]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmscan.c
[PATCH] vmscan return nr_reclaimed
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>  /* for try_to_release_page(),
26                                         buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /* possible outcome of pageout() */
43 typedef enum {
44         /* failed to write page out, page is locked */
45         PAGE_KEEP,
46         /* move page to the active list, page is locked */
47         PAGE_ACTIVATE,
48         /* page has been sent to the disk successfully, page is unlocked */
49         PAGE_SUCCESS,
50         /* page is clean and locked */
51         PAGE_CLEAN,
52 } pageout_t;
53
54 struct scan_control {
55         /* Incremented by the number of inactive pages that were scanned */
56         unsigned long nr_scanned;
57
58         unsigned long nr_mapped;        /* From page_state */
59
60         /* This context's GFP mask */
61         gfp_t gfp_mask;
62
63         int may_writepage;
64
65         /* Can pages be swapped as part of reclaim? */
66         int may_swap;
67
68         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
69          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
70          * In this context, it doesn't matter that we scan the
71          * whole list at once. */
72         int swap_cluster_max;
73 };
74
75 /*
76  * The list of shrinker callbacks used by to apply pressure to
77  * ageable caches.
78  */
79 struct shrinker {
80         shrinker_t              shrinker;
81         struct list_head        list;
82         int                     seeks;  /* seeks to recreate an obj */
83         long                    nr;     /* objs pending delete */
84 };
85
86 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
87
88 #ifdef ARCH_HAS_PREFETCH
89 #define prefetch_prev_lru_page(_page, _base, _field)                    \
90         do {                                                            \
91                 if ((_page)->lru.prev != _base) {                       \
92                         struct page *prev;                              \
93                                                                         \
94                         prev = lru_to_page(&(_page->lru));              \
95                         prefetch(&prev->_field);                        \
96                 }                                                       \
97         } while (0)
98 #else
99 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
100 #endif
101
102 #ifdef ARCH_HAS_PREFETCHW
103 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
104         do {                                                            \
105                 if ((_page)->lru.prev != _base) {                       \
106                         struct page *prev;                              \
107                                                                         \
108                         prev = lru_to_page(&(_page->lru));              \
109                         prefetchw(&prev->_field);                       \
110                 }                                                       \
111         } while (0)
112 #else
113 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
114 #endif
115
116 /*
117  * From 0 .. 100.  Higher means more swappy.
118  */
119 int vm_swappiness = 60;
120 static long total_memory;
121
122 static LIST_HEAD(shrinker_list);
123 static DECLARE_RWSEM(shrinker_rwsem);
124
125 /*
126  * Add a shrinker callback to be called from the vm
127  */
128 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
129 {
130         struct shrinker *shrinker;
131
132         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
133         if (shrinker) {
134                 shrinker->shrinker = theshrinker;
135                 shrinker->seeks = seeks;
136                 shrinker->nr = 0;
137                 down_write(&shrinker_rwsem);
138                 list_add_tail(&shrinker->list, &shrinker_list);
139                 up_write(&shrinker_rwsem);
140         }
141         return shrinker;
142 }
143 EXPORT_SYMBOL(set_shrinker);
144
145 /*
146  * Remove one
147  */
148 void remove_shrinker(struct shrinker *shrinker)
149 {
150         down_write(&shrinker_rwsem);
151         list_del(&shrinker->list);
152         up_write(&shrinker_rwsem);
153         kfree(shrinker);
154 }
155 EXPORT_SYMBOL(remove_shrinker);
156
157 #define SHRINK_BATCH 128
158 /*
159  * Call the shrink functions to age shrinkable caches
160  *
161  * Here we assume it costs one seek to replace a lru page and that it also
162  * takes a seek to recreate a cache object.  With this in mind we age equal
163  * percentages of the lru and ageable caches.  This should balance the seeks
164  * generated by these structures.
165  *
166  * If the vm encounted mapped pages on the LRU it increase the pressure on
167  * slab to avoid swapping.
168  *
169  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
170  *
171  * `lru_pages' represents the number of on-LRU pages in all the zones which
172  * are eligible for the caller's allocation attempt.  It is used for balancing
173  * slab reclaim versus page reclaim.
174  *
175  * Returns the number of slab objects which we shrunk.
176  */
177 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
178                         unsigned long lru_pages)
179 {
180         struct shrinker *shrinker;
181         unsigned long ret = 0;
182
183         if (scanned == 0)
184                 scanned = SWAP_CLUSTER_MAX;
185
186         if (!down_read_trylock(&shrinker_rwsem))
187                 return 1;       /* Assume we'll be able to shrink next time */
188
189         list_for_each_entry(shrinker, &shrinker_list, list) {
190                 unsigned long long delta;
191                 unsigned long total_scan;
192                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
193
194                 delta = (4 * scanned) / shrinker->seeks;
195                 delta *= max_pass;
196                 do_div(delta, lru_pages + 1);
197                 shrinker->nr += delta;
198                 if (shrinker->nr < 0) {
199                         printk(KERN_ERR "%s: nr=%ld\n",
200                                         __FUNCTION__, shrinker->nr);
201                         shrinker->nr = max_pass;
202                 }
203
204                 /*
205                  * Avoid risking looping forever due to too large nr value:
206                  * never try to free more than twice the estimate number of
207                  * freeable entries.
208                  */
209                 if (shrinker->nr > max_pass * 2)
210                         shrinker->nr = max_pass * 2;
211
212                 total_scan = shrinker->nr;
213                 shrinker->nr = 0;
214
215                 while (total_scan >= SHRINK_BATCH) {
216                         long this_scan = SHRINK_BATCH;
217                         int shrink_ret;
218                         int nr_before;
219
220                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
221                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
222                         if (shrink_ret == -1)
223                                 break;
224                         if (shrink_ret < nr_before)
225                                 ret += nr_before - shrink_ret;
226                         mod_page_state(slabs_scanned, this_scan);
227                         total_scan -= this_scan;
228
229                         cond_resched();
230                 }
231
232                 shrinker->nr += total_scan;
233         }
234         up_read(&shrinker_rwsem);
235         return ret;
236 }
237
238 /* Called without lock on whether page is mapped, so answer is unstable */
239 static inline int page_mapping_inuse(struct page *page)
240 {
241         struct address_space *mapping;
242
243         /* Page is in somebody's page tables. */
244         if (page_mapped(page))
245                 return 1;
246
247         /* Be more reluctant to reclaim swapcache than pagecache */
248         if (PageSwapCache(page))
249                 return 1;
250
251         mapping = page_mapping(page);
252         if (!mapping)
253                 return 0;
254
255         /* File is mmap'd by somebody? */
256         return mapping_mapped(mapping);
257 }
258
259 static inline int is_page_cache_freeable(struct page *page)
260 {
261         return page_count(page) - !!PagePrivate(page) == 2;
262 }
263
264 static int may_write_to_queue(struct backing_dev_info *bdi)
265 {
266         if (current->flags & PF_SWAPWRITE)
267                 return 1;
268         if (!bdi_write_congested(bdi))
269                 return 1;
270         if (bdi == current->backing_dev_info)
271                 return 1;
272         return 0;
273 }
274
275 /*
276  * We detected a synchronous write error writing a page out.  Probably
277  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
278  * fsync(), msync() or close().
279  *
280  * The tricky part is that after writepage we cannot touch the mapping: nothing
281  * prevents it from being freed up.  But we have a ref on the page and once
282  * that page is locked, the mapping is pinned.
283  *
284  * We're allowed to run sleeping lock_page() here because we know the caller has
285  * __GFP_FS.
286  */
287 static void handle_write_error(struct address_space *mapping,
288                                 struct page *page, int error)
289 {
290         lock_page(page);
291         if (page_mapping(page) == mapping) {
292                 if (error == -ENOSPC)
293                         set_bit(AS_ENOSPC, &mapping->flags);
294                 else
295                         set_bit(AS_EIO, &mapping->flags);
296         }
297         unlock_page(page);
298 }
299
300 /*
301  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
302  */
303 static pageout_t pageout(struct page *page, struct address_space *mapping)
304 {
305         /*
306          * If the page is dirty, only perform writeback if that write
307          * will be non-blocking.  To prevent this allocation from being
308          * stalled by pagecache activity.  But note that there may be
309          * stalls if we need to run get_block().  We could test
310          * PagePrivate for that.
