]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmstat.c
nvmet: release the sq ref on rdma read errors
[karo-tx-linux.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39         int cpu;
40         int i;
41
42         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44         for_each_online_cpu(cpu) {
45                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48                         ret[i] += this->event[i];
49         }
50 }
51
52 /*
53  * Accumulate the vm event counters across all CPUs.
54  * The result is unavoidably approximate - it can change
55  * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59         get_online_cpus();
60         sum_vm_events(ret);
61         put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66  * Fold the foreign cpu events into our own.
67  *
68  * This is adding to the events on one processor
69  * but keeps the global counts constant.
70  */
71 void vm_events_fold_cpu(int cpu)
72 {
73         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74         int i;
75
76         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77                 count_vm_events(i, fold_state->event[i]);
78                 fold_state->event[i] = 0;
79         }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85  * Manage combined zone based / global counters
86  *
87  * vm_stat contains the global counters
88  */
89 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
91 EXPORT_SYMBOL(vm_zone_stat);
92 EXPORT_SYMBOL(vm_node_stat);
93
94 #ifdef CONFIG_SMP
95
96 int calculate_pressure_threshold(struct zone *zone)
97 {
98         int threshold;
99         int watermark_distance;
100
101         /*
102          * As vmstats are not up to date, there is drift between the estimated
103          * and real values. For high thresholds and a high number of CPUs, it
104          * is possible for the min watermark to be breached while the estimated
105          * value looks fine. The pressure threshold is a reduced value such
106          * that even the maximum amount of drift will not accidentally breach
107          * the min watermark
108          */
109         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
110         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
111
112         /*
113          * Maximum threshold is 125
114          */
115         threshold = min(125, threshold);
116
117         return threshold;
118 }
119
120 int calculate_normal_threshold(struct zone *zone)
121 {
122         int threshold;
123         int mem;        /* memory in 128 MB units */
124
125         /*
126          * The threshold scales with the number of processors and the amount
127          * of memory per zone. More memory means that we can defer updates for
128          * longer, more processors could lead to more contention.
129          * fls() is used to have a cheap way of logarithmic scaling.
130          *
131          * Some sample thresholds:
132          *
133          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
134          * ------------------------------------------------------------------
135          * 8            1               1       0.9-1 GB        4
136          * 16           2               2       0.9-1 GB        4
137          * 20           2               2       1-2 GB          5
138          * 24           2               2       2-4 GB          6
139          * 28           2               2       4-8 GB          7
140          * 32           2               2       8-16 GB         8
141          * 4            2               2       <128M           1
142          * 30           4               3       2-4 GB          5
143          * 48           4               3       8-16 GB         8
144          * 32           8               4       1-2 GB          4
145          * 32           8               4       0.9-1GB         4
146          * 10           16              5       <128M           1
147          * 40           16              5       900M            4
148          * 70           64              7       2-4 GB          5
149          * 84           64              7       4-8 GB          6
150          * 108          512             9       4-8 GB          6
151          * 125          1024            10      8-16 GB         8
152          * 125          1024            10      16-32 GB        9
153          */
154
155         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
156
157         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
158
159         /*
160          * Maximum threshold is 125
161          */
162         threshold = min(125, threshold);
163
164         return threshold;
165 }
166
167 /*
168  * Refresh the thresholds for each zone.
