]> git.karo-electronics.de Git - mv-sheeva.git/blob - mm/vmscan.c
e097c1026b58f6128ed24bb086dd30a86b17d958
[mv-sheeva.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /*
107          * The memory cgroup that hit its limit and as a result is the
108          * primary target of this reclaim invocation.
109          */
110         struct mem_cgroup *target_mem_cgroup;
111
112         /*
113          * Nodemask of nodes allowed by the caller. If NULL, all nodes
114          * are scanned.
115          */
116         nodemask_t      *nodemask;
117 };
118
119 struct mem_cgroup_zone {
120         struct mem_cgroup *mem_cgroup;
121         struct zone *zone;
122 };
123
124 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
125
126 #ifdef ARCH_HAS_PREFETCH
127 #define prefetch_prev_lru_page(_page, _base, _field)                    \
128         do {                                                            \
129                 if ((_page)->lru.prev != _base) {                       \
130                         struct page *prev;                              \
131                                                                         \
132                         prev = lru_to_page(&(_page->lru));              \
133                         prefetch(&prev->_field);                        \
134                 }                                                       \
135         } while (0)
136 #else
137 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
138 #endif
139
140 #ifdef ARCH_HAS_PREFETCHW
141 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
142         do {                                                            \
143                 if ((_page)->lru.prev != _base) {                       \
144                         struct page *prev;                              \
145                                                                         \
146                         prev = lru_to_page(&(_page->lru));              \
147                         prefetchw(&prev->_field);                       \
148                 }                                                       \
149         } while (0)
150 #else
151 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
152 #endif
153
154 /*
155  * From 0 .. 100.  Higher means more swappy.
156  */
157 int vm_swappiness = 60;
158 long vm_total_pages;    /* The total number of pages which the VM controls */
159
160 static LIST_HEAD(shrinker_list);
161 static DECLARE_RWSEM(shrinker_rwsem);
162
163 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
164 static bool global_reclaim(struct scan_control *sc)
165 {
166         return !sc->target_mem_cgroup;
167 }
168
169 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
170 {
171         return !mz->mem_cgroup;
172 }
173 #else
174 static bool global_reclaim(struct scan_control *sc)
175 {
176         return true;
177 }
178
179 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
180 {
181         return true;
182 }
183 #endif
184
185 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
186 {
187         if (!scanning_global_lru(mz))
188                 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
189
190         return &mz->zone->reclaim_stat;
191 }
192
193 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
194                                        enum lru_list lru)
195 {
196         if (!scanning_global_lru(mz))
197                 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
198                                                     zone_to_nid(mz->zone),
199                                                     zone_idx(mz->zone),
200                                                     BIT(lru));
201
202         return zone_page_state(mz->zone, NR_LRU_BASE + lru);
203 }
204
205
206 /*
207  * Add a shrinker callback to be called from the vm
208  */
209 void register_shrinker(struct shrinker *shrinker)
210 {
211         atomic_long_set(&shrinker->nr_in_batch, 0);
212         down_write(&shrinker_rwsem);
213         list_add_tail(&shrinker->list, &shrinker_list);
214         up_write(&shrinker_rwsem);
215 }
216 EXPORT_SYMBOL(register_shrinker);
217
218 /*
219  * Remove one
220  */
221 void unregister_shrinker(struct shrinker *shrinker)
222 {
223         down_write(&shrinker_rwsem);
224         list_del(&shrinker->list);
225         up_write(&shrinker_rwsem);
226 }
227 EXPORT_SYMBOL(unregister_shrinker);
228
229 static inline int do_shrinker_shrink(struct shrinker *shrinker,
230                                      struct shrink_control *sc,
231                                      unsigned long nr_to_scan)
232 {
233         sc->nr_to_scan = nr_to_scan;
234         return (*shrinker->shrink)(shrinker, sc);
235 }
236
237 #define SHRINK_BATCH 128
238 /*
239  * Call the shrink functions to age shrinkable caches
240  *
241  * Here we assume it costs one seek to replace a lru page and that it also
242  * takes a seek to recreate a cache object.  With this in mind we age equal
243  * percentages of the lru and ageable caches.  This should balance the seeks
244  * generated by these structures.
245  *
246  * If the vm encountered mapped pages on the LRU it increase the pressure on
247  * slab to avoid swapping.
248  *
249  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
250  *
251  * `lru_pages' represents the number of on-LRU pages in all the zones which
252  * are eligible for the caller's allocation attempt.  It is used for balancing
253  * slab reclaim versus page reclaim.
254  *
255  * Returns the number of slab objects which we shrunk.
256  */
257 unsigned long shrink_slab(struct shrink_control *shrink,
258                           unsigned long nr_pages_scanned,
259                           unsigned long lru_pages)
260 {
261         struct shrinker *shrinker;
262         unsigned long ret = 0;
263
264         if (nr_pages_scanned == 0)
265                 nr_pages_scanned = SWAP_CLUSTER_MAX;
266
267         if (!down_read_trylock(&shrinker_rwsem)) {
268                 /* Assume we'll be able to shrink next time */
269                 ret = 1;
270                 goto out;
271         }
272
273         list_for_each_entry(shrinker, &shrinker_list, list) {
274                 unsigned long long delta;
275                 long total_scan;
276                 long max_pass;
277                 int shrink_ret = 0;
278                 long nr;
279                 long new_nr;
280                 long batch_size = shrinker->batch ? shrinker->batch
281                                                   : SHRINK_BATCH;
282
283                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
284                 if (max_pass <= 0)
285                         continue;
286
287                 /*
288                  * copy the current shrinker scan count into a local variable
289                  * and zero it so that other concurrent shrinker invocations
290                  * don't also do this scanning work.
291                  */
292                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
293
294                 total_scan = nr;
295                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
296                 delta *= max_pass;
297                 do_div(delta, lru_pages + 1);
298                 total_scan += delta;
299                 if (total_scan < 0) {
300                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
301                                "delete nr=%ld\n",
302                                shrinker->shrink, total_scan);
303                         total_scan = max_pass;
304                 }
305
306                 /*
307                  * We need to avoid excessive windup on filesystem shrinkers
308                  * due to large numbers of GFP_NOFS allocations causing the
309                  * shrinkers to return -1 all the time. This results in a large
310                  * nr being built up so when a shrink that can do some work
311                  * comes along it empties the entire cache due to nr >>>
312                  * max_pass.  This is bad for sustaining a working set in
313                  * memory.
314                  *
315                  * Hence only allow the shrinker to scan the entire cache when
316                  * a large delta change is calculated directly.
317                  */
318                 if (delta < max_pass / 4)
319                         total_scan = min(total_scan, max_pass / 2);
320
321                 /*
322                  * Avoid risking looping forever due to too large nr value:
323                  * never try to free more than twice the estimate number of
324                  * freeable entries.
325                  */
326                 if (total_scan > max_pass * 2)
327                         total_scan = max_pass * 2;
328
329                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
330                                         nr_pages_scanned, lru_pages,
331                                         max_pass, delta, total_scan);
332
333                 while (total_scan >= batch_size) {
334                         int nr_before;
335
336                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
337                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
338                                                         batch_size);
339                         if (shrink_ret == -1)
340                                 break;
341                         if (shrink_ret < nr_before)
342                                 ret += nr_before - shrink_ret;
343                         count_vm_events(SLABS_SCANNED, batch_size);
344                         total_scan -= batch_size;
345
346                         cond_resched();
347                 }
348
349                 /*
350                  * move the unused scan count back into the shrinker in a
351                  * manner that handles concurrent updates. If we exhausted the
352                  * scan, there is no need to do an update.
353                  */
354                 if (total_scan > 0)
355                         new_nr = atomic_long_add_return(total_scan,
356                                         &shrinker->nr_in_batch);
357                 else
358                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
359
360                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
361         }
362         up_read(&shrinker_rwsem);
363 out:
364         cond_resched();
365         return ret;
366 }
367
368 static void set_reclaim_mode(int priority, struct scan_control *sc,
369                                    bool sync)
370 {
371         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
372
373         /*
374          * Initially assume we are entering either lumpy reclaim or
375          * reclaim/compaction.Depending on the order, we will either set the
376          * sync mode or just reclaim order-0 pages later.
377          */
378         if (COMPACTION_BUILD)
379                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
380         else
381                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
382
383         /*
384          * Avoid using lumpy reclaim or reclaim/compaction if possible by
385          * restricting when its set to either costly allocations or when
386          * under memory pressure
387          */
388         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
389                 sc->reclaim_mode |= syncmode;
390         else if (sc->order && priority < DEF_PRIORITY - 2)
391                 sc->reclaim_mode |= syncmode;
392         else
393                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
394 }
395
396 static void reset_reclaim_mode(struct scan_control *sc)
397 {
398         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
399 }
400
401 static inline int is_page_cache_freeable(struct page *page)
402 {
403         /*
404          * A freeable page cache page is referenced only by the caller
405          * that isolated the page, the page cache radix tree and
406          * optional buffer heads at page->private.
407          */
408         return page_count(page) - page_has_private(page) == 2;
409 }
410
411 static int may_write_to_queue(struct backing_dev_info *bdi,
412                               struct scan_control *sc)
413 {
414         if (current->flags & PF_SWAPWRITE)
415                 return 1;
416         if (!bdi_write_congested(bdi))
417                 return 1;
418         if (bdi == current->backing_dev_info)
419                 return 1;
420
421         /* lumpy reclaim for hugepage often need a lot of write */
422         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
423                 return 1;
424         return 0;
425 }
426
427 /*
428  * We detected a synchronous write error writing a page out.  Probably
429  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
430  * fsync(), msync() or close().
431  *
432  * The tricky part is that after writepage we cannot touch the mapping: nothing
433  * prevents it from being freed up.  But we have a ref on the page and once
434  * that page is locked, the mapping is pinned.
435  *
436  * We're allowed to run sleeping lock_page() here because we know the caller has
437  * __GFP_FS.
438  */
439 static void handle_write_error(struct address_space *mapping,
440                                 struct page *page, int error)
441 {
442         lock_page(page);
443         if (page_mapping(page) == mapping)
444                 mapping_set_error(mapping, error);
445         unlock_page(page);
446 }
447
448 /* possible outcome of pageout() */
449 typedef enum {
450         /* failed to write page out, page is locked */
451         PAGE_KEEP,
452         /* move page to the active list, page is locked */
453         PAGE_ACTIVATE,
454         /* page has been sent to the disk successfully, page is unlocked */
455         PAGE_SUCCESS,
456         /* page is clean and locked */
457         PAGE_CLEAN,
458 } pageout_t;
459
460 /*
461  * pageout is called by shrink_page_list() for each dirty page.
462  * Calls ->writepage().
463  */
464 static pageout_t pageout(struct page *page, struct address_space *mapping,
465                          struct scan_control *sc)
466 {
467         /*
468          * If the page is dirty, only perform writeback if that write
469          * will be non-blocking.  To prevent this allocation from being
470          * stalled by pagecache activity.  But note that there may be
471          * stalls if we need to run get_block().  We could test
472          * PagePrivate for that.
473          *
474          * If this process is currently in __generic_file_aio_write() against
475          * this page's queue, we can perform writeback even if that
476          * will block.
477          *
478          * If the page is swapcache, write it back even if that would
479          * block, for some throttling. This happens by accident, because
480          * swap_backing_dev_info is bust: it doesn't reflect the
481          * congestion state of the swapdevs.  Easy to fix, if needed.
482          */
483         if (!is_page_cache_freeable(page))
484                 return PAGE_KEEP;
485         if (!mapping) {
486                 /*
487                  * Some data journaling orphaned pages can have
488                  * page->mapping == NULL while being dirty with clean buffers.
489                  */
490                 if (page_has_private(page)) {
491                         if (try_to_free_buffers(page)) {
492                                 ClearPageDirty(page);
493                                 printk("%s: orphaned page\n", __func__);
494                                 return PAGE_CLEAN;
495                         }
496                 }
497                 return PAGE_KEEP;
498         }
499         if (mapping->a_ops->writepage == NULL)
500                 return PAGE_ACTIVATE;
501         if (!may_write_to_queue(mapping->backing_dev_info, sc))
502                 return PAGE_KEEP;
503
504         if (clear_page_dirty_for_io(page)) {
505                 int res;
506                 struct writeback_control wbc = {
507                         .sync_mode = WB_SYNC_NONE,
508                         .nr_to_write = SWAP_CLUSTER_MAX,
509                         .range_start = 0,
510                         .range_end = LLONG_MAX,
511                         .for_reclaim = 1,
512                 };
513
514                 SetPageReclaim(page);
515                 res = mapping->a_ops->writepage(page, &wbc);
516                 if (res < 0)
517                         handle_write_error(mapping, page, res);
518                 if (res == AOP_WRITEPAGE_ACTIVATE) {
519                         ClearPageReclaim(page);
520                         return PAGE_ACTIVATE;
521                 }
522
523                 if (!PageWriteback(page)) {
524                         /* synchronous write or broken a_ops? */
525                         ClearPageReclaim(page);
526                 }
527                 trace_mm_vmscan_writepage(page,
528                         trace_reclaim_flags(page, sc->reclaim_mode));
529                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
530                 return PAGE_SUCCESS;
531         }
532
533         return PAGE_CLEAN;
534 }
535
536 /*
537  * Same as remove_mapping, but if the page is removed from the mapping, it
538  * gets returned with a refcount of 0.
539  */
540 static int __remove_mapping(struct address_space *mapping, struct page *page)
541 {
542         BUG_ON(!PageLocked(page));
543         BUG_ON(mapping != page_mapping(page));
544
545         spin_lock_irq(&mapping->tree_lock);
546         /*
547          * The non racy check for a busy page.
548          *
549          * Must be careful with the order of the tests. When someone has
550          * a ref to the page, it may be possible that they dirty it then
551          * drop the reference. So if PageDirty is tested before page_count
552          * here, then the following race may occur:
553          *
554          * get_user_pages(&page);
555          * [user mapping goes away]
556          * write_to(page);
557          *                              !PageDirty(page)    [good]
558          * SetPageDirty(page);
559          * put_page(page);
560          *                              !page_count(page)   [good, discard it]
561          *
562          * [oops, our write_to data is lost]
563          *
564          * Reversing the order of the tests ensures such a situation cannot
565          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
566          * load is not satisfied before that of page->_count.
