]> git.karo-electronics.de Git - linux-beck.git/blob - mm/vmscan.c
mm: vmscan: distinguish global reclaim from global LRU scanning
[linux-beck.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108
109         /*
110          * Nodemask of nodes allowed by the caller. If NULL, all nodes
111          * are scanned.
112          */
113         nodemask_t      *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field)                    \
120         do {                                                            \
121                 if ((_page)->lru.prev != _base) {                       \
122                         struct page *prev;                              \
123                                                                         \
124                         prev = lru_to_page(&(_page->lru));              \
125                         prefetch(&prev->_field);                        \
126                 }                                                       \
127         } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
134         do {                                                            \
135                 if ((_page)->lru.prev != _base) {                       \
136                         struct page *prev;                              \
137                                                                         \
138                         prev = lru_to_page(&(_page->lru));              \
139                         prefetchw(&prev->_field);                       \
140                 }                                                       \
141         } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147  * From 0 .. 100.  Higher means more swappy.
148  */
149 int vm_swappiness = 60;
150 long vm_total_pages;    /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 static bool global_reclaim(struct scan_control *sc)
157 {
158         return !sc->mem_cgroup;
159 }
160
161 static bool scanning_global_lru(struct scan_control *sc)
162 {
163         return !sc->mem_cgroup;
164 }
165 #else
166 static bool global_reclaim(struct scan_control *sc)
167 {
168         return true;
169 }
170
171 static bool scanning_global_lru(struct scan_control *sc)
172 {
173         return true;
174 }
175 #endif
176
177 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
178                                                   struct scan_control *sc)
179 {
180         if (!scanning_global_lru(sc))
181                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
182
183         return &zone->reclaim_stat;
184 }
185
186 static unsigned long zone_nr_lru_pages(struct zone *zone,
187                                 struct scan_control *sc, enum lru_list lru)
188 {
189         if (!scanning_global_lru(sc))
190                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
191                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
192
193         return zone_page_state(zone, NR_LRU_BASE + lru);
194 }
195
196
197 /*
198  * Add a shrinker callback to be called from the vm
199  */
200 void register_shrinker(struct shrinker *shrinker)
201 {
202         atomic_long_set(&shrinker->nr_in_batch, 0);
203         down_write(&shrinker_rwsem);
204         list_add_tail(&shrinker->list, &shrinker_list);
205         up_write(&shrinker_rwsem);
206 }
207 EXPORT_SYMBOL(register_shrinker);
208
209 /*
210  * Remove one
211  */
212 void unregister_shrinker(struct shrinker *shrinker)
213 {
214         down_write(&shrinker_rwsem);
215         list_del(&shrinker->list);
216         up_write(&shrinker_rwsem);
217 }
218 EXPORT_SYMBOL(unregister_shrinker);
219
220 static inline int do_shrinker_shrink(struct shrinker *shrinker,
221                                      struct shrink_control *sc,
222                                      unsigned long nr_to_scan)
223 {
224         sc->nr_to_scan = nr_to_scan;
225         return (*shrinker->shrink)(shrinker, sc);
226 }
227
228 #define SHRINK_BATCH 128
229 /*
230  * Call the shrink functions to age shrinkable caches
231  *
232  * Here we assume it costs one seek to replace a lru page and that it also
233  * takes a seek to recreate a cache object.  With this in mind we age equal
234  * percentages of the lru and ageable caches.  This should balance the seeks
235  * generated by these structures.
236  *
237  * If the vm encountered mapped pages on the LRU it increase the pressure on
238  * slab to avoid swapping.
239  *
240  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
241  *
242  * `lru_pages' represents the number of on-LRU pages in all the zones which
243  * are eligible for the caller's allocation attempt.  It is used for balancing
244  * slab reclaim versus page reclaim.
245  *
246  * Returns the number of slab objects which we shrunk.
247  */
248 unsigned long shrink_slab(struct shrink_control *shrink,
249                           unsigned long nr_pages_scanned,
250                           unsigned long lru_pages)
251 {
252         struct shrinker *shrinker;
253         unsigned long ret = 0;
254
255         if (nr_pages_scanned == 0)
256                 nr_pages_scanned = SWAP_CLUSTER_MAX;
257
258         if (!down_read_trylock(&shrinker_rwsem)) {
259                 /* Assume we'll be able to shrink next time */
260                 ret = 1;
261                 goto out;
262         }
263
264         list_for_each_entry(shrinker, &shrinker_list, list) {
265                 unsigned long long delta;
266                 long total_scan;
267                 long max_pass;
268                 int shrink_ret = 0;
269                 long nr;
270                 long new_nr;
271                 long batch_size = shrinker->batch ? shrinker->batch
272                                                   : SHRINK_BATCH;
273
274                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
275                 if (max_pass <= 0)
276                         continue;
277
278                 /*
279                  * copy the current shrinker scan count into a local variable
280                  * and zero it so that other concurrent shrinker invocations
281                  * don't also do this scanning work.
282                  */
283                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
284
285                 total_scan = nr;
286                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
287                 delta *= max_pass;
288                 do_div(delta, lru_pages + 1);
289                 total_scan += delta;
290                 if (total_scan < 0) {
291                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
292                                "delete nr=%ld\n",
293                                shrinker->shrink, total_scan);
294                         total_scan = max_pass;
295                 }
296
297                 /*
298                  * We need to avoid excessive windup on filesystem shrinkers
299                  * due to large numbers of GFP_NOFS allocations causing the
300                  * shrinkers to return -1 all the time. This results in a large
301                  * nr being built up so when a shrink that can do some work
302                  * comes along it empties the entire cache due to nr >>>
303                  * max_pass.  This is bad for sustaining a working set in
304                  * memory.
305                  *
306                  * Hence only allow the shrinker to scan the entire cache when
307                  * a large delta change is calculated directly.
308                  */
309                 if (delta < max_pass / 4)
310                         total_scan = min(total_scan, max_pass / 2);
311
312                 /*
313                  * Avoid risking looping forever due to too large nr value:
314                  * never try to free more than twice the estimate number of
315                  * freeable entries.
316                  */
317                 if (total_scan > max_pass * 2)
318                         total_scan = max_pass * 2;
319
320                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
321                                         nr_pages_scanned, lru_pages,
322                                         max_pass, delta, total_scan);
323
324                 while (total_scan >= batch_size) {
325                         int nr_before;
326
327                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
328                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
329                                                         batch_size);
330                         if (shrink_ret == -1)
331                                 break;
332                         if (shrink_ret < nr_before)
333                                 ret += nr_before - shrink_ret;
334                         count_vm_events(SLABS_SCANNED, batch_size);
335                         total_scan -= batch_size;
336
337                         cond_resched();
338                 }
339
340                 /*
341                  * move the unused scan count back into the shrinker in a
342                  * manner that handles concurrent updates. If we exhausted the
343                  * scan, there is no need to do an update.
344                  */
345                 if (total_scan > 0)
346                         new_nr = atomic_long_add_return(total_scan,
347                                         &shrinker->nr_in_batch);
348                 else
349                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
350
351                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
352         }
353         up_read(&shrinker_rwsem);
354 out:
355         cond_resched();
356         return ret;
357 }
358
359 static void set_reclaim_mode(int priority, struct scan_control *sc,
360                                    bool sync)
361 {
362         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
363
364         /*
365          * Initially assume we are entering either lumpy reclaim or
366          * reclaim/compaction.Depending on the order, we will either set the
367          * sync mode or just reclaim order-0 pages later.
368          */
369         if (COMPACTION_BUILD)
370                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
371         else
372                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
373
374         /*
375          * Avoid using lumpy reclaim or reclaim/compaction if possible by
376          * restricting when its set to either costly allocations or when
377          * under memory pressure
378          */
379         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
380                 sc->reclaim_mode |= syncmode;
381         else if (sc->order && priority < DEF_PRIORITY - 2)
382                 sc->reclaim_mode |= syncmode;
383         else
384                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
385 }
386
387 static void reset_reclaim_mode(struct scan_control *sc)
388 {
389         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
390 }
391
392 static inline int is_page_cache_freeable(struct page *page)
393 {
394         /*
395          * A freeable page cache page is referenced only by the caller
396          * that isolated the page, the page cache radix tree and
397          * optional buffer heads at page->private.
398          */
399         return page_count(page) - page_has_private(page) == 2;
400 }
401
402 static int may_write_to_queue(struct backing_dev_info *bdi,
403                               struct scan_control *sc)
404 {
405         if (current->flags & PF_SWAPWRITE)
406                 return 1;
407         if (!bdi_write_congested(bdi))
408                 return 1;
409         if (bdi == current->backing_dev_info)
410                 return 1;
411
412         /* lumpy reclaim for hugepage often need a lot of write */
413         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
414                 return 1;
415         return 0;
416 }
417
418 /*
419  * We detected a synchronous write error writing a page out.  Probably
420  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
421  * fsync(), msync() or close().
422  *
423  * The tricky part is that after writepage we cannot touch the mapping: nothing
424  * prevents it from being freed up.  But we have a ref on the page and once
425  * that page is locked, the mapping is pinned.
426  *
427  * We're allowed to run sleeping lock_page() here because we know the caller has
428  * __GFP_FS.
429  */
430 static void handle_write_error(struct address_space *mapping,
431                                 struct page *page, int error)
432 {
433         lock_page(page);
434         if (page_mapping(page) == mapping)
435                 mapping_set_error(mapping, error);
436         unlock_page(page);
437 }
438
439 /* possible outcome of pageout() */
440 typedef enum {
441         /* failed to write page out, page is locked */
442         PAGE_KEEP,
443         /* move page to the active list, page is locked */
444         PAGE_ACTIVATE,
445         /* page has been sent to the disk successfully, page is unlocked */
446         PAGE_SUCCESS,
447         /* page is clean and locked */
448         PAGE_CLEAN,
449 } pageout_t;
450
451 /*
452  * pageout is called by shrink_page_list() for each dirty page.
453  * Calls ->writepage().
454  */
455 static pageout_t pageout(struct page *page, struct address_space *mapping,
456                          struct scan_control *sc)
457 {
458         /*
459          * If the page is dirty, only perform writeback if that write
460          * will be non-blocking.  To prevent this allocation from being
461          * stalled by pagecache activity.  But note that there may be
462          * stalls if we need to run get_block().  We could test
463          * PagePrivate for that.
464          *
465          * If this process is currently in __generic_file_aio_write() against
466          * this page's queue, we can perform writeback even if that
467          * will block.
468          *
469          * If the page is swapcache, write it back even if that would
470          * block, for some throttling. This happens by accident, because
471          * swap_backing_dev_info is bust: it doesn't reflect the
472          * congestion state of the swapdevs.  Easy to fix, if needed.
473          */
474         if (!is_page_cache_freeable(page))
475                 return PAGE_KEEP;
476         if (!mapping) {
477                 /*
478                  * Some data journaling orphaned pages can have
479                  * page->mapping == NULL while being dirty with clean buffers.
480                  */
481                 if (page_has_private(page)) {
482                         if (try_to_free_buffers(page)) {
483                                 ClearPageDirty(page);
484                                 printk("%s: orphaned page\n", __func__);
485                                 return PAGE_CLEAN;
486                         }
487                 }
488                 return PAGE_KEEP;
489         }
490         if (mapping->a_ops->writepage == NULL)
491                 return PAGE_ACTIVATE;
492         if (!may_write_to_queue(mapping->backing_dev_info, sc))
493                 return PAGE_KEEP;
494
495         if (clear_page_dirty_for_io(page)) {
496                 int res;
497                 struct writeback_control wbc = {
498                         .sync_mode = WB_SYNC_NONE,
499                         .nr_to_write = SWAP_CLUSTER_MAX,
500                         .range_start = 0,
501                         .range_end = LLONG_MAX,
502                         .for_reclaim = 1,
503                 };
504
505                 SetPageReclaim(page);
506                 res = mapping->a_ops->writepage(page, &wbc);
507                 if (res < 0)
508                         handle_write_error(mapping, page, res);
509                 if (res == AOP_WRITEPAGE_ACTIVATE) {
510                         ClearPageReclaim(page);
511                         return PAGE_ACTIVATE;
512                 }
513
514                 if (!PageWriteback(page)) {
515                         /* synchronous write or broken a_ops? */
516                         ClearPageReclaim(page);
517                 }
518                 trace_mm_vmscan_writepage(page,
519                         trace_reclaim_flags(page, sc->reclaim_mode));
520                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
521                 return PAGE_SUCCESS;
522         }
523
524         return PAGE_CLEAN;
525 }
526
527 /*
528  * Same as remove_mapping, but if the page is removed from the mapping, it
529  * gets returned with a refcount of 0.
530  */
531 static int __remove_mapping(struct address_space *mapping, struct page *page)
532 {
533         BUG_ON(!PageLocked(page));
534         BUG_ON(mapping != page_mapping(page));
535
536         spin_lock_irq(&mapping->tree_lock);
537         /*
538          * The non racy check for a busy page.
539          *
540          * Must be careful with the order of the tests. When someone has
541          * a ref to the page, it may be possible that they dirty it then
542          * drop the reference. So if PageDirty is tested before page_count
543          * here, then the following race may occur:
544          *
545          * get_user_pages(&page);
546          * [user mapping goes away]
547          * write_to(page);
548          *                              !PageDirty(page)    [good]
549          * SetPageDirty(page);
550          * put_page(page);
551          *                              !page_count(page)   [good, discard it]
552          *
553          * [oops, our write_to data is lost]
554          *
555          * Reversing the order of the tests ensures such a situation cannot
556          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
557          * load is not satisfied before that of page->_count.
