]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmscan.c
mm: vmscan: do not continue scanning if reclaim was aborted for compaction
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>  /* for try_to_release_page(),
28                                         buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58         /* Incremented by the number of inactive pages that were scanned */
59         unsigned long nr_scanned;
60
61         /* Number of pages freed so far during a call to shrink_zones() */
62         unsigned long nr_reclaimed;
63
64         /* How many pages shrink_list() should reclaim */
65         unsigned long nr_to_reclaim;
66
67         unsigned long hibernation_mode;
68
69         /* This context's GFP mask */
70         gfp_t gfp_mask;
71
72         int may_writepage;
73
74         /* Can mapped pages be reclaimed? */
75         int may_unmap;
76
77         /* Can pages be swapped as part of reclaim? */
78         int may_swap;
79
80         int order;
81
82         /* Scan (total_size >> priority) pages at once */
83         int priority;
84
85         /*
86          * The memory cgroup that hit its limit and as a result is the
87          * primary target of this reclaim invocation.
88          */
89         struct mem_cgroup *target_mem_cgroup;
90
91         /*
92          * Nodemask of nodes allowed by the caller. If NULL, all nodes
93          * are scanned.
94          */
95         nodemask_t      *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field)                    \
102         do {                                                            \
103                 if ((_page)->lru.prev != _base) {                       \
104                         struct page *prev;                              \
105                                                                         \
106                         prev = lru_to_page(&(_page->lru));              \
107                         prefetch(&prev->_field);                        \
108                 }                                                       \
109         } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
116         do {                                                            \
117                 if ((_page)->lru.prev != _base) {                       \
118                         struct page *prev;                              \
119                                                                         \
120                         prev = lru_to_page(&(_page->lru));              \
121                         prefetchw(&prev->_field);                       \
122                 }                                                       \
123         } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129  * From 0 .. 100.  Higher means more swappy.
130  */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages;   /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140         return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145         return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151         if (!mem_cgroup_disabled())
152                 return mem_cgroup_get_lru_size(lruvec, lru);
153
154         return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158  * Add a shrinker callback to be called from the vm
159  */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162         atomic_long_set(&shrinker->nr_in_batch, 0);
163         down_write(&shrinker_rwsem);
164         list_add_tail(&shrinker->list, &shrinker_list);
165         up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168
169 /*
170  * Remove one
171  */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174         down_write(&shrinker_rwsem);
175         list_del(&shrinker->list);
176         up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181                                      struct shrink_control *sc,
182                                      unsigned long nr_to_scan)
183 {
184         sc->nr_to_scan = nr_to_scan;
185         return (*shrinker->shrink)(shrinker, sc);
186 }
187
188 #define SHRINK_BATCH 128
189 /*
190  * Call the shrink functions to age shrinkable caches
191  *
192  * Here we assume it costs one seek to replace a lru page and that it also
193  * takes a seek to recreate a cache object.  With this in mind we age equal
194  * percentages of the lru and ageable caches.  This should balance the seeks
195  * generated by these structures.
196  *
197  * If the vm encountered mapped pages on the LRU it increase the pressure on
198  * slab to avoid swapping.
199  *
200  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201  *
202  * `lru_pages' represents the number of on-LRU pages in all the zones which
203  * are eligible for the caller's allocation attempt.  It is used for balancing
204  * slab reclaim versus page reclaim.
205  *
206  * Returns the number of slab objects which we shrunk.
207  */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209                           unsigned long nr_pages_scanned,
210                           unsigned long lru_pages)
211 {
212         struct shrinker *shrinker;
213         unsigned long ret = 0;
214
215         if (nr_pages_scanned == 0)
216                 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218         if (!down_read_trylock(&shrinker_rwsem)) {
219                 /* Assume we'll be able to shrink next time */
220                 ret = 1;
221                 goto out;
222         }
223
224         list_for_each_entry(shrinker, &shrinker_list, list) {
225                 unsigned long long delta;
226                 long total_scan;
227                 long max_pass;
228                 int shrink_ret = 0;
229                 long nr;
230                 long new_nr;
231                 long batch_size = shrinker->batch ? shrinker->batch
232                                                   : SHRINK_BATCH;
233
234                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235                 if (max_pass <= 0)
236                         continue;
237
238                 /*
239                  * copy the current shrinker scan count into a local variable
240                  * and zero it so that other concurrent shrinker invocations
241                  * don't also do this scanning work.
242                  */
243                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245                 total_scan = nr;
246                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247                 delta *= max_pass;
248                 do_div(delta, lru_pages + 1);
249                 total_scan += delta;
250                 if (total_scan < 0) {
251                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
252                                "delete nr=%ld\n",
253                                shrinker->shrink, total_scan);
254                         total_scan = max_pass;
255                 }
256
257                 /*
258                  * We need to avoid excessive windup on filesystem shrinkers
259                  * due to large numbers of GFP_NOFS allocations causing the
260                  * shrinkers to return -1 all the time. This results in a large
261                  * nr being built up so when a shrink that can do some work
262                  * comes along it empties the entire cache due to nr >>>
263                  * max_pass.  This is bad for sustaining a working set in
264                  * memory.
265                  *
266                  * Hence only allow the shrinker to scan the entire cache when
267                  * a large delta change is calculated directly.
268                  */
269                 if (delta < max_pass / 4)
270                         total_scan = min(total_scan, max_pass / 2);
271
272                 /*
273                  * Avoid risking looping forever due to too large nr value:
274                  * never try to free more than twice the estimate number of
275                  * freeable entries.
276                  */
277                 if (total_scan > max_pass * 2)
278                         total_scan = max_pass * 2;
279
280                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281                                         nr_pages_scanned, lru_pages,
282                                         max_pass, delta, total_scan);
283
284                 while (total_scan >= batch_size) {
285                         int nr_before;
286
287                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
289                                                         batch_size);
290                         if (shrink_ret == -1)
291                                 break;
292                         if (shrink_ret < nr_before)
293                                 ret += nr_before - shrink_ret;
294                         count_vm_events(SLABS_SCANNED, batch_size);
295                         total_scan -= batch_size;
296
297                         cond_resched();
298                 }
299
300                 /*
301                  * move the unused scan count back into the shrinker in a
302                  * manner that handles concurrent updates. If we exhausted the
303                  * scan, there is no need to do an update.
304                  */
305                 if (total_scan > 0)
306                         new_nr = atomic_long_add_return(total_scan,
307                                         &shrinker->nr_in_batch);
308                 else
309                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312         }
313         up_read(&shrinker_rwsem);
314 out:
315         cond_resched();
316         return ret;
317 }
318
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321         /*
322          * A freeable page cache page is referenced only by the caller
323          * that isolated the page, the page cache radix tree and
324          * optional buffer heads at page->private.
325          */
326         return page_count(page) - page_has_private(page) == 2;
327 }
328
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330                               struct scan_control *sc)
331 {
332         if (current->flags & PF_SWAPWRITE)
333                 return 1;
334         if (!bdi_write_congested(bdi))
335                 return 1;
336         if (bdi == current->backing_dev_info)
337                 return 1;
338         return 0;
339 }
340
341 /*
342  * We detected a synchronous write error writing a page out.  Probably
343  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
344  * fsync(), msync() or close().
345  *
346  * The tricky part is that after writepage we cannot touch the mapping: nothing
347  * prevents it from being freed up.  But we have a ref on the page and once
348  * that page is locked, the mapping is pinned.
349  *
350  * We're allowed to run sleeping lock_page() here because we know the caller has
351  * __GFP_FS.
352  */
353 static void handle_write_error(struct address_space *mapping,
354                                 struct page *page, int error)
355 {
356         lock_page(page);
357         if (page_mapping(page) == mapping)
358                 mapping_set_error(mapping, error);
359         unlock_page(page);
360 }
361
362 /* possible outcome of pageout() */
363 typedef enum {
364         /* failed to write page out, page is locked */
365         PAGE_KEEP,
366         /* move page to the active list, page is locked */
367         PAGE_ACTIVATE,
368         /* page has been sent to the disk successfully, page is unlocked */
369         PAGE_SUCCESS,
370         /* page is clean and locked */
371         PAGE_CLEAN,
372 } pageout_t;
373
374 /*
375  * pageout is called by shrink_page_list() for each dirty page.
376  * Calls ->writepage().
377  */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379                          struct scan_control *sc)
380 {
381         /*
382          * If the page is dirty, only perform writeback if that write
383          * will be non-blocking.  To prevent this allocation from being
384          * stalled by pagecache activity.  But note that there may be
385          * stalls if we need to run get_block().  We could test
386          * PagePrivate for that.
387          *
388          * If this process is currently in __generic_file_aio_write() against
389          * this page's queue, we can perform writeback even if that
390          * will block.
391          *
392          * If the page is swapcache, write it back even if that would
393          * block, for some throttling. This happens by accident, because
394          * swap_backing_dev_info is bust: it doesn't reflect the
395          * congestion state of the swapdevs.  Easy to fix, if needed.
396          */
397         if (!is_page_cache_freeable(page))
398                 return PAGE_KEEP;
399         if (!mapping) {
400                 /*
401                  * Some data journaling orphaned pages can have
402                  * page->mapping == NULL while being dirty with clean buffers.
403                  */
404                 if (page_has_private(page)) {
405                         if (try_to_free_buffers(page)) {
406                                 ClearPageDirty(page);
407                                 printk("%s: orphaned page\n", __func__);
408                                 return PAGE_CLEAN;
409                         }
410                 }
411                 return PAGE_KEEP;
412         }
413         if (mapping->a_ops->writepage == NULL)
414                 return PAGE_ACTIVATE;
415         if (!may_write_to_queue(mapping->backing_dev_info, sc))
416                 return PAGE_KEEP;
417
418         if (clear_page_dirty_for_io(page)) {
419                 int res;
420                 struct writeback_control wbc = {
421                         .sync_mode = WB_SYNC_NONE,
422                         .nr_to_write = SWAP_CLUSTER_MAX,
423                         .range_start = 0,
424                         .range_end = LLONG_MAX,
425                         .for_reclaim = 1,
426                 };
427
428                 SetPageReclaim(page);
429                 res = mapping->a_ops->writepage(page, &wbc);
430                 if (res < 0)
431                         handle_write_error(mapping, page, res);
432                 if (res == AOP_WRITEPAGE_ACTIVATE) {
433                         ClearPageReclaim(page);
434                         return PAGE_ACTIVATE;
435                 }
436
437                 if (!PageWriteback(page)) {
438                         /* synchronous write or broken a_ops? */
439                         ClearPageReclaim(page);
440                 }
441                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443                 return PAGE_SUCCESS;
444         }
445
446         return PAGE_CLEAN;
447 }
448
449 /*
450  * Same as remove_mapping, but if the page is removed from the mapping, it
451  * gets returned with a refcount of 0.
452  */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455         BUG_ON(!PageLocked(page));
456         BUG_ON(mapping != page_mapping(page));
457
458         spin_lock_irq(&mapping->tree_lock);
459         /*
460          * The non racy check for a busy page.
461          *
462          * Must be careful with the order of the tests. When someone has
463          * a ref to the page, it may be possible that they dirty it then
464          * drop the reference. So if PageDirty is tested before page_count
465          * here, then the following race may occur:
466          *
467          * get_user_pages(&page);
468          * [user mapping goes away]
469          * write_to(page);
470          *                              !PageDirty(page)    [good]
471          * SetPageDirty(page);
472          * put_page(page);
473          *                              !page_count(page)   [good, discard it]
474          *
475          * [oops, our write_to data is lost]
476          *
477          * Reversing the order of the tests ensures such a situation cannot
478          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479          * load is not satisfied before that of page->_count.
480          *
481          * Note that if SetPageDirty is always performed via set_page_dirty,
482          * and thus under tree_lock, then this ordering is not required.
483          */
484         if (!page_freeze_refs(page, 2))
485                 goto cannot_free;
486         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487         if (unlikely(PageDirty(page))) {
488                 page_unfreeze_refs(page, 2);
489                 goto cannot_free;
490         }
491
492         if (PageSwapCache(page)) {
493                 swp_entry_t swap = { .val = page_private(page) };
494                 __delete_from_swap_cache(page);
495                 spin_unlock_irq(&mapping->tree_lock);
496                 swapcache_free(swap, page);
497         } else {
498                 void (*freepage)(struct page *);
499
500                 freepage = mapping->a_ops->freepage;
501
502                 __delete_from_page_cache(page);
503                 spin_unlock_irq(&mapping->tree_lock);
504                 mem_cgroup_uncharge_cache_page(page);
505
506                 if (freepage != NULL)
507                         freepage(page);
508         }
509
510         return 1;
511
512 cannot_free:
513         spin_unlock_irq(&mapping->tree_lock);
514         return 0;
515 }
516
517 /*
518  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
519  * someone else has a ref on the page, abort and return 0.  If it was
520  * successfully detached, return 1.  Assumes the caller has a single ref on
521  * this page.
522  */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525         if (__remove_mapping(mapping, page)) {
526                 /*
527                  * Unfreezing the refcount with 1 rather than 2 effectively
528                  * drops the pagecache ref for us without requiring another
529                  * atomic operation.
530                  */
531                 page_unfreeze_refs(page, 1);
532                 return 1;
533         }
534         return 0;
535 }
536
537 /**
538  * putback_lru_page - put previously isolated page onto appropriate LRU list
539  * @page: page to be put back to appropriate lru list
540  *
541  * Add previously isolated @page to appropriate LRU list.
542  * Page may still be unevictable for other reasons.
543  *
544  * lru_lock must not be held, interrupts must be enabled.
545  */
546 void putback_lru_page(struct page *page)
547 {
548         int lru;
549         int was_unevictable = PageUnevictable(page);
550
551         VM_BUG_ON(PageLRU(page));
552
553 redo:
554         ClearPageUnevictable(page);
555
556         if (page_evictable(page)) {
557                 /*
558                  * For evictable pages, we can use the cache.
559                  * In event of a race, worst case is we end up with an
560                  * unevictable page on [in]active list.
561                  * We know how to handle that.
562                  */
563                 lru = page_lru_base_type(page);
564                 lru_cache_add(page);
565         } else {
566                 /*
567                  * Put unevictable pages directly on zone's unevictable
568                  * list.
569                  */
570                 lru = LRU_UNEVICTABLE;
571                 add_page_to_unevictable_list(page);
572                 /*
573                  * When racing with an mlock or AS_UNEVICTABLE clearing
574                  * (page is unlocked) make sure that if the other thread
575                  * does not observe our setting of PG_lru and fails
576                  * isolation/check_move_unevictable_pages,
577                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578                  * the page back to the evictable list.
579                  *
580                  * The other side is TestClearPageMlocked() or shmem_lock().