311          *
312          * If this process is currently in generic_file_write() against
313          * this page's queue, we can perform writeback even if that
314          * will block.
315          *
316          * If the page is swapcache, write it back even if that would
317          * block, for some throttling. This happens by accident, because
318          * swap_backing_dev_info is bust: it doesn't reflect the
319          * congestion state of the swapdevs.  Easy to fix, if needed.
320          * See swapfile.c:page_queue_congested().
321          */
322         if (!is_page_cache_freeable(page))
323                 return PAGE_KEEP;
324         if (!mapping) {
325                 /*
326                  * Some data journaling orphaned pages can have
327                  * page->mapping == NULL while being dirty with clean buffers.
328                  */
329                 if (PagePrivate(page)) {
330                         if (try_to_free_buffers(page)) {
331                                 ClearPageDirty(page);
332                                 printk("%s: orphaned page\n", __FUNCTION__);
333                                 return PAGE_CLEAN;
334                         }
335                 }
336                 return PAGE_KEEP;
337         }
338         if (mapping->a_ops->writepage == NULL)
339                 return PAGE_ACTIVATE;
340         if (!may_write_to_queue(mapping->backing_dev_info))
341                 return PAGE_KEEP;
342
343         if (clear_page_dirty_for_io(page)) {
344                 int res;
345                 struct writeback_control wbc = {
346                         .sync_mode = WB_SYNC_NONE,
347                         .nr_to_write = SWAP_CLUSTER_MAX,
348                         .nonblocking = 1,
349                         .for_reclaim = 1,
350                 };
351
352                 SetPageReclaim(page);
353                 res = mapping->a_ops->writepage(page, &wbc);
354                 if (res < 0)
355                         handle_write_error(mapping, page, res);
356                 if (res == AOP_WRITEPAGE_ACTIVATE) {
357                         ClearPageReclaim(page);
358                         return PAGE_ACTIVATE;
359                 }
360                 if (!PageWriteback(page)) {
361                         /* synchronous write or broken a_ops? */
362                         ClearPageReclaim(page);
363                 }
364
365                 return PAGE_SUCCESS;
366         }
367
368         return PAGE_CLEAN;
369 }
370
371 static int remove_mapping(struct address_space *mapping, struct page *page)
372 {
373         if (!mapping)
374                 return 0;               /* truncate got there first */
375
376         write_lock_irq(&mapping->tree_lock);
377
378         /*
379          * The non-racy check for busy page.  It is critical to check
380          * PageDirty _after_ making sure that the page is freeable and
381          * not in use by anybody.       (pagecache + us == 2)
382          */
383         if (unlikely(page_count(page) != 2))
384                 goto cannot_free;
385         smp_rmb();
386         if (unlikely(PageDirty(page)))
387                 goto cannot_free;
388
389         if (PageSwapCache(page)) {
390                 swp_entry_t swap = { .val = page_private(page) };
391                 __delete_from_swap_cache(page);
392                 write_unlock_irq(&mapping->tree_lock);
393                 swap_free(swap);
394                 __put_page(page);       /* The pagecache ref */
395                 return 1;
396         }
397
398         __remove_from_page_cache(page);
399         write_unlock_irq(&mapping->tree_lock);
400         __put_page(page);
401         return 1;
402
403 cannot_free:
404         write_unlock_irq(&mapping->tree_lock);
405         return 0;
406 }
407
408 /*
409  * shrink_list return the number of reclaimed pages
410  */
411 static unsigned long shrink_list(struct list_head *page_list,
412                                 struct scan_control *sc)
413 {
414         LIST_HEAD(ret_pages);
415         struct pagevec freed_pvec;
416         int pgactivate = 0;
417         unsigned long nr_reclaimed = 0;
418
419         cond_resched();
420
421         pagevec_init(&freed_pvec, 1);
422         while (!list_empty(page_list)) {
423                 struct address_space *mapping;
424                 struct page *page;
425                 int may_enter_fs;
426                 int referenced;
427
428                 cond_resched();
429
430                 page = lru_to_page(page_list);
431                 list_del(&page->lru);
432
433                 if (TestSetPageLocked(page))
434                         goto keep;
435
436                 BUG_ON(PageActive(page));
437
438                 sc->nr_scanned++;
439
440                 if (!sc->may_swap && page_mapped(page))
441                         goto keep_locked;
442
443                 /* Double the slab pressure for mapped and swapcache pages */
444                 if (page_mapped(page) || PageSwapCache(page))
445                         sc->nr_scanned++;
446
447                 if (PageWriteback(page))
448                         goto keep_locked;
449
450                 referenced = page_referenced(page, 1);
451                 /* In active use or really unfreeable?  Activate it. */
452                 if (referenced && page_mapping_inuse(page))
453                         goto activate_locked;
454
455 #ifdef CONFIG_SWAP
456                 /*
457                  * Anonymous process memory has backing store?
458                  * Try to allocate it some swap space here.
459                  */
460                 if (PageAnon(page) && !PageSwapCache(page)) {
461                         if (!sc->may_swap)
462                                 goto keep_locked;
463                         if (!add_to_swap(page, GFP_ATOMIC))
464                                 goto activate_locked;
465                 }
466 #endif /* CONFIG_SWAP */
467
468                 mapping = page_mapping(page);
469                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
470                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
471
472                 /*
473                  * The page is mapped into the page tables of one or more
474                  * processes. Try to unmap it here.
475                  */
476                 if (page_mapped(page) && mapping) {
477                         /*
478                          * No unmapping if we do not swap
479                          */
480                         if (!sc->may_swap)
481                                 goto keep_locked;
482
483                         switch (try_to_unmap(page, 0)) {
484                         case SWAP_FAIL:
485                                 goto activate_locked;
486                         case SWAP_AGAIN:
487                                 goto keep_locked;
488                         case SWAP_SUCCESS:
489                                 ; /* try to free the page below */
490                         }
491                 }
492
493                 if (PageDirty(page)) {
494                         if (referenced)
495                                 goto keep_locked;
496                         if (!may_enter_fs)
497                                 goto keep_locked;
498                         if (!sc->may_writepage)
499                                 goto keep_locked;
500
501                         /* Page is dirty, try to write it out here */
502                         switch(pageout(page, mapping)) {
503                         case PAGE_KEEP:
504                                 goto keep_locked;
505                         case PAGE_ACTIVATE:
506                                 goto activate_locked;
507                         case PAGE_SUCCESS:
508                                 if (PageWriteback(page) || PageDirty(page))
509                                         goto keep;
510                                 /*
511                                  * A synchronous write - probably a ramdisk.  Go
512                                  * ahead and try to reclaim the page.
513                                  */
514                                 if (TestSetPageLocked(page))
515                                         goto keep;
516                                 if (PageDirty(page) || PageWriteback(page))
517                                         goto keep_locked;
518                                 mapping = page_mapping(page);
519                         case PAGE_CLEAN:
520                                 ; /* try to free the page below */
521                         }
522                 }
523
524                 /*
525                  * If the page has buffers, try to free the buffer mappings
526                  * associated with this page. If we succeed we try to free
527                  * the page as well.
528                  *
529                  * We do this even if the page is PageDirty().
530                  * try_to_release_page() does not perform I/O, but it is
531                  * possible for a page to have PageDirty set, but it is actually
532                  * clean (all its buffers are clean).  This happens if the
533                  * buffers were written out directly, with submit_bh(). ext3
534                  * will do this, as well as the blockdev mapping. 
535                  * try_to_release_page() will discover that cleanness and will
536                  * drop the buffers and mark the page clean - it can be freed.
537                  *
538                  * Rarely, pages can have buffers and no ->mapping.  These are
539                  * the pages which were not successfully invalidated in
540                  * truncate_complete_page().  We try to drop those buffers here
541                  * and if that worked, and the page is no longer mapped into
542                  * process address space (page_count == 1) it can be freed.
