]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmscan.c
In async mode, compaction doesn't migrate dirty or writeback pages. So,
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108         struct memcg_scanrecord *memcg_record;
109
110         /*
111          * Nodemask of nodes allowed by the caller. If NULL, all nodes
112          * are scanned.
113          */
114         nodemask_t      *nodemask;
115 };
116
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field)                    \
121         do {                                                            \
122                 if ((_page)->lru.prev != _base) {                       \
123                         struct page *prev;                              \
124                                                                         \
125                         prev = lru_to_page(&(_page->lru));              \
126                         prefetch(&prev->_field);                        \
127                 }                                                       \
128         } while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
132
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
135         do {                                                            \
136                 if ((_page)->lru.prev != _base) {                       \
137                         struct page *prev;                              \
138                                                                         \
139                         prev = lru_to_page(&(_page->lru));              \
140                         prefetchw(&prev->_field);                       \
141                 }                                                       \
142         } while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
146
147 /*
148  * From 0 .. 100.  Higher means more swappy.
149  */
150 int vm_swappiness = 60;
151 long vm_total_pages;    /* The total number of pages which the VM controls */
152
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
155
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc) (1)
160 #endif
161
162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163                                                   struct scan_control *sc)
164 {
165         if (!scanning_global_lru(sc))
166                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167
168         return &zone->reclaim_stat;
169 }
170
171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172                                 struct scan_control *sc, enum lru_list lru)
173 {
174         if (!scanning_global_lru(sc))
175                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
176                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
177
178         return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180
181
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187         shrinker->nr = 0;
188         down_write(&shrinker_rwsem);
189         list_add_tail(&shrinker->list, &shrinker_list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199         down_write(&shrinker_rwsem);
200         list_del(&shrinker->list);
201         up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206                                      struct shrink_control *sc,
207                                      unsigned long nr_to_scan)
208 {
209         sc->nr_to_scan = nr_to_scan;
210         return (*shrinker->shrink)(shrinker, sc);
211 }
212
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234                           unsigned long nr_pages_scanned,
235                           unsigned long lru_pages)
236 {
237         struct shrinker *shrinker;
238         unsigned long ret = 0;
239
240         if (nr_pages_scanned == 0)
241                 nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243         if (!down_read_trylock(&shrinker_rwsem)) {
244                 /* Assume we'll be able to shrink next time */
245                 ret = 1;
246                 goto out;
247         }
248
249         list_for_each_entry(shrinker, &shrinker_list, list) {
250                 unsigned long long delta;
251                 unsigned long total_scan;
252                 unsigned long max_pass;
253                 int shrink_ret = 0;
254                 long nr;
255                 long new_nr;
256                 long batch_size = shrinker->batch ? shrinker->batch
257                                                   : SHRINK_BATCH;
258
259                 /*
260                  * copy the current shrinker scan count into a local variable
261                  * and zero it so that other concurrent shrinker invocations
262                  * don't also do this scanning work.
263                  */
264                 do {
265                         nr = shrinker->nr;
266                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
267
268                 total_scan = nr;
269                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
270                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271                 delta *= max_pass;
272                 do_div(delta, lru_pages + 1);
273                 total_scan += delta;
274                 if (total_scan < 0) {
275                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
276                                "delete nr=%ld\n",
277                                shrinker->shrink, total_scan);
278                         total_scan = max_pass;
279                 }
280
281                 /*
282                  * We need to avoid excessive windup on filesystem shrinkers
283                  * due to large numbers of GFP_NOFS allocations causing the
284                  * shrinkers to return -1 all the time. This results in a large
285                  * nr being built up so when a shrink that can do some work
286                  * comes along it empties the entire cache due to nr >>>
287                  * max_pass.  This is bad for sustaining a working set in
288                  * memory.
289                  *
290                  * Hence only allow the shrinker to scan the entire cache when
291                  * a large delta change is calculated directly.
292                  */
293                 if (delta < max_pass / 4)
294                         total_scan = min(total_scan, max_pass / 2);
295
296                 /*
297                  * Avoid risking looping forever due to too large nr value:
298                  * never try to free more than twice the estimate number of
299                  * freeable entries.
300                  */
301                 if (total_scan > max_pass * 2)
302                         total_scan = max_pass * 2;
303
304                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305                                         nr_pages_scanned, lru_pages,
306                                         max_pass, delta, total_scan);
307
308                 while (total_scan >= batch_size) {
309                         int nr_before;
310
311                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
313                                                         batch_size);
314                         if (shrink_ret == -1)
315                                 break;
316                         if (shrink_ret < nr_before)
317                                 ret += nr_before - shrink_ret;
318                         count_vm_events(SLABS_SCANNED, batch_size);
319                         total_scan -= batch_size;
320
321                         cond_resched();
322                 }
323
324                 /*
325                  * move the unused scan count back into the shrinker in a
326                  * manner that handles concurrent updates. If we exhausted the
327                  * scan, there is no need to do an update.
328                  */
329                 do {
330                         nr = shrinker->nr;
331                         new_nr = total_scan + nr;
332                         if (total_scan <= 0)
333                                 break;
334                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
335
336                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
337         }
338         up_read(&shrinker_rwsem);
339 out:
340         cond_resched();
341         return ret;
342 }
343
344 static void set_reclaim_mode(int priority, struct scan_control *sc,
345                                    bool sync)
346 {
347         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
348
349         /*
350          * Initially assume we are entering either lumpy reclaim or
351          * reclaim/compaction.Depending on the order, we will either set the
352          * sync mode or just reclaim order-0 pages later.
353          */
354         if (COMPACTION_BUILD)
355                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
356         else
357                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
358
359         /*
360          * Avoid using lumpy reclaim or reclaim/compaction if possible by
361          * restricting when its set to either costly allocations or when
362          * under memory pressure
363          */
364         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
365                 sc->reclaim_mode |= syncmode;
366         else if (sc->order && priority < DEF_PRIORITY - 2)
367                 sc->reclaim_mode |= syncmode;
368         else
369                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
370 }
371
372 static void reset_reclaim_mode(struct scan_control *sc)
373 {
374         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
375 }
376
377 static inline int is_page_cache_freeable(struct page *page)
378 {
379         /*
380          * A freeable page cache page is referenced only by the caller
381          * that isolated the page, the page cache radix tree and
382          * optional buffer heads at page->private.
383          */
384         return page_count(page) - page_has_private(page) == 2;
385 }
386
387 static int may_write_to_queue(struct backing_dev_info *bdi,
388                               struct scan_control *sc)
389 {
390         if (current->flags & PF_SWAPWRITE)
391                 return 1;
392         if (!bdi_write_congested(bdi))
393                 return 1;
394         if (bdi == current->backing_dev_info)
395                 return 1;
396
397         /* lumpy reclaim for hugepage often need a lot of write */
398         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
399                 return 1;
400         return 0;
401 }
402
403 /*
404  * We detected a synchronous write error writing a page out.  Probably
405  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
406  * fsync(), msync() or close().
407  *
408  * The tricky part is that after writepage we cannot touch the mapping: nothing
409  * prevents it from being freed up.  But we have a ref on the page and once
410  * that page is locked, the mapping is pinned.
411  *
412  * We're allowed to run sleeping lock_page() here because we know the caller has
413  * __GFP_FS.
414  */
415 static void handle_write_error(struct address_space *mapping,
416                                 struct page *page, int error)
417 {
418         lock_page(page);
419         if (page_mapping(page) == mapping)
420                 mapping_set_error(mapping, error);
421         unlock_page(page);
422 }
423
424 /* possible outcome of pageout() */
425 typedef enum {
426         /* failed to write page out, page is locked */
427         PAGE_KEEP,
428         /* move page to the active list, page is locked */
429         PAGE_ACTIVATE,
430         /* page has been sent to the disk successfully, page is unlocked */
431         PAGE_SUCCESS,
432         /* page is clean and locked */
433         PAGE_CLEAN,
434 } pageout_t;
435
436 /*
437  * pageout is called by shrink_page_list() for each dirty page.
438  * Calls ->writepage().
439  */
440 static pageout_t pageout(struct page *page, struct address_space *mapping,
441                          struct scan_control *sc)
442 {
443         /*
444          * If the page is dirty, only perform writeback if that write
445          * will be non-blocking.  To prevent this allocation from being
446          * stalled by pagecache activity.  But note that there may be
447          * stalls if we need to run get_block().  We could test
448          * PagePrivate for that.
449          *
450          * If this process is currently in __generic_file_aio_write() against
451          * this page's queue, we can perform writeback even if that
452          * will block.
453          *
454          * If the page is swapcache, write it back even if that would
455          * block, for some throttling. This happens by accident, because
456          * swap_backing_dev_info is bust: it doesn't reflect the
457          * congestion state of the swapdevs.  Easy to fix, if needed.
458          */
459         if (!is_page_cache_freeable(page))
460                 return PAGE_KEEP;
461         if (!mapping) {
462                 /*
463                  * Some data journaling orphaned pages can have
464                  * page->mapping == NULL while being dirty with clean buffers.
465                  */
466                 if (page_has_private(page)) {
467                         if (try_to_free_buffers(page)) {
468                                 ClearPageDirty(page);
469                                 printk("%s: orphaned page\n", __func__);
470                                 return PAGE_CLEAN;
471                         }
472                 }
473                 return PAGE_KEEP;
474         }
475         if (mapping->a_ops->writepage == NULL)
476                 return PAGE_ACTIVATE;
477         if (!may_write_to_queue(mapping->backing_dev_info, sc))
478                 return PAGE_KEEP;
479
480         if (clear_page_dirty_for_io(page)) {
481                 int res;
482                 struct writeback_control wbc = {
483                         .sync_mode = WB_SYNC_NONE,
484                         .nr_to_write = SWAP_CLUSTER_MAX,
485                         .range_start = 0,
486                         .range_end = LLONG_MAX,
487                         .for_reclaim = 1,
488                 };
489
490                 SetPageReclaim(page);
491                 res = mapping->a_ops->writepage(page, &wbc);
492                 if (res < 0)
493                         handle_write_error(mapping, page, res);
494                 if (res == AOP_WRITEPAGE_ACTIVATE) {
495                         ClearPageReclaim(page);
496                         return PAGE_ACTIVATE;
497                 }
498
499                 /*
500                  * Wait on writeback if requested to. This happens when
501                  * direct reclaiming a large contiguous area and the
502                  * first attempt to free a range of pages fails.
503                  */
504                 if (PageWriteback(page) &&
505                     (sc->reclaim_mode & RECLAIM_MODE_SYNC))
506                         wait_on_page_writeback(page);
507
508                 if (!PageWriteback(page)) {
509                         /* synchronous write or broken a_ops? */
510                         ClearPageReclaim(page);
511                 }
512                 trace_mm_vmscan_writepage(page,
513                         trace_reclaim_flags(page, sc->reclaim_mode));
514                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
515                 return PAGE_SUCCESS;
516         }
517
518         return PAGE_CLEAN;
519 }
520
521 /*
522  * Same as remove_mapping, but if the page is removed from the mapping, it
523  * gets returned with a refcount of 0.
524  */
525 static int __remove_mapping(struct address_space *mapping, struct page *page)
526 {
527         BUG_ON(!PageLocked(page));
528         BUG_ON(mapping != page_mapping(page));
529
530         spin_lock_irq(&mapping->tree_lock);
531         /*
532          * The non racy check for a busy page.
533          *
534          * Must be careful with the order of the tests. When someone has
535          * a ref to the page, it may be possible that they dirty it then
536          * drop the reference. So if PageDirty is tested before page_count
537          * here, then the following race may occur:
538          *
539          * get_user_pages(&page);
540          * [user mapping goes away]
541          * write_to(page);
542          *                              !PageDirty(page)    [good]
543          * SetPageDirty(page);
544          * put_page(page);
545          *                              !page_count(page)   [good, discard it]
546          *
547          * [oops, our write_to data is lost]
548          *
549          * Reversing the order of the tests ensures such a situation cannot
550          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
551          * load is not satisfied before that of page->_count.
552          *
553          * Note that if SetPageDirty is always performed via set_page_dirty,
554          * and thus under tree_lock, then this ordering is not required.
555          */
556         if (!page_freeze_refs(page, 2))
557                 goto cannot_free;
558         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
559         if (unlikely(PageDirty(page))) {
560                 page_unfreeze_refs(page, 2);
561                 goto cannot_free;
562         }
563
564         if (PageSwapCache(page)) {
565                 swp_entry_t swap = { .val = page_private(page) };
566                 __delete_from_swap_cache(page);
567                 spin_unlock_irq(&mapping->tree_lock);
568                 swapcache_free(swap, page);
569         } else {
570                 void (*freepage)(struct page *);
571
572                 freepage = mapping->a_ops->freepage;
573
574                 __delete_from_page_cache(page);
575                 spin_unlock_irq(&mapping->tree_lock);
576                 mem_cgroup_uncharge_cache_page(page);
577
578                 if (freepage != NULL)
579                         freepage(page);
580         }
581
582         return 1;
583
584 cannot_free:
585         spin_unlock_irq(&mapping->tree_lock);
586         return 0;
587 }
588
589 /*
590  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
591  * someone else has a ref on the page, abort and return 0.  If it was
592  * successfully detached, return 1.  Assumes the caller has a single ref on
593  * this page.