581                  */
582                 smp_mb();
583         }
584
585         /*
586          * page's status can change while we move it among lru. If an evictable
587          * page is on unevictable list, it never be freed. To avoid that,
588          * check after we added it to the list, again.
589          */
590         if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
591                 if (!isolate_lru_page(page)) {
592                         put_page(page);
593                         goto redo;
594                 }
595                 /* This means someone else dropped this page from LRU
596                  * So, it will be freed or putback to LRU again. There is
597                  * nothing to do here.
598                  */
599         }
600
601         if (was_unevictable && lru != LRU_UNEVICTABLE)
602                 count_vm_event(UNEVICTABLE_PGRESCUED);
603         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604                 count_vm_event(UNEVICTABLE_PGCULLED);
605
606         put_page(page);         /* drop ref from isolate */
607 }
608
609 enum page_references {
610         PAGEREF_RECLAIM,
611         PAGEREF_RECLAIM_CLEAN,
612         PAGEREF_KEEP,
613         PAGEREF_ACTIVATE,
614 };
615
616 static enum page_references page_check_references(struct page *page,
617                                                   struct scan_control *sc)
618 {
619         int referenced_ptes, referenced_page;
620         unsigned long vm_flags;
621
622         referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623                                           &vm_flags);
624         referenced_page = TestClearPageReferenced(page);
625
626         /*
627          * Mlock lost the isolation race with us.  Let try_to_unmap()
628          * move the page to the unevictable list.
629          */
630         if (vm_flags & VM_LOCKED)
631                 return PAGEREF_RECLAIM;
632
633         if (referenced_ptes) {
634                 if (PageSwapBacked(page))
635                         return PAGEREF_ACTIVATE;
636                 /*
637                  * All mapped pages start out with page table
638                  * references from the instantiating fault, so we need
639                  * to look twice if a mapped file page is used more
640                  * than once.
641                  *
642                  * Mark it and spare it for another trip around the
643                  * inactive list.  Another page table reference will
644                  * lead to its activation.
645                  *
646                  * Note: the mark is set for activated pages as well
647                  * so that recently deactivated but used pages are
648                  * quickly recovered.
649                  */
650                 SetPageReferenced(page);
651
652                 if (referenced_page || referenced_ptes > 1)
653                         return PAGEREF_ACTIVATE;
654
655                 /*
656                  * Activate file-backed executable pages after first usage.
657                  */
658                 if (vm_flags & VM_EXEC)
659                         return PAGEREF_ACTIVATE;
660
661                 return PAGEREF_KEEP;
662         }
663
664         /* Reclaim if clean, defer dirty pages to writeback */
665         if (referenced_page && !PageSwapBacked(page))
666                 return PAGEREF_RECLAIM_CLEAN;
667
668         return PAGEREF_RECLAIM;
669 }
670
671 /* Check if a page is dirty or under writeback */
672 static void page_check_dirty_writeback(struct page *page,
673                                        bool *dirty, bool *writeback)
674 {
675         struct address_space *mapping;
676
677         /*
678          * Anonymous pages are not handled by flushers and must be written
679          * from reclaim context. Do not stall reclaim based on them
680          */
681         if (!page_is_file_cache(page)) {
682                 *dirty = false;
683                 *writeback = false;
684                 return;
685         }
686
687         /* By default assume that the page flags are accurate */
688         *dirty = PageDirty(page);
689         *writeback = PageWriteback(page);
690
691         /* Verify dirty/writeback state if the filesystem supports it */
692         if (!page_has_private(page))
693                 return;
694
695         mapping = page_mapping(page);
696         if (mapping && mapping->a_ops->is_dirty_writeback)
697                 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
698 }
699
700 /*
701  * shrink_page_list() returns the number of reclaimed pages
702  */
703 static unsigned long shrink_page_list(struct list_head *page_list,
704                                       struct zone *zone,
705                                       struct scan_control *sc,
706                                       enum ttu_flags ttu_flags,
707                                       unsigned long *ret_nr_dirty,
708                                       unsigned long *ret_nr_unqueued_dirty,
709                                       unsigned long *ret_nr_congested,
710                                       unsigned long *ret_nr_writeback,
711                                       unsigned long *ret_nr_immediate,
712                                       bool force_reclaim)
713 {
714         LIST_HEAD(ret_pages);
715         LIST_HEAD(free_pages);
716         int pgactivate = 0;
717         unsigned long nr_unqueued_dirty = 0;
718         unsigned long nr_dirty = 0;
719         unsigned long nr_congested = 0;
720         unsigned long nr_reclaimed = 0;
721         unsigned long nr_writeback = 0;
722         unsigned long nr_immediate = 0;
723
724         cond_resched();
725
726         mem_cgroup_uncharge_start();
727         while (!list_empty(page_list)) {
728                 struct address_space *mapping;
729                 struct page *page;
730                 int may_enter_fs;
731                 enum page_references references = PAGEREF_RECLAIM_CLEAN;
732                 bool dirty, writeback;
733
734                 cond_resched();
735
736                 page = lru_to_page(page_list);
737                 list_del(&page->lru);
738
739                 if (!trylock_page(page))
740                         goto keep;
741
742                 VM_BUG_ON(PageActive(page));
743                 VM_BUG_ON(page_zone(page) != zone);
744
745                 sc->nr_scanned++;
746
747                 if (unlikely(!page_evictable(page)))
748                         goto cull_mlocked;
749
750                 if (!sc->may_unmap && page_mapped(page))
751                         goto keep_locked;
752
753                 /* Double the slab pressure for mapped and swapcache pages */
754                 if (page_mapped(page) || PageSwapCache(page))
755                         sc->nr_scanned++;
756
757                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
758                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
759
760                 /*
761                  * The number of dirty pages determines if a zone is marked
762                  * reclaim_congested which affects wait_iff_congested. kswapd
763                  * will stall and start writing pages if the tail of the LRU
764                  * is all dirty unqueued pages.
765                  */
766                 page_check_dirty_writeback(page, &dirty, &writeback);
767                 if (dirty || writeback)
768                         nr_dirty++;
769
770                 if (dirty && !writeback)
771                         nr_unqueued_dirty++;
772
773                 /*
774                  * Treat this page as congested if the underlying BDI is or if
775                  * pages are cycling through the LRU so quickly that the
776                  * pages marked for immediate reclaim are making it to the
777                  * end of the LRU a second time.
778                  */
779                 mapping = page_mapping(page);
780                 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
781                     (writeback && PageReclaim(page)))
782                         nr_congested++;
783
784                 /*
785                  * If a page at the tail of the LRU is under writeback, there
786                  * are three cases to consider.
787                  *
788                  * 1) If reclaim is encountering an excessive number of pages
789                  *    under writeback and this page is both under writeback and
790                  *    PageReclaim then it indicates that pages are being queued
791                  *    for IO but are being recycled through the LRU before the
792                  *    IO can complete. Waiting on the page itself risks an
793                  *    indefinite stall if it is impossible to writeback the
794                  *    page due to IO error or disconnected storage so instead
795                  *    note that the LRU is being scanned too quickly and the
796                  *    caller can stall after page list has been processed.
797                  *
798                  * 2) Global reclaim encounters a page, memcg encounters a
799                  *    page that is not marked for immediate reclaim or
800                  *    the caller does not have __GFP_IO. In this case mark
801                  *    the page for immediate reclaim and continue scanning.
802                  *
803                  *    __GFP_IO is checked  because a loop driver thread might
804                  *    enter reclaim, and deadlock if it waits on a page for
805                  *    which it is needed to do the write (loop masks off
806                  *    __GFP_IO|__GFP_FS for this reason); but more thought
807                  *    would probably show more reasons.
808                  *
809                  *    Don't require __GFP_FS, since we're not going into the
810                  *    FS, just waiting on its writeback completion. Worryingly,
811                  *    ext4 gfs2 and xfs allocate pages with
812                  *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
813                  *    may_enter_fs here is liable to OOM on them.
814                  *
815                  * 3) memcg encounters a page that is not already marked
816                  *    PageReclaim. memcg does not have any dirty pages
817                  *    throttling so we could easily OOM just because too many
818                  *    pages are in writeback and there is nothing else to
819                  *    reclaim. Wait for the writeback to complete.
820                  */
821                 if (PageWriteback(page)) {
822                         /* Case 1 above */
823                         if (current_is_kswapd() &&
824                             PageReclaim(page) &&
825                             zone_is_reclaim_writeback(zone)) {
826                                 nr_immediate++;
827                                 goto keep_locked;
828
829                         /* Case 2 above */
830                         } else if (global_reclaim(sc) ||
831                             !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
832                                 /*
833                                  * This is slightly racy - end_page_writeback()
834                                  * might have just cleared PageReclaim, then
835                                  * setting PageReclaim here end up interpreted
836                                  * as PageReadahead - but that does not matter
837                                  * enough to care.  What we do want is for this
838                                  * page to have PageReclaim set next time memcg
839                                  * reclaim reaches the tests above, so it will
840                                  * then wait_on_page_writeback() to avoid OOM;
841                                  * and it's also appropriate in global reclaim.
842                                  */
843                                 SetPageReclaim(page);
844                                 nr_writeback++;
845
846                                 goto keep_locked;
847
848                         /* Case 3 above */
849                         } else {
850                                 wait_on_page_writeback(page);
851                         }
852                 }
853
854                 if (!force_reclaim)
855                         references = page_check_references(page, sc);
856
857                 switch (references) {
858                 case PAGEREF_ACTIVATE:
859                         goto activate_locked;
860                 case PAGEREF_KEEP:
861                         goto keep_locked;
862                 case PAGEREF_RECLAIM:
863                 case PAGEREF_RECLAIM_CLEAN:
864                         ; /* try to reclaim the page below */
865                 }
866
867                 /*
868                  * Anonymous process memory has backing store?
869                  * Try to allocate it some swap space here.
870                  */
871                 if (PageAnon(page) && !PageSwapCache(page)) {
872                         if (!(sc->gfp_mask & __GFP_IO))
873                                 goto keep_locked;
874                         if (!add_to_swap(page, page_list))
875                                 goto activate_locked;
876                         may_enter_fs = 1;
877
878                         /* Adding to swap updated mapping */
879                         mapping = page_mapping(page);
880                 }
881
882                 /*
883                  * The page is mapped into the page tables of one or more
884                  * processes. Try to unmap it here.
885                  */
886                 if (page_mapped(page) && mapping) {
887                         switch (try_to_unmap(page, ttu_flags)) {
888                         case SWAP_FAIL:
889                                 goto activate_locked;
890                         case SWAP_AGAIN:
891                                 goto keep_locked;
892                         case SWAP_MLOCK:
893                                 goto cull_mlocked;
894                         case SWAP_SUCCESS:
895                                 ; /* try to free the page below */
896                         }
897                 }
898
899                 if (PageDirty(page)) {
900                         /*
901                          * Only kswapd can writeback filesystem pages to
902                          * avoid risk of stack overflow but only writeback
903                          * if many dirty pages have been encountered.
904                          */
905                         if (page_is_file_cache(page) &&
906                                         (!current_is_kswapd() ||
907                                          !zone_is_reclaim_dirty(zone))) {
908                                 /*
909                                  * Immediately reclaim when written back.
910                                  * Similar in principal to deactivate_page()
911                                  * except we already have the page isolated
912                                  * and know it's dirty
913                                  */
914                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
915                                 SetPageReclaim(page);
916
917                                 goto keep_locked;
918                         }
919
920                         if (references == PAGEREF_RECLAIM_CLEAN)
921                                 goto keep_locked;
922                         if (!may_enter_fs)
923                                 goto keep_locked;
924                         if (!sc->may_writepage)
925                                 goto keep_locked;
926
927                         /* Page is dirty, try to write it out here */
928                         switch (pageout(page, mapping, sc)) {
929                         case PAGE_KEEP:
930                                 goto keep_locked;
931                         case PAGE_ACTIVATE:
932                                 goto activate_locked;
933                         case PAGE_SUCCESS:
934                                 if (PageWriteback(page))
935                                         goto keep;
936                                 if (PageDirty(page))
937                                         goto keep;
938
939                                 /*
940                                  * A synchronous write - probably a ramdisk.  Go
941                                  * ahead and try to reclaim the page.
942                                  */
943                                 if (!trylock_page(page))
944                                         goto keep;
945                                 if (PageDirty(page) || PageWriteback(page))
946                                         goto keep_locked;
947                                 mapping = page_mapping(page);
948                         case PAGE_CLEAN:
949                                 ; /* try to free the page below */
950                         }
951                 }
952
953                 /*
954                  * If the page has buffers, try to free the buffer mappings
955                  * associated with this page. If we succeed we try to free
956                  * the page as well.
957                  *
958                  * We do this even if the page is PageDirty().
959                  * try_to_release_page() does not perform I/O, but it is
960                  * possible for a page to have PageDirty set, but it is actually
961                  * clean (all its buffers are clean).  This happens if the
962                  * buffers were written out directly, with submit_bh(). ext3
963                  * will do this, as well as the blockdev mapping.
964                  * try_to_release_page() will discover that cleanness and will
965                  * drop the buffers and mark the page clean - it can be freed.
966                  *
967                  * Rarely, pages can have buffers and no ->mapping.  These are
968                  * the pages which were not successfully invalidated in
969                  * truncate_complete_page().  We try to drop those buffers here
970                  * and if that worked, and the page is no longer mapped into
971                  * process address space (page_count == 1) it can be freed.
972                  * Otherwise, leave the page on the LRU so it is swappable.
973                  */
974                 if (page_has_private(page)) {
975                         if (!try_to_release_page(page, sc->gfp_mask))
976                                 goto activate_locked;
977                         if (!mapping && page_count(page) == 1) {
978                                 unlock_page(page);
979                                 if (put_page_testzero(page))
980                                         goto free_it;
981                                 else {
982                                         /*
983                                          * rare race with speculative reference.
984                                          * the speculative reference will free
985                                          * this page shortly, so we may
986                                          * increment nr_reclaimed here (and
987                                          * leave it off the LRU).
988                                          */
989                                         nr_reclaimed++;
990                                         continue;
991                                 }
992                         }
993                 }
994
995                 if (!mapping || !__remove_mapping(mapping, page))
996                         goto keep_locked;
997
998                 /*
999                  * At this point, we have no other references and there is
1000                  * no way to pick any more up (removed from LRU, removed
1001                  * from pagecache). Can use non-atomic bitops now (and
1002                  * we obviously don't have to worry about waking up a process
1003                  * waiting on the page lock, because there are no references.