543                  * Otherwise, leave the page on the LRU so it is swappable.
544                  */
545                 if (PagePrivate(page)) {
546                         if (!try_to_release_page(page, sc->gfp_mask))
547                                 goto activate_locked;
548                         if (!mapping && page_count(page) == 1)
549                                 goto free_it;
550                 }
551
552                 if (!remove_mapping(mapping, page))
553                         goto keep_locked;
554
555 free_it:
556                 unlock_page(page);
557                 nr_reclaimed++;
558                 if (!pagevec_add(&freed_pvec, page))
559                         __pagevec_release_nonlru(&freed_pvec);
560                 continue;
561
562 activate_locked:
563                 SetPageActive(page);
564                 pgactivate++;
565 keep_locked:
566                 unlock_page(page);
567 keep:
568                 list_add(&page->lru, &ret_pages);
569                 BUG_ON(PageLRU(page));
570         }
571         list_splice(&ret_pages, page_list);
572         if (pagevec_count(&freed_pvec))
573                 __pagevec_release_nonlru(&freed_pvec);
574         mod_page_state(pgactivate, pgactivate);
575         return nr_reclaimed;
576 }
577
578 #ifdef CONFIG_MIGRATION
579 static inline void move_to_lru(struct page *page)
580 {
581         list_del(&page->lru);
582         if (PageActive(page)) {
583                 /*
584                  * lru_cache_add_active checks that
585                  * the PG_active bit is off.
586                  */
587                 ClearPageActive(page);
588                 lru_cache_add_active(page);
589         } else {
590                 lru_cache_add(page);
591         }
592         put_page(page);
593 }
594
595 /*
596  * Add isolated pages on the list back to the LRU.
597  *
598  * returns the number of pages put back.
599  */
600 unsigned long putback_lru_pages(struct list_head *l)
601 {
602         struct page *page;
603         struct page *page2;
604         unsigned long count = 0;
605
606         list_for_each_entry_safe(page, page2, l, lru) {
607                 move_to_lru(page);
608                 count++;
609         }
610         return count;
611 }
612
613 /*
614  * Non migratable page
615  */
616 int fail_migrate_page(struct page *newpage, struct page *page)
617 {
618         return -EIO;
619 }
620 EXPORT_SYMBOL(fail_migrate_page);
621
622 /*
623  * swapout a single page
624  * page is locked upon entry, unlocked on exit
625  */
626 static int swap_page(struct page *page)
627 {
628         struct address_space *mapping = page_mapping(page);
629
630         if (page_mapped(page) && mapping)
631                 if (try_to_unmap(page, 1) != SWAP_SUCCESS)
632                         goto unlock_retry;
633
634         if (PageDirty(page)) {
635                 /* Page is dirty, try to write it out here */
636                 switch(pageout(page, mapping)) {
637                 case PAGE_KEEP:
638                 case PAGE_ACTIVATE:
639                         goto unlock_retry;
640
641                 case PAGE_SUCCESS:
642                         goto retry;
643
644                 case PAGE_CLEAN:
645                         ; /* try to free the page below */
646                 }
647         }
648
649         if (PagePrivate(page)) {
650                 if (!try_to_release_page(page, GFP_KERNEL) ||
651                     (!mapping && page_count(page) == 1))
652                         goto unlock_retry;
653         }
654
655         if (remove_mapping(mapping, page)) {
656                 /* Success */
657                 unlock_page(page);
658                 return 0;
659         }
660
661 unlock_retry:
662         unlock_page(page);
663
664 retry:
665         return -EAGAIN;
666 }
667 EXPORT_SYMBOL(swap_page);
668
669 /*
670  * Page migration was first developed in the context of the memory hotplug
671  * project. The main authors of the migration code are:
672  *
673  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
674  * Hirokazu Takahashi <taka@valinux.co.jp>
675  * Dave Hansen <haveblue@us.ibm.com>
676  * Christoph Lameter <clameter@sgi.com>
677  */
678
679 /*
680  * Remove references for a page and establish the new page with the correct
681  * basic settings to be able to stop accesses to the page.
682  */
683 int migrate_page_remove_references(struct page *newpage,
684                                 struct page *page, int nr_refs)
685 {
686         struct address_space *mapping = page_mapping(page);
687         struct page **radix_pointer;
688
689         /*
690          * Avoid doing any of the following work if the page count
691          * indicates that the page is in use or truncate has removed
692          * the page.
693          */
694         if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
695                 return -EAGAIN;
696
697         /*
698          * Establish swap ptes for anonymous pages or destroy pte
699          * maps for files.
700          *
701          * In order to reestablish file backed mappings the fault handlers
702          * will take the radix tree_lock which may then be used to stop
703          * processses from accessing this page until the new page is ready.
704          *
705          * A process accessing via a swap pte (an anonymous page) will take a
706          * page_lock on the old page which will block the process until the
707          * migration attempt is complete. At that time the PageSwapCache bit
708          * will be examined. If the page was migrated then the PageSwapCache
709          * bit will be clear and the operation to retrieve the page will be
710          * retried which will find the new page in the radix tree. Then a new
711          * direct mapping may be generated based on the radix tree contents.
712          *
713          * If the page was not migrated then the PageSwapCache bit
714          * is still set and the operation may continue.
715          */
716         if (try_to_unmap(page, 1) == SWAP_FAIL)
717                 /* A vma has VM_LOCKED set -> Permanent failure */
718                 return -EPERM;
719
720         /*
721          * Give up if we were unable to remove all mappings.
722          */
723         if (page_mapcount(page))
724                 return -EAGAIN;
725
726         write_lock_irq(&mapping->tree_lock);
727
728         radix_pointer = (struct page **)radix_tree_lookup_slot(
729                                                 &mapping->page_tree,
730                                                 page_index(page));
731
732         if (!page_mapping(page) || page_count(page) != nr_refs ||
733                         *radix_pointer != page) {
734                 write_unlock_irq(&mapping->tree_lock);
735                 return -EAGAIN;
736         }
737
738         /*
739          * Now we know that no one else is looking at the page.
740          *
741          * Certain minimal information about a page must be available
742          * in order for other subsystems to properly handle the page if they
743          * find it through the radix tree update before we are finished
744          * copying the page.
745          */
746         get_page(newpage);
747         newpage->index = page->index;
748         newpage->mapping = page->mapping;
749         if (PageSwapCache(page)) {
750                 SetPageSwapCache(newpage);
751                 set_page_private(newpage, page_private(page));
752         }
753
754         *radix_pointer = newpage;
755         __put_page(page);
756         write_unlock_irq(&mapping->tree_lock);
757
758         return 0;
759 }
760 EXPORT_SYMBOL(migrate_page_remove_references);
761
762 /*
763  * Copy the page to its new location
764  */
765 void migrate_page_copy(struct page *newpage, struct page *page)
766 {
767         copy_highpage(newpage, page);
768
769         if (PageError(page))
770                 SetPageError(newpage);
771         if (PageReferenced(page))
772                 SetPageReferenced(newpage);
773         if (PageUptodate(page))
774                 SetPageUptodate(newpage);
775         if (PageActive(page))
776                 SetPageActive(newpage);
777         if (PageChecked(page))
778                 SetPageChecked(newpage);
779         if (PageMappedToDisk(page))
780                 SetPageMappedToDisk(newpage);
781
782         if (PageDirty(page)) {
783                 clear_page_dirty_for_io(page);
784                 set_page_dirty(newpage);
785         }
786
787         ClearPageSwapCache(page);
788         ClearPageActive(page);
789         ClearPagePrivate(page);
790         set_page_private(page, 0);
791         page->mapping = NULL;
792
793         /*
794          * If any waiters have accumulated on the new page then
795          * wake them up.
796          */
797         if (PageWriteback(newpage))
798                 end_page_writeback(newpage);
799 }
800 EXPORT_SYMBOL(migrate_page_copy);
801
802 /*
803  * Common logic to directly migrate a single page suitable for
804  * pages that do not use PagePrivate.