567          *
568          * Note that if SetPageDirty is always performed via set_page_dirty,
569          * and thus under tree_lock, then this ordering is not required.
570          */
571         if (!page_freeze_refs(page, 2))
572                 goto cannot_free;
573         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
574         if (unlikely(PageDirty(page))) {
575                 page_unfreeze_refs(page, 2);
576                 goto cannot_free;
577         }
578
579         if (PageSwapCache(page)) {
580                 swp_entry_t swap = { .val = page_private(page) };
581                 __delete_from_swap_cache(page);
582                 spin_unlock_irq(&mapping->tree_lock);
583                 swapcache_free(swap, page);
584         } else {
585                 void (*freepage)(struct page *);
586
587                 freepage = mapping->a_ops->freepage;
588
589                 __delete_from_page_cache(page);
590                 spin_unlock_irq(&mapping->tree_lock);
591                 mem_cgroup_uncharge_cache_page(page);
592
593                 if (freepage != NULL)
594                         freepage(page);
595         }
596
597         return 1;
598
599 cannot_free:
600         spin_unlock_irq(&mapping->tree_lock);
601         return 0;
602 }
603
604 /*
605  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
606  * someone else has a ref on the page, abort and return 0.  If it was
607  * successfully detached, return 1.  Assumes the caller has a single ref on
608  * this page.
609  */
610 int remove_mapping(struct address_space *mapping, struct page *page)
611 {
612         if (__remove_mapping(mapping, page)) {
613                 /*
614                  * Unfreezing the refcount with 1 rather than 2 effectively
615                  * drops the pagecache ref for us without requiring another
616                  * atomic operation.
617                  */
618                 page_unfreeze_refs(page, 1);
619                 return 1;
620         }
621         return 0;
622 }
623
624 /**
625  * putback_lru_page - put previously isolated page onto appropriate LRU list
626  * @page: page to be put back to appropriate lru list
627  *
628  * Add previously isolated @page to appropriate LRU list.
629  * Page may still be unevictable for other reasons.
630  *
631  * lru_lock must not be held, interrupts must be enabled.
632  */
633 void putback_lru_page(struct page *page)
634 {
635         int lru;
636         int active = !!TestClearPageActive(page);
637         int was_unevictable = PageUnevictable(page);
638
639         VM_BUG_ON(PageLRU(page));
640
641 redo:
642         ClearPageUnevictable(page);
643
644         if (page_evictable(page, NULL)) {
645                 /*
646                  * For evictable pages, we can use the cache.
647                  * In event of a race, worst case is we end up with an
648                  * unevictable page on [in]active list.
649                  * We know how to handle that.
650                  */
651                 lru = active + page_lru_base_type(page);
652                 lru_cache_add_lru(page, lru);
653         } else {
654                 /*
655                  * Put unevictable pages directly on zone's unevictable
656                  * list.
657                  */
658                 lru = LRU_UNEVICTABLE;
659                 add_page_to_unevictable_list(page);
660                 /*
661                  * When racing with an mlock or AS_UNEVICTABLE clearing
662                  * (page is unlocked) make sure that if the other thread
663                  * does not observe our setting of PG_lru and fails
664                  * isolation/check_move_unevictable_page,
665                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
666                  * the page back to the evictable list.
667                  *
668                  * The other side is TestClearPageMlocked() or shmem_lock().
669                  */
670                 smp_mb();
671         }
672
673         /*
674          * page's status can change while we move it among lru. If an evictable
675          * page is on unevictable list, it never be freed. To avoid that,
676          * check after we added it to the list, again.
677          */
678         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
679                 if (!isolate_lru_page(page)) {
680                         put_page(page);
681                         goto redo;
682                 }
683                 /* This means someone else dropped this page from LRU
684                  * So, it will be freed or putback to LRU again. There is
685                  * nothing to do here.
686                  */
687         }
688
689         if (was_unevictable && lru != LRU_UNEVICTABLE)
690                 count_vm_event(UNEVICTABLE_PGRESCUED);
691         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
692                 count_vm_event(UNEVICTABLE_PGCULLED);
693
694         put_page(page);         /* drop ref from isolate */
695 }
696
697 enum page_references {
698         PAGEREF_RECLAIM,
699         PAGEREF_RECLAIM_CLEAN,
700         PAGEREF_KEEP,
701         PAGEREF_ACTIVATE,
702 };
703
704 static enum page_references page_check_references(struct page *page,
705                                                   struct mem_cgroup_zone *mz,
706                                                   struct scan_control *sc)
707 {
708         int referenced_ptes, referenced_page;
709         unsigned long vm_flags;
710
711         referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
712         referenced_page = TestClearPageReferenced(page);
713
714         /* Lumpy reclaim - ignore references */
715         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
716                 return PAGEREF_RECLAIM;
717
718         /*
719          * Mlock lost the isolation race with us.  Let try_to_unmap()
720          * move the page to the unevictable list.
721          */
722         if (vm_flags & VM_LOCKED)
723                 return PAGEREF_RECLAIM;
724
725         if (referenced_ptes) {
726                 if (PageAnon(page))
727                         return PAGEREF_ACTIVATE;
728                 /*
729                  * All mapped pages start out with page table
730                  * references from the instantiating fault, so we need
731                  * to look twice if a mapped file page is used more
732                  * than once.
733                  *
734                  * Mark it and spare it for another trip around the
735                  * inactive list.  Another page table reference will
736                  * lead to its activation.
737                  *
738                  * Note: the mark is set for activated pages as well
739                  * so that recently deactivated but used pages are
740                  * quickly recovered.
741                  */
742                 SetPageReferenced(page);
743
744                 if (referenced_page || referenced_ptes > 1)
745                         return PAGEREF_ACTIVATE;
746
747                 /*
748                  * Activate file-backed executable pages after first usage.
749                  */
750                 if (vm_flags & VM_EXEC)
751                         return PAGEREF_ACTIVATE;
752
753                 return PAGEREF_KEEP;
754         }
755
756         /* Reclaim if clean, defer dirty pages to writeback */
757         if (referenced_page && !PageSwapBacked(page))
758                 return PAGEREF_RECLAIM_CLEAN;
759
760         return PAGEREF_RECLAIM;
761 }
762
763 /*
764  * shrink_page_list() returns the number of reclaimed pages
765  */
766 static unsigned long shrink_page_list(struct list_head *page_list,
767                                       struct mem_cgroup_zone *mz,
768                                       struct scan_control *sc,
769                                       int priority,
770                                       unsigned long *ret_nr_dirty,
771                                       unsigned long *ret_nr_writeback)
772 {
773         LIST_HEAD(ret_pages);
774         LIST_HEAD(free_pages);
775         int pgactivate = 0;
776         unsigned long nr_dirty = 0;
777         unsigned long nr_congested = 0;
778         unsigned long nr_reclaimed = 0;
779         unsigned long nr_writeback = 0;
780
781         cond_resched();
782
783         while (!list_empty(page_list)) {
784                 enum page_references references;
785                 struct address_space *mapping;
786                 struct page *page;
787                 int may_enter_fs;
788
789                 cond_resched();
790
791                 page = lru_to_page(page_list);
792                 list_del(&page->lru);
793
794                 if (!trylock_page(page))
795                         goto keep;
796
797                 VM_BUG_ON(PageActive(page));
798                 VM_BUG_ON(page_zone(page) != mz->zone);
799
800                 sc->nr_scanned++;
801
802                 if (unlikely(!page_evictable(page, NULL)))
803                         goto cull_mlocked;
804
805                 if (!sc->may_unmap && page_mapped(page))
806                         goto keep_locked;
807
808                 /* Double the slab pressure for mapped and swapcache pages */
809                 if (page_mapped(page) || PageSwapCache(page))
810                         sc->nr_scanned++;
811
812                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
814
815                 if (PageWriteback(page)) {
816                         nr_writeback++;
817                         /*
818                          * Synchronous reclaim cannot queue pages for
819                          * writeback due to the possibility of stack overflow
820                          * but if it encounters a page under writeback, wait
821                          * for the IO to complete.
822                          */
823                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
824                             may_enter_fs)
825                                 wait_on_page_writeback(page);
826                         else {
827                                 unlock_page(page);
828                                 goto keep_lumpy;
829                         }
830                 }
831
832                 references = page_check_references(page, mz, sc);
833                 switch (references) {
834                 case PAGEREF_ACTIVATE:
835                         goto activate_locked;
836                 case PAGEREF_KEEP:
837                         goto keep_locked;
838                 case PAGEREF_RECLAIM:
839                 case PAGEREF_RECLAIM_CLEAN:
840                         ; /* try to reclaim the page below */
841                 }
842
843                 /*
844                  * Anonymous process memory has backing store?
845                  * Try to allocate it some swap space here.
846                  */
847                 if (PageAnon(page) && !PageSwapCache(page)) {
848                         if (!(sc->gfp_mask & __GFP_IO))
849                                 goto keep_locked;
850                         if (!add_to_swap(page))
851                                 goto activate_locked;
852                         may_enter_fs = 1;
853                 }
854
855                 mapping = page_mapping(page);
856
857                 /*
858                  * The page is mapped into the page tables of one or more
859                  * processes. Try to unmap it here.
860                  */
861                 if (page_mapped(page) && mapping) {
862                         switch (try_to_unmap(page, TTU_UNMAP)) {
863                         case SWAP_FAIL:
864                                 goto activate_locked;
865                         case SWAP_AGAIN:
866                                 goto keep_locked;
867                         case SWAP_MLOCK:
868                                 goto cull_mlocked;
869                         case SWAP_SUCCESS:
870                                 ; /* try to free the page below */
871                         }
872                 }
873
874                 if (PageDirty(page)) {
875                         nr_dirty++;
876
877                         /*
878                          * Only kswapd can writeback filesystem pages to
879                          * avoid risk of stack overflow but do not writeback
880                          * unless under significant pressure.
881                          */
882                         if (page_is_file_cache(page) &&
883                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
884                                 /*
885                                  * Immediately reclaim when written back.
886                                  * Similar in principal to deactivate_page()
887                                  * except we already have the page isolated
888                                  * and know it's dirty
889                                  */
890                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
891                                 SetPageReclaim(page);
892
893                                 goto keep_locked;
894                         }
895
896                         if (references == PAGEREF_RECLAIM_CLEAN)
897                                 goto keep_locked;
898                         if (!may_enter_fs)
899                                 goto keep_locked;
900                         if (!sc->may_writepage)
901                                 goto keep_locked;
902
903                         /* Page is dirty, try to write it out here */
904                         switch (pageout(page, mapping, sc)) {
905                         case PAGE_KEEP:
906                                 nr_congested++;
907                                 goto keep_locked;
908                         case PAGE_ACTIVATE:
909                                 goto activate_locked;
910                         case PAGE_SUCCESS:
911                                 if (PageWriteback(page))
912                                         goto keep_lumpy;
913                                 if (PageDirty(page))
914                                         goto keep;
915
916                                 /*
917                                  * A synchronous write - probably a ramdisk.  Go
918                                  * ahead and try to reclaim the page.
919                                  */
920                                 if (!trylock_page(page))
921                                         goto keep;
922                                 if (PageDirty(page) || PageWriteback(page))
923                                         goto keep_locked;
924                                 mapping = page_mapping(page);
925                         case PAGE_CLEAN:
926                                 ; /* try to free the page below */
927                         }
928                 }
929
930                 /*
931                  * If the page has buffers, try to free the buffer mappings
932                  * associated with this page. If we succeed we try to free
933                  * the page as well.
934                  *
935                  * We do this even if the page is PageDirty().
936                  * try_to_release_page() does not perform I/O, but it is
937                  * possible for a page to have PageDirty set, but it is actually
938                  * clean (all its buffers are clean).  This happens if the
939                  * buffers were written out directly, with submit_bh(). ext3
940                  * will do this, as well as the blockdev mapping.
941                  * try_to_release_page() will discover that cleanness and will
942                  * drop the buffers and mark the page clean - it can be freed.
943                  *
944                  * Rarely, pages can have buffers and no ->mapping.  These are
945                  * the pages which were not successfully invalidated in
946                  * truncate_complete_page().  We try to drop those buffers here
947                  * and if that worked, and the page is no longer mapped into
948                  * process address space (page_count == 1) it can be freed.
949                  * Otherwise, leave the page on the LRU so it is swappable.
950                  */
951                 if (page_has_private(page)) {
952                         if (!try_to_release_page(page, sc->gfp_mask))
953                                 goto activate_locked;
954                         if (!mapping && page_count(page) == 1) {
955                                 unlock_page(page);
956                                 if (put_page_testzero(page))
957                                         goto free_it;
958                                 else {
959                                         /*
960                                          * rare race with speculative reference.
961                                          * the speculative reference will free
962                                          * this page shortly, so we may
963                                          * increment nr_reclaimed here (and
964                                          * leave it off the LRU).
965                                          */
966                                         nr_reclaimed++;
967                                         continue;
968                                 }
969                         }
970                 }
971
972                 if (!mapping || !__remove_mapping(mapping, page))
973                         goto keep_locked;
974
975                 /*
976                  * At this point, we have no other references and there is
977                  * no way to pick any more up (removed from LRU, removed
978                  * from pagecache). Can use non-atomic bitops now (and
979                  * we obviously don't have to worry about waking up a process
980                  * waiting on the page lock, because there are no references.