1004                  */
1005                 __clear_page_locked(page);
1006 free_it:
1007                 nr_reclaimed++;
1008
1009                 /*
1010                  * Is there need to periodically free_page_list? It would
1011                  * appear not as the counts should be low
1012                  */
1013                 list_add(&page->lru, &free_pages);
1014                 continue;
1015
1016 cull_mlocked:
1017                 if (PageSwapCache(page))
1018                         try_to_free_swap(page);
1019                 unlock_page(page);
1020                 putback_lru_page(page);
1021                 continue;
1022
1023 activate_locked:
1024                 /* Not a candidate for swapping, so reclaim swap space. */
1025                 if (PageSwapCache(page) && vm_swap_full())
1026                         try_to_free_swap(page);
1027                 VM_BUG_ON(PageActive(page));
1028                 SetPageActive(page);
1029                 pgactivate++;
1030 keep_locked:
1031                 unlock_page(page);
1032 keep:
1033                 list_add(&page->lru, &ret_pages);
1034                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1035         }
1036
1037         free_hot_cold_page_list(&free_pages, 1);
1038
1039         list_splice(&ret_pages, page_list);
1040         count_vm_events(PGACTIVATE, pgactivate);
1041         mem_cgroup_uncharge_end();
1042         *ret_nr_dirty += nr_dirty;
1043         *ret_nr_congested += nr_congested;
1044         *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1045         *ret_nr_writeback += nr_writeback;
1046         *ret_nr_immediate += nr_immediate;
1047         return nr_reclaimed;
1048 }
1049
1050 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1051                                             struct list_head *page_list)
1052 {
1053         struct scan_control sc = {
1054                 .gfp_mask = GFP_KERNEL,
1055                 .priority = DEF_PRIORITY,
1056                 .may_unmap = 1,
1057         };
1058         unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1059         struct page *page, *next;
1060         LIST_HEAD(clean_pages);
1061
1062         list_for_each_entry_safe(page, next, page_list, lru) {
1063                 if (page_is_file_cache(page) && !PageDirty(page)) {
1064                         ClearPageActive(page);
1065                         list_move(&page->lru, &clean_pages);
1066                 }
1067         }
1068
1069         ret = shrink_page_list(&clean_pages, zone, &sc,
1070                         TTU_UNMAP|TTU_IGNORE_ACCESS,
1071                         &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1072         list_splice(&clean_pages, page_list);
1073         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1074         return ret;
1075 }
1076
1077 /*
1078  * Attempt to remove the specified page from its LRU.  Only take this page
1079  * if it is of the appropriate PageActive status.  Pages which are being
1080  * freed elsewhere are also ignored.
1081  *
1082  * page:        page to consider
1083  * mode:        one of the LRU isolation modes defined above
1084  *
1085  * returns 0 on success, -ve errno on failure.
1086  */
1087 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1088 {
1089         int ret = -EINVAL;
1090
1091         /* Only take pages on the LRU. */
1092         if (!PageLRU(page))
1093                 return ret;
1094
1095         /* Compaction should not handle unevictable pages but CMA can do so */
1096         if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1097                 return ret;
1098
1099         ret = -EBUSY;
1100
1101         /*
1102          * To minimise LRU disruption, the caller can indicate that it only
1103          * wants to isolate pages it will be able to operate on without
1104          * blocking - clean pages for the most part.
1105          *
1106          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1107          * is used by reclaim when it is cannot write to backing storage
1108          *
1109          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1110          * that it is possible to migrate without blocking
1111          */
1112         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1113                 /* All the caller can do on PageWriteback is block */
1114                 if (PageWriteback(page))
1115                         return ret;
1116
1117                 if (PageDirty(page)) {
1118                         struct address_space *mapping;
1119
1120                         /* ISOLATE_CLEAN means only clean pages */
1121                         if (mode & ISOLATE_CLEAN)
1122                                 return ret;
1123
1124                         /*
1125                          * Only pages without mappings or that have a
1126                          * ->migratepage callback are possible to migrate
1127                          * without blocking
1128                          */
1129                         mapping = page_mapping(page);
1130                         if (mapping && !mapping->a_ops->migratepage)
1131                                 return ret;
1132                 }
1133         }
1134
1135         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1136                 return ret;
1137
1138         if (likely(get_page_unless_zero(page))) {
1139                 /*
1140                  * Be careful not to clear PageLRU until after we're
1141                  * sure the page is not being freed elsewhere -- the
1142                  * page release code relies on it.
1143                  */
1144                 ClearPageLRU(page);
1145                 ret = 0;
1146         }
1147
1148         return ret;
1149 }
1150
1151 /*
1152  * zone->lru_lock is heavily contended.  Some of the functions that
1153  * shrink the lists perform better by taking out a batch of pages
1154  * and working on them outside the LRU lock.
1155  *
1156  * For pagecache intensive workloads, this function is the hottest
1157  * spot in the kernel (apart from copy_*_user functions).
1158  *
1159  * Appropriate locks must be held before calling this function.
1160  *
1161  * @nr_to_scan: The number of pages to look through on the list.
1162  * @lruvec:     The LRU vector to pull pages from.
1163  * @dst:        The temp list to put pages on to.
1164  * @nr_scanned: The number of pages that were scanned.
1165  * @sc:         The scan_control struct for this reclaim session
1166  * @mode:       One of the LRU isolation modes
1167  * @lru:        LRU list id for isolating
1168  *
1169  * returns how many pages were moved onto *@dst.
1170  */
1171 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1172                 struct lruvec *lruvec, struct list_head *dst,
1173                 unsigned long *nr_scanned, struct scan_control *sc,
1174                 isolate_mode_t mode, enum lru_list lru)
1175 {
1176         struct list_head *src = &lruvec->lists[lru];
1177         unsigned long nr_taken = 0;
1178         unsigned long scan;
1179
1180         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1181                 struct page *page;
1182                 int nr_pages;
1183
1184                 page = lru_to_page(src);
1185                 prefetchw_prev_lru_page(page, src, flags);
1186
1187                 VM_BUG_ON(!PageLRU(page));
1188
1189                 switch (__isolate_lru_page(page, mode)) {
1190                 case 0:
1191                         nr_pages = hpage_nr_pages(page);
1192                         mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1193                         list_move(&page->lru, dst);
1194                         nr_taken += nr_pages;
1195                         break;
1196
1197                 case -EBUSY:
1198                         /* else it is being freed elsewhere */
1199                         list_move(&page->lru, src);
1200                         continue;
1201
1202                 default:
1203                         BUG();
1204                 }
1205         }
1206
1207         *nr_scanned = scan;
1208         trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1209                                     nr_taken, mode, is_file_lru(lru));
1210         return nr_taken;
1211 }
1212
1213 /**
1214  * isolate_lru_page - tries to isolate a page from its LRU list
1215  * @page: page to isolate from its LRU list
1216  *
1217  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1218  * vmstat statistic corresponding to whatever LRU list the page was on.
1219  *
1220  * Returns 0 if the page was removed from an LRU list.
1221  * Returns -EBUSY if the page was not on an LRU list.
1222  *
1223  * The returned page will have PageLRU() cleared.  If it was found on
1224  * the active list, it will have PageActive set.  If it was found on
1225  * the unevictable list, it will have the PageUnevictable bit set. That flag
1226  * may need to be cleared by the caller before letting the page go.
1227  *
1228  * The vmstat statistic corresponding to the list on which the page was
1229  * found will be decremented.
1230  *
1231  * Restrictions:
1232  * (1) Must be called with an elevated refcount on the page. This is a
1233  *     fundamentnal difference from isolate_lru_pages (which is called
1234  *     without a stable reference).
1235  * (2) the lru_lock must not be held.
1236  * (3) interrupts must be enabled.
1237  */
1238 int isolate_lru_page(struct page *page)
1239 {
1240         int ret = -EBUSY;
1241
1242         VM_BUG_ON(!page_count(page));
1243
1244         if (PageLRU(page)) {
1245                 struct zone *zone = page_zone(page);
1246                 struct lruvec *lruvec;
1247
1248                 spin_lock_irq(&zone->lru_lock);
1249                 lruvec = mem_cgroup_page_lruvec(page, zone);
1250                 if (PageLRU(page)) {
1251                         int lru = page_lru(page);
1252                         get_page(page);
1253                         ClearPageLRU(page);
1254                         del_page_from_lru_list(page, lruvec, lru);
1255                         ret = 0;
1256                 }
1257                 spin_unlock_irq(&zone->lru_lock);
1258         }
1259         return ret;
1260 }
1261
1262 /*
1263  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1264  * then get resheduled. When there are massive number of tasks doing page
1265  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1266  * the LRU list will go small and be scanned faster than necessary, leading to
1267  * unnecessary swapping, thrashing and OOM.
1268  */
1269 static int too_many_isolated(struct zone *zone, int file,
1270                 struct scan_control *sc)
1271 {
1272         unsigned long inactive, isolated;
1273
1274         if (current_is_kswapd())
1275                 return 0;
1276
1277         if (!global_reclaim(sc))
1278                 return 0;
1279
1280         if (file) {
1281                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1282                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1283         } else {
1284                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1285                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1286         }
1287
1288         /*
1289          * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1290          * won't get blocked by normal direct-reclaimers, forming a circular
1291          * deadlock.
1292          */
1293         if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1294                 inactive >>= 3;
1295
1296         return isolated > inactive;
1297 }
1298
1299 static noinline_for_stack void
1300 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1301 {
1302         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1303         struct zone *zone = lruvec_zone(lruvec);
1304         LIST_HEAD(pages_to_free);
1305
1306         /*
1307          * Put back any unfreeable pages.
1308          */
1309         while (!list_empty(page_list)) {
1310                 struct page *page = lru_to_page(page_list);
1311                 int lru;
1312
1313                 VM_BUG_ON(PageLRU(page));
1314                 list_del(&page->lru);
1315                 if (unlikely(!page_evictable(page))) {
1316                         spin_unlock_irq(&zone->lru_lock);
1317                         putback_lru_page(page);
1318                         spin_lock_irq(&zone->lru_lock);
1319                         continue;
1320                 }
1321
1322                 lruvec = mem_cgroup_page_lruvec(page, zone);
1323
1324                 SetPageLRU(page);
1325                 lru = page_lru(page);
1326                 add_page_to_lru_list(page, lruvec, lru);
1327
1328                 if (is_active_lru(lru)) {
1329                         int file = is_file_lru(lru);
1330                         int numpages = hpage_nr_pages(page);
1331                         reclaim_stat->recent_rotated[file] += numpages;
1332                 }
1333                 if (put_page_testzero(page)) {
1334                         __ClearPageLRU(page);
1335                         __ClearPageActive(page);
1336                         del_page_from_lru_list(page, lruvec, lru);
1337
1338                         if (unlikely(PageCompound(page))) {
1339                                 spin_unlock_irq(&zone->lru_lock);
1340                                 (*get_compound_page_dtor(page))(page);
1341                                 spin_lock_irq(&zone->lru_lock);
1342                         } else
1343                                 list_add(&page->lru, &pages_to_free);
1344                 }
1345         }
1346
1347         /*
1348          * To save our caller's stack, now use input list for pages to free.
1349          */
1350         list_splice(&pages_to_free, page_list);
1351 }
1352
1353 /*
1354  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1355  * of reclaimed pages
1356  */
1357 static noinline_for_stack unsigned long
1358 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1359                      struct scan_control *sc, enum lru_list lru)
1360 {
1361         LIST_HEAD(page_list);
1362         unsigned long nr_scanned;
1363         unsigned long nr_reclaimed = 0;
1364         unsigned long nr_taken;
1365         unsigned long nr_dirty = 0;
1366         unsigned long nr_congested = 0;
1367         unsigned long nr_unqueued_dirty = 0;
1368         unsigned long nr_writeback = 0;
1369         unsigned long nr_immediate = 0;
1370         isolate_mode_t isolate_mode = 0;
1371         int file = is_file_lru(lru);
1372         struct zone *zone = lruvec_zone(lruvec);
1373         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1374
1375         while (unlikely(too_many_isolated(zone, file, sc))) {
1376                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1377
1378                 /* We are about to die and free our memory. Return now. */
1379                 if (fatal_signal_pending(current))
1380                         return SWAP_CLUSTER_MAX;
1381         }
1382
1383         lru_add_drain();
1384
1385         if (!sc->may_unmap)
1386                 isolate_mode |= ISOLATE_UNMAPPED;
1387         if (!sc->may_writepage)
1388                 isolate_mode |= ISOLATE_CLEAN;
1389
1390         spin_lock_irq(&zone->lru_lock);
1391
1392         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1393                                      &nr_scanned, sc, isolate_mode, lru);
1394
1395         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1396         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1397
1398         if (global_reclaim(sc)) {
1399                 zone->pages_scanned += nr_scanned;
1400                 if (current_is_kswapd())
1401                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1402                 else
1403                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1404         }
1405         spin_unlock_irq(&zone->lru_lock);
1406
1407         if (nr_taken == 0)
1408                 return 0;
1409
1410         nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1411                                 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1412                                 &nr_writeback, &nr_immediate,
1413                                 false);
1414
1415         spin_lock_irq(&zone->lru_lock);
1416
1417         reclaim_stat->recent_scanned[file] += nr_taken;
1418
1419         if (global_reclaim(sc)) {
1420                 if (current_is_kswapd())
1421                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1422                                                nr_reclaimed);
1423                 else
1424                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1425                                                nr_reclaimed);
1426         }
1427
1428         putback_inactive_pages(lruvec, &page_list);
1429
1430         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1431
1432         spin_unlock_irq(&zone->lru_lock);
1433
1434         free_hot_cold_page_list(&page_list, 1);
1435
1436         /*
1437          * If reclaim is isolating dirty pages under writeback, it implies
1438          * that the long-lived page allocation rate is exceeding the page
1439          * laundering rate. Either the global limits are not being effective
1440          * at throttling processes due to the page distribution throughout
1441          * zones or there is heavy usage of a slow backing device. The
1442          * only option is to throttle from reclaim context which is not ideal
1443          * as there is no guarantee the dirtying process is throttled in the
1444          * same way balance_dirty_pages() manages.
1445          *
1446          * This scales the number of dirty pages that must be under writeback
1447          * before a zone gets flagged ZONE_WRITEBACK. It is a simple backoff
1448          * function that has the most effect in the range DEF_PRIORITY to
1449          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1450          * in trouble and reclaim is considered to be in trouble.
1451          *
1452          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1453          * DEF_PRIORITY-1  50% must be PageWriteback
1454          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1455          * ...
1456          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1457          *                     isolated page is PageWriteback
1458          *
1459          * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1460          * of pages under pages flagged for immediate reclaim and stall if any
1461          * are encountered in the nr_immediate check below.