805  *
806  * Pages are locked upon entry and exit.
807  */
808 int migrate_page(struct page *newpage, struct page *page)
809 {
810         int rc;
811
812         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
813
814         rc = migrate_page_remove_references(newpage, page, 2);
815
816         if (rc)
817                 return rc;
818
819         migrate_page_copy(newpage, page);
820
821         /*
822          * Remove auxiliary swap entries and replace
823          * them with real ptes.
824          *
825          * Note that a real pte entry will allow processes that are not
826          * waiting on the page lock to use the new page via the page tables
827          * before the new page is unlocked.
828          */
829         remove_from_swap(newpage);
830         return 0;
831 }
832 EXPORT_SYMBOL(migrate_page);
833
834 /*
835  * migrate_pages
836  *
837  * Two lists are passed to this function. The first list
838  * contains the pages isolated from the LRU to be migrated.
839  * The second list contains new pages that the pages isolated
840  * can be moved to. If the second list is NULL then all
841  * pages are swapped out.
842  *
843  * The function returns after 10 attempts or if no pages
844  * are movable anymore because to has become empty
845  * or no retryable pages exist anymore.
846  *
847  * Return: Number of pages not migrated when "to" ran empty.
848  */
849 unsigned long migrate_pages(struct list_head *from, struct list_head *to,
850                   struct list_head *moved, struct list_head *failed)
851 {
852         unsigned long retry;
853         unsigned long nr_failed = 0;
854         int pass = 0;
855         struct page *page;
856         struct page *page2;
857         int swapwrite = current->flags & PF_SWAPWRITE;
858         int rc;
859
860         if (!swapwrite)
861                 current->flags |= PF_SWAPWRITE;
862
863 redo:
864         retry = 0;
865
866         list_for_each_entry_safe(page, page2, from, lru) {
867                 struct page *newpage = NULL;
868                 struct address_space *mapping;
869
870                 cond_resched();
871
872                 rc = 0;
873                 if (page_count(page) == 1)
874                         /* page was freed from under us. So we are done. */
875                         goto next;
876
877                 if (to && list_empty(to))
878                         break;
879
880                 /*
881                  * Skip locked pages during the first two passes to give the
882                  * functions holding the lock time to release the page. Later we
883                  * use lock_page() to have a higher chance of acquiring the
884                  * lock.
885                  */
886                 rc = -EAGAIN;
887                 if (pass > 2)
888                         lock_page(page);
889                 else
890                         if (TestSetPageLocked(page))
891                                 goto next;
892
893                 /*
894                  * Only wait on writeback if we have already done a pass where
895                  * we we may have triggered writeouts for lots of pages.
896                  */
897                 if (pass > 0) {
898                         wait_on_page_writeback(page);
899                 } else {
900                         if (PageWriteback(page))
901                                 goto unlock_page;
902                 }
903
904                 /*
905                  * Anonymous pages must have swap cache references otherwise
906                  * the information contained in the page maps cannot be
907                  * preserved.
908                  */
909                 if (PageAnon(page) && !PageSwapCache(page)) {
910                         if (!add_to_swap(page, GFP_KERNEL)) {
911                                 rc = -ENOMEM;
912                                 goto unlock_page;
913                         }
914                 }
915
916                 if (!to) {
917                         rc = swap_page(page);
918                         goto next;
919                 }
920
921                 newpage = lru_to_page(to);
922                 lock_page(newpage);
923
924                 /*
925                  * Pages are properly locked and writeback is complete.
926                  * Try to migrate the page.
927                  */
928                 mapping = page_mapping(page);
929                 if (!mapping)
930                         goto unlock_both;
931
932                 if (mapping->a_ops->migratepage) {
933                         /*
934                          * Most pages have a mapping and most filesystems
935                          * should provide a migration function. Anonymous
936                          * pages are part of swap space which also has its
937                          * own migration function. This is the most common
938                          * path for page migration.
939                          */
940                         rc = mapping->a_ops->migratepage(newpage, page);
941                         goto unlock_both;
942                 }
943
944                 /*
945                  * Default handling if a filesystem does not provide
946                  * a migration function. We can only migrate clean
947                  * pages so try to write out any dirty pages first.
948                  */
949                 if (PageDirty(page)) {
950                         switch (pageout(page, mapping)) {
951                         case PAGE_KEEP:
952                         case PAGE_ACTIVATE:
953                                 goto unlock_both;
954
955                         case PAGE_SUCCESS:
956                                 unlock_page(newpage);
957                                 goto next;
958
959                         case PAGE_CLEAN:
960                                 ; /* try to migrate the page below */
961                         }
962                 }
963
964                 /*
965                  * Buffers are managed in a filesystem specific way.
966                  * We must have no buffers or drop them.
967                  */
968                 if (!page_has_buffers(page) ||
969                     try_to_release_page(page, GFP_KERNEL)) {
970                         rc = migrate_page(newpage, page);
971                         goto unlock_both;
972                 }
973
974                 /*
975                  * On early passes with mapped pages simply
976                  * retry. There may be a lock held for some
977                  * buffers that may go away. Later
978                  * swap them out.
979                  */
980                 if (pass > 4) {
981                         /*
982                          * Persistently unable to drop buffers..... As a
983                          * measure of last resort we fall back to
984                          * swap_page().
985                          */
986                         unlock_page(newpage);
987                         newpage = NULL;
988                         rc = swap_page(page);
989                         goto next;
990                 }
991
992 unlock_both:
993                 unlock_page(newpage);
994
995 unlock_page:
996                 unlock_page(page);
997
998 next:
999                 if (rc == -EAGAIN) {
1000                         retry++;
1001                 } else if (rc) {
1002                         /* Permanent failure */
1003                         list_move(&page->lru, failed);
1004                         nr_failed++;
1005                 } else {
1006                         if (newpage) {
1007                                 /* Successful migration. Return page to LRU */
1008                                 move_to_lru(newpage);
1009                         }
1010                         list_move(&page->lru, moved);
1011                 }
1012         }
1013         if (retry && pass++ < 10)
1014                 goto redo;
1015
1016         if (!swapwrite)
1017                 current->flags &= ~PF_SWAPWRITE;
1018
1019         return nr_failed + retry;
1020 }
1021
1022 /*
1023  * Isolate one page from the LRU lists and put it on the
1024  * indicated list with elevated refcount.
1025  *
1026  * Result:
1027  *  0 = page not on LRU list
1028  *  1 = page removed from LRU list and added to the specified list.
1029  */
1030 int isolate_lru_page(struct page *page)
1031 {
1032         int ret = 0;
1033
1034         if (PageLRU(page)) {
1035                 struct zone *zone = page_zone(page);
1036                 spin_lock_irq(&zone->lru_lock);
1037                 if (PageLRU(page)) {
1038                         ret = 1;
1039                         get_page(page);
1040                         ClearPageLRU(page);
1041                         if (PageActive(page))
1042                                 del_page_from_active_list(zone, page);
1043                         else
1044                                 del_page_from_inactive_list(zone, page);
1045                 }
1046                 spin_unlock_irq(&zone->lru_lock);
1047         }
1048
1049         return ret;
1050 }
1051 #endif
1052
1053 /*
1054  * zone->lru_lock is heavily contended.  Some of the functions that
1055  * shrink the lists perform better by taking out a batch of pages
1056  * and working on them outside the LRU lock.
1057  *
1058  * For pagecache intensive workloads, this function is the hottest
1059  * spot in the kernel (apart from copy_*_user functions).
1060  *
1061  * Appropriate locks must be held before calling this function.
1062  *
1063  * @nr_to_scan: The number of pages to look through on the list.
1064  * @src:        The LRU list to pull pages off.
1065  * @dst:        The temp list to put pages on to.
1066  * @scanned:    The number of pages that were scanned.
1067  *
1068  * returns how many pages were moved onto *@dst.
