]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmscan.c
mm/mempool.c: convert kmalloc_node(...GFP_ZERO...) to kzalloc_node(...)
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145         return true;
146 }
147 #endif
148
149 unsigned long zone_reclaimable_pages(struct zone *zone)
150 {
151         int nr;
152
153         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
154              zone_page_state(zone, NR_INACTIVE_FILE);
155
156         if (get_nr_swap_pages() > 0)
157                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
158                       zone_page_state(zone, NR_INACTIVE_ANON);
159
160         return nr;
161 }
162
163 bool zone_reclaimable(struct zone *zone)
164 {
165         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
166 }
167
168 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
169 {
170         if (!mem_cgroup_disabled())
171                 return mem_cgroup_get_lru_size(lruvec, lru);
172
173         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
174 }
175
176 /*
177  * Add a shrinker callback to be called from the vm
178  */
179 void register_shrinker(struct shrinker *shrinker)
180 {
181         atomic_long_set(&shrinker->nr_in_batch, 0);
182         down_write(&shrinker_rwsem);
183         list_add_tail(&shrinker->list, &shrinker_list);
184         up_write(&shrinker_rwsem);
185 }
186 EXPORT_SYMBOL(register_shrinker);
187
188 /*
189  * Remove one
190  */
191 void unregister_shrinker(struct shrinker *shrinker)
192 {
193         down_write(&shrinker_rwsem);
194         list_del(&shrinker->list);
195         up_write(&shrinker_rwsem);
196 }
197 EXPORT_SYMBOL(unregister_shrinker);
198
199 static inline int do_shrinker_shrink(struct shrinker *shrinker,
200                                      struct shrink_control *sc,
201                                      unsigned long nr_to_scan)
202 {
203         sc->nr_to_scan = nr_to_scan;
204         return (*shrinker->shrink)(shrinker, sc);
205 }
206
207 #define SHRINK_BATCH 128
208 /*
209  * Call the shrink functions to age shrinkable caches
210  *
211  * Here we assume it costs one seek to replace a lru page and that it also
212  * takes a seek to recreate a cache object.  With this in mind we age equal
213  * percentages of the lru and ageable caches.  This should balance the seeks
214  * generated by these structures.
215  *
216  * If the vm encountered mapped pages on the LRU it increase the pressure on
217  * slab to avoid swapping.
218  *
219  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
220  *
221  * `lru_pages' represents the number of on-LRU pages in all the zones which
222  * are eligible for the caller's allocation attempt.  It is used for balancing
223  * slab reclaim versus page reclaim.
224  *
225  * Returns the number of slab objects which we shrunk.
226  */
227 unsigned long shrink_slab(struct shrink_control *shrink,
228                           unsigned long nr_pages_scanned,
229                           unsigned long lru_pages)
230 {
231         struct shrinker *shrinker;
232         unsigned long ret = 0;
233
234         if (nr_pages_scanned == 0)
235                 nr_pages_scanned = SWAP_CLUSTER_MAX;
236
237         if (!down_read_trylock(&shrinker_rwsem)) {
238                 /* Assume we'll be able to shrink next time */
239                 ret = 1;
240                 goto out;
241         }
242
243         list_for_each_entry(shrinker, &shrinker_list, list) {
244                 unsigned long long delta;
245                 long total_scan;
246                 long max_pass;
247                 int shrink_ret = 0;
248                 long nr;
249                 long new_nr;
250                 long batch_size = shrinker->batch ? shrinker->batch
251                                                   : SHRINK_BATCH;
252
253                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
254                 if (max_pass <= 0)
255                         continue;
256
257                 /*
258                  * copy the current shrinker scan count into a local variable
259                  * and zero it so that other concurrent shrinker invocations
260                  * don't also do this scanning work.
261                  */
262                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
263
264                 total_scan = nr;
265                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
266                 delta *= max_pass;
267                 do_div(delta, lru_pages + 1);
268                 total_scan += delta;
269                 if (total_scan < 0) {
270                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
271                                "delete nr=%ld\n",
272                                shrinker->shrink, total_scan);
273                         total_scan = max_pass;
274                 }
275
276                 /*
277                  * We need to avoid excessive windup on filesystem shrinkers
278                  * due to large numbers of GFP_NOFS allocations causing the
279                  * shrinkers to return -1 all the time. This results in a large
280                  * nr being built up so when a shrink that can do some work
281                  * comes along it empties the entire cache due to nr >>>
282                  * max_pass.  This is bad for sustaining a working set in
283                  * memory.
284                  *
285                  * Hence only allow the shrinker to scan the entire cache when
286                  * a large delta change is calculated directly.
287                  */
288                 if (delta < max_pass / 4)
289                         total_scan = min(total_scan, max_pass / 2);
290
291                 /*
292                  * Avoid risking looping forever due to too large nr value:
293                  * never try to free more than twice the estimate number of
294                  * freeable entries.
295                  */
296                 if (total_scan > max_pass * 2)
297                         total_scan = max_pass * 2;
298
299                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
300                                         nr_pages_scanned, lru_pages,
301                                         max_pass, delta, total_scan);
302
303                 while (total_scan >= batch_size) {
304                         int nr_before;
305
306                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
307                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
308                                                         batch_size);
309                         if (shrink_ret == -1)
310                                 break;
311                         if (shrink_ret < nr_before)
312                                 ret += nr_before - shrink_ret;
313                         count_vm_events(SLABS_SCANNED, batch_size);
314                         total_scan -= batch_size;
315
316                         cond_resched();
317                 }
318
319                 /*
320                  * move the unused scan count back into the shrinker in a
321                  * manner that handles concurrent updates. If we exhausted the
322                  * scan, there is no need to do an update.
323                  */
324                 if (total_scan > 0)
325                         new_nr = atomic_long_add_return(total_scan,
326                                         &shrinker->nr_in_batch);
327                 else
328                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
329
330                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
331         }
332         up_read(&shrinker_rwsem);
333 out:
334         cond_resched();
335         return ret;
336 }
337
338 static inline int is_page_cache_freeable(struct page *page)
339 {
340         /*
341          * A freeable page cache page is referenced only by the caller
342          * that isolated the page, the page cache radix tree and
343          * optional buffer heads at page->private.
344          */
345         return page_count(page) - page_has_private(page) == 2;
346 }
347
348 static int may_write_to_queue(struct backing_dev_info *bdi,
349                               struct scan_control *sc)
350 {
351         if (current->flags & PF_SWAPWRITE)
352                 return 1;
353         if (!bdi_write_congested(bdi))
354                 return 1;
355         if (bdi == current->backing_dev_info)
356                 return 1;
357         return 0;
358 }
359
360 /*
361  * We detected a synchronous write error writing a page out.  Probably
362  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
363  * fsync(), msync() or close().
364  *
365  * The tricky part is that after writepage we cannot touch the mapping: nothing
366  * prevents it from being freed up.  But we have a ref on the page and once
367  * that page is locked, the mapping is pinned.
368  *
369  * We're allowed to run sleeping lock_page() here because we know the caller has
370  * __GFP_FS.
371  */
372 static void handle_write_error(struct address_space *mapping,
373                                 struct page *page, int error)
374 {
375         lock_page(page);
376         if (page_mapping(page) == mapping)
377                 mapping_set_error(mapping, error);
378         unlock_page(page);
379 }
380
381 /* possible outcome of pageout() */
382 typedef enum {
383         /* failed to write page out, page is locked */
384         PAGE_KEEP,
385         /* move page to the active list, page is locked */
386         PAGE_ACTIVATE,
387         /* page has been sent to the disk successfully, page is unlocked */
388         PAGE_SUCCESS,
389         /* page is clean and locked */
390         PAGE_CLEAN,
391 } pageout_t;
392
393 /*
394  * pageout is called by shrink_page_list() for each dirty page.
395  * Calls ->writepage().
396  */
397 static pageout_t pageout(struct page *page, struct address_space *mapping,
398                          struct scan_control *sc)
399 {
400         /*
401          * If the page is dirty, only perform writeback if that write
402          * will be non-blocking.  To prevent this allocation from being
403          * stalled by pagecache activity.  But note that there may be
404          * stalls if we need to run get_block().  We could test
405          * PagePrivate for that.
406          *
407          * If this process is currently in __generic_file_aio_write() against
408          * this page's queue, we can perform writeback even if that
409          * will block.
410          *
411          * If the page is swapcache, write it back even if that would
412          * block, for some throttling. This happens by accident, because
413          * swap_backing_dev_info is bust: it doesn't reflect the
414          * congestion state of the swapdevs.  Easy to fix, if needed.
415          */
416         if (!is_page_cache_freeable(page))
417                 return PAGE_KEEP;
418         if (!mapping) {
419                 /*
420                  * Some data journaling orphaned pages can have
421                  * page->mapping == NULL while being dirty with clean buffers.
422                  */
423                 if (page_has_private(page)) {
424                         if (try_to_free_buffers(page)) {
425                                 ClearPageDirty(page);
426                                 printk("%s: orphaned page\n", __func__);
427                                 return PAGE_CLEAN;
428                         }
429                 }
430                 return PAGE_KEEP;
431         }
432         if (mapping->a_ops->writepage == NULL)
433                 return PAGE_ACTIVATE;
434         if (!may_write_to_queue(mapping->backing_dev_info, sc))
435                 return PAGE_KEEP;
436
437         if (clear_page_dirty_for_io(page)) {
438                 int res;
439                 struct writeback_control wbc = {
440                         .sync_mode = WB_SYNC_NONE,
441                         .nr_to_write = SWAP_CLUSTER_MAX,
442                         .range_start = 0,
443                         .range_end = LLONG_MAX,
444                         .for_reclaim = 1,
445                 };
446
447                 SetPageReclaim(page);
448                 res = mapping->a_ops->writepage(page, &wbc);
449                 if (res < 0)
450                         handle_write_error(mapping, page, res);
451                 if (res == AOP_WRITEPAGE_ACTIVATE) {
452                         ClearPageReclaim(page);
453                         return PAGE_ACTIVATE;
454                 }
455
456                 if (!PageWriteback(page)) {
457                         /* synchronous write or broken a_ops? */
458                         ClearPageReclaim(page);
459                 }
460                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
461                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
462                 return PAGE_SUCCESS;
463         }
464
465         return PAGE_CLEAN;
466 }
467
468 /*
469  * Same as remove_mapping, but if the page is removed from the mapping, it
470  * gets returned with a refcount of 0.
471  */
472 static int __remove_mapping(struct address_space *mapping, struct page *page)
473 {
474         BUG_ON(!PageLocked(page));
475         BUG_ON(mapping != page_mapping(page));
476
477         spin_lock_irq(&mapping->tree_lock);
478         /*
479          * The non racy check for a busy page.
480          *
481          * Must be careful with the order of the tests. When someone has
482          * a ref to the page, it may be possible that they dirty it then
483          * drop the reference. So if PageDirty is tested before page_count
484          * here, then the following race may occur:
485          *
486          * get_user_pages(&page);
487          * [user mapping goes away]
488          * write_to(page);
489          *                              !PageDirty(page)    [good]
490          * SetPageDirty(page);
491          * put_page(page);
492          *                              !page_count(page)   [good, discard it]
493          *
494          * [oops, our write_to data is lost]
495          *
496          * Reversing the order of the tests ensures such a situation cannot
497          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
498          * load is not satisfied before that of page->_count.
499          *
500          * Note that if SetPageDirty is always performed via set_page_dirty,
501          * and thus under tree_lock, then this ordering is not required.
502          */
503         if (!page_freeze_refs(page, 2))
504                 goto cannot_free;
505         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
506         if (unlikely(PageDirty(page))) {
507                 page_unfreeze_refs(page, 2);
508                 goto cannot_free;
509         }
510
511         if (PageSwapCache(page)) {
512                 swp_entry_t swap = { .val = page_private(page) };
513                 __delete_from_swap_cache(page);
514                 spin_unlock_irq(&mapping->tree_lock);
515                 swapcache_free(swap, page);
516         } else {
517                 void (*freepage)(struct page *);
518
519                 freepage = mapping->a_ops->freepage;
520
521                 __delete_from_page_cache(page);
522                 spin_unlock_irq(&mapping->tree_lock);
523                 mem_cgroup_uncharge_cache_page(page);
524
525                 if (freepage != NULL)
526                         freepage(page);
527         }
528
529         return 1;
530
531 cannot_free:
532         spin_unlock_irq(&mapping->tree_lock);
533         return 0;
534 }
535
536 /*
537  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
538  * someone else has a ref on the page, abort and return 0.  If it was
539  * successfully detached, return 1.  Assumes the caller has a single ref on
540  * this page.
541  */
542 int remove_mapping(struct address_space *mapping, struct page *page)
543 {
544         if (__remove_mapping(mapping, page)) {
545                 /*
546                  * Unfreezing the refcount with 1 rather than 2 effectively
547                  * drops the pagecache ref for us without requiring another
548                  * atomic operation.
549                  */
550                 page_unfreeze_refs(page, 1);
551                 return 1;
552         }
553         return 0;
554 }
555
556 /**
557  * putback_lru_page - put previously isolated page onto appropriate LRU list
558  * @page: page to be put back to appropriate lru list
559  *
560  * Add previously isolated @page to appropriate LRU list.
561  * Page may still be unevictable for other reasons.
562  *
563  * lru_lock must not be held, interrupts must be enabled.
564  */
565 void putback_lru_page(struct page *page)
566 {
567         bool is_unevictable;
568         int was_unevictable = PageUnevictable(page);
569
570         VM_BUG_ON(PageLRU(page));
571
572 redo:
573         ClearPageUnevictable(page);
574
575         if (page_evictable(page)) {
576                 /*
577                  * For evictable pages, we can use the cache.
578                  * In event of a race, worst case is we end up with an
579                  * unevictable page on [in]active list.
580                  * We know how to handle that.
581                  */
582                 is_unevictable = false;
583                 lru_cache_add(page);
584         } else {
585                 /*
586                  * Put unevictable pages directly on zone's unevictable
587                  * list.
588                  */
589                 is_unevictable = true;
590                 add_page_to_unevictable_list(page);
591                 /*
592                  * When racing with an mlock or AS_UNEVICTABLE clearing
593                  * (page is unlocked) make sure that if the other thread
594                  * does not observe our setting of PG_lru and fails
595                  * isolation/check_move_unevictable_pages,
596                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
597                  * the page back to the evictable list.