1462          */
1463         if (nr_writeback && nr_writeback >=
1464                         (nr_taken >> (DEF_PRIORITY - sc->priority)))
1465                 zone_set_flag(zone, ZONE_WRITEBACK);
1466
1467         /*
1468          * memcg will stall in page writeback so only consider forcibly
1469          * stalling for global reclaim
1470          */
1471         if (global_reclaim(sc)) {
1472                 /*
1473                  * Tag a zone as congested if all the dirty pages scanned were
1474                  * backed by a congested BDI and wait_iff_congested will stall.
1475                  */
1476                 if (nr_dirty && nr_dirty == nr_congested)
1477                         zone_set_flag(zone, ZONE_CONGESTED);
1478
1479                 /*
1480                  * If dirty pages are scanned that are not queued for IO, it
1481                  * implies that flushers are not keeping up. In this case, flag
1482                  * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1483                  * pages from reclaim context. It will forcibly stall in the
1484                  * next check.
1485                  */
1486                 if (nr_unqueued_dirty == nr_taken)
1487                         zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1488
1489                 /*
1490                  * In addition, if kswapd scans pages marked marked for
1491                  * immediate reclaim and under writeback (nr_immediate), it
1492                  * implies that pages are cycling through the LRU faster than
1493                  * they are written so also forcibly stall.
1494                  */
1495                 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1496                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1497         }
1498
1499         /*
1500          * Stall direct reclaim for IO completions if underlying BDIs or zone
1501          * is congested. Allow kswapd to continue until it starts encountering
1502          * unqueued dirty pages or cycling through the LRU too quickly.
1503          */
1504         if (!sc->hibernation_mode && !current_is_kswapd())
1505                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1506
1507         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1508                 zone_idx(zone),
1509                 nr_scanned, nr_reclaimed,
1510                 sc->priority,
1511                 trace_shrink_flags(file));
1512         return nr_reclaimed;
1513 }
1514
1515 /*
1516  * This moves pages from the active list to the inactive list.
1517  *
1518  * We move them the other way if the page is referenced by one or more
1519  * processes, from rmap.
1520  *
1521  * If the pages are mostly unmapped, the processing is fast and it is
1522  * appropriate to hold zone->lru_lock across the whole operation.  But if
1523  * the pages are mapped, the processing is slow (page_referenced()) so we
1524  * should drop zone->lru_lock around each page.  It's impossible to balance
1525  * this, so instead we remove the pages from the LRU while processing them.
1526  * It is safe to rely on PG_active against the non-LRU pages in here because
1527  * nobody will play with that bit on a non-LRU page.
1528  *
1529  * The downside is that we have to touch page->_count against each page.
1530  * But we had to alter page->flags anyway.
1531  */
1532
1533 static void move_active_pages_to_lru(struct lruvec *lruvec,
1534                                      struct list_head *list,
1535                                      struct list_head *pages_to_free,
1536                                      enum lru_list lru)
1537 {
1538         struct zone *zone = lruvec_zone(lruvec);
1539         unsigned long pgmoved = 0;
1540         struct page *page;
1541         int nr_pages;
1542
1543         while (!list_empty(list)) {
1544                 page = lru_to_page(list);
1545                 lruvec = mem_cgroup_page_lruvec(page, zone);
1546
1547                 VM_BUG_ON(PageLRU(page));
1548                 SetPageLRU(page);
1549
1550                 nr_pages = hpage_nr_pages(page);
1551                 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1552                 list_move(&page->lru, &lruvec->lists[lru]);
1553                 pgmoved += nr_pages;
1554
1555                 if (put_page_testzero(page)) {
1556                         __ClearPageLRU(page);
1557                         __ClearPageActive(page);
1558                         del_page_from_lru_list(page, lruvec, lru);
1559
1560                         if (unlikely(PageCompound(page))) {
1561                                 spin_unlock_irq(&zone->lru_lock);
1562                                 (*get_compound_page_dtor(page))(page);
1563                                 spin_lock_irq(&zone->lru_lock);
1564                         } else
1565                                 list_add(&page->lru, pages_to_free);
1566                 }
1567         }
1568         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1569         if (!is_active_lru(lru))
1570                 __count_vm_events(PGDEACTIVATE, pgmoved);
1571 }
1572
1573 static void shrink_active_list(unsigned long nr_to_scan,
1574                                struct lruvec *lruvec,
1575                                struct scan_control *sc,
1576                                enum lru_list lru)
1577 {
1578         unsigned long nr_taken;
1579         unsigned long nr_scanned;
1580         unsigned long vm_flags;
1581         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1582         LIST_HEAD(l_active);
1583         LIST_HEAD(l_inactive);
1584         struct page *page;
1585         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1586         unsigned long nr_rotated = 0;
1587         isolate_mode_t isolate_mode = 0;
1588         int file = is_file_lru(lru);
1589         struct zone *zone = lruvec_zone(lruvec);
1590
1591         lru_add_drain();
1592
1593         if (!sc->may_unmap)
1594                 isolate_mode |= ISOLATE_UNMAPPED;
1595         if (!sc->may_writepage)
1596                 isolate_mode |= ISOLATE_CLEAN;
1597
1598         spin_lock_irq(&zone->lru_lock);
1599
1600         nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1601                                      &nr_scanned, sc, isolate_mode, lru);
1602         if (global_reclaim(sc))
1603                 zone->pages_scanned += nr_scanned;
1604
1605         reclaim_stat->recent_scanned[file] += nr_taken;
1606
1607         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1608         __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1609         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1610         spin_unlock_irq(&zone->lru_lock);
1611
1612         while (!list_empty(&l_hold)) {
1613                 cond_resched();
1614                 page = lru_to_page(&l_hold);
1615                 list_del(&page->lru);
1616
1617                 if (unlikely(!page_evictable(page))) {
1618                         putback_lru_page(page);
1619                         continue;
1620                 }
1621
1622                 if (unlikely(buffer_heads_over_limit)) {
1623                         if (page_has_private(page) && trylock_page(page)) {
1624                                 if (page_has_private(page))
1625                                         try_to_release_page(page, 0);
1626                                 unlock_page(page);
1627                         }
1628                 }
1629
1630                 if (page_referenced(page, 0, sc->target_mem_cgroup,
1631                                     &vm_flags)) {
1632                         nr_rotated += hpage_nr_pages(page);
1633                         /*
1634                          * Identify referenced, file-backed active pages and
1635                          * give them one more trip around the active list. So
1636                          * that executable code get better chances to stay in
1637                          * memory under moderate memory pressure.  Anon pages
1638                          * are not likely to be evicted by use-once streaming
1639                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1640                          * so we ignore them here.
1641                          */
1642                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1643                                 list_add(&page->lru, &l_active);
1644                                 continue;
1645                         }
1646                 }
1647
1648                 ClearPageActive(page);  /* we are de-activating */
1649                 list_add(&page->lru, &l_inactive);
1650         }
1651
1652         /*
1653          * Move pages back to the lru list.
1654          */
1655         spin_lock_irq(&zone->lru_lock);
1656         /*
1657          * Count referenced pages from currently used mappings as rotated,
1658          * even though only some of them are actually re-activated.  This
1659          * helps balance scan pressure between file and anonymous pages in
1660          * get_scan_ratio.
1661          */
1662         reclaim_stat->recent_rotated[file] += nr_rotated;
1663
1664         move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1665         move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1666         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1667         spin_unlock_irq(&zone->lru_lock);
1668
1669         free_hot_cold_page_list(&l_hold, 1);
1670 }
1671
1672 #ifdef CONFIG_SWAP
1673 static int inactive_anon_is_low_global(struct zone *zone)
1674 {
1675         unsigned long active, inactive;
1676
1677         active = zone_page_state(zone, NR_ACTIVE_ANON);
1678         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1679
1680         if (inactive * zone->inactive_ratio < active)
1681                 return 1;
1682
1683         return 0;
1684 }
1685
1686 /**
1687  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1688  * @lruvec: LRU vector to check
1689  *
1690  * Returns true if the zone does not have enough inactive anon pages,
1691  * meaning some active anon pages need to be deactivated.
1692  */
1693 static int inactive_anon_is_low(struct lruvec *lruvec)
1694 {
1695         /*
1696          * If we don't have swap space, anonymous page deactivation
1697          * is pointless.
1698          */
1699         if (!total_swap_pages)
1700                 return 0;
1701
1702         if (!mem_cgroup_disabled())
1703                 return mem_cgroup_inactive_anon_is_low(lruvec);
1704
1705         return inactive_anon_is_low_global(lruvec_zone(lruvec));
1706 }
1707 #else
1708 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1709 {
1710         return 0;
1711 }
1712 #endif
1713
1714 /**
1715  * inactive_file_is_low - check if file pages need to be deactivated
1716  * @lruvec: LRU vector to check
1717  *
1718  * When the system is doing streaming IO, memory pressure here
1719  * ensures that active file pages get deactivated, until more
1720  * than half of the file pages are on the inactive list.
1721  *
1722  * Once we get to that situation, protect the system's working
1723  * set from being evicted by disabling active file page aging.
1724  *
1725  * This uses a different ratio than the anonymous pages, because
1726  * the page cache uses a use-once replacement algorithm.
1727  */
1728 static int inactive_file_is_low(struct lruvec *lruvec)
1729 {
1730         unsigned long inactive;
1731         unsigned long active;
1732
1733         inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1734         active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1735
1736         return active > inactive;
1737 }
1738
1739 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1740 {
1741         if (is_file_lru(lru))
1742                 return inactive_file_is_low(lruvec);
1743         else
1744                 return inactive_anon_is_low(lruvec);
1745 }
1746
1747 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1748                                  struct lruvec *lruvec, struct scan_control *sc)
1749 {
1750         if (is_active_lru(lru)) {
1751                 if (inactive_list_is_low(lruvec, lru))
1752                         shrink_active_list(nr_to_scan, lruvec, sc, lru);
1753                 return 0;
1754         }
1755
1756         return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1757 }
1758
1759 static int vmscan_swappiness(struct scan_control *sc)
1760 {
1761         if (global_reclaim(sc))
1762                 return vm_swappiness;
1763         return mem_cgroup_swappiness(sc->target_mem_cgroup);
1764 }
1765
1766 enum scan_balance {
1767         SCAN_EQUAL,
1768         SCAN_FRACT,
1769         SCAN_ANON,
1770         SCAN_FILE,
1771 };
1772
1773 /*
1774  * Determine how aggressively the anon and file LRU lists should be
1775  * scanned.  The relative value of each set of LRU lists is determined
1776  * by looking at the fraction of the pages scanned we did rotate back
1777  * onto the active list instead of evict.
1778  *
1779  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1780  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1781  */
1782 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1783                            unsigned long *nr)
1784 {
1785         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1786         u64 fraction[2];
1787         u64 denominator = 0;    /* gcc */
1788         struct zone *zone = lruvec_zone(lruvec);
1789         unsigned long anon_prio, file_prio;
1790         enum scan_balance scan_balance;
1791         unsigned long anon, file, free;
1792         bool force_scan = false;
1793         unsigned long ap, fp;
1794         enum lru_list lru;
1795
1796         /*
1797          * If the zone or memcg is small, nr[l] can be 0.  This
1798          * results in no scanning on this priority and a potential
1799          * priority drop.  Global direct reclaim can go to the next
1800          * zone and tends to have no problems. Global kswapd is for
1801          * zone balancing and it needs to scan a minimum amount. When
1802          * reclaiming for a memcg, a priority drop can cause high
1803          * latencies, so it's better to scan a minimum amount there as
1804          * well.
1805          */
1806         if (current_is_kswapd() && zone->all_unreclaimable)
1807                 force_scan = true;
1808         if (!global_reclaim(sc))
1809                 force_scan = true;
1810
1811         /* If we have no swap space, do not bother scanning anon pages. */
1812         if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1813                 scan_balance = SCAN_FILE;
1814                 goto out;
1815         }
1816
1817         /*
1818          * Global reclaim will swap to prevent OOM even with no
1819          * swappiness, but memcg users want to use this knob to
1820          * disable swapping for individual groups completely when
1821          * using the memory controller's swap limit feature would be
1822          * too expensive.
1823          */
1824         if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1825                 scan_balance = SCAN_FILE;
1826                 goto out;
1827         }
1828
1829         /*
1830          * Do not apply any pressure balancing cleverness when the
1831          * system is close to OOM, scan both anon and file equally
1832          * (unless the swappiness setting disagrees with swapping).
1833          */
1834         if (!sc->priority && vmscan_swappiness(sc)) {
1835                 scan_balance = SCAN_EQUAL;
1836                 goto out;
1837         }
1838
1839         anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1840                 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1841         file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1842                 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1843
1844         /*
1845          * If it's foreseeable that reclaiming the file cache won't be
1846          * enough to get the zone back into a desirable shape, we have
1847          * to swap.  Better start now and leave the - probably heavily
1848          * thrashing - remaining file pages alone.
1849          */
1850         if (global_reclaim(sc)) {
1851                 free = zone_page_state(zone, NR_FREE_PAGES);
1852                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1853                         scan_balance = SCAN_ANON;
1854                         goto out;
1855                 }
1856         }
1857
1858         /*
1859          * There is enough inactive page cache, do not reclaim
1860          * anything from the anonymous working set right now.
1861          */
1862         if (!inactive_file_is_low(lruvec)) {
1863                 scan_balance = SCAN_FILE;
1864                 goto out;
1865         }
1866
1867         scan_balance = SCAN_FRACT;
1868
1869         /*
1870          * With swappiness at 100, anonymous and file have the same priority.
1871          * This scanning priority is essentially the inverse of IO cost.
1872          */
1873         anon_prio = vmscan_swappiness(sc);
1874         file_prio = 200 - anon_prio;
1875
1876         /*
1877          * OK, so we have swap space and a fair amount of page cache
1878          * pages.  We use the recently rotated / recently scanned
1879          * ratios to determine how valuable each cache is.
1880          *
1881          * Because workloads change over time (and to avoid overflow)
1882          * we keep these statistics as a floating average, which ends
1883          * up weighing recent references more than old ones.
1884          *
1885          * anon in [0], file in [1]
1886          */
1887         spin_lock_irq(&zone->lru_lock);
1888         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1889                 reclaim_stat->recent_scanned[0] /= 2;
1890                 reclaim_stat->recent_rotated[0] /= 2;
1891         }
1892
1893         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1894                 reclaim_stat->recent_scanned[1] /= 2;
1895                 reclaim_stat->recent_rotated[1] /= 2;
1896         }
1897
1898         /*
1899          * The amount of pressure on anon vs file pages is inversely
1900          * proportional to the fraction of recently scanned pages on
1901          * each list that were recently referenced and in active use.