981                  */
982                 __clear_page_locked(page);
983 free_it:
984                 nr_reclaimed++;
985
986                 /*
987                  * Is there need to periodically free_page_list? It would
988                  * appear not as the counts should be low
989                  */
990                 list_add(&page->lru, &free_pages);
991                 continue;
992
993 cull_mlocked:
994                 if (PageSwapCache(page))
995                         try_to_free_swap(page);
996                 unlock_page(page);
997                 putback_lru_page(page);
998                 reset_reclaim_mode(sc);
999                 continue;
1000
1001 activate_locked:
1002                 /* Not a candidate for swapping, so reclaim swap space. */
1003                 if (PageSwapCache(page) && vm_swap_full())
1004                         try_to_free_swap(page);
1005                 VM_BUG_ON(PageActive(page));
1006                 SetPageActive(page);
1007                 pgactivate++;
1008 keep_locked:
1009                 unlock_page(page);
1010 keep:
1011                 reset_reclaim_mode(sc);
1012 keep_lumpy:
1013                 list_add(&page->lru, &ret_pages);
1014                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1015         }
1016
1017         /*
1018          * Tag a zone as congested if all the dirty pages encountered were
1019          * backed by a congested BDI. In this case, reclaimers should just
1020          * back off and wait for congestion to clear because further reclaim
1021          * will encounter the same problem
1022          */
1023         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1024                 zone_set_flag(mz->zone, ZONE_CONGESTED);
1025
1026         free_hot_cold_page_list(&free_pages, 1);
1027
1028         list_splice(&ret_pages, page_list);
1029         count_vm_events(PGACTIVATE, pgactivate);
1030         *ret_nr_dirty += nr_dirty;
1031         *ret_nr_writeback += nr_writeback;
1032         return nr_reclaimed;
1033 }
1034
1035 /*
1036  * Attempt to remove the specified page from its LRU.  Only take this page
1037  * if it is of the appropriate PageActive status.  Pages which are being
1038  * freed elsewhere are also ignored.
1039  *
1040  * page:        page to consider
1041  * mode:        one of the LRU isolation modes defined above
1042  *
1043  * returns 0 on success, -ve errno on failure.
1044  */
1045 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1046 {
1047         bool all_lru_mode;
1048         int ret = -EINVAL;
1049
1050         /* Only take pages on the LRU. */
1051         if (!PageLRU(page))
1052                 return ret;
1053
1054         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1055                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1056
1057         /*
1058          * When checking the active state, we need to be sure we are
1059          * dealing with comparible boolean values.  Take the logical not
1060          * of each.
1061          */
1062         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1063                 return ret;
1064
1065         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1066                 return ret;
1067
1068         /*
1069          * When this function is being called for lumpy reclaim, we
1070          * initially look into all LRU pages, active, inactive and
1071          * unevictable; only give shrink_page_list evictable pages.
1072          */
1073         if (PageUnevictable(page))
1074                 return ret;
1075
1076         ret = -EBUSY;
1077
1078         /*
1079          * To minimise LRU disruption, the caller can indicate that it only
1080          * wants to isolate pages it will be able to operate on without
1081          * blocking - clean pages for the most part.
1082          *
1083          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1084          * is used by reclaim when it is cannot write to backing storage
1085          *
1086          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1087          * that it is possible to migrate without blocking
1088          */
1089         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1090                 /* All the caller can do on PageWriteback is block */
1091                 if (PageWriteback(page))
1092                         return ret;
1093
1094                 if (PageDirty(page)) {
1095                         struct address_space *mapping;
1096
1097                         /* ISOLATE_CLEAN means only clean pages */
1098                         if (mode & ISOLATE_CLEAN)
1099                                 return ret;
1100
1101                         /*
1102                          * Only pages without mappings or that have a
1103                          * ->migratepage callback are possible to migrate
1104                          * without blocking
1105                          */
1106                         mapping = page_mapping(page);
1107                         if (mapping && !mapping->a_ops->migratepage)
1108                                 return ret;
1109                 }
1110         }
1111
1112         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1113                 return ret;
1114
1115         if (likely(get_page_unless_zero(page))) {
1116                 /*
1117                  * Be careful not to clear PageLRU until after we're
1118                  * sure the page is not being freed elsewhere -- the
1119                  * page release code relies on it.
1120                  */
1121                 ClearPageLRU(page);
1122                 ret = 0;
1123         }
1124
1125         return ret;
1126 }
1127
1128 /*
1129  * zone->lru_lock is heavily contended.  Some of the functions that
1130  * shrink the lists perform better by taking out a batch of pages
1131  * and working on them outside the LRU lock.
1132  *
1133  * For pagecache intensive workloads, this function is the hottest
1134  * spot in the kernel (apart from copy_*_user functions).
1135  *
1136  * Appropriate locks must be held before calling this function.
1137  *
1138  * @nr_to_scan: The number of pages to look through on the list.
1139  * @mz:         The mem_cgroup_zone to pull pages from.
1140  * @dst:        The temp list to put pages on to.
1141  * @nr_scanned: The number of pages that were scanned.
1142  * @order:      The caller's attempted allocation order
1143  * @mode:       One of the LRU isolation modes
1144  * @active:     True [1] if isolating active pages
1145  * @file:       True [1] if isolating file [!anon] pages
1146  *
1147  * returns how many pages were moved onto *@dst.
1148  */
1149 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1150                 struct mem_cgroup_zone *mz, struct list_head *dst,
1151                 unsigned long *nr_scanned, int order, isolate_mode_t mode,
1152                 int active, int file)
1153 {
1154         struct lruvec *lruvec;
1155         struct list_head *src;
1156         unsigned long nr_taken = 0;
1157         unsigned long nr_lumpy_taken = 0;
1158         unsigned long nr_lumpy_dirty = 0;
1159         unsigned long nr_lumpy_failed = 0;
1160         unsigned long scan;
1161         int lru = LRU_BASE;
1162
1163         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1164         if (active)
1165                 lru += LRU_ACTIVE;
1166         if (file)
1167                 lru += LRU_FILE;
1168         src = &lruvec->lists[lru];
1169
1170         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1171                 struct page *page;
1172                 unsigned long pfn;
1173                 unsigned long end_pfn;
1174                 unsigned long page_pfn;
1175                 int zone_id;
1176
1177                 page = lru_to_page(src);
1178                 prefetchw_prev_lru_page(page, src, flags);
1179
1180                 VM_BUG_ON(!PageLRU(page));
1181
1182                 switch (__isolate_lru_page(page, mode, file)) {
1183                 case 0:
1184                         mem_cgroup_lru_del(page);
1185                         list_move(&page->lru, dst);
1186                         nr_taken += hpage_nr_pages(page);
1187                         break;
1188
1189                 case -EBUSY:
1190                         /* else it is being freed elsewhere */
1191                         list_move(&page->lru, src);
1192                         continue;
1193
1194                 default:
1195                         BUG();
1196                 }
1197
1198                 if (!order)
1199                         continue;
1200
1201                 /*
1202                  * Attempt to take all pages in the order aligned region
1203                  * surrounding the tag page.  Only take those pages of
1204                  * the same active state as that tag page.  We may safely
1205                  * round the target page pfn down to the requested order
1206                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1207                  * where that page is in a different zone we will detect
1208                  * it from its zone id and abort this block scan.
1209                  */
1210                 zone_id = page_zone_id(page);
1211                 page_pfn = page_to_pfn(page);
1212                 pfn = page_pfn & ~((1 << order) - 1);
1213                 end_pfn = pfn + (1 << order);
1214                 for (; pfn < end_pfn; pfn++) {
1215                         struct page *cursor_page;
1216
1217                         /* The target page is in the block, ignore it. */
1218                         if (unlikely(pfn == page_pfn))
1219                                 continue;
1220
1221                         /* Avoid holes within the zone. */
1222                         if (unlikely(!pfn_valid_within(pfn)))
1223                                 break;
1224
1225                         cursor_page = pfn_to_page(pfn);
1226
1227                         /* Check that we have not crossed a zone boundary. */
1228                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1229                                 break;
1230
1231                         /*
1232                          * If we don't have enough swap space, reclaiming of
1233                          * anon page which don't already have a swap slot is
1234                          * pointless.
1235                          */
1236                         if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1237                             !PageSwapCache(cursor_page))
1238                                 break;
1239
1240                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1241                                 unsigned int isolated_pages;
1242
1243                                 mem_cgroup_lru_del(cursor_page);
1244                                 list_move(&cursor_page->lru, dst);
1245                                 isolated_pages = hpage_nr_pages(cursor_page);
1246                                 nr_taken += isolated_pages;
1247                                 nr_lumpy_taken += isolated_pages;
1248                                 if (PageDirty(cursor_page))
1249                                         nr_lumpy_dirty += isolated_pages;
1250                                 scan++;
1251                                 pfn += isolated_pages - 1;
1252                         } else {
1253                                 /*
1254                                  * Check if the page is freed already.
1255                                  *
1256                                  * We can't use page_count() as that
1257                                  * requires compound_head and we don't
1258                                  * have a pin on the page here. If a
1259                                  * page is tail, we may or may not
1260                                  * have isolated the head, so assume
1261                                  * it's not free, it'd be tricky to
1262                                  * track the head status without a
1263                                  * page pin.
1264                                  */
1265                                 if (!PageTail(cursor_page) &&
1266                                     !atomic_read(&cursor_page->_count))
1267                                         continue;
1268                                 break;
1269                         }
1270                 }
1271
1272                 /* If we break out of the loop above, lumpy reclaim failed */
1273                 if (pfn < end_pfn)
1274                         nr_lumpy_failed++;
1275         }
1276
1277         *nr_scanned = scan;
1278
1279         trace_mm_vmscan_lru_isolate(order,
1280                         nr_to_scan, scan,
1281                         nr_taken,
1282                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1283                         mode, file);
1284         return nr_taken;
1285 }
1286
1287 /**
1288  * isolate_lru_page - tries to isolate a page from its LRU list
1289  * @page: page to isolate from its LRU list
1290  *
1291  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1292  * vmstat statistic corresponding to whatever LRU list the page was on.
1293  *
1294  * Returns 0 if the page was removed from an LRU list.
1295  * Returns -EBUSY if the page was not on an LRU list.
1296  *
1297  * The returned page will have PageLRU() cleared.  If it was found on
1298  * the active list, it will have PageActive set.  If it was found on
1299  * the unevictable list, it will have the PageUnevictable bit set. That flag
1300  * may need to be cleared by the caller before letting the page go.
1301  *
1302  * The vmstat statistic corresponding to the list on which the page was
1303  * found will be decremented.
1304  *
1305  * Restrictions:
1306  * (1) Must be called with an elevated refcount on the page. This is a
1307  *     fundamentnal difference from isolate_lru_pages (which is called
1308  *     without a stable reference).
1309  * (2) the lru_lock must not be held.
1310  * (3) interrupts must be enabled.
1311  */
1312 int isolate_lru_page(struct page *page)
1313 {
1314         int ret = -EBUSY;
1315
1316         VM_BUG_ON(!page_count(page));
1317
1318         if (PageLRU(page)) {
1319                 struct zone *zone = page_zone(page);
1320
1321                 spin_lock_irq(&zone->lru_lock);
1322                 if (PageLRU(page)) {
1323                         int lru = page_lru(page);
1324                         ret = 0;
1325                         get_page(page);
1326                         ClearPageLRU(page);
1327
1328                         del_page_from_lru_list(zone, page, lru);
1329                 }
1330                 spin_unlock_irq(&zone->lru_lock);
1331         }
1332         return ret;
1333 }
1334
1335 /*
1336  * Are there way too many processes in the direct reclaim path already?
1337  */
1338 static int too_many_isolated(struct zone *zone, int file,
1339                 struct scan_control *sc)
1340 {
1341         unsigned long inactive, isolated;
1342
1343         if (current_is_kswapd())
1344                 return 0;
1345
1346         if (!global_reclaim(sc))
1347                 return 0;
1348
1349         if (file) {
1350                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1351                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1352         } else {
1353                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1354                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1355         }
1356
1357         return isolated > inactive;
1358 }
1359
1360 static noinline_for_stack void
1361 putback_inactive_pages(struct mem_cgroup_zone *mz,
1362                        struct list_head *page_list)
1363 {
1364         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1365         struct zone *zone = mz->zone;
1366         LIST_HEAD(pages_to_free);
1367
1368         /*
1369          * Put back any unfreeable pages.
1370          */
1371         while (!list_empty(page_list)) {
1372                 struct page *page = lru_to_page(page_list);
1373                 int lru;
1374
1375                 VM_BUG_ON(PageLRU(page));
1376                 list_del(&page->lru);
1377                 if (unlikely(!page_evictable(page, NULL))) {
1378                         spin_unlock_irq(&zone->lru_lock);
1379                         putback_lru_page(page);
1380                         spin_lock_irq(&zone->lru_lock);
1381                         continue;
1382                 }
1383                 SetPageLRU(page);
1384                 lru = page_lru(page);
1385                 add_page_to_lru_list(zone, page, lru);
1386                 if (is_active_lru(lru)) {
1387                         int file = is_file_lru(lru);
1388                         int numpages = hpage_nr_pages(page);
1389                         reclaim_stat->recent_rotated[file] += numpages;
1390                 }
1391                 if (put_page_testzero(page)) {
1392                         __ClearPageLRU(page);
1393                         __ClearPageActive(page);
1394                         del_page_from_lru_list(zone, page, lru);
1395
1396                         if (unlikely(PageCompound(page))) {
1397                                 spin_unlock_irq(&zone->lru_lock);
1398                                 (*get_compound_page_dtor(page))(page);
1399                                 spin_lock_irq(&zone->lru_lock);
1400                         } else
1401                                 list_add(&page->lru, &pages_to_free);
1402                 }
1403         }
1404
1405         /*
1406          * To save our caller's stack, now use input list for pages to free.
