(page);
469                                 printk("%s: orphaned page\n", __func__);
470                                 return PAGE_CLEAN;
471                         }
472                 }
473                 return PAGE_KEEP;
474         }
475         if (mapping->a_ops->writepage == NULL)
476                 return PAGE_ACTIVATE;
477         if (!may_write_to_queue(mapping->backing_dev_info, sc))
478                 return PAGE_KEEP;
479
480         if (clear_page_dirty_for_io(page)) {
481                 int res;
482                 struct writeback_control wbc = {
483                         .sync_mode = WB_SYNC_NONE,
484                         .nr_to_write = SWAP_CLUSTER_MAX,
485                         .range_start = 0,
486                         .range_end = LLONG_MAX,
487                         .for_reclaim = 1,
488                 };
489
490                 SetPageReclaim(page);
491                 res = mapping->a_ops->writepage(page, &wbc);
492                 if (res < 0)
493                         handle_write_error(mapping, page, res);
494                 if (res == AOP_WRITEPAGE_ACTIVATE) {
495                         ClearPageReclaim(page);
496                         return PAGE_ACTIVATE;
497                 }
498
499                 /*
500                  * Wait on writeback if requested to. This happens when
501                  * direct reclaiming a large contiguous area and the
502                  * first attempt to free a range of pages fails.
503                  */
504                 if (PageWriteback(page) &&
505                     (sc->reclaim_mode & RECLAIM_MODE_SYNC))
506                         wait_on_page_writeback(page);
507
508                 if (!PageWriteback(page)) {
509                         /* synchronous write or broken a_ops? */
510                         ClearPageReclaim(page);
511                 }
512                 trace_mm_vmscan_writepage(page,
513                         trace_reclaim_flags(page, sc->reclaim_mode));
514                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
515                 return PAGE_SUCCESS;
516         }
517
518         return PAGE_CLEAN;
519 }
520
521 /*
522  * Same as remove_mapping, but if the page is removed from the mapping, it
523  * gets returned with a refcount of 0.
524  */
525 static int __remove_mapping(struct address_space *mapping, struct page *page)
526 {
527         BUG_ON(!PageLocked(page));
528         BUG_ON(mapping != page_mapping(page));
529
530         spin_lock_irq(&mapping->tree_lock);
531         /*
532          * The non racy check for a busy page.
533          *
534          * Must be careful with the order of the tests. When someone has
535          * a ref to the page, it may be possible that they dirty it then
536          * drop the reference. So if PageDirty is tested before page_count
537          * here, then the following race may occur:
538          *
539          * get_user_pages(&page);
540          * [user mapping goes away]
541          * write_to(page);
542          *                              !PageDirty(page)    [good]
543          * SetPageDirty(page);
544          * put_page(page);
545          *                              !page_count(page)   [good, discard it]
546          *
547          * [oops, our write_to data is lost]
548          *
549          * Reversing the order of the tests ensures such a situation cannot
550          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
551          * load is not satisfied before that of page->_count.
552          *
553          * Note that if SetPageDirty is always performed via set_page_dirty,
554          * and thus under tree_lock, then this ordering is not required.
555          */
556         if (!page_freeze_refs(page, 2))
557                 goto cannot_free;
558         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
559         if (unlikely(PageDirty(page))) {
560                 page_unfreeze_refs(page, 2);
561                 goto cannot_free;
562         }
563
564         if (PageSwapCache(page)) {
565                 swp_entry_t swap = { .val = page_private(page) };
566                 __delete_from_swap_cache(page);
567                 spin_unlock_irq(&mapping->tree_lock);
568                 swapcache_free(swap, page);
569         } else {
570                 void (*freepage)(struct page *);
571
572                 freepage = mapping->a_ops->freepage;
573
574                 __delete_from_page_cache(page);
575                 spin_unlock_irq(&mapping->tree_lock);
576                 mem_cgroup_uncharge_cache_page(page);
577
578                 if (freepage != NULL)
579                         freepage(page);
580         }
581
582         return 1;
583
584 cannot_free:
585         spin_unlock_irq(&mapping->tree_lock);
586         return 0;
587 }
588
589 /*
590  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
591  * someone else has a ref on the page, abort and return 0.  If it was
592  * successfully detached, return 1.  Assumes the caller has a single ref on
593  * this page.
594  */
595 int remove_mapping(struct address_space *mapping, struct page *page)
596 {
597         if (__remove_mapping(mapping, page)) {
598                 /*
599                  * Unfreezing the refcount with 1 rather than 2 effectively
600                  * drops the pagecache ref for us without requiring another
601                  * atomic operation.
602                  */
603                 page_unfreeze_refs(page, 1);
604                 return 1;
605         }
606         return 0;
607 }
608
609 /**
610  * putback_lru_page - put previously isolated page onto appropriate LRU list
611  * @page: page to be put back to appropriate lru list
612  *
613  * Add previously isolated @page to appropriate LRU list.
614  * Page may still be unevictable for other reasons.
615  *
616  * lru_lock must not be held, interrupts must be enabled.
617  */
618 void putback_lru_page(struct page *page)
619 {
620         int lru;
621         int active = !!TestClearPageActive(page);
622         int was_unevictable = PageUnevictable(page);
623
624         VM_BUG_ON(PageLRU(page));
625
626 redo:
627         ClearPageUnevictable(page);
628
629         if (page_evictable(page, NULL)) {
630                 /*
631                  * For evictable pages, we can use the cache.
632                  * In event of a race, worst case is we end up with an
633                  * unevictable page on [in]active list.
634                  * We know how to handle that.
635                  */
636                 lru = active + page_lru_base_type(page);
637                 lru_cache_add_lru(page, lru);
638         } else {
639                 /*
640                  * Put unevictable pages directly on zone's unevictable
641                  * list.
642                  */
643                 lru = LRU_UNEVICTABLE;
644                 add_page_to_unevictable_list(page);
645                 /*
646                  * When racing with an mlock clearing (page is
647                  * unlocked), make sure that if the other thread does
648                  * not observe our setting of PG_lru and fails
649                  * isolation, we see PG_mlocked cleared below and move
650                  * the page back to the evictable list.
651                  *
652                  * The other side is TestClearPageMlocked().
653                  */
654                 smp_mb();
655         }
656
657         /*
658          * page's status can change while we move it among lru. If an evictable
659          * page is on unevictable list, it never be freed. To avoid that,
660          * check after we added it to the list, again.
661          */
662         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
663                 if (!isolate_lru_page(page)) {
664                         put_page(page);
665                         goto redo;
666                 }
667                 /* This means someone else dropped this page from LRU
668                  * So, it will be freed or putback to LRU again. There is
669                  * nothing to do here.
670                  */
671         }
672
673         if (was_unevictable && lru != LRU_UNEVICTABLE)
674                 count_vm_event(UNEVICTABLE_PGRESCUED);
675         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
676                 count_vm_event(UNEVICTABLE_PGCULLED);
677
678         put_page(page);         /* drop ref from isolate */
679 }
680
681 enum page_references {
682         PAGEREF_RECLAIM,
683         PAGEREF_RECLAIM_CLEAN,
684         PAGEREF_KEEP,
685         PAGEREF_ACTIVATE,
686 };
687
688 static enum page_references page_check_references(struct page *page,
689                                                   struct scan_control *sc)
690 {
691         int referenced_ptes, referenced_page;
692         unsigned long vm_flags;
693
694         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
695         referenced_page = TestClearPageReferenced(page);
696
697         /* Lumpy reclaim - ignore references */
698         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
699                 return PAGEREF_RECLAIM;
700
701         /*
702          * Mlock lost the isolation race with us.  Let try_to_unmap()
703          * move the page to the unevictable list.
704          */
705         if (vm_flags & VM_LOCKED)
706                 return PAGEREF_RECLAIM;
707
708         if (referenced_ptes) {
709                 if (PageAnon(page))
710                         return PAGEREF_ACTIVATE;
711                 /*
712                  * All mapped pages start out with page table
713                  * references from the instantiating fault, so we need
714                  * to look twice if a mapped file page is used more
715                  * than once.
716                  *
717                  * Mark it and spare it for another trip around the
718                  * inactive list.  Another page table reference will
719                  * lead to its activation.
720                  *
721                  * Note: the mark is set for activated pages as well
722                  * so that recently deactivated but used pages are
723                  * quickly recovered.
724                  */
725                 SetPageReferenced(page);
726
727                 if (referenced_page)
728                         return PAGEREF_ACTIVATE;
729
730                 return PAGEREF_KEEP;
731         }
732
733         /* Reclaim if clean, defer dirty pages to writeback */
734         if (referenced_page && !PageSwapBacked(page))
735                 return PAGEREF_RECLAIM_CLEAN;
736
737         return PAGEREF_RECLAIM;
738 }
739
740 static noinline_for_stack void free_page_list(struct list_head *free_pages)
741 {
742         struct pagevec freed_pvec;
743         struct page *page, *tmp;
744
745         pagevec_init(&freed_pvec, 1);
746
747         list_for_each_entry_safe(page, tmp, free_pages, lru) {
748                 list_del(&page->lru);
749                 if (!pagevec_add(&freed_pvec, page)) {
750                         __pagevec_free(&freed_pvec);
751                         pagevec_reinit(&freed_pvec);
752                 }
753         }
754
755         pagevec_free(&freed_pvec);
756 }
757
758 /*
759  * shrink_page_list() returns the number of reclaimed pages
760  */
761 static unsigned long shrink_page_list(struct list_head *page_list,
762                                       struct zone *zone,
763                                       struct scan_control *sc)
764 {
765         LIST_HEAD(ret_pages);
766         LIST_HEAD(free_pages);
767         int pgactivate = 0;
768         unsigned long nr_dirty = 0;
769         unsigned long nr_congested = 0;
770         unsigned long nr_reclaimed = 0;
771
772         cond_resched();
773
774         while (!list_empty(page_list)) {
775                 enum page_references references;
776                 struct address_space *mapping;
777                 struct page *page;
778                 int may_enter_fs;
779
780                 cond_resched();
781
782                 page = lru_to_page(page_list);
783                 list_del(&page->lru);
784
785                 if (!trylock_page(page))
786                         goto keep;
787
788                 VM_BUG_ON(PageActive(page));
789                 VM_BUG_ON(page_zone(page) != zone);
790
791                 sc->nr_scanned++;
792
793                 if (unlikely(!page_evictable(page, NULL)))
794                         goto cull_mlocked;
795
796                 if (!sc->may_unmap && page_mapped(page))
797                         goto keep_locked;
798
799                 /* Double the slab pressure for mapped and swapcache pages */
800                 if (page_mapped(page) || PageSwapCache(page))
801                         sc->nr_scanned++;
802
803                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
804                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
805
806                 if (PageWriteback(page)) {
807                         /*
808                          * Synchronous reclaim is performed in two passes,
809                          * first an asynchronous pass over the list to
810                          * start parallel writeback, and a second synchronous
811                          * pass to wait for the IO to complete.  Wait here
812                          * for any page for which writeback has already
813                          * started.
814                          */
815                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
816                             may_enter_fs)
817                                 wait_on_page_writeback(page);
818                         else {
819                                 unlock_page(page);
820                                 goto keep_lumpy;
821                         }
822                 }
823
824                 references = page_check_references(page, sc);
825                 switch (references) {
826                 case PAGEREF_ACTIVATE:
827                         goto activate_locked;
828                 case PAGEREF_KEEP:
829                         goto keep_locked;
830                 case PAGEREF_RECLAIM:
831                 case PAGEREF_RECLAIM_CLEAN:
832                         ; /* try to reclaim the page below */
833                 }
834
835                 /*
836                  * Anonymous process memory has backing store?
837                  * Try to allocate it some swap space here.
838                  */
839                 if (PageAnon(page) && !PageSwapCache(page)) {
840                         if (!(sc->gfp_mask & __GFP_IO))
841                                 goto keep_locked;
842                         if (!add_to_swap(page))
843                                 goto activate_locked;
844                         may_enter_fs = 1;
845                 }
846
847                 mapping = page_mapping(page);
848
849                 /*
850                  * The page is mapped into the page tables of one or more
851                  * processes. Try to unmap it here.