598                  *
599                  * The other side is TestClearPageMlocked() or shmem_lock().
600                  */
601                 smp_mb();
602         }
603
604         /*
605          * page's status can change while we move it among lru. If an evictable
606          * page is on unevictable list, it never be freed. To avoid that,
607          * check after we added it to the list, again.
608          */
609         if (is_unevictable && page_evictable(page)) {
610                 if (!isolate_lru_page(page)) {
611                         put_page(page);
612                         goto redo;
613                 }
614                 /* This means someone else dropped this page from LRU
615                  * So, it will be freed or putback to LRU again. There is
616                  * nothing to do here.
617                  */
618         }
619
620         if (was_unevictable && !is_unevictable)
621                 count_vm_event(UNEVICTABLE_PGRESCUED);
622         else if (!was_unevictable && is_unevictable)
623                 count_vm_event(UNEVICTABLE_PGCULLED);
624
625         put_page(page);         /* drop ref from isolate */
626 }
627
628 enum page_references {
629         PAGEREF_RECLAIM,
630         PAGEREF_RECLAIM_CLEAN,
631         PAGEREF_KEEP,
632         PAGEREF_ACTIVATE,
633 };
634
635 static enum page_references page_check_references(struct page *page,
636                                                   struct scan_control *sc)
637 {
638         int referenced_ptes, referenced_page;
639         unsigned long vm_flags;
640
641         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
642                                           &vm_flags);
643         referenced_page = TestClearPageReferenced(page);
644
645         /*
646          * Mlock lost the isolation race with us.  Let try_to_unmap()
647          * move the page to the unevictable list.
648          */
649         if (vm_flags & VM_LOCKED)
650                 return PAGEREF_RECLAIM;
651
652         if (referenced_ptes) {
653                 if (PageSwapBacked(page))
654                         return PAGEREF_ACTIVATE;
655                 /*
656                  * All mapped pages start out with page table
657                  * references from the instantiating fault, so we need
658                  * to look twice if a mapped file page is used more
659                  * than once.
660                  *
661                  * Mark it and spare it for another trip around the
662                  * inactive list.  Another page table reference will
663                  * lead to its activation.
664                  *
665                  * Note: the mark is set for activated pages as well
666                  * so that recently deactivated but used pages are
667                  * quickly recovered.
668                  */
669                 SetPageReferenced(page);
670
671                 if (referenced_page || referenced_ptes > 1)
672                         return PAGEREF_ACTIVATE;
673
674                 /*
675                  * Activate file-backed executable pages after first usage.
676                  */
677                 if (vm_flags & VM_EXEC)
678                         return PAGEREF_ACTIVATE;
679
680                 return PAGEREF_KEEP;
681         }
682
683         /* Reclaim if clean, defer dirty pages to writeback */
684         if (referenced_page && !PageSwapBacked(page))
685                 return PAGEREF_RECLAIM_CLEAN;
686
687         return PAGEREF_RECLAIM;
688 }
689
690 /* Check if a page is dirty or under writeback */
691 static void page_check_dirty_writeback(struct page *page,
692                                        bool *dirty, bool *writeback)
693 {
694         struct address_space *mapping;
695
696         /*
697          * Anonymous pages are not handled by flushers and must be written
698          * from reclaim context. Do not stall reclaim based on them
699          */
700         if (!page_is_file_cache(page)) {
701                 *dirty = false;
702                 *writeback = false;
703                 return;
704         }
705
706         /* By default assume that the page flags are accurate */
707         *dirty = PageDirty(page);
708         *writeback = PageWriteback(page);
709
710         /* Verify dirty/writeback state if the filesystem supports it */
711         if (!page_has_private(page))
712                 return;
713
714         mapping = page_mapping(page);
715         if (mapping && mapping->a_ops->is_dirty_writeback)
716                 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
717 }
718
719 /*
720  * shrink_page_list() returns the number of reclaimed pages
721  */
722 static unsigned long shrink_page_list(struct list_head *page_list,
723                                       struct zone *zone,
724                                       struct scan_control *sc,
725                                       enum ttu_flags ttu_flags,
726                                       unsigned long *ret_nr_dirty,
727                                       unsigned long *ret_nr_unqueued_dirty,
728                                       unsigned long *ret_nr_congested,
729                                       unsigned long *ret_nr_writeback,
730                                       unsigned long *ret_nr_immediate,
731                                       bool force_reclaim)
732 {
733         LIST_HEAD(ret_pages);
734         LIST_HEAD(free_pages);
735         int pgactivate = 0;
736         unsigned long nr_unqueued_dirty = 0;
737         unsigned long nr_dirty = 0;
738         unsigned long nr_congested = 0;
739         unsigned long nr_reclaimed = 0;
740         unsigned long nr_writeback = 0;
741         unsigned long nr_immediate = 0;
742
743         cond_resched();
744
745         mem_cgroup_uncharge_start();
746         while (!list_empty(page_list)) {
747                 struct address_space *mapping;
748                 struct page *page;
749                 int may_enter_fs;
750                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
751                 bool dirty, writeback;
752
753                 cond_resched();
754
755                 page = lru_to_page(page_list);
756                 list_del(&page->lru);
757
758                 if (!trylock_page(page))
759                         goto keep;
760
761                 VM_BUG_ON(PageActive(page));
762                 VM_BUG_ON(page_zone(page) != zone);
763
764                 sc->nr_scanned++;
765
766                 if (unlikely(!page_evictable(page)))
767                         goto cull_mlocked;
768
769                 if (!sc->may_unmap && page_mapped(page))
770                         goto keep_locked;
771
772                 /* Double the slab pressure for mapped and swapcache pages */
773                 if (page_mapped(page) || PageSwapCache(page))
774                         sc->nr_scanned++;
775
776                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
777                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
778
779                 /*
780                  * The number of dirty pages determines if a zone is marked
781                  * reclaim_congested which affects wait_iff_congested. kswapd
782                  * will stall and start writing pages if the tail of the LRU
783                  * is all dirty unqueued pages.
784                  */
785                 page_check_dirty_writeback(page, &dirty, &writeback);
786                 if (dirty || writeback)
787                         nr_dirty++;
788
789                 if (dirty && !writeback)
790                         nr_unqueued_dirty++;
791
792                 /*
793                  * Treat this page as congested if the underlying BDI is or if
794                  * pages are cycling through the LRU so quickly that the
795                  * pages marked for immediate reclaim are making it to the
796                  * end of the LRU a second time.
797                  */
798                 mapping = page_mapping(page);
799                 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
800                     (writeback && PageReclaim(page)))
801                         nr_congested++;
802
803                 /*
804                  * If a page at the tail of the LRU is under writeback, there
805                  * are three cases to consider.
806                  *
807                  * 1) If reclaim is encountering an excessive number of pages
808                  *    under writeback and this page is both under writeback and
809                  *    PageReclaim then it indicates that pages are being queued
810                  *    for IO but are being recycled through the LRU before the
811                  *    IO can complete. Waiting on the page itself risks an
812                  *    indefinite stall if it is impossible to writeback the
813                  *    page due to IO error or disconnected storage so instead
814                  *    note that the LRU is being scanned too quickly and the
815                  *    caller can stall after page list has been processed.
816                  *
817                  * 2) Global reclaim encounters a page, memcg encounters a
818                  *    page that is not marked for immediate reclaim or
819                  *    the caller does not have __GFP_IO. In this case mark
820                  *    the page for immediate reclaim and continue scanning.
821                  *
822                  *    __GFP_IO is checked  because a loop driver thread might
823                  *    enter reclaim, and deadlock if it waits on a page for
824                  *    which it is needed to do the write (loop masks off
825                  *    __GFP_IO|__GFP_FS for this reason); but more thought
826                  *    would probably show more reasons.
827                  *
828                  *    Don't require __GFP_FS, since we're not going into the
829                  *    FS, just waiting on its writeback completion. Worryingly,
830                  *    ext4 gfs2 and xfs allocate pages with
831                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
832                  *    may_enter_fs here is liable to OOM on them.
833                  *
834                  * 3) memcg encounters a page that is not already marked
835                  *    PageReclaim. memcg does not have any dirty pages
836                  *    throttling so we could easily OOM just because too many
837                  *    pages are in writeback and there is nothing else to
838                  *    reclaim. Wait for the writeback to complete.
839                  */
840                 if (PageWriteback(page)) {
841                         /* Case 1 above */
842                         if (current_is_kswapd() &&
843                             PageReclaim(page) &&
844                             zone_is_reclaim_writeback(zone)) {
845                                 nr_immediate++;
846                                 goto keep_locked;
847
848                         /* Case 2 above */
849                         } else if (global_reclaim(sc) ||
850                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
851                                 /*
852                                  * This is slightly racy - end_page_writeback()
853                                  * might have just cleared PageReclaim, then
854                                  * setting PageReclaim here end up interpreted
855                                  * as PageReadahead - but that does not matter
856                                  * enough to care.  What we do want is for this
857                                  * page to have PageReclaim set next time memcg
858                                  * reclaim reaches the tests above, so it will
859                                  * then wait_on_page_writeback() to avoid OOM;
860                                  * and it's also appropriate in global reclaim.
861                                  */
862                                 SetPageReclaim(page);
863                                 nr_writeback++;
864
865                                 goto keep_locked;
866
867                         /* Case 3 above */
868                         } else {
869                                 wait_on_page_writeback(page);
870                         }
871                 }
872
873                 if (!force_reclaim)
874                         references = page_check_references(page, sc);
875
876                 switch (references) {
877                 case PAGEREF_ACTIVATE:
878                         goto activate_locked;
879                 case PAGEREF_KEEP:
880                         goto keep_locked;
881                 case PAGEREF_RECLAIM:
882                 case PAGEREF_RECLAIM_CLEAN:
883                         ; /* try to reclaim the page below */
884                 }
885
886                 /*
887                  * Anonymous process memory has backing store?
888                  * Try to allocate it some swap space here.
889                  */
890                 if (PageAnon(page) && !PageSwapCache(page)) {
891                         if (!(sc->gfp_mask & __GFP_IO))
892                                 goto keep_locked;
893                         if (!add_to_swap(page, page_list))
894                                 goto activate_locked;
895                         may_enter_fs = 1;
896
897                         /* Adding to swap updated mapping */
898                         mapping = page_mapping(page);
899                 }
900
901                 /*
902                  * The page is mapped into the page tables of one or more
903                  * processes. Try to unmap it here.
904                  */
905                 if (page_mapped(page) && mapping) {
906                         switch (try_to_unmap(page, ttu_flags)) {
907                         case SWAP_FAIL:
908                                 goto activate_locked;
909                         case SWAP_AGAIN:
910                                 goto keep_locked;
911                         case SWAP_MLOCK:
912                                 goto cull_mlocked;
913                         case SWAP_SUCCESS:
914                                 ; /* try to free the page below */
915                         }
916                 }
917
918                 if (PageDirty(page)) {
919                         /*
920                          * Only kswapd can writeback filesystem pages to
921                          * avoid risk of stack overflow but only writeback
922                          * if many dirty pages have been encountered.
923                          */
924                         if (page_is_file_cache(page) &&
925                                         (!current_is_kswapd() ||
926                                          !zone_is_reclaim_dirty(zone))) {
927                                 /*
928                                  * Immediately reclaim when written back.
929                                  * Similar in principal to deactivate_page()
930                                  * except we already have the page isolated
931                                  * and know it's dirty
932                                  */
933                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
934                                 SetPageReclaim(page);
935
936                                 goto keep_locked;
937                         }
938
939                         if (references == PAGEREF_RECLAIM_CLEAN)
940                                 goto keep_locked;
941                         if (!may_enter_fs)
942                                 goto keep_locked;
943                         if (!sc->may_writepage)
944                                 goto keep_locked;
945
946                         /* Page is dirty, try to write it out here */
947                         switch (pageout(page, mapping, sc)) {
948                         case PAGE_KEEP:
949                                 goto keep_locked;
950                         case PAGE_ACTIVATE:
951                                 goto activate_locked;
952                         case PAGE_SUCCESS:
953                                 if (PageWriteback(page))
954                                         goto keep;
955                                 if (PageDirty(page))
956                                         goto keep;
957
958                                 /*
959                                  * A synchronous write - probably a ramdisk.  Go
960                                  * ahead and try to reclaim the page.
961                                  */
962                                 if (!trylock_page(page))
963                                         goto keep;
964                                 if (PageDirty(page) || PageWriteback(page))
965                                         goto keep_locked;
966                                 mapping = page_mapping(page);
967                         case PAGE_CLEAN:
968                                 ; /* try to free the page below */
969                         }
970                 }
971
972                 /*
973                  * If the page has buffers, try to free the buffer mappings
974                  * associated with this page. If we succeed we try to free
975                  * the page as well.
976                  *
977                  * We do this even if the page is PageDirty().
978                  * try_to_release_page() does not perform I/O, but it is
979                  * possible for a page to have PageDirty set, but it is actually
980                  * clean (all its buffers are clean).  This happens if the
981                  * buffers were written out directly, with submit_bh(). ext3
982                  * will do this, as well as the blockdev mapping.
983                  * try_to_release_page() will discover that cleanness and will
984                  * drop the buffers and mark the page clean - it can be freed.
985                  *
986                  * Rarely, pages can have buffers and no ->mapping.  These are
987                  * the pages which were not successfully invalidated in
988                  * truncate_complete_page().  We try to drop those buffers here
989                  * and if that worked, and the page is no longer mapped into
990                  * process address space (page_count == 1) it can be freed.
991                  * Otherwise, leave the page on the LRU so it is swappable.
992                  */
993                 if (page_has_private(page)) {
994                         if (!try_to_release_page(page, sc->gfp_mask))
995                                 goto activate_locked;
996                         if (!mapping && page_count(page) == 1) {
997                                 unlock_page(page);
998                                 if (put_page_testzero(page))
999                                         goto free_it;
1000                                 else {
1001                                         /*
1002                                          * rare race with speculative reference.
1003                                          * the speculative reference will free
1004                                          * this page shortly, so we may
1005                                          * increment nr_reclaimed here (and
1006                                          * leave it off the LRU).
1007                                          */
1008                                         nr_reclaimed++;
1009                                         continue;
1010                                 }
1011                         }
1012                 }
1013
1014                 if (!mapping || !__remove_mapping(mapping, page))
1015                         goto keep_locked;
1016
1017                 /*
1018                  * At this point, we have no other references and there is
1019                  * no way to pick any more up (removed from LRU, removed
1020                  * from pagecache). Can use non-atomic bitops now (and
1021                  * we obviously don't have to worry about waking up a process
1022                  * waiting on the page lock, because there are no references.