558          *
559          * Note that if SetPageDirty is always performed via set_page_dirty,
560          * and thus under tree_lock, then this ordering is not required.
561          */
562         if (!page_freeze_refs(page, 2))
563                 goto cannot_free;
564         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
565         if (unlikely(PageDirty(page))) {
566                 page_unfreeze_refs(page, 2);
567                 goto cannot_free;
568         }
569
570         if (PageSwapCache(page)) {
571                 swp_entry_t swap = { .val = page_private(page) };
572                 __delete_from_swap_cache(page);
573                 spin_unlock_irq(&mapping->tree_lock);
574                 swapcache_free(swap, page);
575         } else {
576                 void (*freepage)(struct page *);
577
578                 freepage = mapping->a_ops->freepage;
579
580                 __delete_from_page_cache(page);
581                 spin_unlock_irq(&mapping->tree_lock);
582                 mem_cgroup_uncharge_cache_page(page);
583
584                 if (freepage != NULL)
585                         freepage(page);
586         }
587
588         return 1;
589
590 cannot_free:
591         spin_unlock_irq(&mapping->tree_lock);
592         return 0;
593 }
594
595 /*
596  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
597  * someone else has a ref on the page, abort and return 0.  If it was
598  * successfully detached, return 1.  Assumes the caller has a single ref on
599  * this page.
600  */
601 int remove_mapping(struct address_space *mapping, struct page *page)
602 {
603         if (__remove_mapping(mapping, page)) {
604                 /*
605                  * Unfreezing the refcount with 1 rather than 2 effectively
606                  * drops the pagecache ref for us without requiring another
607                  * atomic operation.
608                  */
609                 page_unfreeze_refs(page, 1);
610                 return 1;
611         }
612         return 0;
613 }
614
615 /**
616  * putback_lru_page - put previously isolated page onto appropriate LRU list
617  * @page: page to be put back to appropriate lru list
618  *
619  * Add previously isolated @page to appropriate LRU list.
620  * Page may still be unevictable for other reasons.
621  *
622  * lru_lock must not be held, interrupts must be enabled.
623  */
624 void putback_lru_page(struct page *page)
625 {
626         int lru;
627         int active = !!TestClearPageActive(page);
628         int was_unevictable = PageUnevictable(page);
629
630         VM_BUG_ON(PageLRU(page));
631
632 redo:
633         ClearPageUnevictable(page);
634
635         if (page_evictable(page, NULL)) {
636                 /*
637                  * For evictable pages, we can use the cache.
638                  * In event of a race, worst case is we end up with an
639                  * unevictable page on [in]active list.
640                  * We know how to handle that.
641                  */
642                 lru = active + page_lru_base_type(page);
643                 lru_cache_add_lru(page, lru);
644         } else {
645                 /*
646                  * Put unevictable pages directly on zone's unevictable
647                  * list.
648                  */
649                 lru = LRU_UNEVICTABLE;
650                 add_page_to_unevictable_list(page);
651                 /*
652                  * When racing with an mlock or AS_UNEVICTABLE clearing
653                  * (page is unlocked) make sure that if the other thread
654                  * does not observe our setting of PG_lru and fails
655                  * isolation/check_move_unevictable_page,
656                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
657                  * the page back to the evictable list.
658                  *
659                  * The other side is TestClearPageMlocked() or shmem_lock().
660                  */
661                 smp_mb();
662         }
663
664         /*
665          * page's status can change while we move it among lru. If an evictable
666          * page is on unevictable list, it never be freed. To avoid that,
667          * check after we added it to the list, again.
668          */
669         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
670                 if (!isolate_lru_page(page)) {
671                         put_page(page);
672                         goto redo;
673                 }
674                 /* This means someone else dropped this page from LRU
675                  * So, it will be freed or putback to LRU again. There is
676                  * nothing to do here.
677                  */
678         }
679
680         if (was_unevictable && lru != LRU_UNEVICTABLE)
681                 count_vm_event(UNEVICTABLE_PGRESCUED);
682         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
683                 count_vm_event(UNEVICTABLE_PGCULLED);
684
685         put_page(page);         /* drop ref from isolate */
686 }
687
688 enum page_references {
689         PAGEREF_RECLAIM,
690         PAGEREF_RECLAIM_CLEAN,
691         PAGEREF_KEEP,
692         PAGEREF_ACTIVATE,
693 };
694
695 static enum page_references page_check_references(struct page *page,
696                                                   struct scan_control *sc)
697 {
698         int referenced_ptes, referenced_page;
699         unsigned long vm_flags;
700
701         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
702         referenced_page = TestClearPageReferenced(page);
703
704         /* Lumpy reclaim - ignore references */
705         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
706                 return PAGEREF_RECLAIM;
707
708         /*
709          * Mlock lost the isolation race with us.  Let try_to_unmap()
710          * move the page to the unevictable list.
711          */
712         if (vm_flags & VM_LOCKED)
713                 return PAGEREF_RECLAIM;
714
715         if (referenced_ptes) {
716                 if (PageAnon(page))
717                         return PAGEREF_ACTIVATE;
718                 /*
719                  * All mapped pages start out with page table
720                  * references from the instantiating fault, so we need
721                  * to look twice if a mapped file page is used more
722                  * than once.
723                  *
724                  * Mark it and spare it for another trip around the
725                  * inactive list.  Another page table reference will
726                  * lead to its activation.
727                  *
728                  * Note: the mark is set for activated pages as well
729                  * so that recently deactivated but used pages are
730                  * quickly recovered.
731                  */
732                 SetPageReferenced(page);
733
734                 if (referenced_page || referenced_ptes > 1)
735                         return PAGEREF_ACTIVATE;
736
737                 /*
738                  * Activate file-backed executable pages after first usage.
739                  */
740                 if (vm_flags & VM_EXEC)
741                         return PAGEREF_ACTIVATE;
742
743                 return PAGEREF_KEEP;
744         }
745
746         /* Reclaim if clean, defer dirty pages to writeback */
747         if (referenced_page && !PageSwapBacked(page))
748                 return PAGEREF_RECLAIM_CLEAN;
749
750         return PAGEREF_RECLAIM;
751 }
752
753 /*
754  * shrink_page_list() returns the number of reclaimed pages
755  */
756 static unsigned long shrink_page_list(struct list_head *page_list,
757                                       struct zone *zone,
758                                       struct scan_control *sc,
759                                       int priority,
760                                       unsigned long *ret_nr_dirty,
761                                       unsigned long *ret_nr_writeback)
762 {
763         LIST_HEAD(ret_pages);
764         LIST_HEAD(free_pages);
765         int pgactivate = 0;
766         unsigned long nr_dirty = 0;
767         unsigned long nr_congested = 0;
768         unsigned long nr_reclaimed = 0;
769         unsigned long nr_writeback = 0;
770
771         cond_resched();
772
773         while (!list_empty(page_list)) {
774                 enum page_references references;
775                 struct address_space *mapping;
776                 struct page *page;
777                 int may_enter_fs;
778
779                 cond_resched();
780
781                 page = lru_to_page(page_list);
782                 list_del(&page->lru);
783
784                 if (!trylock_page(page))
785                         goto keep;
786
787                 VM_BUG_ON(PageActive(page));
788                 VM_BUG_ON(page_zone(page) != zone);
789
790                 sc->nr_scanned++;
791
792                 if (unlikely(!page_evictable(page, NULL)))
793                         goto cull_mlocked;
794
795                 if (!sc->may_unmap && page_mapped(page))
796                         goto keep_locked;
797
798                 /* Double the slab pressure for mapped and swapcache pages */
799                 if (page_mapped(page) || PageSwapCache(page))
800                         sc->nr_scanned++;
801
802                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
804
805                 if (PageWriteback(page)) {
806                         nr_writeback++;
807                         /*
808                          * Synchronous reclaim cannot queue pages for
809                          * writeback due to the possibility of stack overflow
810                          * but if it encounters a page under writeback, wait
811                          * for the IO to complete.
812                          */
813                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
814                             may_enter_fs)
815                                 wait_on_page_writeback(page);
816                         else {
817                                 unlock_page(page);
818                                 goto keep_lumpy;
819                         }
820                 }
821
822                 references = page_check_references(page, sc);
823                 switch (references) {
824                 case PAGEREF_ACTIVATE:
825                         goto activate_locked;
826                 case PAGEREF_KEEP:
827                         goto keep_locked;
828                 case PAGEREF_RECLAIM:
829                 case PAGEREF_RECLAIM_CLEAN:
830                         ; /* try to reclaim the page below */
831                 }
832
833                 /*
834                  * Anonymous process memory has backing store?
835                  * Try to allocate it some swap space here.
836                  */
837                 if (PageAnon(page) && !PageSwapCache(page)) {
838                         if (!(sc->gfp_mask & __GFP_IO))
839                                 goto keep_locked;
840                         if (!add_to_swap(page))
841                                 goto activate_locked;
842                         may_enter_fs = 1;
843                 }
844
845                 mapping = page_mapping(page);
846
847                 /*
848                  * The page is mapped into the page tables of one or more
849                  * processes. Try to unmap it here.
850                  */
851                 if (page_mapped(page) && mapping) {
852                         switch (try_to_unmap(page, TTU_UNMAP)) {
853                         case SWAP_FAIL:
854                                 goto activate_locked;
855                         case SWAP_AGAIN:
856                                 goto keep_locked;
857                         case SWAP_MLOCK:
858                                 goto cull_mlocked;
859                         case SWAP_SUCCESS:
860                                 ; /* try to free the page below */
861                         }
862                 }
863
864                 if (PageDirty(page)) {
865                         nr_dirty++;
866
867                         /*
868                          * Only kswapd can writeback filesystem pages to
869                          * avoid risk of stack overflow but do not writeback
870                          * unless under significant pressure.
871                          */
872                         if (page_is_file_cache(page) &&
873                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
874                                 /*
875                                  * Immediately reclaim when written back.
876                                  * Similar in principal to deactivate_page()
877                                  * except we already have the page isolated
878                                  * and know it's dirty
879                                  */
880                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
881                                 SetPageReclaim(page);
882
883                                 goto keep_locked;
884                         }
885
886                         if (references == PAGEREF_RECLAIM_CLEAN)
887                                 goto keep_locked;
888                         if (!may_enter_fs)
889                                 goto keep_locked;
890                         if (!sc->may_writepage)
891                                 goto keep_locked;
892
893                         /* Page is dirty, try to write it out here */
894                         switch (pageout(page, mapping, sc)) {
895                         case PAGE_KEEP:
896                                 nr_congested++;
897                                 goto keep_locked;
898                         case PAGE_ACTIVATE:
899                                 goto activate_locked;
900                         case PAGE_SUCCESS:
901                                 if (PageWriteback(page))
902                                         goto keep_lumpy;
903                                 if (PageDirty(page))
904                                         goto keep;
905
906                                 /*
907                                  * A synchronous write - probably a ramdisk.  Go
908                                  * ahead and try to reclaim the page.
909                                  */
910                                 if (!trylock_page(page))
911                                         goto keep;
912                                 if (PageDirty(page) || PageWriteback(page))
913                                         goto keep_locked;
914                                 mapping = page_mapping(page);
915                         case PAGE_CLEAN:
916                                 ; /* try to free the page below */
917                         }
918                 }
919
920                 /*
921                  * If the page has buffers, try to free the buffer mappings
922                  * associated with this page. If we succeed we try to free
923                  * the page as well.
924                  *
925                  * We do this even if the page is PageDirty().
926                  * try_to_release_page() does not perform I/O, but it is
927                  * possible for a page to have PageDirty set, but it is actually
928                  * clean (all its buffers are clean).  This happens if the
929                  * buffers were written out directly, with submit_bh(). ext3
930                  * will do this, as well as the blockdev mapping.
931                  * try_to_release_page() will discover that cleanness and will
932                  * drop the buffers and mark the page clean - it can be freed.
933                  *
934                  * Rarely, pages can have buffers and no ->mapping.  These are
935                  * the pages which were not successfully invalidated in
936                  * truncate_complete_page().  We try to drop those buffers here
937                  * and if that worked, and the page is no longer mapped into
938                  * process address space (page_count == 1) it can be freed.
939                  * Otherwise, leave the page on the LRU so it is swappable.
940                  */
941                 if (page_has_private(page)) {
942                         if (!try_to_release_page(page, sc->gfp_mask))
943                                 goto activate_locked;
944                         if (!mapping && page_count(page) == 1) {
945                                 unlock_page(page);
946                                 if (put_page_testzero(page))
947                                         goto free_it;
948                                 else {
949                                         /*
950                                          * rare race with speculative reference.
951                                          * the speculative reference will free
952                                          * this page shortly, so we may
953                                          * increment nr_reclaimed here (and
954                                          * leave it off the LRU).
955                                          */
956                                         nr_reclaimed++;
957                                         continue;
958                                 }
959                         }
960                 }
961
962                 if (!mapping || !__remove_mapping(mapping, page))
963                         goto keep_locked;
964
965                 /*
966                  * At this point, we have no other references and there is
967                  * no way to pick any more up (removed from LRU, removed
968                  * from pagecache). Can use non-atomic bitops now (and
969                  * we obviously don't have to worry about waking up a process
970                  * waiting on the page lock, because there are no references.