852                  */
853                 if (page_mapped(page) && mapping) {
854                         switch (try_to_unmap(page, TTU_UNMAP)) {
855                         case SWAP_FAIL:
856                                 goto activate_locked;
857                         case SWAP_AGAIN:
858                                 goto keep_locked;
859                         case SWAP_MLOCK:
860                                 goto cull_mlocked;
861                         case SWAP_SUCCESS:
862                                 ; /* try to free the page below */
863                         }
864                 }
865
866                 if (PageDirty(page)) {
867                         nr_dirty++;
868
869                         if (references == PAGEREF_RECLAIM_CLEAN)
870                                 goto keep_locked;
871                         if (!may_enter_fs)
872                                 goto keep_locked;
873                         if (!sc->may_writepage)
874                                 goto keep_locked;
875
876                         /* Page is dirty, try to write it out here */
877                         switch (pageout(page, mapping, sc)) {
878                         case PAGE_KEEP:
879                                 nr_congested++;
880                                 goto keep_locked;
881                         case PAGE_ACTIVATE:
882                                 goto activate_locked;
883                         case PAGE_SUCCESS:
884                                 if (PageWriteback(page))
885                                         goto keep_lumpy;
886                                 if (PageDirty(page))
887                                         goto keep;
888
889                                 /*
890                                  * A synchronous write - probably a ramdisk.  Go
891                                  * ahead and try to reclaim the page.
892                                  */
893                                 if (!trylock_page(page))
894                                         goto keep;
895                                 if (PageDirty(page) || PageWriteback(page))
896                                         goto keep_locked;
897                                 mapping = page_mapping(page);
898                         case PAGE_CLEAN:
899                                 ; /* try to free the page below */
900                         }
901                 }
902
903                 /*
904                  * If the page has buffers, try to free the buffer mappings
905                  * associated with this page. If we succeed we try to free
906                  * the page as well.
907                  *
908                  * We do this even if the page is PageDirty().
909                  * try_to_release_page() does not perform I/O, but it is
910                  * possible for a page to have PageDirty set, but it is actually
911                  * clean (all its buffers are clean).  This happens if the
912                  * buffers were written out directly, with submit_bh(). ext3
913                  * will do this, as well as the blockdev mapping.
914                  * try_to_release_page() will discover that cleanness and will
915                  * drop the buffers and mark the page clean - it can be freed.
916                  *
917                  * Rarely, pages can have buffers and no ->mapping.  These are
918                  * the pages which were not successfully invalidated in
919                  * truncate_complete_page().  We try to drop those buffers here
920                  * and if that worked, and the page is no longer mapped into
921                  * process address space (page_count == 1) it can be freed.
922                  * Otherwise, leave the page on the LRU so it is swappable.
923                  */
924                 if (page_has_private(page)) {
925                         if (!try_to_release_page(page, sc->gfp_mask))
926                                 goto activate_locked;
927                         if (!mapping && page_count(page) == 1) {
928                                 unlock_page(page);
929                                 if (put_page_testzero(page))
930                                         goto free_it;
931                                 else {
932                                         /*
933                                          * rare race with speculative reference.
934                                          * the speculative reference will free
935                                          * this page shortly, so we may
936                                          * increment nr_reclaimed here (and
937                                          * leave it off the LRU).
938                                          */
939                                         nr_reclaimed++;
940                                         continue;
941                                 }
942                         }
943                 }
944
945                 if (!mapping || !__remove_mapping(mapping, page))
946                         goto keep_locked;
947
948                 /*
949                  * At this point, we have no other references and there is
950                  * no way to pick any more up (removed from LRU, removed
951                  * from pagecache). Can use non-atomic bitops now (and
952                  * we obviously don't have to worry about waking up a process
953                  * waiting on the page lock, because there are no references.
954                  */
955                 __clear_page_locked(page);
956 free_it:
957                 nr_reclaimed++;
958
959                 /*
960                  * Is there need to periodically free_page_list? It would
961                  * appear not as the counts should be low
962                  */
963                 list_add(&page->lru, &free_pages);
964                 continue;
965
966 cull_mlocked:
967                 if (PageSwapCache(page))
968                         try_to_free_swap(page);
969                 unlock_page(page);
970                 putback_lru_page(page);
971                 reset_reclaim_mode(sc);
972                 continue;
973
974 activate_locked:
975                 /* Not a candidate for swapping, so reclaim swap space. */
976                 if (PageSwapCache(page) && vm_swap_full())
977                         try_to_free_swap(page);
978                 VM_BUG_ON(PageActive(page));
979                 SetPageActive(page);
980                 pgactivate++;
981 keep_locked:
982                 unlock_page(page);
983 keep:
984                 reset_reclaim_mode(sc);
985 keep_lumpy:
986                 list_add(&page->lru, &ret_pages);
987                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
988         }
989
990         /*
991          * Tag a zone as congested if all the dirty pages encountered were
992          * backed by a congested BDI. In this case, reclaimers should just
993          * back off and wait for congestion to clear because further reclaim
994          * will encounter the same problem
995          */
996         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
997                 zone_set_flag(zone, ZONE_CONGESTED);
998
999         free_page_list(&free_pages);
1000
1001         list_splice(&ret_pages, page_list);
1002         count_vm_events(PGACTIVATE, pgactivate);
1003         return nr_reclaimed;
1004 }
1005
1006 /*
1007  * Attempt to remove the specified page from its LRU.  Only take this page
1008  * if it is of the appropriate PageActive status.  Pages which are being
1009  * freed elsewhere are also ignored.
1010  *
1011  * page:        page to consider
1012  * mode:        one of the LRU isolation modes defined above
1013  *
1014  * returns 0 on success, -ve errno on failure.
1015  */
1016 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1017 {
1018         bool all_lru_mode;
1019         int ret = -EINVAL;
1020
1021         /* Only take pages on the LRU. */
1022         if (!PageLRU(page))
1023                 return ret;
1024
1025         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1026                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1027
1028         /*
1029          * When checking the active state, we need to be sure we are
1030          * dealing with comparible boolean values.  Take the logical not
1031          * of each.
1032          */
1033         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1034                 return ret;
1035
1036         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1037                 return ret;
1038
1039         /*
1040          * When this function is being called for lumpy reclaim, we
1041          * initially look into all LRU pages, active, inactive and
1042          * unevictable; only give shrink_page_list evictable pages.
1043          */
1044         if (PageUnevictable(page))
1045                 return ret;
1046
1047         ret = -EBUSY;
1048
1049         if (likely(get_page_unless_zero(page))) {
1050                 /*
1051                  * Be careful not to clear PageLRU until after we're
1052                  * sure the page is not being freed elsewhere -- the
1053                  * page release code relies on it.
1054                  */
1055                 ClearPageLRU(page);
1056                 ret = 0;
1057         }
1058
1059         return ret;
1060 }
1061
1062 /*
1063  * zone->lru_lock is heavily contended.  Some of the functions that
1064  * shrink the lists perform better by taking out a batch of pages
1065  * and working on them outside the LRU lock.
1066  *
1067  * For pagecache intensive workloads, this function is the hottest
1068  * spot in the kernel (apart from copy_*_user functions).
1069  *
1070  * Appropriate locks must be held before calling this function.
1071  *
1072  * @nr_to_scan: The number of pages to look through on the list.
1073  * @src:        The LRU list to pull pages off.
1074  * @dst:        The temp list to put pages on to.
1075  * @scanned:    The number of pages that were scanned.
1076  * @order:      The caller's attempted allocation order
1077  * @mode:       One of the LRU isolation modes
1078  * @file:       True [1] if isolating file [!anon] pages
1079  *
1080  * returns how many pages were moved onto *@dst.
1081  */
1082 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1083                 struct list_head *src, struct list_head *dst,
1084                 unsigned long *scanned, int order, isolate_mode_t mode,
1085                 int file)
1086 {
1087         unsigned long nr_taken = 0;
1088         unsigned long nr_lumpy_taken = 0;
1089         unsigned long nr_lumpy_dirty = 0;
1090         unsigned long nr_lumpy_failed = 0;
1091         unsigned long scan;
1092
1093         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1094                 struct page *page;
1095                 unsigned long pfn;
1096                 unsigned long end_pfn;
1097                 unsigned long page_pfn;
1098                 int zone_id;
1099
1100                 page = lru_to_page(src);
1101                 prefetchw_prev_lru_page(page, src, flags);
1102
1103                 VM_BUG_ON(!PageLRU(page));
1104
1105                 switch (__isolate_lru_page(page, mode, file)) {
1106                 case 0:
1107                         list_move(&page->lru, dst);
1108                         mem_cgroup_del_lru(page);
1109                         nr_taken += hpage_nr_pages(page);
1110                         break;
1111
1112                 case -EBUSY:
1113                         /* else it is being freed elsewhere */
1114                         list_move(&page->lru, src);
1115                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1116                         continue;
1117
1118                 default:
1119                         BUG();
1120                 }
1121
1122                 if (!order)
1123                         continue;
1124
1125                 /*
1126                  * Attempt to take all pages in the order aligned region
1127                  * surrounding the tag page.  Only take those pages of
1128                  * the same active state as that tag page.  We may safely
1129                  * round the target page pfn down to the requested order
1130                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1131                  * where that page is in a different zone we will detect
1132                  * it from its zone id and abort this block scan.
1133                  */
1134                 zone_id = page_zone_id(page);
1135                 page_pfn = page_to_pfn(page);
1136                 pfn = page_pfn & ~((1 << order) - 1);
1137                 end_pfn = pfn + (1 << order);
1138                 for (; pfn < end_pfn; pfn++) {
1139                         struct page *cursor_page;
1140
1141                         /* The target page is in the block, ignore it. */
1142                         if (unlikely(pfn == page_pfn))
1143                                 continue;
1144
1145                         /* Avoid holes within the zone. */
1146                         if (unlikely(!pfn_valid_within(pfn)))
1147                                 break;
1148
1149                         cursor_page = pfn_to_page(pfn);
1150
1151                         /* Check that we have not crossed a zone boundary. */
1152                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1153                                 break;
1154
1155                         /*
1156                          * If we don't have enough swap space, reclaiming of
1157                          * anon page which don't already have a swap slot is
1158                          * pointless.
1159                          */
1160                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1161                             !PageSwapCache(cursor_page))
1162                                 break;
1163
1164                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1165                                 list_move(&cursor_page->lru, dst);
1166                                 mem_cgroup_del_lru(cursor_page);
1167                                 nr_taken += hpage_nr_pages(page);
1168                                 nr_lumpy_taken++;
1169                                 if (PageDirty(cursor_page))
1170                                         nr_lumpy_dirty++;
1171                                 scan++;
1172                         } else {
1173                                 /*
1174                                  * Check if the page is freed already.
1175                                  *
1176                                  * We can't use page_count() as that
1177                                  * requires compound_head and we don't
1178                                  * have a pin on the page here. If a
1179                                  * page is tail, we may or may not
1180                                  * have isolated the head, so assume
1181                                  * it's not free, it'd be tricky to
1182                                  * track the head status without a
1183                                  * page pin.
1184                                  */
1185                                 if (!PageTail(cursor_page) &&
1186                                     !atomic_read(&cursor_page->_count))
1187                                         continue;
1188                                 break;
1189                         }
1190                 }
1191
1192                 /* If we break out of the loop above, lumpy reclaim failed */
1193                 if (pfn < end_pfn)
1194                         nr_lumpy_failed++;
1195         }
1196
1197         *scanned = scan;
1198
1199         trace_mm_vmscan_lru_isolate(order,
1200                         nr_to_scan, scan,
1201                         nr_taken,
1202                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1203                         mode);
1204         return nr_taken;
1205 }
1206
1207 static unsigned long isolate_pages_global(unsigned long nr,
1208                                         struct list_head *dst,
1209                                         unsigned long *scanned, int order,
1210                                         isolate_mode_t mode,
1211                                         struct zone *z, int active, int file)
1212 {
1213         int lru = LRU_BASE;
1214         if (active)
1215                 lru += LRU_ACTIVE;
1216         if (file)
1217                 lru += LRU_FILE;
1218         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1219                                                                 mode, file);
1220 }
1221
1222 /*
1223  * clear_active_flags() is a helper for shrink_active_list(), clearing
1224  * any active bits from the pages in the list.