594  */
595 int remove_mapping(struct address_space *mapping, struct page *page)
596 {
597         if (__remove_mapping(mapping, page)) {
598                 /*
599                  * Unfreezing the refcount with 1 rather than 2 effectively
600                  * drops the pagecache ref for us without requiring another
601                  * atomic operation.
602                  */
603                 page_unfreeze_refs(page, 1);
604                 return 1;
605         }
606         return 0;
607 }
608
609 /**
610  * putback_lru_page - put previously isolated page onto appropriate LRU list
611  * @page: page to be put back to appropriate lru list
612  *
613  * Add previously isolated @page to appropriate LRU list.
614  * Page may still be unevictable for other reasons.
615  *
616  * lru_lock must not be held, interrupts must be enabled.
617  */
618 void putback_lru_page(struct page *page)
619 {
620         int lru;
621         int active = !!TestClearPageActive(page);
622         int was_unevictable = PageUnevictable(page);
623
624         VM_BUG_ON(PageLRU(page));
625
626 redo:
627         ClearPageUnevictable(page);
628
629         if (page_evictable(page, NULL)) {
630                 /*
631                  * For evictable pages, we can use the cache.
632                  * In event of a race, worst case is we end up with an
633                  * unevictable page on [in]active list.
634                  * We know how to handle that.
635                  */
636                 lru = active + page_lru_base_type(page);
637                 lru_cache_add_lru(page, lru);
638         } else {
639                 /*
640                  * Put unevictable pages directly on zone's unevictable
641                  * list.
642                  */
643                 lru = LRU_UNEVICTABLE;
644                 add_page_to_unevictable_list(page);
645                 /*
646                  * When racing with an mlock clearing (page is
647                  * unlocked), make sure that if the other thread does
648                  * not observe our setting of PG_lru and fails
649                  * isolation, we see PG_mlocked cleared below and move
650                  * the page back to the evictable list.
651                  *
652                  * The other side is TestClearPageMlocked().
653                  */
654                 smp_mb();
655         }
656
657         /*
658          * page's status can change while we move it among lru. If an evictable
659          * page is on unevictable list, it never be freed. To avoid that,
660          * check after we added it to the list, again.
661          */
662         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
663                 if (!isolate_lru_page(page)) {
664                         put_page(page);
665                         goto redo;
666                 }
667                 /* This means someone else dropped this page from LRU
668                  * So, it will be freed or putback to LRU again. There is
669                  * nothing to do here.
670                  */
671         }
672
673         if (was_unevictable && lru != LRU_UNEVICTABLE)
674                 count_vm_event(UNEVICTABLE_PGRESCUED);
675         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
676                 count_vm_event(UNEVICTABLE_PGCULLED);
677
678         put_page(page);         /* drop ref from isolate */
679 }
680
681 enum page_references {
682         PAGEREF_RECLAIM,
683         PAGEREF_RECLAIM_CLEAN,
684         PAGEREF_KEEP,
685         PAGEREF_ACTIVATE,
686 };
687
688 static enum page_references page_check_references(struct page *page,
689                                                   struct scan_control *sc)
690 {
691         int referenced_ptes, referenced_page;
692         unsigned long vm_flags;
693
694         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
695         referenced_page = TestClearPageReferenced(page);
696
697         /* Lumpy reclaim - ignore references */
698         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
699                 return PAGEREF_RECLAIM;
700
701         /*
702          * Mlock lost the isolation race with us.  Let try_to_unmap()
703          * move the page to the unevictable list.
704          */
705         if (vm_flags & VM_LOCKED)
706                 return PAGEREF_RECLAIM;
707
708         if (referenced_ptes) {
709                 if (PageAnon(page))
710                         return PAGEREF_ACTIVATE;
711                 /*
712                  * All mapped pages start out with page table
713                  * references from the instantiating fault, so we need
714                  * to look twice if a mapped file page is used more
715                  * than once.
716                  *
717                  * Mark it and spare it for another trip around the
718                  * inactive list.  Another page table reference will
719                  * lead to its activation.
720                  *
721                  * Note: the mark is set for activated pages as well
722                  * so that recently deactivated but used pages are
723                  * quickly recovered.
724                  */
725                 SetPageReferenced(page);
726
727                 if (referenced_page)
728                         return PAGEREF_ACTIVATE;
729
730                 return PAGEREF_KEEP;
731         }
732
733         /* Reclaim if clean, defer dirty pages to writeback */
734         if (referenced_page && !PageSwapBacked(page))
735                 return PAGEREF_RECLAIM_CLEAN;
736
737         return PAGEREF_RECLAIM;
738 }
739
740 static noinline_for_stack void free_page_list(struct list_head *free_pages)
741 {
742         struct pagevec freed_pvec;
743         struct page *page, *tmp;
744
745         pagevec_init(&freed_pvec, 1);
746
747         list_for_each_entry_safe(page, tmp, free_pages, lru) {
748                 list_del(&page->lru);
749                 if (!pagevec_add(&freed_pvec, page)) {
750                         __pagevec_free(&freed_pvec);
751                         pagevec_reinit(&freed_pvec);
752                 }
753         }
754
755         pagevec_free(&freed_pvec);
756 }
757
758 /*
759  * shrink_page_list() returns the number of reclaimed pages
760  */
761 static unsigned long shrink_page_list(struct list_head *page_list,
762                                       struct zone *zone,
763                                       struct scan_control *sc)
764 {
765         LIST_HEAD(ret_pages);
766         LIST_HEAD(free_pages);
767         int pgactivate = 0;
768         unsigned long nr_dirty = 0;
769         unsigned long nr_congested = 0;
770         unsigned long nr_reclaimed = 0;
771
772         cond_resched();
773
774         while (!list_empty(page_list)) {
775                 enum page_references references;
776                 struct address_space *mapping;
777                 struct page *page;
778                 int may_enter_fs;
779
780                 cond_resched();
781
782                 page = lru_to_page(page_list);
783                 list_del(&page->lru);
784
785                 if (!trylock_page(page))
786                         goto keep;
787
788                 VM_BUG_ON(PageActive(page));
789                 VM_BUG_ON(page_zone(page) != zone);
790
791                 sc->nr_scanned++;
792
793                 if (unlikely(!page_evictable(page, NULL)))
794                         goto cull_mlocked;
795
796                 if (!sc->may_unmap && page_mapped(page))
797                         goto keep_locked;
798
799                 /* Double the slab pressure for mapped and swapcache pages */
800                 if (page_mapped(page) || PageSwapCache(page))
801                         sc->nr_scanned++;
802
803                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
804                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
805
806                 if (PageWriteback(page)) {
807                         /*
808                          * Synchronous reclaim is performed in two passes,
809                          * first an asynchronous pass over the list to
810                          * start parallel writeback, and a second synchronous
811                          * pass to wait for the IO to complete.  Wait here
812                          * for any page for which writeback has already
813                          * started.
814                          */
815                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
816                             may_enter_fs)
817                                 wait_on_page_writeback(page);
818                         else {
819                                 unlock_page(page);
820                                 goto keep_lumpy;
821                         }
822                 }
823
824                 references = page_check_references(page, sc);
825                 switch (references) {
826                 case PAGEREF_ACTIVATE:
827                         goto activate_locked;
828                 case PAGEREF_KEEP:
829                         goto keep_locked;
830                 case PAGEREF_RECLAIM:
831                 case PAGEREF_RECLAIM_CLEAN:
832                         ; /* try to reclaim the page below */
833                 }
834
835                 /*
836                  * Anonymous process memory has backing store?
837                  * Try to allocate it some swap space here.
838                  */
839                 if (PageAnon(page) && !PageSwapCache(page)) {
840                         if (!(sc->gfp_mask & __GFP_IO))
841                                 goto keep_locked;
842                         if (!add_to_swap(page))
843                                 goto activate_locked;
844                         may_enter_fs = 1;
845                 }
846
847                 mapping = page_mapping(page);
848
849                 /*
850                  * The page is mapped into the page tables of one or more
851                  * processes. Try to unmap it here.
852                  */
853                 if (page_mapped(page) && mapping) {
854                         switch (try_to_unmap(page, TTU_UNMAP)) {
855                         case SWAP_FAIL:
856                                 goto activate_locked;
857                         case SWAP_AGAIN:
858                                 goto keep_locked;
859                         case SWAP_MLOCK:
860                                 goto cull_mlocked;
861                         case SWAP_SUCCESS:
862                                 ; /* try to free the page below */
863                         }
864                 }
865
866                 if (PageDirty(page)) {
867                         nr_dirty++;
868
869                         if (references == PAGEREF_RECLAIM_CLEAN)
870                                 goto keep_locked;
871                         if (!may_enter_fs)
872                                 goto keep_locked;
873                         if (!sc->may_writepage)
874                                 goto keep_locked;
875
876                         /* Page is dirty, try to write it out here */
877                         switch (pageout(page, mapping, sc)) {
878                         case PAGE_KEEP:
879                                 nr_congested++;
880                                 goto keep_locked;
881                         case PAGE_ACTIVATE:
882                                 goto activate_locked;
883                         case PAGE_SUCCESS:
884                                 if (PageWriteback(page))
885                                         goto keep_lumpy;
886                                 if (PageDirty(page))
887                                         goto keep;
888
889                                 /*
890                                  * A synchronous write - probably a ramdisk.  Go
891                                  * ahead and try to reclaim the page.
892                                  */
893                                 if (!trylock_page(page))
894                                         goto keep;
895                                 if (PageDirty(page) || PageWriteback(page))
896                                         goto keep_locked;
897                                 mapping = page_mapping(page);
898                         case PAGE_CLEAN:
899                                 ; /* try to free the page below */
900                         }
901                 }
902
903                 /*
904                  * If the page has buffers, try to free the buffer mappings
905                  * associated with this page. If we succeed we try to free
906                  * the page as well.
907                  *
908                  * We do this even if the page is PageDirty().
909                  * try_to_release_page() does not perform I/O, but it is
910                  * possible for a page to have PageDirty set, but it is actually
911                  * clean (all its buffers are clean).  This happens if the
912                  * buffers were written out directly, with submit_bh(). ext3
913                  * will do this, as well as the blockdev mapping.
914                  * try_to_release_page() will discover that cleanness and will
915                  * drop the buffers and mark the page clean - it can be freed.
916                  *
917                  * Rarely, pages can have buffers and no ->mapping.  These are
918                  * the pages which were not successfully invalidated in
919                  * truncate_complete_page().  We try to drop those buffers here
920                  * and if that worked, and the page is no longer mapped into
921                  * process address space (page_count == 1) it can be freed.
922                  * Otherwise, leave the page on the LRU so it is swappable.
923                  */
924                 if (page_has_private(page)) {
925                         if (!try_to_release_page(page, sc->gfp_mask))
926                                 goto activate_locked;
927                         if (!mapping && page_count(page) == 1) {
928                                 unlock_page(page);
929                                 if (put_page_testzero(page))
930                                         goto free_it;
931                                 else {
932                                         /*
933                                          * rare race with speculative reference.
934                                          * the speculative reference will free
935                                          * this page shortly, so we may
936                                          * increment nr_reclaimed here (and
937                                          * leave it off the LRU).
938                                          */
939                                         nr_reclaimed++;
940                                         continue;
941                                 }
942                         }
943                 }
944
945                 if (!mapping || !__remove_mapping(mapping, page))
946                         goto keep_locked;
947
948                 /*
949                  * At this point, we have no other references and there is
950                  * no way to pick any more up (removed from LRU, removed
951                  * from pagecache). Can use non-atomic bitops now (and
952                  * we obviously don't have to worry about waking up a process
953                  * waiting on the page lock, because there are no references.
954                  */
955                 __clear_page_locked(page);
956 free_it:
957                 nr_reclaimed++;
958
959                 /*
960                  * Is there need to periodically free_page_list? It would
961                  * appear not as the counts should be low
962                  */
963                 list_add(&page->lru, &free_pages);
964                 continue;
965
966 cull_mlocked:
967                 if (PageSwapCache(page))
968                         try_to_free_swap(page);
969                 unlock_page(page);
970                 putback_lru_page(page);
971                 reset_reclaim_mode(sc);
972                 continue;
973
974 activate_locked:
975                 /* Not a candidate for swapping, so reclaim swap space. */
976                 if (PageSwapCache(page) && vm_swap_full())
977                         try_to_free_swap(page);
978                 VM_BUG_ON(PageActive(page));
979                 SetPageActive(page);
980                 pgactivate++;
981 keep_locked:
982                 unlock_page(page);
983 keep:
984                 reset_reclaim_mode(sc);
985 keep_lumpy:
986                 list_add(&page->lru, &ret_pages);
987                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
988         }
989
990         /*
991          * Tag a zone as congested if all the dirty pages encountered were
992          * backed by a congested BDI. In this case, reclaimers should just
993          * back off and wait for congestion to clear because further reclaim
994          * will encounter the same problem
995          */
996         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
997                 zone_set_flag(zone, ZONE_CONGESTED);
998
999         free_page_list(&free_pages);
1000
1001         list_splice(&ret_pages, page_list);
1002         count_vm_events(PGACTIVATE, pgactivate);
1003         return nr_reclaimed;
1004 }
1005
1006 /*
1007  * Attempt to remove the specified page from its LRU.  Only take this page
1008  * if it is of the appropriate PageActive status.  Pages which are being
1009  * freed elsewhere are also ignored.