971                  */
972                 __clear_page_locked(page);
973 free_it:
974                 nr_reclaimed++;
975
976                 /*
977                  * Is there need to periodically free_page_list? It would
978                  * appear not as the counts should be low
979                  */
980                 list_add(&page->lru, &free_pages);
981                 continue;
982
983 cull_mlocked:
984                 if (PageSwapCache(page))
985                         try_to_free_swap(page);
986                 unlock_page(page);
987                 putback_lru_page(page);
988                 reset_reclaim_mode(sc);
989                 continue;
990
991 activate_locked:
992                 /* Not a candidate for swapping, so reclaim swap space. */
993                 if (PageSwapCache(page) && vm_swap_full())
994                         try_to_free_swap(page);
995                 VM_BUG_ON(PageActive(page));
996                 SetPageActive(page);
997                 pgactivate++;
998 keep_locked:
999                 unlock_page(page);
1000 keep:
1001                 reset_reclaim_mode(sc);
1002 keep_lumpy:
1003                 list_add(&page->lru, &ret_pages);
1004                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1005         }
1006
1007         /*
1008          * Tag a zone as congested if all the dirty pages encountered were
1009          * backed by a congested BDI. In this case, reclaimers should just
1010          * back off and wait for congestion to clear because further reclaim
1011          * will encounter the same problem
1012          */
1013         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1014                 zone_set_flag(zone, ZONE_CONGESTED);
1015
1016         free_hot_cold_page_list(&free_pages, 1);
1017
1018         list_splice(&ret_pages, page_list);
1019         count_vm_events(PGACTIVATE, pgactivate);
1020         *ret_nr_dirty += nr_dirty;
1021         *ret_nr_writeback += nr_writeback;
1022         return nr_reclaimed;
1023 }
1024
1025 /*
1026  * Attempt to remove the specified page from its LRU.  Only take this page
1027  * if it is of the appropriate PageActive status.  Pages which are being
1028  * freed elsewhere are also ignored.
1029  *
1030  * page:        page to consider
1031  * mode:        one of the LRU isolation modes defined above
1032  *
1033  * returns 0 on success, -ve errno on failure.
1034  */
1035 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1036 {
1037         bool all_lru_mode;
1038         int ret = -EINVAL;
1039
1040         /* Only take pages on the LRU. */
1041         if (!PageLRU(page))
1042                 return ret;
1043
1044         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1045                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1046
1047         /*
1048          * When checking the active state, we need to be sure we are
1049          * dealing with comparible boolean values.  Take the logical not
1050          * of each.
1051          */
1052         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1053                 return ret;
1054
1055         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1056                 return ret;
1057
1058         /*
1059          * When this function is being called for lumpy reclaim, we
1060          * initially look into all LRU pages, active, inactive and
1061          * unevictable; only give shrink_page_list evictable pages.
1062          */
1063         if (PageUnevictable(page))
1064                 return ret;
1065
1066         ret = -EBUSY;
1067
1068         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1069                 return ret;
1070
1071         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1072                 return ret;
1073
1074         if (likely(get_page_unless_zero(page))) {
1075                 /*
1076                  * Be careful not to clear PageLRU until after we're
1077                  * sure the page is not being freed elsewhere -- the
1078                  * page release code relies on it.
1079                  */
1080                 ClearPageLRU(page);
1081                 ret = 0;
1082         }
1083
1084         return ret;
1085 }
1086
1087 /*
1088  * zone->lru_lock is heavily contended.  Some of the functions that
1089  * shrink the lists perform better by taking out a batch of pages
1090  * and working on them outside the LRU lock.
1091  *
1092  * For pagecache intensive workloads, this function is the hottest
1093  * spot in the kernel (apart from copy_*_user functions).
1094  *
1095  * Appropriate locks must be held before calling this function.
1096  *
1097  * @nr_to_scan: The number of pages to look through on the list.
1098  * @src:        The LRU list to pull pages off.
1099  * @dst:        The temp list to put pages on to.
1100  * @scanned:    The number of pages that were scanned.
1101  * @order:      The caller's attempted allocation order
1102  * @mode:       One of the LRU isolation modes
1103  * @file:       True [1] if isolating file [!anon] pages
1104  *
1105  * returns how many pages were moved onto *@dst.
1106  */
1107 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1108                 struct list_head *src, struct list_head *dst,
1109                 unsigned long *scanned, int order, isolate_mode_t mode,
1110                 int file)
1111 {
1112         unsigned long nr_taken = 0;
1113         unsigned long nr_lumpy_taken = 0;
1114         unsigned long nr_lumpy_dirty = 0;
1115         unsigned long nr_lumpy_failed = 0;
1116         unsigned long scan;
1117
1118         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1119                 struct page *page;
1120                 unsigned long pfn;
1121                 unsigned long end_pfn;
1122                 unsigned long page_pfn;
1123                 int zone_id;
1124
1125                 page = lru_to_page(src);
1126                 prefetchw_prev_lru_page(page, src, flags);
1127
1128                 VM_BUG_ON(!PageLRU(page));
1129
1130                 switch (__isolate_lru_page(page, mode, file)) {
1131                 case 0:
1132                         list_move(&page->lru, dst);
1133                         mem_cgroup_del_lru(page);
1134                         nr_taken += hpage_nr_pages(page);
1135                         break;
1136
1137                 case -EBUSY:
1138                         /* else it is being freed elsewhere */
1139                         list_move(&page->lru, src);
1140                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1141                         continue;
1142
1143                 default:
1144                         BUG();
1145                 }
1146
1147                 if (!order)
1148                         continue;
1149
1150                 /*
1151                  * Attempt to take all pages in the order aligned region
1152                  * surrounding the tag page.  Only take those pages of
1153                  * the same active state as that tag page.  We may safely
1154                  * round the target page pfn down to the requested order
1155                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1156                  * where that page is in a different zone we will detect
1157                  * it from its zone id and abort this block scan.
1158                  */
1159                 zone_id = page_zone_id(page);
1160                 page_pfn = page_to_pfn(page);
1161                 pfn = page_pfn & ~((1 << order) - 1);
1162                 end_pfn = pfn + (1 << order);
1163                 for (; pfn < end_pfn; pfn++) {
1164                         struct page *cursor_page;
1165
1166                         /* The target page is in the block, ignore it. */
1167                         if (unlikely(pfn == page_pfn))
1168                                 continue;
1169
1170                         /* Avoid holes within the zone. */
1171                         if (unlikely(!pfn_valid_within(pfn)))
1172                                 break;
1173
1174                         cursor_page = pfn_to_page(pfn);
1175
1176                         /* Check that we have not crossed a zone boundary. */
1177                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1178                                 break;
1179
1180                         /*
1181                          * If we don't have enough swap space, reclaiming of
1182                          * anon page which don't already have a swap slot is
1183                          * pointless.
1184                          */
1185                         if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1186                             !PageSwapCache(cursor_page))
1187                                 break;
1188
1189                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1190                                 list_move(&cursor_page->lru, dst);
1191                                 mem_cgroup_del_lru(cursor_page);
1192                                 nr_taken += hpage_nr_pages(cursor_page);
1193                                 nr_lumpy_taken++;
1194                                 if (PageDirty(cursor_page))
1195                                         nr_lumpy_dirty++;
1196                                 scan++;
1197                         } else {
1198                                 /*
1199                                  * Check if the page is freed already.
1200                                  *
1201                                  * We can't use page_count() as that
1202                                  * requires compound_head and we don't
1203                                  * have a pin on the page here. If a
1204                                  * page is tail, we may or may not
1205                                  * have isolated the head, so assume
1206                                  * it's not free, it'd be tricky to
1207                                  * track the head status without a
1208                                  * page pin.
1209                                  */
1210                                 if (!PageTail(cursor_page) &&
1211                                     !atomic_read(&cursor_page->_count))
1212                                         continue;
1213                                 break;
1214                         }
1215                 }
1216
1217                 /* If we break out of the loop above, lumpy reclaim failed */
1218                 if (pfn < end_pfn)
1219                         nr_lumpy_failed++;
1220         }
1221
1222         *scanned = scan;
1223
1224         trace_mm_vmscan_lru_isolate(order,
1225                         nr_to_scan, scan,
1226                         nr_taken,
1227                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1228                         mode);
1229         return nr_taken;
1230 }
1231
1232 static unsigned long isolate_pages_global(unsigned long nr,
1233                                         struct list_head *dst,
1234                                         unsigned long *scanned, int order,
1235                                         isolate_mode_t mode,
1236                                         struct zone *z, int active, int file)
1237 {
1238         int lru = LRU_BASE;
1239         if (active)
1240                 lru += LRU_ACTIVE;
1241         if (file)
1242                 lru += LRU_FILE;
1243         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1244                                                                 mode, file);
1245 }
1246
1247 /*
1248  * clear_active_flags() is a helper for shrink_active_list(), clearing
1249  * any active bits from the pages in the list.
1250  */
1251 static unsigned long clear_active_flags(struct list_head *page_list,
1252                                         unsigned int *count)
1253 {
1254         int nr_active = 0;
1255         int lru;
1256         struct page *page;
1257
1258         list_for_each_entry(page, page_list, lru) {
1259                 int numpages = hpage_nr_pages(page);
1260                 lru = page_lru_base_type(page);
1261                 if (PageActive(page)) {
1262                         lru += LRU_ACTIVE;
1263                         ClearPageActive(page);
1264                         nr_active += numpages;
1265                 }
1266                 if (count)
1267                         count[lru] += numpages;
1268         }
1269
1270         return nr_active;
1271 }
1272
1273 /**
1274  * isolate_lru_page - tries to isolate a page from its LRU list
1275  * @page: page to isolate from its LRU list
1276  *
1277  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1278  * vmstat statistic corresponding to whatever LRU list the page was on.
1279  *
1280  * Returns 0 if the page was removed from an LRU list.
1281  * Returns -EBUSY if the page was not on an LRU list.
1282  *
1283  * The returned page will have PageLRU() cleared.  If it was found on
1284  * the active list, it will have PageActive set.  If it was found on
1285  * the unevictable list, it will have the PageUnevictable bit set. That flag
1286  * may need to be cleared by the caller before letting the page go.
1287  *
1288  * The vmstat statistic corresponding to the list on which the page was
1289  * found will be decremented.
1290  *
1291  * Restrictions:
1292  * (1) Must be called with an elevated refcount on the page. This is a
1293  *     fundamentnal difference from isolate_lru_pages (which is called
1294  *     without a stable reference).
1295  * (2) the lru_lock must not be held.
1296  * (3) interrupts must be enabled.
1297  */
1298 int isolate_lru_page(struct page *page)
1299 {
1300         int ret = -EBUSY;
1301
1302         VM_BUG_ON(!page_count(page));
1303
1304         if (PageLRU(page)) {
1305                 struct zone *zone = page_zone(page);
1306
1307                 spin_lock_irq(&zone->lru_lock);
1308                 if (PageLRU(page)) {
1309                         int lru = page_lru(page);
1310                         ret = 0;
1311                         get_page(page);
1312                         ClearPageLRU(page);
1313
1314                         del_page_from_lru_list(zone, page, lru);
1315                 }
1316                 spin_unlock_irq(&zone->lru_lock);
1317         }
1318         return ret;
1319 }
1320
1321 /*
1322  * Are there way too many processes in the direct reclaim path already?
1323  */
1324 static int too_many_isolated(struct zone *zone, int file,
1325                 struct scan_control *sc)
1326 {
1327         unsigned long inactive, isolated;
1328
1329         if (current_is_kswapd())
1330                 return 0;
1331
1332         if (!global_reclaim(sc))
1333                 return 0;
1334
1335         if (file) {
1336                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1337                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1338         } else {
1339                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1340                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1341         }
1342
1343         return isolated > inactive;
1344 }
1345
1346 /*
1347  * TODO: Try merging with migrations version of putback_lru_pages
1348  */
1349 static noinline_for_stack void
1350 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1351                                 unsigned long nr_anon, unsigned long nr_file,
1352                                 struct list_head *page_list)
1353 {
1354         struct page *page;
1355         struct pagevec pvec;
1356         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1357
1358         pagevec_init(&pvec, 1);
1359
1360         /*
1361          * Put back any unfreeable pages.