1225  */
1226 static unsigned long clear_active_flags(struct list_head *page_list,
1227                                         unsigned int *count)
1228 {
1229         int nr_active = 0;
1230         int lru;
1231         struct page *page;
1232
1233         list_for_each_entry(page, page_list, lru) {
1234                 int numpages = hpage_nr_pages(page);
1235                 lru = page_lru_base_type(page);
1236                 if (PageActive(page)) {
1237                         lru += LRU_ACTIVE;
1238                         ClearPageActive(page);
1239                         nr_active += numpages;
1240                 }
1241                 if (count)
1242                         count[lru] += numpages;
1243         }
1244
1245         return nr_active;
1246 }
1247
1248 /**
1249  * isolate_lru_page - tries to isolate a page from its LRU list
1250  * @page: page to isolate from its LRU list
1251  *
1252  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1253  * vmstat statistic corresponding to whatever LRU list the page was on.
1254  *
1255  * Returns 0 if the page was removed from an LRU list.
1256  * Returns -EBUSY if the page was not on an LRU list.
1257  *
1258  * The returned page will have PageLRU() cleared.  If it was found on
1259  * the active list, it will have PageActive set.  If it was found on
1260  * the unevictable list, it will have the PageUnevictable bit set. That flag
1261  * may need to be cleared by the caller before letting the page go.
1262  *
1263  * The vmstat statistic corresponding to the list on which the page was
1264  * found will be decremented.
1265  *
1266  * Restrictions:
1267  * (1) Must be called with an elevated refcount on the page. This is a
1268  *     fundamentnal difference from isolate_lru_pages (which is called
1269  *     without a stable reference).
1270  * (2) the lru_lock must not be held.
1271  * (3) interrupts must be enabled.
1272  */
1273 int isolate_lru_page(struct page *page)
1274 {
1275         int ret = -EBUSY;
1276
1277         VM_BUG_ON(!page_count(page));
1278
1279         if (PageLRU(page)) {
1280                 struct zone *zone = page_zone(page);
1281
1282                 spin_lock_irq(&zone->lru_lock);
1283                 if (PageLRU(page)) {
1284                         int lru = page_lru(page);
1285                         ret = 0;
1286                         get_page(page);
1287                         ClearPageLRU(page);
1288
1289                         del_page_from_lru_list(zone, page, lru);
1290                 }
1291                 spin_unlock_irq(&zone->lru_lock);
1292         }
1293         return ret;
1294 }
1295
1296 /*
1297  * Are there way too many processes in the direct reclaim path already?
1298  */
1299 static int too_many_isolated(struct zone *zone, int file,
1300                 struct scan_control *sc)
1301 {
1302         unsigned long inactive, isolated;
1303
1304         if (current_is_kswapd())
1305                 return 0;
1306
1307         if (!scanning_global_lru(sc))
1308                 return 0;
1309
1310         if (file) {
1311                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1312                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1313         } else {
1314                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1315                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1316         }
1317
1318         return isolated > inactive;
1319 }
1320
1321 /*
1322  * TODO: Try merging with migrations version of putback_lru_pages
1323  */
1324 static noinline_for_stack void
1325 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1326                                 unsigned long nr_anon, unsigned long nr_file,
1327                                 struct list_head *page_list)
1328 {
1329         struct page *page;
1330         struct pagevec pvec;
1331         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1332
1333         pagevec_init(&pvec, 1);
1334
1335         /*
1336          * Put back any unfreeable pages.
1337          */
1338         spin_lock(&zone->lru_lock);
1339         while (!list_empty(page_list)) {
1340                 int lru;
1341                 page = lru_to_page(page_list);
1342                 VM_BUG_ON(PageLRU(page));
1343                 list_del(&page->lru);
1344                 if (unlikely(!page_evictable(page, NULL))) {
1345                         spin_unlock_irq(&zone->lru_lock);
1346                         putback_lru_page(page);
1347                         spin_lock_irq(&zone->lru_lock);
1348                         continue;
1349                 }
1350                 SetPageLRU(page);
1351                 lru = page_lru(page);
1352                 add_page_to_lru_list(zone, page, lru);
1353                 if (is_active_lru(lru)) {
1354                         int file = is_file_lru(lru);
1355                         int numpages = hpage_nr_pages(page);
1356                         reclaim_stat->recent_rotated[file] += numpages;
1357                         if (!scanning_global_lru(sc))
1358                                 sc->memcg_record->nr_rotated[file] += numpages;
1359                 }
1360                 if (!pagevec_add(&pvec, page)) {
1361                         spin_unlock_irq(&zone->lru_lock);
1362                         __pagevec_release(&pvec);
1363                         spin_lock_irq(&zone->lru_lock);
1364                 }
1365         }
1366         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1367         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1368
1369         spin_unlock_irq(&zone->lru_lock);
1370         pagevec_release(&pvec);
1371 }
1372
1373 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1374                                         struct scan_control *sc,
1375                                         unsigned long *nr_anon,
1376                                         unsigned long *nr_file,
1377                                         struct list_head *isolated_list)
1378 {
1379         unsigned long nr_active;
1380         unsigned int count[NR_LRU_LISTS] = { 0, };
1381         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1382
1383         nr_active = clear_active_flags(isolated_list, count);
1384         __count_vm_events(PGDEACTIVATE, nr_active);
1385
1386         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1387                               -count[LRU_ACTIVE_FILE]);
1388         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1389                               -count[LRU_INACTIVE_FILE]);
1390         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1391                               -count[LRU_ACTIVE_ANON]);
1392         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1393                               -count[LRU_INACTIVE_ANON]);
1394
1395         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1396         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1397         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1398         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1399
1400         reclaim_stat->recent_scanned[0] += *nr_anon;
1401         reclaim_stat->recent_scanned[1] += *nr_file;
1402         if (!scanning_global_lru(sc)) {
1403                 sc->memcg_record->nr_scanned[0] += *nr_anon;
1404                 sc->memcg_record->nr_scanned[1] += *nr_file;
1405         }
1406 }
1407
1408 /*
1409  * Returns true if the caller should wait to clean dirty/writeback pages.
1410  *
1411  * If we are direct reclaiming for contiguous pages and we do not reclaim
1412  * everything in the list, try again and wait for writeback IO to complete.
1413  * This will stall high-order allocations noticeably. Only do that when really
1414  * need to free the pages under high memory pressure.
1415  */
1416 static inline bool should_reclaim_stall(unsigned long nr_taken,
1417                                         unsigned long nr_freed,
1418                                         int priority,
1419                                         struct scan_control *sc)
1420 {
1421         int lumpy_stall_priority;
1422
1423         /* kswapd should not stall on sync IO */
1424         if (current_is_kswapd())
1425                 return false;
1426
1427         /* Only stall on lumpy reclaim */
1428         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1429                 return false;
1430
1431         /* If we have relaimed everything on the isolated list, no stall */
1432         if (nr_freed == nr_taken)
1433                 return false;
1434
1435         /*
1436          * For high-order allocations, there are two stall thresholds.
1437          * High-cost allocations stall immediately where as lower
1438          * order allocations such as stacks require the scanning
1439          * priority to be much higher before stalling.
1440          */
1441         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1442                 lumpy_stall_priority = DEF_PRIORITY;
1443         else
1444                 lumpy_stall_priority = DEF_PRIORITY / 3;
1445
1446         return priority <= lumpy_stall_priority;
1447 }
1448
1449 /*
1450  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1451  * of reclaimed pages
1452  */
1453 static noinline_for_stack unsigned long
1454 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1455                         struct scan_control *sc, int priority, int file)
1456 {
1457         LIST_HEAD(page_list);
1458         unsigned long nr_scanned;
1459         unsigned long nr_reclaimed = 0;
1460         unsigned long nr_taken;
1461         unsigned long nr_anon;
1462         unsigned long nr_file;
1463         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1464
1465         while (unlikely(too_many_isolated(zone, file, sc))) {
1466                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1467
1468                 /* We are about to die and free our memory. Return now. */
1469                 if (fatal_signal_pending(current))
1470                         return SWAP_CLUSTER_MAX;
1471         }
1472
1473         set_reclaim_mode(priority, sc, false);
1474         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1475                 reclaim_mode |= ISOLATE_ACTIVE;
1476
1477         lru_add_drain();
1478         spin_lock_irq(&zone->lru_lock);
1479
1480         if (scanning_global_lru(sc)) {
1481                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1482                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1483                 zone->pages_scanned += nr_scanned;
1484                 if (current_is_kswapd())
1485                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1486                                                nr_scanned);
1487                 else
1488                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1489                                                nr_scanned);
1490         } else {
1491                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1492                         &nr_scanned, sc->order, reclaim_mode, zone,
1493                         sc->mem_cgroup, 0, file);
1494                 /*
1495                  * mem_cgroup_isolate_pages() keeps track of
1496                  * scanned pages on its own.
1497                  */
1498         }
1499
1500         if (nr_taken == 0) {
1501                 spin_unlock_irq(&zone->lru_lock);
1502                 return 0;
1503         }
1504
1505         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1506
1507         spin_unlock_irq(&zone->lru_lock);
1508
1509         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1510
1511         /* Check if we should syncronously wait for writeback */
1512         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1513                 set_reclaim_mode(priority, sc, true);
1514                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1515         }
1516
1517         if (!scanning_global_lru(sc))
1518                 sc->memcg_record->nr_freed[file] += nr_reclaimed;
1519
1520         local_irq_disable();
1521         if (current_is_kswapd())
1522                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1523         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1524
1525         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1526
1527         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1528                 zone_idx(zone),
1529                 nr_scanned, nr_reclaimed,
1530                 priority,
1531                 trace_shrink_flags(file, sc->reclaim_mode));
1532         return nr_reclaimed;
1533 }
1534
1535 /*
1536  * This moves pages from the active list to the inactive list.
1537  *
1538  * We move them the other way if the page is referenced by one or more
1539  * processes, from rmap.
1540  *
1541  * If the pages are mostly unmapped, the processing is fast and it is
1542  * appropriate to hold zone->lru_lock across the whole operation.  But if
1543  * the pages are mapped, the processing is slow (page_referenced()) so we
1544  * should drop zone->lru_lock around each page.  It's impossible to balance
1545  * this, so instead we remove the pages from the LRU while processing them.
1546  * It is safe to rely on PG_active against the non-LRU pages in here because
1547  * nobody will play with that bit on a non-LRU page.
1548  *
1549  * The downside is that we have to touch page->_count against each page.
1550  * But we had to alter page->flags anyway.