1023                  */
1024                 __clear_page_locked(page);
1025 free_it:
1026                 nr_reclaimed++;
1027
1028                 /*
1029                  * Is there need to periodically free_page_list? It would
1030                  * appear not as the counts should be low
1031                  */
1032                 list_add(&page->lru, &free_pages);
1033                 continue;
1034
1035 cull_mlocked:
1036                 if (PageSwapCache(page))
1037                         try_to_free_swap(page);
1038                 unlock_page(page);
1039                 putback_lru_page(page);
1040                 continue;
1041
1042 activate_locked:
1043                 /* Not a candidate for swapping, so reclaim swap space. */
1044                 if (PageSwapCache(page) && vm_swap_full())
1045                         try_to_free_swap(page);
1046                 VM_BUG_ON(PageActive(page));
1047                 SetPageActive(page);
1048                 pgactivate++;
1049 keep_locked:
1050                 unlock_page(page);
1051 keep:
1052                 list_add(&page->lru, &ret_pages);
1053                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1054         }
1055
1056         free_hot_cold_page_list(&free_pages, 1);
1057
1058         list_splice(&ret_pages, page_list);
1059         count_vm_events(PGACTIVATE, pgactivate);
1060         mem_cgroup_uncharge_end();
1061         *ret_nr_dirty += nr_dirty;
1062         *ret_nr_congested += nr_congested;
1063         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1064         *ret_nr_writeback += nr_writeback;
1065         *ret_nr_immediate += nr_immediate;
1066         return nr_reclaimed;
1067 }
1068
1069 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1070                                             struct list_head *page_list)
1071 {
1072         struct scan_control sc = {
1073                 .gfp_mask = GFP_KERNEL,
1074                 .priority = DEF_PRIORITY,
1075                 .may_unmap = 1,
1076         };
1077         unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1078         struct page *page, *next;
1079         LIST_HEAD(clean_pages);
1080
1081         list_for_each_entry_safe(page, next, page_list, lru) {
1082                 if (page_is_file_cache(page) && !PageDirty(page)) {
1083                         ClearPageActive(page);
1084                         list_move(&page->lru, &clean_pages);
1085                 }
1086         }
1087
1088         ret = shrink_page_list(&clean_pages, zone, &sc,
1089                         TTU_UNMAP|TTU_IGNORE_ACCESS,
1090                         &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1091         list_splice(&clean_pages, page_list);
1092         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1093         return ret;
1094 }
1095
1096 /*
1097  * Attempt to remove the specified page from its LRU.  Only take this page
1098  * if it is of the appropriate PageActive status.  Pages which are being
1099  * freed elsewhere are also ignored.
1100  *
1101  * page:        page to consider
1102  * mode:        one of the LRU isolation modes defined above
1103  *
1104  * returns 0 on success, -ve errno on failure.
1105  */
1106 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1107 {
1108         int ret = -EINVAL;
1109
1110         /* Only take pages on the LRU. */
1111         if (!PageLRU(page))
1112                 return ret;
1113
1114         /* Compaction should not handle unevictable pages but CMA can do so */
1115         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1116                 return ret;
1117
1118         ret = -EBUSY;
1119
1120         /*
1121          * To minimise LRU disruption, the caller can indicate that it only
1122          * wants to isolate pages it will be able to operate on without
1123          * blocking - clean pages for the most part.
1124          *
1125          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1126          * is used by reclaim when it is cannot write to backing storage
1127          *
1128          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1129          * that it is possible to migrate without blocking
1130          */
1131         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1132                 /* All the caller can do on PageWriteback is block */
1133                 if (PageWriteback(page))
1134                         return ret;
1135
1136                 if (PageDirty(page)) {
1137                         struct address_space *mapping;
1138
1139                         /* ISOLATE_CLEAN means only clean pages */
1140                         if (mode & ISOLATE_CLEAN)
1141                                 return ret;
1142
1143                         /*
1144                          * Only pages without mappings or that have a
1145                          * ->migratepage callback are possible to migrate
1146                          * without blocking
1147                          */
1148                         mapping = page_mapping(page);
1149                         if (mapping && !mapping->a_ops->migratepage)
1150                                 return ret;
1151                 }
1152         }
1153
1154         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1155                 return ret;
1156
1157         if (likely(get_page_unless_zero(page))) {
1158                 /*
1159                  * Be careful not to clear PageLRU until after we're
1160                  * sure the page is not being freed elsewhere -- the
1161                  * page release code relies on it.
1162                  */
1163                 ClearPageLRU(page);
1164                 ret = 0;
1165         }
1166
1167         return ret;
1168 }
1169
1170 /*
1171  * zone->lru_lock is heavily contended.  Some of the functions that
1172  * shrink the lists perform better by taking out a batch of pages
1173  * and working on them outside the LRU lock.
1174  *
1175  * For pagecache intensive workloads, this function is the hottest
1176  * spot in the kernel (apart from copy_*_user functions).
1177  *
1178  * Appropriate locks must be held before calling this function.
1179  *
1180  * @nr_to_scan: The number of pages to look through on the list.
1181  * @lruvec:     The LRU vector to pull pages from.
1182  * @dst:        The temp list to put pages on to.
1183  * @nr_scanned: The number of pages that were scanned.
1184  * @sc:         The scan_control struct for this reclaim session
1185  * @mode:       One of the LRU isolation modes
1186  * @lru:        LRU list id for isolating
1187  *
1188  * returns how many pages were moved onto *@dst.
1189  */
1190 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1191                 struct lruvec *lruvec, struct list_head *dst,
1192                 unsigned long *nr_scanned, struct scan_control *sc,
1193                 isolate_mode_t mode, enum lru_list lru)
1194 {
1195         struct list_head *src = &lruvec->lists[lru];
1196         unsigned long nr_taken = 0;
1197         unsigned long scan;
1198
1199         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1200                 struct page *page;
1201                 int nr_pages;
1202
1203                 page = lru_to_page(src);
1204                 prefetchw_prev_lru_page(page, src, flags);
1205
1206                 VM_BUG_ON(!PageLRU(page));
1207
1208                 switch (__isolate_lru_page(page, mode)) {
1209                 case 0:
1210                         nr_pages = hpage_nr_pages(page);
1211                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1212                         list_move(&page->lru, dst);
1213                         nr_taken += nr_pages;
1214                         break;
1215
1216                 case -EBUSY:
1217                         /* else it is being freed elsewhere */
1218                         list_move(&page->lru, src);
1219                         continue;
1220
1221                 default:
1222                         BUG();
1223                 }
1224         }
1225
1226         *nr_scanned = scan;
1227         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1228                                     nr_taken, mode, is_file_lru(lru));
1229         return nr_taken;
1230 }
1231
1232 /**
1233  * isolate_lru_page - tries to isolate a page from its LRU list
1234  * @page: page to isolate from its LRU list
1235  *
1236  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1237  * vmstat statistic corresponding to whatever LRU list the page was on.
1238  *
1239  * Returns 0 if the page was removed from an LRU list.
1240  * Returns -EBUSY if the page was not on an LRU list.
1241  *
1242  * The returned page will have PageLRU() cleared.  If it was found on
1243  * the active list, it will have PageActive set.  If it was found on
1244  * the unevictable list, it will have the PageUnevictable bit set. That flag
1245  * may need to be cleared by the caller before letting the page go.
1246  *
1247  * The vmstat statistic corresponding to the list on which the page was
1248  * found will be decremented.
1249  *
1250  * Restrictions:
1251  * (1) Must be called with an elevated refcount on the page. This is a
1252  *     fundamentnal difference from isolate_lru_pages (which is called
1253  *     without a stable reference).
1254  * (2) the lru_lock must not be held.
1255  * (3) interrupts must be enabled.
1256  */
1257 int isolate_lru_page(struct page *page)
1258 {
1259         int ret = -EBUSY;
1260
1261         VM_BUG_ON(!page_count(page));
1262
1263         if (PageLRU(page)) {
1264                 struct zone *zone = page_zone(page);
1265                 struct lruvec *lruvec;
1266
1267                 spin_lock_irq(&zone->lru_lock);
1268                 lruvec = mem_cgroup_page_lruvec(page, zone);
1269                 if (PageLRU(page)) {
1270                         int lru = page_lru(page);
1271                         get_page(page);
1272                         ClearPageLRU(page);
1273                         del_page_from_lru_list(page, lruvec, lru);
1274                         ret = 0;
1275                 }
1276                 spin_unlock_irq(&zone->lru_lock);
1277         }
1278         return ret;
1279 }
1280
1281 /*
1282  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1283  * then get resheduled. When there are massive number of tasks doing page
1284  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1285  * the LRU list will go small and be scanned faster than necessary, leading to
1286  * unnecessary swapping, thrashing and OOM.
1287  */
1288 static int too_many_isolated(struct zone *zone, int file,
1289                 struct scan_control *sc)
1290 {
1291         unsigned long inactive, isolated;
1292
1293         if (current_is_kswapd())
1294                 return 0;
1295
1296         if (!global_reclaim(sc))
1297                 return 0;
1298
1299         if (file) {
1300                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1301                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1302         } else {
1303                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1304                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1305         }
1306
1307         /*
1308          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1309          * won't get blocked by normal direct-reclaimers, forming a circular
1310          * deadlock.
1311          */
1312         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1313                 inactive >>= 3;
1314
1315         return isolated > inactive;
1316 }
1317
1318 static noinline_for_stack void
1319 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1320 {
1321         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1322         struct zone *zone = lruvec_zone(lruvec);
1323         LIST_HEAD(pages_to_free);
1324
1325         /*
1326          * Put back any unfreeable pages.
1327          */
1328         while (!list_empty(page_list)) {
1329                 struct page *page = lru_to_page(page_list);
1330                 int lru;
1331
1332                 VM_BUG_ON(PageLRU(page));
1333                 list_del(&page->lru);
1334                 if (unlikely(!page_evictable(page))) {
1335                         spin_unlock_irq(&zone->lru_lock);
1336                         putback_lru_page(page);
1337                         spin_lock_irq(&zone->lru_lock);
1338                         continue;
1339                 }
1340
1341                 lruvec = mem_cgroup_page_lruvec(page, zone);
1342
1343                 SetPageLRU(page);
1344                 lru = page_lru(page);
1345                 add_page_to_lru_list(page, lruvec, lru);
1346
1347                 if (is_active_lru(lru)) {
1348                         int file = is_file_lru(lru);
1349                         int numpages = hpage_nr_pages(page);
1350                         reclaim_stat->recent_rotated[file] += numpages;
1351                 }
1352                 if (put_page_testzero(page)) {
1353                         __ClearPageLRU(page);
1354                         __ClearPageActive(page);
1355                         del_page_from_lru_list(page, lruvec, lru);
1356
1357                         if (unlikely(PageCompound(page))) {
1358                                 spin_unlock_irq(&zone->lru_lock);
1359                                 (*get_compound_page_dtor(page))(page);
1360                                 spin_lock_irq(&zone->lru_lock);
1361                         } else
1362                                 list_add(&page->lru, &pages_to_free);
1363                 }
1364         }
1365
1366         /*
1367          * To save our caller's stack, now use input list for pages to free.
1368          */
1369         list_splice(&pages_to_free, page_list);
1370 }
1371
1372 /*
1373  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1374  * of reclaimed pages
1375  */
1376 static noinline_for_stack unsigned long
1377 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1378                      struct scan_control *sc, enum lru_list lru)
1379 {
1380         LIST_HEAD(page_list);
1381         unsigned long nr_scanned;
1382         unsigned long nr_reclaimed = 0;
1383         unsigned long nr_taken;
1384         unsigned long nr_dirty = 0;
1385         unsigned long nr_congested = 0;
1386         unsigned long nr_unqueued_dirty = 0;
1387         unsigned long nr_writeback = 0;
1388         unsigned long nr_immediate = 0;
1389         isolate_mode_t isolate_mode = 0;
1390         int file = is_file_lru(lru);
1391         struct zone *zone = lruvec_zone(lruvec);
1392         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1393
1394         while (unlikely(too_many_isolated(zone, file, sc))) {
1395                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1396
1397                 /* We are about to die and free our memory. Return now. */
1398                 if (fatal_signal_pending(current))
1399                         return SWAP_CLUSTER_MAX;
1400         }
1401
1402         lru_add_drain();
1403
1404         if (!sc->may_unmap)
1405                 isolate_mode |= ISOLATE_UNMAPPED;
1406         if (!sc->may_writepage)
1407                 isolate_mode |= ISOLATE_CLEAN;
1408
1409         spin_lock_irq(&zone->lru_lock);
1410
1411         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1412                                      &nr_scanned, sc, isolate_mode, lru);
1413
1414         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1415         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1416
1417         if (global_reclaim(sc)) {
1418                 zone->pages_scanned += nr_scanned;
1419                 if (current_is_kswapd())
1420                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1421                 else
1422                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1423         }
1424         spin_unlock_irq(&zone->lru_lock);
1425
1426         if (nr_taken == 0)
1427                 return 0;
1428
1429         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1430                                 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1431                                 &nr_writeback, &nr_immediate,
1432                                 false);
1433
1434         spin_lock_irq(&zone->lru_lock);
1435
1436         reclaim_stat->recent_scanned[file] += nr_taken;
1437
1438         if (global_reclaim(sc)) {
1439                 if (current_is_kswapd())
1440                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1441                                                nr_reclaimed);
1442                 else
1443                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1444                                                nr_reclaimed);
1445         }
1446
1447         putback_inactive_pages(lruvec, &page_list);
1448
1449         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1450
1451         spin_unlock_irq(&zone->lru_lock);
1452
1453         free_hot_cold_page_list(&page_list, 1);
1454
1455         /*
1456          * If reclaim is isolating dirty pages under writeback, it implies
1457          * that the long-lived page allocation rate is exceeding the page
1458          * laundering rate. Either the global limits are not being effective
1459          * at throttling processes due to the page distribution throughout
1460          * zones or there is heavy usage of a slow backing device. The
1461          * only option is to throttle from reclaim context which is not ideal
1462          * as there is no guarantee the dirtying process is throttled in the
1463          * same way balance_dirty_pages() manages.