1902          */
1903         ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1904         ap /= reclaim_stat->recent_rotated[0] + 1;
1905
1906         fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1907         fp /= reclaim_stat->recent_rotated[1] + 1;
1908         spin_unlock_irq(&zone->lru_lock);
1909
1910         fraction[0] = ap;
1911         fraction[1] = fp;
1912         denominator = ap + fp + 1;
1913 out:
1914         for_each_evictable_lru(lru) {
1915                 int file = is_file_lru(lru);
1916                 unsigned long size;
1917                 unsigned long scan;
1918
1919                 size = get_lru_size(lruvec, lru);
1920                 scan = size >> sc->priority;
1921
1922                 if (!scan && force_scan)
1923                         scan = min(size, SWAP_CLUSTER_MAX);
1924
1925                 switch (scan_balance) {
1926                 case SCAN_EQUAL:
1927                         /* Scan lists relative to size */
1928                         break;
1929                 case SCAN_FRACT:
1930                         /*
1931                          * Scan types proportional to swappiness and
1932                          * their relative recent reclaim efficiency.
1933                          */
1934                         scan = div64_u64(scan * fraction[file], denominator);
1935                         break;
1936                 case SCAN_FILE:
1937                 case SCAN_ANON:
1938                         /* Scan one type exclusively */
1939                         if ((scan_balance == SCAN_FILE) != file)
1940                                 scan = 0;
1941                         break;
1942                 default:
1943                         /* Look ma, no brain */
1944                         BUG();
1945                 }
1946                 nr[lru] = scan;
1947         }
1948 }
1949
1950 /*
1951  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1952  */
1953 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1954 {
1955         unsigned long nr[NR_LRU_LISTS];
1956         unsigned long targets[NR_LRU_LISTS];
1957         unsigned long nr_to_scan;
1958         enum lru_list lru;
1959         unsigned long nr_reclaimed = 0;
1960         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1961         struct blk_plug plug;
1962         bool scan_adjusted = false;
1963
1964         get_scan_count(lruvec, sc, nr);
1965
1966         /* Record the original scan target for proportional adjustments later */
1967         memcpy(targets, nr, sizeof(nr));
1968
1969         blk_start_plug(&plug);
1970         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1971                                         nr[LRU_INACTIVE_FILE]) {
1972                 unsigned long nr_anon, nr_file, percentage;
1973                 unsigned long nr_scanned;
1974
1975                 for_each_evictable_lru(lru) {
1976                         if (nr[lru]) {
1977                                 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1978                                 nr[lru] -= nr_to_scan;
1979
1980                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1981                                                             lruvec, sc);
1982                         }
1983                 }
1984
1985                 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1986                         continue;
1987
1988                 /*
1989                  * For global direct reclaim, reclaim only the number of pages
1990                  * requested. Less care is taken to scan proportionally as it
1991                  * is more important to minimise direct reclaim stall latency
1992                  * than it is to properly age the LRU lists.
1993                  */
1994                 if (global_reclaim(sc) && !current_is_kswapd())
1995                         break;
1996
1997                 /*
1998                  * For kswapd and memcg, reclaim at least the number of pages
1999                  * requested. Ensure that the anon and file LRUs shrink
2000                  * proportionally what was requested by get_scan_count(). We
2001                  * stop reclaiming one LRU and reduce the amount scanning
2002                  * proportional to the original scan target.
2003                  */
2004                 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2005                 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2006
2007                 if (nr_file > nr_anon) {
2008                         unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2009                                                 targets[LRU_ACTIVE_ANON] + 1;
2010                         lru = LRU_BASE;
2011                         percentage = nr_anon * 100 / scan_target;
2012                 } else {
2013                         unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2014                                                 targets[LRU_ACTIVE_FILE] + 1;
2015                         lru = LRU_FILE;
2016                         percentage = nr_file * 100 / scan_target;
2017                 }
2018
2019                 /* Stop scanning the smaller of the LRU */
2020                 nr[lru] = 0;
2021                 nr[lru + LRU_ACTIVE] = 0;
2022
2023                 /*
2024                  * Recalculate the other LRU scan count based on its original
2025                  * scan target and the percentage scanning already complete
2026                  */
2027                 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2028                 nr_scanned = targets[lru] - nr[lru];
2029                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2030                 nr[lru] -= min(nr[lru], nr_scanned);
2031
2032                 lru += LRU_ACTIVE;
2033                 nr_scanned = targets[lru] - nr[lru];
2034                 nr[lru] = targets[lru] * (100 - percentage) / 100;
2035                 nr[lru] -= min(nr[lru], nr_scanned);
2036
2037                 scan_adjusted = true;
2038         }
2039         blk_finish_plug(&plug);
2040         sc->nr_reclaimed += nr_reclaimed;
2041
2042         /*
2043          * Even if we did not try to evict anon pages at all, we want to
2044          * rebalance the anon lru active/inactive ratio.
2045          */
2046         if (inactive_anon_is_low(lruvec))
2047                 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2048                                    sc, LRU_ACTIVE_ANON);
2049
2050         throttle_vm_writeout(sc->gfp_mask);
2051 }
2052
2053 /* Use reclaim/compaction for costly allocs or under memory pressure */
2054 static bool in_reclaim_compaction(struct scan_control *sc)
2055 {
2056         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2057                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2058                          sc->priority < DEF_PRIORITY - 2))
2059                 return true;
2060
2061         return false;
2062 }
2063
2064 /*
2065  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2066  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2067  * true if more pages should be reclaimed such that when the page allocator
2068  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2069  * It will give up earlier than that if there is difficulty reclaiming pages.
2070  */
2071 static inline bool should_continue_reclaim(struct zone *zone,
2072                                         unsigned long nr_reclaimed,
2073                                         unsigned long nr_scanned,
2074                                         struct scan_control *sc)
2075 {
2076         unsigned long pages_for_compaction;
2077         unsigned long inactive_lru_pages;
2078
2079         /* If not in reclaim/compaction mode, stop */
2080         if (!in_reclaim_compaction(sc))
2081                 return false;
2082
2083         /* Consider stopping depending on scan and reclaim activity */
2084         if (sc->gfp_mask & __GFP_REPEAT) {
2085                 /*
2086                  * For __GFP_REPEAT allocations, stop reclaiming if the
2087                  * full LRU list has been scanned and we are still failing
2088                  * to reclaim pages. This full LRU scan is potentially
2089                  * expensive but a __GFP_REPEAT caller really wants to succeed
2090                  */
2091                 if (!nr_reclaimed && !nr_scanned)
2092                         return false;
2093         } else {
2094                 /*
2095                  * For non-__GFP_REPEAT allocations which can presumably
2096                  * fail without consequence, stop if we failed to reclaim
2097                  * any pages from the last SWAP_CLUSTER_MAX number of
2098                  * pages that were scanned. This will return to the
2099                  * caller faster at the risk reclaim/compaction and
2100                  * the resulting allocation attempt fails
2101                  */
2102                 if (!nr_reclaimed)
2103                         return false;
2104         }
2105
2106         /*
2107          * If we have not reclaimed enough pages for compaction and the
2108          * inactive lists are large enough, continue reclaiming
2109          */
2110         pages_for_compaction = (2UL << sc->order);
2111         inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2112         if (get_nr_swap_pages() > 0)
2113                 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2114         if (sc->nr_reclaimed < pages_for_compaction &&
2115                         inactive_lru_pages > pages_for_compaction)
2116                 return true;
2117
2118         /* If compaction would go ahead or the allocation would succeed, stop */
2119         switch (compaction_suitable(zone, sc->order)) {
2120         case COMPACT_PARTIAL:
2121         case COMPACT_CONTINUE:
2122                 return false;
2123         default:
2124                 return true;
2125         }
2126 }
2127
2128 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2129 {
2130         unsigned long nr_reclaimed, nr_scanned;
2131
2132         do {
2133                 struct mem_cgroup *root = sc->target_mem_cgroup;
2134                 struct mem_cgroup_reclaim_cookie reclaim = {
2135                         .zone = zone,
2136                         .priority = sc->priority,
2137                 };
2138                 struct mem_cgroup *memcg;
2139
2140                 nr_reclaimed = sc->nr_reclaimed;
2141                 nr_scanned = sc->nr_scanned;
2142
2143                 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2144                 do {
2145                         struct lruvec *lruvec;
2146
2147                         lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2148
2149                         shrink_lruvec(lruvec, sc);
2150
2151                         /*
2152                          * Direct reclaim and kswapd have to scan all memory
2153                          * cgroups to fulfill the overall scan target for the
2154                          * zone.
2155                          *
2156                          * Limit reclaim, on the other hand, only cares about
2157                          * nr_to_reclaim pages to be reclaimed and it will
2158                          * retry with decreasing priority if one round over the
2159                          * whole hierarchy is not sufficient.
2160                          */
2161                         if (!global_reclaim(sc) &&
2162                                         sc->nr_reclaimed >= sc->nr_to_reclaim) {
2163                                 mem_cgroup_iter_break(root, memcg);
2164                                 break;
2165                         }
2166                         memcg = mem_cgroup_iter(root, memcg, &reclaim);
2167                 } while (memcg);
2168
2169                 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2170                            sc->nr_scanned - nr_scanned,
2171                            sc->nr_reclaimed - nr_reclaimed);
2172
2173         } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2174                                          sc->nr_scanned - nr_scanned, sc));
2175 }
2176
2177 /* Returns true if compaction should go ahead for a high-order request */
2178 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2179 {
2180         unsigned long balance_gap, watermark;
2181         bool watermark_ok;
2182
2183         /* Do not consider compaction for orders reclaim is meant to satisfy */
2184         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2185                 return false;
2186
2187         /*
2188          * Compaction takes time to run and there are potentially other
2189          * callers using the pages just freed. Continue reclaiming until
2190          * there is a buffer of free pages available to give compaction
2191          * a reasonable chance of completing and allocating the page
2192          */
2193         balance_gap = min(low_wmark_pages(zone),
2194                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2195                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2196         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2197         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2198
2199         /*
2200          * If compaction is deferred, reclaim up to a point where
2201          * compaction will have a chance of success when re-enabled
2202          */
2203         if (compaction_deferred(zone, sc->order))
2204                 return watermark_ok;
2205
2206         /* If compaction is not ready to start, keep reclaiming */
2207         if (!compaction_suitable(zone, sc->order))
2208                 return false;
2209
2210         return watermark_ok;
2211 }
2212
2213 /*
2214  * This is the direct reclaim path, for page-allocating processes.  We only
2215  * try to reclaim pages from zones which will satisfy the caller's allocation
2216  * request.
2217  *
2218  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2219  * Because:
2220  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2221  *    allocation or
2222  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2223  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2224  *    zone defense algorithm.
2225  *
2226  * If a zone is deemed to be full of pinned pages then just give it a light
2227  * scan then give up on it.
2228  *
2229  * This function returns true if a zone is being reclaimed for a costly
2230  * high-order allocation and compaction is ready to begin. This indicates to
2231  * the caller that it should consider retrying the allocation instead of
2232  * further reclaim.
2233  */
2234 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2235 {
2236         struct zoneref *z;
2237         struct zone *zone;
2238         unsigned long nr_soft_reclaimed;
2239         unsigned long nr_soft_scanned;
2240         bool aborted_reclaim = false;
2241
2242         /*
2243          * If the number of buffer_heads in the machine exceeds the maximum
2244          * allowed level, force direct reclaim to scan the highmem zone as
2245          * highmem pages could be pinning lowmem pages storing buffer_heads
2246          */
2247         if (buffer_heads_over_limit)
2248                 sc->gfp_mask |= __GFP_HIGHMEM;
2249
2250         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2251                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2252                 if (!populated_zone(zone))
2253                         continue;
2254                 /*
2255                  * Take care memory controller reclaiming has small influence
2256                  * to global LRU.
2257                  */
2258                 if (global_reclaim(sc)) {
2259                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2260                                 continue;
2261                         if (zone->all_unreclaimable &&
2262                                         sc->priority != DEF_PRIORITY)
2263                                 continue;       /* Let kswapd poll it */
2264                         if (IS_ENABLED(CONFIG_COMPACTION)) {
2265                                 /*
2266                                  * If we already have plenty of memory free for
2267                                  * compaction in this zone, don't free any more.
2268                                  * Even though compaction is invoked for any
2269                                  * non-zero order, only frequent costly order
2270                                  * reclamation is disruptive enough to become a
2271                                  * noticeable problem, like transparent huge
2272                                  * page allocations.
2273                                  */
2274                                 if (compaction_ready(zone, sc)) {
2275                                         aborted_reclaim = true;
2276                                         continue;
2277                                 }
2278                         }
2279                         /*
2280                          * This steals pages from memory cgroups over softlimit
2281                          * and returns the number of reclaimed pages and
2282                          * scanned pages. This works for global memory pressure
2283                          * and balancing, not for a memcg's limit.
2284                          */
2285                         nr_soft_scanned = 0;
2286                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2287                                                 sc->order, sc->gfp_mask,
2288                                                 &nr_soft_scanned);
2289                         sc->nr_reclaimed += nr_soft_reclaimed;
2290                         sc->nr_scanned += nr_soft_scanned;
2291                         /* need some check for avoid more shrink_zone() */
2292                 }
2293
2294                 shrink_zone(zone, sc);
2295         }
2296
2297         return aborted_reclaim;
2298 }
2299
2300 static bool zone_reclaimable(struct zone *zone)
2301 {
2302         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2303 }
2304
2305 /* All zones in zonelist are unreclaimable? */
2306 static bool all_unreclaimable(struct zonelist *zonelist,
2307                 struct scan_control *sc)
2308 {
2309         struct zoneref *z;
2310         struct zone *zone;
2311
2312         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2313                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2314                 if (!populated_zone(zone))
2315                         continue;
2316                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2317                         continue;
2318                 if (!zone->all_unreclaimable)
2319                         return false;
2320         }
2321
2322         return true;
2323 }
2324
2325 /*
2326  * This is the main entry point to direct page reclaim.
2327  *
2328  * If a full scan of the inactive list fails to free enough memory then we
2329  * are "out of memory" and something needs to be killed.
2330  *
2331  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2332  * high - the zone may be full of dirty or under-writeback pages, which this
2333  * caller can't do much about.  We kick the writeback threads and take explicit
2334  * naps in the hope that some of these pages can be written.  But if the
2335  * allocating task holds filesystem locks which prevent writeout this might not
2336  * work, and the allocation attempt will fail.