1069  */
1070 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1071                 struct list_head *src, struct list_head *dst,
1072                 unsigned long *scanned)
1073 {
1074         unsigned long nr_taken = 0;
1075         struct page *page;
1076         unsigned long scan = 0;
1077
1078         while (scan++ < nr_to_scan && !list_empty(src)) {
1079                 struct list_head *target;
1080                 page = lru_to_page(src);
1081                 prefetchw_prev_lru_page(page, src, flags);
1082
1083                 BUG_ON(!PageLRU(page));
1084
1085                 list_del(&page->lru);
1086                 target = src;
1087                 if (likely(get_page_unless_zero(page))) {
1088                         /*
1089                          * Be careful not to clear PageLRU until after we're
1090                          * sure the page is not being freed elsewhere -- the
1091                          * page release code relies on it.
1092                          */
1093                         ClearPageLRU(page);
1094                         target = dst;
1095                         nr_taken++;
1096                 } /* else it is being freed elsewhere */
1097
1098                 list_add(&page->lru, target);
1099         }
1100
1101         *scanned = scan;
1102         return nr_taken;
1103 }
1104
1105 /*
1106  * shrink_cache() return the number of reclaimed pages
1107  */
1108 static unsigned long shrink_cache(unsigned long max_scan, struct zone *zone,
1109                                 struct scan_control *sc)
1110 {
1111         LIST_HEAD(page_list);
1112         struct pagevec pvec;
1113         unsigned long nr_scanned = 0;
1114         unsigned long nr_reclaimed = 0;
1115
1116         pagevec_init(&pvec, 1);
1117
1118         lru_add_drain();
1119         spin_lock_irq(&zone->lru_lock);
1120         do {
1121                 struct page *page;
1122                 unsigned long nr_taken;
1123                 unsigned long nr_scan;
1124                 unsigned long nr_freed;
1125
1126                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
1127                                              &zone->inactive_list,
1128                                              &page_list, &nr_scan);
1129                 zone->nr_inactive -= nr_taken;
1130                 zone->pages_scanned += nr_scan;
1131                 spin_unlock_irq(&zone->lru_lock);
1132
1133                 if (nr_taken == 0)
1134                         goto done;
1135
1136                 nr_scanned += nr_scan;
1137                 nr_freed = shrink_list(&page_list, sc);
1138                 nr_reclaimed += nr_freed;
1139                 local_irq_disable();
1140                 if (current_is_kswapd()) {
1141                         __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
1142                         __mod_page_state(kswapd_steal, nr_freed);
1143                 } else
1144                         __mod_page_state_zone(zone, pgscan_direct, nr_scan);
1145                 __mod_page_state_zone(zone, pgsteal, nr_freed);
1146
1147                 spin_lock(&zone->lru_lock);
1148                 /*
1149                  * Put back any unfreeable pages.
1150                  */
1151                 while (!list_empty(&page_list)) {
1152                         page = lru_to_page(&page_list);
1153                         BUG_ON(PageLRU(page));
1154                         SetPageLRU(page);
1155                         list_del(&page->lru);
1156                         if (PageActive(page))
1157                                 add_page_to_active_list(zone, page);
1158                         else
1159                                 add_page_to_inactive_list(zone, page);
1160                         if (!pagevec_add(&pvec, page)) {
1161                                 spin_unlock_irq(&zone->lru_lock);
1162                                 __pagevec_release(&pvec);
1163                                 spin_lock_irq(&zone->lru_lock);
1164                         }
1165                 }
1166         } while (nr_scanned < max_scan);
1167         spin_unlock_irq(&zone->lru_lock);
1168 done:
1169         pagevec_release(&pvec);
1170         return nr_reclaimed;
1171 }
1172
1173 /*
1174  * This moves pages from the active list to the inactive list.
1175  *
1176  * We move them the other way if the page is referenced by one or more
1177  * processes, from rmap.
1178  *
1179  * If the pages are mostly unmapped, the processing is fast and it is
1180  * appropriate to hold zone->lru_lock across the whole operation.  But if
1181  * the pages are mapped, the processing is slow (page_referenced()) so we
1182  * should drop zone->lru_lock around each page.  It's impossible to balance
1183  * this, so instead we remove the pages from the LRU while processing them.
1184  * It is safe to rely on PG_active against the non-LRU pages in here because
1185  * nobody will play with that bit on a non-LRU page.
1186  *
1187  * The downside is that we have to touch page->_count against each page.
1188  * But we had to alter page->flags anyway.
1189  */
1190 static void
1191 refill_inactive_zone(unsigned long nr_pages, struct zone *zone,
1192                         struct scan_control *sc)
1193 {
1194         unsigned long pgmoved;
1195         int pgdeactivate = 0;
1196         unsigned long pgscanned;
1197         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1198         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
1199         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
1200         struct page *page;
1201         struct pagevec pvec;
1202         int reclaim_mapped = 0;
1203
1204         if (unlikely(sc->may_swap)) {
1205                 long mapped_ratio;
1206                 long distress;
1207                 long swap_tendency;
1208
1209                 /*
1210                  * `distress' is a measure of how much trouble we're having
1211                  * reclaiming pages.  0 -> no problems.  100 -> great trouble.
1212                  */
1213                 distress = 100 >> zone->prev_priority;
1214
1215                 /*
1216                  * The point of this algorithm is to decide when to start
1217                  * reclaiming mapped memory instead of just pagecache.  Work out
1218                  * how much memory
1219                  * is mapped.
1220                  */
1221                 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
1222
1223                 /*
1224                  * Now decide how much we really want to unmap some pages.  The
1225                  * mapped ratio is downgraded - just because there's a lot of
1226                  * mapped memory doesn't necessarily mean that page reclaim
1227                  * isn't succeeding.
1228                  *
1229                  * The distress ratio is important - we don't want to start
1230                  * going oom.
1231                  *
1232                  * A 100% value of vm_swappiness overrides this algorithm
1233                  * altogether.
1234                  */
1235                 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
1236
1237                 /*
1238                  * Now use this metric to decide whether to start moving mapped
1239                  * memory onto the inactive list.
1240                  */
1241                 if (swap_tendency >= 100)
1242                         reclaim_mapped = 1;
1243         }
1244
1245         lru_add_drain();
1246         spin_lock_irq(&zone->lru_lock);
1247         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
1248                                     &l_hold, &pgscanned);
1249         zone->pages_scanned += pgscanned;
1250         zone->nr_active -= pgmoved;
1251         spin_unlock_irq(&zone->lru_lock);
1252
1253         while (!list_empty(&l_hold)) {
1254                 cond_resched();
1255                 page = lru_to_page(&l_hold);
1256                 list_del(&page->lru);
1257                 if (page_mapped(page)) {
1258                         if (!reclaim_mapped ||
1259                             (total_swap_pages == 0 && PageAnon(page)) ||
1260                             page_referenced(page, 0)) {
1261                                 list_add(&page->lru, &l_active);
1262                                 continue;
1263                         }
1264                 }
1265                 list_add(&page->lru, &l_inactive);
1266         }
1267
1268         pagevec_init(&pvec, 1);
1269         pgmoved = 0;
1270         spin_lock_irq(&zone->lru_lock);
1271         while (!list_empty(&l_inactive)) {
1272                 page = lru_to_page(&l_inactive);
1273                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1274                 BUG_ON(PageLRU(page));
1275                 SetPageLRU(page);
1276                 BUG_ON(!PageActive(page));
1277                 ClearPageActive(page);
1278
1279                 list_move(&page->lru, &zone->inactive_list);
1280                 pgmoved++;
1281                 if (!pagevec_add(&pvec, page)) {
1282                         zone->nr_inactive += pgmoved;
1283                         spin_unlock_irq(&zone->lru_lock);
1284                         pgdeactivate += pgmoved;
1285                         pgmoved = 0;
1286                         if (buffer_heads_over_limit)
1287                                 pagevec_strip(&pvec);
1288                         __pagevec_release(&pvec);
1289                         spin_lock_irq(&zone->lru_lock);
1290                 }
1291         }
1292         zone->nr_inactive += pgmoved;
1293         pgdeactivate += pgmoved;
1294         if (buffer_heads_over_limit) {
1295                 spin_unlock_irq(&zone->lru_lock);
1296                 pagevec_strip(&pvec);
1297                 spin_lock_irq(&zone->lru_lock);
1298         }
1299
1300         pgmoved = 0;
1301         while (!list_empty(&l_active)) {
1302                 page = lru_to_page(&l_active);
1303                 prefetchw_prev_lru_page(page, &l_active, flags);
1304                 BUG_ON(PageLRU(page));
1305                 SetPageLRU(page);
1306                 BUG_ON(!PageActive(page));
1307                 list_move(&page->lru, &zone->active_list);
1308                 pgmoved++;
1309                 if (!pagevec_add(&pvec, page)) {
1310                         zone->nr_active += pgmoved;
1311                         pgmoved = 0;
1312                         spin_unlock_irq(&zone->lru_lock);
1313                         __pagevec_release(&pvec);
1314                         spin_lock_irq(&zone->lru_lock);
1315                 }
1316         }
1317         zone->nr_active += pgmoved;
1318         spin_unlock(&zone->lru_lock);
1319
1320         __mod_page_state_zone(zone, pgrefill, pgscanned);
1321         __mod_page_state(pgdeactivate, pgdeactivate);
1322         local_irq_enable();
1323
1324         pagevec_release(&pvec);
1325 }
1326
1327 /*
1328  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1329  */
1330 static unsigned long shrink_zone(int priority, struct zone *zone,
1331                                 struct scan_control *sc)
1332 {
1333         unsigned long nr_active;
1334         unsigned long nr_inactive;
1335         unsigned long nr_to_scan;
1336         unsigned long nr_reclaimed = 0;
1337
1338         atomic_inc(&zone->reclaim_in_progress);
1339
1340         /*
1341          * Add one to `nr_to_scan' just to make sure that the kernel will
1342          * slowly sift through the active list.