1551  */
1552
1553 static void move_active_pages_to_lru(struct zone *zone,
1554                                      struct list_head *list,
1555                                      enum lru_list lru)
1556 {
1557         unsigned long pgmoved = 0;
1558         struct pagevec pvec;
1559         struct page *page;
1560
1561         pagevec_init(&pvec, 1);
1562
1563         while (!list_empty(list)) {
1564                 page = lru_to_page(list);
1565
1566                 VM_BUG_ON(PageLRU(page));
1567                 SetPageLRU(page);
1568
1569                 list_move(&page->lru, &zone->lru[lru].list);
1570                 mem_cgroup_add_lru_list(page, lru);
1571                 pgmoved += hpage_nr_pages(page);
1572
1573                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1574                         spin_unlock_irq(&zone->lru_lock);
1575                         if (buffer_heads_over_limit)
1576                                 pagevec_strip(&pvec);
1577                         __pagevec_release(&pvec);
1578                         spin_lock_irq(&zone->lru_lock);
1579                 }
1580         }
1581         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1582         if (!is_active_lru(lru))
1583                 __count_vm_events(PGDEACTIVATE, pgmoved);
1584 }
1585
1586 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1587                         struct scan_control *sc, int priority, int file)
1588 {
1589         unsigned long nr_taken;
1590         unsigned long pgscanned;
1591         unsigned long vm_flags;
1592         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1593         LIST_HEAD(l_active);
1594         LIST_HEAD(l_inactive);
1595         struct page *page;
1596         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1597         unsigned long nr_rotated = 0;
1598
1599         lru_add_drain();
1600         spin_lock_irq(&zone->lru_lock);
1601         if (scanning_global_lru(sc)) {
1602                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1603                                                 &pgscanned, sc->order,
1604                                                 ISOLATE_ACTIVE, zone,
1605                                                 1, file);
1606                 zone->pages_scanned += pgscanned;
1607         } else {
1608                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1609                                                 &pgscanned, sc->order,
1610                                                 ISOLATE_ACTIVE, zone,
1611                                                 sc->mem_cgroup, 1, file);
1612                 /*
1613                  * mem_cgroup_isolate_pages() keeps track of
1614                  * scanned pages on its own.
1615                  */
1616         }
1617
1618         reclaim_stat->recent_scanned[file] += nr_taken;
1619         if (!scanning_global_lru(sc))
1620                 sc->memcg_record->nr_scanned[file] += nr_taken;
1621
1622         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1623         if (file)
1624                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1625         else
1626                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1627         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1628         spin_unlock_irq(&zone->lru_lock);
1629
1630         while (!list_empty(&l_hold)) {
1631                 cond_resched();
1632                 page = lru_to_page(&l_hold);
1633                 list_del(&page->lru);
1634
1635                 if (unlikely(!page_evictable(page, NULL))) {
1636                         putback_lru_page(page);
1637                         continue;
1638                 }
1639
1640                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1641                         nr_rotated += hpage_nr_pages(page);
1642                         /*
1643                          * Identify referenced, file-backed active pages and
1644                          * give them one more trip around the active list. So
1645                          * that executable code get better chances to stay in
1646                          * memory under moderate memory pressure.  Anon pages
1647                          * are not likely to be evicted by use-once streaming
1648                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1649                          * so we ignore them here.
1650                          */
1651                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1652                                 list_add(&page->lru, &l_active);
1653                                 continue;
1654                         }
1655                 }
1656
1657                 ClearPageActive(page);  /* we are de-activating */
1658                 list_add(&page->lru, &l_inactive);
1659         }
1660
1661         /*
1662          * Move pages back to the lru list.
1663          */
1664         spin_lock_irq(&zone->lru_lock);
1665         /*
1666          * Count referenced pages from currently used mappings as rotated,
1667          * even though only some of them are actually re-activated.  This
1668          * helps balance scan pressure between file and anonymous pages in
1669          * get_scan_ratio.
1670          */
1671         reclaim_stat->recent_rotated[file] += nr_rotated;
1672         if (!scanning_global_lru(sc))
1673                 sc->memcg_record->nr_rotated[file] += nr_rotated;
1674
1675         move_active_pages_to_lru(zone, &l_active,
1676                                                 LRU_ACTIVE + file * LRU_FILE);
1677         move_active_pages_to_lru(zone, &l_inactive,
1678                                                 LRU_BASE   + file * LRU_FILE);
1679         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1680         spin_unlock_irq(&zone->lru_lock);
1681 }
1682
1683 #ifdef CONFIG_SWAP
1684 static int inactive_anon_is_low_global(struct zone *zone)
1685 {
1686         unsigned long active, inactive;
1687
1688         active = zone_page_state(zone, NR_ACTIVE_ANON);
1689         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1690
1691         if (inactive * zone->inactive_ratio < active)
1692                 return 1;
1693
1694         return 0;
1695 }
1696
1697 /**
1698  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1699  * @zone: zone to check
1700  * @sc:   scan control of this context
1701  *
1702  * Returns true if the zone does not have enough inactive anon pages,
1703  * meaning some active anon pages need to be deactivated.
1704  */
1705 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1706 {
1707         int low;
1708
1709         /*
1710          * If we don't have swap space, anonymous page deactivation
1711          * is pointless.
1712          */
1713         if (!total_swap_pages)
1714                 return 0;
1715
1716         if (scanning_global_lru(sc))
1717                 low = inactive_anon_is_low_global(zone);
1718         else
1719                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1720         return low;
1721 }
1722 #else
1723 static inline int inactive_anon_is_low(struct zone *zone,
1724                                         struct scan_control *sc)
1725 {
1726         return 0;
1727 }
1728 #endif
1729
1730 static int inactive_file_is_low_global(struct zone *zone)
1731 {
1732         unsigned long active, inactive;
1733
1734         active = zone_page_state(zone, NR_ACTIVE_FILE);
1735         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1736
1737         return (active > inactive);
1738 }
1739
1740 /**
1741  * inactive_file_is_low - check if file pages need to be deactivated
1742  * @zone: zone to check
1743  * @sc:   scan control of this context
1744  *
1745  * When the system is doing streaming IO, memory pressure here
1746  * ensures that active file pages get deactivated, until more
1747  * than half of the file pages are on the inactive list.
1748  *
1749  * Once we get to that situation, protect the system's working
1750  * set from being evicted by disabling active file page aging.
1751  *
1752  * This uses a different ratio than the anonymous pages, because
1753  * the page cache uses a use-once replacement algorithm.
1754  */
1755 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1756 {
1757         int low;
1758
1759         if (scanning_global_lru(sc))
1760                 low = inactive_file_is_low_global(zone);
1761         else
1762                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1763         return low;
1764 }
1765
1766 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1767                                 int file)
1768 {
1769         if (file)
1770                 return inactive_file_is_low(zone, sc);
1771         else
1772                 return inactive_anon_is_low(zone, sc);
1773 }
1774
1775 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1776         struct zone *zone, struct scan_control *sc, int priority)
1777 {
1778         int file = is_file_lru(lru);
1779
1780         if (is_active_lru(lru)) {
1781                 if (inactive_list_is_low(zone, sc, file))
1782                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1783                 return 0;
1784         }
1785
1786         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1787 }
1788
1789 static int vmscan_swappiness(struct scan_control *sc)
1790 {
1791         if (scanning_global_lru(sc))
1792                 return vm_swappiness;
1793         return mem_cgroup_swappiness(sc->mem_cgroup);
1794 }
1795
1796 /*
1797  * Determine how aggressively the anon and file LRU lists should be
1798  * scanned.  The relative value of each set of LRU lists is determined
1799  * by looking at the fraction of the pages scanned we did rotate back
1800  * onto the active list instead of evict.
1801  *
1802  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1803  */
1804 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1805                                         unsigned long *nr, int priority)
1806 {
1807         unsigned long anon, file, free;
1808         unsigned long anon_prio, file_prio;
1809         unsigned long ap, fp;
1810         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1811         u64 fraction[2], denominator;
1812         enum lru_list l;
1813         int noswap = 0;
1814         int force_scan = 0;
1815         unsigned long nr_force_scan[2];
1816
1817
1818         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1819                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1820         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1821                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1822
1823         if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
1824                 /* kswapd does zone balancing and need to scan this zone */
1825                 if (scanning_global_lru(sc) && current_is_kswapd())
1826                         force_scan = 1;
1827                 /* memcg may have small limit and need to avoid priority drop */
1828                 if (!scanning_global_lru(sc))
1829                         force_scan = 1;
1830         }
1831
1832         /* If we have no swap space, do not bother scanning anon pages. */
1833         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1834                 noswap = 1;
1835                 fraction[0] = 0;
1836                 fraction[1] = 1;
1837                 denominator = 1;
1838                 nr_force_scan[0] = 0;
1839                 nr_force_scan[1] = SWAP_CLUSTER_MAX;
1840                 goto out;
1841         }
1842
1843         if (scanning_global_lru(sc)) {
1844                 free  = zone_page_state(zone, NR_FREE_PAGES);
1845                 /* If we have very few page cache pages,
1846                    force-scan anon pages. */
1847                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1848                         fraction[0] = 1;
1849                         fraction[1] = 0;
1850                         denominator = 1;
1851                         nr_force_scan[0] = SWAP_CLUSTER_MAX;
1852                         nr_force_scan[1] = 0;
1853                         goto out;
1854                 }
1855         }
1856
1857         /*
1858          * With swappiness at 100, anonymous and file have the same priority.
1859          * This scanning priority is essentially the inverse of IO cost.
1860          */
1861         anon_prio = vmscan_swappiness(sc);
1862         file_prio = 200 - vmscan_swappiness(sc);
1863
1864         /*
1865          * OK, so we have swap space and a fair amount of page cache
1866          * pages.  We use the recently rotated / recently scanned
1867          * ratios to determine how valuable each cache is.
1868          *
1869          * Because workloads change over time (and to avoid overflow)
1870          * we keep these statistics as a floating average, which ends
1871          * up weighing recent references more than old ones.
1872          *
1873          * anon in [0], file in [1]
1874          */
1875         spin_lock_irq(&zone->lru_lock);
1876         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1877                 reclaim_stat->recent_scanned[0] /= 2;
1878                 reclaim_stat->recent_rotated[0] /= 2;
1879         }
1880
1881         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1882                 reclaim_stat->recent_scanned[1] /= 2;
1883                 reclaim_stat->recent_rotated[1] /= 2;
1884         }
1885
1886         /*
1887          * The amount of pressure on anon vs file pages is inversely
1888          * proportional to the fraction of recently scanned pages on
1889          * each list that were recently referenced and in active use.
1890          */
1891         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1892         ap /= reclaim_stat->recent_rotated[0] + 1;
1893
1894         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1895         fp /= reclaim_stat->recent_rotated[1] + 1;
1896         spin_unlock_irq(&zone->lru_lock);
1897
1898         fraction[0] = ap;
1899         fraction[1] = fp;
1900         denominator = ap + fp + 1;
1901         if (force_scan) {
1902                 unsigned long scan = SWAP_CLUSTER_MAX;
1903                 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1904                 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1905         }
1906 out:
1907         for_each_evictable_lru(l) {
1908                 int file = is_file_lru(l);
1909                 unsigned long scan;
1910
1911                 scan = zone_nr_lru_pages(zone, sc, l);
1912                 if (priority || noswap) {
1913                         scan >>= priority;
1914                         scan = div64_u64(scan * fraction[file], denominator);
1915                 }
1916
1917                 /*
1918                  * If zone is small or memcg is small, nr[l] can be 0.
1919                  * This results no-scan on this priority and priority drop down.
1920                  * For global direct reclaim, it can visit next zone and tend
1921                  * not to have problems. For global kswapd, it's for zone
1922                  * balancing and it need to scan a small amounts. When using
1923                  * memcg, priority drop can cause big latency. So, it's better
1924                  * to scan small amount. See may_noscan above.