1010  *
1011  * page:        page to consider
1012  * mode:        one of the LRU isolation modes defined above
1013  *
1014  * returns 0 on success, -ve errno on failure.
1015  */
1016 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1017 {
1018         bool all_lru_mode;
1019         int ret = -EINVAL;
1020
1021         /* Only take pages on the LRU. */
1022         if (!PageLRU(page))
1023                 return ret;
1024
1025         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1026                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1027
1028         /*
1029          * When checking the active state, we need to be sure we are
1030          * dealing with comparible boolean values.  Take the logical not
1031          * of each.
1032          */
1033         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1034                 return ret;
1035
1036         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1037                 return ret;
1038
1039         /*
1040          * When this function is being called for lumpy reclaim, we
1041          * initially look into all LRU pages, active, inactive and
1042          * unevictable; only give shrink_page_list evictable pages.
1043          */
1044         if (PageUnevictable(page))
1045                 return ret;
1046
1047         ret = -EBUSY;
1048
1049         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1050                 return ret;
1051
1052         if (likely(get_page_unless_zero(page))) {
1053                 /*
1054                  * Be careful not to clear PageLRU until after we're
1055                  * sure the page is not being freed elsewhere -- the
1056                  * page release code relies on it.
1057                  */
1058                 ClearPageLRU(page);
1059                 ret = 0;
1060         }
1061
1062         return ret;
1063 }
1064
1065 /*
1066  * zone->lru_lock is heavily contended.  Some of the functions that
1067  * shrink the lists perform better by taking out a batch of pages
1068  * and working on them outside the LRU lock.
1069  *
1070  * For pagecache intensive workloads, this function is the hottest
1071  * spot in the kernel (apart from copy_*_user functions).
1072  *
1073  * Appropriate locks must be held before calling this function.
1074  *
1075  * @nr_to_scan: The number of pages to look through on the list.
1076  * @src:        The LRU list to pull pages off.
1077  * @dst:        The temp list to put pages on to.
1078  * @scanned:    The number of pages that were scanned.
1079  * @order:      The caller's attempted allocation order
1080  * @mode:       One of the LRU isolation modes
1081  * @file:       True [1] if isolating file [!anon] pages
1082  *
1083  * returns how many pages were moved onto *@dst.
1084  */
1085 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1086                 struct list_head *src, struct list_head *dst,
1087                 unsigned long *scanned, int order, isolate_mode_t mode,
1088                 int file)
1089 {
1090         unsigned long nr_taken = 0;
1091         unsigned long nr_lumpy_taken = 0;
1092         unsigned long nr_lumpy_dirty = 0;
1093         unsigned long nr_lumpy_failed = 0;
1094         unsigned long scan;
1095
1096         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1097                 struct page *page;
1098                 unsigned long pfn;
1099                 unsigned long end_pfn;
1100                 unsigned long page_pfn;
1101                 int zone_id;
1102
1103                 page = lru_to_page(src);
1104                 prefetchw_prev_lru_page(page, src, flags);
1105
1106                 VM_BUG_ON(!PageLRU(page));
1107
1108                 switch (__isolate_lru_page(page, mode, file)) {
1109                 case 0:
1110                         list_move(&page->lru, dst);
1111                         mem_cgroup_del_lru(page);
1112                         nr_taken += hpage_nr_pages(page);
1113                         break;
1114
1115                 case -EBUSY:
1116                         /* else it is being freed elsewhere */
1117                         list_move(&page->lru, src);
1118                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1119                         continue;
1120
1121                 default:
1122                         BUG();
1123                 }
1124
1125                 if (!order)
1126                         continue;
1127
1128                 /*
1129                  * Attempt to take all pages in the order aligned region
1130                  * surrounding the tag page.  Only take those pages of
1131                  * the same active state as that tag page.  We may safely
1132                  * round the target page pfn down to the requested order
1133                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1134                  * where that page is in a different zone we will detect
1135                  * it from its zone id and abort this block scan.
1136                  */
1137                 zone_id = page_zone_id(page);
1138                 page_pfn = page_to_pfn(page);
1139                 pfn = page_pfn & ~((1 << order) - 1);
1140                 end_pfn = pfn + (1 << order);
1141                 for (; pfn < end_pfn; pfn++) {
1142                         struct page *cursor_page;
1143
1144                         /* The target page is in the block, ignore it. */
1145                         if (unlikely(pfn == page_pfn))
1146                                 continue;
1147
1148                         /* Avoid holes within the zone. */
1149                         if (unlikely(!pfn_valid_within(pfn)))
1150                                 break;
1151
1152                         cursor_page = pfn_to_page(pfn);
1153
1154                         /* Check that we have not crossed a zone boundary. */
1155                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1156                                 break;
1157
1158                         /*
1159                          * If we don't have enough swap space, reclaiming of
1160                          * anon page which don't already have a swap slot is
1161                          * pointless.
1162                          */
1163                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1164                             !PageSwapCache(cursor_page))
1165                                 break;
1166
1167                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1168                                 list_move(&cursor_page->lru, dst);
1169                                 mem_cgroup_del_lru(cursor_page);
1170                                 nr_taken += hpage_nr_pages(page);
1171                                 nr_lumpy_taken++;
1172                                 if (PageDirty(cursor_page))
1173                                         nr_lumpy_dirty++;
1174                                 scan++;
1175                         } else {
1176                                 /*
1177                                  * Check if the page is freed already.
1178                                  *
1179                                  * We can't use page_count() as that
1180                                  * requires compound_head and we don't
1181                                  * have a pin on the page here. If a
1182                                  * page is tail, we may or may not
1183                                  * have isolated the head, so assume
1184                                  * it's not free, it'd be tricky to
1185                                  * track the head status without a
1186                                  * page pin.
1187                                  */
1188                                 if (!PageTail(cursor_page) &&
1189                                     !atomic_read(&cursor_page->_count))
1190                                         continue;
1191                                 break;
1192                         }
1193                 }
1194
1195                 /* If we break out of the loop above, lumpy reclaim failed */
1196                 if (pfn < end_pfn)
1197                         nr_lumpy_failed++;
1198         }
1199
1200         *scanned = scan;
1201
1202         trace_mm_vmscan_lru_isolate(order,
1203                         nr_to_scan, scan,
1204                         nr_taken,
1205                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1206                         mode);
1207         return nr_taken;
1208 }
1209
1210 static unsigned long isolate_pages_global(unsigned long nr,
1211                                         struct list_head *dst,
1212                                         unsigned long *scanned, int order,
1213                                         isolate_mode_t mode,
1214                                         struct zone *z, int active, int file)
1215 {
1216         int lru = LRU_BASE;
1217         if (active)
1218                 lru += LRU_ACTIVE;
1219         if (file)
1220                 lru += LRU_FILE;
1221         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1222                                                                 mode, file);
1223 }
1224
1225 /*
1226  * clear_active_flags() is a helper for shrink_active_list(), clearing
1227  * any active bits from the pages in the list.
1228  */
1229 static unsigned long clear_active_flags(struct list_head *page_list,
1230                                         unsigned int *count)
1231 {
1232         int nr_active = 0;
1233         int lru;
1234         struct page *page;
1235
1236         list_for_each_entry(page, page_list, lru) {
1237                 int numpages = hpage_nr_pages(page);
1238                 lru = page_lru_base_type(page);
1239                 if (PageActive(page)) {
1240                         lru += LRU_ACTIVE;
1241                         ClearPageActive(page);
1242                         nr_active += numpages;
1243                 }
1244                 if (count)
1245                         count[lru] += numpages;
1246         }
1247
1248         return nr_active;
1249 }
1250
1251 /**
1252  * isolate_lru_page - tries to isolate a page from its LRU list
1253  * @page: page to isolate from its LRU list
1254  *
1255  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1256  * vmstat statistic corresponding to whatever LRU list the page was on.
1257  *
1258  * Returns 0 if the page was removed from an LRU list.
1259  * Returns -EBUSY if the page was not on an LRU list.
1260  *
1261  * The returned page will have PageLRU() cleared.  If it was found on
1262  * the active list, it will have PageActive set.  If it was found on
1263  * the unevictable list, it will have the PageUnevictable bit set. That flag
1264  * may need to be cleared by the caller before letting the page go.
1265  *
1266  * The vmstat statistic corresponding to the list on which the page was
1267  * found will be decremented.
1268  *
1269  * Restrictions:
1270  * (1) Must be called with an elevated refcount on the page. This is a
1271  *     fundamentnal difference from isolate_lru_pages (which is called
1272  *     without a stable reference).
1273  * (2) the lru_lock must not be held.
1274  * (3) interrupts must be enabled.
1275  */
1276 int isolate_lru_page(struct page *page)
1277 {
1278         int ret = -EBUSY;
1279
1280         VM_BUG_ON(!page_count(page));
1281
1282         if (PageLRU(page)) {
1283                 struct zone *zone = page_zone(page);
1284
1285                 spin_lock_irq(&zone->lru_lock);
1286                 if (PageLRU(page)) {
1287                         int lru = page_lru(page);
1288                         ret = 0;
1289                         get_page(page);
1290                         ClearPageLRU(page);
1291
1292                         del_page_from_lru_list(zone, page, lru);
1293                 }
1294                 spin_unlock_irq(&zone->lru_lock);
1295         }
1296         return ret;
1297 }
1298
1299 /*
1300  * Are there way too many processes in the direct reclaim path already?
1301  */
1302 static int too_many_isolated(struct zone *zone, int file,
1303                 struct scan_control *sc)
1304 {
1305         unsigned long inactive, isolated;
1306
1307         if (current_is_kswapd())
1308                 return 0;
1309
1310         if (!scanning_global_lru(sc))
1311                 return 0;
1312
1313         if (file) {
1314                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1315                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1316         } else {
1317                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1318                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1319         }
1320
1321         return isolated > inactive;
1322 }
1323
1324 /*
1325  * TODO: Try merging with migrations version of putback_lru_pages
1326  */
1327 static noinline_for_stack void
1328 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1329                                 unsigned long nr_anon, unsigned long nr_file,
1330                                 struct list_head *page_list)
1331 {
1332         struct page *page;
1333         struct pagevec pvec;
1334         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1335
1336         pagevec_init(&pvec, 1);
1337
1338         /*
1339          * Put back any unfreeable pages.
1340          */
1341         spin_lock(&zone->lru_lock);
1342         while (!list_empty(page_list)) {
1343                 int lru;
1344                 page = lru_to_page(page_list);
1345                 VM_BUG_ON(PageLRU(page));
1346                 list_del(&page->lru);
1347                 if (unlikely(!page_evictable(page, NULL))) {
1348                         spin_unlock_irq(&zone->lru_lock);
1349                         putback_lru_page(page);
1350                         spin_lock_irq(&zone->lru_lock);
1351                         continue;
1352                 }
1353                 SetPageLRU(page);
1354                 lru = page_lru(page);
1355                 add_page_to_lru_list(zone, page, lru);
1356                 if (is_active_lru(lru)) {
1357                         int file = is_file_lru(lru);
1358                         int numpages = hpage_nr_pages(page);
1359                         reclaim_stat->recent_rotated[file] += numpages;
1360                         if (!scanning_global_lru(sc))
1361                                 sc->memcg_record->nr_rotated[file] += numpages;
1362                 }
1363                 if (!pagevec_add(&pvec, page)) {
1364                         spin_unlock_irq(&zone->lru_lock);
1365                         __pagevec_release(&pvec);
1366                         spin_lock_irq(&zone->lru_lock);
1367                 }
1368         }
1369         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1370         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1371
1372         spin_unlock_irq(&zone->lru_lock);
1373         pagevec_release(&pvec);
1374 }
1375
1376 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1377                                         struct scan_control *sc,
1378                                         unsigned long *nr_anon,
1379                                         unsigned long *nr_file,
1380                                         struct list_head *isolated_list)
1381 {
1382         unsigned long nr_active;
1383         unsigned int count[NR_LRU_LISTS] = { 0, };
1384         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1385
1386         nr_active = clear_active_flags(isolated_list, count);
1387         __count_vm_events(PGDEACTIVATE, nr_active);
1388
1389         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1390                               -count[LRU_ACTIVE_FILE]);
1391         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1392                               -count[LRU_INACTIVE_FILE]);
1393         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1394                               -count[LRU_ACTIVE_ANON]);
1395         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1396                               -count[LRU_INACTIVE_ANON]);
1397
1398         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1399         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1400         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1401         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1402
1403         reclaim_stat->recent_scanned[0] += *nr_anon;
1404         reclaim_stat->recent_scanned[1] += *nr_file;
1405         if (!scanning_global_lru(sc)) {
1406                 sc->memcg_record->nr_scanned[0] += *nr_anon;
1407                 sc->memcg_record->nr_scanned[1] += *nr_file;
1408         }
1409 }
1410
1411 /*
1412  * Returns true if the caller should wait to clean dirty/writeback pages.