1464          *
1465          * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1466          * of pages under pages flagged for immediate reclaim and stall if any
1467          * are encountered in the nr_immediate check below.
1468          */
1469         if (nr_writeback && nr_writeback == nr_taken)
1470                 zone_set_flag(zone, ZONE_WRITEBACK);
1471
1472         /*
1473          * memcg will stall in page writeback so only consider forcibly
1474          * stalling for global reclaim
1475          */
1476         if (global_reclaim(sc)) {
1477                 /*
1478                  * Tag a zone as congested if all the dirty pages scanned were
1479                  * backed by a congested BDI and wait_iff_congested will stall.
1480                  */
1481                 if (nr_dirty && nr_dirty == nr_congested)
1482                         zone_set_flag(zone, ZONE_CONGESTED);
1483
1484                 /*
1485                  * If dirty pages are scanned that are not queued for IO, it
1486                  * implies that flushers are not keeping up. In this case, flag
1487                  * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1488                  * pages from reclaim context. It will forcibly stall in the
1489                  * next check.
1490                  */
1491                 if (nr_unqueued_dirty == nr_taken)
1492                         zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1493
1494                 /*
1495                  * In addition, if kswapd scans pages marked marked for
1496                  * immediate reclaim and under writeback (nr_immediate), it
1497                  * implies that pages are cycling through the LRU faster than
1498                  * they are written so also forcibly stall.
1499                  */
1500                 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1501                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1502         }
1503
1504         /*
1505          * Stall direct reclaim for IO completions if underlying BDIs or zone
1506          * is congested. Allow kswapd to continue until it starts encountering
1507          * unqueued dirty pages or cycling through the LRU too quickly.
1508          */
1509         if (!sc->hibernation_mode && !current_is_kswapd())
1510                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1511
1512         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1513                 zone_idx(zone),
1514                 nr_scanned, nr_reclaimed,
1515                 sc->priority,
1516                 trace_shrink_flags(file));
1517         return nr_reclaimed;
1518 }
1519
1520 /*
1521  * This moves pages from the active list to the inactive list.
1522  *
1523  * We move them the other way if the page is referenced by one or more
1524  * processes, from rmap.
1525  *
1526  * If the pages are mostly unmapped, the processing is fast and it is
1527  * appropriate to hold zone->lru_lock across the whole operation.  But if
1528  * the pages are mapped, the processing is slow (page_referenced()) so we
1529  * should drop zone->lru_lock around each page.  It's impossible to balance
1530  * this, so instead we remove the pages from the LRU while processing them.
1531  * It is safe to rely on PG_active against the non-LRU pages in here because
1532  * nobody will play with that bit on a non-LRU page.
1533  *
1534  * The downside is that we have to touch page->_count against each page.
1535  * But we had to alter page->flags anyway.
1536  */
1537
1538 static void move_active_pages_to_lru(struct lruvec *lruvec,
1539                                      struct list_head *list,
1540                                      struct list_head *pages_to_free,
1541                                      enum lru_list lru)
1542 {
1543         struct zone *zone = lruvec_zone(lruvec);
1544         unsigned long pgmoved = 0;
1545         struct page *page;
1546         int nr_pages;
1547
1548         while (!list_empty(list)) {
1549                 page = lru_to_page(list);
1550                 lruvec = mem_cgroup_page_lruvec(page, zone);
1551
1552                 VM_BUG_ON(PageLRU(page));
1553                 SetPageLRU(page);
1554
1555                 nr_pages = hpage_nr_pages(page);
1556                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1557                 list_move(&page->lru, &lruvec->lists[lru]);
1558                 pgmoved += nr_pages;
1559
1560                 if (put_page_testzero(page)) {
1561                         __ClearPageLRU(page);
1562                         __ClearPageActive(page);
1563                         del_page_from_lru_list(page, lruvec, lru);
1564
1565                         if (unlikely(PageCompound(page))) {
1566                                 spin_unlock_irq(&zone->lru_lock);
1567                                 (*get_compound_page_dtor(page))(page);
1568                                 spin_lock_irq(&zone->lru_lock);
1569                         } else
1570                                 list_add(&page->lru, pages_to_free);
1571                 }
1572         }
1573         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1574         if (!is_active_lru(lru))
1575                 __count_vm_events(PGDEACTIVATE, pgmoved);
1576 }
1577
1578 static void shrink_active_list(unsigned long nr_to_scan,
1579                                struct lruvec *lruvec,
1580                                struct scan_control *sc,
1581                                enum lru_list lru)
1582 {
1583         unsigned long nr_taken;
1584         unsigned long nr_scanned;
1585         unsigned long vm_flags;
1586         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1587         LIST_HEAD(l_active);
1588         LIST_HEAD(l_inactive);
1589         struct page *page;
1590         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1591         unsigned long nr_rotated = 0;
1592         isolate_mode_t isolate_mode = 0;
1593         int file = is_file_lru(lru);
1594         struct zone *zone = lruvec_zone(lruvec);
1595
1596         lru_add_drain();
1597
1598         if (!sc->may_unmap)
1599                 isolate_mode |= ISOLATE_UNMAPPED;
1600         if (!sc->may_writepage)
1601                 isolate_mode |= ISOLATE_CLEAN;
1602
1603         spin_lock_irq(&zone->lru_lock);
1604
1605         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1606                                      &nr_scanned, sc, isolate_mode, lru);
1607         if (global_reclaim(sc))
1608                 zone->pages_scanned += nr_scanned;
1609
1610         reclaim_stat->recent_scanned[file] += nr_taken;
1611
1612         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1613         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1614         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1615         spin_unlock_irq(&zone->lru_lock);
1616
1617         while (!list_empty(&l_hold)) {
1618                 cond_resched();
1619                 page = lru_to_page(&l_hold);
1620                 list_del(&page->lru);
1621
1622                 if (unlikely(!page_evictable(page))) {
1623                         putback_lru_page(page);
1624                         continue;
1625                 }
1626
1627                 if (unlikely(buffer_heads_over_limit)) {
1628                         if (page_has_private(page) && trylock_page(page)) {
1629                                 if (page_has_private(page))
1630                                         try_to_release_page(page, 0);
1631                                 unlock_page(page);
1632                         }
1633                 }
1634
1635                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1636                                     &vm_flags)) {
1637                         nr_rotated += hpage_nr_pages(page);
1638                         /*
1639                          * Identify referenced, file-backed active pages and
1640                          * give them one more trip around the active list. So
1641                          * that executable code get better chances to stay in
1642                          * memory under moderate memory pressure.  Anon pages
1643                          * are not likely to be evicted by use-once streaming
1644                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1645                          * so we ignore them here.
1646                          */
1647                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1648                                 list_add(&page->lru, &l_active);
1649                                 continue;
1650                         }
1651                 }
1652
1653                 ClearPageActive(page);  /* we are de-activating */
1654                 list_add(&page->lru, &l_inactive);
1655         }
1656
1657         /*
1658          * Move pages back to the lru list.
1659          */
1660         spin_lock_irq(&zone->lru_lock);
1661         /*
1662          * Count referenced pages from currently used mappings as rotated,
1663          * even though only some of them are actually re-activated.  This
1664          * helps balance scan pressure between file and anonymous pages in
1665          * get_scan_ratio.
1666          */
1667         reclaim_stat->recent_rotated[file] += nr_rotated;
1668
1669         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1670         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1671         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1672         spin_unlock_irq(&zone->lru_lock);
1673
1674         free_hot_cold_page_list(&l_hold, 1);
1675 }
1676
1677 #ifdef CONFIG_SWAP
1678 static int inactive_anon_is_low_global(struct zone *zone)
1679 {
1680         unsigned long active, inactive;
1681
1682         active = zone_page_state(zone, NR_ACTIVE_ANON);
1683         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1684
1685         if (inactive * zone->inactive_ratio < active)
1686                 return 1;
1687
1688         return 0;
1689 }
1690
1691 /**
1692  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1693  * @lruvec: LRU vector to check
1694  *
1695  * Returns true if the zone does not have enough inactive anon pages,
1696  * meaning some active anon pages need to be deactivated.
1697  */
1698 static int inactive_anon_is_low(struct lruvec *lruvec)
1699 {
1700         /*
1701          * If we don't have swap space, anonymous page deactivation
1702          * is pointless.
1703          */
1704         if (!total_swap_pages)
1705                 return 0;
1706
1707         if (!mem_cgroup_disabled())
1708                 return mem_cgroup_inactive_anon_is_low(lruvec);
1709
1710         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1711 }
1712 #else
1713 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1714 {
1715         return 0;
1716 }
1717 #endif
1718
1719 /**
1720  * inactive_file_is_low - check if file pages need to be deactivated
1721  * @lruvec: LRU vector to check
1722  *
1723  * When the system is doing streaming IO, memory pressure here
1724  * ensures that active file pages get deactivated, until more
1725  * than half of the file pages are on the inactive list.
1726  *
1727  * Once we get to that situation, protect the system's working
1728  * set from being evicted by disabling active file page aging.
1729  *
1730  * This uses a different ratio than the anonymous pages, because
1731  * the page cache uses a use-once replacement algorithm.
1732  */
1733 static int inactive_file_is_low(struct lruvec *lruvec)
1734 {
1735         unsigned long inactive;
1736         unsigned long active;
1737
1738         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1739         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1740
1741         return active > inactive;
1742 }
1743
1744 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1745 {
1746         if (is_file_lru(lru))
1747                 return inactive_file_is_low(lruvec);
1748         else
1749                 return inactive_anon_is_low(lruvec);
1750 }
1751
1752 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1753                                  struct lruvec *lruvec, struct scan_control *sc)
1754 {
1755         if (is_active_lru(lru)) {
1756                 if (inactive_list_is_low(lruvec, lru))
1757                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1758                 return 0;
1759         }
1760
1761         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1762 }
1763
1764 static int vmscan_swappiness(struct scan_control *sc)
1765 {
1766         if (global_reclaim(sc))
1767                 return vm_swappiness;
1768         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1769 }
1770
1771 enum scan_balance {
1772         SCAN_EQUAL,
1773         SCAN_FRACT,
1774         SCAN_ANON,
1775         SCAN_FILE,
1776 };
1777
1778 /*
1779  * Determine how aggressively the anon and file LRU lists should be
1780  * scanned.  The relative value of each set of LRU lists is determined
1781  * by looking at the fraction of the pages scanned we did rotate back
1782  * onto the active list instead of evict.
1783  *
1784  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1785  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1786  */
1787 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1788                            unsigned long *nr)
1789 {
1790         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1791         u64 fraction[2];
1792         u64 denominator = 0;    /* gcc */
1793         struct zone *zone = lruvec_zone(lruvec);
1794         unsigned long anon_prio, file_prio;
1795         enum scan_balance scan_balance;
1796         unsigned long anon, file, free;
1797         bool force_scan = false;
1798         unsigned long ap, fp;
1799         enum lru_list lru;
1800
1801         /*
1802          * If the zone or memcg is small, nr[l] can be 0.  This
1803          * results in no scanning on this priority and a potential
1804          * priority drop.  Global direct reclaim can go to the next
1805          * zone and tends to have no problems. Global kswapd is for
1806          * zone balancing and it needs to scan a minimum amount. When
1807          * reclaiming for a memcg, a priority drop can cause high
1808          * latencies, so it's better to scan a minimum amount there as
1809          * well.
1810          */
1811         if (current_is_kswapd() && !zone_reclaimable(zone))
1812                 force_scan = true;
1813         if (!global_reclaim(sc))
1814                 force_scan = true;
1815
1816         /* If we have no swap space, do not bother scanning anon pages. */
1817         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1818                 scan_balance = SCAN_FILE;
1819                 goto out;
1820         }
1821
1822         /*
1823          * Global reclaim will swap to prevent OOM even with no
1824          * swappiness, but memcg users want to use this knob to
1825          * disable swapping for individual groups completely when
1826          * using the memory controller's swap limit feature would be
1827          * too expensive.
1828          */
1829         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1830                 scan_balance = SCAN_FILE;
1831                 goto out;
1832         }
1833
1834         /*
1835          * Do not apply any pressure balancing cleverness when the
1836          * system is close to OOM, scan both anon and file equally
1837          * (unless the swappiness setting disagrees with swapping).
1838          */
1839         if (!sc->priority && vmscan_swappiness(sc)) {
1840                 scan_balance = SCAN_EQUAL;
1841                 goto out;
1842         }
1843
1844         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1845                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1846         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1847                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1848
1849         /*
1850          * If it's foreseeable that reclaiming the file cache won't be
1851          * enough to get the zone back into a desirable shape, we have
1852          * to swap.  Better start now and leave the - probably heavily
1853          * thrashing - remaining file pages alone.
1854          */
1855         if (global_reclaim(sc)) {
1856                 free = zone_page_state(zone, NR_FREE_PAGES);
1857                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1858                         scan_balance = SCAN_ANON;
1859                         goto out;
1860                 }
1861         }
1862
1863         /*
1864          * There is enough inactive page cache, do not reclaim
1865          * anything from the anonymous working set right now.
1866          */
1867         if (!inactive_file_is_low(lruvec)) {
1868                 scan_balance = SCAN_FILE;
1869                 goto out;
1870         }
1871
1872         scan_balance = SCAN_FRACT;
1873
1874         /*
1875          * With swappiness at 100, anonymous and file have the same priority.
1876          * This scanning priority is essentially the inverse of IO cost.
1877          */
1878         anon_prio = vmscan_swappiness(sc);
1879         file_prio = 200 - anon_prio;
1880
1881         /*
1882          * OK, so we have swap space and a fair amount of page cache
1883          * pages.  We use the recently rotated / recently scanned
1884          * ratios to determine how valuable each cache is.
1885          *
1886          * Because workloads change over time (and to avoid overflow)
1887          * we keep these statistics as a floating average, which ends
1888          * up weighing recent references more than old ones.
1889          *
1890          * anon in [0], file in [1]
1891          */
1892         spin_lock_irq(&zone->lru_lock);
1893         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1894                 reclaim_stat->recent_scanned[0] /= 2;
1895                 reclaim_stat->recent_rotated[0] /= 2;
1896         }
1897
1898         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1899                 reclaim_stat->recent_scanned[1] /= 2;
1900                 reclaim_stat->recent_rotated[1] /= 2;
1901         }
1902
1903         /*
1904          * The amount of pressure on anon vs file pages is inversely
1905          * proportional to the fraction of recently scanned pages on
1906          * each list that were recently referenced and in active use.