169  */
170 void refresh_zone_stat_thresholds(void)
171 {
172         struct pglist_data *pgdat;
173         struct zone *zone;
174         int cpu;
175         int threshold;
176
177         /* Zero current pgdat thresholds */
178         for_each_online_pgdat(pgdat) {
179                 for_each_online_cpu(cpu) {
180                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
181                 }
182         }
183
184         for_each_populated_zone(zone) {
185                 struct pglist_data *pgdat = zone->zone_pgdat;
186                 unsigned long max_drift, tolerate_drift;
187
188                 threshold = calculate_normal_threshold(zone);
189
190                 for_each_online_cpu(cpu) {
191                         int pgdat_threshold;
192
193                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
194                                                         = threshold;
195
196                         /* Base nodestat threshold on the largest populated zone. */
197                         pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
198                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
199                                 = max(threshold, pgdat_threshold);
200                 }
201
202                 /*
203                  * Only set percpu_drift_mark if there is a danger that
204                  * NR_FREE_PAGES reports the low watermark is ok when in fact
205                  * the min watermark could be breached by an allocation
206                  */
207                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
208                 max_drift = num_online_cpus() * threshold;
209                 if (max_drift > tolerate_drift)
210                         zone->percpu_drift_mark = high_wmark_pages(zone) +
211                                         max_drift;
212         }
213 }
214
215 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
216                                 int (*calculate_pressure)(struct zone *))
217 {
218         struct zone *zone;
219         int cpu;
220         int threshold;
221         int i;
222
223         for (i = 0; i < pgdat->nr_zones; i++) {
224                 zone = &pgdat->node_zones[i];
225                 if (!zone->percpu_drift_mark)
226                         continue;
227
228                 threshold = (*calculate_pressure)(zone);
229                 for_each_online_cpu(cpu)
230                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
231                                                         = threshold;
232         }
233 }
234
235 /*
236  * For use when we know that interrupts are disabled,
237  * or when we know that preemption is disabled and that
238  * particular counter cannot be updated from interrupt context.
239  */
240 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
241                            long delta)
242 {
243         struct per_cpu_pageset __percpu *pcp = zone->pageset;
244         s8 __percpu *p = pcp->vm_stat_diff + item;
245         long x;
246         long t;
247
248         x = delta + __this_cpu_read(*p);
249
250         t = __this_cpu_read(pcp->stat_threshold);
251
252         if (unlikely(x > t || x < -t)) {
253                 zone_page_state_add(x, zone, item);
254                 x = 0;
255         }
256         __this_cpu_write(*p, x);
257 }
258 EXPORT_SYMBOL(__mod_zone_page_state);
259
260 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
261                                 long delta)
262 {
263         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
264         s8 __percpu *p = pcp->vm_node_stat_diff + item;
265         long x;
266         long t;
267
268         x = delta + __this_cpu_read(*p);
269
270         t = __this_cpu_read(pcp->stat_threshold);
271
272         if (unlikely(x > t || x < -t)) {
273                 node_page_state_add(x, pgdat, item);
274                 x = 0;
275         }
276         __this_cpu_write(*p, x);
277 }
278 EXPORT_SYMBOL(__mod_node_page_state);
279
280 /*
281  * Optimized increment and decrement functions.
282  *
283  * These are only for a single page and therefore can take a struct page *
284  * argument instead of struct zone *. This allows the inclusion of the code
285  * generated for page_zone(page) into the optimized functions.
286  *
287  * No overflow check is necessary and therefore the differential can be
288  * incremented or decremented in place which may allow the compilers to
289  * generate better code.
290  * The increment or decrement is known and therefore one boundary check can
291  * be omitted.
292  *
293  * NOTE: These functions are very performance sensitive. Change only
294  * with care.
295  *
296  * Some processors have inc/dec instructions that are atomic vs an interrupt.
297  * However, the code must first determine the differential location in a zone
298  * based on the processor number and then inc/dec the counter. There is no
299  * guarantee without disabling preemption that the processor will not change
300  * in between and therefore the atomicity vs. interrupt cannot be exploited
301  * in a useful way here.