1413  *
1414  * If we are direct reclaiming for contiguous pages and we do not reclaim
1415  * everything in the list, try again and wait for writeback IO to complete.
1416  * This will stall high-order allocations noticeably. Only do that when really
1417  * need to free the pages under high memory pressure.
1418  */
1419 static inline bool should_reclaim_stall(unsigned long nr_taken,
1420                                         unsigned long nr_freed,
1421                                         int priority,
1422                                         struct scan_control *sc)
1423 {
1424         int lumpy_stall_priority;
1425
1426         /* kswapd should not stall on sync IO */
1427         if (current_is_kswapd())
1428                 return false;
1429
1430         /* Only stall on lumpy reclaim */
1431         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1432                 return false;
1433
1434         /* If we have relaimed everything on the isolated list, no stall */
1435         if (nr_freed == nr_taken)
1436                 return false;
1437
1438         /*
1439          * For high-order allocations, there are two stall thresholds.
1440          * High-cost allocations stall immediately where as lower
1441          * order allocations such as stacks require the scanning
1442          * priority to be much higher before stalling.
1443          */
1444         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1445                 lumpy_stall_priority = DEF_PRIORITY;
1446         else
1447                 lumpy_stall_priority = DEF_PRIORITY / 3;
1448
1449         return priority <= lumpy_stall_priority;
1450 }
1451
1452 /*
1453  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1454  * of reclaimed pages
1455  */
1456 static noinline_for_stack unsigned long
1457 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1458                         struct scan_control *sc, int priority, int file)
1459 {
1460         LIST_HEAD(page_list);
1461         unsigned long nr_scanned;
1462         unsigned long nr_reclaimed = 0;
1463         unsigned long nr_taken;
1464         unsigned long nr_anon;
1465         unsigned long nr_file;
1466         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1467
1468         while (unlikely(too_many_isolated(zone, file, sc))) {
1469                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1470
1471                 /* We are about to die and free our memory. Return now. */
1472                 if (fatal_signal_pending(current))
1473                         return SWAP_CLUSTER_MAX;
1474         }
1475
1476         set_reclaim_mode(priority, sc, false);
1477         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1478                 reclaim_mode |= ISOLATE_ACTIVE;
1479
1480         lru_add_drain();
1481         spin_lock_irq(&zone->lru_lock);
1482
1483         if (scanning_global_lru(sc)) {
1484                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1485                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1486                 zone->pages_scanned += nr_scanned;
1487                 if (current_is_kswapd())
1488                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1489                                                nr_scanned);
1490                 else
1491                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1492                                                nr_scanned);
1493         } else {
1494                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1495                         &nr_scanned, sc->order, reclaim_mode, zone,
1496                         sc->mem_cgroup, 0, file);
1497                 /*
1498                  * mem_cgroup_isolate_pages() keeps track of
1499                  * scanned pages on its own.
1500                  */
1501         }
1502
1503         if (nr_taken == 0) {
1504                 spin_unlock_irq(&zone->lru_lock);
1505                 return 0;
1506         }
1507
1508         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1509
1510         spin_unlock_irq(&zone->lru_lock);
1511
1512         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1513
1514         /* Check if we should syncronously wait for writeback */
1515         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1516                 set_reclaim_mode(priority, sc, true);
1517                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1518         }
1519
1520         if (!scanning_global_lru(sc))
1521                 sc->memcg_record->nr_freed[file] += nr_reclaimed;
1522
1523         local_irq_disable();
1524         if (current_is_kswapd())
1525                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1526         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1527
1528         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1529
1530         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1531                 zone_idx(zone),
1532                 nr_scanned, nr_reclaimed,
1533                 priority,
1534                 trace_shrink_flags(file, sc->reclaim_mode));
1535         return nr_reclaimed;
1536 }
1537
1538 /*
1539  * This moves pages from the active list to the inactive list.
1540  *
1541  * We move them the other way if the page is referenced by one or more
1542  * processes, from rmap.
1543  *
1544  * If the pages are mostly unmapped, the processing is fast and it is
1545  * appropriate to hold zone->lru_lock across the whole operation.  But if
1546  * the pages are mapped, the processing is slow (page_referenced()) so we
1547  * should drop zone->lru_lock around each page.  It's impossible to balance
1548  * this, so instead we remove the pages from the LRU while processing them.
1549  * It is safe to rely on PG_active against the non-LRU pages in here because
1550  * nobody will play with that bit on a non-LRU page.
1551  *
1552  * The downside is that we have to touch page->_count against each page.
1553  * But we had to alter page->flags anyway.
1554  */
1555
1556 static void move_active_pages_to_lru(struct zone *zone,
1557                                      struct list_head *list,
1558                                      enum lru_list lru)
1559 {
1560         unsigned long pgmoved = 0;
1561         struct pagevec pvec;
1562         struct page *page;
1563
1564         pagevec_init(&pvec, 1);
1565
1566         while (!list_empty(list)) {
1567                 page = lru_to_page(list);
1568
1569                 VM_BUG_ON(PageLRU(page));
1570                 SetPageLRU(page);
1571
1572                 list_move(&page->lru, &zone->lru[lru].list);
1573                 mem_cgroup_add_lru_list(page, lru);
1574                 pgmoved += hpage_nr_pages(page);
1575
1576                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1577                         spin_unlock_irq(&zone->lru_lock);
1578                         if (buffer_heads_over_limit)
1579                                 pagevec_strip(&pvec);
1580                         __pagevec_release(&pvec);
1581                         spin_lock_irq(&zone->lru_lock);
1582                 }
1583         }
1584         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1585         if (!is_active_lru(lru))
1586                 __count_vm_events(PGDEACTIVATE, pgmoved);
1587 }
1588
1589 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1590                         struct scan_control *sc, int priority, int file)
1591 {
1592         unsigned long nr_taken;
1593         unsigned long pgscanned;
1594         unsigned long vm_flags;
1595         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1596         LIST_HEAD(l_active);
1597         LIST_HEAD(l_inactive);
1598         struct page *page;
1599         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1600         unsigned long nr_rotated = 0;
1601
1602         lru_add_drain();
1603         spin_lock_irq(&zone->lru_lock);
1604         if (scanning_global_lru(sc)) {
1605                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1606                                                 &pgscanned, sc->order,
1607                                                 ISOLATE_ACTIVE, zone,
1608                                                 1, file);
1609                 zone->pages_scanned += pgscanned;
1610         } else {
1611                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1612                                                 &pgscanned, sc->order,
1613                                                 ISOLATE_ACTIVE, zone,
1614                                                 sc->mem_cgroup, 1, file);
1615                 /*
1616                  * mem_cgroup_isolate_pages() keeps track of
1617                  * scanned pages on its own.
1618                  */
1619         }
1620
1621         reclaim_stat->recent_scanned[file] += nr_taken;
1622         if (!scanning_global_lru(sc))
1623                 sc->memcg_record->nr_scanned[file] += nr_taken;
1624
1625         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1626         if (file)
1627                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1628         else
1629                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1630         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1631         spin_unlock_irq(&zone->lru_lock);
1632
1633         while (!list_empty(&l_hold)) {
1634                 cond_resched();
1635                 page = lru_to_page(&l_hold);
1636                 list_del(&page->lru);
1637
1638                 if (unlikely(!page_evictable(page, NULL))) {
1639                         putback_lru_page(page);
1640                         continue;
1641                 }
1642
1643                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1644                         nr_rotated += hpage_nr_pages(page);
1645                         /*
1646                          * Identify referenced, file-backed active pages and
1647                          * give them one more trip around the active list. So
1648                          * that executable code get better chances to stay in
1649                          * memory under moderate memory pressure.  Anon pages
1650                          * are not likely to be evicted by use-once streaming
1651                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1652                          * so we ignore them here.
1653                          */
1654                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1655                                 list_add(&page->lru, &l_active);
1656                                 continue;
1657                         }
1658                 }
1659
1660                 ClearPageActive(page);  /* we are de-activating */
1661                 list_add(&page->lru, &l_inactive);
1662         }
1663
1664         /*
1665          * Move pages back to the lru list.
1666          */
1667         spin_lock_irq(&zone->lru_lock);
1668         /*
1669          * Count referenced pages from currently used mappings as rotated,
1670          * even though only some of them are actually re-activated.  This
1671          * helps balance scan pressure between file and anonymous pages in
1672          * get_scan_ratio.
1673          */
1674         reclaim_stat->recent_rotated[file] += nr_rotated;
1675         if (!scanning_global_lru(sc))
1676                 sc->memcg_record->nr_rotated[file] += nr_rotated;
1677
1678         move_active_pages_to_lru(zone, &l_active,
1679                                                 LRU_ACTIVE + file * LRU_FILE);
1680         move_active_pages_to_lru(zone, &l_inactive,
1681                                                 LRU_BASE   + file * LRU_FILE);
1682         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1683         spin_unlock_irq(&zone->lru_lock);
1684 }
1685
1686 #ifdef CONFIG_SWAP
1687 static int inactive_anon_is_low_global(struct zone *zone)
1688 {
1689         unsigned long active, inactive;
1690
1691         active = zone_page_state(zone, NR_ACTIVE_ANON);
1692         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1693
1694         if (inactive * zone->inactive_ratio < active)
1695                 return 1;
1696
1697         return 0;
1698 }
1699
1700 /**
1701  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1702  * @zone: zone to check
1703  * @sc:   scan control of this context
1704  *
1705  * Returns true if the zone does not have enough inactive anon pages,
1706  * meaning some active anon pages need to be deactivated.
1707  */
1708 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1709 {
1710         int low;
1711
1712         /*
1713          * If we don't have swap space, anonymous page deactivation
1714          * is pointless.
1715          */
1716         if (!total_swap_pages)
1717                 return 0;
1718
1719         if (scanning_global_lru(sc))
1720                 low = inactive_anon_is_low_global(zone);
1721         else
1722                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1723         return low;
1724 }
1725 #else
1726 static inline int inactive_anon_is_low(struct zone *zone,
1727                                         struct scan_control *sc)
1728 {
1729         return 0;
1730 }
1731 #endif
1732
1733 static int inactive_file_is_low_global(struct zone *zone)
1734 {
1735         unsigned long active, inactive;
1736
1737         active = zone_page_state(zone, NR_ACTIVE_FILE);
1738         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1739
1740         return (active > inactive);
1741 }
1742
1743 /**
1744  * inactive_file_is_low - check if file pages need to be deactivated
1745  * @zone: zone to check
1746  * @sc:   scan control of this context
1747  *
1748  * When the system is doing streaming IO, memory pressure here
1749  * ensures that active file pages get deactivated, until more
1750  * than half of the file pages are on the inactive list.
1751  *
1752  * Once we get to that situation, protect the system's working
1753  * set from being evicted by disabling active file page aging.
1754  *
1755  * This uses a different ratio than the anonymous pages, because
1756  * the page cache uses a use-once replacement algorithm.
1757  */
1758 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1759 {
1760         int low;
1761
1762         if (scanning_global_lru(sc))
1763                 low = inactive_file_is_low_global(zone);
1764         else
1765                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1766         return low;
1767 }
1768
1769 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1770                                 int file)
1771 {
1772         if (file)
1773                 return inactive_file_is_low(zone, sc);
1774         else
1775                 return inactive_anon_is_low(zone, sc);
1776 }
1777
1778 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1779         struct zone *zone, struct scan_control *sc, int priority)
1780 {
1781         int file = is_file_lru(lru);
1782
1783         if (is_active_lru(lru)) {
1784                 if (inactive_list_is_low(zone, sc, file))
1785                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1786                 return 0;
1787         }
1788
1789         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1790 }
1791
1792 static int vmscan_swappiness(struct scan_control *sc)
1793 {
1794         if (scanning_global_lru(sc))
1795                 return vm_swappiness;
1796         return mem_cgroup_swappiness(sc->mem_cgroup);
1797 }
1798
1799 /*
1800  * Determine how aggressively the anon and file LRU lists should be
1801  * scanned.  The relative value of each set of LRU lists is determined
1802  * by looking at the fraction of the pages scanned we did rotate back
1803  * onto the active list instead of evict.