1407          */
1408         list_splice(&pages_to_free, page_list);
1409 }
1410
1411 static noinline_for_stack void
1412 update_isolated_counts(struct mem_cgroup_zone *mz,
1413                        struct list_head *page_list,
1414                        unsigned long *nr_anon,
1415                        unsigned long *nr_file)
1416 {
1417         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1418         struct zone *zone = mz->zone;
1419         unsigned int count[NR_LRU_LISTS] = { 0, };
1420         unsigned long nr_active = 0;
1421         struct page *page;
1422         int lru;
1423
1424         /*
1425          * Count pages and clear active flags
1426          */
1427         list_for_each_entry(page, page_list, lru) {
1428                 int numpages = hpage_nr_pages(page);
1429                 lru = page_lru_base_type(page);
1430                 if (PageActive(page)) {
1431                         lru += LRU_ACTIVE;
1432                         ClearPageActive(page);
1433                         nr_active += numpages;
1434                 }
1435                 count[lru] += numpages;
1436         }
1437
1438         __count_vm_events(PGDEACTIVATE, nr_active);
1439
1440         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1441                               -count[LRU_ACTIVE_FILE]);
1442         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1443                               -count[LRU_INACTIVE_FILE]);
1444         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1445                               -count[LRU_ACTIVE_ANON]);
1446         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1447                               -count[LRU_INACTIVE_ANON]);
1448
1449         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1450         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1451
1452         reclaim_stat->recent_scanned[0] += *nr_anon;
1453         reclaim_stat->recent_scanned[1] += *nr_file;
1454 }
1455
1456 /*
1457  * Returns true if a direct reclaim should wait on pages under writeback.
1458  *
1459  * If we are direct reclaiming for contiguous pages and we do not reclaim
1460  * everything in the list, try again and wait for writeback IO to complete.
1461  * This will stall high-order allocations noticeably. Only do that when really
1462  * need to free the pages under high memory pressure.
1463  */
1464 static inline bool should_reclaim_stall(unsigned long nr_taken,
1465                                         unsigned long nr_freed,
1466                                         int priority,
1467                                         struct scan_control *sc)
1468 {
1469         int lumpy_stall_priority;
1470
1471         /* kswapd should not stall on sync IO */
1472         if (current_is_kswapd())
1473                 return false;
1474
1475         /* Only stall on lumpy reclaim */
1476         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1477                 return false;
1478
1479         /* If we have reclaimed everything on the isolated list, no stall */
1480         if (nr_freed == nr_taken)
1481                 return false;
1482
1483         /*
1484          * For high-order allocations, there are two stall thresholds.
1485          * High-cost allocations stall immediately where as lower
1486          * order allocations such as stacks require the scanning
1487          * priority to be much higher before stalling.
1488          */
1489         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1490                 lumpy_stall_priority = DEF_PRIORITY;
1491         else
1492                 lumpy_stall_priority = DEF_PRIORITY / 3;
1493
1494         return priority <= lumpy_stall_priority;
1495 }
1496
1497 /*
1498  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1499  * of reclaimed pages
1500  */
1501 static noinline_for_stack unsigned long
1502 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1503                      struct scan_control *sc, int priority, int file)
1504 {
1505         LIST_HEAD(page_list);
1506         unsigned long nr_scanned;
1507         unsigned long nr_reclaimed = 0;
1508         unsigned long nr_taken;
1509         unsigned long nr_anon;
1510         unsigned long nr_file;
1511         unsigned long nr_dirty = 0;
1512         unsigned long nr_writeback = 0;
1513         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1514         struct zone *zone = mz->zone;
1515
1516         while (unlikely(too_many_isolated(zone, file, sc))) {
1517                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1518
1519                 /* We are about to die and free our memory. Return now. */
1520                 if (fatal_signal_pending(current))
1521                         return SWAP_CLUSTER_MAX;
1522         }
1523
1524         set_reclaim_mode(priority, sc, false);
1525         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1526                 reclaim_mode |= ISOLATE_ACTIVE;
1527
1528         lru_add_drain();
1529
1530         if (!sc->may_unmap)
1531                 reclaim_mode |= ISOLATE_UNMAPPED;
1532         if (!sc->may_writepage)
1533                 reclaim_mode |= ISOLATE_CLEAN;
1534
1535         spin_lock_irq(&zone->lru_lock);
1536
1537         nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list,
1538                                      &nr_scanned, sc->order,
1539                                      reclaim_mode, 0, file);
1540         if (global_reclaim(sc)) {
1541                 zone->pages_scanned += nr_scanned;
1542                 if (current_is_kswapd())
1543                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1544                                                nr_scanned);
1545                 else
1546                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1547                                                nr_scanned);
1548         }
1549
1550         if (nr_taken == 0) {
1551                 spin_unlock_irq(&zone->lru_lock);
1552                 return 0;
1553         }
1554
1555         update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1556
1557         __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1558         __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1559
1560         spin_unlock_irq(&zone->lru_lock);
1561
1562         nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1563                                                 &nr_dirty, &nr_writeback);
1564
1565         /* Check if we should syncronously wait for writeback */
1566         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1567                 set_reclaim_mode(priority, sc, true);
1568                 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1569                                         priority, &nr_dirty, &nr_writeback);
1570         }
1571
1572         spin_lock_irq(&zone->lru_lock);
1573
1574         if (current_is_kswapd())
1575                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1576         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1577
1578         putback_inactive_pages(mz, &page_list);
1579
1580         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1581         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1582
1583         spin_unlock_irq(&zone->lru_lock);
1584
1585         free_hot_cold_page_list(&page_list, 1);
1586
1587         /*
1588          * If reclaim is isolating dirty pages under writeback, it implies
1589          * that the long-lived page allocation rate is exceeding the page
1590          * laundering rate. Either the global limits are not being effective
1591          * at throttling processes due to the page distribution throughout
1592          * zones or there is heavy usage of a slow backing device. The
1593          * only option is to throttle from reclaim context which is not ideal
1594          * as there is no guarantee the dirtying process is throttled in the
1595          * same way balance_dirty_pages() manages.
1596          *
1597          * This scales the number of dirty pages that must be under writeback
1598          * before throttling depending on priority. It is a simple backoff
1599          * function that has the most effect in the range DEF_PRIORITY to
1600          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1601          * in trouble and reclaim is considered to be in trouble.
1602          *
1603          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1604          * DEF_PRIORITY-1  50% must be PageWriteback
1605          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1606          * ...
1607          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1608          *                     isolated page is PageWriteback
1609          */
1610         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1611                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1612
1613         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1614                 zone_idx(zone),
1615                 nr_scanned, nr_reclaimed,
1616                 priority,
1617                 trace_shrink_flags(file, sc->reclaim_mode));
1618         return nr_reclaimed;
1619 }
1620
1621 /*
1622  * This moves pages from the active list to the inactive list.
1623  *
1624  * We move them the other way if the page is referenced by one or more
1625  * processes, from rmap.
1626  *
1627  * If the pages are mostly unmapped, the processing is fast and it is
1628  * appropriate to hold zone->lru_lock across the whole operation.  But if
1629  * the pages are mapped, the processing is slow (page_referenced()) so we
1630  * should drop zone->lru_lock around each page.  It's impossible to balance
1631  * this, so instead we remove the pages from the LRU while processing them.
1632  * It is safe to rely on PG_active against the non-LRU pages in here because
1633  * nobody will play with that bit on a non-LRU page.
1634  *
1635  * The downside is that we have to touch page->_count against each page.
1636  * But we had to alter page->flags anyway.
1637  */
1638
1639 static void move_active_pages_to_lru(struct zone *zone,
1640                                      struct list_head *list,
1641                                      struct list_head *pages_to_free,
1642                                      enum lru_list lru)
1643 {
1644         unsigned long pgmoved = 0;
1645         struct page *page;
1646
1647         if (buffer_heads_over_limit) {
1648                 spin_unlock_irq(&zone->lru_lock);
1649                 list_for_each_entry(page, list, lru) {
1650                         if (page_has_private(page) && trylock_page(page)) {
1651                                 if (page_has_private(page))
1652                                         try_to_release_page(page, 0);
1653                                 unlock_page(page);
1654                         }
1655                 }
1656                 spin_lock_irq(&zone->lru_lock);
1657         }
1658
1659         while (!list_empty(list)) {
1660                 struct lruvec *lruvec;
1661
1662                 page = lru_to_page(list);
1663
1664                 VM_BUG_ON(PageLRU(page));
1665                 SetPageLRU(page);
1666
1667                 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1668                 list_move(&page->lru, &lruvec->lists[lru]);
1669                 pgmoved += hpage_nr_pages(page);
1670
1671                 if (put_page_testzero(page)) {
1672                         __ClearPageLRU(page);
1673                         __ClearPageActive(page);
1674                         del_page_from_lru_list(zone, page, lru);
1675
1676                         if (unlikely(PageCompound(page))) {
1677                                 spin_unlock_irq(&zone->lru_lock);
1678                                 (*get_compound_page_dtor(page))(page);
1679                                 spin_lock_irq(&zone->lru_lock);
1680                         } else
1681                                 list_add(&page->lru, pages_to_free);
1682                 }
1683         }
1684         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1685         if (!is_active_lru(lru))
1686                 __count_vm_events(PGDEACTIVATE, pgmoved);
1687 }
1688
1689 static void shrink_active_list(unsigned long nr_to_scan,
1690                                struct mem_cgroup_zone *mz,
1691                                struct scan_control *sc,
1692                                int priority, int file)
1693 {
1694         unsigned long nr_taken;
1695         unsigned long nr_scanned;
1696         unsigned long vm_flags;
1697         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1698         LIST_HEAD(l_active);
1699         LIST_HEAD(l_inactive);
1700         struct page *page;
1701         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1702         unsigned long nr_rotated = 0;
1703         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1704         struct zone *zone = mz->zone;
1705
1706         lru_add_drain();
1707
1708         if (!sc->may_unmap)
1709                 reclaim_mode |= ISOLATE_UNMAPPED;
1710         if (!sc->may_writepage)
1711                 reclaim_mode |= ISOLATE_CLEAN;
1712
1713         spin_lock_irq(&zone->lru_lock);
1714
1715         nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold,
1716                                      &nr_scanned, sc->order,
1717                                      reclaim_mode, 1, file);
1718         if (global_reclaim(sc))
1719                 zone->pages_scanned += nr_scanned;
1720
1721         reclaim_stat->recent_scanned[file] += nr_taken;
1722
1723         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1724         if (file)
1725                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1726         else
1727                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1728         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1729         spin_unlock_irq(&zone->lru_lock);
1730
1731         while (!list_empty(&l_hold)) {
1732                 cond_resched();
1733                 page = lru_to_page(&l_hold);
1734                 list_del(&page->lru);
1735
1736                 if (unlikely(!page_evictable(page, NULL))) {
1737                         putback_lru_page(page);
1738                         continue;
1739                 }
1740
1741                 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1742                         nr_rotated += hpage_nr_pages(page);
1743                         /*
1744                          * Identify referenced, file-backed active pages and
1745                          * give them one more trip around the active list. So
1746                          * that executable code get better chances to stay in
1747                          * memory under moderate memory pressure.  Anon pages
1748                          * are not likely to be evicted by use-once streaming
1749                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1750                          * so we ignore them here.
1751                          */
1752                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1753                                 list_add(&page->lru, &l_active);
1754                                 continue;
1755                         }
1756                 }
1757
1758                 ClearPageActive(page);  /* we are de-activating */
1759                 list_add(&page->lru, &l_inactive);
1760         }
1761
1762         /*
1763          * Move pages back to the lru list.
1764          */
1765         spin_lock_irq(&zone->lru_lock);
1766         /*
1767          * Count referenced pages from currently used mappings as rotated,
1768          * even though only some of them are actually re-activated.  This
1769          * helps balance scan pressure between file and anonymous pages in
1770          * get_scan_ratio.
1771          */
1772         reclaim_stat->recent_rotated[file] += nr_rotated;
1773
1774         move_active_pages_to_lru(zone, &l_active, &l_hold,
1775                                                 LRU_ACTIVE + file * LRU_FILE);
1776         move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1777                                                 LRU_BASE   + file * LRU_FILE);
1778         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1779         spin_unlock_irq(&zone->lru_lock);
1780
1781         free_hot_cold_page_list(&l_hold, 1);
1782 }
1783
1784 #ifdef CONFIG_SWAP
1785 static int inactive_anon_is_low_global(struct zone *zone)
1786 {
1787         unsigned long active, inactive;
1788
1789         active = zone_page_state(zone, NR_ACTIVE_ANON);
1790         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1791
1792         if (inactive * zone->inactive_ratio < active)
1793                 return 1;
1794
1795         return 0;
1796 }
1797
1798 /**
1799  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1800  * @zone: zone to check
1801  * @sc:   scan control of this context
1802  *
1803  * Returns true if the zone does not have enough inactive anon pages,
1804  * meaning some active anon pages need to be deactivated.
1805  */
1806 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1807 {
1808         /*
1809          * If we don't have swap space, anonymous page deactivation
1810          * is pointless.
1811          */
1812         if (!total_swap_pages)
1813                 return 0;
1814
1815         if (!scanning_global_lru(mz))
1816                 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1817                                                        mz->zone);
1818
1819         return inactive_anon_is_low_global(mz->zone);
1820 }
1821 #else
1822 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1823 {
1824         return 0;
1825 }
1826 #endif
1827
1828 static int inactive_file_is_low_global(struct zone *zone)
1829 {
1830         unsigned long active, inactive;
1831
1832         active = zone_page_state(zone, NR_ACTIVE_FILE);
1833         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1834
1835         return (active > inactive);
1836 }
1837
1838 /**
1839  * inactive_file_is_low - check if file pages need to be deactivated
1840  * @mz: memory cgroup and zone to check
1841  *
1842  * When the system is doing streaming IO, memory pressure here
1843  * ensures that active file pages get deactivated, until more
1844  * than half of the file pages are on the inactive list.
1845  *
1846  * Once we get to that situation, protect the system's working
1847  * set from being evicted by disabling active file page aging.
1848  *
1849  * This uses a different ratio than the anonymous pages, because
1850  * the page cache uses a use-once replacement algorithm.
1851  */
1852 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1853 {
1854         if (!scanning_global_lru(mz))
1855                 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1856                                                        mz->zone);
1857
1858         return inactive_file_is_low_global(mz->zone);
1859 }
1860
1861 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1862 {
1863         if (file)
1864                 return inactive_file_is_low(mz);
1865         else
1866                 return inactive_anon_is_low(mz);
1867 }
1868
1869 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1870                                  struct mem_cgroup_zone *mz,
1871                                  struct scan_control *sc, int priority)
1872 {
1873         int file = is_file_lru(lru);
1874
1875         if (is_active_lru(lru)) {
1876                 if (inactive_list_is_low(mz, file))
1877                         shrink_active_list(nr_to_scan, mz, sc, priority, file);
1878                 return 0;
1879         }
1880
1881         return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1882 }
1883
1884 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1885                              struct scan_control *sc)
1886 {
1887         if (global_reclaim(sc))
1888                 return vm_swappiness;
1889         return mem_cgroup_swappiness(mz->mem_cgroup);
1890 }
1891
1892 /*
1893  * Determine how aggressively the anon and file LRU lists should be
1894  * scanned.  The relative value of each set of LRU lists is determined
1895  * by looking at the fraction of the pages scanned we did rotate back
1896  * onto the active list instead of evict.