302  */
303 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
304 {
305         struct per_cpu_pageset __percpu *pcp = zone->pageset;
306         s8 __percpu *p = pcp->vm_stat_diff + item;
307         s8 v, t;
308
309         v = __this_cpu_inc_return(*p);
310         t = __this_cpu_read(pcp->stat_threshold);
311         if (unlikely(v > t)) {
312                 s8 overstep = t >> 1;
313
314                 zone_page_state_add(v + overstep, zone, item);
315                 __this_cpu_write(*p, -overstep);
316         }
317 }
318
319 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
320 {
321         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
322         s8 __percpu *p = pcp->vm_node_stat_diff + item;
323         s8 v, t;
324
325         v = __this_cpu_inc_return(*p);
326         t = __this_cpu_read(pcp->stat_threshold);
327         if (unlikely(v > t)) {
328                 s8 overstep = t >> 1;
329
330                 node_page_state_add(v + overstep, pgdat, item);
331                 __this_cpu_write(*p, -overstep);
332         }
333 }
334
335 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
336 {
337         __inc_zone_state(page_zone(page), item);
338 }
339 EXPORT_SYMBOL(__inc_zone_page_state);
340
341 void __inc_node_page_state(struct page *page, enum node_stat_item item)
342 {
343         __inc_node_state(page_pgdat(page), item);
344 }
345 EXPORT_SYMBOL(__inc_node_page_state);
346
347 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
348 {
349         struct per_cpu_pageset __percpu *pcp = zone->pageset;
350         s8 __percpu *p = pcp->vm_stat_diff + item;
351         s8 v, t;
352
353         v = __this_cpu_dec_return(*p);
354         t = __this_cpu_read(pcp->stat_threshold);
355         if (unlikely(v < - t)) {
356                 s8 overstep = t >> 1;
357
358                 zone_page_state_add(v - overstep, zone, item);
359                 __this_cpu_write(*p, overstep);
360         }
361 }
362
363 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
364 {
365         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
366         s8 __percpu *p = pcp->vm_node_stat_diff + item;
367         s8 v, t;
368
369         v = __this_cpu_dec_return(*p);
370         t = __this_cpu_read(pcp->stat_threshold);
371         if (unlikely(v < - t)) {
372                 s8 overstep = t >> 1;
373
374                 node_page_state_add(v - overstep, pgdat, item);
375                 __this_cpu_write(*p, overstep);
376         }
377 }
378
379 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
380 {
381         __dec_zone_state(page_zone(page), item);
382 }
383 EXPORT_SYMBOL(__dec_zone_page_state);
384
385 void __dec_node_page_state(struct page *page, enum node_stat_item item)
386 {
387         __dec_node_state(page_pgdat(page), item);
388 }
389 EXPORT_SYMBOL(__dec_node_page_state);
390
391 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
392 /*
393  * If we have cmpxchg_local support then we do not need to incur the overhead
394  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
395  *
396  * mod_state() modifies the zone counter state through atomic per cpu
397  * operations.
398  *
399  * Overstep mode specifies how overstep should handled:
400  *     0       No overstepping
401  *     1       Overstepping half of threshold
402  *     -1      Overstepping minus half of threshold
403 */
404 static inline void mod_zone_state(struct zone *zone,
405        enum zone_stat_item item, long delta, int overstep_mode)
406 {
407         struct per_cpu_pageset __percpu *pcp = zone->pageset;
408         s8 __percpu *p = pcp->vm_stat_diff + item;
409         long o, n, t, z;
410
411         do {
412                 z = 0;  /* overflow to zone counters */
413
414                 /*
415                  * The fetching of the stat_threshold is racy. We may apply
416                  * a counter threshold to the wrong the cpu if we get
417                  * rescheduled while executing here. However, the next
418                  * counter update will apply the threshold again and
419                  * therefore bring the counter under the threshold again.
420                  *
421                  * Most of the time the thresholds are the same anyways
422                  * for all cpus in a zone.