1362          */
1363         spin_lock(&zone->lru_lock);
1364         while (!list_empty(page_list)) {
1365                 int lru;
1366                 page = lru_to_page(page_list);
1367                 VM_BUG_ON(PageLRU(page));
1368                 list_del(&page->lru);
1369                 if (unlikely(!page_evictable(page, NULL))) {
1370                         spin_unlock_irq(&zone->lru_lock);
1371                         putback_lru_page(page);
1372                         spin_lock_irq(&zone->lru_lock);
1373                         continue;
1374                 }
1375                 SetPageLRU(page);
1376                 lru = page_lru(page);
1377                 add_page_to_lru_list(zone, page, lru);
1378                 if (is_active_lru(lru)) {
1379                         int file = is_file_lru(lru);
1380                         int numpages = hpage_nr_pages(page);
1381                         reclaim_stat->recent_rotated[file] += numpages;
1382                 }
1383                 if (!pagevec_add(&pvec, page)) {
1384                         spin_unlock_irq(&zone->lru_lock);
1385                         __pagevec_release(&pvec);
1386                         spin_lock_irq(&zone->lru_lock);
1387                 }
1388         }
1389         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1390         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1391
1392         spin_unlock_irq(&zone->lru_lock);
1393         pagevec_release(&pvec);
1394 }
1395
1396 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1397                                         struct scan_control *sc,
1398                                         unsigned long *nr_anon,
1399                                         unsigned long *nr_file,
1400                                         struct list_head *isolated_list)
1401 {
1402         unsigned long nr_active;
1403         unsigned int count[NR_LRU_LISTS] = { 0, };
1404         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1405
1406         nr_active = clear_active_flags(isolated_list, count);
1407         __count_vm_events(PGDEACTIVATE, nr_active);
1408
1409         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1410                               -count[LRU_ACTIVE_FILE]);
1411         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1412                               -count[LRU_INACTIVE_FILE]);
1413         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1414                               -count[LRU_ACTIVE_ANON]);
1415         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1416                               -count[LRU_INACTIVE_ANON]);
1417
1418         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1419         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1420         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1421         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1422
1423         reclaim_stat->recent_scanned[0] += *nr_anon;
1424         reclaim_stat->recent_scanned[1] += *nr_file;
1425 }
1426
1427 /*
1428  * Returns true if a direct reclaim should wait on pages under writeback.
1429  *
1430  * If we are direct reclaiming for contiguous pages and we do not reclaim
1431  * everything in the list, try again and wait for writeback IO to complete.
1432  * This will stall high-order allocations noticeably. Only do that when really
1433  * need to free the pages under high memory pressure.
1434  */
1435 static inline bool should_reclaim_stall(unsigned long nr_taken,
1436                                         unsigned long nr_freed,
1437                                         int priority,
1438                                         struct scan_control *sc)
1439 {
1440         int lumpy_stall_priority;
1441
1442         /* kswapd should not stall on sync IO */
1443         if (current_is_kswapd())
1444                 return false;
1445
1446         /* Only stall on lumpy reclaim */
1447         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1448                 return false;
1449
1450         /* If we have reclaimed everything on the isolated list, no stall */
1451         if (nr_freed == nr_taken)
1452                 return false;
1453
1454         /*
1455          * For high-order allocations, there are two stall thresholds.
1456          * High-cost allocations stall immediately where as lower
1457          * order allocations such as stacks require the scanning
1458          * priority to be much higher before stalling.
1459          */
1460         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1461                 lumpy_stall_priority = DEF_PRIORITY;
1462         else
1463                 lumpy_stall_priority = DEF_PRIORITY / 3;
1464
1465         return priority <= lumpy_stall_priority;
1466 }
1467
1468 /*
1469  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1470  * of reclaimed pages
1471  */
1472 static noinline_for_stack unsigned long
1473 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1474                         struct scan_control *sc, int priority, int file)
1475 {
1476         LIST_HEAD(page_list);
1477         unsigned long nr_scanned;
1478         unsigned long nr_reclaimed = 0;
1479         unsigned long nr_taken;
1480         unsigned long nr_anon;
1481         unsigned long nr_file;
1482         unsigned long nr_dirty = 0;
1483         unsigned long nr_writeback = 0;
1484         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1485
1486         while (unlikely(too_many_isolated(zone, file, sc))) {
1487                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1488
1489                 /* We are about to die and free our memory. Return now. */
1490                 if (fatal_signal_pending(current))
1491                         return SWAP_CLUSTER_MAX;
1492         }
1493
1494         set_reclaim_mode(priority, sc, false);
1495         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1496                 reclaim_mode |= ISOLATE_ACTIVE;
1497
1498         lru_add_drain();
1499
1500         if (!sc->may_unmap)
1501                 reclaim_mode |= ISOLATE_UNMAPPED;
1502         if (!sc->may_writepage)
1503                 reclaim_mode |= ISOLATE_CLEAN;
1504
1505         spin_lock_irq(&zone->lru_lock);
1506
1507         if (scanning_global_lru(sc)) {
1508                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1509                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1510         } else {
1511                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1512                         &nr_scanned, sc->order, reclaim_mode, zone,
1513                         sc->mem_cgroup, 0, file);
1514         }
1515         if (global_reclaim(sc)) {
1516                 zone->pages_scanned += nr_scanned;
1517                 if (current_is_kswapd())
1518                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1519                                                nr_scanned);
1520                 else
1521                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1522                                                nr_scanned);
1523         }
1524
1525         if (nr_taken == 0) {
1526                 spin_unlock_irq(&zone->lru_lock);
1527                 return 0;
1528         }
1529
1530         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1531
1532         spin_unlock_irq(&zone->lru_lock);
1533
1534         nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1535                                                 &nr_dirty, &nr_writeback);
1536
1537         /* Check if we should syncronously wait for writeback */
1538         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1539                 set_reclaim_mode(priority, sc, true);
1540                 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1541                                         priority, &nr_dirty, &nr_writeback);
1542         }
1543
1544         local_irq_disable();
1545         if (current_is_kswapd())
1546                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1547         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1548
1549         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1550
1551         /*
1552          * If reclaim is isolating dirty pages under writeback, it implies
1553          * that the long-lived page allocation rate is exceeding the page
1554          * laundering rate. Either the global limits are not being effective
1555          * at throttling processes due to the page distribution throughout
1556          * zones or there is heavy usage of a slow backing device. The
1557          * only option is to throttle from reclaim context which is not ideal
1558          * as there is no guarantee the dirtying process is throttled in the
1559          * same way balance_dirty_pages() manages.
1560          *
1561          * This scales the number of dirty pages that must be under writeback
1562          * before throttling depending on priority. It is a simple backoff
1563          * function that has the most effect in the range DEF_PRIORITY to
1564          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1565          * in trouble and reclaim is considered to be in trouble.
1566          *
1567          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1568          * DEF_PRIORITY-1  50% must be PageWriteback
1569          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1570          * ...
1571          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1572          *                     isolated page is PageWriteback
1573          */
1574         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1575                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1576
1577         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1578                 zone_idx(zone),
1579                 nr_scanned, nr_reclaimed,
1580                 priority,
1581                 trace_shrink_flags(file, sc->reclaim_mode));
1582         return nr_reclaimed;
1583 }
1584
1585 /*
1586  * This moves pages from the active list to the inactive list.
1587  *
1588  * We move them the other way if the page is referenced by one or more
1589  * processes, from rmap.
1590  *
1591  * If the pages are mostly unmapped, the processing is fast and it is
1592  * appropriate to hold zone->lru_lock across the whole operation.  But if
1593  * the pages are mapped, the processing is slow (page_referenced()) so we
1594  * should drop zone->lru_lock around each page.  It's impossible to balance
1595  * this, so instead we remove the pages from the LRU while processing them.
1596  * It is safe to rely on PG_active against the non-LRU pages in here because
1597  * nobody will play with that bit on a non-LRU page.
1598  *
1599  * The downside is that we have to touch page->_count against each page.
1600  * But we had to alter page->flags anyway.
1601  */
1602
1603 static void move_active_pages_to_lru(struct zone *zone,
1604                                      struct list_head *list,
1605                                      enum lru_list lru)
1606 {
1607         unsigned long pgmoved = 0;
1608         struct pagevec pvec;
1609         struct page *page;
1610
1611         pagevec_init(&pvec, 1);
1612
1613         while (!list_empty(list)) {
1614                 page = lru_to_page(list);
1615
1616                 VM_BUG_ON(PageLRU(page));
1617                 SetPageLRU(page);
1618
1619                 list_move(&page->lru, &zone->lru[lru].list);
1620                 mem_cgroup_add_lru_list(page, lru);
1621                 pgmoved += hpage_nr_pages(page);
1622
1623                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1624                         spin_unlock_irq(&zone->lru_lock);
1625                         if (buffer_heads_over_limit)
1626                                 pagevec_strip(&pvec);
1627                         __pagevec_release(&pvec);
1628                         spin_lock_irq(&zone->lru_lock);
1629                 }
1630         }
1631         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1632         if (!is_active_lru(lru))
1633                 __count_vm_events(PGDEACTIVATE, pgmoved);
1634 }
1635
1636 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1637                         struct scan_control *sc, int priority, int file)
1638 {
1639         unsigned long nr_taken;
1640         unsigned long pgscanned;
1641         unsigned long vm_flags;
1642         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1643         LIST_HEAD(l_active);
1644         LIST_HEAD(l_inactive);
1645         struct page *page;
1646         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1647         unsigned long nr_rotated = 0;
1648         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1649
1650         lru_add_drain();
1651
1652         if (!sc->may_unmap)
1653                 reclaim_mode |= ISOLATE_UNMAPPED;
1654         if (!sc->may_writepage)
1655                 reclaim_mode |= ISOLATE_CLEAN;
1656
1657         spin_lock_irq(&zone->lru_lock);
1658         if (scanning_global_lru(sc)) {
1659                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1660                                                 &pgscanned, sc->order,
1661                                                 reclaim_mode, zone,
1662                                                 1, file);
1663         } else {
1664                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1665                                                 &pgscanned, sc->order,
1666                                                 reclaim_mode, zone,
1667                                                 sc->mem_cgroup, 1, file);
1668         }
1669
1670         if (global_reclaim(sc))
1671                 zone->pages_scanned += pgscanned;
1672
1673         reclaim_stat->recent_scanned[file] += nr_taken;
1674
1675         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1676         if (file)
1677                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1678         else
1679                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1680         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1681         spin_unlock_irq(&zone->lru_lock);
1682
1683         while (!list_empty(&l_hold)) {
1684                 cond_resched();
1685                 page = lru_to_page(&l_hold);
1686                 list_del(&page->lru);
1687
1688                 if (unlikely(!page_evictable(page, NULL))) {
1689                         putback_lru_page(page);
1690                         continue;
1691                 }
1692
1693                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1694                         nr_rotated += hpage_nr_pages(page);
1695                         /*
1696                          * Identify referenced, file-backed active pages and
1697                          * give them one more trip around the active list. So
1698                          * that executable code get better chances to stay in
1699                          * memory under moderate memory pressure.  Anon pages
1700                          * are not likely to be evicted by use-once streaming
1701                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1702                          * so we ignore them here.
1703                          */
1704                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1705                                 list_add(&page->lru, &l_active);
1706                                 continue;
1707                         }
1708                 }
1709
1710                 ClearPageActive(page);  /* we are de-activating */
1711                 list_add(&page->lru, &l_inactive);
1712         }
1713
1714         /*
1715          * Move pages back to the lru list.
1716          */
1717         spin_lock_irq(&zone->lru_lock);
1718         /*
1719          * Count referenced pages from currently used mappings as rotated,
1720          * even though only some of them are actually re-activated.  This
1721          * helps balance scan pressure between file and anonymous pages in
1722          * get_scan_ratio.
1723          */
1724         reclaim_stat->recent_rotated[file] += nr_rotated;
1725
1726         move_active_pages_to_lru(zone, &l_active,
1727                                                 LRU_ACTIVE + file * LRU_FILE);
1728         move_active_pages_to_lru(zone, &l_inactive,
1729                                                 LRU_BASE   + file * LRU_FILE);
1730         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1731         spin_unlock_irq(&zone->lru_lock);
1732 }
1733
1734 #ifdef CONFIG_SWAP
1735 static int inactive_anon_is_low_global(struct zone *zone)
1736 {
1737         unsigned long active, inactive;
1738
1739         active = zone_page_state(zone, NR_ACTIVE_ANON);
1740         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1741
1742         if (inactive * zone->inactive_ratio < active)
1743                 return 1;
1744
1745         return 0;
1746 }
1747
1748 /**
1749  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1750  * @zone: zone to check
1751  * @sc:   scan control of this context
1752  *
1753  * Returns true if the zone does not have enough inactive anon pages,
1754  * meaning some active anon pages need to be deactivated.
1755  */
1756 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1757 {
1758         int low;
1759
1760         /*
1761          * If we don't have swap space, anonymous page deactivation
1762          * is pointless.
1763          */
1764         if (!total_swap_pages)
1765                 return 0;
1766
1767         if (scanning_global_lru(sc))
1768                 low = inactive_anon_is_low_global(zone);
1769         else
1770                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1771         return low;
1772 }
1773 #else
1774 static inline int inactive_anon_is_low(struct zone *zone,
1775                                         struct scan_control *sc)
1776 {
1777         return 0;
1778 }
1779 #endif
1780
1781 static int inactive_file_is_low_global(struct zone *zone)
1782 {
1783         unsigned long active, inactive;
1784
1785         active = zone_page_state(zone, NR_ACTIVE_FILE);
1786         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1787
1788         return (active > inactive);
1789 }
1790
1791 /**
1792  * inactive_file_is_low - check if file pages need to be deactivated
1793  * @zone: zone to check
1794  * @sc:   scan control of this context
1795  *
1796  * When the system is doing streaming IO, memory pressure here
1797  * ensures that active file pages get deactivated, until more
1798  * than half of the file pages are on the inactive list.
1799  *
1800  * Once we get to that situation, protect the system's working
1801  * set from being evicted by disabling active file page aging.
1802  *
1803  * This uses a different ratio than the anonymous pages, because
1804  * the page cache uses a use-once replacement algorithm.