1925                  */
1926                 if (!scan && force_scan)
1927                         scan = nr_force_scan[file];
1928                 nr[l] = scan;
1929         }
1930 }
1931
1932 /*
1933  * Reclaim/compaction depends on a number of pages being freed. To avoid
1934  * disruption to the system, a small number of order-0 pages continue to be
1935  * rotated and reclaimed in the normal fashion. However, by the time we get
1936  * back to the allocator and call try_to_compact_zone(), we ensure that
1937  * there are enough free pages for it to be likely successful
1938  */
1939 static inline bool should_continue_reclaim(struct zone *zone,
1940                                         unsigned long nr_reclaimed,
1941                                         unsigned long nr_scanned,
1942                                         struct scan_control *sc)
1943 {
1944         unsigned long pages_for_compaction;
1945         unsigned long inactive_lru_pages;
1946
1947         /* If not in reclaim/compaction mode, stop */
1948         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1949                 return false;
1950
1951         /* Consider stopping depending on scan and reclaim activity */
1952         if (sc->gfp_mask & __GFP_REPEAT) {
1953                 /*
1954                  * For __GFP_REPEAT allocations, stop reclaiming if the
1955                  * full LRU list has been scanned and we are still failing
1956                  * to reclaim pages. This full LRU scan is potentially
1957                  * expensive but a __GFP_REPEAT caller really wants to succeed
1958                  */
1959                 if (!nr_reclaimed && !nr_scanned)
1960                         return false;
1961         } else {
1962                 /*
1963                  * For non-__GFP_REPEAT allocations which can presumably
1964                  * fail without consequence, stop if we failed to reclaim
1965                  * any pages from the last SWAP_CLUSTER_MAX number of
1966                  * pages that were scanned. This will return to the
1967                  * caller faster at the risk reclaim/compaction and
1968                  * the resulting allocation attempt fails
1969                  */
1970                 if (!nr_reclaimed)
1971                         return false;
1972         }
1973
1974         /*
1975          * If we have not reclaimed enough pages for compaction and the
1976          * inactive lists are large enough, continue reclaiming
1977          */
1978         pages_for_compaction = (2UL << sc->order);
1979         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1980                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1981         if (sc->nr_reclaimed < pages_for_compaction &&
1982                         inactive_lru_pages > pages_for_compaction)
1983                 return true;
1984
1985         /* If compaction would go ahead or the allocation would succeed, stop */
1986         switch (compaction_suitable(zone, sc->order)) {
1987         case COMPACT_PARTIAL:
1988         case COMPACT_CONTINUE:
1989                 return false;
1990         default:
1991                 return true;
1992         }
1993 }
1994
1995 /*
1996  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1997  */
1998 static void shrink_zone(int priority, struct zone *zone,
1999                                 struct scan_control *sc)
2000 {
2001         unsigned long nr[NR_LRU_LISTS];
2002         unsigned long nr_to_scan;
2003         enum lru_list l;
2004         unsigned long nr_reclaimed, nr_scanned;
2005         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2006
2007 restart:
2008         nr_reclaimed = 0;
2009         nr_scanned = sc->nr_scanned;
2010         get_scan_count(zone, sc, nr, priority);
2011
2012         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2013                                         nr[LRU_INACTIVE_FILE]) {
2014                 for_each_evictable_lru(l) {
2015                         if (nr[l]) {
2016                                 nr_to_scan = min_t(unsigned long,
2017                                                    nr[l], SWAP_CLUSTER_MAX);
2018                                 nr[l] -= nr_to_scan;
2019
2020                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2021                                                             zone, sc, priority);
2022                         }
2023                 }
2024                 /*
2025                  * On large memory systems, scan >> priority can become
2026                  * really large. This is fine for the starting priority;
2027                  * we want to put equal scanning pressure on each zone.
2028                  * However, if the VM has a harder time of freeing pages,
2029                  * with multiple processes reclaiming pages, the total
2030                  * freeing target can get unreasonably large.
2031                  */
2032                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2033                         break;
2034         }
2035         sc->nr_reclaimed += nr_reclaimed;
2036
2037         /*
2038          * Even if we did not try to evict anon pages at all, we want to
2039          * rebalance the anon lru active/inactive ratio.
2040          */
2041         if (inactive_anon_is_low(zone, sc))
2042                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2043
2044         /* reclaim/compaction might need reclaim to continue */
2045         if (should_continue_reclaim(zone, nr_reclaimed,
2046                                         sc->nr_scanned - nr_scanned, sc))
2047                 goto restart;
2048
2049         throttle_vm_writeout(sc->gfp_mask);
2050 }
2051
2052 /*
2053  * This is the direct reclaim path, for page-allocating processes.  We only
2054  * try to reclaim pages from zones which will satisfy the caller's allocation
2055  * request.
2056  *
2057  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2058  * Because:
2059  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2060  *    allocation or
2061  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2062  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2063  *    zone defense algorithm.
2064  *
2065  * If a zone is deemed to be full of pinned pages then just give it a light
2066  * scan then give up on it.
2067  */
2068 static void shrink_zones(int priority, struct zonelist *zonelist,
2069                                         struct scan_control *sc)
2070 {
2071         struct zoneref *z;
2072         struct zone *zone;
2073         unsigned long nr_soft_reclaimed;
2074         unsigned long nr_soft_scanned;
2075
2076         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2077                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2078                 if (!populated_zone(zone))
2079                         continue;
2080                 /*
2081                  * Take care memory controller reclaiming has small influence
2082                  * to global LRU.
2083                  */
2084                 if (scanning_global_lru(sc)) {
2085                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2086                                 continue;
2087                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2088                                 continue;       /* Let kswapd poll it */
2089                         /*
2090                          * This steals pages from memory cgroups over softlimit
2091                          * and returns the number of reclaimed pages and
2092                          * scanned pages. This works for global memory pressure
2093                          * and balancing, not for a memcg's limit.
2094                          */
2095                         nr_soft_scanned = 0;
2096                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2097                                                 sc->order, sc->gfp_mask,
2098                                                 &nr_soft_scanned);
2099                         sc->nr_reclaimed += nr_soft_reclaimed;
2100                         sc->nr_scanned += nr_soft_scanned;
2101                         /* need some check for avoid more shrink_zone() */
2102                 }
2103
2104                 shrink_zone(priority, zone, sc);
2105         }
2106 }
2107
2108 static bool zone_reclaimable(struct zone *zone)
2109 {
2110         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2111 }
2112
2113 /* All zones in zonelist are unreclaimable? */
2114 static bool all_unreclaimable(struct zonelist *zonelist,
2115                 struct scan_control *sc)
2116 {
2117         struct zoneref *z;
2118         struct zone *zone;
2119
2120         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2121                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2122                 if (!populated_zone(zone))
2123                         continue;
2124                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2125                         continue;
2126                 if (!zone->all_unreclaimable)
2127                         return false;
2128         }
2129
2130         return true;
2131 }
2132
2133 /*
2134  * This is the main entry point to direct page reclaim.
2135  *
2136  * If a full scan of the inactive list fails to free enough memory then we
2137  * are "out of memory" and something needs to be killed.
2138  *
2139  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2140  * high - the zone may be full of dirty or under-writeback pages, which this
2141  * caller can't do much about.  We kick the writeback threads and take explicit
2142  * naps in the hope that some of these pages can be written.  But if the
2143  * allocating task holds filesystem locks which prevent writeout this might not
2144  * work, and the allocation attempt will fail.
2145  *
2146  * returns:     0, if no pages reclaimed
2147  *              else, the number of pages reclaimed
2148  */
2149 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2150                                         struct scan_control *sc,
2151                                         struct shrink_control *shrink)
2152 {
2153         int priority;
2154         unsigned long total_scanned = 0;
2155         struct reclaim_state *reclaim_state = current->reclaim_state;
2156         struct zoneref *z;
2157         struct zone *zone;
2158         unsigned long writeback_threshold;
2159
2160         get_mems_allowed();
2161         delayacct_freepages_start();
2162
2163         if (scanning_global_lru(sc))
2164                 count_vm_event(ALLOCSTALL);
2165
2166         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2167                 sc->nr_scanned = 0;
2168                 if (!priority)
2169                         disable_swap_token(sc->mem_cgroup);
2170                 shrink_zones(priority, zonelist, sc);
2171                 /*
2172                  * Don't shrink slabs when reclaiming memory from
2173                  * over limit cgroups
2174                  */
2175                 if (scanning_global_lru(sc)) {
2176                         unsigned long lru_pages = 0;
2177                         for_each_zone_zonelist(zone, z, zonelist,
2178                                         gfp_zone(sc->gfp_mask)) {
2179                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2180                                         continue;
2181
2182                                 lru_pages += zone_reclaimable_pages(zone);
2183                         }
2184
2185                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2186                         if (reclaim_state) {
2187                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2188                                 reclaim_state->reclaimed_slab = 0;
2189                         }
2190                 }
2191                 total_scanned += sc->nr_scanned;
2192                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2193                         goto out;
2194
2195                 /*
2196                  * Try to write back as many pages as we just scanned.  This
2197                  * tends to cause slow streaming writers to write data to the
2198                  * disk smoothly, at the dirtying rate, which is nice.   But
2199                  * that's undesirable in laptop mode, where we *want* lumpy
2200                  * writeout.  So in laptop mode, write out the whole world.
2201                  */
2202                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2203                 if (total_scanned > writeback_threshold) {
2204                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2205                         sc->may_writepage = 1;
2206                 }
2207
2208                 /* Take a nap, wait for some writeback to complete */
2209                 if (!sc->hibernation_mode && sc->nr_scanned &&
2210                     priority < DEF_PRIORITY - 2) {
2211                         struct zone *preferred_zone;
2212
2213                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2214                                                 &cpuset_current_mems_allowed,
2215                                                 &preferred_zone);
2216                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2217                 }
2218         }
2219
2220 out:
2221         delayacct_freepages_end();
2222         put_mems_allowed();
2223
2224         if (sc->nr_reclaimed)
2225                 return sc->nr_reclaimed;
2226
2227         /*
2228          * As hibernation is going on, kswapd is freezed so that it can't mark
2229          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2230          * check.
2231          */
2232         if (oom_killer_disabled)
2233                 return 0;
2234
2235         /* top priority shrink_zones still had more to do? don't OOM, then */
2236         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2237                 return 1;
2238
2239         return 0;
2240 }
2241
2242 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2243                                 gfp_t gfp_mask, nodemask_t *nodemask)
2244 {
2245         unsigned long nr_reclaimed;
2246         struct scan_control sc = {
2247                 .gfp_mask = gfp_mask,
2248                 .may_writepage = !laptop_mode,
2249                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2250                 .may_unmap = 1,
2251                 .may_swap = 1,
2252                 .order = order,
2253                 .mem_cgroup = NULL,
2254                 .nodemask = nodemask,
2255         };
2256         struct shrink_control shrink = {
2257                 .gfp_mask = sc.gfp_mask,
2258         };
2259
2260         trace_mm_vmscan_direct_reclaim_begin(order,
2261                                 sc.may_writepage,
2262                                 gfp_mask);
2263
2264         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2265
2266         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2267
2268         return nr_reclaimed;
2269 }
2270
2271 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2272
2273 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2274                                         gfp_t gfp_mask, bool noswap,
2275                                         struct zone *zone,
2276                                         struct memcg_scanrecord *rec,
2277                                         unsigned long *scanned)
2278 {
2279         struct scan_control sc = {
2280                 .nr_scanned = 0,
2281                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2282                 .may_writepage = !laptop_mode,
2283                 .may_unmap = 1,
2284                 .may_swap = !noswap,
2285                 .order = 0,
2286                 .mem_cgroup = mem,
2287                 .memcg_record = rec,
2288         };
2289         unsigned long start, end;
2290
2291         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2292                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2293
2294         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2295                                                       sc.may_writepage,
2296                                                       sc.gfp_mask);
2297
2298         start = sched_clock();
2299         /*
2300          * NOTE: Although we can get the priority field, using it
2301          * here is not a good idea, since it limits the pages we can scan.
2302          * if we don't reclaim here, the shrink_zone from balance_pgdat
2303          * will pick up pages from other mem cgroup's as well. We hack
2304          * the priority and make it zero.
2305          */
2306         shrink_zone(0, zone, &sc);
2307         end = sched_clock();
2308
2309         if (rec)
2310                 rec->elapsed += end - start;
2311         *scanned = sc.nr_scanned;
2312
2313         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2314
2315         return sc.nr_reclaimed;
2316 }
2317
2318 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2319                                            gfp_t gfp_mask,
2320                                            bool noswap,
2321                                            struct memcg_scanrecord *rec)
2322 {
2323         struct zonelist *zonelist;
2324         unsigned long nr_reclaimed;
2325         unsigned long start, end;
2326         int nid;
2327         struct scan_control sc = {
2328                 .may_writepage = !laptop_mode,
2329                 .may_unmap = 1,
2330                 .may_swap = !noswap,
2331                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2332                 .order = 0,
2333                 .mem_cgroup = mem_cont,
2334                 .memcg_record = rec,
2335                 .nodemask = NULL, /* we don't care the placement */
2336                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2337                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2338         };
2339         struct shrink_control shrink = {
2340                 .gfp_mask = sc.gfp_mask,
2341         };
2342
2343         start = sched_clock();
2344         /*
2345          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2346          * take care of from where we get pages. So the node where we start the
2347          * scan does not need to be the current node.