423                  */
424                 t = this_cpu_read(pcp->stat_threshold);
425
426                 o = this_cpu_read(*p);
427                 n = delta + o;
428
429                 if (n > t || n < -t) {
430                         int os = overstep_mode * (t >> 1) ;
431
432                         /* Overflow must be added to zone counters */
433                         z = n + os;
434                         n = -os;
435                 }
436         } while (this_cpu_cmpxchg(*p, o, n) != o);
437
438         if (z)
439                 zone_page_state_add(z, zone, item);
440 }
441
442 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
443                          long delta)
444 {
445         mod_zone_state(zone, item, delta, 0);
446 }
447 EXPORT_SYMBOL(mod_zone_page_state);
448
449 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
450 {
451         mod_zone_state(page_zone(page), item, 1, 1);
452 }
453 EXPORT_SYMBOL(inc_zone_page_state);
454
455 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
456 {
457         mod_zone_state(page_zone(page), item, -1, -1);
458 }
459 EXPORT_SYMBOL(dec_zone_page_state);
460
461 static inline void mod_node_state(struct pglist_data *pgdat,
462        enum node_stat_item item, int delta, int overstep_mode)
463 {
464         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
465         s8 __percpu *p = pcp->vm_node_stat_diff + item;
466         long o, n, t, z;
467
468         do {
469                 z = 0;  /* overflow to node counters */
470
471                 /*
472                  * The fetching of the stat_threshold is racy. We may apply
473                  * a counter threshold to the wrong the cpu if we get
474                  * rescheduled while executing here. However, the next
475                  * counter update will apply the threshold again and
476                  * therefore bring the counter under the threshold again.
477                  *
478                  * Most of the time the thresholds are the same anyways
479                  * for all cpus in a node.
480                  */
481                 t = this_cpu_read(pcp->stat_threshold);
482
483                 o = this_cpu_read(*p);
484                 n = delta + o;
485
486                 if (n > t || n < -t) {
487                         int os = overstep_mode * (t >> 1) ;
488
489                         /* Overflow must be added to node counters */
490                         z = n + os;
491                         n = -os;
492                 }
493         } while (this_cpu_cmpxchg(*p, o, n) != o);
494
495         if (z)
496                 node_page_state_add(z, pgdat, item);
497 }
498
499 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
500                                         long delta)
501 {
502         mod_node_state(pgdat, item, delta, 0);
503 }
504 EXPORT_SYMBOL(mod_node_page_state);
505
506 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
507 {
508         mod_node_state(pgdat, item, 1, 1);
509 }
510
511 void inc_node_page_state(struct page *page, enum node_stat_item item)
512 {
513         mod_node_state(page_pgdat(page), item, 1, 1);
514 }
515 EXPORT_SYMBOL(inc_node_page_state);
516
517 void dec_node_page_state(struct page *page, enum node_stat_item item)
518 {
519         mod_node_state(page_pgdat(page), item, -1, -1);
520 }
521 EXPORT_SYMBOL(dec_node_page_state);
522 #else
523 /*
524  * Use interrupt disable to serialize counter updates
525  */
526 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
527                          long delta)
528 {
529         unsigned long flags;
530
531         local_irq_save(flags);
532         __mod_zone_page_state(zone, item, delta);
533         local_irq_restore(flags);
534 }
535 EXPORT_SYMBOL(mod_zone_page_state);
536
537 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
538 {
539         unsigned long flags;
540         struct zone *zone;
541
542         zone = page_zone(page);
543         local_irq_save(flags);
544         __inc_zone_state(zone, item);
545         local_irq_restore(flags);
546 }
547 EXPORT_SYMBOL(inc_zone_page_state);
548
549 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
550 {
551         unsigned long flags;
552
553         local_irq_save(flags);
554         __dec_zone_page_state(page, item);
555         local_irq_restore(flags);
556 }
557 EXPORT_SYMBOL(dec_zone_page_state);
558
559 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
560 {
561         unsigned long flags;
562
563         local_irq_save(flags);
564         __inc_node_state(pgdat, item);
565         local_irq_restore(flags);
566 }
567 EXPORT_SYMBOL(inc_node_state);
568
569 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
570                                         long delta)
571 {
572         unsigned long flags;
573
574         local_irq_save(flags);
575         __mod_node_page_state(pgdat, item, delta);
576         local_irq_restore(flags);
577 }
578 EXPORT_SYMBOL(mod_node_page_state);
579
580 void inc_node_page_state(struct page *page, enum node_stat_item item)
581 {
582         unsigned long flags;
583         struct pglist_data *pgdat;
584
585         pgdat = page_pgdat(page);
586         local_irq_save(flags);
587         __inc_node_state(pgdat, item);
588         local_irq_restore(flags);
589 }
590 EXPORT_SYMBOL(inc_node_page_state);
591
592 void dec_node_page_state(struct page *page, enum node_stat_item item)
593 {
594         unsigned long flags;
595
596         local_irq_save(flags);
597         __dec_node_page_state(page, item);
598         local_irq_restore(flags);
599 }
600 EXPORT_SYMBOL(dec_node_page_state);
601 #endif
602
603 /*
604  * Fold a differential into the global counters.