1805  */
1806 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1807 {
1808         int low;
1809
1810         if (scanning_global_lru(sc))
1811                 low = inactive_file_is_low_global(zone);
1812         else
1813                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1814         return low;
1815 }
1816
1817 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1818                                 int file)
1819 {
1820         if (file)
1821                 return inactive_file_is_low(zone, sc);
1822         else
1823                 return inactive_anon_is_low(zone, sc);
1824 }
1825
1826 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1827         struct zone *zone, struct scan_control *sc, int priority)
1828 {
1829         int file = is_file_lru(lru);
1830
1831         if (is_active_lru(lru)) {
1832                 if (inactive_list_is_low(zone, sc, file))
1833                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1834                 return 0;
1835         }
1836
1837         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1838 }
1839
1840 static int vmscan_swappiness(struct scan_control *sc)
1841 {
1842         if (global_reclaim(sc))
1843                 return vm_swappiness;
1844         return mem_cgroup_swappiness(sc->mem_cgroup);
1845 }
1846
1847 /*
1848  * Determine how aggressively the anon and file LRU lists should be
1849  * scanned.  The relative value of each set of LRU lists is determined
1850  * by looking at the fraction of the pages scanned we did rotate back
1851  * onto the active list instead of evict.
1852  *
1853  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1854  */
1855 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1856                                         unsigned long *nr, int priority)
1857 {
1858         unsigned long anon, file, free;
1859         unsigned long anon_prio, file_prio;
1860         unsigned long ap, fp;
1861         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1862         u64 fraction[2], denominator;
1863         enum lru_list l;
1864         int noswap = 0;
1865         bool force_scan = false;
1866
1867         /*
1868          * If the zone or memcg is small, nr[l] can be 0.  This
1869          * results in no scanning on this priority and a potential
1870          * priority drop.  Global direct reclaim can go to the next
1871          * zone and tends to have no problems. Global kswapd is for
1872          * zone balancing and it needs to scan a minimum amount. When
1873          * reclaiming for a memcg, a priority drop can cause high
1874          * latencies, so it's better to scan a minimum amount there as
1875          * well.
1876          */
1877         if (current_is_kswapd())
1878                 force_scan = true;
1879         if (!global_reclaim(sc))
1880                 force_scan = true;
1881
1882         /* If we have no swap space, do not bother scanning anon pages. */
1883         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1884                 noswap = 1;
1885                 fraction[0] = 0;
1886                 fraction[1] = 1;
1887                 denominator = 1;
1888                 goto out;
1889         }
1890
1891         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1892                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1893         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1894                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1895
1896         if (global_reclaim(sc)) {
1897                 free  = zone_page_state(zone, NR_FREE_PAGES);
1898                 /* If we have very few page cache pages,
1899                    force-scan anon pages. */
1900                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1901                         fraction[0] = 1;
1902                         fraction[1] = 0;
1903                         denominator = 1;
1904                         goto out;
1905                 }
1906         }
1907
1908         /*
1909          * With swappiness at 100, anonymous and file have the same priority.
1910          * This scanning priority is essentially the inverse of IO cost.
1911          */
1912         anon_prio = vmscan_swappiness(sc);
1913         file_prio = 200 - vmscan_swappiness(sc);
1914
1915         /*
1916          * OK, so we have swap space and a fair amount of page cache
1917          * pages.  We use the recently rotated / recently scanned
1918          * ratios to determine how valuable each cache is.
1919          *
1920          * Because workloads change over time (and to avoid overflow)
1921          * we keep these statistics as a floating average, which ends
1922          * up weighing recent references more than old ones.
1923          *
1924          * anon in [0], file in [1]
1925          */
1926         spin_lock_irq(&zone->lru_lock);
1927         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1928                 reclaim_stat->recent_scanned[0] /= 2;
1929                 reclaim_stat->recent_rotated[0] /= 2;
1930         }
1931
1932         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1933                 reclaim_stat->recent_scanned[1] /= 2;
1934                 reclaim_stat->recent_rotated[1] /= 2;
1935         }
1936
1937         /*
1938          * The amount of pressure on anon vs file pages is inversely
1939          * proportional to the fraction of recently scanned pages on
1940          * each list that were recently referenced and in active use.
1941          */
1942         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1943         ap /= reclaim_stat->recent_rotated[0] + 1;
1944
1945         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1946         fp /= reclaim_stat->recent_rotated[1] + 1;
1947         spin_unlock_irq(&zone->lru_lock);
1948
1949         fraction[0] = ap;
1950         fraction[1] = fp;
1951         denominator = ap + fp + 1;
1952 out:
1953         for_each_evictable_lru(l) {
1954                 int file = is_file_lru(l);
1955                 unsigned long scan;
1956
1957                 scan = zone_nr_lru_pages(zone, sc, l);
1958                 if (priority || noswap) {
1959                         scan >>= priority;
1960                         if (!scan && force_scan)
1961                                 scan = SWAP_CLUSTER_MAX;
1962                         scan = div64_u64(scan * fraction[file], denominator);
1963                 }
1964                 nr[l] = scan;
1965         }
1966 }
1967
1968 /*
1969  * Reclaim/compaction depends on a number of pages being freed. To avoid
1970  * disruption to the system, a small number of order-0 pages continue to be
1971  * rotated and reclaimed in the normal fashion. However, by the time we get
1972  * back to the allocator and call try_to_compact_zone(), we ensure that
1973  * there are enough free pages for it to be likely successful
1974  */
1975 static inline bool should_continue_reclaim(struct zone *zone,
1976                                         unsigned long nr_reclaimed,
1977                                         unsigned long nr_scanned,
1978                                         struct scan_control *sc)
1979 {
1980         unsigned long pages_for_compaction;
1981         unsigned long inactive_lru_pages;
1982
1983         /* If not in reclaim/compaction mode, stop */
1984         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1985                 return false;
1986
1987         /* Consider stopping depending on scan and reclaim activity */
1988         if (sc->gfp_mask & __GFP_REPEAT) {
1989                 /*
1990                  * For __GFP_REPEAT allocations, stop reclaiming if the
1991                  * full LRU list has been scanned and we are still failing
1992                  * to reclaim pages. This full LRU scan is potentially
1993                  * expensive but a __GFP_REPEAT caller really wants to succeed
1994                  */
1995                 if (!nr_reclaimed && !nr_scanned)
1996                         return false;
1997         } else {
1998                 /*
1999                  * For non-__GFP_REPEAT allocations which can presumably
2000                  * fail without consequence, stop if we failed to reclaim
2001                  * any pages from the last SWAP_CLUSTER_MAX number of
2002                  * pages that were scanned. This will return to the
2003                  * caller faster at the risk reclaim/compaction and
2004                  * the resulting allocation attempt fails
2005                  */
2006                 if (!nr_reclaimed)
2007                         return false;
2008         }
2009
2010         /*
2011          * If we have not reclaimed enough pages for compaction and the
2012          * inactive lists are large enough, continue reclaiming
2013          */
2014         pages_for_compaction = (2UL << sc->order);
2015         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2016         if (nr_swap_pages > 0)
2017                 inactive_lru_pages += zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
2018         if (sc->nr_reclaimed < pages_for_compaction &&
2019                         inactive_lru_pages > pages_for_compaction)
2020                 return true;
2021
2022         /* If compaction would go ahead or the allocation would succeed, stop */
2023         switch (compaction_suitable(zone, sc->order)) {
2024         case COMPACT_PARTIAL:
2025         case COMPACT_CONTINUE:
2026                 return false;
2027         default:
2028                 return true;
2029         }
2030 }
2031
2032 /*
2033  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2034  */
2035 static void shrink_zone(int priority, struct zone *zone,
2036                                 struct scan_control *sc)
2037 {
2038         unsigned long nr[NR_LRU_LISTS];
2039         unsigned long nr_to_scan;
2040         enum lru_list l;
2041         unsigned long nr_reclaimed, nr_scanned;
2042         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2043         struct blk_plug plug;
2044
2045 restart:
2046         nr_reclaimed = 0;
2047         nr_scanned = sc->nr_scanned;
2048         get_scan_count(zone, sc, nr, priority);
2049
2050         blk_start_plug(&plug);
2051         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2052                                         nr[LRU_INACTIVE_FILE]) {
2053                 for_each_evictable_lru(l) {
2054                         if (nr[l]) {
2055                                 nr_to_scan = min_t(unsigned long,
2056                                                    nr[l], SWAP_CLUSTER_MAX);
2057                                 nr[l] -= nr_to_scan;
2058
2059                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2060                                                             zone, sc, priority);
2061                         }
2062                 }
2063                 /*
2064                  * On large memory systems, scan >> priority can become
2065                  * really large. This is fine for the starting priority;
2066                  * we want to put equal scanning pressure on each zone.
2067                  * However, if the VM has a harder time of freeing pages,
2068                  * with multiple processes reclaiming pages, the total
2069                  * freeing target can get unreasonably large.
2070                  */
2071                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2072                         break;
2073         }
2074         blk_finish_plug(&plug);
2075         sc->nr_reclaimed += nr_reclaimed;
2076
2077         /*
2078          * Even if we did not try to evict anon pages at all, we want to
2079          * rebalance the anon lru active/inactive ratio.
2080          */
2081         if (inactive_anon_is_low(zone, sc))
2082                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2083
2084         /* reclaim/compaction might need reclaim to continue */
2085         if (should_continue_reclaim(zone, nr_reclaimed,
2086                                         sc->nr_scanned - nr_scanned, sc))
2087                 goto restart;
2088
2089         throttle_vm_writeout(sc->gfp_mask);
2090 }
2091
2092 /*
2093  * This is the direct reclaim path, for page-allocating processes.  We only
2094  * try to reclaim pages from zones which will satisfy the caller's allocation
2095  * request.
2096  *
2097  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2098  * Because:
2099  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2100  *    allocation or
2101  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2102  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2103  *    zone defense algorithm.
2104  *
2105  * If a zone is deemed to be full of pinned pages then just give it a light
2106  * scan then give up on it.
2107  *
2108  * This function returns true if a zone is being reclaimed for a costly
2109  * high-order allocation and compaction is either ready to begin or deferred.
2110  * This indicates to the caller that it should retry the allocation or fail.
2111  */
2112 static bool shrink_zones(int priority, struct zonelist *zonelist,
2113                                         struct scan_control *sc)
2114 {
2115         struct zoneref *z;
2116         struct zone *zone;
2117         unsigned long nr_soft_reclaimed;
2118         unsigned long nr_soft_scanned;
2119         bool should_abort_reclaim = false;
2120
2121         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2122                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2123                 if (!populated_zone(zone))
2124                         continue;
2125                 /*
2126                  * Take care memory controller reclaiming has small influence
2127                  * to global LRU.
2128                  */
2129                 if (global_reclaim(sc)) {
2130                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2131                                 continue;
2132                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2133                                 continue;       /* Let kswapd poll it */
2134                         if (COMPACTION_BUILD) {
2135                                 /*
2136                                  * If we already have plenty of memory free for
2137                                  * compaction in this zone, don't free any more.
2138                                  * Even though compaction is invoked for any
2139                                  * non-zero order, only frequent costly order
2140                                  * reclamation is disruptive enough to become a
2141                                  * noticable problem, like transparent huge page
2142                                  * allocations.
2143                                  */
2144                                 if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2145                                         (compaction_suitable(zone, sc->order) ||
2146                                          compaction_deferred(zone))) {
2147                                         should_abort_reclaim = true;
2148                                         continue;
2149                                 }
2150                         }
2151                         /*
2152                          * This steals pages from memory cgroups over softlimit
2153                          * and returns the number of reclaimed pages and
2154                          * scanned pages. This works for global memory pressure
2155                          * and balancing, not for a memcg's limit.
2156                          */
2157                         nr_soft_scanned = 0;
2158                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2159                                                 sc->order, sc->gfp_mask,
2160                                                 &nr_soft_scanned);
2161                         sc->nr_reclaimed += nr_soft_reclaimed;
2162                         sc->nr_scanned += nr_soft_scanned;
2163                         /* need some check for avoid more shrink_zone() */
2164                 }
2165
2166                 shrink_zone(priority, zone, sc);
2167         }
2168
2169         return should_abort_reclaim;
2170 }
2171
2172 static bool zone_reclaimable(struct zone *zone)
2173 {
2174         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2175 }
2176
2177 /* All zones in zonelist are unreclaimable? */
2178 static bool all_unreclaimable(struct zonelist *zonelist,
2179                 struct scan_control *sc)
2180 {
2181         struct zoneref *z;
2182         struct zone *zone;
2183
2184         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2185                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2186                 if (!populated_zone(zone))
2187                         continue;
2188                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2189                         continue;
2190                 if (!zone->all_unreclaimable)
2191                         return false;
2192         }
2193
2194         return true;
2195 }
2196
2197 /*
2198  * This is the main entry point to direct page reclaim.
2199  *
2200  * If a full scan of the inactive list fails to free enough memory then we
2201  * are "out of memory" and something needs to be killed.
2202  *
2203  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2204  * high - the zone may be full of dirty or under-writeback pages, which this
2205  * caller can't do much about.  We kick the writeback threads and take explicit
2206  * naps in the hope that some of these pages can be written.  But if the
2207  * allocating task holds filesystem locks which prevent writeout this might not
2208  * work, and the allocation attempt will fail.