1343          */
1344         zone->nr_scan_active += (zone->nr_active >> priority) + 1;
1345         nr_active = zone->nr_scan_active;
1346         if (nr_active >= sc->swap_cluster_max)
1347                 zone->nr_scan_active = 0;
1348         else
1349                 nr_active = 0;
1350
1351         zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
1352         nr_inactive = zone->nr_scan_inactive;
1353         if (nr_inactive >= sc->swap_cluster_max)
1354                 zone->nr_scan_inactive = 0;
1355         else
1356                 nr_inactive = 0;
1357
1358         while (nr_active || nr_inactive) {
1359                 if (nr_active) {
1360                         nr_to_scan = min(nr_active,
1361                                         (unsigned long)sc->swap_cluster_max);
1362                         nr_active -= nr_to_scan;
1363                         refill_inactive_zone(nr_to_scan, zone, sc);
1364                 }
1365
1366                 if (nr_inactive) {
1367                         nr_to_scan = min(nr_inactive,
1368                                         (unsigned long)sc->swap_cluster_max);
1369                         nr_inactive -= nr_to_scan;
1370                         nr_reclaimed += shrink_cache(nr_to_scan, zone, sc);
1371                 }
1372         }
1373
1374         throttle_vm_writeout();
1375
1376         atomic_dec(&zone->reclaim_in_progress);
1377         return nr_reclaimed;
1378 }
1379
1380 /*
1381  * This is the direct reclaim path, for page-allocating processes.  We only
1382  * try to reclaim pages from zones which will satisfy the caller's allocation
1383  * request.
1384  *
1385  * We reclaim from a zone even if that zone is over pages_high.  Because:
1386  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1387  *    allocation or
1388  * b) The zones may be over pages_high but they must go *over* pages_high to
1389  *    satisfy the `incremental min' zone defense algorithm.
1390  *
1391  * Returns the number of reclaimed pages.
1392  *
1393  * If a zone is deemed to be full of pinned pages then just give it a light
1394  * scan then give up on it.
1395  */
1396 static unsigned long shrink_caches(int priority, struct zone **zones,
1397                                         struct scan_control *sc)
1398 {
1399         unsigned long nr_reclaimed = 0;
1400         int i;
1401
1402         for (i = 0; zones[i] != NULL; i++) {
1403                 struct zone *zone = zones[i];
1404
1405                 if (!populated_zone(zone))
1406                         continue;
1407
1408                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1409                         continue;
1410
1411                 zone->temp_priority = priority;
1412                 if (zone->prev_priority > priority)
1413                         zone->prev_priority = priority;
1414
1415                 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1416                         continue;       /* Let kswapd poll it */
1417
1418                 nr_reclaimed += shrink_zone(priority, zone, sc);
1419         }
1420         return nr_reclaimed;
1421 }
1422  
1423 /*
1424  * This is the main entry point to direct page reclaim.
1425  *
1426  * If a full scan of the inactive list fails to free enough memory then we
1427  * are "out of memory" and something needs to be killed.
1428  *
1429  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1430  * high - the zone may be full of dirty or under-writeback pages, which this
1431  * caller can't do much about.  We kick pdflush and take explicit naps in the
1432  * hope that some of these pages can be written.  But if the allocating task
1433  * holds filesystem locks which prevent writeout this might not work, and the
1434  * allocation attempt will fail.
1435  */
1436 unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1437 {
1438         int priority;
1439         int ret = 0;
1440         unsigned long total_scanned = 0;
1441         unsigned long nr_reclaimed = 0;
1442         struct reclaim_state *reclaim_state = current->reclaim_state;
1443         unsigned long lru_pages = 0;
1444         int i;
1445         struct scan_control sc = {
1446                 .gfp_mask = gfp_mask,
1447                 .may_writepage = !laptop_mode,
1448                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1449                 .may_swap = 1,
1450         };
1451
1452         inc_page_state(allocstall);
1453
1454         for (i = 0; zones[i] != NULL; i++) {
1455                 struct zone *zone = zones[i];
1456
1457                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1458                         continue;
1459
1460                 zone->temp_priority = DEF_PRIORITY;
1461                 lru_pages += zone->nr_active + zone->nr_inactive;
1462         }
1463
1464         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1465                 sc.nr_mapped = read_page_state(nr_mapped);
1466                 sc.nr_scanned = 0;
1467                 if (!priority)
1468                         disable_swap_token();
1469                 nr_reclaimed += shrink_caches(priority, zones, &sc);
1470                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1471                 if (reclaim_state) {
1472                         nr_reclaimed += reclaim_state->reclaimed_slab;
1473                         reclaim_state->reclaimed_slab = 0;
1474                 }
1475                 total_scanned += sc.nr_scanned;
1476                 if (nr_reclaimed >= sc.swap_cluster_max) {
1477                         ret = 1;
1478                         goto out;
1479                 }
1480
1481                 /*
1482                  * Try to write back as many pages as we just scanned.  This
1483                  * tends to cause slow streaming writers to write data to the
1484                  * disk smoothly, at the dirtying rate, which is nice.   But
1485                  * that's undesirable in laptop mode, where we *want* lumpy
1486                  * writeout.  So in laptop mode, write out the whole world.
1487                  */
1488                 if (total_scanned > sc.swap_cluster_max +
1489                                         sc.swap_cluster_max / 2) {
1490                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1491                         sc.may_writepage = 1;
1492                 }
1493
1494                 /* Take a nap, wait for some writeback to complete */
1495                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1496                         blk_congestion_wait(WRITE, HZ/10);
1497         }
1498 out:
1499         for (i = 0; zones[i] != 0; i++) {
1500                 struct zone *zone = zones[i];
1501
1502                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1503                         continue;
1504
1505                 zone->prev_priority = zone->temp_priority;
1506         }
1507         return ret;
1508 }
1509
1510 /*
1511  * For kswapd, balance_pgdat() will work across all this node's zones until
1512  * they are all at pages_high.
1513  *
1514  * If `nr_pages' is non-zero then it is the number of pages which are to be
1515  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1516  * special.
1517  *
1518  * Returns the number of pages which were actually freed.
1519  *
1520  * There is special handling here for zones which are full of pinned pages.
1521  * This can happen if the pages are all mlocked, or if they are all used by
1522  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1523  * What we do is to detect the case where all pages in the zone have been
1524  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1525  * dead and from now on, only perform a short scan.  Basically we're polling
1526  * the zone for when the problem goes away.