605  * Returns the number of counters updated.
606  */
607 static int fold_diff(int *zone_diff, int *node_diff)
608 {
609         int i;
610         int changes = 0;
611
612         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
613                 if (zone_diff[i]) {
614                         atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
615                         changes++;
616         }
617
618         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
619                 if (node_diff[i]) {
620                         atomic_long_add(node_diff[i], &vm_node_stat[i]);
621                         changes++;
622         }
623         return changes;
624 }
625
626 /*
627  * Update the zone counters for the current cpu.
628  *
629  * Note that refresh_cpu_vm_stats strives to only access
630  * node local memory. The per cpu pagesets on remote zones are placed
631  * in the memory local to the processor using that pageset. So the
632  * loop over all zones will access a series of cachelines local to
633  * the processor.
634  *
635  * The call to zone_page_state_add updates the cachelines with the
636  * statistics in the remote zone struct as well as the global cachelines
637  * with the global counters. These could cause remote node cache line
638  * bouncing and will have to be only done when necessary.
639  *
640  * The function returns the number of global counters updated.
641  */
642 static int refresh_cpu_vm_stats(bool do_pagesets)
643 {
644         struct pglist_data *pgdat;
645         struct zone *zone;
646         int i;
647         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
648         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
649         int changes = 0;
650
651         for_each_populated_zone(zone) {
652                 struct per_cpu_pageset __percpu *p = zone->pageset;
653
654                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
655                         int v;
656
657                         v = this_cpu_xchg(p->vm_stat_diff[i], 0);
658                         if (v) {
659
660                                 atomic_long_add(v, &zone->vm_stat[i]);
661                                 global_zone_diff[i] += v;
662 #ifdef CONFIG_NUMA
663                                 /* 3 seconds idle till flush */
664                                 __this_cpu_write(p->expire, 3);
665 #endif
666                         }
667                 }
668 #ifdef CONFIG_NUMA
669                 if (do_pagesets) {
670                         cond_resched();
671                         /*
672                          * Deal with draining the remote pageset of this
673                          * processor
674                          *
675                          * Check if there are pages remaining in this pageset
676                          * if not then there is nothing to expire.
677                          */
678                         if (!__this_cpu_read(p->expire) ||
679                                !__this_cpu_read(p->pcp.count))
680                                 continue;
681
682                         /*
683                          * We never drain zones local to this processor.
684                          */
685                         if (zone_to_nid(zone) == numa_node_id()) {
686                                 __this_cpu_write(p->expire, 0);
687                                 continue;
688                         }
689
690                         if (__this_cpu_dec_return(p->expire))
691                                 continue;
692
693                         if (__this_cpu_read(p->pcp.count)) {
694                                 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
695                                 changes++;
696                         }
697                 }
698 #endif
699         }
700
701         for_each_online_pgdat(pgdat) {
702                 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
703
704                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
705                         int v;
706
707                         v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
708                         if (v) {
709                                 atomic_long_add(v, &pgdat->vm_stat[i]);
710                                 global_node_diff[i] += v;
711                         }
712                 }
713         }
714
715         changes += fold_diff(global_zone_diff, global_node_diff);
716         return changes;
717 }
718
719 /*
720  * Fold the data for an offline cpu into the global array.