2337  *
2338  * returns:     0, if no pages reclaimed
2339  *              else, the number of pages reclaimed
2340  */
2341 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2342                                         struct scan_control *sc,
2343                                         struct shrink_control *shrink)
2344 {
2345         unsigned long total_scanned = 0;
2346         struct reclaim_state *reclaim_state = current->reclaim_state;
2347         struct zoneref *z;
2348         struct zone *zone;
2349         unsigned long writeback_threshold;
2350         bool aborted_reclaim;
2351
2352         delayacct_freepages_start();
2353
2354         if (global_reclaim(sc))
2355                 count_vm_event(ALLOCSTALL);
2356
2357         do {
2358                 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2359                                 sc->priority);
2360                 sc->nr_scanned = 0;
2361                 aborted_reclaim = shrink_zones(zonelist, sc);
2362
2363                 /*
2364                  * Don't shrink slabs when reclaiming memory from over limit
2365                  * cgroups but do shrink slab at least once when aborting
2366                  * reclaim for compaction to avoid unevenly scanning file/anon
2367                  * LRU pages over slab pages.
2368                  */
2369                 if (global_reclaim(sc)) {
2370                         unsigned long lru_pages = 0;
2371                         for_each_zone_zonelist(zone, z, zonelist,
2372                                         gfp_zone(sc->gfp_mask)) {
2373                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2374                                         continue;
2375
2376                                 lru_pages += zone_reclaimable_pages(zone);
2377                         }
2378
2379                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2380                         if (reclaim_state) {
2381                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2382                                 reclaim_state->reclaimed_slab = 0;
2383                         }
2384                 }
2385                 total_scanned += sc->nr_scanned;
2386                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2387                         goto out;
2388
2389                 /*
2390                  * If we're getting trouble reclaiming, start doing
2391                  * writepage even in laptop mode.
2392                  */
2393                 if (sc->priority < DEF_PRIORITY - 2)
2394                         sc->may_writepage = 1;
2395
2396                 /*
2397                  * Try to write back as many pages as we just scanned.  This
2398                  * tends to cause slow streaming writers to write data to the
2399                  * disk smoothly, at the dirtying rate, which is nice.   But
2400                  * that's undesirable in laptop mode, where we *want* lumpy
2401                  * writeout.  So in laptop mode, write out the whole world.
2402                  */
2403                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2404                 if (total_scanned > writeback_threshold) {
2405                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2406                                                 WB_REASON_TRY_TO_FREE_PAGES);
2407                         sc->may_writepage = 1;
2408                 }
2409         } while (--sc->priority >= 0 && !aborted_reclaim);
2410
2411 out:
2412         delayacct_freepages_end();
2413
2414         if (sc->nr_reclaimed)
2415                 return sc->nr_reclaimed;
2416
2417         /*
2418          * As hibernation is going on, kswapd is freezed so that it can't mark
2419          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2420          * check.
2421          */
2422         if (oom_killer_disabled)
2423                 return 0;
2424
2425         /* Aborted reclaim to try compaction? don't OOM, then */
2426         if (aborted_reclaim)
2427                 return 1;
2428
2429         /* top priority shrink_zones still had more to do? don't OOM, then */
2430         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2431                 return 1;
2432
2433         return 0;
2434 }
2435
2436 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2437 {
2438         struct zone *zone;
2439         unsigned long pfmemalloc_reserve = 0;
2440         unsigned long free_pages = 0;
2441         int i;
2442         bool wmark_ok;
2443
2444         for (i = 0; i <= ZONE_NORMAL; i++) {
2445                 zone = &pgdat->node_zones[i];
2446                 pfmemalloc_reserve += min_wmark_pages(zone);
2447                 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2448         }
2449
2450         wmark_ok = free_pages > pfmemalloc_reserve / 2;
2451
2452         /* kswapd must be awake if processes are being throttled */
2453         if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2454                 pgdat->classzone_idx = min(pgdat->classzone_idx,
2455                                                 (enum zone_type)ZONE_NORMAL);
2456                 wake_up_interruptible(&pgdat->kswapd_wait);
2457         }
2458
2459         return wmark_ok;
2460 }
2461
2462 /*
2463  * Throttle direct reclaimers if backing storage is backed by the network
2464  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2465  * depleted. kswapd will continue to make progress and wake the processes
2466  * when the low watermark is reached.
2467  *
2468  * Returns true if a fatal signal was delivered during throttling. If this
2469  * happens, the page allocator should not consider triggering the OOM killer.
2470  */
2471 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2472                                         nodemask_t *nodemask)
2473 {
2474         struct zone *zone;
2475         int high_zoneidx = gfp_zone(gfp_mask);
2476         pg_data_t *pgdat;
2477
2478         /*
2479          * Kernel threads should not be throttled as they may be indirectly
2480          * responsible for cleaning pages necessary for reclaim to make forward
2481          * progress. kjournald for example may enter direct reclaim while
2482          * committing a transaction where throttling it could forcing other
2483          * processes to block on log_wait_commit().
2484          */
2485         if (current->flags & PF_KTHREAD)
2486                 goto out;
2487
2488         /*
2489          * If a fatal signal is pending, this process should not throttle.
2490          * It should return quickly so it can exit and free its memory
2491          */
2492         if (fatal_signal_pending(current))
2493                 goto out;
2494
2495         /* Check if the pfmemalloc reserves are ok */
2496         first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2497         pgdat = zone->zone_pgdat;
2498         if (pfmemalloc_watermark_ok(pgdat))
2499                 goto out;
2500
2501         /* Account for the throttling */
2502         count_vm_event(PGSCAN_DIRECT_THROTTLE);
2503
2504         /*
2505          * If the caller cannot enter the filesystem, it's possible that it
2506          * is due to the caller holding an FS lock or performing a journal
2507          * transaction in the case of a filesystem like ext[3|4]. In this case,
2508          * it is not safe to block on pfmemalloc_wait as kswapd could be
2509          * blocked waiting on the same lock. Instead, throttle for up to a
2510          * second before continuing.
2511          */
2512         if (!(gfp_mask & __GFP_FS)) {
2513                 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2514                         pfmemalloc_watermark_ok(pgdat), HZ);
2515
2516                 goto check_pending;
2517         }
2518
2519         /* Throttle until kswapd wakes the process */
2520         wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2521                 pfmemalloc_watermark_ok(pgdat));
2522
2523 check_pending:
2524         if (fatal_signal_pending(current))
2525                 return true;
2526
2527 out:
2528         return false;
2529 }
2530
2531 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2532                                 gfp_t gfp_mask, nodemask_t *nodemask)
2533 {
2534         unsigned long nr_reclaimed;
2535         struct scan_control sc = {
2536                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2537                 .may_writepage = !laptop_mode,
2538                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2539                 .may_unmap = 1,
2540                 .may_swap = 1,
2541                 .order = order,
2542                 .priority = DEF_PRIORITY,
2543                 .target_mem_cgroup = NULL,
2544                 .nodemask = nodemask,
2545         };
2546         struct shrink_control shrink = {
2547                 .gfp_mask = sc.gfp_mask,
2548         };
2549
2550         /*
2551          * Do not enter reclaim if fatal signal was delivered while throttled.
2552          * 1 is returned so that the page allocator does not OOM kill at this
2553          * point.
2554          */
2555         if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2556                 return 1;
2557
2558         trace_mm_vmscan_direct_reclaim_begin(order,
2559                                 sc.may_writepage,
2560                                 gfp_mask);
2561
2562         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2563
2564         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2565
2566         return nr_reclaimed;
2567 }
2568
2569 #ifdef CONFIG_MEMCG
2570
2571 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2572                                                 gfp_t gfp_mask, bool noswap,
2573                                                 struct zone *zone,
2574                                                 unsigned long *nr_scanned)
2575 {
2576         struct scan_control sc = {
2577                 .nr_scanned = 0,
2578                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2579                 .may_writepage = !laptop_mode,
2580                 .may_unmap = 1,
2581                 .may_swap = !noswap,
2582                 .order = 0,
2583                 .priority = 0,
2584                 .target_mem_cgroup = memcg,
2585         };
2586         struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2587
2588         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2589                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2590
2591         trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2592                                                       sc.may_writepage,
2593                                                       sc.gfp_mask);
2594
2595         /*
2596          * NOTE: Although we can get the priority field, using it
2597          * here is not a good idea, since it limits the pages we can scan.
2598          * if we don't reclaim here, the shrink_zone from balance_pgdat
2599          * will pick up pages from other mem cgroup's as well. We hack
2600          * the priority and make it zero.
2601          */
2602         shrink_lruvec(lruvec, &sc);
2603
2604         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2605
2606         *nr_scanned = sc.nr_scanned;
2607         return sc.nr_reclaimed;
2608 }
2609
2610 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2611                                            gfp_t gfp_mask,
2612                                            bool noswap)
2613 {
2614         struct zonelist *zonelist;
2615         unsigned long nr_reclaimed;
2616         int nid;
2617         struct scan_control sc = {
2618                 .may_writepage = !laptop_mode,
2619                 .may_unmap = 1,
2620                 .may_swap = !noswap,
2621                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2622                 .order = 0,
2623                 .priority = DEF_PRIORITY,
2624                 .target_mem_cgroup = memcg,
2625                 .nodemask = NULL, /* we don't care the placement */
2626                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2627                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2628         };
2629         struct shrink_control shrink = {
2630                 .gfp_mask = sc.gfp_mask,
2631         };
2632
2633         /*
2634          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2635          * take care of from where we get pages. So the node where we start the
2636          * scan does not need to be the current node.
2637          */
2638         nid = mem_cgroup_select_victim_node(memcg);
2639
2640         zonelist = NODE_DATA(nid)->node_zonelists;
2641
2642         trace_mm_vmscan_memcg_reclaim_begin(0,
2643                                             sc.may_writepage,
2644                                             sc.gfp_mask);
2645
2646         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2647
2648         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2649
2650         return nr_reclaimed;
2651 }
2652 #endif
2653
2654 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2655 {
2656         struct mem_cgroup *memcg;
2657
2658         if (!total_swap_pages)
2659                 return;
2660
2661         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2662         do {
2663                 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2664
2665                 if (inactive_anon_is_low(lruvec))
2666                         shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2667                                            sc, LRU_ACTIVE_ANON);
2668
2669                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2670         } while (memcg);
2671 }
2672
2673 static bool zone_balanced(struct zone *zone, int order,
2674                           unsigned long balance_gap, int classzone_idx)
2675 {
2676         if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2677                                     balance_gap, classzone_idx, 0))
2678                 return false;
2679
2680         if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2681             !compaction_suitable(zone, order))
2682                 return false;
2683
2684         return true;
2685 }
2686
2687 /*
2688  * pgdat_balanced() is used when checking if a node is balanced.
2689  *
2690  * For order-0, all zones must be balanced!
2691  *
2692  * For high-order allocations only zones that meet watermarks and are in a
2693  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2694  * total of balanced pages must be at least 25% of the zones allowed by
2695  * classzone_idx for the node to be considered balanced. Forcing all zones to
2696  * be balanced for high orders can cause excessive reclaim when there are
2697  * imbalanced zones.
2698  * The choice of 25% is due to
2699  *   o a 16M DMA zone that is balanced will not balance a zone on any
2700  *     reasonable sized machine
2701  *   o On all other machines, the top zone must be at least a reasonable
2702  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2703  *     would need to be at least 256M for it to be balance a whole node.
2704  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2705  *     to balance a node on its own. These seemed like reasonable ratios.
2706  */
2707 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2708 {
2709         unsigned long managed_pages = 0;
2710         unsigned long balanced_pages = 0;
2711         int i;
2712
2713         /* Check the watermark levels */
2714         for (i = 0; i <= classzone_idx; i++) {
2715                 struct zone *zone = pgdat->node_zones + i;
2716
2717                 if (!populated_zone(zone))
2718                         continue;
2719
2720                 managed_pages += zone->managed_pages;
2721
2722                 /*
2723                  * A special case here:
2724                  *
2725                  * balance_pgdat() skips over all_unreclaimable after
2726                  * DEF_PRIORITY. Effectively, it considers them balanced so
2727                  * they must be considered balanced here as well!
2728                  */
2729                 if (zone->all_unreclaimable) {
2730                         balanced_pages += zone->managed_pages;
2731                         continue;
2732                 }
2733
2734                 if (zone_balanced(zone, order, 0, i))
2735                         balanced_pages += zone->managed_pages;
2736                 else if (!order)
2737                         return false;
2738         }
2739
2740         if (order)
2741                 return balanced_pages >= (managed_pages >> 2);
2742         else
2743                 return true;
2744 }
2745
2746 /*
2747  * Prepare kswapd for sleeping. This verifies that there are no processes
2748  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2749  *
2750  * Returns true if kswapd is ready to sleep
2751  */
2752 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2753                                         int classzone_idx)
2754 {
2755         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2756         if (remaining)
2757                 return false;
2758
2759         /*
2760          * There is a potential race between when kswapd checks its watermarks
2761          * and a process gets throttled. There is also a potential race if
2762          * processes get throttled, kswapd wakes, a large process exits therby
2763          * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2764          * is going to sleep, no process should be sleeping on pfmemalloc_wait
2765          * so wake them now if necessary. If necessary, processes will wake
2766          * kswapd and get throttled again
2767          */
2768         if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2769                 wake_up(&pgdat->pfmemalloc_wait);
2770                 return false;
2771         }
2772
2773         return pgdat_balanced(pgdat, order, classzone_idx);
2774 }
2775
2776 /*
2777  * kswapd shrinks the zone by the number of pages required to reach
2778  * the high watermark.
2779  *
2780  * Returns true if kswapd scanned at least the requested number of pages to
2781  * reclaim or if the lack of progress was due to pages under writeback.
2782  * This is used to determine if the scanning priority needs to be raised.
2783  */
2784 static bool kswapd_shrink_zone(struct zone *zone,
2785                                int classzone_idx,
2786                                struct scan_control *sc,
2787                                unsigned long lru_pages,
2788                                unsigned long *nr_attempted)
2789 {
2790         unsigned long nr_slab;
2791         int testorder = sc->order;
2792         unsigned long balance_gap;
2793         struct reclaim_state *reclaim_state = current->reclaim_state;
2794         struct shrink_control shrink = {
2795                 .gfp_mask = sc->gfp_mask,
2796         };
2797         bool lowmem_pressure;
2798
2799         /* Reclaim above the high watermark. */
2800         sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2801
2802         /*
2803          * Kswapd reclaims only single pages with compaction enabled. Trying
2804          * too hard to reclaim until contiguous free pages have become
2805          * available can hurt performance by evicting too much useful data
2806          * from memory. Do not reclaim more than needed for compaction.
2807          */
2808         if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2809                         compaction_suitable(zone, sc->order) !=
2810                                 COMPACT_SKIPPED)
2811                 testorder = 0;
2812
2813         /*
2814          * We put equal pressure on every zone, unless one zone has way too
2815          * many pages free already. The "too many pages" is defined as the
2816          * high wmark plus a "gap" where the gap is either the low
2817          * watermark or 1% of the zone, whichever is smaller.