1907          */
1908         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1909         ap /= reclaim_stat->recent_rotated[0] + 1;
1910
1911         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1912         fp /= reclaim_stat->recent_rotated[1] + 1;
1913         spin_unlock_irq(&zone->lru_lock);
1914
1915         fraction[0] = ap;
1916         fraction[1] = fp;
1917         denominator = ap + fp + 1;
1918 out:
1919         for_each_evictable_lru(lru) {
1920                 int file = is_file_lru(lru);
1921                 unsigned long size;
1922                 unsigned long scan;
1923
1924                 size = get_lru_size(lruvec, lru);
1925                 scan = size >> sc->priority;
1926
1927                 if (!scan && force_scan)
1928                         scan = min(size, SWAP_CLUSTER_MAX);
1929
1930                 switch (scan_balance) {
1931                 case SCAN_EQUAL:
1932                         /* Scan lists relative to size */
1933                         break;
1934                 case SCAN_FRACT:
1935                         /*
1936                          * Scan types proportional to swappiness and
1937                          * their relative recent reclaim efficiency.
1938                          */
1939                         scan = div64_u64(scan * fraction[file], denominator);
1940                         break;
1941                 case SCAN_FILE:
1942                 case SCAN_ANON:
1943                         /* Scan one type exclusively */
1944                         if ((scan_balance == SCAN_FILE) != file)
1945                                 scan = 0;
1946                         break;
1947                 default:
1948                         /* Look ma, no brain */
1949                         BUG();
1950                 }
1951                 nr[lru] = scan;
1952         }
1953 }
1954
1955 /*
1956  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1957  */
1958 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1959 {
1960         unsigned long nr[NR_LRU_LISTS];
1961         unsigned long targets[NR_LRU_LISTS];
1962         unsigned long nr_to_scan;
1963         enum lru_list lru;
1964         unsigned long nr_reclaimed = 0;
1965         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1966         struct blk_plug plug;
1967         bool scan_adjusted = false;
1968
1969         get_scan_count(lruvec, sc, nr);
1970
1971         /* Record the original scan target for proportional adjustments later */
1972         memcpy(targets, nr, sizeof(nr));
1973
1974         blk_start_plug(&plug);
1975         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1976                                         nr[LRU_INACTIVE_FILE]) {
1977                 unsigned long nr_anon, nr_file, percentage;
1978                 unsigned long nr_scanned;
1979
1980                 for_each_evictable_lru(lru) {
1981                         if (nr[lru]) {
1982                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1983                                 nr[lru] -= nr_to_scan;
1984
1985                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1986                                                             lruvec, sc);
1987                         }
1988                 }
1989
1990                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1991                         continue;
1992
1993                 /*
1994                  * For global direct reclaim, reclaim only the number of pages
1995                  * requested. Less care is taken to scan proportionally as it
1996                  * is more important to minimise direct reclaim stall latency
1997                  * than it is to properly age the LRU lists.
1998                  */
1999                 if (global_reclaim(sc) && !current_is_kswapd())
2000                         break;
2001
2002                 /*
2003                  * For kswapd and memcg, reclaim at least the number of pages
2004                  * requested. Ensure that the anon and file LRUs shrink
2005                  * proportionally what was requested by get_scan_count(). We
2006                  * stop reclaiming one LRU and reduce the amount scanning
2007                  * proportional to the original scan target.
2008                  */
2009                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2010                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2011
2012                 if (nr_file > nr_anon) {
2013                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2014                                                 targets[LRU_ACTIVE_ANON] + 1;
2015                         lru = LRU_BASE;
2016                         percentage = nr_anon * 100 / scan_target;
2017                 } else {
2018                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2019                                                 targets[LRU_ACTIVE_FILE] + 1;
2020                         lru = LRU_FILE;
2021                         percentage = nr_file * 100 / scan_target;
2022                 }
2023
2024                 /* Stop scanning the smaller of the LRU */
2025                 nr[lru] = 0;
2026                 nr[lru + LRU_ACTIVE] = 0;
2027
2028                 /*
2029                  * Recalculate the other LRU scan count based on its original
2030                  * scan target and the percentage scanning already complete
2031                  */
2032                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2033                 nr_scanned = targets[lru] - nr[lru];
2034                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2035                 nr[lru] -= min(nr[lru], nr_scanned);
2036
2037                 lru += LRU_ACTIVE;
2038                 nr_scanned = targets[lru] - nr[lru];
2039                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2040                 nr[lru] -= min(nr[lru], nr_scanned);
2041
2042                 scan_adjusted = true;
2043         }
2044         blk_finish_plug(&plug);
2045         sc->nr_reclaimed += nr_reclaimed;
2046
2047         /*
2048          * Even if we did not try to evict anon pages at all, we want to
2049          * rebalance the anon lru active/inactive ratio.
2050          */
2051         if (inactive_anon_is_low(lruvec))
2052                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2053                                    sc, LRU_ACTIVE_ANON);
2054
2055         throttle_vm_writeout(sc->gfp_mask);
2056 }
2057
2058 /* Use reclaim/compaction for costly allocs or under memory pressure */
2059 static bool in_reclaim_compaction(struct scan_control *sc)
2060 {
2061         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2062                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2063                          sc->priority < DEF_PRIORITY - 2))
2064                 return true;
2065
2066         return false;
2067 }
2068
2069 /*
2070  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2071  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2072  * true if more pages should be reclaimed such that when the page allocator
2073  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2074  * It will give up earlier than that if there is difficulty reclaiming pages.
2075  */
2076 static inline bool should_continue_reclaim(struct zone *zone,
2077                                         unsigned long nr_reclaimed,
2078                                         unsigned long nr_scanned,
2079                                         struct scan_control *sc)
2080 {
2081         unsigned long pages_for_compaction;
2082         unsigned long inactive_lru_pages;
2083
2084         /* If not in reclaim/compaction mode, stop */
2085         if (!in_reclaim_compaction(sc))
2086                 return false;
2087
2088         /* Consider stopping depending on scan and reclaim activity */
2089         if (sc->gfp_mask & __GFP_REPEAT) {
2090                 /*
2091                  * For __GFP_REPEAT allocations, stop reclaiming if the
2092                  * full LRU list has been scanned and we are still failing
2093                  * to reclaim pages. This full LRU scan is potentially
2094                  * expensive but a __GFP_REPEAT caller really wants to succeed
2095                  */
2096                 if (!nr_reclaimed && !nr_scanned)
2097                         return false;
2098         } else {
2099                 /*
2100                  * For non-__GFP_REPEAT allocations which can presumably
2101                  * fail without consequence, stop if we failed to reclaim
2102                  * any pages from the last SWAP_CLUSTER_MAX number of
2103                  * pages that were scanned. This will return to the
2104                  * caller faster at the risk reclaim/compaction and
2105                  * the resulting allocation attempt fails
2106                  */
2107                 if (!nr_reclaimed)
2108                         return false;
2109         }
2110
2111         /*
2112          * If we have not reclaimed enough pages for compaction and the
2113          * inactive lists are large enough, continue reclaiming
2114          */
2115         pages_for_compaction = (2UL << sc->order);
2116         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2117         if (get_nr_swap_pages() > 0)
2118                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2119         if (sc->nr_reclaimed < pages_for_compaction &&
2120                         inactive_lru_pages > pages_for_compaction)
2121                 return true;
2122
2123         /* If compaction would go ahead or the allocation would succeed, stop */
2124         switch (compaction_suitable(zone, sc->order)) {
2125         case COMPACT_PARTIAL:
2126         case COMPACT_CONTINUE:
2127                 return false;
2128         default:
2129                 return true;
2130         }
2131 }
2132
2133 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2134 {
2135         unsigned long nr_reclaimed, nr_scanned;
2136
2137         do {
2138                 struct mem_cgroup *root = sc->target_mem_cgroup;
2139                 struct mem_cgroup_reclaim_cookie reclaim = {
2140                         .zone = zone,
2141                         .priority = sc->priority,
2142                 };
2143                 struct mem_cgroup *memcg;
2144
2145                 nr_reclaimed = sc->nr_reclaimed;
2146                 nr_scanned = sc->nr_scanned;
2147
2148                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2149                 do {
2150                         struct lruvec *lruvec;
2151
2152                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2153
2154                         shrink_lruvec(lruvec, sc);
2155
2156                         /*
2157                          * Direct reclaim and kswapd have to scan all memory
2158                          * cgroups to fulfill the overall scan target for the
2159                          * zone.
2160                          *
2161                          * Limit reclaim, on the other hand, only cares about
2162                          * nr_to_reclaim pages to be reclaimed and it will
2163                          * retry with decreasing priority if one round over the
2164                          * whole hierarchy is not sufficient.
2165                          */
2166                         if (!global_reclaim(sc) &&
2167                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2168                                 mem_cgroup_iter_break(root, memcg);
2169                                 break;
2170                         }
2171                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2172                 } while (memcg);
2173
2174                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2175                            sc->nr_scanned - nr_scanned,
2176                            sc->nr_reclaimed - nr_reclaimed);
2177
2178         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2179                                          sc->nr_scanned - nr_scanned, sc));
2180 }
2181
2182 /* Returns true if compaction should go ahead for a high-order request */
2183 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2184 {
2185         unsigned long balance_gap, watermark;
2186         bool watermark_ok;
2187
2188         /* Do not consider compaction for orders reclaim is meant to satisfy */
2189         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2190                 return false;
2191
2192         /*
2193          * Compaction takes time to run and there are potentially other
2194          * callers using the pages just freed. Continue reclaiming until
2195          * there is a buffer of free pages available to give compaction
2196          * a reasonable chance of completing and allocating the page
2197          */
2198         balance_gap = min(low_wmark_pages(zone),
2199                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2200                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2201         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2202         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2203
2204         /*
2205          * If compaction is deferred, reclaim up to a point where
2206          * compaction will have a chance of success when re-enabled
2207          */
2208         if (compaction_deferred(zone, sc->order))
2209                 return watermark_ok;
2210
2211         /* If compaction is not ready to start, keep reclaiming */
2212         if (!compaction_suitable(zone, sc->order))
2213                 return false;
2214
2215         return watermark_ok;
2216 }
2217
2218 /*
2219  * This is the direct reclaim path, for page-allocating processes.  We only
2220  * try to reclaim pages from zones which will satisfy the caller's allocation
2221  * request.
2222  *
2223  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2224  * Because:
2225  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2226  *    allocation or
2227  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2228  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2229  *    zone defense algorithm.
2230  *
2231  * If a zone is deemed to be full of pinned pages then just give it a light
2232  * scan then give up on it.
2233  *
2234  * This function returns true if a zone is being reclaimed for a costly
2235  * high-order allocation and compaction is ready to begin. This indicates to
2236  * the caller that it should consider retrying the allocation instead of
2237  * further reclaim.
2238  */
2239 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2240 {
2241         struct zoneref *z;
2242         struct zone *zone;
2243         unsigned long nr_soft_reclaimed;
2244         unsigned long nr_soft_scanned;
2245         bool aborted_reclaim = false;
2246
2247         /*
2248          * If the number of buffer_heads in the machine exceeds the maximum
2249          * allowed level, force direct reclaim to scan the highmem zone as
2250          * highmem pages could be pinning lowmem pages storing buffer_heads
2251          */
2252         if (buffer_heads_over_limit)
2253                 sc->gfp_mask |= __GFP_HIGHMEM;
2254
2255         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2256                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2257                 if (!populated_zone(zone))
2258                         continue;
2259                 /*
2260                  * Take care memory controller reclaiming has small influence
2261                  * to global LRU.
2262                  */
2263                 if (global_reclaim(sc)) {
2264                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2265                                 continue;
2266                         if (sc->priority != DEF_PRIORITY &&
2267                             !zone_reclaimable(zone))
2268                                 continue;       /* Let kswapd poll it */
2269                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2270                                 /*
2271                                  * If we already have plenty of memory free for
2272                                  * compaction in this zone, don't free any more.
2273                                  * Even though compaction is invoked for any
2274                                  * non-zero order, only frequent costly order
2275                                  * reclamation is disruptive enough to become a
2276                                  * noticeable problem, like transparent huge
2277                                  * page allocations.
2278                                  */
2279                                 if (compaction_ready(zone, sc)) {
2280                                         aborted_reclaim = true;
2281                                         continue;
2282                                 }
2283                         }
2284                         /*
2285                          * This steals pages from memory cgroups over softlimit
2286                          * and returns the number of reclaimed pages and
2287                          * scanned pages. This works for global memory pressure
2288                          * and balancing, not for a memcg's limit.
2289                          */
2290                         nr_soft_scanned = 0;
2291                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2292                                                 sc->order, sc->gfp_mask,
2293                                                 &nr_soft_scanned);
2294                         sc->nr_reclaimed += nr_soft_reclaimed;
2295                         sc->nr_scanned += nr_soft_scanned;
2296                         /* need some check for avoid more shrink_zone() */
2297                 }
2298
2299                 shrink_zone(zone, sc);
2300         }
2301
2302         return aborted_reclaim;
2303 }
2304
2305 /* All zones in zonelist are unreclaimable? */
2306 static bool all_unreclaimable(struct zonelist *zonelist,
2307                 struct scan_control *sc)
2308 {
2309         struct zoneref *z;
2310         struct zone *zone;
2311
2312         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2313                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2314                 if (!populated_zone(zone))
2315                         continue;
2316                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2317                         continue;
2318                 if (zone_reclaimable(zone))
2319                         return false;
2320         }
2321
2322         return true;
2323 }
2324
2325 /*
2326  * This is the main entry point to direct page reclaim.
2327  *
2328  * If a full scan of the inactive list fails to free enough memory then we
2329  * are "out of memory" and something needs to be killed.
2330  *
2331  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2332  * high - the zone may be full of dirty or under-writeback pages, which this
2333  * caller can't do much about.  We kick the writeback threads and take explicit
2334  * naps in the hope that some of these pages can be written.  But if the
2335  * allocating task holds filesystem locks which prevent writeout this might not
2336  * work, and the allocation attempt will fail.