2348          */
2349         nid = mem_cgroup_select_victim_node(mem_cont);
2350
2351         zonelist = NODE_DATA(nid)->node_zonelists;
2352
2353         trace_mm_vmscan_memcg_reclaim_begin(0,
2354                                             sc.may_writepage,
2355                                             sc.gfp_mask);
2356
2357         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2358         end = sched_clock();
2359         if (rec)
2360                 rec->elapsed += end - start;
2361
2362         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2363
2364         return nr_reclaimed;
2365 }
2366 #endif
2367
2368 /*
2369  * pgdat_balanced is used when checking if a node is balanced for high-order
2370  * allocations. Only zones that meet watermarks and are in a zone allowed
2371  * by the callers classzone_idx are added to balanced_pages. The total of
2372  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2373  * for the node to be considered balanced. Forcing all zones to be balanced
2374  * for high orders can cause excessive reclaim when there are imbalanced zones.
2375  * The choice of 25% is due to
2376  *   o a 16M DMA zone that is balanced will not balance a zone on any
2377  *     reasonable sized machine
2378  *   o On all other machines, the top zone must be at least a reasonable
2379  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2380  *     would need to be at least 256M for it to be balance a whole node.
2381  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2382  *     to balance a node on its own. These seemed like reasonable ratios.
2383  */
2384 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2385                                                 int classzone_idx)
2386 {
2387         unsigned long present_pages = 0;
2388         int i;
2389
2390         for (i = 0; i <= classzone_idx; i++)
2391                 present_pages += pgdat->node_zones[i].present_pages;
2392
2393         /* A special case here: if zone has no page, we think it's balanced */
2394         return balanced_pages >= (present_pages >> 2);
2395 }
2396
2397 /* is kswapd sleeping prematurely? */
2398 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2399                                         int classzone_idx)
2400 {
2401         int i;
2402         unsigned long balanced = 0;
2403         bool all_zones_ok = true;
2404
2405         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2406         if (remaining)
2407                 return true;
2408
2409         /* Check the watermark levels */
2410         for (i = 0; i <= classzone_idx; i++) {
2411                 struct zone *zone = pgdat->node_zones + i;
2412
2413                 if (!populated_zone(zone))
2414                         continue;
2415
2416                 /*
2417                  * balance_pgdat() skips over all_unreclaimable after
2418                  * DEF_PRIORITY. Effectively, it considers them balanced so
2419                  * they must be considered balanced here as well if kswapd
2420                  * is to sleep
2421                  */
2422                 if (zone->all_unreclaimable) {
2423                         balanced += zone->present_pages;
2424                         continue;
2425                 }
2426
2427                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2428                                                         i, 0))
2429                         all_zones_ok = false;
2430                 else
2431                         balanced += zone->present_pages;
2432         }
2433
2434         /*
2435          * For high-order requests, the balanced zones must contain at least
2436          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2437          * must be balanced
2438          */
2439         if (order)
2440                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2441         else
2442                 return !all_zones_ok;
2443 }
2444
2445 /*
2446  * For kswapd, balance_pgdat() will work across all this node's zones until
2447  * they are all at high_wmark_pages(zone).
2448  *
2449  * Returns the final order kswapd was reclaiming at
2450  *
2451  * There is special handling here for zones which are full of pinned pages.
2452  * This can happen if the pages are all mlocked, or if they are all used by
2453  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2454  * What we do is to detect the case where all pages in the zone have been
2455  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2456  * dead and from now on, only perform a short scan.  Basically we're polling
2457  * the zone for when the problem goes away.
2458  *
2459  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2460  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2461  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2462  * lower zones regardless of the number of free pages in the lower zones. This
2463  * interoperates with the page allocator fallback scheme to ensure that aging
2464  * of pages is balanced across the zones.
2465  */
2466 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2467                                                         int *classzone_idx)
2468 {
2469         int all_zones_ok;
2470         unsigned long balanced;
2471         int priority;
2472         int i;
2473         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2474         unsigned long total_scanned;
2475         struct reclaim_state *reclaim_state = current->reclaim_state;
2476         unsigned long nr_soft_reclaimed;
2477         unsigned long nr_soft_scanned;
2478         struct scan_control sc = {
2479                 .gfp_mask = GFP_KERNEL,
2480                 .may_unmap = 1,
2481                 .may_swap = 1,
2482                 /*
2483                  * kswapd doesn't want to be bailed out while reclaim. because
2484                  * we want to put equal scanning pressure on each zone.
2485                  */
2486                 .nr_to_reclaim = ULONG_MAX,
2487                 .order = order,
2488                 .mem_cgroup = NULL,
2489         };
2490         struct shrink_control shrink = {
2491                 .gfp_mask = sc.gfp_mask,
2492         };
2493 loop_again:
2494         total_scanned = 0;
2495         sc.nr_reclaimed = 0;
2496         sc.may_writepage = !laptop_mode;
2497         count_vm_event(PAGEOUTRUN);
2498
2499         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2500                 unsigned long lru_pages = 0;
2501                 int has_under_min_watermark_zone = 0;
2502
2503                 /* The swap token gets in the way of swapout... */
2504                 if (!priority)
2505                         disable_swap_token(NULL);
2506
2507                 all_zones_ok = 1;
2508                 balanced = 0;
2509
2510                 /*
2511                  * Scan in the highmem->dma direction for the highest
2512                  * zone which needs scanning
2513                  */
2514                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2515                         struct zone *zone = pgdat->node_zones + i;
2516
2517                         if (!populated_zone(zone))
2518                                 continue;
2519
2520                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2521                                 continue;
2522
2523                         /*
2524                          * Do some background aging of the anon list, to give
2525                          * pages a chance to be referenced before reclaiming.
2526                          */
2527                         if (inactive_anon_is_low(zone, &sc))
2528                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2529                                                         &sc, priority, 0);
2530
2531                         if (!zone_watermark_ok_safe(zone, order,
2532                                         high_wmark_pages(zone), 0, 0)) {
2533                                 end_zone = i;
2534                                 break;
2535                         }
2536                 }
2537                 if (i < 0)
2538                         goto out;
2539
2540                 for (i = 0; i <= end_zone; i++) {
2541                         struct zone *zone = pgdat->node_zones + i;
2542
2543                         lru_pages += zone_reclaimable_pages(zone);
2544                 }
2545
2546                 /*
2547                  * Now scan the zone in the dma->highmem direction, stopping
2548                  * at the last zone which needs scanning.
2549                  *
2550                  * We do this because the page allocator works in the opposite
2551                  * direction.  This prevents the page allocator from allocating
2552                  * pages behind kswapd's direction of progress, which would
2553                  * cause too much scanning of the lower zones.
2554                  */
2555                 for (i = 0; i <= end_zone; i++) {
2556                         struct zone *zone = pgdat->node_zones + i;
2557                         int nr_slab;
2558                         unsigned long balance_gap;
2559
2560                         if (!populated_zone(zone))
2561                                 continue;
2562
2563                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2564                                 continue;
2565
2566                         sc.nr_scanned = 0;
2567
2568                         nr_soft_scanned = 0;
2569                         /*
2570                          * Call soft limit reclaim before calling shrink_zone.
2571                          */
2572                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2573                                                         order, sc.gfp_mask,
2574                                                         &nr_soft_scanned);
2575                         sc.nr_reclaimed += nr_soft_reclaimed;
2576                         total_scanned += nr_soft_scanned;
2577
2578                         /*
2579                          * We put equal pressure on every zone, unless
2580                          * one zone has way too many pages free
2581                          * already. The "too many pages" is defined
2582                          * as the high wmark plus a "gap" where the
2583                          * gap is either the low watermark or 1%
2584                          * of the zone, whichever is smaller.
2585                          */
2586                         balance_gap = min(low_wmark_pages(zone),
2587                                 (zone->present_pages +
2588                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2589                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2590                         if (!zone_watermark_ok_safe(zone, order,
2591                                         high_wmark_pages(zone) + balance_gap,
2592                                         end_zone, 0)) {
2593                                 shrink_zone(priority, zone, &sc);
2594
2595                                 reclaim_state->reclaimed_slab = 0;
2596                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2597                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2598                                 total_scanned += sc.nr_scanned;
2599
2600                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2601                                         zone->all_unreclaimable = 1;
2602                         }
2603
2604                         /*
2605                          * If we've done a decent amount of scanning and
2606                          * the reclaim ratio is low, start doing writepage
2607                          * even in laptop mode
2608                          */
2609                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2610                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2611                                 sc.may_writepage = 1;
2612
2613                         if (zone->all_unreclaimable) {
2614                                 if (end_zone && end_zone == i)
2615                                         end_zone--;
2616                                 continue;
2617                         }
2618
2619                         if (!zone_watermark_ok_safe(zone, order,
2620                                         high_wmark_pages(zone), end_zone, 0)) {
2621                                 all_zones_ok = 0;
2622                                 /*
2623                                  * We are still under min water mark.  This
2624                                  * means that we have a GFP_ATOMIC allocation
2625                                  * failure risk. Hurry up!
2626                                  */
2627                                 if (!zone_watermark_ok_safe(zone, order,
2628                                             min_wmark_pages(zone), end_zone, 0))
2629                                         has_under_min_watermark_zone = 1;
2630                         } else {
2631                                 /*
2632                                  * If a zone reaches its high watermark,
2633                                  * consider it to be no longer congested. It's
2634                                  * possible there are dirty pages backed by
2635                                  * congested BDIs but as pressure is relieved,
2636                                  * spectulatively avoid congestion waits
2637                                  */
2638                                 zone_clear_flag(zone, ZONE_CONGESTED);
2639                                 if (i <= *classzone_idx)
2640                                         balanced += zone->present_pages;
2641                         }
2642
2643                 }
2644                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2645                         break;          /* kswapd: all done */
2646                 /*
2647                  * OK, kswapd is getting into trouble.  Take a nap, then take
2648                  * another pass across the zones.
2649                  */
2650                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2651                         if (has_under_min_watermark_zone)
2652                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2653                         else
2654                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2655                 }
2656
2657                 /*
2658                  * We do this so kswapd doesn't build up large priorities for
2659                  * example when it is freeing in parallel with allocators. It
2660                  * matches the direct reclaim path behaviour in terms of impact
2661                  * on zone->*_priority.
2662                  */
2663                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2664                         break;
2665         }
2666 out:
2667
2668         /*
2669          * order-0: All zones must meet high watermark for a balanced node
2670          * high-order: Balanced zones must make up at least 25% of the node
2671          *             for the node to be balanced
2672          */
2673         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2674                 cond_resched();
2675
2676                 try_to_freeze();
2677
2678                 /*
2679                  * Fragmentation may mean that the system cannot be
2680                  * rebalanced for high-order allocations in all zones.
2681                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2682                  * it means the zones have been fully scanned and are still
2683                  * not balanced. For high-order allocations, there is
2684                  * little point trying all over again as kswapd may
2685                  * infinite loop.
2686                  *
2687                  * Instead, recheck all watermarks at order-0 as they
2688                  * are the most important. If watermarks are ok, kswapd will go
2689                  * back to sleep. High-order users can still perform direct
2690                  * reclaim if they wish.
2691                  */
2692                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2693                         order = sc.order = 0;
2694
2695                 goto loop_again;
2696         }
2697
2698         /*
2699          * If kswapd was reclaiming at a higher order, it has the option of
2700          * sleeping without all zones being balanced. Before it does, it must
2701          * ensure that the watermarks for order-0 on *all* zones are met and
2702          * that the congestion flags are cleared. The congestion flag must
2703          * be cleared as kswapd is the only mechanism that clears the flag
2704          * and it is potentially going to sleep here.