2209  *
2210  * returns:     0, if no pages reclaimed
2211  *              else, the number of pages reclaimed
2212  */
2213 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2214                                         struct scan_control *sc,
2215                                         struct shrink_control *shrink)
2216 {
2217         int priority;
2218         unsigned long total_scanned = 0;
2219         struct reclaim_state *reclaim_state = current->reclaim_state;
2220         struct zoneref *z;
2221         struct zone *zone;
2222         unsigned long writeback_threshold;
2223
2224         get_mems_allowed();
2225         delayacct_freepages_start();
2226
2227         if (global_reclaim(sc))
2228                 count_vm_event(ALLOCSTALL);
2229
2230         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2231                 sc->nr_scanned = 0;
2232                 if (!priority)
2233                         disable_swap_token(sc->mem_cgroup);
2234                 if (shrink_zones(priority, zonelist, sc))
2235                         break;
2236
2237                 /*
2238                  * Don't shrink slabs when reclaiming memory from
2239                  * over limit cgroups
2240                  */
2241                 if (global_reclaim(sc)) {
2242                         unsigned long lru_pages = 0;
2243                         for_each_zone_zonelist(zone, z, zonelist,
2244                                         gfp_zone(sc->gfp_mask)) {
2245                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2246                                         continue;
2247
2248                                 lru_pages += zone_reclaimable_pages(zone);
2249                         }
2250
2251                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2252                         if (reclaim_state) {
2253                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2254                                 reclaim_state->reclaimed_slab = 0;
2255                         }
2256                 }
2257                 total_scanned += sc->nr_scanned;
2258                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2259                         goto out;
2260
2261                 /*
2262                  * Try to write back as many pages as we just scanned.  This
2263                  * tends to cause slow streaming writers to write data to the
2264                  * disk smoothly, at the dirtying rate, which is nice.   But
2265                  * that's undesirable in laptop mode, where we *want* lumpy
2266                  * writeout.  So in laptop mode, write out the whole world.
2267                  */
2268                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2269                 if (total_scanned > writeback_threshold) {
2270                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2271                                                 WB_REASON_TRY_TO_FREE_PAGES);
2272                         sc->may_writepage = 1;
2273                 }
2274
2275                 /* Take a nap, wait for some writeback to complete */
2276                 if (!sc->hibernation_mode && sc->nr_scanned &&
2277                     priority < DEF_PRIORITY - 2) {
2278                         struct zone *preferred_zone;
2279
2280                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2281                                                 &cpuset_current_mems_allowed,
2282                                                 &preferred_zone);
2283                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2284                 }
2285         }
2286
2287 out:
2288         delayacct_freepages_end();
2289         put_mems_allowed();
2290
2291         if (sc->nr_reclaimed)
2292                 return sc->nr_reclaimed;
2293
2294         /*
2295          * As hibernation is going on, kswapd is freezed so that it can't mark
2296          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2297          * check.
2298          */
2299         if (oom_killer_disabled)
2300                 return 0;
2301
2302         /* top priority shrink_zones still had more to do? don't OOM, then */
2303         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2304                 return 1;
2305
2306         return 0;
2307 }
2308
2309 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2310                                 gfp_t gfp_mask, nodemask_t *nodemask)
2311 {
2312         unsigned long nr_reclaimed;
2313         struct scan_control sc = {
2314                 .gfp_mask = gfp_mask,
2315                 .may_writepage = !laptop_mode,
2316                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2317                 .may_unmap = 1,
2318                 .may_swap = 1,
2319                 .order = order,
2320                 .mem_cgroup = NULL,
2321                 .nodemask = nodemask,
2322         };
2323         struct shrink_control shrink = {
2324                 .gfp_mask = sc.gfp_mask,
2325         };
2326
2327         trace_mm_vmscan_direct_reclaim_begin(order,
2328                                 sc.may_writepage,
2329                                 gfp_mask);
2330
2331         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2332
2333         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2334
2335         return nr_reclaimed;
2336 }
2337
2338 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2339
2340 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2341                                                 gfp_t gfp_mask, bool noswap,
2342                                                 struct zone *zone,
2343                                                 unsigned long *nr_scanned)
2344 {
2345         struct scan_control sc = {
2346                 .nr_scanned = 0,
2347                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2348                 .may_writepage = !laptop_mode,
2349                 .may_unmap = 1,
2350                 .may_swap = !noswap,
2351                 .order = 0,
2352                 .mem_cgroup = mem,
2353         };
2354
2355         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2356                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2357
2358         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2359                                                       sc.may_writepage,
2360                                                       sc.gfp_mask);
2361
2362         /*
2363          * NOTE: Although we can get the priority field, using it
2364          * here is not a good idea, since it limits the pages we can scan.
2365          * if we don't reclaim here, the shrink_zone from balance_pgdat
2366          * will pick up pages from other mem cgroup's as well. We hack
2367          * the priority and make it zero.
2368          */
2369         shrink_zone(0, zone, &sc);
2370
2371         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2372
2373         *nr_scanned = sc.nr_scanned;
2374         return sc.nr_reclaimed;
2375 }
2376
2377 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2378                                            gfp_t gfp_mask,
2379                                            bool noswap)
2380 {
2381         struct zonelist *zonelist;
2382         unsigned long nr_reclaimed;
2383         int nid;
2384         struct scan_control sc = {
2385                 .may_writepage = !laptop_mode,
2386                 .may_unmap = 1,
2387                 .may_swap = !noswap,
2388                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2389                 .order = 0,
2390                 .mem_cgroup = mem_cont,
2391                 .nodemask = NULL, /* we don't care the placement */
2392                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2393                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2394         };
2395         struct shrink_control shrink = {
2396                 .gfp_mask = sc.gfp_mask,
2397         };
2398
2399         /*
2400          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2401          * take care of from where we get pages. So the node where we start the
2402          * scan does not need to be the current node.
2403          */
2404         nid = mem_cgroup_select_victim_node(mem_cont);
2405
2406         zonelist = NODE_DATA(nid)->node_zonelists;
2407
2408         trace_mm_vmscan_memcg_reclaim_begin(0,
2409                                             sc.may_writepage,
2410                                             sc.gfp_mask);
2411
2412         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2413
2414         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2415
2416         return nr_reclaimed;
2417 }
2418 #endif
2419
2420 /*
2421  * pgdat_balanced is used when checking if a node is balanced for high-order
2422  * allocations. Only zones that meet watermarks and are in a zone allowed
2423  * by the callers classzone_idx are added to balanced_pages. The total of
2424  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2425  * for the node to be considered balanced. Forcing all zones to be balanced
2426  * for high orders can cause excessive reclaim when there are imbalanced zones.
2427  * The choice of 25% is due to
2428  *   o a 16M DMA zone that is balanced will not balance a zone on any
2429  *     reasonable sized machine
2430  *   o On all other machines, the top zone must be at least a reasonable
2431  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2432  *     would need to be at least 256M for it to be balance a whole node.
2433  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2434  *     to balance a node on its own. These seemed like reasonable ratios.
2435  */
2436 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2437                                                 int classzone_idx)
2438 {
2439         unsigned long present_pages = 0;
2440         int i;
2441
2442         for (i = 0; i <= classzone_idx; i++)
2443                 present_pages += pgdat->node_zones[i].present_pages;
2444
2445         /* A special case here: if zone has no page, we think it's balanced */
2446         return balanced_pages >= (present_pages >> 2);
2447 }
2448
2449 /* is kswapd sleeping prematurely? */
2450 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2451                                         int classzone_idx)
2452 {
2453         int i;
2454         unsigned long balanced = 0;
2455         bool all_zones_ok = true;
2456
2457         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2458         if (remaining)
2459                 return true;
2460
2461         /* Check the watermark levels */
2462         for (i = 0; i <= classzone_idx; i++) {
2463                 struct zone *zone = pgdat->node_zones + i;
2464
2465                 if (!populated_zone(zone))
2466                         continue;
2467
2468                 /*
2469                  * balance_pgdat() skips over all_unreclaimable after
2470                  * DEF_PRIORITY. Effectively, it considers them balanced so
2471                  * they must be considered balanced here as well if kswapd
2472                  * is to sleep
2473                  */
2474                 if (zone->all_unreclaimable) {
2475                         balanced += zone->present_pages;
2476                         continue;
2477                 }
2478
2479                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2480                                                         i, 0))
2481                         all_zones_ok = false;
2482                 else
2483                         balanced += zone->present_pages;
2484         }
2485
2486         /*
2487          * For high-order requests, the balanced zones must contain at least
2488          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2489          * must be balanced
2490          */
2491         if (order)
2492                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2493         else
2494                 return !all_zones_ok;
2495 }
2496
2497 /*
2498  * For kswapd, balance_pgdat() will work across all this node's zones until
2499  * they are all at high_wmark_pages(zone).
2500  *
2501  * Returns the final order kswapd was reclaiming at
2502  *
2503  * There is special handling here for zones which are full of pinned pages.
2504  * This can happen if the pages are all mlocked, or if they are all used by
2505  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2506  * What we do is to detect the case where all pages in the zone have been
2507  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2508  * dead and from now on, only perform a short scan.  Basically we're polling
2509  * the zone for when the problem goes away.
2510  *
2511  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2512  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2513  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2514  * lower zones regardless of the number of free pages in the lower zones. This
2515  * interoperates with the page allocator fallback scheme to ensure that aging
2516  * of pages is balanced across the zones.
2517  */
2518 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2519                                                         int *classzone_idx)
2520 {
2521         int all_zones_ok;
2522         unsigned long balanced;
2523         int priority;
2524         int i;
2525         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2526         unsigned long total_scanned;
2527         struct reclaim_state *reclaim_state = current->reclaim_state;
2528         unsigned long nr_soft_reclaimed;
2529         unsigned long nr_soft_scanned;
2530         struct scan_control sc = {
2531                 .gfp_mask = GFP_KERNEL,
2532                 .may_unmap = 1,
2533                 .may_swap = 1,
2534                 /*
2535                  * kswapd doesn't want to be bailed out while reclaim. because
2536                  * we want to put equal scanning pressure on each zone.
2537                  */
2538                 .nr_to_reclaim = ULONG_MAX,
2539                 .order = order,
2540                 .mem_cgroup = NULL,
2541         };
2542         struct shrink_control shrink = {
2543                 .gfp_mask = sc.gfp_mask,
2544         };
2545 loop_again:
2546         total_scanned = 0;
2547         sc.nr_reclaimed = 0;
2548         sc.may_writepage = !laptop_mode;
2549         count_vm_event(PAGEOUTRUN);
2550
2551         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2552                 unsigned long lru_pages = 0;
2553                 int has_under_min_watermark_zone = 0;
2554
2555                 /* The swap token gets in the way of swapout... */
2556                 if (!priority)
2557                         disable_swap_token(NULL);
2558
2559                 all_zones_ok = 1;
2560                 balanced = 0;
2561
2562                 /*
2563                  * Scan in the highmem->dma direction for the highest
2564                  * zone which needs scanning
2565                  */
2566                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2567                         struct zone *zone = pgdat->node_zones + i;
2568
2569                         if (!populated_zone(zone))
2570                                 continue;
2571
2572                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2573                                 continue;
2574
2575                         /*
2576                          * Do some background aging of the anon list, to give
2577                          * pages a chance to be referenced before reclaiming.
2578                          */
2579                         if (inactive_anon_is_low(zone, &sc))
2580                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2581                                                         &sc, priority, 0);
2582
2583                         if (!zone_watermark_ok_safe(zone, order,
2584                                         high_wmark_pages(zone), 0, 0)) {
2585                                 end_zone = i;
2586                                 break;
2587                         } else {
2588                                 /* If balanced, clear the congested flag */
2589                                 zone_clear_flag(zone, ZONE_CONGESTED);
2590                         }
2591                 }
2592                 if (i < 0)
2593                         goto out;
2594
2595                 for (i = 0; i <= end_zone; i++) {
2596                         struct zone *zone = pgdat->node_zones + i;
2597
2598                         lru_pages += zone_reclaimable_pages(zone);
2599                 }
2600
2601                 /*
2602                  * Now scan the zone in the dma->highmem direction, stopping
2603                  * at the last zone which needs scanning.
2604                  *
2605                  * We do this because the page allocator works in the opposite
2606                  * direction.  This prevents the page allocator from allocating
2607                  * pages behind kswapd's direction of progress, which would
2608                  * cause too much scanning of the lower zones.
2609                  */
2610                 for (i = 0; i <= end_zone; i++) {
2611                         struct zone *zone = pgdat->node_zones + i;
2612                         int nr_slab;
2613                         unsigned long balance_gap;
2614
2615                         if (!populated_zone(zone))
2616                                 continue;
2617
2618                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2619                                 continue;
2620
2621                         sc.nr_scanned = 0;
2622
2623                         nr_soft_scanned = 0;
2624                         /*
2625                          * Call soft limit reclaim before calling shrink_zone.
2626                          */
2627                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2628                                                         order, sc.gfp_mask,
2629                                                         &nr_soft_scanned);
2630                         sc.nr_reclaimed += nr_soft_reclaimed;
2631                         total_scanned += nr_soft_scanned;
2632
2633                         /*
2634                          * We put equal pressure on every zone, unless
2635                          * one zone has way too many pages free
2636                          * already. The "too many pages" is defined
2637                          * as the high wmark plus a "gap" where the
2638                          * gap is either the low watermark or 1%
2639                          * of the zone, whichever is smaller.