1897  *
1898  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1899  */
1900 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1901                            unsigned long *nr, int priority)
1902 {
1903         unsigned long anon, file, free;
1904         unsigned long anon_prio, file_prio;
1905         unsigned long ap, fp;
1906         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1907         u64 fraction[2], denominator;
1908         enum lru_list lru;
1909         int noswap = 0;
1910         bool force_scan = false;
1911
1912         /*
1913          * If the zone or memcg is small, nr[l] can be 0.  This
1914          * results in no scanning on this priority and a potential
1915          * priority drop.  Global direct reclaim can go to the next
1916          * zone and tends to have no problems. Global kswapd is for
1917          * zone balancing and it needs to scan a minimum amount. When
1918          * reclaiming for a memcg, a priority drop can cause high
1919          * latencies, so it's better to scan a minimum amount there as
1920          * well.
1921          */
1922         if (current_is_kswapd() && mz->zone->all_unreclaimable)
1923                 force_scan = true;
1924         if (!global_reclaim(sc))
1925                 force_scan = true;
1926
1927         /* If we have no swap space, do not bother scanning anon pages. */
1928         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1929                 noswap = 1;
1930                 fraction[0] = 0;
1931                 fraction[1] = 1;
1932                 denominator = 1;
1933                 goto out;
1934         }
1935
1936         anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1937                 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1938         file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1939                 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1940
1941         if (global_reclaim(sc)) {
1942                 free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1943                 /* If we have very few page cache pages,
1944                    force-scan anon pages. */
1945                 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1946                         fraction[0] = 1;
1947                         fraction[1] = 0;
1948                         denominator = 1;
1949                         goto out;
1950                 }
1951         }
1952
1953         /*
1954          * With swappiness at 100, anonymous and file have the same priority.
1955          * This scanning priority is essentially the inverse of IO cost.
1956          */
1957         anon_prio = vmscan_swappiness(mz, sc);
1958         file_prio = 200 - vmscan_swappiness(mz, sc);
1959
1960         /*
1961          * OK, so we have swap space and a fair amount of page cache
1962          * pages.  We use the recently rotated / recently scanned
1963          * ratios to determine how valuable each cache is.
1964          *
1965          * Because workloads change over time (and to avoid overflow)
1966          * we keep these statistics as a floating average, which ends
1967          * up weighing recent references more than old ones.
1968          *
1969          * anon in [0], file in [1]
1970          */
1971         spin_lock_irq(&mz->zone->lru_lock);
1972         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1973                 reclaim_stat->recent_scanned[0] /= 2;
1974                 reclaim_stat->recent_rotated[0] /= 2;
1975         }
1976
1977         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1978                 reclaim_stat->recent_scanned[1] /= 2;
1979                 reclaim_stat->recent_rotated[1] /= 2;
1980         }
1981
1982         /*
1983          * The amount of pressure on anon vs file pages is inversely
1984          * proportional to the fraction of recently scanned pages on
1985          * each list that were recently referenced and in active use.
1986          */
1987         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1988         ap /= reclaim_stat->recent_rotated[0] + 1;
1989
1990         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1991         fp /= reclaim_stat->recent_rotated[1] + 1;
1992         spin_unlock_irq(&mz->zone->lru_lock);
1993
1994         fraction[0] = ap;
1995         fraction[1] = fp;
1996         denominator = ap + fp + 1;
1997 out:
1998         for_each_evictable_lru(lru) {
1999                 int file = is_file_lru(lru);
2000                 unsigned long scan;
2001
2002                 scan = zone_nr_lru_pages(mz, lru);
2003                 if (priority || noswap) {
2004                         scan >>= priority;
2005                         if (!scan && force_scan)
2006                                 scan = SWAP_CLUSTER_MAX;
2007                         scan = div64_u64(scan * fraction[file], denominator);
2008                 }
2009                 nr[lru] = scan;
2010         }
2011 }
2012
2013 /*
2014  * Reclaim/compaction depends on a number of pages being freed. To avoid
2015  * disruption to the system, a small number of order-0 pages continue to be
2016  * rotated and reclaimed in the normal fashion. However, by the time we get
2017  * back to the allocator and call try_to_compact_zone(), we ensure that
2018  * there are enough free pages for it to be likely successful
2019  */
2020 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2021                                         unsigned long nr_reclaimed,
2022                                         unsigned long nr_scanned,
2023                                         struct scan_control *sc)
2024 {
2025         unsigned long pages_for_compaction;
2026         unsigned long inactive_lru_pages;
2027
2028         /* If not in reclaim/compaction mode, stop */
2029         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2030                 return false;
2031
2032         /* Consider stopping depending on scan and reclaim activity */
2033         if (sc->gfp_mask & __GFP_REPEAT) {
2034                 /*
2035                  * For __GFP_REPEAT allocations, stop reclaiming if the
2036                  * full LRU list has been scanned and we are still failing
2037                  * to reclaim pages. This full LRU scan is potentially
2038                  * expensive but a __GFP_REPEAT caller really wants to succeed
2039                  */
2040                 if (!nr_reclaimed && !nr_scanned)
2041                         return false;
2042         } else {
2043                 /*
2044                  * For non-__GFP_REPEAT allocations which can presumably
2045                  * fail without consequence, stop if we failed to reclaim
2046                  * any pages from the last SWAP_CLUSTER_MAX number of
2047                  * pages that were scanned. This will return to the
2048                  * caller faster at the risk reclaim/compaction and
2049                  * the resulting allocation attempt fails
2050                  */
2051                 if (!nr_reclaimed)
2052                         return false;
2053         }
2054
2055         /*
2056          * If we have not reclaimed enough pages for compaction and the
2057          * inactive lists are large enough, continue reclaiming
2058          */
2059         pages_for_compaction = (2UL << sc->order);
2060         inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2061         if (nr_swap_pages > 0)
2062                 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2063         if (sc->nr_reclaimed < pages_for_compaction &&
2064                         inactive_lru_pages > pages_for_compaction)
2065                 return true;
2066
2067         /* If compaction would go ahead or the allocation would succeed, stop */
2068         switch (compaction_suitable(mz->zone, sc->order)) {
2069         case COMPACT_PARTIAL:
2070         case COMPACT_CONTINUE:
2071                 return false;
2072         default:
2073                 return true;
2074         }
2075 }
2076
2077 /*
2078  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2079  */
2080 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2081                                    struct scan_control *sc)
2082 {
2083         unsigned long nr[NR_LRU_LISTS];
2084         unsigned long nr_to_scan;
2085         enum lru_list lru;
2086         unsigned long nr_reclaimed, nr_scanned;
2087         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2088         struct blk_plug plug;
2089
2090 restart:
2091         nr_reclaimed = 0;
2092         nr_scanned = sc->nr_scanned;
2093         get_scan_count(mz, sc, nr, priority);
2094
2095         blk_start_plug(&plug);
2096         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2097                                         nr[LRU_INACTIVE_FILE]) {
2098                 for_each_evictable_lru(lru) {
2099                         if (nr[lru]) {
2100                                 nr_to_scan = min_t(unsigned long,
2101                                                    nr[lru], SWAP_CLUSTER_MAX);
2102                                 nr[lru] -= nr_to_scan;
2103
2104                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
2105                                                             mz, sc, priority);
2106                         }
2107                 }
2108                 /*
2109                  * On large memory systems, scan >> priority can become
2110                  * really large. This is fine for the starting priority;
2111                  * we want to put equal scanning pressure on each zone.
2112                  * However, if the VM has a harder time of freeing pages,
2113                  * with multiple processes reclaiming pages, the total
2114                  * freeing target can get unreasonably large.
2115                  */
2116                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2117                         break;
2118         }
2119         blk_finish_plug(&plug);
2120         sc->nr_reclaimed += nr_reclaimed;
2121
2122         /*
2123          * Even if we did not try to evict anon pages at all, we want to
2124          * rebalance the anon lru active/inactive ratio.
2125          */
2126         if (inactive_anon_is_low(mz))
2127                 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2128
2129         /* reclaim/compaction might need reclaim to continue */
2130         if (should_continue_reclaim(mz, nr_reclaimed,
2131                                         sc->nr_scanned - nr_scanned, sc))
2132                 goto restart;
2133
2134         throttle_vm_writeout(sc->gfp_mask);
2135 }
2136
2137 static void shrink_zone(int priority, struct zone *zone,
2138                         struct scan_control *sc)
2139 {
2140         struct mem_cgroup *root = sc->target_mem_cgroup;
2141         struct mem_cgroup_reclaim_cookie reclaim = {
2142                 .zone = zone,
2143                 .priority = priority,
2144         };
2145         struct mem_cgroup *memcg;
2146
2147         memcg = mem_cgroup_iter(root, NULL, &reclaim);
2148         do {
2149                 struct mem_cgroup_zone mz = {
2150                         .mem_cgroup = memcg,
2151                         .zone = zone,
2152                 };
2153
2154                 shrink_mem_cgroup_zone(priority, &mz, sc);
2155                 /*
2156                  * Limit reclaim has historically picked one memcg and
2157                  * scanned it with decreasing priority levels until
2158                  * nr_to_reclaim had been reclaimed.  This priority
2159                  * cycle is thus over after a single memcg.
2160                  *
2161                  * Direct reclaim and kswapd, on the other hand, have
2162                  * to scan all memory cgroups to fulfill the overall
2163                  * scan target for the zone.
2164                  */
2165                 if (!global_reclaim(sc)) {
2166                         mem_cgroup_iter_break(root, memcg);
2167                         break;
2168                 }
2169                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2170         } while (memcg);
2171 }
2172
2173 /* Returns true if compaction should go ahead for a high-order request */
2174 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2175 {
2176         unsigned long balance_gap, watermark;
2177         bool watermark_ok;
2178
2179         /* Do not consider compaction for orders reclaim is meant to satisfy */
2180         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2181                 return false;
2182
2183         /*
2184          * Compaction takes time to run and there are potentially other
2185          * callers using the pages just freed. Continue reclaiming until
2186          * there is a buffer of free pages available to give compaction
2187          * a reasonable chance of completing and allocating the page
2188          */
2189         balance_gap = min(low_wmark_pages(zone),
2190                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2191                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2192         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2193         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2194
2195         /*
2196          * If compaction is deferred, reclaim up to a point where
2197          * compaction will have a chance of success when re-enabled
2198          */
2199         if (compaction_deferred(zone))
2200                 return watermark_ok;
2201
2202         /* If compaction is not ready to start, keep reclaiming */
2203         if (!compaction_suitable(zone, sc->order))
2204                 return false;
2205
2206         return watermark_ok;
2207 }
2208
2209 /*
2210  * This is the direct reclaim path, for page-allocating processes.  We only
2211  * try to reclaim pages from zones which will satisfy the caller's allocation
2212  * request.
2213  *
2214  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2215  * Because:
2216  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2217  *    allocation or
2218  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2219  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2220  *    zone defense algorithm.
2221  *
2222  * If a zone is deemed to be full of pinned pages then just give it a light
2223  * scan then give up on it.
2224  *
2225  * This function returns true if a zone is being reclaimed for a costly
2226  * high-order allocation and compaction is ready to begin. This indicates to
2227  * the caller that it should consider retrying the allocation instead of
2228  * further reclaim.
2229  */
2230 static bool shrink_zones(int priority, struct zonelist *zonelist,
2231                                         struct scan_control *sc)
2232 {
2233         struct zoneref *z;
2234         struct zone *zone;
2235         unsigned long nr_soft_reclaimed;
2236         unsigned long nr_soft_scanned;
2237         bool aborted_reclaim = false;
2238
2239         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2240                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2241                 if (!populated_zone(zone))
2242                         continue;
2243                 /*
2244                  * Take care memory controller reclaiming has small influence
2245                  * to global LRU.
2246                  */
2247                 if (global_reclaim(sc)) {
2248                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2249                                 continue;
2250                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2251                                 continue;       /* Let kswapd poll it */
2252                         if (COMPACTION_BUILD) {
2253                                 /*
2254                                  * If we already have plenty of memory free for
2255                                  * compaction in this zone, don't free any more.
2256                                  * Even though compaction is invoked for any
2257                                  * non-zero order, only frequent costly order
2258                                  * reclamation is disruptive enough to become a
2259                                  * noticable problem, like transparent huge page
2260                                  * allocations.
2261                                  */
2262                                 if (compaction_ready(zone, sc)) {
2263                                         aborted_reclaim = true;
2264                                         continue;
2265                                 }
2266                         }
2267                         /*
2268                          * This steals pages from memory cgroups over softlimit
2269                          * and returns the number of reclaimed pages and
2270                          * scanned pages. This works for global memory pressure
2271                          * and balancing, not for a memcg's limit.
2272                          */
2273                         nr_soft_scanned = 0;
2274                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2275                                                 sc->order, sc->gfp_mask,
2276                                                 &nr_soft_scanned);
2277                         sc->nr_reclaimed += nr_soft_reclaimed;
2278                         sc->nr_scanned += nr_soft_scanned;
2279                         /* need some check for avoid more shrink_zone() */
2280                 }
2281
2282                 shrink_zone(priority, zone, sc);
2283         }
2284
2285         return aborted_reclaim;
2286 }
2287
2288 static bool zone_reclaimable(struct zone *zone)
2289 {
2290         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2291 }
2292
2293 /* All zones in zonelist are unreclaimable? */
2294 static bool all_unreclaimable(struct zonelist *zonelist,
2295                 struct scan_control *sc)
2296 {
2297         struct zoneref *z;
2298         struct zone *zone;
2299
2300         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2301                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2302                 if (!populated_zone(zone))
2303                         continue;
2304                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2305                         continue;
2306                 if (!zone->all_unreclaimable)
2307                         return false;
2308         }
2309
2310         return true;
2311 }
2312
2313 /*
2314  * This is the main entry point to direct page reclaim.