1804  *
1805  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1806  */
1807 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1808                                         unsigned long *nr, int priority)
1809 {
1810         unsigned long anon, file, free;
1811         unsigned long anon_prio, file_prio;
1812         unsigned long ap, fp;
1813         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1814         u64 fraction[2], denominator;
1815         enum lru_list l;
1816         int noswap = 0;
1817         int force_scan = 0;
1818         unsigned long nr_force_scan[2];
1819
1820
1821         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1822                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1823         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1824                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1825
1826         if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
1827                 /* kswapd does zone balancing and need to scan this zone */
1828                 if (scanning_global_lru(sc) && current_is_kswapd())
1829                         force_scan = 1;
1830                 /* memcg may have small limit and need to avoid priority drop */
1831                 if (!scanning_global_lru(sc))
1832                         force_scan = 1;
1833         }
1834
1835         /* If we have no swap space, do not bother scanning anon pages. */
1836         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1837                 noswap = 1;
1838                 fraction[0] = 0;
1839                 fraction[1] = 1;
1840                 denominator = 1;
1841                 nr_force_scan[0] = 0;
1842                 nr_force_scan[1] = SWAP_CLUSTER_MAX;
1843                 goto out;
1844         }
1845
1846         if (scanning_global_lru(sc)) {
1847                 free  = zone_page_state(zone, NR_FREE_PAGES);
1848                 /* If we have very few page cache pages,
1849                    force-scan anon pages. */
1850                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1851                         fraction[0] = 1;
1852                         fraction[1] = 0;
1853                         denominator = 1;
1854                         nr_force_scan[0] = SWAP_CLUSTER_MAX;
1855                         nr_force_scan[1] = 0;
1856                         goto out;
1857                 }
1858         }
1859
1860         /*
1861          * With swappiness at 100, anonymous and file have the same priority.
1862          * This scanning priority is essentially the inverse of IO cost.
1863          */
1864         anon_prio = vmscan_swappiness(sc);
1865         file_prio = 200 - vmscan_swappiness(sc);
1866
1867         /*
1868          * OK, so we have swap space and a fair amount of page cache
1869          * pages.  We use the recently rotated / recently scanned
1870          * ratios to determine how valuable each cache is.
1871          *
1872          * Because workloads change over time (and to avoid overflow)
1873          * we keep these statistics as a floating average, which ends
1874          * up weighing recent references more than old ones.
1875          *
1876          * anon in [0], file in [1]
1877          */
1878         spin_lock_irq(&zone->lru_lock);
1879         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1880                 reclaim_stat->recent_scanned[0] /= 2;
1881                 reclaim_stat->recent_rotated[0] /= 2;
1882         }
1883
1884         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1885                 reclaim_stat->recent_scanned[1] /= 2;
1886                 reclaim_stat->recent_rotated[1] /= 2;
1887         }
1888
1889         /*
1890          * The amount of pressure on anon vs file pages is inversely
1891          * proportional to the fraction of recently scanned pages on
1892          * each list that were recently referenced and in active use.
1893          */
1894         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1895         ap /= reclaim_stat->recent_rotated[0] + 1;
1896
1897         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1898         fp /= reclaim_stat->recent_rotated[1] + 1;
1899         spin_unlock_irq(&zone->lru_lock);
1900
1901         fraction[0] = ap;
1902         fraction[1] = fp;
1903         denominator = ap + fp + 1;
1904         if (force_scan) {
1905                 unsigned long scan = SWAP_CLUSTER_MAX;
1906                 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1907                 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1908         }
1909 out:
1910         for_each_evictable_lru(l) {
1911                 int file = is_file_lru(l);
1912                 unsigned long scan;
1913
1914                 scan = zone_nr_lru_pages(zone, sc, l);
1915                 if (priority || noswap) {
1916                         scan >>= priority;
1917                         scan = div64_u64(scan * fraction[file], denominator);
1918                 }
1919
1920                 /*
1921                  * If zone is small or memcg is small, nr[l] can be 0.
1922                  * This results no-scan on this priority and priority drop down.
1923                  * For global direct reclaim, it can visit next zone and tend
1924                  * not to have problems. For global kswapd, it's for zone
1925                  * balancing and it need to scan a small amounts. When using
1926                  * memcg, priority drop can cause big latency. So, it's better
1927                  * to scan small amount. See may_noscan above.
1928                  */
1929                 if (!scan && force_scan)
1930                         scan = nr_force_scan[file];
1931                 nr[l] = scan;
1932         }
1933 }
1934
1935 /*
1936  * Reclaim/compaction depends on a number of pages being freed. To avoid
1937  * disruption to the system, a small number of order-0 pages continue to be
1938  * rotated and reclaimed in the normal fashion. However, by the time we get
1939  * back to the allocator and call try_to_compact_zone(), we ensure that
1940  * there are enough free pages for it to be likely successful
1941  */
1942 static inline bool should_continue_reclaim(struct zone *zone,
1943                                         unsigned long nr_reclaimed,
1944                                         unsigned long nr_scanned,
1945                                         struct scan_control *sc)
1946 {
1947         unsigned long pages_for_compaction;
1948         unsigned long inactive_lru_pages;
1949
1950         /* If not in reclaim/compaction mode, stop */
1951         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1952                 return false;
1953
1954         /* Consider stopping depending on scan and reclaim activity */
1955         if (sc->gfp_mask & __GFP_REPEAT) {
1956                 /*
1957                  * For __GFP_REPEAT allocations, stop reclaiming if the
1958                  * full LRU list has been scanned and we are still failing
1959                  * to reclaim pages. This full LRU scan is potentially
1960                  * expensive but a __GFP_REPEAT caller really wants to succeed
1961                  */
1962                 if (!nr_reclaimed && !nr_scanned)
1963                         return false;
1964         } else {
1965                 /*
1966                  * For non-__GFP_REPEAT allocations which can presumably
1967                  * fail without consequence, stop if we failed to reclaim
1968                  * any pages from the last SWAP_CLUSTER_MAX number of
1969                  * pages that were scanned. This will return to the
1970                  * caller faster at the risk reclaim/compaction and
1971                  * the resulting allocation attempt fails
1972                  */
1973                 if (!nr_reclaimed)
1974                         return false;
1975         }
1976
1977         /*
1978          * If we have not reclaimed enough pages for compaction and the
1979          * inactive lists are large enough, continue reclaiming
1980          */
1981         pages_for_compaction = (2UL << sc->order);
1982         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1983                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1984         if (sc->nr_reclaimed < pages_for_compaction &&
1985                         inactive_lru_pages > pages_for_compaction)
1986                 return true;
1987
1988         /* If compaction would go ahead or the allocation would succeed, stop */
1989         switch (compaction_suitable(zone, sc->order)) {
1990         case COMPACT_PARTIAL:
1991         case COMPACT_CONTINUE:
1992                 return false;
1993         default:
1994                 return true;
1995         }
1996 }
1997
1998 /*
1999  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2000  */
2001 static void shrink_zone(int priority, struct zone *zone,
2002                                 struct scan_control *sc)
2003 {
2004         unsigned long nr[NR_LRU_LISTS];
2005         unsigned long nr_to_scan;
2006         enum lru_list l;
2007         unsigned long nr_reclaimed, nr_scanned;
2008         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2009
2010 restart:
2011         nr_reclaimed = 0;
2012         nr_scanned = sc->nr_scanned;
2013         get_scan_count(zone, sc, nr, priority);
2014
2015         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2016                                         nr[LRU_INACTIVE_FILE]) {
2017                 for_each_evictable_lru(l) {
2018                         if (nr[l]) {
2019                                 nr_to_scan = min_t(unsigned long,
2020                                                    nr[l], SWAP_CLUSTER_MAX);
2021                                 nr[l] -= nr_to_scan;
2022
2023                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2024                                                             zone, sc, priority);
2025                         }
2026                 }
2027                 /*
2028                  * On large memory systems, scan >> priority can become
2029                  * really large. This is fine for the starting priority;
2030                  * we want to put equal scanning pressure on each zone.
2031                  * However, if the VM has a harder time of freeing pages,
2032                  * with multiple processes reclaiming pages, the total
2033                  * freeing target can get unreasonably large.
2034                  */
2035                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2036                         break;
2037         }
2038         sc->nr_reclaimed += nr_reclaimed;
2039
2040         /*
2041          * Even if we did not try to evict anon pages at all, we want to
2042          * rebalance the anon lru active/inactive ratio.
2043          */
2044         if (inactive_anon_is_low(zone, sc))
2045                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2046
2047         /* reclaim/compaction might need reclaim to continue */
2048         if (should_continue_reclaim(zone, nr_reclaimed,
2049                                         sc->nr_scanned - nr_scanned, sc))
2050                 goto restart;
2051
2052         throttle_vm_writeout(sc->gfp_mask);
2053 }
2054
2055 /*
2056  * This is the direct reclaim path, for page-allocating processes.  We only
2057  * try to reclaim pages from zones which will satisfy the caller's allocation
2058  * request.
2059  *
2060  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2061  * Because:
2062  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2063  *    allocation or
2064  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2065  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2066  *    zone defense algorithm.
2067  *
2068  * If a zone is deemed to be full of pinned pages then just give it a light
2069  * scan then give up on it.
2070  */
2071 static void shrink_zones(int priority, struct zonelist *zonelist,
2072                                         struct scan_control *sc)
2073 {
2074         struct zoneref *z;
2075         struct zone *zone;
2076         unsigned long nr_soft_reclaimed;
2077         unsigned long nr_soft_scanned;
2078
2079         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2080                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2081                 if (!populated_zone(zone))
2082                         continue;
2083                 /*
2084                  * Take care memory controller reclaiming has small influence
2085                  * to global LRU.
2086                  */
2087                 if (scanning_global_lru(sc)) {
2088                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2089                                 continue;
2090                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2091                                 continue;       /* Let kswapd poll it */
2092                         /*
2093                          * This steals pages from memory cgroups over softlimit
2094                          * and returns the number of reclaimed pages and
2095                          * scanned pages. This works for global memory pressure
2096                          * and balancing, not for a memcg's limit.
2097                          */
2098                         nr_soft_scanned = 0;
2099                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2100                                                 sc->order, sc->gfp_mask,
2101                                                 &nr_soft_scanned);
2102                         sc->nr_reclaimed += nr_soft_reclaimed;
2103                         sc->nr_scanned += nr_soft_scanned;
2104                         /* need some check for avoid more shrink_zone() */
2105                 }
2106
2107                 shrink_zone(priority, zone, sc);
2108         }
2109 }
2110
2111 static bool zone_reclaimable(struct zone *zone)
2112 {
2113         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2114 }
2115
2116 /* All zones in zonelist are unreclaimable? */
2117 static bool all_unreclaimable(struct zonelist *zonelist,
2118                 struct scan_control *sc)
2119 {
2120         struct zoneref *z;
2121         struct zone *zone;
2122
2123         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2124                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2125                 if (!populated_zone(zone))
2126                         continue;
2127                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2128                         continue;
2129                 if (!zone->all_unreclaimable)
2130                         return false;
2131         }
2132
2133         return true;
2134 }
2135
2136 /*
2137  * This is the main entry point to direct page reclaim.
2138  *
2139  * If a full scan of the inactive list fails to free enough memory then we
2140  * are "out of memory" and something needs to be killed.
2141  *
2142  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2143  * high - the zone may be full of dirty or under-writeback pages, which this
2144  * caller can't do much about.  We kick the writeback threads and take explicit
2145  * naps in the hope that some of these pages can be written.  But if the
2146  * allocating task holds filesystem locks which prevent writeout this might not
2147  * work, and the allocation attempt will fail.
2148  *
2149  * returns:     0, if no pages reclaimed
2150  *              else, the number of pages reclaimed
2151  */
2152 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2153                                         struct scan_control *sc,
2154                                         struct shrink_control *shrink)
2155 {
2156         int priority;
2157         unsigned long total_scanned = 0;
2158         struct reclaim_state *reclaim_state = current->reclaim_state;
2159         struct zoneref *z;
2160         struct zone *zone;
2161         unsigned long writeback_threshold;
2162
2163         get_mems_allowed();
2164         delayacct_freepages_start();
2165
2166         if (scanning_global_lru(sc))
2167                 count_vm_event(ALLOCSTALL);
2168
2169         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2170                 sc->nr_scanned = 0;
2171                 if (!priority)
2172                         disable_swap_token(sc->mem_cgroup);
2173                 shrink_zones(priority, zonelist, sc);
2174                 /*
2175                  * Don't shrink slabs when reclaiming memory from
2176                  * over limit cgroups
2177                  */
2178                 if (scanning_global_lru(sc)) {
2179                         unsigned long lru_pages = 0;
2180                         for_each_zone_zonelist(zone, z, zonelist,
2181                                         gfp_zone(sc->gfp_mask)) {
2182                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2183                                         continue;
2184
2185                                 lru_pages += zone_reclaimable_pages(zone);
2186                         }
2187
2188                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2189                         if (reclaim_state) {
2190                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2191                                 reclaim_state->reclaimed_slab = 0;
2192                         }
2193                 }
2194                 total_scanned += sc->nr_scanned;
2195                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2196                         goto out;
2197
2198                 /*
2199                  * Try to write back as many pages as we just scanned.  This
2200                  * tends to cause slow streaming writers to write data to the
2201                  * disk smoothly, at the dirtying rate, which is nice.   But
2202                  * that's undesirable in laptop mode, where we *want* lumpy
2203                  * writeout.  So in laptop mode, write out the whole world.