2337  *
2338  * returns:     0, if no pages reclaimed
2339  *              else, the number of pages reclaimed
2340  */
2341 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2342                                         struct scan_control *sc,
2343                                         struct shrink_control *shrink)
2344 {
2345         unsigned long total_scanned = 0;
2346         struct reclaim_state *reclaim_state = current->reclaim_state;
2347         struct zoneref *z;
2348         struct zone *zone;
2349         unsigned long writeback_threshold;
2350         bool aborted_reclaim;
2351
2352         delayacct_freepages_start();
2353
2354         if (global_reclaim(sc))
2355                 count_vm_event(ALLOCSTALL);
2356
2357         do {
2358                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2359                                 sc->priority);
2360                 sc->nr_scanned = 0;
2361                 aborted_reclaim = shrink_zones(zonelist, sc);
2362
2363                 /*
2364                  * Don't shrink slabs when reclaiming memory from over limit
2365                  * cgroups but do shrink slab at least once when aborting
2366                  * reclaim for compaction to avoid unevenly scanning file/anon
2367                  * LRU pages over slab pages.
2368                  */
2369                 if (global_reclaim(sc)) {
2370                         unsigned long lru_pages = 0;
2371                         for_each_zone_zonelist(zone, z, zonelist,
2372                                         gfp_zone(sc->gfp_mask)) {
2373                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2374                                         continue;
2375
2376                                 lru_pages += zone_reclaimable_pages(zone);
2377                         }
2378
2379                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2380                         if (reclaim_state) {
2381                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2382                                 reclaim_state->reclaimed_slab = 0;
2383                         }
2384                 }
2385                 total_scanned += sc->nr_scanned;
2386                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2387                         goto out;
2388
2389                 /*
2390                  * If we're getting trouble reclaiming, start doing
2391                  * writepage even in laptop mode.
2392                  */
2393                 if (sc->priority < DEF_PRIORITY - 2)
2394                         sc->may_writepage = 1;
2395
2396                 /*
2397                  * Try to write back as many pages as we just scanned.  This
2398                  * tends to cause slow streaming writers to write data to the
2399                  * disk smoothly, at the dirtying rate, which is nice.   But
2400                  * that's undesirable in laptop mode, where we *want* lumpy
2401                  * writeout.  So in laptop mode, write out the whole world.
2402                  */
2403                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2404                 if (total_scanned > writeback_threshold) {
2405                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2406                                                 WB_REASON_TRY_TO_FREE_PAGES);
2407                         sc->may_writepage = 1;
2408                 }
2409         } while (--sc->priority >= 0 && !aborted_reclaim);
2410
2411 out:
2412         delayacct_freepages_end();
2413
2414         if (sc->nr_reclaimed)
2415                 return sc->nr_reclaimed;
2416
2417         /*
2418          * As hibernation is going on, kswapd is freezed so that it can't mark
2419          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2420          * check.
2421          */
2422         if (oom_killer_disabled)
2423                 return 0;
2424
2425         /* Aborted reclaim to try compaction? don't OOM, then */
2426         if (aborted_reclaim)
2427                 return 1;
2428
2429         /* top priority shrink_zones still had more to do? don't OOM, then */
2430         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2431                 return 1;
2432
2433         return 0;
2434 }
2435
2436 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2437 {
2438         struct zone *zone;
2439         unsigned long pfmemalloc_reserve = 0;
2440         unsigned long free_pages = 0;
2441         int i;
2442         bool wmark_ok;
2443
2444         for (i = 0; i <= ZONE_NORMAL; i++) {
2445                 zone = &pgdat->node_zones[i];
2446                 pfmemalloc_reserve += min_wmark_pages(zone);
2447                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2448         }
2449
2450         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2451
2452         /* kswapd must be awake if processes are being throttled */
2453         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2454                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2455                                                 (enum zone_type)ZONE_NORMAL);
2456                 wake_up_interruptible(&pgdat->kswapd_wait);
2457         }
2458
2459         return wmark_ok;
2460 }
2461
2462 /*
2463  * Throttle direct reclaimers if backing storage is backed by the network
2464  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2465  * depleted. kswapd will continue to make progress and wake the processes
2466  * when the low watermark is reached.
2467  *
2468  * Returns true if a fatal signal was delivered during throttling. If this
2469  * happens, the page allocator should not consider triggering the OOM killer.
2470  */
2471 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2472                                         nodemask_t *nodemask)
2473 {
2474         struct zone *zone;
2475         int high_zoneidx = gfp_zone(gfp_mask);
2476         pg_data_t *pgdat;
2477
2478         /*
2479          * Kernel threads should not be throttled as they may be indirectly
2480          * responsible for cleaning pages necessary for reclaim to make forward
2481          * progress. kjournald for example may enter direct reclaim while
2482          * committing a transaction where throttling it could forcing other
2483          * processes to block on log_wait_commit().
2484          */
2485         if (current->flags & PF_KTHREAD)
2486                 goto out;
2487
2488         /*
2489          * If a fatal signal is pending, this process should not throttle.
2490          * It should return quickly so it can exit and free its memory
2491          */
2492         if (fatal_signal_pending(current))
2493                 goto out;
2494
2495         /* Check if the pfmemalloc reserves are ok */
2496         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2497         pgdat = zone->zone_pgdat;
2498         if (pfmemalloc_watermark_ok(pgdat))
2499                 goto out;
2500
2501         /* Account for the throttling */
2502         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2503
2504         /*
2505          * If the caller cannot enter the filesystem, it's possible that it
2506          * is due to the caller holding an FS lock or performing a journal
2507          * transaction in the case of a filesystem like ext[3|4]. In this case,
2508          * it is not safe to block on pfmemalloc_wait as kswapd could be
2509          * blocked waiting on the same lock. Instead, throttle for up to a
2510          * second before continuing.
2511          */
2512         if (!(gfp_mask & __GFP_FS)) {
2513                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2514                         pfmemalloc_watermark_ok(pgdat), HZ);
2515
2516                 goto check_pending;
2517         }
2518
2519         /* Throttle until kswapd wakes the process */
2520         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2521                 pfmemalloc_watermark_ok(pgdat));
2522
2523 check_pending:
2524         if (fatal_signal_pending(current))
2525                 return true;
2526
2527 out:
2528         return false;
2529 }
2530
2531 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2532                                 gfp_t gfp_mask, nodemask_t *nodemask)
2533 {
2534         unsigned long nr_reclaimed;
2535         struct scan_control sc = {
2536                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2537                 .may_writepage = !laptop_mode,
2538                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2539                 .may_unmap = 1,
2540                 .may_swap = 1,
2541                 .order = order,
2542                 .priority = DEF_PRIORITY,
2543                 .target_mem_cgroup = NULL,
2544                 .nodemask = nodemask,
2545         };
2546         struct shrink_control shrink = {
2547                 .gfp_mask = sc.gfp_mask,
2548         };
2549
2550         /*
2551          * Do not enter reclaim if fatal signal was delivered while throttled.
2552          * 1 is returned so that the page allocator does not OOM kill at this
2553          * point.
2554          */
2555         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2556                 return 1;
2557
2558         trace_mm_vmscan_direct_reclaim_begin(order,
2559                                 sc.may_writepage,
2560                                 gfp_mask);
2561
2562         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2563
2564         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2565
2566         return nr_reclaimed;
2567 }
2568
2569 #ifdef CONFIG_MEMCG
2570
2571 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2572                                                 gfp_t gfp_mask, bool noswap,
2573                                                 struct zone *zone,
2574                                                 unsigned long *nr_scanned)
2575 {
2576         struct scan_control sc = {
2577                 .nr_scanned = 0,
2578                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2579                 .may_writepage = !laptop_mode,
2580                 .may_unmap = 1,
2581                 .may_swap = !noswap,
2582                 .order = 0,
2583                 .priority = 0,
2584                 .target_mem_cgroup = memcg,
2585         };
2586         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2587
2588         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2589                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2590
2591         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2592                                                       sc.may_writepage,
2593                                                       sc.gfp_mask);
2594
2595         /*
2596          * NOTE: Although we can get the priority field, using it
2597          * here is not a good idea, since it limits the pages we can scan.
2598          * if we don't reclaim here, the shrink_zone from balance_pgdat
2599          * will pick up pages from other mem cgroup's as well. We hack
2600          * the priority and make it zero.
2601          */
2602         shrink_lruvec(lruvec, &sc);
2603
2604         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2605
2606         *nr_scanned = sc.nr_scanned;
2607         return sc.nr_reclaimed;
2608 }
2609
2610 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2611                                            gfp_t gfp_mask,
2612                                            bool noswap)
2613 {
2614         struct zonelist *zonelist;
2615         unsigned long nr_reclaimed;
2616         int nid;
2617         struct scan_control sc = {
2618                 .may_writepage = !laptop_mode,
2619                 .may_unmap = 1,
2620                 .may_swap = !noswap,
2621                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2622                 .order = 0,
2623                 .priority = DEF_PRIORITY,
2624                 .target_mem_cgroup = memcg,
2625                 .nodemask = NULL, /* we don't care the placement */
2626                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2627                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2628         };
2629         struct shrink_control shrink = {
2630                 .gfp_mask = sc.gfp_mask,
2631         };
2632
2633         /*
2634          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2635          * take care of from where we get pages. So the node where we start the
2636          * scan does not need to be the current node.
2637          */
2638         nid = mem_cgroup_select_victim_node(memcg);
2639
2640         zonelist = NODE_DATA(nid)->node_zonelists;
2641
2642         trace_mm_vmscan_memcg_reclaim_begin(0,
2643                                             sc.may_writepage,
2644                                             sc.gfp_mask);
2645
2646         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2647
2648         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2649
2650         return nr_reclaimed;
2651 }
2652 #endif
2653
2654 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2655 {
2656         struct mem_cgroup *memcg;
2657
2658         if (!total_swap_pages)
2659                 return;
2660
2661         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2662         do {
2663                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2664
2665                 if (inactive_anon_is_low(lruvec))
2666                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2667                                            sc, LRU_ACTIVE_ANON);
2668
2669                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2670         } while (memcg);
2671 }
2672
2673 static bool zone_balanced(struct zone *zone, int order,
2674                           unsigned long balance_gap, int classzone_idx)
2675 {
2676         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2677                                     balance_gap, classzone_idx, 0))
2678                 return false;
2679
2680         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2681             !compaction_suitable(zone, order))
2682                 return false;
2683
2684         return true;
2685 }
2686
2687 /*
2688  * pgdat_balanced() is used when checking if a node is balanced.
2689  *
2690  * For order-0, all zones must be balanced!
2691  *
2692  * For high-order allocations only zones that meet watermarks and are in a
2693  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2694  * total of balanced pages must be at least 25% of the zones allowed by
2695  * classzone_idx for the node to be considered balanced. Forcing all zones to
2696  * be balanced for high orders can cause excessive reclaim when there are
2697  * imbalanced zones.
2698  * The choice of 25% is due to
2699  *   o a 16M DMA zone that is balanced will not balance a zone on any
2700  *     reasonable sized machine
2701  *   o On all other machines, the top zone must be at least a reasonable
2702  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2703  *     would need to be at least 256M for it to be balance a whole node.
2704  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2705  *     to balance a node on its own. These seemed like reasonable ratios.
2706  */
2707 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2708 {
2709         unsigned long managed_pages = 0;
2710         unsigned long balanced_pages = 0;
2711         int i;
2712
2713         /* Check the watermark levels */
2714         for (i = 0; i <= classzone_idx; i++) {
2715                 struct zone *zone = pgdat->node_zones + i;
2716
2717                 if (!populated_zone(zone))
2718                         continue;
2719
2720                 managed_pages += zone->managed_pages;
2721
2722                 /*
2723                  * A special case here:
2724                  *
2725                  * balance_pgdat() skips over all_unreclaimable after
2726                  * DEF_PRIORITY. Effectively, it considers them balanced so
2727                  * they must be considered balanced here as well!
2728                  */
2729                 if (!zone_reclaimable(zone)) {
2730                         balanced_pages += zone->managed_pages;
2731                         continue;
2732                 }
2733
2734                 if (zone_balanced(zone, order, 0, i))
2735                         balanced_pages += zone->managed_pages;
2736                 else if (!order)
2737                         return false;
2738         }
2739
2740         if (order)
2741                 return balanced_pages >= (managed_pages >> 2);
2742         else
2743                 return true;
2744 }
2745
2746 /*
2747  * Prepare kswapd for sleeping. This verifies that there are no processes
2748  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2749  *
2750  * Returns true if kswapd is ready to sleep
2751  */
2752 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2753                                         int classzone_idx)
2754 {
2755         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2756         if (remaining)
2757                 return false;
2758
2759         /*
2760          * There is a potential race between when kswapd checks its watermarks
2761          * and a process gets throttled. There is also a potential race if
2762          * processes get throttled, kswapd wakes, a large process exits therby
2763          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2764          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2765          * so wake them now if necessary. If necessary, processes will wake
2766          * kswapd and get throttled again
2767          */
2768         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2769                 wake_up(&pgdat->pfmemalloc_wait);
2770                 return false;
2771         }
2772
2773         return pgdat_balanced(pgdat, order, classzone_idx);
2774 }
2775
2776 /*
2777  * kswapd shrinks the zone by the number of pages required to reach
2778  * the high watermark.
2779  *
2780  * Returns true if kswapd scanned at least the requested number of pages to
2781  * reclaim or if the lack of progress was due to pages under writeback.
2782  * This is used to determine if the scanning priority needs to be raised.
2783  */
2784 static bool kswapd_shrink_zone(struct zone *zone,
2785                                int classzone_idx,
2786                                struct scan_control *sc,
2787                                unsigned long lru_pages,
2788                                unsigned long *nr_attempted)
2789 {
2790         int testorder = sc->order;
2791         unsigned long balance_gap;
2792         struct reclaim_state *reclaim_state = current->reclaim_state;
2793         struct shrink_control shrink = {
2794                 .gfp_mask = sc->gfp_mask,
2795         };
2796         bool lowmem_pressure;
2797
2798         /* Reclaim above the high watermark. */
2799         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2800
2801         /*
2802          * Kswapd reclaims only single pages with compaction enabled. Trying
2803          * too hard to reclaim until contiguous free pages have become
2804          * available can hurt performance by evicting too much useful data
2805          * from memory. Do not reclaim more than needed for compaction.
2806          */
2807         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2808                         compaction_suitable(zone, sc->order) !=
2809                                 COMPACT_SKIPPED)
2810                 testorder = 0;
2811
2812         /*
2813          * We put equal pressure on every zone, unless one zone has way too
2814          * many pages free already. The "too many pages" is defined as the
2815          * high wmark plus a "gap" where the gap is either the low
2816          * watermark or 1% of the zone, whichever is smaller.