1527  *
1528  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1529  * zones which have free_pages > pages_high, but once a zone is found to have
1530  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1531  * of the number of free pages in the lower zones.  This interoperates with
1532  * the page allocator fallback scheme to ensure that aging of pages is balanced
1533  * across the zones.
1534  */
1535 static unsigned long balance_pgdat(pg_data_t *pgdat, unsigned long nr_pages,
1536                                 int order)
1537 {
1538         unsigned long to_free = nr_pages;
1539         int all_zones_ok;
1540         int priority;
1541         int i;
1542         unsigned long total_scanned;
1543         unsigned long nr_reclaimed;
1544         struct reclaim_state *reclaim_state = current->reclaim_state;
1545         struct scan_control sc = {
1546                 .gfp_mask = GFP_KERNEL,
1547                 .may_swap = 1,
1548                 .swap_cluster_max = nr_pages ? nr_pages : SWAP_CLUSTER_MAX,
1549         };
1550
1551 loop_again:
1552         total_scanned = 0;
1553         nr_reclaimed = 0;
1554         sc.may_writepage = !laptop_mode,
1555         sc.nr_mapped = read_page_state(nr_mapped);
1556
1557         inc_page_state(pageoutrun);
1558
1559         for (i = 0; i < pgdat->nr_zones; i++) {
1560                 struct zone *zone = pgdat->node_zones + i;
1561
1562                 zone->temp_priority = DEF_PRIORITY;
1563         }
1564
1565         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1566                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1567                 unsigned long lru_pages = 0;
1568
1569                 /* The swap token gets in the way of swapout... */
1570                 if (!priority)
1571                         disable_swap_token();
1572
1573                 all_zones_ok = 1;
1574
1575                 if (nr_pages == 0) {
1576                         /*
1577                          * Scan in the highmem->dma direction for the highest
1578                          * zone which needs scanning
1579                          */
1580                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1581                                 struct zone *zone = pgdat->node_zones + i;
1582
1583                                 if (!populated_zone(zone))
1584                                         continue;
1585
1586                                 if (zone->all_unreclaimable &&
1587                                                 priority != DEF_PRIORITY)
1588                                         continue;
1589
1590                                 if (!zone_watermark_ok(zone, order,
1591                                                 zone->pages_high, 0, 0)) {
1592                                         end_zone = i;
1593                                         goto scan;
1594                                 }
1595                         }
1596                         goto out;
1597                 } else {
1598                         end_zone = pgdat->nr_zones - 1;
1599                 }
1600 scan:
1601                 for (i = 0; i <= end_zone; i++) {
1602                         struct zone *zone = pgdat->node_zones + i;
1603
1604                         lru_pages += zone->nr_active + zone->nr_inactive;
1605                 }
1606
1607                 /*
1608                  * Now scan the zone in the dma->highmem direction, stopping
1609                  * at the last zone which needs scanning.
1610                  *
1611                  * We do this because the page allocator works in the opposite
1612                  * direction.  This prevents the page allocator from allocating
1613                  * pages behind kswapd's direction of progress, which would
1614                  * cause too much scanning of the lower zones.
1615                  */
1616                 for (i = 0; i <= end_zone; i++) {
1617                         struct zone *zone = pgdat->node_zones + i;
1618                         int nr_slab;
1619
1620                         if (!populated_zone(zone))
1621                                 continue;
1622
1623                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1624                                 continue;
1625
1626                         if (nr_pages == 0) {    /* Not software suspend */
1627                                 if (!zone_watermark_ok(zone, order,
1628                                                 zone->pages_high, end_zone, 0))
1629                                         all_zones_ok = 0;
1630                         }
1631                         zone->temp_priority = priority;
1632                         if (zone->prev_priority > priority)
1633                                 zone->prev_priority = priority;
1634                         sc.nr_scanned = 0;
1635                         nr_reclaimed += shrink_zone(priority, zone, &sc);
1636                         reclaim_state->reclaimed_slab = 0;
1637                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1638                                                 lru_pages);
1639                         nr_reclaimed += reclaim_state->reclaimed_slab;
1640                         total_scanned += sc.nr_scanned;
1641                         if (zone->all_unreclaimable)
1642                                 continue;
1643                         if (nr_slab == 0 && zone->pages_scanned >=
1644                                     (zone->nr_active + zone->nr_inactive) * 4)
1645                                 zone->all_unreclaimable = 1;
1646                         /*
1647                          * If we've done a decent amount of scanning and
1648                          * the reclaim ratio is low, start doing writepage
1649                          * even in laptop mode
1650                          */
1651                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1652                             total_scanned > nr_reclaimed + nr_reclaimed / 2)
1653                                 sc.may_writepage = 1;
1654                 }
1655                 if (nr_pages && to_free > nr_reclaimed)
1656                         continue;       /* swsusp: need to do more work */
1657                 if (all_zones_ok)
1658                         break;          /* kswapd: all done */
1659                 /*
1660                  * OK, kswapd is getting into trouble.  Take a nap, then take
1661                  * another pass across the zones.
1662                  */
1663                 if (total_scanned && priority < DEF_PRIORITY - 2)
1664                         blk_congestion_wait(WRITE, HZ/10);
1665
1666                 /*
1667                  * We do this so kswapd doesn't build up large priorities for
1668                  * example when it is freeing in parallel with allocators. It
1669                  * matches the direct reclaim path behaviour in terms of impact
1670                  * on zone->*_priority.
1671                  */
1672                 if ((nr_reclaimed >= SWAP_CLUSTER_MAX) && !nr_pages)
1673                         break;
1674         }
1675 out:
1676         for (i = 0; i < pgdat->nr_zones; i++) {
1677                 struct zone *zone = pgdat->node_zones + i;
1678
1679                 zone->prev_priority = zone->temp_priority;
1680         }
1681         if (!all_zones_ok) {
1682                 cond_resched();
1683                 goto loop_again;
1684         }
1685
1686         return nr_reclaimed;
1687 }
1688
1689 /*
1690  * The background pageout daemon, started as a kernel thread
1691  * from the init process. 
1692  *
1693  * This basically trickles out pages so that we have _some_
1694  * free memory available even if there is no other activity
1695  * that frees anything up. This is needed for things like routing
1696  * etc, where we otherwise might have all activity going on in
1697  * asynchronous contexts that cannot page things out.
1698  *
1699  * If there are applications that are active memory-allocators
1700  * (most normal use), this basically shouldn't matter.
1701  */
1702 static int kswapd(void *p)
1703 {
1704         unsigned long order;
1705         pg_data_t *pgdat = (pg_data_t*)p;
1706         struct task_struct *tsk = current;
1707         DEFINE_WAIT(wait);
1708         struct reclaim_state reclaim_state = {
1709                 .reclaimed_slab = 0,
1710         };
1711         cpumask_t cpumask;
1712
1713         daemonize("kswapd%d", pgdat->node_id);
1714         cpumask = node_to_cpumask(pgdat->node_id);
1715         if (!cpus_empty(cpumask))
1716                 set_cpus_allowed(tsk, cpumask);
1717         current->reclaim_state = &reclaim_state;
1718
1719         /*
1720          * Tell the memory management that we're a "memory allocator",
1721          * and that if we need more memory we should get access to it
1722          * regardless (see "__alloc_pages()"). "kswapd" should
1723          * never get caught in the normal page freeing logic.
1724          *
1725          * (Kswapd normally doesn't need memory anyway, but sometimes
1726          * you need a small amount of memory in order to be able to
1727          * page out something else, and this flag essentially protects
1728          * us from recursively trying to free more memory as we're
1729          * trying to free the first piece of memory in the first place).