2204                  */
2205                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2206                 if (total_scanned > writeback_threshold) {
2207                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2208                         sc->may_writepage = 1;
2209                 }
2210
2211                 /* Take a nap, wait for some writeback to complete */
2212                 if (!sc->hibernation_mode && sc->nr_scanned &&
2213                     priority < DEF_PRIORITY - 2) {
2214                         struct zone *preferred_zone;
2215
2216                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2217                                                 &cpuset_current_mems_allowed,
2218                                                 &preferred_zone);
2219                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2220                 }
2221         }
2222
2223 out:
2224         delayacct_freepages_end();
2225         put_mems_allowed();
2226
2227         if (sc->nr_reclaimed)
2228                 return sc->nr_reclaimed;
2229
2230         /*
2231          * As hibernation is going on, kswapd is freezed so that it can't mark
2232          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2233          * check.
2234          */
2235         if (oom_killer_disabled)
2236                 return 0;
2237
2238         /* top priority shrink_zones still had more to do? don't OOM, then */
2239         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2240                 return 1;
2241
2242         return 0;
2243 }
2244
2245 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2246                                 gfp_t gfp_mask, nodemask_t *nodemask)
2247 {
2248         unsigned long nr_reclaimed;
2249         struct scan_control sc = {
2250                 .gfp_mask = gfp_mask,
2251                 .may_writepage = !laptop_mode,
2252                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2253                 .may_unmap = 1,
2254                 .may_swap = 1,
2255                 .order = order,
2256                 .mem_cgroup = NULL,
2257                 .nodemask = nodemask,
2258         };
2259         struct shrink_control shrink = {
2260                 .gfp_mask = sc.gfp_mask,
2261         };
2262
2263         trace_mm_vmscan_direct_reclaim_begin(order,
2264                                 sc.may_writepage,
2265                                 gfp_mask);
2266
2267         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2268
2269         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2270
2271         return nr_reclaimed;
2272 }
2273
2274 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2275
2276 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2277                                         gfp_t gfp_mask, bool noswap,
2278                                         struct zone *zone,
2279                                         struct memcg_scanrecord *rec,
2280                                         unsigned long *scanned)
2281 {
2282         struct scan_control sc = {
2283                 .nr_scanned = 0,
2284                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2285                 .may_writepage = !laptop_mode,
2286                 .may_unmap = 1,
2287                 .may_swap = !noswap,
2288                 .order = 0,
2289                 .mem_cgroup = mem,
2290                 .memcg_record = rec,
2291         };
2292         unsigned long start, end;
2293
2294         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2295                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2296
2297         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2298                                                       sc.may_writepage,
2299                                                       sc.gfp_mask);
2300
2301         start = sched_clock();
2302         /*
2303          * NOTE: Although we can get the priority field, using it
2304          * here is not a good idea, since it limits the pages we can scan.
2305          * if we don't reclaim here, the shrink_zone from balance_pgdat
2306          * will pick up pages from other mem cgroup's as well. We hack
2307          * the priority and make it zero.
2308          */
2309         shrink_zone(0, zone, &sc);
2310         end = sched_clock();
2311
2312         if (rec)
2313                 rec->elapsed += end - start;
2314         *scanned = sc.nr_scanned;
2315
2316         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2317
2318         return sc.nr_reclaimed;
2319 }
2320
2321 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2322                                            gfp_t gfp_mask,
2323                                            bool noswap,
2324                                            struct memcg_scanrecord *rec)
2325 {
2326         struct zonelist *zonelist;
2327         unsigned long nr_reclaimed;
2328         unsigned long start, end;
2329         int nid;
2330         struct scan_control sc = {
2331                 .may_writepage = !laptop_mode,
2332                 .may_unmap = 1,
2333                 .may_swap = !noswap,
2334                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2335                 .order = 0,
2336                 .mem_cgroup = mem_cont,
2337                 .memcg_record = rec,
2338                 .nodemask = NULL, /* we don't care the placement */
2339                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2340                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2341         };
2342         struct shrink_control shrink = {
2343                 .gfp_mask = sc.gfp_mask,
2344         };
2345
2346         start = sched_clock();
2347         /*
2348          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2349          * take care of from where we get pages. So the node where we start the
2350          * scan does not need to be the current node.
2351          */
2352         nid = mem_cgroup_select_victim_node(mem_cont);
2353
2354         zonelist = NODE_DATA(nid)->node_zonelists;
2355
2356         trace_mm_vmscan_memcg_reclaim_begin(0,
2357                                             sc.may_writepage,
2358                                             sc.gfp_mask);
2359
2360         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2361         end = sched_clock();
2362         if (rec)
2363                 rec->elapsed += end - start;
2364
2365         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2366
2367         return nr_reclaimed;
2368 }
2369 #endif
2370
2371 /*
2372  * pgdat_balanced is used when checking if a node is balanced for high-order
2373  * allocations. Only zones that meet watermarks and are in a zone allowed
2374  * by the callers classzone_idx are added to balanced_pages. The total of
2375  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2376  * for the node to be considered balanced. Forcing all zones to be balanced
2377  * for high orders can cause excessive reclaim when there are imbalanced zones.
2378  * The choice of 25% is due to
2379  *   o a 16M DMA zone that is balanced will not balance a zone on any
2380  *     reasonable sized machine
2381  *   o On all other machines, the top zone must be at least a reasonable
2382  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2383  *     would need to be at least 256M for it to be balance a whole node.
2384  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2385  *     to balance a node on its own. These seemed like reasonable ratios.
2386  */
2387 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2388                                                 int classzone_idx)
2389 {
2390         unsigned long present_pages = 0;
2391         int i;
2392
2393         for (i = 0; i <= classzone_idx; i++)
2394                 present_pages += pgdat->node_zones[i].present_pages;
2395
2396         /* A special case here: if zone has no page, we think it's balanced */
2397         return balanced_pages >= (present_pages >> 2);
2398 }
2399
2400 /* is kswapd sleeping prematurely? */
2401 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2402                                         int classzone_idx)
2403 {
2404         int i;
2405         unsigned long balanced = 0;
2406         bool all_zones_ok = true;
2407
2408         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2409         if (remaining)
2410                 return true;
2411
2412         /* Check the watermark levels */
2413         for (i = 0; i <= classzone_idx; i++) {
2414                 struct zone *zone = pgdat->node_zones + i;
2415
2416                 if (!populated_zone(zone))
2417                         continue;
2418
2419                 /*
2420                  * balance_pgdat() skips over all_unreclaimable after
2421                  * DEF_PRIORITY. Effectively, it considers them balanced so
2422                  * they must be considered balanced here as well if kswapd
2423                  * is to sleep
2424                  */
2425                 if (zone->all_unreclaimable) {
2426                         balanced += zone->present_pages;
2427                         continue;
2428                 }
2429
2430                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2431                                                         i, 0))
2432                         all_zones_ok = false;
2433                 else
2434                         balanced += zone->present_pages;
2435         }
2436
2437         /*
2438          * For high-order requests, the balanced zones must contain at least
2439          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2440          * must be balanced
2441          */
2442         if (order)
2443                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2444         else
2445                 return !all_zones_ok;
2446 }
2447
2448 /*
2449  * For kswapd, balance_pgdat() will work across all this node's zones until
2450  * they are all at high_wmark_pages(zone).
2451  *
2452  * Returns the final order kswapd was reclaiming at
2453  *
2454  * There is special handling here for zones which are full of pinned pages.
2455  * This can happen if the pages are all mlocked, or if they are all used by
2456  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2457  * What we do is to detect the case where all pages in the zone have been
2458  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2459  * dead and from now on, only perform a short scan.  Basically we're polling
2460  * the zone for when the problem goes away.
2461  *
2462  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2463  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2464  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2465  * lower zones regardless of the number of free pages in the lower zones. This
2466  * interoperates with the page allocator fallback scheme to ensure that aging
2467  * of pages is balanced across the zones.
2468  */
2469 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2470                                                         int *classzone_idx)
2471 {
2472         int all_zones_ok;
2473         unsigned long balanced;
2474         int priority;
2475         int i;
2476         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2477         unsigned long total_scanned;
2478         struct reclaim_state *reclaim_state = current->reclaim_state;
2479         unsigned long nr_soft_reclaimed;
2480         unsigned long nr_soft_scanned;
2481         struct scan_control sc = {
2482                 .gfp_mask = GFP_KERNEL,
2483                 .may_unmap = 1,
2484                 .may_swap = 1,
2485                 /*
2486                  * kswapd doesn't want to be bailed out while reclaim. because
2487                  * we want to put equal scanning pressure on each zone.
2488                  */
2489                 .nr_to_reclaim = ULONG_MAX,
2490                 .order = order,
2491                 .mem_cgroup = NULL,
2492         };
2493         struct shrink_control shrink = {
2494                 .gfp_mask = sc.gfp_mask,
2495         };
2496 loop_again:
2497         total_scanned = 0;
2498         sc.nr_reclaimed = 0;
2499         sc.may_writepage = !laptop_mode;
2500         count_vm_event(PAGEOUTRUN);
2501
2502         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2503                 unsigned long lru_pages = 0;
2504                 int has_under_min_watermark_zone = 0;
2505
2506                 /* The swap token gets in the way of swapout... */
2507                 if (!priority)
2508                         disable_swap_token(NULL);
2509
2510                 all_zones_ok = 1;
2511                 balanced = 0;
2512
2513                 /*
2514                  * Scan in the highmem->dma direction for the highest
2515                  * zone which needs scanning
2516                  */
2517                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2518                         struct zone *zone = pgdat->node_zones + i;
2519
2520                         if (!populated_zone(zone))
2521                                 continue;
2522
2523                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2524                                 continue;
2525
2526                         /*
2527                          * Do some background aging of the anon list, to give
2528                          * pages a chance to be referenced before reclaiming.
2529                          */
2530                         if (inactive_anon_is_low(zone, &sc))
2531                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2532                                                         &sc, priority, 0);
2533
2534                         if (!zone_watermark_ok_safe(zone, order,
2535                                         high_wmark_pages(zone), 0, 0)) {
2536                                 end_zone = i;
2537                                 break;
2538                         }
2539                 }
2540                 if (i < 0)
2541                         goto out;
2542
2543                 for (i = 0; i <= end_zone; i++) {
2544                         struct zone *zone = pgdat->node_zones + i;
2545
2546                         lru_pages += zone_reclaimable_pages(zone);
2547                 }
2548
2549                 /*
2550                  * Now scan the zone in the dma->highmem direction, stopping
2551                  * at the last zone which needs scanning.
2552                  *
2553                  * We do this because the page allocator works in the opposite
2554                  * direction.  This prevents the page allocator from allocating
2555                  * pages behind kswapd's direction of progress, which would
2556                  * cause too much scanning of the lower zones.
2557                  */
2558                 for (i = 0; i <= end_zone; i++) {
2559                         struct zone *zone = pgdat->node_zones + i;
2560                         int nr_slab;
2561                         unsigned long balance_gap;
2562
2563                         if (!populated_zone(zone))
2564                                 continue;
2565
2566                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2567                                 continue;
2568
2569                         sc.nr_scanned = 0;
2570
2571                         nr_soft_scanned = 0;
2572                         /*
2573                          * Call soft limit reclaim before calling shrink_zone.
2574                          */
2575                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2576                                                         order, sc.gfp_mask,
2577                                                         &nr_soft_scanned);
2578                         sc.nr_reclaimed += nr_soft_reclaimed;
2579                         total_scanned += nr_soft_scanned;
2580
2581                         /*
2582                          * We put equal pressure on every zone, unless
2583                          * one zone has way too many pages free
2584                          * already. The "too many pages" is defined
2585                          * as the high wmark plus a "gap" where the
2586                          * gap is either the low watermark or 1%
2587                          * of the zone, whichever is smaller.
2588                          */
2589                         balance_gap = min(low_wmark_pages(zone),
2590                                 (zone->present_pages +
2591                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2592                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2593                         if (!zone_watermark_ok_safe(zone, order,
2594                                         high_wmark_pages(zone) + balance_gap,
2595                                         end_zone, 0)) {
2596                                 shrink_zone(priority, zone, &sc);
2597
2598                                 reclaim_state->reclaimed_slab = 0;
2599                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2600                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2601                                 total_scanned += sc.nr_scanned;
2602
2603                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2604                                         zone->all_unreclaimable = 1;
2605                         }
2606
2607                         /*
2608                          * If we've done a decent amount of scanning and
2609                          * the reclaim ratio is low, start doing writepage
2610                          * even in laptop mode
2611                          */
2612                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2613                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2614                                 sc.may_writepage = 1;
2615
2616                         if (zone->all_unreclaimable) {
2617                                 if (end_zone && end_zone == i)
2618                                         end_zone--;
2619                                 continue;
2620                         }
2621
2622                         if (!zone_watermark_ok_safe(zone, order,
2623                                         high_wmark_pages(zone), end_zone, 0)) {
2624                                 all_zones_ok = 0;
2625                                 /*
2626                                  * We are still under min water mark.  This
2627                                  * means that we have a GFP_ATOMIC allocation
2628                                  * failure risk. Hurry up!