2640                          */
2641                         balance_gap = min(low_wmark_pages(zone),
2642                                 (zone->present_pages +
2643                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2644                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2645                         if (!zone_watermark_ok_safe(zone, order,
2646                                         high_wmark_pages(zone) + balance_gap,
2647                                         end_zone, 0)) {
2648                                 shrink_zone(priority, zone, &sc);
2649
2650                                 reclaim_state->reclaimed_slab = 0;
2651                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2652                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2653                                 total_scanned += sc.nr_scanned;
2654
2655                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2656                                         zone->all_unreclaimable = 1;
2657                         }
2658
2659                         /*
2660                          * If we've done a decent amount of scanning and
2661                          * the reclaim ratio is low, start doing writepage
2662                          * even in laptop mode
2663                          */
2664                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2665                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2666                                 sc.may_writepage = 1;
2667
2668                         if (zone->all_unreclaimable) {
2669                                 if (end_zone && end_zone == i)
2670                                         end_zone--;
2671                                 continue;
2672                         }
2673
2674                         if (!zone_watermark_ok_safe(zone, order,
2675                                         high_wmark_pages(zone), end_zone, 0)) {
2676                                 all_zones_ok = 0;
2677                                 /*
2678                                  * We are still under min water mark.  This
2679                                  * means that we have a GFP_ATOMIC allocation
2680                                  * failure risk. Hurry up!
2681                                  */
2682                                 if (!zone_watermark_ok_safe(zone, order,
2683                                             min_wmark_pages(zone), end_zone, 0))
2684                                         has_under_min_watermark_zone = 1;
2685                         } else {
2686                                 /*
2687                                  * If a zone reaches its high watermark,
2688                                  * consider it to be no longer congested. It's
2689                                  * possible there are dirty pages backed by
2690                                  * congested BDIs but as pressure is relieved,
2691                                  * spectulatively avoid congestion waits
2692                                  */
2693                                 zone_clear_flag(zone, ZONE_CONGESTED);
2694                                 if (i <= *classzone_idx)
2695                                         balanced += zone->present_pages;
2696                         }
2697
2698                 }
2699                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2700                         break;          /* kswapd: all done */
2701                 /*
2702                  * OK, kswapd is getting into trouble.  Take a nap, then take
2703                  * another pass across the zones.
2704                  */
2705                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2706                         if (has_under_min_watermark_zone)
2707                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2708                         else
2709                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2710                 }
2711
2712                 /*
2713                  * We do this so kswapd doesn't build up large priorities for
2714                  * example when it is freeing in parallel with allocators. It
2715                  * matches the direct reclaim path behaviour in terms of impact
2716                  * on zone->*_priority.
2717                  */
2718                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2719                         break;
2720         }
2721 out:
2722
2723         /*
2724          * order-0: All zones must meet high watermark for a balanced node
2725          * high-order: Balanced zones must make up at least 25% of the node
2726          *             for the node to be balanced
2727          */
2728         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2729                 cond_resched();
2730
2731                 try_to_freeze();
2732
2733                 /*
2734                  * Fragmentation may mean that the system cannot be
2735                  * rebalanced for high-order allocations in all zones.
2736                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2737                  * it means the zones have been fully scanned and are still
2738                  * not balanced. For high-order allocations, there is
2739                  * little point trying all over again as kswapd may
2740                  * infinite loop.
2741                  *
2742                  * Instead, recheck all watermarks at order-0 as they
2743                  * are the most important. If watermarks are ok, kswapd will go
2744                  * back to sleep. High-order users can still perform direct
2745                  * reclaim if they wish.
2746                  */
2747                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2748                         order = sc.order = 0;
2749
2750                 goto loop_again;
2751         }
2752
2753         /*
2754          * If kswapd was reclaiming at a higher order, it has the option of
2755          * sleeping without all zones being balanced. Before it does, it must
2756          * ensure that the watermarks for order-0 on *all* zones are met and
2757          * that the congestion flags are cleared. The congestion flag must
2758          * be cleared as kswapd is the only mechanism that clears the flag
2759          * and it is potentially going to sleep here.
2760          */
2761         if (order) {
2762                 for (i = 0; i <= end_zone; i++) {
2763                         struct zone *zone = pgdat->node_zones + i;
2764
2765                         if (!populated_zone(zone))
2766                                 continue;
2767
2768                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2769                                 continue;
2770
2771                         /* Confirm the zone is balanced for order-0 */
2772                         if (!zone_watermark_ok(zone, 0,
2773                                         high_wmark_pages(zone), 0, 0)) {
2774                                 order = sc.order = 0;
2775                                 goto loop_again;
2776                         }
2777
2778                         /* If balanced, clear the congested flag */
2779                         zone_clear_flag(zone, ZONE_CONGESTED);
2780                         if (i <= *classzone_idx)
2781                                 balanced += zone->present_pages;
2782                 }
2783         }
2784
2785         /*
2786          * Return the order we were reclaiming at so sleeping_prematurely()
2787          * makes a decision on the order we were last reclaiming at. However,
2788          * if another caller entered the allocator slow path while kswapd
2789          * was awake, order will remain at the higher level
2790          */
2791         *classzone_idx = end_zone;
2792         return order;
2793 }
2794
2795 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2796 {
2797         long remaining = 0;
2798         DEFINE_WAIT(wait);
2799
2800         if (freezing(current) || kthread_should_stop())
2801                 return;
2802
2803         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2804
2805         /* Try to sleep for a short interval */
2806         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2807                 remaining = schedule_timeout(HZ/10);
2808                 finish_wait(&pgdat->kswapd_wait, &wait);
2809                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2810         }
2811
2812         /*
2813          * After a short sleep, check if it was a premature sleep. If not, then
2814          * go fully to sleep until explicitly woken up.
2815          */
2816         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2817                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2818
2819                 /*
2820                  * vmstat counters are not perfectly accurate and the estimated
2821                  * value for counters such as NR_FREE_PAGES can deviate from the
2822                  * true value by nr_online_cpus * threshold. To avoid the zone
2823                  * watermarks being breached while under pressure, we reduce the
2824                  * per-cpu vmstat threshold while kswapd is awake and restore
2825                  * them before going back to sleep.
2826                  */
2827                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2828                 schedule();
2829                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2830         } else {
2831                 if (remaining)
2832                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2833                 else
2834                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2835         }
2836         finish_wait(&pgdat->kswapd_wait, &wait);
2837 }
2838
2839 /*
2840  * The background pageout daemon, started as a kernel thread
2841  * from the init process.
2842  *
2843  * This basically trickles out pages so that we have _some_
2844  * free memory available even if there is no other activity
2845  * that frees anything up. This is needed for things like routing
2846  * etc, where we otherwise might have all activity going on in
2847  * asynchronous contexts that cannot page things out.
2848  *
2849  * If there are applications that are active memory-allocators
2850  * (most normal use), this basically shouldn't matter.
2851  */
2852 static int kswapd(void *p)
2853 {
2854         unsigned long order, new_order;
2855         unsigned balanced_order;
2856         int classzone_idx, new_classzone_idx;
2857         int balanced_classzone_idx;
2858         pg_data_t *pgdat = (pg_data_t*)p;
2859         struct task_struct *tsk = current;
2860
2861         struct reclaim_state reclaim_state = {
2862                 .reclaimed_slab = 0,
2863         };
2864         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2865
2866         lockdep_set_current_reclaim_state(GFP_KERNEL);
2867
2868         if (!cpumask_empty(cpumask))
2869                 set_cpus_allowed_ptr(tsk, cpumask);
2870         current->reclaim_state = &reclaim_state;
2871
2872         /*
2873          * Tell the memory management that we're a "memory allocator",
2874          * and that if we need more memory we should get access to it
2875          * regardless (see "__alloc_pages()"). "kswapd" should
2876          * never get caught in the normal page freeing logic.
2877          *
2878          * (Kswapd normally doesn't need memory anyway, but sometimes
2879          * you need a small amount of memory in order to be able to
2880          * page out something else, and this flag essentially protects
2881          * us from recursively trying to free more memory as we're
2882          * trying to free the first piece of memory in the first place).
2883          */
2884         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2885         set_freezable();
2886
2887         order = new_order = 0;
2888         balanced_order = 0;
2889         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2890         balanced_classzone_idx = classzone_idx;
2891         for ( ; ; ) {
2892                 int ret;
2893
2894                 /*
2895                  * If the last balance_pgdat was unsuccessful it's unlikely a
2896                  * new request of a similar or harder type will succeed soon
2897                  * so consider going to sleep on the basis we reclaimed at
2898                  */
2899                 if (balanced_classzone_idx >= new_classzone_idx &&
2900                                         balanced_order == new_order) {
2901                         new_order = pgdat->kswapd_max_order;
2902                         new_classzone_idx = pgdat->classzone_idx;
2903                         pgdat->kswapd_max_order =  0;
2904                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2905                 }
2906
2907                 if (order < new_order || classzone_idx > new_classzone_idx) {
2908                         /*
2909                          * Don't sleep if someone wants a larger 'order'
2910                          * allocation or has tigher zone constraints
2911                          */
2912                         order = new_order;
2913                         classzone_idx = new_classzone_idx;
2914                 } else {
2915                         kswapd_try_to_sleep(pgdat, balanced_order,
2916                                                 balanced_classzone_idx);
2917                         order = pgdat->kswapd_max_order;
2918                         classzone_idx = pgdat->classzone_idx;
2919                         new_order = order;
2920                         new_classzone_idx = classzone_idx;
2921                         pgdat->kswapd_max_order = 0;
2922                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2923                 }
2924
2925                 ret = try_to_freeze();
2926                 if (kthread_should_stop())
2927                         break;
2928
2929                 /*
2930                  * We can speed up thawing tasks if we don't call balance_pgdat
2931                  * after returning from the refrigerator
2932                  */
2933                 if (!ret) {
2934                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2935                         balanced_classzone_idx = classzone_idx;
2936                         balanced_order = balance_pgdat(pgdat, order,
2937                                                 &balanced_classzone_idx);
2938                 }
2939         }
2940         return 0;
2941 }
2942
2943 /*
2944  * A zone is low on free memory, so wake its kswapd task to service it.
2945  */
2946 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2947 {
2948         pg_data_t *pgdat;
2949
2950         if (!populated_zone(zone))
2951                 return;
2952
2953         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2954                 return;
2955         pgdat = zone->zone_pgdat;
2956         if (pgdat->kswapd_max_order < order) {
2957                 pgdat->kswapd_max_order = order;
2958                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2959         }
2960         if (!waitqueue_active(&pgdat->kswapd_wait))
2961                 return;
2962         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2963                 return;
2964
2965         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2966         wake_up_interruptible(&pgdat->kswapd_wait);
2967 }
2968
2969 /*
2970  * The reclaimable count would be mostly accurate.
2971  * The less reclaimable pages may be
2972  * - mlocked pages, which will be moved to unevictable list when encountered
2973  * - mapped pages, which may require several travels to be reclaimed
2974  * - dirty pages, which is not "instantly" reclaimable
2975  */
2976 unsigned long global_reclaimable_pages(void)
2977 {
2978         int nr;
2979
2980         nr = global_page_state(NR_ACTIVE_FILE) +
2981              global_page_state(NR_INACTIVE_FILE);
2982
2983         if (nr_swap_pages > 0)
2984                 nr += global_page_state(NR_ACTIVE_ANON) +
2985                       global_page_state(NR_INACTIVE_ANON);
2986
2987         return nr;
2988 }
2989
2990 unsigned long zone_reclaimable_pages(struct zone *zone)
2991 {
2992         int nr;
2993
2994         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2995              zone_page_state(zone, NR_INACTIVE_FILE);
2996
2997         if (nr_swap_pages > 0)
2998                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2999                       zone_page_state(zone, NR_INACTIVE_ANON);
3000
3001         return nr;
3002 }
3003
3004 #ifdef CONFIG_HIBERNATION
3005 /*
3006  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3007  * freed pages.
3008  *
3009  * Rather than trying to age LRUs the aim is to preserve the overall
3010  * LRU order by reclaiming preferentially
3011  * inactive > active > active referenced > active mapped
3012  */
3013 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3014 {
3015         struct reclaim_state reclaim_state;
3016         struct scan_control sc = {
3017                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3018                 .may_swap = 1,
3019                 .may_unmap = 1,
3020                 .may_writepage = 1,
3021                 .nr_to_reclaim = nr_to_reclaim,
3022                 .hibernation_mode = 1,
3023                 .order = 0,
3024         };
3025         struct shrink_control shrink = {
3026                 .gfp_mask = sc.gfp_mask,
3027         };
3028         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3029         struct task_struct *p = current;
3030         unsigned long nr_reclaimed;
3031
3032         p->flags |= PF_MEMALLOC;
3033         lockdep_set_current_reclaim_state(sc.gfp_mask);
3034         reclaim_state.reclaimed_slab = 0;
3035         p->reclaim_state = &reclaim_state;
3036
3037         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3038
3039         p->reclaim_state = NULL;
3040         lockdep_clear_current_reclaim_state();
3041         p->flags &= ~PF_MEMALLOC;
3042
3043         return nr_reclaimed;
3044 }
3045 #endif /* CONFIG_HIBERNATION */
3046
3047 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3048    not required for correctness.  So if the last cpu in a node goes
3049    away, we get changed to run anywhere: as the first one comes back,
3050    restore their cpu bindings. */
3051 static int __devinit cpu_callback(struct notifier_block *nfb,
3052                                   unsigned long action, void *hcpu)
3053 {
3054         int nid;
3055
3056         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3057                 for_each_node_state(nid, N_HIGH_MEMORY) {
3058                         pg_data_t *pgdat = NODE_DATA(nid);
3059                         const struct cpumask *mask;
3060
3061                         mask = cpumask_of_node(pgdat->node_id);
3062
3063                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3064                                 /* One of our CPUs online: restore mask */
3065                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3066                 }
3067         }
3068         return NOTIFY_OK;
3069 }
3070
3071 /*
3072  * This kswapd start function will be called by init and node-hot-add.