2705          */
2706         if (order) {
2707                 for (i = 0; i <= end_zone; i++) {
2708                         struct zone *zone = pgdat->node_zones + i;
2709
2710                         if (!populated_zone(zone))
2711                                 continue;
2712
2713                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2714                                 continue;
2715
2716                         /* Confirm the zone is balanced for order-0 */
2717                         if (!zone_watermark_ok(zone, 0,
2718                                         high_wmark_pages(zone), 0, 0)) {
2719                                 order = sc.order = 0;
2720                                 goto loop_again;
2721                         }
2722
2723                         /* If balanced, clear the congested flag */
2724                         zone_clear_flag(zone, ZONE_CONGESTED);
2725                 }
2726         }
2727
2728         /*
2729          * Return the order we were reclaiming at so sleeping_prematurely()
2730          * makes a decision on the order we were last reclaiming at. However,
2731          * if another caller entered the allocator slow path while kswapd
2732          * was awake, order will remain at the higher level
2733          */
2734         *classzone_idx = end_zone;
2735         return order;
2736 }
2737
2738 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2739 {
2740         long remaining = 0;
2741         DEFINE_WAIT(wait);
2742
2743         if (freezing(current) || kthread_should_stop())
2744                 return;
2745
2746         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2747
2748         /* Try to sleep for a short interval */
2749         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2750                 remaining = schedule_timeout(HZ/10);
2751                 finish_wait(&pgdat->kswapd_wait, &wait);
2752                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2753         }
2754
2755         /*
2756          * After a short sleep, check if it was a premature sleep. If not, then
2757          * go fully to sleep until explicitly woken up.
2758          */
2759         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2760                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2761
2762                 /*
2763                  * vmstat counters are not perfectly accurate and the estimated
2764                  * value for counters such as NR_FREE_PAGES can deviate from the
2765                  * true value by nr_online_cpus * threshold. To avoid the zone
2766                  * watermarks being breached while under pressure, we reduce the
2767                  * per-cpu vmstat threshold while kswapd is awake and restore
2768                  * them before going back to sleep.
2769                  */
2770                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2771                 schedule();
2772                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2773         } else {
2774                 if (remaining)
2775                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2776                 else
2777                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2778         }
2779         finish_wait(&pgdat->kswapd_wait, &wait);
2780 }
2781
2782 /*
2783  * The background pageout daemon, started as a kernel thread
2784  * from the init process.
2785  *
2786  * This basically trickles out pages so that we have _some_
2787  * free memory available even if there is no other activity
2788  * that frees anything up. This is needed for things like routing
2789  * etc, where we otherwise might have all activity going on in
2790  * asynchronous contexts that cannot page things out.
2791  *
2792  * If there are applications that are active memory-allocators
2793  * (most normal use), this basically shouldn't matter.
2794  */
2795 static int kswapd(void *p)
2796 {
2797         unsigned long order, new_order;
2798         int classzone_idx, new_classzone_idx;
2799         pg_data_t *pgdat = (pg_data_t*)p;
2800         struct task_struct *tsk = current;
2801
2802         struct reclaim_state reclaim_state = {
2803                 .reclaimed_slab = 0,
2804         };
2805         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2806
2807         lockdep_set_current_reclaim_state(GFP_KERNEL);
2808
2809         if (!cpumask_empty(cpumask))
2810                 set_cpus_allowed_ptr(tsk, cpumask);
2811         current->reclaim_state = &reclaim_state;
2812
2813         /*
2814          * Tell the memory management that we're a "memory allocator",
2815          * and that if we need more memory we should get access to it
2816          * regardless (see "__alloc_pages()"). "kswapd" should
2817          * never get caught in the normal page freeing logic.
2818          *
2819          * (Kswapd normally doesn't need memory anyway, but sometimes
2820          * you need a small amount of memory in order to be able to
2821          * page out something else, and this flag essentially protects
2822          * us from recursively trying to free more memory as we're
2823          * trying to free the first piece of memory in the first place).
2824          */
2825         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2826         set_freezable();
2827
2828         order = new_order = 0;
2829         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2830         for ( ; ; ) {
2831                 int ret;
2832
2833                 /*
2834                  * If the last balance_pgdat was unsuccessful it's unlikely a
2835                  * new request of a similar or harder type will succeed soon
2836                  * so consider going to sleep on the basis we reclaimed at
2837                  */
2838                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2839                         new_order = pgdat->kswapd_max_order;
2840                         new_classzone_idx = pgdat->classzone_idx;
2841                         pgdat->kswapd_max_order =  0;
2842                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2843                 }
2844
2845                 if (order < new_order || classzone_idx > new_classzone_idx) {
2846                         /*
2847                          * Don't sleep if someone wants a larger 'order'
2848                          * allocation or has tigher zone constraints
2849                          */
2850                         order = new_order;
2851                         classzone_idx = new_classzone_idx;
2852                 } else {
2853                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2854                         order = pgdat->kswapd_max_order;
2855                         classzone_idx = pgdat->classzone_idx;
2856                         pgdat->kswapd_max_order = 0;
2857                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2858                 }
2859
2860                 ret = try_to_freeze();
2861                 if (kthread_should_stop())
2862                         break;
2863
2864                 /*
2865                  * We can speed up thawing tasks if we don't call balance_pgdat
2866                  * after returning from the refrigerator
2867                  */
2868                 if (!ret) {
2869                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2870                         order = balance_pgdat(pgdat, order, &classzone_idx);
2871                 }
2872         }
2873         return 0;
2874 }
2875
2876 /*
2877  * A zone is low on free memory, so wake its kswapd task to service it.
2878  */
2879 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2880 {
2881         pg_data_t *pgdat;
2882
2883         if (!populated_zone(zone))
2884                 return;
2885
2886         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2887                 return;
2888         pgdat = zone->zone_pgdat;
2889         if (pgdat->kswapd_max_order < order) {
2890                 pgdat->kswapd_max_order = order;
2891                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2892         }
2893         if (!waitqueue_active(&pgdat->kswapd_wait))
2894                 return;
2895         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2896                 return;
2897
2898         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2899         wake_up_interruptible(&pgdat->kswapd_wait);
2900 }
2901
2902 /*
2903  * The reclaimable count would be mostly accurate.
2904  * The less reclaimable pages may be
2905  * - mlocked pages, which will be moved to unevictable list when encountered
2906  * - mapped pages, which may require several travels to be reclaimed
2907  * - dirty pages, which is not "instantly" reclaimable
2908  */
2909 unsigned long global_reclaimable_pages(void)
2910 {
2911         int nr;
2912
2913         nr = global_page_state(NR_ACTIVE_FILE) +
2914              global_page_state(NR_INACTIVE_FILE);
2915
2916         if (nr_swap_pages > 0)
2917                 nr += global_page_state(NR_ACTIVE_ANON) +
2918                       global_page_state(NR_INACTIVE_ANON);
2919
2920         return nr;
2921 }
2922
2923 unsigned long zone_reclaimable_pages(struct zone *zone)
2924 {
2925         int nr;
2926
2927         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2928              zone_page_state(zone, NR_INACTIVE_FILE);
2929
2930         if (nr_swap_pages > 0)
2931                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2932                       zone_page_state(zone, NR_INACTIVE_ANON);
2933
2934         return nr;
2935 }
2936
2937 #ifdef CONFIG_HIBERNATION
2938 /*
2939  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2940  * freed pages.
2941  *
2942  * Rather than trying to age LRUs the aim is to preserve the overall
2943  * LRU order by reclaiming preferentially
2944  * inactive > active > active referenced > active mapped
2945  */
2946 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2947 {
2948         struct reclaim_state reclaim_state;
2949         struct scan_control sc = {
2950                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2951                 .may_swap = 1,
2952                 .may_unmap = 1,
2953                 .may_writepage = 1,
2954                 .nr_to_reclaim = nr_to_reclaim,
2955                 .hibernation_mode = 1,
2956                 .order = 0,
2957         };
2958         struct shrink_control shrink = {
2959                 .gfp_mask = sc.gfp_mask,
2960         };
2961         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2962         struct task_struct *p = current;
2963         unsigned long nr_reclaimed;
2964
2965         p->flags |= PF_MEMALLOC;
2966         lockdep_set_current_reclaim_state(sc.gfp_mask);
2967         reclaim_state.reclaimed_slab = 0;
2968         p->reclaim_state = &reclaim_state;
2969
2970         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2971
2972         p->reclaim_state = NULL;
2973         lockdep_clear_current_reclaim_state();
2974         p->flags &= ~PF_MEMALLOC;
2975
2976         return nr_reclaimed;
2977 }
2978 #endif /* CONFIG_HIBERNATION */
2979
2980 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2981    not required for correctness.  So if the last cpu in a node goes
2982    away, we get changed to run anywhere: as the first one comes back,
2983    restore their cpu bindings. */
2984 static int __devinit cpu_callback(struct notifier_block *nfb,
2985                                   unsigned long action, void *hcpu)
2986 {
2987         int nid;
2988
2989         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2990                 for_each_node_state(nid, N_HIGH_MEMORY) {
2991                         pg_data_t *pgdat = NODE_DATA(nid);
2992                         const struct cpumask *mask;
2993
2994                         mask = cpumask_of_node(pgdat->node_id);
2995
2996                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2997                                 /* One of our CPUs online: restore mask */
2998                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2999                 }
3000         }
3001         return NOTIFY_OK;
3002 }
3003
3004 /*
3005  * This kswapd start function will be called by init and node-hot-add.
3006  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3007  */
3008 int kswapd_run(int nid)
3009 {
3010         pg_data_t *pgdat = NODE_DATA(nid);
3011         int ret = 0;
3012
3013         if (pgdat->kswapd)
3014                 return 0;
3015
3016         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3017         if (IS_ERR(pgdat->kswapd)) {
3018                 /* failure at boot is fatal */
3019                 BUG_ON(system_state == SYSTEM_BOOTING);
3020                 printk("Failed to start kswapd on node %d\n",nid);
3021                 ret = -1;
3022         }
3023         return ret;
3024 }
3025
3026 /*
3027  * Called by memory hotplug when all memory in a node is offlined.
3028  */
3029 void kswapd_stop(int nid)
3030 {
3031         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3032
3033         if (kswapd)
3034                 kthread_stop(kswapd);
3035 }
3036
3037 static int __init kswapd_init(void)
3038 {
3039         int nid;
3040
3041         swap_setup();
3042         for_each_node_state(nid, N_HIGH_MEMORY)
3043                 kswapd_run(nid);
3044         hotcpu_notifier(cpu_callback, 0);
3045         return 0;
3046 }
3047
3048 module_init(kswapd_init)
3049
3050 #ifdef CONFIG_NUMA
3051 /*
3052  * Zone reclaim mode
3053  *
3054  * If non-zero call zone_reclaim when the number of free pages falls below
3055  * the watermarks.
3056  */
3057 int zone_reclaim_mode __read_mostly;
3058
3059 #define RECLAIM_OFF 0
3060 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3061 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3062 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3063
3064 /*
3065  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3066  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3067  * a zone.
3068  */
3069 #define ZONE_RECLAIM_PRIORITY 4
3070
3071 /*
3072  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3073  * occur.
3074  */
3075 int sysctl_min_unmapped_ratio = 1;
3076
3077 /*
3078  * If the number of slab pages in a zone grows beyond this percentage then
3079  * slab reclaim needs to occur.