2629                                  */
2630                                 if (!zone_watermark_ok_safe(zone, order,
2631                                             min_wmark_pages(zone), end_zone, 0))
2632                                         has_under_min_watermark_zone = 1;
2633                         } else {
2634                                 /*
2635                                  * If a zone reaches its high watermark,
2636                                  * consider it to be no longer congested. It's
2637                                  * possible there are dirty pages backed by
2638                                  * congested BDIs but as pressure is relieved,
2639                                  * spectulatively avoid congestion waits
2640                                  */
2641                                 zone_clear_flag(zone, ZONE_CONGESTED);
2642                                 if (i <= *classzone_idx)
2643                                         balanced += zone->present_pages;
2644                         }
2645
2646                 }
2647                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2648                         break;          /* kswapd: all done */
2649                 /*
2650                  * OK, kswapd is getting into trouble.  Take a nap, then take
2651                  * another pass across the zones.
2652                  */
2653                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2654                         if (has_under_min_watermark_zone)
2655                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2656                         else
2657                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2658                 }
2659
2660                 /*
2661                  * We do this so kswapd doesn't build up large priorities for
2662                  * example when it is freeing in parallel with allocators. It
2663                  * matches the direct reclaim path behaviour in terms of impact
2664                  * on zone->*_priority.
2665                  */
2666                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2667                         break;
2668         }
2669 out:
2670
2671         /*
2672          * order-0: All zones must meet high watermark for a balanced node
2673          * high-order: Balanced zones must make up at least 25% of the node
2674          *             for the node to be balanced
2675          */
2676         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2677                 cond_resched();
2678
2679                 try_to_freeze();
2680
2681                 /*
2682                  * Fragmentation may mean that the system cannot be
2683                  * rebalanced for high-order allocations in all zones.
2684                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2685                  * it means the zones have been fully scanned and are still
2686                  * not balanced. For high-order allocations, there is
2687                  * little point trying all over again as kswapd may
2688                  * infinite loop.
2689                  *
2690                  * Instead, recheck all watermarks at order-0 as they
2691                  * are the most important. If watermarks are ok, kswapd will go
2692                  * back to sleep. High-order users can still perform direct
2693                  * reclaim if they wish.
2694                  */
2695                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2696                         order = sc.order = 0;
2697
2698                 goto loop_again;
2699         }
2700
2701         /*
2702          * If kswapd was reclaiming at a higher order, it has the option of
2703          * sleeping without all zones being balanced. Before it does, it must
2704          * ensure that the watermarks for order-0 on *all* zones are met and
2705          * that the congestion flags are cleared. The congestion flag must
2706          * be cleared as kswapd is the only mechanism that clears the flag
2707          * and it is potentially going to sleep here.
2708          */
2709         if (order) {
2710                 for (i = 0; i <= end_zone; i++) {
2711                         struct zone *zone = pgdat->node_zones + i;
2712
2713                         if (!populated_zone(zone))
2714                                 continue;
2715
2716                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2717                                 continue;
2718
2719                         /* Confirm the zone is balanced for order-0 */
2720                         if (!zone_watermark_ok(zone, 0,
2721                                         high_wmark_pages(zone), 0, 0)) {
2722                                 order = sc.order = 0;
2723                                 goto loop_again;
2724                         }
2725
2726                         /* If balanced, clear the congested flag */
2727                         zone_clear_flag(zone, ZONE_CONGESTED);
2728                 }
2729         }
2730
2731         /*
2732          * Return the order we were reclaiming at so sleeping_prematurely()
2733          * makes a decision on the order we were last reclaiming at. However,
2734          * if another caller entered the allocator slow path while kswapd
2735          * was awake, order will remain at the higher level
2736          */
2737         *classzone_idx = end_zone;
2738         return order;
2739 }
2740
2741 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2742 {
2743         long remaining = 0;
2744         DEFINE_WAIT(wait);
2745
2746         if (freezing(current) || kthread_should_stop())
2747                 return;
2748
2749         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2750
2751         /* Try to sleep for a short interval */
2752         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2753                 remaining = schedule_timeout(HZ/10);
2754                 finish_wait(&pgdat->kswapd_wait, &wait);
2755                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2756         }
2757
2758         /*
2759          * After a short sleep, check if it was a premature sleep. If not, then
2760          * go fully to sleep until explicitly woken up.
2761          */
2762         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2763                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2764
2765                 /*
2766                  * vmstat counters are not perfectly accurate and the estimated
2767                  * value for counters such as NR_FREE_PAGES can deviate from the
2768                  * true value by nr_online_cpus * threshold. To avoid the zone
2769                  * watermarks being breached while under pressure, we reduce the
2770                  * per-cpu vmstat threshold while kswapd is awake and restore
2771                  * them before going back to sleep.
2772                  */
2773                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2774                 schedule();
2775                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2776         } else {
2777                 if (remaining)
2778                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2779                 else
2780                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2781         }
2782         finish_wait(&pgdat->kswapd_wait, &wait);
2783 }
2784
2785 /*
2786  * The background pageout daemon, started as a kernel thread
2787  * from the init process.
2788  *
2789  * This basically trickles out pages so that we have _some_
2790  * free memory available even if there is no other activity
2791  * that frees anything up. This is needed for things like routing
2792  * etc, where we otherwise might have all activity going on in
2793  * asynchronous contexts that cannot page things out.
2794  *
2795  * If there are applications that are active memory-allocators
2796  * (most normal use), this basically shouldn't matter.
2797  */
2798 static int kswapd(void *p)
2799 {
2800         unsigned long order, new_order;
2801         int classzone_idx, new_classzone_idx;
2802         pg_data_t *pgdat = (pg_data_t*)p;
2803         struct task_struct *tsk = current;
2804
2805         struct reclaim_state reclaim_state = {
2806                 .reclaimed_slab = 0,
2807         };
2808         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2809
2810         lockdep_set_current_reclaim_state(GFP_KERNEL);
2811
2812         if (!cpumask_empty(cpumask))
2813                 set_cpus_allowed_ptr(tsk, cpumask);
2814         current->reclaim_state = &reclaim_state;
2815
2816         /*
2817          * Tell the memory management that we're a "memory allocator",
2818          * and that if we need more memory we should get access to it
2819          * regardless (see "__alloc_pages()"). "kswapd" should
2820          * never get caught in the normal page freeing logic.
2821          *
2822          * (Kswapd normally doesn't need memory anyway, but sometimes
2823          * you need a small amount of memory in order to be able to
2824          * page out something else, and this flag essentially protects
2825          * us from recursively trying to free more memory as we're
2826          * trying to free the first piece of memory in the first place).
2827          */
2828         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2829         set_freezable();
2830
2831         order = new_order = 0;
2832         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2833         for ( ; ; ) {
2834                 int ret;
2835
2836                 /*
2837                  * If the last balance_pgdat was unsuccessful it's unlikely a
2838                  * new request of a similar or harder type will succeed soon
2839                  * so consider going to sleep on the basis we reclaimed at
2840                  */
2841                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2842                         new_order = pgdat->kswapd_max_order;
2843                         new_classzone_idx = pgdat->classzone_idx;
2844                         pgdat->kswapd_max_order =  0;
2845                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2846                 }
2847
2848                 if (order < new_order || classzone_idx > new_classzone_idx) {
2849                         /*
2850                          * Don't sleep if someone wants a larger 'order'
2851                          * allocation or has tigher zone constraints
2852                          */
2853                         order = new_order;
2854                         classzone_idx = new_classzone_idx;
2855                 } else {
2856                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2857                         order = pgdat->kswapd_max_order;
2858                         classzone_idx = pgdat->classzone_idx;
2859                         pgdat->kswapd_max_order = 0;
2860                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2861                 }
2862
2863                 ret = try_to_freeze();
2864                 if (kthread_should_stop())
2865                         break;
2866
2867                 /*
2868                  * We can speed up thawing tasks if we don't call balance_pgdat
2869                  * after returning from the refrigerator
2870                  */
2871                 if (!ret) {
2872                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2873                         order = balance_pgdat(pgdat, order, &classzone_idx);
2874                 }
2875         }
2876         return 0;
2877 }
2878
2879 /*
2880  * A zone is low on free memory, so wake its kswapd task to service it.
2881  */
2882 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2883 {
2884         pg_data_t *pgdat;
2885
2886         if (!populated_zone(zone))
2887                 return;
2888
2889         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2890                 return;
2891         pgdat = zone->zone_pgdat;
2892         if (pgdat->kswapd_max_order < order) {
2893                 pgdat->kswapd_max_order = order;
2894                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2895         }
2896         if (!waitqueue_active(&pgdat->kswapd_wait))
2897                 return;
2898         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2899                 return;
2900
2901         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2902         wake_up_interruptible(&pgdat->kswapd_wait);
2903 }
2904
2905 /*
2906  * The reclaimable count would be mostly accurate.
2907  * The less reclaimable pages may be
2908  * - mlocked pages, which will be moved to unevictable list when encountered
2909  * - mapped pages, which may require several travels to be reclaimed
2910  * - dirty pages, which is not "instantly" reclaimable
2911  */
2912 unsigned long global_reclaimable_pages(void)
2913 {
2914         int nr;
2915
2916         nr = global_page_state(NR_ACTIVE_FILE) +
2917              global_page_state(NR_INACTIVE_FILE);
2918
2919         if (nr_swap_pages > 0)
2920                 nr += global_page_state(NR_ACTIVE_ANON) +
2921                       global_page_state(NR_INACTIVE_ANON);
2922
2923         return nr;
2924 }
2925
2926 unsigned long zone_reclaimable_pages(struct zone *zone)
2927 {
2928         int nr;
2929
2930         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2931              zone_page_state(zone, NR_INACTIVE_FILE);
2932
2933         if (nr_swap_pages > 0)
2934                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2935                       zone_page_state(zone, NR_INACTIVE_ANON);
2936
2937         return nr;
2938 }
2939
2940 #ifdef CONFIG_HIBERNATION
2941 /*
2942  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2943  * freed pages.
2944  *
2945  * Rather than trying to age LRUs the aim is to preserve the overall
2946  * LRU order by reclaiming preferentially
2947  * inactive > active > active referenced > active mapped
2948  */
2949 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2950 {
2951         struct reclaim_state reclaim_state;
2952         struct scan_control sc = {
2953                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2954                 .may_swap = 1,
2955                 .may_unmap = 1,
2956                 .may_writepage = 1,
2957                 .nr_to_reclaim = nr_to_reclaim,
2958                 .hibernation_mode = 1,
2959                 .order = 0,
2960         };
2961         struct shrink_control shrink = {
2962                 .gfp_mask = sc.gfp_mask,
2963         };
2964         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2965         struct task_struct *p = current;
2966         unsigned long nr_reclaimed;
2967
2968         p->flags |= PF_MEMALLOC;
2969         lockdep_set_current_reclaim_state(sc.gfp_mask);
2970         reclaim_state.reclaimed_slab = 0;
2971         p->reclaim_state = &reclaim_state;
2972
2973         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2974
2975         p->reclaim_state = NULL;
2976         lockdep_clear_current_reclaim_state();
2977         p->flags &= ~PF_MEMALLOC;
2978
2979         return nr_reclaimed;
2980 }
2981 #endif /* CONFIG_HIBERNATION */
2982
2983 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2984    not required for correctness.  So if the last cpu in a node goes
2985    away, we get changed to run anywhere: as the first one comes back,
2986    restore their cpu bindings. */
2987 static int __devinit cpu_callback(struct notifier_block *nfb,
2988                                   unsigned long action, void *hcpu)
2989 {
2990         int nid;
2991
2992         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2993                 for_each_node_state(nid, N_HIGH_MEMORY) {
2994                         pg_data_t *pgdat = NODE_DATA(nid);
2995                         const struct cpumask *mask;
2996
2997                         mask = cpumask_of_node(pgdat->node_id);
2998
2999                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3000                                 /* One of our CPUs online: restore mask */
3001                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3002                 }
3003         }
3004         return NOTIFY_OK;
3005 }
3006
3007 /*
3008  * This kswapd start function will be called by init and node-hot-add.
3009  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3010  */
3011 int kswapd_run(int nid)
3012 {
3013         pg_data_t *pgdat = NODE_DATA(nid);
3014         int ret = 0;
3015
3016         if (pgdat->kswapd)
3017                 return 0;
3018
3019         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3020         if (IS_ERR(pgdat->kswapd)) {
3021                 /* failure at boot is fatal */
3022                 BUG_ON(system_state == SYSTEM_BOOTING);
3023                 printk("Failed to start kswapd on node %d\n",nid);
3024                 ret = -1;
3025         }
3026         return ret;
3027 }
3028
3029 /*
3030  * Called by memory hotplug when all memory in a node is offlined.
3031  */
3032 void kswapd_stop(int nid)
3033 {
3034         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3035
3036         if (kswapd)
3037                 kthread_stop(kswapd);
3038 }
3039
3040 static int __init kswapd_init(void)
3041 {
3042         int nid;
3043
3044         swap_setup();
3045         for_each_node_state(nid, N_HIGH_MEMORY)
3046                 kswapd_run(nid);
3047         hotcpu_notifier(cpu_callback, 0);
3048         return 0;
3049 }
3050
3051 module_init(kswapd_init)
3052
3053 #ifdef CONFIG_NUMA
3054 /*
3055  * Zone reclaim mode
3056  *
3057  * If non-zero call zone_reclaim when the number of free pages falls below
3058  * the watermarks.