2315  *
2316  * If a full scan of the inactive list fails to free enough memory then we
2317  * are "out of memory" and something needs to be killed.
2318  *
2319  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2320  * high - the zone may be full of dirty or under-writeback pages, which this
2321  * caller can't do much about.  We kick the writeback threads and take explicit
2322  * naps in the hope that some of these pages can be written.  But if the
2323  * allocating task holds filesystem locks which prevent writeout this might not
2324  * work, and the allocation attempt will fail.
2325  *
2326  * returns:     0, if no pages reclaimed
2327  *              else, the number of pages reclaimed
2328  */
2329 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2330                                         struct scan_control *sc,
2331                                         struct shrink_control *shrink)
2332 {
2333         int priority;
2334         unsigned long total_scanned = 0;
2335         struct reclaim_state *reclaim_state = current->reclaim_state;
2336         struct zoneref *z;
2337         struct zone *zone;
2338         unsigned long writeback_threshold;
2339         bool aborted_reclaim;
2340
2341         get_mems_allowed();
2342         delayacct_freepages_start();
2343
2344         if (global_reclaim(sc))
2345                 count_vm_event(ALLOCSTALL);
2346
2347         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2348                 sc->nr_scanned = 0;
2349                 if (!priority)
2350                         disable_swap_token(sc->target_mem_cgroup);
2351                 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2352
2353                 /*
2354                  * Don't shrink slabs when reclaiming memory from
2355                  * over limit cgroups
2356                  */
2357                 if (global_reclaim(sc)) {
2358                         unsigned long lru_pages = 0;
2359                         for_each_zone_zonelist(zone, z, zonelist,
2360                                         gfp_zone(sc->gfp_mask)) {
2361                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2362                                         continue;
2363
2364                                 lru_pages += zone_reclaimable_pages(zone);
2365                         }
2366
2367                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2368                         if (reclaim_state) {
2369                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2370                                 reclaim_state->reclaimed_slab = 0;
2371                         }
2372                 }
2373                 total_scanned += sc->nr_scanned;
2374                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2375                         goto out;
2376
2377                 /*
2378                  * Try to write back as many pages as we just scanned.  This
2379                  * tends to cause slow streaming writers to write data to the
2380                  * disk smoothly, at the dirtying rate, which is nice.   But
2381                  * that's undesirable in laptop mode, where we *want* lumpy
2382                  * writeout.  So in laptop mode, write out the whole world.
2383                  */
2384                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2385                 if (total_scanned > writeback_threshold) {
2386                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2387                                                 WB_REASON_TRY_TO_FREE_PAGES);
2388                         sc->may_writepage = 1;
2389                 }
2390
2391                 /* Take a nap, wait for some writeback to complete */
2392                 if (!sc->hibernation_mode && sc->nr_scanned &&
2393                     priority < DEF_PRIORITY - 2) {
2394                         struct zone *preferred_zone;
2395
2396                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2397                                                 &cpuset_current_mems_allowed,
2398                                                 &preferred_zone);
2399                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2400                 }
2401         }
2402
2403 out:
2404         delayacct_freepages_end();
2405         put_mems_allowed();
2406
2407         if (sc->nr_reclaimed)
2408                 return sc->nr_reclaimed;
2409
2410         /*
2411          * As hibernation is going on, kswapd is freezed so that it can't mark
2412          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2413          * check.
2414          */
2415         if (oom_killer_disabled)
2416                 return 0;
2417
2418         /* Aborted reclaim to try compaction? don't OOM, then */
2419         if (aborted_reclaim)
2420                 return 1;
2421
2422         /* top priority shrink_zones still had more to do? don't OOM, then */
2423         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2424                 return 1;
2425
2426         return 0;
2427 }
2428
2429 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2430                                 gfp_t gfp_mask, nodemask_t *nodemask)
2431 {
2432         unsigned long nr_reclaimed;
2433         struct scan_control sc = {
2434                 .gfp_mask = gfp_mask,
2435                 .may_writepage = !laptop_mode,
2436                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2437                 .may_unmap = 1,
2438                 .may_swap = 1,
2439                 .order = order,
2440                 .target_mem_cgroup = NULL,
2441                 .nodemask = nodemask,
2442         };
2443         struct shrink_control shrink = {
2444                 .gfp_mask = sc.gfp_mask,
2445         };
2446
2447         trace_mm_vmscan_direct_reclaim_begin(order,
2448                                 sc.may_writepage,
2449                                 gfp_mask);
2450
2451         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2452
2453         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2454
2455         return nr_reclaimed;
2456 }
2457
2458 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2459
2460 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2461                                                 gfp_t gfp_mask, bool noswap,
2462                                                 struct zone *zone,
2463                                                 unsigned long *nr_scanned)
2464 {
2465         struct scan_control sc = {
2466                 .nr_scanned = 0,
2467                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2468                 .may_writepage = !laptop_mode,
2469                 .may_unmap = 1,
2470                 .may_swap = !noswap,
2471                 .order = 0,
2472                 .target_mem_cgroup = memcg,
2473         };
2474         struct mem_cgroup_zone mz = {
2475                 .mem_cgroup = memcg,
2476                 .zone = zone,
2477         };
2478
2479         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2480                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2481
2482         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2483                                                       sc.may_writepage,
2484                                                       sc.gfp_mask);
2485
2486         /*
2487          * NOTE: Although we can get the priority field, using it
2488          * here is not a good idea, since it limits the pages we can scan.
2489          * if we don't reclaim here, the shrink_zone from balance_pgdat
2490          * will pick up pages from other mem cgroup's as well. We hack
2491          * the priority and make it zero.
2492          */
2493         shrink_mem_cgroup_zone(0, &mz, &sc);
2494
2495         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2496
2497         *nr_scanned = sc.nr_scanned;
2498         return sc.nr_reclaimed;
2499 }
2500
2501 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2502                                            gfp_t gfp_mask,
2503                                            bool noswap)
2504 {
2505         struct zonelist *zonelist;
2506         unsigned long nr_reclaimed;
2507         int nid;
2508         struct scan_control sc = {
2509                 .may_writepage = !laptop_mode,
2510                 .may_unmap = 1,
2511                 .may_swap = !noswap,
2512                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2513                 .order = 0,
2514                 .target_mem_cgroup = memcg,
2515                 .nodemask = NULL, /* we don't care the placement */
2516                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2517                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2518         };
2519         struct shrink_control shrink = {
2520                 .gfp_mask = sc.gfp_mask,
2521         };
2522
2523         /*
2524          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2525          * take care of from where we get pages. So the node where we start the
2526          * scan does not need to be the current node.
2527          */
2528         nid = mem_cgroup_select_victim_node(memcg);
2529
2530         zonelist = NODE_DATA(nid)->node_zonelists;
2531
2532         trace_mm_vmscan_memcg_reclaim_begin(0,
2533                                             sc.may_writepage,
2534                                             sc.gfp_mask);
2535
2536         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2537
2538         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2539
2540         return nr_reclaimed;
2541 }
2542 #endif
2543
2544 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2545                             int priority)
2546 {
2547         struct mem_cgroup *memcg;
2548
2549         if (!total_swap_pages)
2550                 return;
2551
2552         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2553         do {
2554                 struct mem_cgroup_zone mz = {
2555                         .mem_cgroup = memcg,
2556                         .zone = zone,
2557                 };
2558
2559                 if (inactive_anon_is_low(&mz))
2560                         shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2561                                            sc, priority, 0);
2562
2563                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2564         } while (memcg);
2565 }
2566
2567 /*
2568  * pgdat_balanced is used when checking if a node is balanced for high-order
2569  * allocations. Only zones that meet watermarks and are in a zone allowed
2570  * by the callers classzone_idx are added to balanced_pages. The total of
2571  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2572  * for the node to be considered balanced. Forcing all zones to be balanced
2573  * for high orders can cause excessive reclaim when there are imbalanced zones.
2574  * The choice of 25% is due to
2575  *   o a 16M DMA zone that is balanced will not balance a zone on any
2576  *     reasonable sized machine
2577  *   o On all other machines, the top zone must be at least a reasonable
2578  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2579  *     would need to be at least 256M for it to be balance a whole node.
2580  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2581  *     to balance a node on its own. These seemed like reasonable ratios.
2582  */
2583 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2584                                                 int classzone_idx)
2585 {
2586         unsigned long present_pages = 0;
2587         int i;
2588
2589         for (i = 0; i <= classzone_idx; i++)
2590                 present_pages += pgdat->node_zones[i].present_pages;
2591
2592         /* A special case here: if zone has no page, we think it's balanced */
2593         return balanced_pages >= (present_pages >> 2);
2594 }
2595
2596 /* is kswapd sleeping prematurely? */
2597 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2598                                         int classzone_idx)
2599 {
2600         int i;
2601         unsigned long balanced = 0;
2602         bool all_zones_ok = true;
2603
2604         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2605         if (remaining)
2606                 return true;
2607
2608         /* Check the watermark levels */
2609         for (i = 0; i <= classzone_idx; i++) {
2610                 struct zone *zone = pgdat->node_zones + i;
2611
2612                 if (!populated_zone(zone))
2613                         continue;
2614
2615                 /*
2616                  * balance_pgdat() skips over all_unreclaimable after
2617                  * DEF_PRIORITY. Effectively, it considers them balanced so
2618                  * they must be considered balanced here as well if kswapd
2619                  * is to sleep
2620                  */
2621                 if (zone->all_unreclaimable) {
2622                         balanced += zone->present_pages;
2623                         continue;
2624                 }
2625
2626                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2627                                                         i, 0))
2628                         all_zones_ok = false;
2629                 else
2630                         balanced += zone->present_pages;
2631         }
2632
2633         /*
2634          * For high-order requests, the balanced zones must contain at least
2635          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2636          * must be balanced
2637          */
2638         if (order)
2639                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2640         else
2641                 return !all_zones_ok;
2642 }
2643
2644 /*
2645  * For kswapd, balance_pgdat() will work across all this node's zones until
2646  * they are all at high_wmark_pages(zone).
2647  *
2648  * Returns the final order kswapd was reclaiming at
2649  *
2650  * There is special handling here for zones which are full of pinned pages.
2651  * This can happen if the pages are all mlocked, or if they are all used by
2652  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2653  * What we do is to detect the case where all pages in the zone have been
2654  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2655  * dead and from now on, only perform a short scan.  Basically we're polling
2656  * the zone for when the problem goes away.
2657  *
2658  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2659  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2660  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2661  * lower zones regardless of the number of free pages in the lower zones. This
2662  * interoperates with the page allocator fallback scheme to ensure that aging
2663  * of pages is balanced across the zones.
2664  */
2665 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2666                                                         int *classzone_idx)
2667 {
2668         int all_zones_ok;
2669         unsigned long balanced;
2670         int priority;
2671         int i;
2672         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2673         unsigned long total_scanned;
2674         struct reclaim_state *reclaim_state = current->reclaim_state;
2675         unsigned long nr_soft_reclaimed;
2676         unsigned long nr_soft_scanned;
2677         struct scan_control sc = {
2678                 .gfp_mask = GFP_KERNEL,
2679                 .may_unmap = 1,
2680                 .may_swap = 1,
2681                 /*
2682                  * kswapd doesn't want to be bailed out while reclaim. because
2683                  * we want to put equal scanning pressure on each zone.
2684                  */
2685                 .nr_to_reclaim = ULONG_MAX,
2686                 .order = order,
2687                 .target_mem_cgroup = NULL,
2688         };
2689         struct shrink_control shrink = {
2690                 .gfp_mask = sc.gfp_mask,
2691         };
2692 loop_again:
2693         total_scanned = 0;
2694         sc.nr_reclaimed = 0;
2695         sc.may_writepage = !laptop_mode;
2696         count_vm_event(PAGEOUTRUN);
2697
2698         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2699                 unsigned long lru_pages = 0;
2700                 int has_under_min_watermark_zone = 0;
2701
2702                 /* The swap token gets in the way of swapout... */
2703                 if (!priority)
2704                         disable_swap_token(NULL);
2705
2706                 all_zones_ok = 1;
2707                 balanced = 0;
2708
2709                 /*
2710                  * Scan in the highmem->dma direction for the highest
2711                  * zone which needs scanning
2712                  */
2713                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2714                         struct zone *zone = pgdat->node_zones + i;
2715
2716                         if (!populated_zone(zone))
2717                                 continue;
2718
2719                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2720                                 continue;
2721
2722                         /*
2723                          * Do some background aging of the anon list, to give
2724                          * pages a chance to be referenced before reclaiming.
2725                          */
2726                         age_active_anon(zone, &sc, priority);
2727
2728                         if (!zone_watermark_ok_safe(zone, order,
2729                                         high_wmark_pages(zone), 0, 0)) {
2730                                 end_zone = i;
2731                                 break;
2732                         } else {
2733                                 /* If balanced, clear the congested flag */
2734                                 zone_clear_flag(zone, ZONE_CONGESTED);
2735                         }
2736                 }
2737                 if (i < 0)
2738                         goto out;
2739
2740                 for (i = 0; i <= end_zone; i++) {
2741                         struct zone *zone = pgdat->node_zones + i;
2742
2743                         lru_pages += zone_reclaimable_pages(zone);
2744                 }
2745
2746                 /*
2747                  * Now scan the zone in the dma->highmem direction, stopping
2748                  * at the last zone which needs scanning.
2749                  *
2750                  * We do this because the page allocator works in the opposite
2751                  * direction.  This prevents the page allocator from allocating
2752                  * pages behind kswapd's direction of progress, which would
2753                  * cause too much scanning of the lower zones.