3073  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3074  */
3075 int kswapd_run(int nid)
3076 {
3077         pg_data_t *pgdat = NODE_DATA(nid);
3078         int ret = 0;
3079
3080         if (pgdat->kswapd)
3081                 return 0;
3082
3083         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3084         if (IS_ERR(pgdat->kswapd)) {
3085                 /* failure at boot is fatal */
3086                 BUG_ON(system_state == SYSTEM_BOOTING);
3087                 printk("Failed to start kswapd on node %d\n",nid);
3088                 ret = -1;
3089         }
3090         return ret;
3091 }
3092
3093 /*
3094  * Called by memory hotplug when all memory in a node is offlined.
3095  */
3096 void kswapd_stop(int nid)
3097 {
3098         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3099
3100         if (kswapd)
3101                 kthread_stop(kswapd);
3102 }
3103
3104 static int __init kswapd_init(void)
3105 {
3106         int nid;
3107
3108         swap_setup();
3109         for_each_node_state(nid, N_HIGH_MEMORY)
3110                 kswapd_run(nid);
3111         hotcpu_notifier(cpu_callback, 0);
3112         return 0;
3113 }
3114
3115 module_init(kswapd_init)
3116
3117 #ifdef CONFIG_NUMA
3118 /*
3119  * Zone reclaim mode
3120  *
3121  * If non-zero call zone_reclaim when the number of free pages falls below
3122  * the watermarks.
3123  */
3124 int zone_reclaim_mode __read_mostly;
3125
3126 #define RECLAIM_OFF 0
3127 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3128 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3129 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3130
3131 /*
3132  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3133  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3134  * a zone.
3135  */
3136 #define ZONE_RECLAIM_PRIORITY 4
3137
3138 /*
3139  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3140  * occur.
3141  */
3142 int sysctl_min_unmapped_ratio = 1;
3143
3144 /*
3145  * If the number of slab pages in a zone grows beyond this percentage then
3146  * slab reclaim needs to occur.
3147  */
3148 int sysctl_min_slab_ratio = 5;
3149
3150 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3151 {
3152         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3153         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3154                 zone_page_state(zone, NR_ACTIVE_FILE);
3155
3156         /*
3157          * It's possible for there to be more file mapped pages than
3158          * accounted for by the pages on the file LRU lists because
3159          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3160          */
3161         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3162 }
3163
3164 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3165 static long zone_pagecache_reclaimable(struct zone *zone)
3166 {
3167         long nr_pagecache_reclaimable;
3168         long delta = 0;
3169
3170         /*
3171          * If RECLAIM_SWAP is set, then all file pages are considered
3172          * potentially reclaimable. Otherwise, we have to worry about
3173          * pages like swapcache and zone_unmapped_file_pages() provides
3174          * a better estimate
3175          */
3176         if (zone_reclaim_mode & RECLAIM_SWAP)
3177                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3178         else
3179                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3180
3181         /* If we can't clean pages, remove dirty pages from consideration */
3182         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3183                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3184
3185         /* Watch for any possible underflows due to delta */
3186         if (unlikely(delta > nr_pagecache_reclaimable))
3187                 delta = nr_pagecache_reclaimable;
3188
3189         return nr_pagecache_reclaimable - delta;
3190 }
3191
3192 /*
3193  * Try to free up some pages from this zone through reclaim.
3194  */
3195 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3196 {
3197         /* Minimum pages needed in order to stay on node */
3198         const unsigned long nr_pages = 1 << order;
3199         struct task_struct *p = current;
3200         struct reclaim_state reclaim_state;
3201         int priority;
3202         struct scan_control sc = {
3203                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3204                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3205                 .may_swap = 1,
3206                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3207                                        SWAP_CLUSTER_MAX),
3208                 .gfp_mask = gfp_mask,
3209                 .order = order,
3210         };
3211         struct shrink_control shrink = {
3212                 .gfp_mask = sc.gfp_mask,
3213         };
3214         unsigned long nr_slab_pages0, nr_slab_pages1;
3215
3216         cond_resched();
3217         /*
3218          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3219          * and we also need to be able to write out pages for RECLAIM_WRITE
3220          * and RECLAIM_SWAP.
3221          */
3222         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3223         lockdep_set_current_reclaim_state(gfp_mask);
3224         reclaim_state.reclaimed_slab = 0;
3225         p->reclaim_state = &reclaim_state;
3226
3227         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3228                 /*
3229                  * Free memory by calling shrink zone with increasing
3230                  * priorities until we have enough memory freed.
3231                  */
3232                 priority = ZONE_RECLAIM_PRIORITY;
3233                 do {
3234                         shrink_zone(priority, zone, &sc);
3235                         priority--;
3236                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3237         }
3238
3239         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3240         if (nr_slab_pages0 > zone->min_slab_pages) {
3241                 /*
3242                  * shrink_slab() does not currently allow us to determine how
3243                  * many pages were freed in this zone. So we take the current
3244                  * number of slab pages and shake the slab until it is reduced
3245                  * by the same nr_pages that we used for reclaiming unmapped
3246                  * pages.
3247                  *
3248                  * Note that shrink_slab will free memory on all zones and may
3249                  * take a long time.
3250                  */
3251                 for (;;) {
3252                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3253
3254                         /* No reclaimable slab or very low memory pressure */
3255                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3256                                 break;
3257
3258                         /* Freed enough memory */
3259                         nr_slab_pages1 = zone_page_state(zone,
3260                                                         NR_SLAB_RECLAIMABLE);
3261                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3262                                 break;
3263                 }
3264
3265                 /*
3266                  * Update nr_reclaimed by the number of slab pages we
3267                  * reclaimed from this zone.
3268                  */
3269                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3270                 if (nr_slab_pages1 < nr_slab_pages0)
3271                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3272         }
3273
3274         p->reclaim_state = NULL;
3275         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3276         lockdep_clear_current_reclaim_state();
3277         return sc.nr_reclaimed >= nr_pages;
3278 }
3279
3280 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3281 {
3282         int node_id;
3283         int ret;
3284
3285         /*
3286          * Zone reclaim reclaims unmapped file backed pages and
3287          * slab pages if we are over the defined limits.
3288          *
3289          * A small portion of unmapped file backed pages is needed for
3290          * file I/O otherwise pages read by file I/O will be immediately
3291          * thrown out if the zone is overallocated. So we do not reclaim
3292          * if less than a specified percentage of the zone is used by
3293          * unmapped file backed pages.
3294          */
3295         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3296             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3297                 return ZONE_RECLAIM_FULL;
3298
3299         if (zone->all_unreclaimable)
3300                 return ZONE_RECLAIM_FULL;
3301
3302         /*
3303          * Do not scan if the allocation should not be delayed.
3304          */
3305         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3306                 return ZONE_RECLAIM_NOSCAN;
3307
3308         /*
3309          * Only run zone reclaim on the local zone or on zones that do not
3310          * have associated processors. This will favor the local processor
3311          * over remote processors and spread off node memory allocations
3312          * as wide as possible.
3313          */
3314         node_id = zone_to_nid(zone);
3315         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3316                 return ZONE_RECLAIM_NOSCAN;
3317
3318         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3319                 return ZONE_RECLAIM_NOSCAN;
3320
3321         ret = __zone_reclaim(zone, gfp_mask, order);
3322         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3323
3324         if (!ret)
3325                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3326
3327         return ret;
3328 }
3329 #endif
3330
3331 /*
3332  * page_evictable - test whether a page is evictable
3333  * @page: the page to test
3334  * @vma: the VMA in which the page is or will be mapped, may be NULL
3335  *
3336  * Test whether page is evictable--i.e., should be placed on active/inactive
3337  * lists vs unevictable list.  The vma argument is !NULL when called from the
3338  * fault path to determine how to instantate a new page.
3339  *
3340  * Reasons page might not be evictable:
3341  * (1) page's mapping marked unevictable
3342  * (2) page is part of an mlocked VMA
3343  *
3344  */
3345 int page_evictable(struct page *page, struct vm_area_struct *vma)
3346 {
3347
3348         if (mapping_unevictable(page_mapping(page)))
3349                 return 0;
3350
3351         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3352                 return 0;
3353
3354         return 1;
3355 }
3356
3357 /**
3358  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3359  * @page: page to check evictability and move to appropriate lru list
3360  * @zone: zone page is in
3361  *
3362  * Checks a page for evictability and moves the page to the appropriate
3363  * zone lru list.
3364  *
3365  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3366  * have PageUnevictable set.
3367  */
3368 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3369 {
3370         VM_BUG_ON(PageActive(page));
3371
3372 retry:
3373         ClearPageUnevictable(page);
3374         if (page_evictable(page, NULL)) {
3375                 enum lru_list l = page_lru_base_type(page);
3376
3377                 __dec_zone_state(zone, NR_UNEVICTABLE);
3378                 list_move(&page->lru, &zone->lru[l].list);
3379                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3380                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3381                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3382         } else {
3383                 /*
3384                  * rotate unevictable list
3385                  */
3386                 SetPageUnevictable(page);
3387                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3388                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3389                 if (page_evictable(page, NULL))
3390                         goto retry;
3391         }
3392 }
3393
3394 /**
3395  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3396  * @mapping: struct address_space to scan for evictable pages
3397  *
3398  * Scan all pages in mapping.  Check unevictable pages for
3399  * evictability and move them to the appropriate zone lru list.
3400  */
3401 void scan_mapping_unevictable_pages(struct address_space *mapping)
3402 {
3403         pgoff_t next = 0;
3404         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3405                          PAGE_CACHE_SHIFT;
3406         struct zone *zone;
3407         struct pagevec pvec;
3408
3409         if (mapping->nrpages == 0)
3410                 return;
3411
3412         pagevec_init(&pvec, 0);
3413         while (next < end &&
3414                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3415                 int i;
3416                 int pg_scanned = 0;
3417
3418                 zone = NULL;
3419
3420                 for (i = 0; i < pagevec_count(&pvec); i++) {
3421                         struct page *page = pvec.pages[i];
3422                         pgoff_t page_index = page->index;
3423                         struct zone *pagezone = page_zone(page);
3424
3425                         pg_scanned++;
3426                         if (page_index > next)
3427                                 next = page_index;
3428                         next++;
3429
3430                         if (pagezone != zone) {
3431                                 if (zone)
3432                                         spin_unlock_irq(&zone->lru_lock);
3433                                 zone = pagezone;
3434                                 spin_lock_irq(&zone->lru_lock);
3435                         }
3436
3437                         if (PageLRU(page) && PageUnevictable(page))
3438                                 check_move_unevictable_page(page, zone);
3439                 }
3440                 if (zone)
3441                         spin_unlock_irq(&zone->lru_lock);
3442                 pagevec_release(&pvec);
3443
3444                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3445         }
3446
3447 }
3448
3449 static void warn_scan_unevictable_pages(void)
3450 {
3451         printk_once(KERN_WARNING
3452                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3453                     "disabled for lack of a legitimate use case.  If you have "
3454                     "one, please send an email to linux-mm@kvack.org.\n",
3455                     current->comm);
3456 }
3457
3458 /*
3459  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3460  * all nodes' unevictable lists for evictable pages
3461  */
3462 unsigned long scan_unevictable_pages;
3463
3464 int scan_unevictable_handler(struct ctl_table *table, int write,
3465                            void __user *buffer,
3466                            size_t *length, loff_t *ppos)
3467 {
3468         warn_scan_unevictable_pages();
3469         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3470         scan_unevictable_pages = 0;
3471         return 0;
3472 }
3473
3474 #ifdef CONFIG_NUMA
3475 /*
3476  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3477  * a specified node's per zone unevictable lists for evictable pages.
3478  */
3479
3480 static ssize_t read_scan_unevictable_node(struct device *dev,
3481                                           struct device_attribute *attr,
3482                                           char *buf)
3483 {
3484         warn_scan_unevictable_pages();
3485         return sprintf(buf, "0\n");     /* always zero; should fit... */
3486 }
3487
3488 static ssize_t write_scan_unevictable_node(struct device *dev,
3489                                            struct device_attribute *attr,
3490                                         const char *buf, size_t count)
3491 {
3492         warn_scan_unevictable_pages();
3493         return 1;
3494 }
3495
3496
3497 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3498                         read_scan_unevictable_node,
3499                         write_scan_unevictable_node);
3500
3501 int scan_unevictable_register_node(struct node *node)
3502 {
3503         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3504 }
3505
3506 void scan_unevictable_unregister_node(struct node *node)
3507 {
3508         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3509 }
3510 #endif