3059  */
3060 int zone_reclaim_mode __read_mostly;
3061
3062 #define RECLAIM_OFF 0
3063 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3064 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3065 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3066
3067 /*
3068  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3069  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3070  * a zone.
3071  */
3072 #define ZONE_RECLAIM_PRIORITY 4
3073
3074 /*
3075  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3076  * occur.
3077  */
3078 int sysctl_min_unmapped_ratio = 1;
3079
3080 /*
3081  * If the number of slab pages in a zone grows beyond this percentage then
3082  * slab reclaim needs to occur.
3083  */
3084 int sysctl_min_slab_ratio = 5;
3085
3086 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3087 {
3088         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3089         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3090                 zone_page_state(zone, NR_ACTIVE_FILE);
3091
3092         /*
3093          * It's possible for there to be more file mapped pages than
3094          * accounted for by the pages on the file LRU lists because
3095          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3096          */
3097         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3098 }
3099
3100 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3101 static long zone_pagecache_reclaimable(struct zone *zone)
3102 {
3103         long nr_pagecache_reclaimable;
3104         long delta = 0;
3105
3106         /*
3107          * If RECLAIM_SWAP is set, then all file pages are considered
3108          * potentially reclaimable. Otherwise, we have to worry about
3109          * pages like swapcache and zone_unmapped_file_pages() provides
3110          * a better estimate
3111          */
3112         if (zone_reclaim_mode & RECLAIM_SWAP)
3113                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3114         else
3115                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3116
3117         /* If we can't clean pages, remove dirty pages from consideration */
3118         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3119                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3120
3121         /* Watch for any possible underflows due to delta */
3122         if (unlikely(delta > nr_pagecache_reclaimable))
3123                 delta = nr_pagecache_reclaimable;
3124
3125         return nr_pagecache_reclaimable - delta;
3126 }
3127
3128 /*
3129  * Try to free up some pages from this zone through reclaim.
3130  */
3131 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3132 {
3133         /* Minimum pages needed in order to stay on node */
3134         const unsigned long nr_pages = 1 << order;
3135         struct task_struct *p = current;
3136         struct reclaim_state reclaim_state;
3137         int priority;
3138         struct scan_control sc = {
3139                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3140                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3141                 .may_swap = 1,
3142                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3143                                        SWAP_CLUSTER_MAX),
3144                 .gfp_mask = gfp_mask,
3145                 .order = order,
3146         };
3147         struct shrink_control shrink = {
3148                 .gfp_mask = sc.gfp_mask,
3149         };
3150         unsigned long nr_slab_pages0, nr_slab_pages1;
3151
3152         cond_resched();
3153         /*
3154          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3155          * and we also need to be able to write out pages for RECLAIM_WRITE
3156          * and RECLAIM_SWAP.
3157          */
3158         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3159         lockdep_set_current_reclaim_state(gfp_mask);
3160         reclaim_state.reclaimed_slab = 0;
3161         p->reclaim_state = &reclaim_state;
3162
3163         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3164                 /*
3165                  * Free memory by calling shrink zone with increasing
3166                  * priorities until we have enough memory freed.
3167                  */
3168                 priority = ZONE_RECLAIM_PRIORITY;
3169                 do {
3170                         shrink_zone(priority, zone, &sc);
3171                         priority--;
3172                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3173         }
3174
3175         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3176         if (nr_slab_pages0 > zone->min_slab_pages) {
3177                 /*
3178                  * shrink_slab() does not currently allow us to determine how
3179                  * many pages were freed in this zone. So we take the current
3180                  * number of slab pages and shake the slab until it is reduced
3181                  * by the same nr_pages that we used for reclaiming unmapped
3182                  * pages.
3183                  *
3184                  * Note that shrink_slab will free memory on all zones and may
3185                  * take a long time.
3186                  */
3187                 for (;;) {
3188                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3189
3190                         /* No reclaimable slab or very low memory pressure */
3191                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3192                                 break;
3193
3194                         /* Freed enough memory */
3195                         nr_slab_pages1 = zone_page_state(zone,
3196                                                         NR_SLAB_RECLAIMABLE);
3197                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3198                                 break;
3199                 }
3200
3201                 /*
3202                  * Update nr_reclaimed by the number of slab pages we
3203                  * reclaimed from this zone.
3204                  */
3205                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3206                 if (nr_slab_pages1 < nr_slab_pages0)
3207                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3208         }
3209
3210         p->reclaim_state = NULL;
3211         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3212         lockdep_clear_current_reclaim_state();
3213         return sc.nr_reclaimed >= nr_pages;
3214 }
3215
3216 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3217 {
3218         int node_id;
3219         int ret;
3220
3221         /*
3222          * Zone reclaim reclaims unmapped file backed pages and
3223          * slab pages if we are over the defined limits.
3224          *
3225          * A small portion of unmapped file backed pages is needed for
3226          * file I/O otherwise pages read by file I/O will be immediately
3227          * thrown out if the zone is overallocated. So we do not reclaim
3228          * if less than a specified percentage of the zone is used by
3229          * unmapped file backed pages.
3230          */
3231         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3232             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3233                 return ZONE_RECLAIM_FULL;
3234
3235         if (zone->all_unreclaimable)
3236                 return ZONE_RECLAIM_FULL;
3237
3238         /*
3239          * Do not scan if the allocation should not be delayed.
3240          */
3241         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3242                 return ZONE_RECLAIM_NOSCAN;
3243
3244         /*
3245          * Only run zone reclaim on the local zone or on zones that do not
3246          * have associated processors. This will favor the local processor
3247          * over remote processors and spread off node memory allocations
3248          * as wide as possible.
3249          */
3250         node_id = zone_to_nid(zone);
3251         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3252                 return ZONE_RECLAIM_NOSCAN;
3253
3254         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3255                 return ZONE_RECLAIM_NOSCAN;
3256
3257         ret = __zone_reclaim(zone, gfp_mask, order);
3258         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3259
3260         if (!ret)
3261                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3262
3263         return ret;
3264 }
3265 #endif
3266
3267 /*
3268  * page_evictable - test whether a page is evictable
3269  * @page: the page to test
3270  * @vma: the VMA in which the page is or will be mapped, may be NULL
3271  *
3272  * Test whether page is evictable--i.e., should be placed on active/inactive
3273  * lists vs unevictable list.  The vma argument is !NULL when called from the
3274  * fault path to determine how to instantate a new page.
3275  *
3276  * Reasons page might not be evictable:
3277  * (1) page's mapping marked unevictable
3278  * (2) page is part of an mlocked VMA
3279  *
3280  */
3281 int page_evictable(struct page *page, struct vm_area_struct *vma)
3282 {
3283
3284         if (mapping_unevictable(page_mapping(page)))
3285                 return 0;
3286
3287         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3288                 return 0;
3289
3290         return 1;
3291 }
3292
3293 /**
3294  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3295  * @page: page to check evictability and move to appropriate lru list
3296  * @zone: zone page is in
3297  *
3298  * Checks a page for evictability and moves the page to the appropriate
3299  * zone lru list.
3300  *
3301  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3302  * have PageUnevictable set.
3303  */
3304 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3305 {
3306         VM_BUG_ON(PageActive(page));
3307
3308 retry:
3309         ClearPageUnevictable(page);
3310         if (page_evictable(page, NULL)) {
3311                 enum lru_list l = page_lru_base_type(page);
3312
3313                 __dec_zone_state(zone, NR_UNEVICTABLE);
3314                 list_move(&page->lru, &zone->lru[l].list);
3315                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3316                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3317                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3318         } else {
3319                 /*
3320                  * rotate unevictable list
3321                  */
3322                 SetPageUnevictable(page);
3323                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3324                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3325                 if (page_evictable(page, NULL))
3326                         goto retry;
3327         }
3328 }
3329
3330 /**
3331  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3332  * @mapping: struct address_space to scan for evictable pages
3333  *
3334  * Scan all pages in mapping.  Check unevictable pages for
3335  * evictability and move them to the appropriate zone lru list.
3336  */
3337 void scan_mapping_unevictable_pages(struct address_space *mapping)
3338 {
3339         pgoff_t next = 0;
3340         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3341                          PAGE_CACHE_SHIFT;
3342         struct zone *zone;
3343         struct pagevec pvec;
3344
3345         if (mapping->nrpages == 0)
3346                 return;
3347
3348         pagevec_init(&pvec, 0);
3349         while (next < end &&
3350                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3351                 int i;
3352                 int pg_scanned = 0;
3353
3354                 zone = NULL;
3355
3356                 for (i = 0; i < pagevec_count(&pvec); i++) {
3357                         struct page *page = pvec.pages[i];
3358                         pgoff_t page_index = page->index;
3359                         struct zone *pagezone = page_zone(page);
3360
3361                         pg_scanned++;
3362                         if (page_index > next)
3363                                 next = page_index;
3364                         next++;
3365
3366                         if (pagezone != zone) {
3367                                 if (zone)
3368                                         spin_unlock_irq(&zone->lru_lock);
3369                                 zone = pagezone;
3370                                 spin_lock_irq(&zone->lru_lock);
3371                         }
3372
3373                         if (PageLRU(page) && PageUnevictable(page))
3374                                 check_move_unevictable_page(page, zone);
3375                 }
3376                 if (zone)
3377                         spin_unlock_irq(&zone->lru_lock);
3378                 pagevec_release(&pvec);
3379
3380                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3381         }
3382
3383 }
3384
3385 /**
3386  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3387  * @zone - zone of which to scan the unevictable list
3388  *
3389  * Scan @zone's unevictable LRU lists to check for pages that have become
3390  * evictable.  Move those that have to @zone's inactive list where they
3391  * become candidates for reclaim, unless shrink_inactive_zone() decides
3392  * to reactivate them.  Pages that are still unevictable are rotated
3393  * back onto @zone's unevictable list.
3394  */
3395 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3396 static void scan_zone_unevictable_pages(struct zone *zone)
3397 {
3398         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3399         unsigned long scan;
3400         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3401
3402         while (nr_to_scan > 0) {
3403                 unsigned long batch_size = min(nr_to_scan,
3404                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3405
3406                 spin_lock_irq(&zone->lru_lock);
3407                 for (scan = 0;  scan < batch_size; scan++) {
3408                         struct page *page = lru_to_page(l_unevictable);
3409
3410                         if (!trylock_page(page))
3411                                 continue;
3412
3413                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3414
3415                         if (likely(PageLRU(page) && PageUnevictable(page)))
3416                                 check_move_unevictable_page(page, zone);
3417
3418                         unlock_page(page);
3419                 }
3420                 spin_unlock_irq(&zone->lru_lock);
3421
3422                 nr_to_scan -= batch_size;
3423         }
3424 }
3425
3426
3427 /**
3428  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3429  *
3430  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3431  * pages that have become evictable.  Move those back to the zones'
3432  * inactive list where they become candidates for reclaim.
3433  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3434  * and we add swap to the system.  As such, it runs in the context of a task
3435  * that has possibly/probably made some previously unevictable pages
3436  * evictable.
3437  */
3438 static void scan_all_zones_unevictable_pages(void)
3439 {
3440         struct zone *zone;
3441
3442         for_each_zone(zone) {
3443                 scan_zone_unevictable_pages(zone);
3444         }
3445 }
3446
3447 /*
3448  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3449  * all nodes' unevictable lists for evictable pages
3450  */
3451 unsigned long scan_unevictable_pages;
3452
3453 int scan_unevictable_handler(struct ctl_table *table, int write,
3454                            void __user *buffer,
3455                            size_t *length, loff_t *ppos)
3456 {
3457         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3458
3459         if (write && *(unsigned long *)table->data)
3460                 scan_all_zones_unevictable_pages();
3461
3462         scan_unevictable_pages = 0;
3463         return 0;
3464 }
3465
3466 #ifdef CONFIG_NUMA
3467 /*
3468  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3469  * a specified node's per zone unevictable lists for evictable pages.
3470  */
3471
3472 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3473                                           struct sysdev_attribute *attr,
3474                                           char *buf)
3475 {
3476         return sprintf(buf, "0\n");     /* always zero; should fit... */
3477 }
3478
3479 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3480                                            struct sysdev_attribute *attr,
3481                                         const char *buf, size_t count)
3482 {
3483         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3484         struct zone *zone;
3485         unsigned long res;
3486         unsigned long req = strict_strtoul(buf, 10, &res);
3487
3488         if (!req)
3489                 return 1;       /* zero is no-op */
3490
3491         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3492                 if (!populated_zone(zone))
3493                         continue;
3494                 scan_zone_unevictable_pages(zone);
3495         }
3496         return 1;
3497 }
3498
3499
3500 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3501                         read_scan_unevictable_node,
3502                         write_scan_unevictable_node);
3503
3504 int scan_unevictable_register_node(struct node *node)
3505 {
3506         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3507 }
3508
3509 void scan_unevictable_unregister_node(struct node *node)
3510 {
3511         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3512 }
3513 #endif