2754                  */
2755                 for (i = 0; i <= end_zone; i++) {
2756                         struct zone *zone = pgdat->node_zones + i;
2757                         int nr_slab;
2758                         unsigned long balance_gap;
2759
2760                         if (!populated_zone(zone))
2761                                 continue;
2762
2763                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2764                                 continue;
2765
2766                         sc.nr_scanned = 0;
2767
2768                         nr_soft_scanned = 0;
2769                         /*
2770                          * Call soft limit reclaim before calling shrink_zone.
2771                          */
2772                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2773                                                         order, sc.gfp_mask,
2774                                                         &nr_soft_scanned);
2775                         sc.nr_reclaimed += nr_soft_reclaimed;
2776                         total_scanned += nr_soft_scanned;
2777
2778                         /*
2779                          * We put equal pressure on every zone, unless
2780                          * one zone has way too many pages free
2781                          * already. The "too many pages" is defined
2782                          * as the high wmark plus a "gap" where the
2783                          * gap is either the low watermark or 1%
2784                          * of the zone, whichever is smaller.
2785                          */
2786                         balance_gap = min(low_wmark_pages(zone),
2787                                 (zone->present_pages +
2788                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2789                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2790                         if (!zone_watermark_ok_safe(zone, order,
2791                                         high_wmark_pages(zone) + balance_gap,
2792                                         end_zone, 0)) {
2793                                 shrink_zone(priority, zone, &sc);
2794
2795                                 reclaim_state->reclaimed_slab = 0;
2796                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2797                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2798                                 total_scanned += sc.nr_scanned;
2799
2800                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2801                                         zone->all_unreclaimable = 1;
2802                         }
2803
2804                         /*
2805                          * If we've done a decent amount of scanning and
2806                          * the reclaim ratio is low, start doing writepage
2807                          * even in laptop mode
2808                          */
2809                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2810                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2811                                 sc.may_writepage = 1;
2812
2813                         if (zone->all_unreclaimable) {
2814                                 if (end_zone && end_zone == i)
2815                                         end_zone--;
2816                                 continue;
2817                         }
2818
2819                         if (!zone_watermark_ok_safe(zone, order,
2820                                         high_wmark_pages(zone), end_zone, 0)) {
2821                                 all_zones_ok = 0;
2822                                 /*
2823                                  * We are still under min water mark.  This
2824                                  * means that we have a GFP_ATOMIC allocation
2825                                  * failure risk. Hurry up!
2826                                  */
2827                                 if (!zone_watermark_ok_safe(zone, order,
2828                                             min_wmark_pages(zone), end_zone, 0))
2829                                         has_under_min_watermark_zone = 1;
2830                         } else {
2831                                 /*
2832                                  * If a zone reaches its high watermark,
2833                                  * consider it to be no longer congested. It's
2834                                  * possible there are dirty pages backed by
2835                                  * congested BDIs but as pressure is relieved,
2836                                  * spectulatively avoid congestion waits
2837                                  */
2838                                 zone_clear_flag(zone, ZONE_CONGESTED);
2839                                 if (i <= *classzone_idx)
2840                                         balanced += zone->present_pages;
2841                         }
2842
2843                 }
2844                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2845                         break;          /* kswapd: all done */
2846                 /*
2847                  * OK, kswapd is getting into trouble.  Take a nap, then take
2848                  * another pass across the zones.
2849                  */
2850                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2851                         if (has_under_min_watermark_zone)
2852                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2853                         else
2854                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2855                 }
2856
2857                 /*
2858                  * We do this so kswapd doesn't build up large priorities for
2859                  * example when it is freeing in parallel with allocators. It
2860                  * matches the direct reclaim path behaviour in terms of impact
2861                  * on zone->*_priority.
2862                  */
2863                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2864                         break;
2865         }
2866 out:
2867
2868         /*
2869          * order-0: All zones must meet high watermark for a balanced node
2870          * high-order: Balanced zones must make up at least 25% of the node
2871          *             for the node to be balanced
2872          */
2873         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2874                 cond_resched();
2875
2876                 try_to_freeze();
2877
2878                 /*
2879                  * Fragmentation may mean that the system cannot be
2880                  * rebalanced for high-order allocations in all zones.
2881                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2882                  * it means the zones have been fully scanned and are still
2883                  * not balanced. For high-order allocations, there is
2884                  * little point trying all over again as kswapd may
2885                  * infinite loop.
2886                  *
2887                  * Instead, recheck all watermarks at order-0 as they
2888                  * are the most important. If watermarks are ok, kswapd will go
2889                  * back to sleep. High-order users can still perform direct
2890                  * reclaim if they wish.
2891                  */
2892                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2893                         order = sc.order = 0;
2894
2895                 goto loop_again;
2896         }
2897
2898         /*
2899          * If kswapd was reclaiming at a higher order, it has the option of
2900          * sleeping without all zones being balanced. Before it does, it must
2901          * ensure that the watermarks for order-0 on *all* zones are met and
2902          * that the congestion flags are cleared. The congestion flag must
2903          * be cleared as kswapd is the only mechanism that clears the flag
2904          * and it is potentially going to sleep here.
2905          */
2906         if (order) {
2907                 for (i = 0; i <= end_zone; i++) {
2908                         struct zone *zone = pgdat->node_zones + i;
2909
2910                         if (!populated_zone(zone))
2911                                 continue;
2912
2913                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2914                                 continue;
2915
2916                         /* Confirm the zone is balanced for order-0 */
2917                         if (!zone_watermark_ok(zone, 0,
2918                                         high_wmark_pages(zone), 0, 0)) {
2919                                 order = sc.order = 0;
2920                                 goto loop_again;
2921                         }
2922
2923                         /* If balanced, clear the congested flag */
2924                         zone_clear_flag(zone, ZONE_CONGESTED);
2925                         if (i <= *classzone_idx)
2926                                 balanced += zone->present_pages;
2927                 }
2928         }
2929
2930         /*
2931          * Return the order we were reclaiming at so sleeping_prematurely()
2932          * makes a decision on the order we were last reclaiming at. However,
2933          * if another caller entered the allocator slow path while kswapd
2934          * was awake, order will remain at the higher level
2935          */
2936         *classzone_idx = end_zone;
2937         return order;
2938 }
2939
2940 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2941 {
2942         long remaining = 0;
2943         DEFINE_WAIT(wait);
2944
2945         if (freezing(current) || kthread_should_stop())
2946                 return;
2947
2948         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2949
2950         /* Try to sleep for a short interval */
2951         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2952                 remaining = schedule_timeout(HZ/10);
2953                 finish_wait(&pgdat->kswapd_wait, &wait);
2954                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2955         }
2956
2957         /*
2958          * After a short sleep, check if it was a premature sleep. If not, then
2959          * go fully to sleep until explicitly woken up.
2960          */
2961         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2962                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2963
2964                 /*
2965                  * vmstat counters are not perfectly accurate and the estimated
2966                  * value for counters such as NR_FREE_PAGES can deviate from the
2967                  * true value by nr_online_cpus * threshold. To avoid the zone
2968                  * watermarks being breached while under pressure, we reduce the
2969                  * per-cpu vmstat threshold while kswapd is awake and restore
2970                  * them before going back to sleep.
2971                  */
2972                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2973                 schedule();
2974                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2975         } else {
2976                 if (remaining)
2977                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2978                 else
2979                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2980         }
2981         finish_wait(&pgdat->kswapd_wait, &wait);
2982 }
2983
2984 /*
2985  * The background pageout daemon, started as a kernel thread
2986  * from the init process.
2987  *
2988  * This basically trickles out pages so that we have _some_
2989  * free memory available even if there is no other activity
2990  * that frees anything up. This is needed for things like routing
2991  * etc, where we otherwise might have all activity going on in
2992  * asynchronous contexts that cannot page things out.
2993  *
2994  * If there are applications that are active memory-allocators
2995  * (most normal use), this basically shouldn't matter.
2996  */
2997 static int kswapd(void *p)
2998 {
2999         unsigned long order, new_order;
3000         unsigned balanced_order;
3001         int classzone_idx, new_classzone_idx;
3002         int balanced_classzone_idx;
3003         pg_data_t *pgdat = (pg_data_t*)p;
3004         struct task_struct *tsk = current;
3005
3006         struct reclaim_state reclaim_state = {
3007                 .reclaimed_slab = 0,
3008         };
3009         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3010
3011         lockdep_set_current_reclaim_state(GFP_KERNEL);
3012
3013         if (!cpumask_empty(cpumask))
3014                 set_cpus_allowed_ptr(tsk, cpumask);
3015         current->reclaim_state = &reclaim_state;
3016
3017         /*
3018          * Tell the memory management that we're a "memory allocator",
3019          * and that if we need more memory we should get access to it
3020          * regardless (see "__alloc_pages()"). "kswapd" should
3021          * never get caught in the normal page freeing logic.
3022          *
3023          * (Kswapd normally doesn't need memory anyway, but sometimes
3024          * you need a small amount of memory in order to be able to
3025          * page out something else, and this flag essentially protects
3026          * us from recursively trying to free more memory as we're
3027          * trying to free the first piece of memory in the first place).
3028          */
3029         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3030         set_freezable();
3031
3032         order = new_order = 0;
3033         balanced_order = 0;
3034         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3035         balanced_classzone_idx = classzone_idx;
3036         for ( ; ; ) {
3037                 int ret;
3038
3039                 /*
3040                  * If the last balance_pgdat was unsuccessful it's unlikely a
3041                  * new request of a similar or harder type will succeed soon
3042                  * so consider going to sleep on the basis we reclaimed at
3043                  */
3044                 if (balanced_classzone_idx >= new_classzone_idx &&
3045                                         balanced_order == new_order) {
3046                         new_order = pgdat->kswapd_max_order;
3047                         new_classzone_idx = pgdat->classzone_idx;
3048                         pgdat->kswapd_max_order =  0;
3049                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3050                 }
3051
3052                 if (order < new_order || classzone_idx > new_classzone_idx) {
3053                         /*
3054                          * Don't sleep if someone wants a larger 'order'
3055                          * allocation or has tigher zone constraints
3056                          */
3057                         order = new_order;
3058                         classzone_idx = new_classzone_idx;
3059                 } else {
3060                         kswapd_try_to_sleep(pgdat, balanced_order,
3061                                                 balanced_classzone_idx);
3062                         order = pgdat->kswapd_max_order;
3063                         classzone_idx = pgdat->classzone_idx;
3064                         new_order = order;
3065                         new_classzone_idx = classzone_idx;
3066                         pgdat->kswapd_max_order = 0;
3067                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3068                 }
3069
3070                 ret = try_to_freeze();
3071                 if (kthread_should_stop())
3072                         break;
3073
3074                 /*
3075                  * We can speed up thawing tasks if we don't call balance_pgdat
3076                  * after returning from the refrigerator
3077                  */
3078                 if (!ret) {
3079                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3080                         balanced_classzone_idx = classzone_idx;
3081                         balanced_order = balance_pgdat(pgdat, order,
3082                                                 &balanced_classzone_idx);
3083                 }
3084         }
3085         return 0;
3086 }
3087
3088 /*
3089  * A zone is low on free memory, so wake its kswapd task to service it.
3090  */
3091 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3092 {
3093         pg_data_t *pgdat;
3094
3095         if (!populated_zone(zone))
3096                 return;
3097
3098         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3099                 return;
3100         pgdat = zone->zone_pgdat;
3101         if (pgdat->kswapd_max_order < order) {
3102                 pgdat->kswapd_max_order = order;
3103                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3104         }
3105         if (!waitqueue_active(&pgdat->kswapd_wait))
3106                 return;
3107         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3108                 return;
3109
3110         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3111         wake_up_interruptible(&pgdat->kswapd_wait);
3112 }
3113
3114 /*
3115  * The reclaimable count would be mostly accurate.
3116  * The less reclaimable pages may be
3117  * - mlocked pages, which will be moved to unevictable list when encountered
3118  * - mapped pages, which may require several travels to be reclaimed
3119  * - dirty pages, which is not "instantly" reclaimable
3120  */
3121 unsigned long global_reclaimable_pages(void)
3122 {
3123         int nr;
3124
3125         nr = global_page_state(NR_ACTIVE_FILE) +
3126              global_page_state(NR_INACTIVE_FILE);
3127
3128         if (nr_swap_pages > 0)
3129                 nr += global_page_state(NR_ACTIVE_ANON) +
3130                       global_page_state(NR_INACTIVE_ANON);
3131
3132         return nr;
3133 }
3134
3135 unsigned long zone_reclaimable_pages(struct zone *zone)
3136 {
3137         int nr;
3138
3139         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3140              zone_page_state(zone, NR_INACTIVE_FILE);
3141
3142         if (nr_swap_pages > 0)
3143                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3144                       zone_page_state(zone, NR_INACTIVE_ANON);
3145
3146         return nr;
3147 }
3148
3149 #ifdef CONFIG_HIBERNATION
3150 /*
3151  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3152  * freed pages.
3153  *
3154  * Rather than trying to age LRUs the aim is to preserve the overall
3155  * LRU order by reclaiming preferentially
3156  * inactive > active > active referenced > active mapped
3157  */
3158 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3159 {
3160         struct reclaim_state reclaim_state;
3161         struct scan_control sc = {
3162                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3163                 .may_swap = 1,
3164                 .may_unmap = 1,
3165                 .may_writepage = 1,
3166                 .nr_to_reclaim = nr_to_reclaim,
3167                 .hibernation_mode = 1,
3168                 .order = 0,
3169         };
3170         struct shrink_control shrink = {
3171                 .gfp_mask = sc.gfp_mask,
3172         };
3173         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3174         struct task_struct *p = current;
3175         unsigned long nr_reclaimed;
3176
3177         p->flags |= PF_MEMALLOC;
3178         lockdep_set_current_reclaim_state(sc.gfp_mask);
3179         reclaim_state.reclaimed_slab = 0;
3180         p->reclaim_state = &reclaim_state;
3181
3182         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3183
3184         p->reclaim_state = NULL;
3185         lockdep_clear_current_reclaim_state();
3186         p->flags &= ~PF_MEMALLOC;
3187
3188         return nr_reclaimed;
3189 }
3190 #endif /* CONFIG_HIBERNATION */
3191
3192 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3193    not required for correctness.  So if the last cpu in a node goes
3194    away, we get changed to run anywhere: as the first one comes back,
3195    restore their cpu bindings. */
3196 static int __devinit cpu_callback(struct notifier_block *nfb,
3197                                   unsigned long action, void *hcpu)
3198 {
3199         int nid;
3200
3201         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3202                 for_each_node_state(nid, N_HIGH_MEMORY) {
3203                         pg_data_t *pgdat = NODE_DATA(nid);
3204                         const struct cpumask *mask;
3205
3206                         mask = cpumask_of_node(pgdat->node_id);
3207
3208                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3209                                 /* One of our CPUs online: restore mask */
3210                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3211                 }
3212         }
3213         return NOTIFY_OK;
3214 }
3215
3216 /*
3217  * This kswapd start function will be called by init and node-hot-add.