2817          */
2818         balance_gap = min(low_wmark_pages(zone),
2819                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2820                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2821
2822         /*
2823          * If there is no low memory pressure or the zone is balanced then no
2824          * reclaim is necessary
2825          */
2826         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2827         if (!lowmem_pressure && zone_balanced(zone, testorder,
2828                                                 balance_gap, classzone_idx))
2829                 return true;
2830
2831         shrink_zone(zone, sc);
2832
2833         reclaim_state->reclaimed_slab = 0;
2834         shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2835         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2836
2837         /* Account for the number of pages attempted to reclaim */
2838         *nr_attempted += sc->nr_to_reclaim;
2839
2840         zone_clear_flag(zone, ZONE_WRITEBACK);
2841
2842         /*
2843          * If a zone reaches its high watermark, consider it to be no longer
2844          * congested. It's possible there are dirty pages backed by congested
2845          * BDIs but as pressure is relieved, speculatively avoid congestion
2846          * waits.
2847          */
2848         if (zone_reclaimable(zone) &&
2849             zone_balanced(zone, testorder, 0, classzone_idx)) {
2850                 zone_clear_flag(zone, ZONE_CONGESTED);
2851                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2852         }
2853
2854         return sc->nr_scanned >= sc->nr_to_reclaim;
2855 }
2856
2857 /*
2858  * For kswapd, balance_pgdat() will work across all this node's zones until
2859  * they are all at high_wmark_pages(zone).
2860  *
2861  * Returns the final order kswapd was reclaiming at
2862  *
2863  * There is special handling here for zones which are full of pinned pages.
2864  * This can happen if the pages are all mlocked, or if they are all used by
2865  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2866  * What we do is to detect the case where all pages in the zone have been
2867  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2868  * dead and from now on, only perform a short scan.  Basically we're polling
2869  * the zone for when the problem goes away.
2870  *
2871  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2872  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2873  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2874  * lower zones regardless of the number of free pages in the lower zones. This
2875  * interoperates with the page allocator fallback scheme to ensure that aging
2876  * of pages is balanced across the zones.
2877  */
2878 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2879                                                         int *classzone_idx)
2880 {
2881         int i;
2882         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2883         unsigned long nr_soft_reclaimed;
2884         unsigned long nr_soft_scanned;
2885         struct scan_control sc = {
2886                 .gfp_mask = GFP_KERNEL,
2887                 .priority = DEF_PRIORITY,
2888                 .may_unmap = 1,
2889                 .may_swap = 1,
2890                 .may_writepage = !laptop_mode,
2891                 .order = order,
2892                 .target_mem_cgroup = NULL,
2893         };
2894         count_vm_event(PAGEOUTRUN);
2895
2896         do {
2897                 unsigned long lru_pages = 0;
2898                 unsigned long nr_attempted = 0;
2899                 bool raise_priority = true;
2900                 bool pgdat_needs_compaction = (order > 0);
2901
2902                 sc.nr_reclaimed = 0;
2903
2904                 /*
2905                  * Scan in the highmem->dma direction for the highest
2906                  * zone which needs scanning
2907                  */
2908                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2909                         struct zone *zone = pgdat->node_zones + i;
2910
2911                         if (!populated_zone(zone))
2912                                 continue;
2913
2914                         if (sc.priority != DEF_PRIORITY &&
2915                             !zone_reclaimable(zone))
2916                                 continue;
2917
2918                         /*
2919                          * Do some background aging of the anon list, to give
2920                          * pages a chance to be referenced before reclaiming.
2921                          */
2922                         age_active_anon(zone, &sc);
2923
2924                         /*
2925                          * If the number of buffer_heads in the machine
2926                          * exceeds the maximum allowed level and this node
2927                          * has a highmem zone, force kswapd to reclaim from
2928                          * it to relieve lowmem pressure.
2929                          */
2930                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2931                                 end_zone = i;
2932                                 break;
2933                         }
2934
2935                         if (!zone_balanced(zone, order, 0, 0)) {
2936                                 end_zone = i;
2937                                 break;
2938                         } else {
2939                                 /*
2940                                  * If balanced, clear the dirty and congested
2941                                  * flags
2942                                  */
2943                                 zone_clear_flag(zone, ZONE_CONGESTED);
2944                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2945                         }
2946                 }
2947
2948                 if (i < 0)
2949                         goto out;
2950
2951                 for (i = 0; i <= end_zone; i++) {
2952                         struct zone *zone = pgdat->node_zones + i;
2953
2954                         if (!populated_zone(zone))
2955                                 continue;
2956
2957                         lru_pages += zone_reclaimable_pages(zone);
2958
2959                         /*
2960                          * If any zone is currently balanced then kswapd will
2961                          * not call compaction as it is expected that the
2962                          * necessary pages are already available.
2963                          */
2964                         if (pgdat_needs_compaction &&
2965                                         zone_watermark_ok(zone, order,
2966                                                 low_wmark_pages(zone),
2967                                                 *classzone_idx, 0))
2968                                 pgdat_needs_compaction = false;
2969                 }
2970
2971                 /*
2972                  * If we're getting trouble reclaiming, start doing writepage
2973                  * even in laptop mode.
2974                  */
2975                 if (sc.priority < DEF_PRIORITY - 2)
2976                         sc.may_writepage = 1;
2977
2978                 /*
2979                  * Now scan the zone in the dma->highmem direction, stopping
2980                  * at the last zone which needs scanning.
2981                  *
2982                  * We do this because the page allocator works in the opposite
2983                  * direction.  This prevents the page allocator from allocating
2984                  * pages behind kswapd's direction of progress, which would
2985                  * cause too much scanning of the lower zones.
2986                  */
2987                 for (i = 0; i <= end_zone; i++) {
2988                         struct zone *zone = pgdat->node_zones + i;
2989
2990                         if (!populated_zone(zone))
2991                                 continue;
2992
2993                         if (sc.priority != DEF_PRIORITY &&
2994                             !zone_reclaimable(zone))
2995                                 continue;
2996
2997                         sc.nr_scanned = 0;
2998
2999                         nr_soft_scanned = 0;
3000                         /*
3001                          * Call soft limit reclaim before calling shrink_zone.
3002                          */
3003                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3004                                                         order, sc.gfp_mask,
3005                                                         &nr_soft_scanned);
3006                         sc.nr_reclaimed += nr_soft_reclaimed;
3007
3008                         /*
3009                          * There should be no need to raise the scanning
3010                          * priority if enough pages are already being scanned
3011                          * that that high watermark would be met at 100%
3012                          * efficiency.
3013                          */
3014                         if (kswapd_shrink_zone(zone, end_zone, &sc,
3015                                         lru_pages, &nr_attempted))
3016                                 raise_priority = false;
3017                 }
3018
3019                 /*
3020                  * If the low watermark is met there is no need for processes
3021                  * to be throttled on pfmemalloc_wait as they should not be
3022                  * able to safely make forward progress. Wake them
3023                  */
3024                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3025                                 pfmemalloc_watermark_ok(pgdat))
3026                         wake_up(&pgdat->pfmemalloc_wait);
3027
3028                 /*
3029                  * Fragmentation may mean that the system cannot be rebalanced
3030                  * for high-order allocations in all zones. If twice the
3031                  * allocation size has been reclaimed and the zones are still
3032                  * not balanced then recheck the watermarks at order-0 to
3033                  * prevent kswapd reclaiming excessively. Assume that a
3034                  * process requested a high-order can direct reclaim/compact.
3035                  */
3036                 if (order && sc.nr_reclaimed >= 2UL << order)
3037                         order = sc.order = 0;
3038
3039                 /* Check if kswapd should be suspending */
3040                 if (try_to_freeze() || kthread_should_stop())
3041                         break;
3042
3043                 /*
3044                  * Compact if necessary and kswapd is reclaiming at least the
3045                  * high watermark number of pages as requsted
3046                  */
3047                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3048                         compact_pgdat(pgdat, order);
3049
3050                 /*
3051                  * Raise priority if scanning rate is too low or there was no
3052                  * progress in reclaiming pages
3053                  */
3054                 if (raise_priority || !sc.nr_reclaimed)
3055                         sc.priority--;
3056         } while (sc.priority >= 1 &&
3057                  !pgdat_balanced(pgdat, order, *classzone_idx));
3058
3059 out:
3060         /*
3061          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3062          * makes a decision on the order we were last reclaiming at. However,
3063          * if another caller entered the allocator slow path while kswapd
3064          * was awake, order will remain at the higher level
3065          */
3066         *classzone_idx = end_zone;
3067         return order;
3068 }
3069
3070 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3071 {
3072         long remaining = 0;
3073         DEFINE_WAIT(wait);
3074
3075         if (freezing(current) || kthread_should_stop())
3076                 return;
3077
3078         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3079
3080         /* Try to sleep for a short interval */
3081         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3082                 remaining = schedule_timeout(HZ/10);
3083                 finish_wait(&pgdat->kswapd_wait, &wait);
3084                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3085         }
3086
3087         /*
3088          * After a short sleep, check if it was a premature sleep. If not, then
3089          * go fully to sleep until explicitly woken up.
3090          */
3091         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3092                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3093
3094                 /*
3095                  * vmstat counters are not perfectly accurate and the estimated
3096                  * value for counters such as NR_FREE_PAGES can deviate from the
3097                  * true value by nr_online_cpus * threshold. To avoid the zone
3098                  * watermarks being breached while under pressure, we reduce the
3099                  * per-cpu vmstat threshold while kswapd is awake and restore
3100                  * them before going back to sleep.
3101                  */
3102                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3103
3104                 /*
3105                  * Compaction records what page blocks it recently failed to
3106                  * isolate pages from and skips them in the future scanning.
3107                  * When kswapd is going to sleep, it is reasonable to assume
3108                  * that pages and compaction may succeed so reset the cache.
3109                  */
3110                 reset_isolation_suitable(pgdat);
3111
3112                 if (!kthread_should_stop())
3113                         schedule();
3114
3115                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3116         } else {
3117                 if (remaining)
3118                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3119                 else
3120                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3121         }
3122         finish_wait(&pgdat->kswapd_wait, &wait);
3123 }
3124
3125 /*
3126  * The background pageout daemon, started as a kernel thread
3127  * from the init process.
3128  *
3129  * This basically trickles out pages so that we have _some_
3130  * free memory available even if there is no other activity
3131  * that frees anything up. This is needed for things like routing
3132  * etc, where we otherwise might have all activity going on in
3133  * asynchronous contexts that cannot page things out.
3134  *
3135  * If there are applications that are active memory-allocators
3136  * (most normal use), this basically shouldn't matter.
3137  */
3138 static int kswapd(void *p)
3139 {
3140         unsigned long order, new_order;
3141         unsigned balanced_order;
3142         int classzone_idx, new_classzone_idx;
3143         int balanced_classzone_idx;
3144         pg_data_t *pgdat = (pg_data_t*)p;
3145         struct task_struct *tsk = current;
3146
3147         struct reclaim_state reclaim_state = {
3148                 .reclaimed_slab = 0,
3149         };
3150         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3151
3152         lockdep_set_current_reclaim_state(GFP_KERNEL);
3153
3154         if (!cpumask_empty(cpumask))
3155                 set_cpus_allowed_ptr(tsk, cpumask);
3156         current->reclaim_state = &reclaim_state;
3157
3158         /*
3159          * Tell the memory management that we're a "memory allocator",
3160          * and that if we need more memory we should get access to it
3161          * regardless (see "__alloc_pages()"). "kswapd" should
3162          * never get caught in the normal page freeing logic.
3163          *
3164          * (Kswapd normally doesn't need memory anyway, but sometimes
3165          * you need a small amount of memory in order to be able to
3166          * page out something else, and this flag essentially protects
3167          * us from recursively trying to free more memory as we're
3168          * trying to free the first piece of memory in the first place).
3169          */
3170         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3171         set_freezable();
3172
3173         order = new_order = 0;
3174         balanced_order = 0;
3175         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3176         balanced_classzone_idx = classzone_idx;
3177         for ( ; ; ) {
3178                 bool ret;
3179
3180                 /*
3181                  * If the last balance_pgdat was unsuccessful it's unlikely a
3182                  * new request of a similar or harder type will succeed soon
3183                  * so consider going to sleep on the basis we reclaimed at
3184                  */
3185                 if (balanced_classzone_idx >= new_classzone_idx &&
3186                                         balanced_order == new_order) {
3187                         new_order = pgdat->kswapd_max_order;
3188                         new_classzone_idx = pgdat->classzone_idx;
3189                         pgdat->kswapd_max_order =  0;
3190                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3191                 }
3192
3193                 if (order < new_order || classzone_idx > new_classzone_idx) {
3194                         /*
3195                          * Don't sleep if someone wants a larger 'order'
3196                          * allocation or has tigher zone constraints
3197                          */
3198                         order = new_order;
3199                         classzone_idx = new_classzone_idx;
3200                 } else {
3201                         kswapd_try_to_sleep(pgdat, balanced_order,
3202                                                 balanced_classzone_idx);
3203                         order = pgdat->kswapd_max_order;
3204                         classzone_idx = pgdat->classzone_idx;
3205                         new_order = order;
3206                         new_classzone_idx = classzone_idx;
3207                         pgdat->kswapd_max_order = 0;
3208                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3209                 }
3210
3211                 ret = try_to_freeze();
3212                 if (kthread_should_stop())
3213                         break;
3214
3215                 /*
3216                  * We can speed up thawing tasks if we don't call balance_pgdat
3217                  * after returning from the refrigerator
3218                  */
3219                 if (!ret) {
3220                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3221                         balanced_classzone_idx = classzone_idx;
3222                         balanced_order = balance_pgdat(pgdat, order,
3223                                                 &balanced_classzone_idx);
3224                 }
3225         }
3226
3227         current->reclaim_state = NULL;
3228         return 0;
3229 }
3230
3231 /*
3232  * A zone is low on free memory, so wake its kswapd task to service it.
3233  */
3234 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3235 {
3236         pg_data_t *pgdat;
3237
3238         if (!populated_zone(zone))
3239                 return;
3240
3241         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3242                 return;
3243         pgdat = zone->zone_pgdat;
3244         if (pgdat->kswapd_max_order < order) {
3245                 pgdat->kswapd_max_order = order;
3246                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3247         }
3248         if (!waitqueue_active(&pgdat->kswapd_wait))
3249                 return;
3250         if (zone_balanced(zone, order, 0, 0))
3251                 return;
3252
3253         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3254         wake_up_interruptible(&pgdat->kswapd_wait);
3255 }
3256
3257 /*
3258  * The reclaimable count would be mostly accurate.