2818          */
2819         balance_gap = min(low_wmark_pages(zone),
2820                 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2821                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2822
2823         /*
2824          * If there is no low memory pressure or the zone is balanced then no
2825          * reclaim is necessary
2826          */
2827         lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2828         if (!lowmem_pressure && zone_balanced(zone, testorder,
2829                                                 balance_gap, classzone_idx))
2830                 return true;
2831
2832         shrink_zone(zone, sc);
2833
2834         reclaim_state->reclaimed_slab = 0;
2835         nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2836         sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2837
2838         /* Account for the number of pages attempted to reclaim */
2839         *nr_attempted += sc->nr_to_reclaim;
2840
2841         if (nr_slab == 0 && !zone_reclaimable(zone))
2842                 zone->all_unreclaimable = 1;
2843
2844         zone_clear_flag(zone, ZONE_WRITEBACK);
2845
2846         /*
2847          * If a zone reaches its high watermark, consider it to be no longer
2848          * congested. It's possible there are dirty pages backed by congested
2849          * BDIs but as pressure is relieved, speculatively avoid congestion
2850          * waits.
2851          */
2852         if (!zone->all_unreclaimable &&
2853             zone_balanced(zone, testorder, 0, classzone_idx)) {
2854                 zone_clear_flag(zone, ZONE_CONGESTED);
2855                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2856         }
2857
2858         return sc->nr_scanned >= sc->nr_to_reclaim;
2859 }
2860
2861 /*
2862  * For kswapd, balance_pgdat() will work across all this node's zones until
2863  * they are all at high_wmark_pages(zone).
2864  *
2865  * Returns the final order kswapd was reclaiming at
2866  *
2867  * There is special handling here for zones which are full of pinned pages.
2868  * This can happen if the pages are all mlocked, or if they are all used by
2869  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2870  * What we do is to detect the case where all pages in the zone have been
2871  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2872  * dead and from now on, only perform a short scan.  Basically we're polling
2873  * the zone for when the problem goes away.
2874  *
2875  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2876  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2877  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2878  * lower zones regardless of the number of free pages in the lower zones. This
2879  * interoperates with the page allocator fallback scheme to ensure that aging
2880  * of pages is balanced across the zones.
2881  */
2882 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2883                                                         int *classzone_idx)
2884 {
2885         int i;
2886         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2887         unsigned long nr_soft_reclaimed;
2888         unsigned long nr_soft_scanned;
2889         struct scan_control sc = {
2890                 .gfp_mask = GFP_KERNEL,
2891                 .priority = DEF_PRIORITY,
2892                 .may_unmap = 1,
2893                 .may_swap = 1,
2894                 .may_writepage = !laptop_mode,
2895                 .order = order,
2896                 .target_mem_cgroup = NULL,
2897         };
2898         count_vm_event(PAGEOUTRUN);
2899
2900         do {
2901                 unsigned long lru_pages = 0;
2902                 unsigned long nr_attempted = 0;
2903                 bool raise_priority = true;
2904                 bool pgdat_needs_compaction = (order > 0);
2905
2906                 sc.nr_reclaimed = 0;
2907
2908                 /*
2909                  * Scan in the highmem->dma direction for the highest
2910                  * zone which needs scanning
2911                  */
2912                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2913                         struct zone *zone = pgdat->node_zones + i;
2914
2915                         if (!populated_zone(zone))
2916                                 continue;
2917
2918                         if (zone->all_unreclaimable &&
2919                             sc.priority != DEF_PRIORITY)
2920                                 continue;
2921
2922                         /*
2923                          * Do some background aging of the anon list, to give
2924                          * pages a chance to be referenced before reclaiming.
2925                          */
2926                         age_active_anon(zone, &sc);
2927
2928                         /*
2929                          * If the number of buffer_heads in the machine
2930                          * exceeds the maximum allowed level and this node
2931                          * has a highmem zone, force kswapd to reclaim from
2932                          * it to relieve lowmem pressure.
2933                          */
2934                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2935                                 end_zone = i;
2936                                 break;
2937                         }
2938
2939                         if (!zone_balanced(zone, order, 0, 0)) {
2940                                 end_zone = i;
2941                                 break;
2942                         } else {
2943                                 /*
2944                                  * If balanced, clear the dirty and congested
2945                                  * flags
2946                                  */
2947                                 zone_clear_flag(zone, ZONE_CONGESTED);
2948                                 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2949                         }
2950                 }
2951
2952                 if (i < 0)
2953                         goto out;
2954
2955                 for (i = 0; i <= end_zone; i++) {
2956                         struct zone *zone = pgdat->node_zones + i;
2957
2958                         if (!populated_zone(zone))
2959                                 continue;
2960
2961                         lru_pages += zone_reclaimable_pages(zone);
2962
2963                         /*
2964                          * If any zone is currently balanced then kswapd will
2965                          * not call compaction as it is expected that the
2966                          * necessary pages are already available.
2967                          */
2968                         if (pgdat_needs_compaction &&
2969                                         zone_watermark_ok(zone, order,
2970                                                 low_wmark_pages(zone),
2971                                                 *classzone_idx, 0))
2972                                 pgdat_needs_compaction = false;
2973                 }
2974
2975                 /*
2976                  * If we're getting trouble reclaiming, start doing writepage
2977                  * even in laptop mode.
2978                  */
2979                 if (sc.priority < DEF_PRIORITY - 2)
2980                         sc.may_writepage = 1;
2981
2982                 /*
2983                  * Now scan the zone in the dma->highmem direction, stopping
2984                  * at the last zone which needs scanning.
2985                  *
2986                  * We do this because the page allocator works in the opposite
2987                  * direction.  This prevents the page allocator from allocating
2988                  * pages behind kswapd's direction of progress, which would
2989                  * cause too much scanning of the lower zones.
2990                  */
2991                 for (i = 0; i <= end_zone; i++) {
2992                         struct zone *zone = pgdat->node_zones + i;
2993
2994                         if (!populated_zone(zone))
2995                                 continue;
2996
2997                         if (zone->all_unreclaimable &&
2998                             sc.priority != DEF_PRIORITY)
2999                                 continue;
3000
3001                         sc.nr_scanned = 0;
3002
3003                         nr_soft_scanned = 0;
3004                         /*
3005                          * Call soft limit reclaim before calling shrink_zone.
3006                          */
3007                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3008                                                         order, sc.gfp_mask,
3009                                                         &nr_soft_scanned);
3010                         sc.nr_reclaimed += nr_soft_reclaimed;
3011
3012                         /*
3013                          * There should be no need to raise the scanning
3014                          * priority if enough pages are already being scanned
3015                          * that that high watermark would be met at 100%
3016                          * efficiency.
3017                          */
3018                         if (kswapd_shrink_zone(zone, end_zone, &sc,
3019                                         lru_pages, &nr_attempted))
3020                                 raise_priority = false;
3021                 }
3022
3023                 /*
3024                  * If the low watermark is met there is no need for processes
3025                  * to be throttled on pfmemalloc_wait as they should not be
3026                  * able to safely make forward progress. Wake them
3027                  */
3028                 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3029                                 pfmemalloc_watermark_ok(pgdat))
3030                         wake_up(&pgdat->pfmemalloc_wait);
3031
3032                 /*
3033                  * Fragmentation may mean that the system cannot be rebalanced
3034                  * for high-order allocations in all zones. If twice the
3035                  * allocation size has been reclaimed and the zones are still
3036                  * not balanced then recheck the watermarks at order-0 to
3037                  * prevent kswapd reclaiming excessively. Assume that a
3038                  * process requested a high-order can direct reclaim/compact.
3039                  */
3040                 if (order && sc.nr_reclaimed >= 2UL << order)
3041                         order = sc.order = 0;
3042
3043                 /* Check if kswapd should be suspending */
3044                 if (try_to_freeze() || kthread_should_stop())
3045                         break;
3046
3047                 /*
3048                  * Compact if necessary and kswapd is reclaiming at least the
3049                  * high watermark number of pages as requsted
3050                  */
3051                 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3052                         compact_pgdat(pgdat, order);
3053
3054                 /*
3055                  * Raise priority if scanning rate is too low or there was no
3056                  * progress in reclaiming pages
3057                  */
3058                 if (raise_priority || !sc.nr_reclaimed)
3059                         sc.priority--;
3060         } while (sc.priority >= 1 &&
3061                  !pgdat_balanced(pgdat, order, *classzone_idx));
3062
3063 out:
3064         /*
3065          * Return the order we were reclaiming at so prepare_kswapd_sleep()
3066          * makes a decision on the order we were last reclaiming at. However,
3067          * if another caller entered the allocator slow path while kswapd
3068          * was awake, order will remain at the higher level
3069          */
3070         *classzone_idx = end_zone;
3071         return order;
3072 }
3073
3074 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3075 {
3076         long remaining = 0;
3077         DEFINE_WAIT(wait);
3078
3079         if (freezing(current) || kthread_should_stop())
3080                 return;
3081
3082         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3083
3084         /* Try to sleep for a short interval */
3085         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3086                 remaining = schedule_timeout(HZ/10);
3087                 finish_wait(&pgdat->kswapd_wait, &wait);
3088                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3089         }
3090
3091         /*
3092          * After a short sleep, check if it was a premature sleep. If not, then
3093          * go fully to sleep until explicitly woken up.
3094          */
3095         if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3096                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3097
3098                 /*
3099                  * vmstat counters are not perfectly accurate and the estimated
3100                  * value for counters such as NR_FREE_PAGES can deviate from the
3101                  * true value by nr_online_cpus * threshold. To avoid the zone
3102                  * watermarks being breached while under pressure, we reduce the
3103                  * per-cpu vmstat threshold while kswapd is awake and restore
3104                  * them before going back to sleep.
3105                  */
3106                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3107
3108                 /*
3109                  * Compaction records what page blocks it recently failed to
3110                  * isolate pages from and skips them in the future scanning.
3111                  * When kswapd is going to sleep, it is reasonable to assume
3112                  * that pages and compaction may succeed so reset the cache.
3113                  */
3114                 reset_isolation_suitable(pgdat);
3115
3116                 if (!kthread_should_stop())
3117                         schedule();
3118
3119                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3120         } else {
3121                 if (remaining)
3122                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3123                 else
3124                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3125         }
3126         finish_wait(&pgdat->kswapd_wait, &wait);
3127 }
3128
3129 /*
3130  * The background pageout daemon, started as a kernel thread
3131  * from the init process.
3132  *
3133  * This basically trickles out pages so that we have _some_
3134  * free memory available even if there is no other activity
3135  * that frees anything up. This is needed for things like routing
3136  * etc, where we otherwise might have all activity going on in
3137  * asynchronous contexts that cannot page things out.
3138  *
3139  * If there are applications that are active memory-allocators
3140  * (most normal use), this basically shouldn't matter.
3141  */
3142 static int kswapd(void *p)
3143 {
3144         unsigned long order, new_order;
3145         unsigned balanced_order;
3146         int classzone_idx, new_classzone_idx;
3147         int balanced_classzone_idx;
3148         pg_data_t *pgdat = (pg_data_t*)p;
3149         struct task_struct *tsk = current;
3150
3151         struct reclaim_state reclaim_state = {
3152                 .reclaimed_slab = 0,
3153         };
3154         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3155
3156         lockdep_set_current_reclaim_state(GFP_KERNEL);
3157
3158         if (!cpumask_empty(cpumask))
3159                 set_cpus_allowed_ptr(tsk, cpumask);
3160         current->reclaim_state = &reclaim_state;
3161
3162         /*
3163          * Tell the memory management that we're a "memory allocator",
3164          * and that if we need more memory we should get access to it
3165          * regardless (see "__alloc_pages()"). "kswapd" should
3166          * never get caught in the normal page freeing logic.
3167          *
3168          * (Kswapd normally doesn't need memory anyway, but sometimes
3169          * you need a small amount of memory in order to be able to
3170          * page out something else, and this flag essentially protects
3171          * us from recursively trying to free more memory as we're
3172          * trying to free the first piece of memory in the first place).
3173          */
3174         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3175         set_freezable();
3176
3177         order = new_order = 0;
3178         balanced_order = 0;
3179         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3180         balanced_classzone_idx = classzone_idx;
3181         for ( ; ; ) {
3182                 bool ret;
3183
3184                 /*
3185                  * If the last balance_pgdat was unsuccessful it's unlikely a
3186                  * new request of a similar or harder type will succeed soon
3187                  * so consider going to sleep on the basis we reclaimed at
3188                  */
3189                 if (balanced_classzone_idx >= new_classzone_idx &&
3190                                         balanced_order == new_order) {
3191                         new_order = pgdat->kswapd_max_order;
3192                         new_classzone_idx = pgdat->classzone_idx;
3193                         pgdat->kswapd_max_order =  0;
3194                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3195                 }
3196
3197                 if (order < new_order || classzone_idx > new_classzone_idx) {
3198                         /*
3199                          * Don't sleep if someone wants a larger 'order'
3200                          * allocation or has tigher zone constraints
3201                          */
3202                         order = new_order;
3203                         classzone_idx = new_classzone_idx;
3204                 } else {
3205                         kswapd_try_to_sleep(pgdat, balanced_order,
3206                                                 balanced_classzone_idx);
3207                         order = pgdat->kswapd_max_order;
3208                         classzone_idx = pgdat->classzone_idx;
3209                         new_order = order;
3210                         new_classzone_idx = classzone_idx;
3211                         pgdat->kswapd_max_order = 0;
3212                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3213                 }
3214
3215                 ret = try_to_freeze();
3216                 if (kthread_should_stop())
3217                         break;
3218
3219                 /*
3220                  * We can speed up thawing tasks if we don't call balance_pgdat
3221                  * after returning from the refrigerator
3222                  */
3223                 if (!ret) {
3224                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3225                         balanced_classzone_idx = classzone_idx;
3226                         balanced_order = balance_pgdat(pgdat, order,
3227                                                 &balanced_classzone_idx);
3228                 }
3229         }
3230
3231         current->reclaim_state = NULL;
3232         return 0;
3233 }
3234
3235 /*
3236  * A zone is low on free memory, so wake its kswapd task to service it.
3237  */
3238 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3239 {
3240         pg_data_t *pgdat;
3241
3242         if (!populated_zone(zone))
3243                 return;
3244
3245         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3246                 return;
3247         pgdat = zone->zone_pgdat;
3248         if (pgdat->kswapd_max_order < order) {
3249                 pgdat->kswapd_max_order = order;
3250                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3251         }
3252         if (!waitqueue_active(&pgdat->kswapd_wait))
3253                 return;
3254         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3255                 return;
3256
3257         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3258         wake_up_interruptible(&pgdat->kswapd_wait);
3259 }
3260
3261 /*
3262  * The reclaimable count would be mostly accurate.