3218  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3219  */
3220 int kswapd_run(int nid)
3221 {
3222         pg_data_t *pgdat = NODE_DATA(nid);
3223         int ret = 0;
3224
3225         if (pgdat->kswapd)
3226                 return 0;
3227
3228         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3229         if (IS_ERR(pgdat->kswapd)) {
3230                 /* failure at boot is fatal */
3231                 BUG_ON(system_state == SYSTEM_BOOTING);
3232                 printk("Failed to start kswapd on node %d\n",nid);
3233                 ret = -1;
3234         }
3235         return ret;
3236 }
3237
3238 /*
3239  * Called by memory hotplug when all memory in a node is offlined.
3240  */
3241 void kswapd_stop(int nid)
3242 {
3243         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3244
3245         if (kswapd)
3246                 kthread_stop(kswapd);
3247 }
3248
3249 static int __init kswapd_init(void)
3250 {
3251         int nid;
3252
3253         swap_setup();
3254         for_each_node_state(nid, N_HIGH_MEMORY)
3255                 kswapd_run(nid);
3256         hotcpu_notifier(cpu_callback, 0);
3257         return 0;
3258 }
3259
3260 module_init(kswapd_init)
3261
3262 #ifdef CONFIG_NUMA
3263 /*
3264  * Zone reclaim mode
3265  *
3266  * If non-zero call zone_reclaim when the number of free pages falls below
3267  * the watermarks.
3268  */
3269 int zone_reclaim_mode __read_mostly;
3270
3271 #define RECLAIM_OFF 0
3272 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3273 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3274 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3275
3276 /*
3277  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3278  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3279  * a zone.
3280  */
3281 #define ZONE_RECLAIM_PRIORITY 4
3282
3283 /*
3284  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3285  * occur.
3286  */
3287 int sysctl_min_unmapped_ratio = 1;
3288
3289 /*
3290  * If the number of slab pages in a zone grows beyond this percentage then
3291  * slab reclaim needs to occur.
3292  */
3293 int sysctl_min_slab_ratio = 5;
3294
3295 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3296 {
3297         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3298         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3299                 zone_page_state(zone, NR_ACTIVE_FILE);
3300
3301         /*
3302          * It's possible for there to be more file mapped pages than
3303          * accounted for by the pages on the file LRU lists because
3304          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3305          */
3306         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3307 }
3308
3309 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3310 static long zone_pagecache_reclaimable(struct zone *zone)
3311 {
3312         long nr_pagecache_reclaimable;
3313         long delta = 0;
3314
3315         /*
3316          * If RECLAIM_SWAP is set, then all file pages are considered
3317          * potentially reclaimable. Otherwise, we have to worry about
3318          * pages like swapcache and zone_unmapped_file_pages() provides
3319          * a better estimate
3320          */
3321         if (zone_reclaim_mode & RECLAIM_SWAP)
3322                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3323         else
3324                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3325
3326         /* If we can't clean pages, remove dirty pages from consideration */
3327         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3328                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3329
3330         /* Watch for any possible underflows due to delta */
3331         if (unlikely(delta > nr_pagecache_reclaimable))
3332                 delta = nr_pagecache_reclaimable;
3333
3334         return nr_pagecache_reclaimable - delta;
3335 }
3336
3337 /*
3338  * Try to free up some pages from this zone through reclaim.
3339  */
3340 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3341 {
3342         /* Minimum pages needed in order to stay on node */
3343         const unsigned long nr_pages = 1 << order;
3344         struct task_struct *p = current;
3345         struct reclaim_state reclaim_state;
3346         int priority;
3347         struct scan_control sc = {
3348                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3349                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3350                 .may_swap = 1,
3351                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3352                                        SWAP_CLUSTER_MAX),
3353                 .gfp_mask = gfp_mask,
3354                 .order = order,
3355         };
3356         struct shrink_control shrink = {
3357                 .gfp_mask = sc.gfp_mask,
3358         };
3359         unsigned long nr_slab_pages0, nr_slab_pages1;
3360
3361         cond_resched();
3362         /*
3363          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3364          * and we also need to be able to write out pages for RECLAIM_WRITE
3365          * and RECLAIM_SWAP.
3366          */
3367         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3368         lockdep_set_current_reclaim_state(gfp_mask);
3369         reclaim_state.reclaimed_slab = 0;
3370         p->reclaim_state = &reclaim_state;
3371
3372         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3373                 /*
3374                  * Free memory by calling shrink zone with increasing
3375                  * priorities until we have enough memory freed.
3376                  */
3377                 priority = ZONE_RECLAIM_PRIORITY;
3378                 do {
3379                         shrink_zone(priority, zone, &sc);
3380                         priority--;
3381                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3382         }
3383
3384         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3385         if (nr_slab_pages0 > zone->min_slab_pages) {
3386                 /*
3387                  * shrink_slab() does not currently allow us to determine how
3388                  * many pages were freed in this zone. So we take the current
3389                  * number of slab pages and shake the slab until it is reduced
3390                  * by the same nr_pages that we used for reclaiming unmapped
3391                  * pages.
3392                  *
3393                  * Note that shrink_slab will free memory on all zones and may
3394                  * take a long time.
3395                  */
3396                 for (;;) {
3397                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3398
3399                         /* No reclaimable slab or very low memory pressure */
3400                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3401                                 break;
3402
3403                         /* Freed enough memory */
3404                         nr_slab_pages1 = zone_page_state(zone,
3405                                                         NR_SLAB_RECLAIMABLE);
3406                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3407                                 break;
3408                 }
3409
3410                 /*
3411                  * Update nr_reclaimed by the number of slab pages we
3412                  * reclaimed from this zone.
3413                  */
3414                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3415                 if (nr_slab_pages1 < nr_slab_pages0)
3416                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3417         }
3418
3419         p->reclaim_state = NULL;
3420         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3421         lockdep_clear_current_reclaim_state();
3422         return sc.nr_reclaimed >= nr_pages;
3423 }
3424
3425 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3426 {
3427         int node_id;
3428         int ret;
3429
3430         /*
3431          * Zone reclaim reclaims unmapped file backed pages and
3432          * slab pages if we are over the defined limits.
3433          *
3434          * A small portion of unmapped file backed pages is needed for
3435          * file I/O otherwise pages read by file I/O will be immediately
3436          * thrown out if the zone is overallocated. So we do not reclaim
3437          * if less than a specified percentage of the zone is used by
3438          * unmapped file backed pages.
3439          */
3440         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3441             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3442                 return ZONE_RECLAIM_FULL;
3443
3444         if (zone->all_unreclaimable)
3445                 return ZONE_RECLAIM_FULL;
3446
3447         /*
3448          * Do not scan if the allocation should not be delayed.
3449          */
3450         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3451                 return ZONE_RECLAIM_NOSCAN;
3452
3453         /*
3454          * Only run zone reclaim on the local zone or on zones that do not
3455          * have associated processors. This will favor the local processor
3456          * over remote processors and spread off node memory allocations
3457          * as wide as possible.
3458          */
3459         node_id = zone_to_nid(zone);
3460         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3461                 return ZONE_RECLAIM_NOSCAN;
3462
3463         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3464                 return ZONE_RECLAIM_NOSCAN;
3465
3466         ret = __zone_reclaim(zone, gfp_mask, order);
3467         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3468
3469         if (!ret)
3470                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3471
3472         return ret;
3473 }
3474 #endif
3475
3476 /*
3477  * page_evictable - test whether a page is evictable
3478  * @page: the page to test
3479  * @vma: the VMA in which the page is or will be mapped, may be NULL
3480  *
3481  * Test whether page is evictable--i.e., should be placed on active/inactive
3482  * lists vs unevictable list.  The vma argument is !NULL when called from the
3483  * fault path to determine how to instantate a new page.
3484  *
3485  * Reasons page might not be evictable:
3486  * (1) page's mapping marked unevictable
3487  * (2) page is part of an mlocked VMA
3488  *
3489  */
3490 int page_evictable(struct page *page, struct vm_area_struct *vma)
3491 {
3492
3493         if (mapping_unevictable(page_mapping(page)))
3494                 return 0;
3495
3496         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3497                 return 0;
3498
3499         return 1;
3500 }
3501
3502 #ifdef CONFIG_SHMEM
3503 /**
3504  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3505  * @page: page to check evictability and move to appropriate lru list
3506  * @zone: zone page is in
3507  *
3508  * Checks a page for evictability and moves the page to the appropriate
3509  * zone lru list.
3510  *
3511  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3512  * have PageUnevictable set.
3513  *
3514  * This function is only used for SysV IPC SHM_UNLOCK.
3515  */
3516 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3517 {
3518         struct lruvec *lruvec;
3519
3520         VM_BUG_ON(PageActive(page));
3521 retry:
3522         ClearPageUnevictable(page);
3523         if (page_evictable(page, NULL)) {
3524                 enum lru_list l = page_lru_base_type(page);
3525
3526                 __dec_zone_state(zone, NR_UNEVICTABLE);
3527                 lruvec = mem_cgroup_lru_move_lists(zone, page,
3528                                                    LRU_UNEVICTABLE, l);
3529                 list_move(&page->lru, &lruvec->lists[l]);
3530                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3531                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3532         } else {
3533                 /*
3534                  * rotate unevictable list
3535                  */
3536                 SetPageUnevictable(page);
3537                 lruvec = mem_cgroup_lru_move_lists(zone, page, LRU_UNEVICTABLE,
3538                                                    LRU_UNEVICTABLE);
3539                 list_move(&page->lru, &lruvec->lists[LRU_UNEVICTABLE]);
3540                 if (page_evictable(page, NULL))
3541                         goto retry;
3542         }
3543 }
3544
3545 /**
3546  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3547  * @mapping: struct address_space to scan for evictable pages
3548  *
3549  * Scan all pages in mapping.  Check unevictable pages for
3550  * evictability and move them to the appropriate zone lru list.
3551  *
3552  * This function is only used for SysV IPC SHM_UNLOCK.
3553  */
3554 void scan_mapping_unevictable_pages(struct address_space *mapping)
3555 {
3556         pgoff_t next = 0;
3557         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3558                          PAGE_CACHE_SHIFT;
3559         struct zone *zone;
3560         struct pagevec pvec;
3561
3562         if (mapping->nrpages == 0)
3563                 return;
3564
3565         pagevec_init(&pvec, 0);
3566         while (next < end &&
3567                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3568                 int i;
3569                 int pg_scanned = 0;
3570
3571                 zone = NULL;
3572
3573                 for (i = 0; i < pagevec_count(&pvec); i++) {
3574                         struct page *page = pvec.pages[i];
3575                         pgoff_t page_index = page->index;
3576                         struct zone *pagezone = page_zone(page);
3577
3578                         pg_scanned++;
3579                         if (page_index > next)
3580                                 next = page_index;
3581                         next++;
3582
3583                         if (pagezone != zone) {
3584                                 if (zone)
3585                                         spin_unlock_irq(&zone->lru_lock);
3586                                 zone = pagezone;
3587                                 spin_lock_irq(&zone->lru_lock);
3588                         }
3589
3590                         if (PageLRU(page) && PageUnevictable(page))
3591                                 check_move_unevictable_page(page, zone);
3592                 }
3593                 if (zone)
3594                         spin_unlock_irq(&zone->lru_lock);
3595                 pagevec_release(&pvec);
3596
3597                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3598                 cond_resched();
3599         }
3600 }
3601 #else
3602 void scan_mapping_unevictable_pages(struct address_space *mapping)
3603 {
3604 }
3605 #endif /* CONFIG_SHMEM */
3606
3607 static void warn_scan_unevictable_pages(void)
3608 {
3609         printk_once(KERN_WARNING
3610                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3611                     "disabled for lack of a legitimate use case.  If you have "
3612                     "one, please send an email to linux-mm@kvack.org.\n",
3613                     current->comm);
3614 }
3615
3616 /*
3617  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3618  * all nodes' unevictable lists for evictable pages
3619  */
3620 unsigned long scan_unevictable_pages;
3621
3622 int scan_unevictable_handler(struct ctl_table *table, int write,
3623                            void __user *buffer,
3624                            size_t *length, loff_t *ppos)
3625 {
3626         warn_scan_unevictable_pages();
3627         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3628         scan_unevictable_pages = 0;
3629         return 0;
3630 }
3631
3632 #ifdef CONFIG_NUMA
3633 /*
3634  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3635  * a specified node's per zone unevictable lists for evictable pages.
3636  */
3637
3638 static ssize_t read_scan_unevictable_node(struct device *dev,
3639                                           struct device_attribute *attr,
3640                                           char *buf)
3641 {
3642         warn_scan_unevictable_pages();
3643         return sprintf(buf, "0\n");     /* always zero; should fit... */
3644 }
3645
3646 static ssize_t write_scan_unevictable_node(struct device *dev,
3647                                            struct device_attribute *attr,
3648                                         const char *buf, size_t count)
3649 {
3650         warn_scan_unevictable_pages();
3651         return 1;
3652 }
3653
3654
3655 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3656                         read_scan_unevictable_node,
3657                         write_scan_unevictable_node);
3658
3659 int scan_unevictable_register_node(struct node *node)
3660 {
3661         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3662 }
3663
3664 void scan_unevictable_unregister_node(struct node *node)
3665 {
3666         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3667 }
3668 #endif