1730          */
1731         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1732
1733         order = 0;
1734         for ( ; ; ) {
1735                 unsigned long new_order;
1736
1737                 try_to_freeze();
1738
1739                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1740                 new_order = pgdat->kswapd_max_order;
1741                 pgdat->kswapd_max_order = 0;
1742                 if (order < new_order) {
1743                         /*
1744                          * Don't sleep if someone wants a larger 'order'
1745                          * allocation
1746                          */
1747                         order = new_order;
1748                 } else {
1749                         schedule();
1750                         order = pgdat->kswapd_max_order;
1751                 }
1752                 finish_wait(&pgdat->kswapd_wait, &wait);
1753
1754                 balance_pgdat(pgdat, 0, order);
1755         }
1756         return 0;
1757 }
1758
1759 /*
1760  * A zone is low on free memory, so wake its kswapd task to service it.
1761  */
1762 void wakeup_kswapd(struct zone *zone, int order)
1763 {
1764         pg_data_t *pgdat;
1765
1766         if (!populated_zone(zone))
1767                 return;
1768
1769         pgdat = zone->zone_pgdat;
1770         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1771                 return;
1772         if (pgdat->kswapd_max_order < order)
1773                 pgdat->kswapd_max_order = order;
1774         if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1775                 return;
1776         if (!waitqueue_active(&pgdat->kswapd_wait))
1777                 return;
1778         wake_up_interruptible(&pgdat->kswapd_wait);
1779 }
1780
1781 #ifdef CONFIG_PM
1782 /*
1783  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1784  * pages.
1785  */
1786 unsigned long shrink_all_memory(unsigned long nr_pages)
1787 {
1788         pg_data_t *pgdat;
1789         unsigned long nr_to_free = nr_pages;
1790         unsigned long ret = 0;
1791         struct reclaim_state reclaim_state = {
1792                 .reclaimed_slab = 0,
1793         };
1794
1795         current->reclaim_state = &reclaim_state;
1796         for_each_pgdat(pgdat) {
1797                 unsigned long freed;
1798
1799                 freed = balance_pgdat(pgdat, nr_to_free, 0);
1800                 ret += freed;
1801                 nr_to_free -= freed;
1802                 if ((long)nr_to_free <= 0)
1803                         break;
1804         }
1805         current->reclaim_state = NULL;
1806         return ret;
1807 }
1808 #endif
1809
1810 #ifdef CONFIG_HOTPLUG_CPU
1811 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1812    not required for correctness.  So if the last cpu in a node goes
1813    away, we get changed to run anywhere: as the first one comes back,
1814    restore their cpu bindings. */
1815 static int __devinit cpu_callback(struct notifier_block *nfb,
1816                                   unsigned long action, void *hcpu)
1817 {
1818         pg_data_t *pgdat;
1819         cpumask_t mask;
1820
1821         if (action == CPU_ONLINE) {
1822                 for_each_pgdat(pgdat) {
1823                         mask = node_to_cpumask(pgdat->node_id);
1824                         if (any_online_cpu(mask) != NR_CPUS)
1825                                 /* One of our CPUs online: restore mask */
1826                                 set_cpus_allowed(pgdat->kswapd, mask);
1827                 }
1828         }
1829         return NOTIFY_OK;
1830 }
1831 #endif /* CONFIG_HOTPLUG_CPU */
1832
1833 static int __init kswapd_init(void)
1834 {
1835         pg_data_t *pgdat;
1836
1837         swap_setup();
1838         for_each_pgdat(pgdat) {
1839                 pid_t pid;
1840
1841                 pid = kernel_thread(kswapd, pgdat, CLONE_KERNEL);
1842                 BUG_ON(pid < 0);
1843                 pgdat->kswapd = find_task_by_pid(pid);
1844         }
1845         total_memory = nr_free_pagecache_pages();
1846         hotcpu_notifier(cpu_callback, 0);
1847         return 0;
1848 }
1849
1850 module_init(kswapd_init)
1851
1852 #ifdef CONFIG_NUMA
1853 /*
1854  * Zone reclaim mode
1855  *
1856  * If non-zero call zone_reclaim when the number of free pages falls below
1857  * the watermarks.
1858  *
1859  * In the future we may add flags to the mode. However, the page allocator
1860  * should only have to check that zone_reclaim_mode != 0 before calling
1861  * zone_reclaim().
1862  */
1863 int zone_reclaim_mode __read_mostly;
1864
1865 #define RECLAIM_OFF 0
1866 #define RECLAIM_ZONE (1<<0)     /* Run shrink_cache on the zone */
1867 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
1868 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
1869 #define RECLAIM_SLAB (1<<3)     /* Do a global slab shrink if the zone is out of memory */
1870
1871 /*
1872  * Mininum time between zone reclaim scans
1873  */
1874 int zone_reclaim_interval __read_mostly = 30*HZ;
1875
1876 /*
1877  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1878  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1879  * a zone.
1880  */
1881 #define ZONE_RECLAIM_PRIORITY 4
1882
1883 /*
1884  * Try to free up some pages from this zone through reclaim.
1885  */
1886 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1887 {
1888         const unsigned long nr_pages = 1 << order;
1889         struct task_struct *p = current;
1890         struct reclaim_state reclaim_state;
1891         int priority;
1892         unsigned long nr_reclaimed = 0;
1893         struct scan_control sc = {
1894                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1895                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1896                 .nr_mapped = read_page_state(nr_mapped),
1897                 .swap_cluster_max = max_t(unsigned long, nr_pages,
1898                                         SWAP_CLUSTER_MAX),
1899                 .gfp_mask = gfp_mask,
1900         };
1901
1902         disable_swap_token();
1903         cond_resched();
1904         /*
1905          * We need to be able to allocate from the reserves for RECLAIM_SWAP
1906          * and we also need to be able to write out pages for RECLAIM_WRITE
1907          * and RECLAIM_SWAP.
1908          */
1909         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1910         reclaim_state.reclaimed_slab = 0;
1911         p->reclaim_state = &reclaim_state;
1912
1913         /*
1914          * Free memory by calling shrink zone with increasing priorities
1915          * until we have enough memory freed.
1916          */
1917         priority = ZONE_RECLAIM_PRIORITY;
1918         do {
1919                 nr_reclaimed += shrink_zone(priority, zone, &sc);
1920                 priority--;
1921         } while (priority >= 0 && nr_reclaimed < nr_pages);
1922
1923         if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1924                 /*
1925                  * shrink_slab does not currently allow us to determine
1926                  * how many pages were freed in the zone. So we just
1927                  * shake the slab and then go offnode for a single allocation.
1928                  *
1929                  * shrink_slab will free memory on all zones and may take
1930                  * a long time.
1931                  */
1932                 shrink_slab(sc.nr_scanned, gfp_mask, order);
1933         }
1934
1935         p->reclaim_state = NULL;
1936         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1937
1938         if (nr_reclaimed == 0)
1939                 zone->last_unsuccessful_zone_reclaim = jiffies;
1940
1941         return nr_reclaimed >= nr_pages;
1942 }
1943
1944 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1945 {
1946         cpumask_t mask;
1947         int node_id;
1948
1949         /*
1950          * Do not reclaim if there was a recent unsuccessful attempt at zone
1951          * reclaim.  In that case we let allocations go off node for the
1952          * zone_reclaim_interval.  Otherwise we would scan for each off-node
1953          * page allocation.
1954          */
1955         if (time_before(jiffies,
1956                 zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1957                         return 0;
1958
1959         /*
1960          * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1961          * not have reclaimable pages and if we should not delay the allocation
1962          * then do not scan.
1963          */
1964         if (!(gfp_mask & __GFP_WAIT) ||
1965                 zone->all_unreclaimable ||
1966                 atomic_read(&zone->reclaim_in_progress) > 0 ||
1967                 (current->flags & PF_MEMALLOC))
1968                         return 0;
1969
1970         /*
1971          * Only run zone reclaim on the local zone or on zones that do not
1972          * have associated processors. This will favor the local processor
1973          * over remote processors and spread off node memory allocations
1974          * as wide as possible.
1975          */
1976         node_id = zone->zone_pgdat->node_id;
1977         mask = node_to_cpumask(node_id);
1978         if (!cpus_empty(mask) && node_id != numa_node_id())
1979                 return 0;
1980         return __zone_reclaim(zone, gfp_mask, order);
1981 }
1982 #endif