3259  * The less reclaimable pages may be
3260  * - mlocked pages, which will be moved to unevictable list when encountered
3261  * - mapped pages, which may require several travels to be reclaimed
3262  * - dirty pages, which is not "instantly" reclaimable
3263  */
3264 unsigned long global_reclaimable_pages(void)
3265 {
3266         int nr;
3267
3268         nr = global_page_state(NR_ACTIVE_FILE) +
3269              global_page_state(NR_INACTIVE_FILE);
3270
3271         if (get_nr_swap_pages() > 0)
3272                 nr += global_page_state(NR_ACTIVE_ANON) +
3273                       global_page_state(NR_INACTIVE_ANON);
3274
3275         return nr;
3276 }
3277
3278 #ifdef CONFIG_HIBERNATION
3279 /*
3280  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3281  * freed pages.
3282  *
3283  * Rather than trying to age LRUs the aim is to preserve the overall
3284  * LRU order by reclaiming preferentially
3285  * inactive > active > active referenced > active mapped
3286  */
3287 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3288 {
3289         struct reclaim_state reclaim_state;
3290         struct scan_control sc = {
3291                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3292                 .may_swap = 1,
3293                 .may_unmap = 1,
3294                 .may_writepage = 1,
3295                 .nr_to_reclaim = nr_to_reclaim,
3296                 .hibernation_mode = 1,
3297                 .order = 0,
3298                 .priority = DEF_PRIORITY,
3299         };
3300         struct shrink_control shrink = {
3301                 .gfp_mask = sc.gfp_mask,
3302         };
3303         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3304         struct task_struct *p = current;
3305         unsigned long nr_reclaimed;
3306
3307         p->flags |= PF_MEMALLOC;
3308         lockdep_set_current_reclaim_state(sc.gfp_mask);
3309         reclaim_state.reclaimed_slab = 0;
3310         p->reclaim_state = &reclaim_state;
3311
3312         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3313
3314         p->reclaim_state = NULL;
3315         lockdep_clear_current_reclaim_state();
3316         p->flags &= ~PF_MEMALLOC;
3317
3318         return nr_reclaimed;
3319 }
3320 #endif /* CONFIG_HIBERNATION */
3321
3322 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3323    not required for correctness.  So if the last cpu in a node goes
3324    away, we get changed to run anywhere: as the first one comes back,
3325    restore their cpu bindings. */
3326 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3327                         void *hcpu)
3328 {
3329         int nid;
3330
3331         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3332                 for_each_node_state(nid, N_MEMORY) {
3333                         pg_data_t *pgdat = NODE_DATA(nid);
3334                         const struct cpumask *mask;
3335
3336                         mask = cpumask_of_node(pgdat->node_id);
3337
3338                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3339                                 /* One of our CPUs online: restore mask */
3340                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3341                 }
3342         }
3343         return NOTIFY_OK;
3344 }
3345
3346 /*
3347  * This kswapd start function will be called by init and node-hot-add.
3348  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3349  */
3350 int kswapd_run(int nid)
3351 {
3352         pg_data_t *pgdat = NODE_DATA(nid);
3353         int ret = 0;
3354
3355         if (pgdat->kswapd)
3356                 return 0;
3357
3358         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3359         if (IS_ERR(pgdat->kswapd)) {
3360                 /* failure at boot is fatal */
3361                 BUG_ON(system_state == SYSTEM_BOOTING);
3362                 pr_err("Failed to start kswapd on node %d\n", nid);
3363                 ret = PTR_ERR(pgdat->kswapd);
3364                 pgdat->kswapd = NULL;
3365         }
3366         return ret;
3367 }
3368
3369 /*
3370  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3371  * hold lock_memory_hotplug().
3372  */
3373 void kswapd_stop(int nid)
3374 {
3375         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3376
3377         if (kswapd) {
3378                 kthread_stop(kswapd);
3379                 NODE_DATA(nid)->kswapd = NULL;
3380         }
3381 }
3382
3383 static int __init kswapd_init(void)
3384 {
3385         int nid;
3386
3387         swap_setup();
3388         for_each_node_state(nid, N_MEMORY)
3389                 kswapd_run(nid);
3390         hotcpu_notifier(cpu_callback, 0);
3391         return 0;
3392 }
3393
3394 module_init(kswapd_init)
3395
3396 #ifdef CONFIG_NUMA
3397 /*
3398  * Zone reclaim mode
3399  *
3400  * If non-zero call zone_reclaim when the number of free pages falls below
3401  * the watermarks.
3402  */
3403 int zone_reclaim_mode __read_mostly;
3404
3405 #define RECLAIM_OFF 0
3406 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3407 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3408 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3409
3410 /*
3411  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3412  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3413  * a zone.
3414  */
3415 #define ZONE_RECLAIM_PRIORITY 4
3416
3417 /*
3418  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3419  * occur.
3420  */
3421 int sysctl_min_unmapped_ratio = 1;
3422
3423 /*
3424  * If the number of slab pages in a zone grows beyond this percentage then
3425  * slab reclaim needs to occur.
3426  */
3427 int sysctl_min_slab_ratio = 5;
3428
3429 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3430 {
3431         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3432         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3433                 zone_page_state(zone, NR_ACTIVE_FILE);
3434
3435         /*
3436          * It's possible for there to be more file mapped pages than
3437          * accounted for by the pages on the file LRU lists because
3438          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3439          */
3440         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3441 }
3442
3443 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3444 static long zone_pagecache_reclaimable(struct zone *zone)
3445 {
3446         long nr_pagecache_reclaimable;
3447         long delta = 0;
3448
3449         /*
3450          * If RECLAIM_SWAP is set, then all file pages are considered
3451          * potentially reclaimable. Otherwise, we have to worry about
3452          * pages like swapcache and zone_unmapped_file_pages() provides
3453          * a better estimate
3454          */
3455         if (zone_reclaim_mode & RECLAIM_SWAP)
3456                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3457         else
3458                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3459
3460         /* If we can't clean pages, remove dirty pages from consideration */
3461         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3462                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3463
3464         /* Watch for any possible underflows due to delta */
3465         if (unlikely(delta > nr_pagecache_reclaimable))
3466                 delta = nr_pagecache_reclaimable;
3467
3468         return nr_pagecache_reclaimable - delta;
3469 }
3470
3471 /*
3472  * Try to free up some pages from this zone through reclaim.
3473  */
3474 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3475 {
3476         /* Minimum pages needed in order to stay on node */
3477         const unsigned long nr_pages = 1 << order;
3478         struct task_struct *p = current;
3479         struct reclaim_state reclaim_state;
3480         struct scan_control sc = {
3481                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3482                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3483                 .may_swap = 1,
3484                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3485                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3486                 .order = order,
3487                 .priority = ZONE_RECLAIM_PRIORITY,
3488         };
3489         struct shrink_control shrink = {
3490                 .gfp_mask = sc.gfp_mask,
3491         };
3492         unsigned long nr_slab_pages0, nr_slab_pages1;
3493
3494         cond_resched();
3495         /*
3496          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3497          * and we also need to be able to write out pages for RECLAIM_WRITE
3498          * and RECLAIM_SWAP.
3499          */
3500         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3501         lockdep_set_current_reclaim_state(gfp_mask);
3502         reclaim_state.reclaimed_slab = 0;
3503         p->reclaim_state = &reclaim_state;
3504
3505         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3506                 /*
3507                  * Free memory by calling shrink zone with increasing
3508                  * priorities until we have enough memory freed.
3509                  */
3510                 do {
3511                         shrink_zone(zone, &sc);
3512                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3513         }
3514
3515         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3516         if (nr_slab_pages0 > zone->min_slab_pages) {
3517                 /*
3518                  * shrink_slab() does not currently allow us to determine how
3519                  * many pages were freed in this zone. So we take the current
3520                  * number of slab pages and shake the slab until it is reduced
3521                  * by the same nr_pages that we used for reclaiming unmapped
3522                  * pages.
3523                  *
3524                  * Note that shrink_slab will free memory on all zones and may
3525                  * take a long time.
3526                  */
3527                 for (;;) {
3528                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3529
3530                         /* No reclaimable slab or very low memory pressure */
3531                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3532                                 break;
3533
3534                         /* Freed enough memory */
3535                         nr_slab_pages1 = zone_page_state(zone,
3536                                                         NR_SLAB_RECLAIMABLE);
3537                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3538                                 break;
3539                 }
3540
3541                 /*
3542                  * Update nr_reclaimed by the number of slab pages we
3543                  * reclaimed from this zone.
3544                  */
3545                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3546                 if (nr_slab_pages1 < nr_slab_pages0)
3547                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3548         }
3549
3550         p->reclaim_state = NULL;
3551         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3552         lockdep_clear_current_reclaim_state();
3553         return sc.nr_reclaimed >= nr_pages;
3554 }
3555
3556 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3557 {
3558         int node_id;
3559         int ret;
3560
3561         /*
3562          * Zone reclaim reclaims unmapped file backed pages and
3563          * slab pages if we are over the defined limits.
3564          *
3565          * A small portion of unmapped file backed pages is needed for
3566          * file I/O otherwise pages read by file I/O will be immediately
3567          * thrown out if the zone is overallocated. So we do not reclaim
3568          * if less than a specified percentage of the zone is used by
3569          * unmapped file backed pages.
3570          */
3571         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3572             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3573                 return ZONE_RECLAIM_FULL;
3574
3575         if (!zone_reclaimable(zone))
3576                 return ZONE_RECLAIM_FULL;
3577
3578         /*
3579          * Do not scan if the allocation should not be delayed.
3580          */
3581         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3582                 return ZONE_RECLAIM_NOSCAN;
3583
3584         /*
3585          * Only run zone reclaim on the local zone or on zones that do not
3586          * have associated processors. This will favor the local processor
3587          * over remote processors and spread off node memory allocations
3588          * as wide as possible.
3589          */
3590         node_id = zone_to_nid(zone);
3591         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3592                 return ZONE_RECLAIM_NOSCAN;
3593
3594         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3595                 return ZONE_RECLAIM_NOSCAN;
3596
3597         ret = __zone_reclaim(zone, gfp_mask, order);
3598         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3599
3600         if (!ret)
3601                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3602
3603         return ret;
3604 }
3605 #endif
3606
3607 /*
3608  * page_evictable - test whether a page is evictable
3609  * @page: the page to test
3610  *
3611  * Test whether page is evictable--i.e., should be placed on active/inactive
3612  * lists vs unevictable list.
3613  *
3614  * Reasons page might not be evictable:
3615  * (1) page's mapping marked unevictable
3616  * (2) page is part of an mlocked VMA
3617  *
3618  */
3619 int page_evictable(struct page *page)
3620 {
3621         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3622 }
3623
3624 #ifdef CONFIG_SHMEM
3625 /**
3626  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3627  * @pages:      array of pages to check
3628  * @nr_pages:   number of pages to check
3629  *
3630  * Checks pages for evictability and moves them to the appropriate lru list.
3631  *
3632  * This function is only used for SysV IPC SHM_UNLOCK.
3633  */
3634 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3635 {
3636         struct lruvec *lruvec;
3637         struct zone *zone = NULL;
3638         int pgscanned = 0;
3639         int pgrescued = 0;
3640         int i;
3641
3642         for (i = 0; i < nr_pages; i++) {
3643                 struct page *page = pages[i];
3644                 struct zone *pagezone;
3645
3646                 pgscanned++;
3647                 pagezone = page_zone(page);
3648                 if (pagezone != zone) {
3649                         if (zone)
3650                                 spin_unlock_irq(&zone->lru_lock);
3651                         zone = pagezone;
3652                         spin_lock_irq(&zone->lru_lock);
3653                 }
3654                 lruvec = mem_cgroup_page_lruvec(page, zone);
3655
3656                 if (!PageLRU(page) || !PageUnevictable(page))
3657                         continue;
3658
3659                 if (page_evictable(page)) {
3660                         enum lru_list lru = page_lru_base_type(page);
3661
3662                         VM_BUG_ON(PageActive(page));
3663                         ClearPageUnevictable(page);
3664                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3665                         add_page_to_lru_list(page, lruvec, lru);
3666                         pgrescued++;
3667                 }
3668         }
3669
3670         if (zone) {
3671                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3672                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3673                 spin_unlock_irq(&zone->lru_lock);
3674         }
3675 }
3676 #endif /* CONFIG_SHMEM */
3677
3678 static void warn_scan_unevictable_pages(void)
3679 {
3680         printk_once(KERN_WARNING
3681                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3682                     "disabled for lack of a legitimate use case.  If you have "
3683                     "one, please send an email to linux-mm@kvack.org.\n",
3684                     current->comm);
3685 }
3686
3687 /*
3688  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3689  * all nodes' unevictable lists for evictable pages
3690  */
3691 unsigned long scan_unevictable_pages;
3692
3693 int scan_unevictable_handler(struct ctl_table *table, int write,
3694                            void __user *buffer,
3695                            size_t *length, loff_t *ppos)
3696 {
3697         warn_scan_unevictable_pages();
3698         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3699         scan_unevictable_pages = 0;
3700         return 0;
3701 }
3702
3703 #ifdef CONFIG_NUMA
3704 /*
3705  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3706  * a specified node's per zone unevictable lists for evictable pages.
3707  */
3708
3709 static ssize_t read_scan_unevictable_node(struct device *dev,
3710                                           struct device_attribute *attr,
3711                                           char *buf)
3712 {
3713         warn_scan_unevictable_pages();
3714         return sprintf(buf, "0\n");     /* always zero; should fit... */
3715 }
3716
3717 static ssize_t write_scan_unevictable_node(struct device *dev,
3718                                            struct device_attribute *attr,
3719                                         const char *buf, size_t count)
3720 {
3721         warn_scan_unevictable_pages();
3722         return 1;
3723 }
3724
3725
3726 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3727                         read_scan_unevictable_node,
3728                         write_scan_unevictable_node);
3729
3730 int scan_unevictable_register_node(struct node *node)
3731 {
3732         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3733 }
3734
3735 void scan_unevictable_unregister_node(struct node *node)
3736 {
3737         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3738 }
3739 #endif