3080  */
3081 int sysctl_min_slab_ratio = 5;
3082
3083 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3084 {
3085         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3086         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3087                 zone_page_state(zone, NR_ACTIVE_FILE);
3088
3089         /*
3090          * It's possible for there to be more file mapped pages than
3091          * accounted for by the pages on the file LRU lists because
3092          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3093          */
3094         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3095 }
3096
3097 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3098 static long zone_pagecache_reclaimable(struct zone *zone)
3099 {
3100         long nr_pagecache_reclaimable;
3101         long delta = 0;
3102
3103         /*
3104          * If RECLAIM_SWAP is set, then all file pages are considered
3105          * potentially reclaimable. Otherwise, we have to worry about
3106          * pages like swapcache and zone_unmapped_file_pages() provides
3107          * a better estimate
3108          */
3109         if (zone_reclaim_mode & RECLAIM_SWAP)
3110                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3111         else
3112                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3113
3114         /* If we can't clean pages, remove dirty pages from consideration */
3115         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3116                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3117
3118         /* Watch for any possible underflows due to delta */
3119         if (unlikely(delta > nr_pagecache_reclaimable))
3120                 delta = nr_pagecache_reclaimable;
3121
3122         return nr_pagecache_reclaimable - delta;
3123 }
3124
3125 /*
3126  * Try to free up some pages from this zone through reclaim.
3127  */
3128 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3129 {
3130         /* Minimum pages needed in order to stay on node */
3131         const unsigned long nr_pages = 1 << order;
3132         struct task_struct *p = current;
3133         struct reclaim_state reclaim_state;
3134         int priority;
3135         struct scan_control sc = {
3136                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3137                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3138                 .may_swap = 1,
3139                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3140                                        SWAP_CLUSTER_MAX),
3141                 .gfp_mask = gfp_mask,
3142                 .order = order,
3143         };
3144         struct shrink_control shrink = {
3145                 .gfp_mask = sc.gfp_mask,
3146         };
3147         unsigned long nr_slab_pages0, nr_slab_pages1;
3148
3149         cond_resched();
3150         /*
3151          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3152          * and we also need to be able to write out pages for RECLAIM_WRITE
3153          * and RECLAIM_SWAP.
3154          */
3155         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3156         lockdep_set_current_reclaim_state(gfp_mask);
3157         reclaim_state.reclaimed_slab = 0;
3158         p->reclaim_state = &reclaim_state;
3159
3160         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3161                 /*
3162                  * Free memory by calling shrink zone with increasing
3163                  * priorities until we have enough memory freed.
3164                  */
3165                 priority = ZONE_RECLAIM_PRIORITY;
3166                 do {
3167                         shrink_zone(priority, zone, &sc);
3168                         priority--;
3169                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3170         }
3171
3172         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3173         if (nr_slab_pages0 > zone->min_slab_pages) {
3174                 /*
3175                  * shrink_slab() does not currently allow us to determine how
3176                  * many pages were freed in this zone. So we take the current
3177                  * number of slab pages and shake the slab until it is reduced
3178                  * by the same nr_pages that we used for reclaiming unmapped
3179                  * pages.
3180                  *
3181                  * Note that shrink_slab will free memory on all zones and may
3182                  * take a long time.
3183                  */
3184                 for (;;) {
3185                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3186
3187                         /* No reclaimable slab or very low memory pressure */
3188                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3189                                 break;
3190
3191                         /* Freed enough memory */
3192                         nr_slab_pages1 = zone_page_state(zone,
3193                                                         NR_SLAB_RECLAIMABLE);
3194                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3195                                 break;
3196                 }
3197
3198                 /*
3199                  * Update nr_reclaimed by the number of slab pages we
3200                  * reclaimed from this zone.
3201                  */
3202                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3203                 if (nr_slab_pages1 < nr_slab_pages0)
3204                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3205         }
3206
3207         p->reclaim_state = NULL;
3208         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3209         lockdep_clear_current_reclaim_state();
3210         return sc.nr_reclaimed >= nr_pages;
3211 }
3212
3213 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3214 {
3215         int node_id;
3216         int ret;
3217
3218         /*
3219          * Zone reclaim reclaims unmapped file backed pages and
3220          * slab pages if we are over the defined limits.
3221          *
3222          * A small portion of unmapped file backed pages is needed for
3223          * file I/O otherwise pages read by file I/O will be immediately
3224          * thrown out if the zone is overallocated. So we do not reclaim
3225          * if less than a specified percentage of the zone is used by
3226          * unmapped file backed pages.
3227          */
3228         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3229             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3230                 return ZONE_RECLAIM_FULL;
3231
3232         if (zone->all_unreclaimable)
3233                 return ZONE_RECLAIM_FULL;
3234
3235         /*
3236          * Do not scan if the allocation should not be delayed.
3237          */
3238         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3239                 return ZONE_RECLAIM_NOSCAN;
3240
3241         /*
3242          * Only run zone reclaim on the local zone or on zones that do not
3243          * have associated processors. This will favor the local processor
3244          * over remote processors and spread off node memory allocations
3245          * as wide as possible.
3246          */
3247         node_id = zone_to_nid(zone);
3248         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3249                 return ZONE_RECLAIM_NOSCAN;
3250
3251         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3252                 return ZONE_RECLAIM_NOSCAN;
3253
3254         ret = __zone_reclaim(zone, gfp_mask, order);
3255         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3256
3257         if (!ret)
3258                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3259
3260         return ret;
3261 }
3262 #endif
3263
3264 /*
3265  * page_evictable - test whether a page is evictable
3266  * @page: the page to test
3267  * @vma: the VMA in which the page is or will be mapped, may be NULL
3268  *
3269  * Test whether page is evictable--i.e., should be placed on active/inactive
3270  * lists vs unevictable list.  The vma argument is !NULL when called from the
3271  * fault path to determine how to instantate a new page.
3272  *
3273  * Reasons page might not be evictable:
3274  * (1) page's mapping marked unevictable
3275  * (2) page is part of an mlocked VMA
3276  *
3277  */
3278 int page_evictable(struct page *page, struct vm_area_struct *vma)
3279 {
3280
3281         if (mapping_unevictable(page_mapping(page)))
3282                 return 0;
3283
3284         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3285                 return 0;
3286
3287         return 1;
3288 }
3289
3290 /**
3291  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3292  * @page: page to check evictability and move to appropriate lru list
3293  * @zone: zone page is in
3294  *
3295  * Checks a page for evictability and moves the page to the appropriate
3296  * zone lru list.
3297  *
3298  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3299  * have PageUnevictable set.
3300  */
3301 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3302 {
3303         VM_BUG_ON(PageActive(page));
3304
3305 retry:
3306         ClearPageUnevictable(page);
3307         if (page_evictable(page, NULL)) {
3308                 enum lru_list l = page_lru_base_type(page);
3309
3310                 __dec_zone_state(zone, NR_UNEVICTABLE);
3311                 list_move(&page->lru, &zone->lru[l].list);
3312                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3313                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3314                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3315         } else {
3316                 /*
3317                  * rotate unevictable list
3318                  */
3319                 SetPageUnevictable(page);
3320                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3321                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3322                 if (page_evictable(page, NULL))
3323                         goto retry;
3324         }
3325 }
3326
3327 /**
3328  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3329  * @mapping: struct address_space to scan for evictable pages
3330  *
3331  * Scan all pages in mapping.  Check unevictable pages for
3332  * evictability and move them to the appropriate zone lru list.
3333  */
3334 void scan_mapping_unevictable_pages(struct address_space *mapping)
3335 {
3336         pgoff_t next = 0;
3337         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3338                          PAGE_CACHE_SHIFT;
3339         struct zone *zone;
3340         struct pagevec pvec;
3341
3342         if (mapping->nrpages == 0)
3343                 return;
3344
3345         pagevec_init(&pvec, 0);
3346         while (next < end &&
3347                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3348                 int i;
3349                 int pg_scanned = 0;
3350
3351                 zone = NULL;
3352
3353                 for (i = 0; i < pagevec_count(&pvec); i++) {
3354                         struct page *page = pvec.pages[i];
3355                         pgoff_t page_index = page->index;
3356                         struct zone *pagezone = page_zone(page);
3357
3358                         pg_scanned++;
3359                         if (page_index > next)
3360                                 next = page_index;
3361                         next++;
3362
3363                         if (pagezone != zone) {
3364                                 if (zone)
3365                                         spin_unlock_irq(&zone->lru_lock);
3366                                 zone = pagezone;
3367                                 spin_lock_irq(&zone->lru_lock);
3368                         }
3369
3370                         if (PageLRU(page) && PageUnevictable(page))
3371                                 check_move_unevictable_page(page, zone);
3372                 }
3373                 if (zone)
3374                         spin_unlock_irq(&zone->lru_lock);
3375                 pagevec_release(&pvec);
3376
3377                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3378         }
3379
3380 }
3381
3382 /**
3383  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3384  * @zone - zone of which to scan the unevictable list
3385  *
3386  * Scan @zone's unevictable LRU lists to check for pages that have become
3387  * evictable.  Move those that have to @zone's inactive list where they
3388  * become candidates for reclaim, unless shrink_inactive_zone() decides
3389  * to reactivate them.  Pages that are still unevictable are rotated
3390  * back onto @zone's unevictable list.
3391  */
3392 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3393 static void scan_zone_unevictable_pages(struct zone *zone)
3394 {
3395         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3396         unsigned long scan;
3397         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3398
3399         while (nr_to_scan > 0) {
3400                 unsigned long batch_size = min(nr_to_scan,
3401                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3402
3403                 spin_lock_irq(&zone->lru_lock);
3404                 for (scan = 0;  scan < batch_size; scan++) {
3405                         struct page *page = lru_to_page(l_unevictable);
3406
3407                         if (!trylock_page(page))
3408                                 continue;
3409
3410                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3411
3412                         if (likely(PageLRU(page) && PageUnevictable(page)))
3413                                 check_move_unevictable_page(page, zone);
3414
3415                         unlock_page(page);
3416                 }
3417                 spin_unlock_irq(&zone->lru_lock);
3418
3419                 nr_to_scan -= batch_size;
3420         }
3421 }
3422
3423
3424 /**
3425  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3426  *
3427  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3428  * pages that have become evictable.  Move those back to the zones'
3429  * inactive list where they become candidates for reclaim.
3430  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3431  * and we add swap to the system.  As such, it runs in the context of a task
3432  * that has possibly/probably made some previously unevictable pages
3433  * evictable.
3434  */
3435 static void scan_all_zones_unevictable_pages(void)
3436 {
3437         struct zone *zone;
3438
3439         for_each_zone(zone) {
3440                 scan_zone_unevictable_pages(zone);
3441         }
3442 }
3443
3444 /*
3445  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3446  * all nodes' unevictable lists for evictable pages
3447  */
3448 unsigned long scan_unevictable_pages;
3449
3450 int scan_unevictable_handler(struct ctl_table *table, int write,
3451                            void __user *buffer,
3452                            size_t *length, loff_t *ppos)
3453 {
3454         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3455
3456         if (write && *(unsigned long *)table->data)
3457                 scan_all_zones_unevictable_pages();
3458
3459         scan_unevictable_pages = 0;
3460         return 0;
3461 }
3462
3463 #ifdef CONFIG_NUMA
3464 /*
3465  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3466  * a specified node's per zone unevictable lists for evictable pages.
3467  */
3468
3469 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3470                                           struct sysdev_attribute *attr,
3471                                           char *buf)
3472 {
3473         return sprintf(buf, "0\n");     /* always zero; should fit... */
3474 }
3475
3476 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3477                                            struct sysdev_attribute *attr,
3478                                         const char *buf, size_t count)
3479 {
3480         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3481         struct zone *zone;
3482         unsigned long res;
3483         unsigned long req = strict_strtoul(buf, 10, &res);
3484
3485         if (!req)
3486                 return 1;       /* zero is no-op */
3487
3488         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3489                 if (!populated_zone(zone))
3490                         continue;
3491                 scan_zone_unevictable_pages(zone);
3492         }
3493         return 1;
3494 }
3495
3496
3497 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3498                         read_scan_unevictable_node,
3499                         write_scan_unevictable_node);
3500
3501 int scan_unevictable_register_node(struct node *node)
3502 {
3503         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3504 }
3505
3506 void scan_unevictable_unregister_node(struct node *node)
3507 {
3508         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3509 }
3510 #endif