3263  * The less reclaimable pages may be
3264  * - mlocked pages, which will be moved to unevictable list when encountered
3265  * - mapped pages, which may require several travels to be reclaimed
3266  * - dirty pages, which is not "instantly" reclaimable
3267  */
3268 unsigned long global_reclaimable_pages(void)
3269 {
3270         int nr;
3271
3272         nr = global_page_state(NR_ACTIVE_FILE) +
3273              global_page_state(NR_INACTIVE_FILE);
3274
3275         if (get_nr_swap_pages() > 0)
3276                 nr += global_page_state(NR_ACTIVE_ANON) +
3277                       global_page_state(NR_INACTIVE_ANON);
3278
3279         return nr;
3280 }
3281
3282 unsigned long zone_reclaimable_pages(struct zone *zone)
3283 {
3284         int nr;
3285
3286         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3287              zone_page_state(zone, NR_INACTIVE_FILE);
3288
3289         if (get_nr_swap_pages() > 0)
3290                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3291                       zone_page_state(zone, NR_INACTIVE_ANON);
3292
3293         return nr;
3294 }
3295
3296 #ifdef CONFIG_HIBERNATION
3297 /*
3298  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3299  * freed pages.
3300  *
3301  * Rather than trying to age LRUs the aim is to preserve the overall
3302  * LRU order by reclaiming preferentially
3303  * inactive > active > active referenced > active mapped
3304  */
3305 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3306 {
3307         struct reclaim_state reclaim_state;
3308         struct scan_control sc = {
3309                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3310                 .may_swap = 1,
3311                 .may_unmap = 1,
3312                 .may_writepage = 1,
3313                 .nr_to_reclaim = nr_to_reclaim,
3314                 .hibernation_mode = 1,
3315                 .order = 0,
3316                 .priority = DEF_PRIORITY,
3317         };
3318         struct shrink_control shrink = {
3319                 .gfp_mask = sc.gfp_mask,
3320         };
3321         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3322         struct task_struct *p = current;
3323         unsigned long nr_reclaimed;
3324
3325         p->flags |= PF_MEMALLOC;
3326         lockdep_set_current_reclaim_state(sc.gfp_mask);
3327         reclaim_state.reclaimed_slab = 0;
3328         p->reclaim_state = &reclaim_state;
3329
3330         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3331
3332         p->reclaim_state = NULL;
3333         lockdep_clear_current_reclaim_state();
3334         p->flags &= ~PF_MEMALLOC;
3335
3336         return nr_reclaimed;
3337 }
3338 #endif /* CONFIG_HIBERNATION */
3339
3340 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3341    not required for correctness.  So if the last cpu in a node goes
3342    away, we get changed to run anywhere: as the first one comes back,
3343    restore their cpu bindings. */
3344 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3345                         void *hcpu)
3346 {
3347         int nid;
3348
3349         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3350                 for_each_node_state(nid, N_MEMORY) {
3351                         pg_data_t *pgdat = NODE_DATA(nid);
3352                         const struct cpumask *mask;
3353
3354                         mask = cpumask_of_node(pgdat->node_id);
3355
3356                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3357                                 /* One of our CPUs online: restore mask */
3358                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3359                 }
3360         }
3361         return NOTIFY_OK;
3362 }
3363
3364 /*
3365  * This kswapd start function will be called by init and node-hot-add.
3366  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3367  */
3368 int kswapd_run(int nid)
3369 {
3370         pg_data_t *pgdat = NODE_DATA(nid);
3371         int ret = 0;
3372
3373         if (pgdat->kswapd)
3374                 return 0;
3375
3376         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3377         if (IS_ERR(pgdat->kswapd)) {
3378                 /* failure at boot is fatal */
3379                 BUG_ON(system_state == SYSTEM_BOOTING);
3380                 pr_err("Failed to start kswapd on node %d\n", nid);
3381                 ret = PTR_ERR(pgdat->kswapd);
3382                 pgdat->kswapd = NULL;
3383         }
3384         return ret;
3385 }
3386
3387 /*
3388  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3389  * hold lock_memory_hotplug().
3390  */
3391 void kswapd_stop(int nid)
3392 {
3393         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3394
3395         if (kswapd) {
3396                 kthread_stop(kswapd);
3397                 NODE_DATA(nid)->kswapd = NULL;
3398         }
3399 }
3400
3401 static int __init kswapd_init(void)
3402 {
3403         int nid;
3404
3405         swap_setup();
3406         for_each_node_state(nid, N_MEMORY)
3407                 kswapd_run(nid);
3408         hotcpu_notifier(cpu_callback, 0);
3409         return 0;
3410 }
3411
3412 module_init(kswapd_init)
3413
3414 #ifdef CONFIG_NUMA
3415 /*
3416  * Zone reclaim mode
3417  *
3418  * If non-zero call zone_reclaim when the number of free pages falls below
3419  * the watermarks.
3420  */
3421 int zone_reclaim_mode __read_mostly;
3422
3423 #define RECLAIM_OFF 0
3424 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3425 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3426 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3427
3428 /*
3429  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3430  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3431  * a zone.
3432  */
3433 #define ZONE_RECLAIM_PRIORITY 4
3434
3435 /*
3436  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3437  * occur.
3438  */
3439 int sysctl_min_unmapped_ratio = 1;
3440
3441 /*
3442  * If the number of slab pages in a zone grows beyond this percentage then
3443  * slab reclaim needs to occur.
3444  */
3445 int sysctl_min_slab_ratio = 5;
3446
3447 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3448 {
3449         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3450         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3451                 zone_page_state(zone, NR_ACTIVE_FILE);
3452
3453         /*
3454          * It's possible for there to be more file mapped pages than
3455          * accounted for by the pages on the file LRU lists because
3456          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3457          */
3458         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3459 }
3460
3461 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3462 static long zone_pagecache_reclaimable(struct zone *zone)
3463 {
3464         long nr_pagecache_reclaimable;
3465         long delta = 0;
3466
3467         /*
3468          * If RECLAIM_SWAP is set, then all file pages are considered
3469          * potentially reclaimable. Otherwise, we have to worry about
3470          * pages like swapcache and zone_unmapped_file_pages() provides
3471          * a better estimate
3472          */
3473         if (zone_reclaim_mode & RECLAIM_SWAP)
3474                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3475         else
3476                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3477
3478         /* If we can't clean pages, remove dirty pages from consideration */
3479         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3480                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3481
3482         /* Watch for any possible underflows due to delta */
3483         if (unlikely(delta > nr_pagecache_reclaimable))
3484                 delta = nr_pagecache_reclaimable;
3485
3486         return nr_pagecache_reclaimable - delta;
3487 }
3488
3489 /*
3490  * Try to free up some pages from this zone through reclaim.
3491  */
3492 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3493 {
3494         /* Minimum pages needed in order to stay on node */
3495         const unsigned long nr_pages = 1 << order;
3496         struct task_struct *p = current;
3497         struct reclaim_state reclaim_state;
3498         struct scan_control sc = {
3499                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3500                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3501                 .may_swap = 1,
3502                 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3503                 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3504                 .order = order,
3505                 .priority = ZONE_RECLAIM_PRIORITY,
3506         };
3507         struct shrink_control shrink = {
3508                 .gfp_mask = sc.gfp_mask,
3509         };
3510         unsigned long nr_slab_pages0, nr_slab_pages1;
3511
3512         cond_resched();
3513         /*
3514          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3515          * and we also need to be able to write out pages for RECLAIM_WRITE
3516          * and RECLAIM_SWAP.
3517          */
3518         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3519         lockdep_set_current_reclaim_state(gfp_mask);
3520         reclaim_state.reclaimed_slab = 0;
3521         p->reclaim_state = &reclaim_state;
3522
3523         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3524                 /*
3525                  * Free memory by calling shrink zone with increasing
3526                  * priorities until we have enough memory freed.
3527                  */
3528                 do {
3529                         shrink_zone(zone, &sc);
3530                 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3531         }
3532
3533         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3534         if (nr_slab_pages0 > zone->min_slab_pages) {
3535                 /*
3536                  * shrink_slab() does not currently allow us to determine how
3537                  * many pages were freed in this zone. So we take the current
3538                  * number of slab pages and shake the slab until it is reduced
3539                  * by the same nr_pages that we used for reclaiming unmapped
3540                  * pages.
3541                  *
3542                  * Note that shrink_slab will free memory on all zones and may
3543                  * take a long time.
3544                  */
3545                 for (;;) {
3546                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3547
3548                         /* No reclaimable slab or very low memory pressure */
3549                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3550                                 break;
3551
3552                         /* Freed enough memory */
3553                         nr_slab_pages1 = zone_page_state(zone,
3554                                                         NR_SLAB_RECLAIMABLE);
3555                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3556                                 break;
3557                 }
3558
3559                 /*
3560                  * Update nr_reclaimed by the number of slab pages we
3561                  * reclaimed from this zone.
3562                  */
3563                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3564                 if (nr_slab_pages1 < nr_slab_pages0)
3565                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3566         }
3567
3568         p->reclaim_state = NULL;
3569         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3570         lockdep_clear_current_reclaim_state();
3571         return sc.nr_reclaimed >= nr_pages;
3572 }
3573
3574 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3575 {
3576         int node_id;
3577         int ret;
3578
3579         /*
3580          * Zone reclaim reclaims unmapped file backed pages and
3581          * slab pages if we are over the defined limits.
3582          *
3583          * A small portion of unmapped file backed pages is needed for
3584          * file I/O otherwise pages read by file I/O will be immediately
3585          * thrown out if the zone is overallocated. So we do not reclaim
3586          * if less than a specified percentage of the zone is used by
3587          * unmapped file backed pages.
3588          */
3589         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3590             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3591                 return ZONE_RECLAIM_FULL;
3592
3593         if (zone->all_unreclaimable)
3594                 return ZONE_RECLAIM_FULL;
3595
3596         /*
3597          * Do not scan if the allocation should not be delayed.
3598          */
3599         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3600                 return ZONE_RECLAIM_NOSCAN;
3601
3602         /*
3603          * Only run zone reclaim on the local zone or on zones that do not
3604          * have associated processors. This will favor the local processor
3605          * over remote processors and spread off node memory allocations
3606          * as wide as possible.
3607          */
3608         node_id = zone_to_nid(zone);
3609         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3610                 return ZONE_RECLAIM_NOSCAN;
3611
3612         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3613                 return ZONE_RECLAIM_NOSCAN;
3614
3615         ret = __zone_reclaim(zone, gfp_mask, order);
3616         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3617
3618         if (!ret)
3619                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3620
3621         return ret;
3622 }
3623 #endif
3624
3625 /*
3626  * page_evictable - test whether a page is evictable
3627  * @page: the page to test
3628  *
3629  * Test whether page is evictable--i.e., should be placed on active/inactive
3630  * lists vs unevictable list.
3631  *
3632  * Reasons page might not be evictable:
3633  * (1) page's mapping marked unevictable
3634  * (2) page is part of an mlocked VMA
3635  *
3636  */
3637 int page_evictable(struct page *page)
3638 {
3639         return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3640 }
3641
3642 #ifdef CONFIG_SHMEM
3643 /**
3644  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3645  * @pages:      array of pages to check
3646  * @nr_pages:   number of pages to check
3647  *
3648  * Checks pages for evictability and moves them to the appropriate lru list.
3649  *
3650  * This function is only used for SysV IPC SHM_UNLOCK.
3651  */
3652 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3653 {
3654         struct lruvec *lruvec;
3655         struct zone *zone = NULL;
3656         int pgscanned = 0;
3657         int pgrescued = 0;
3658         int i;
3659
3660         for (i = 0; i < nr_pages; i++) {
3661                 struct page *page = pages[i];
3662                 struct zone *pagezone;
3663
3664                 pgscanned++;
3665                 pagezone = page_zone(page);
3666                 if (pagezone != zone) {
3667                         if (zone)
3668                                 spin_unlock_irq(&zone->lru_lock);
3669                         zone = pagezone;
3670                         spin_lock_irq(&zone->lru_lock);
3671                 }
3672                 lruvec = mem_cgroup_page_lruvec(page, zone);
3673
3674                 if (!PageLRU(page) || !PageUnevictable(page))
3675                         continue;
3676
3677                 if (page_evictable(page)) {
3678                         enum lru_list lru = page_lru_base_type(page);
3679
3680                         VM_BUG_ON(PageActive(page));
3681                         ClearPageUnevictable(page);
3682                         del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3683                         add_page_to_lru_list(page, lruvec, lru);
3684                         pgrescued++;
3685                 }
3686         }
3687
3688         if (zone) {
3689                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3690                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3691                 spin_unlock_irq(&zone->lru_lock);
3692         }
3693 }
3694 #endif /* CONFIG_SHMEM */
3695
3696 static void warn_scan_unevictable_pages(void)
3697 {
3698         printk_once(KERN_WARNING
3699                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3700                     "disabled for lack of a legitimate use case.  If you have "
3701                     "one, please send an email to linux-mm@kvack.org.\n",
3702                     current->comm);
3703 }
3704
3705 /*
3706  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3707  * all nodes' unevictable lists for evictable pages
3708  */
3709 unsigned long scan_unevictable_pages;
3710
3711 int scan_unevictable_handler(struct ctl_table *table, int write,
3712                            void __user *buffer,
3713                            size_t *length, loff_t *ppos)
3714 {
3715         warn_scan_unevictable_pages();
3716         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3717         scan_unevictable_pages = 0;
3718         return 0;
3719 }
3720
3721 #ifdef CONFIG_NUMA
3722 /*
3723  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3724  * a specified node's per zone unevictable lists for evictable pages.
3725  */
3726
3727 static ssize_t read_scan_unevictable_node(struct device *dev,
3728                                           struct device_attribute *attr,
3729                                           char *buf)
3730 {
3731         warn_scan_unevictable_pages();
3732         return sprintf(buf, "0\n");     /* always zero; should fit... */
3733 }
3734
3735 static ssize_t write_scan_unevictable_node(struct device *dev,
3736                                            struct device_attribute *attr,
3737                                         const char *buf, size_t count)
3738 {
3739         warn_scan_unevictable_pages();
3740         return 1;
3741 }
3742
3743
3744 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3745                         read_scan_unevictable_node,
3746                         write_scan_unevictable_node);
3747
3748 int scan_unevictable_register_node(struct node *node)
3749 {
3750         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3751 }
3752
3753 void scan_unevictable_unregister_node(struct node *node)
3754 {
3755         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3756 }
3757 #endif