721  * There cannot be any access by the offline cpu and therefore
722  * synchronization is simplified.
723  */
724 void cpu_vm_stats_fold(int cpu)
725 {
726         struct pglist_data *pgdat;
727         struct zone *zone;
728         int i;
729         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
730         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
731
732         for_each_populated_zone(zone) {
733                 struct per_cpu_pageset *p;
734
735                 p = per_cpu_ptr(zone->pageset, cpu);
736
737                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
738                         if (p->vm_stat_diff[i]) {
739                                 int v;
740
741                                 v = p->vm_stat_diff[i];
742                                 p->vm_stat_diff[i] = 0;
743                                 atomic_long_add(v, &zone->vm_stat[i]);
744                                 global_zone_diff[i] += v;
745                         }
746         }
747
748         for_each_online_pgdat(pgdat) {
749                 struct per_cpu_nodestat *p;
750
751                 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
752
753                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
754                         if (p->vm_node_stat_diff[i]) {
755                                 int v;
756
757                                 v = p->vm_node_stat_diff[i];
758                                 p->vm_node_stat_diff[i] = 0;
759                                 atomic_long_add(v, &pgdat->vm_stat[i]);
760                                 global_node_diff[i] += v;
761                         }
762         }
763
764         fold_diff(global_zone_diff, global_node_diff);
765 }
766
767 /*
768  * this is only called if !populated_zone(zone), which implies no other users of
769  * pset->vm_stat_diff[] exsist.
770  */
771 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
772 {
773         int i;
774
775         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
776                 if (pset->vm_stat_diff[i]) {
777                         int v = pset->vm_stat_diff[i];
778                         pset->vm_stat_diff[i] = 0;
779                         atomic_long_add(v, &zone->vm_stat[i]);
780                         atomic_long_add(v, &vm_zone_stat[i]);
781                 }
782 }
783 #endif
784
785 #ifdef CONFIG_NUMA
786 /*
787  * Determine the per node value of a stat item. This function
788  * is called frequently in a NUMA machine, so try to be as
789  * frugal as possible.
790  */
791 unsigned long sum_zone_node_page_state(int node,
792                                  enum zone_stat_item item)
793 {
794         struct zone *zones = NODE_DATA(node)->node_zones;
795         int i;
796         unsigned long count = 0;
797
798         for (i = 0; i < MAX_NR_ZONES; i++)
799                 count += zone_page_state(zones + i, item);
800
801         return count;
802 }
803
804 /*
805  * Determine the per node value of a stat item.
806  */
807 unsigned long node_page_state(struct pglist_data *pgdat,
808                                 enum node_stat_item item)
809 {
810         long x = atomic_long_read(&pgdat->vm_stat[item]);
811 #ifdef CONFIG_SMP
812         if (x < 0)
813                 x = 0;
814 #endif
815         return x;
816 }
817 #endif
818
819 #ifdef CONFIG_COMPACTION
820
821 struct contig_page_info {
822         unsigned long free_pages;
823         unsigned long free_blocks_total;
824         unsigned long free_blocks_suitable;
825 };
826
827 /*
828  * Calculate the number of free pages in a zone, how many contiguous
829  * pages are free and how many are large enough to satisfy an allocation of
830  * the target size. Note that this function makes no attempt to estimate
831  * how many suitable free blocks there *might* be if MOVABLE pages were
832  * migrated. Calculating that is possible, but expensive and can be
833  * figured out from userspace
834  */
835 static void fill_contig_page_info(struct zone *zone,
836                                 unsigned int suitable_order,
837                                 struct contig_page_info *info)
838 {
839         unsigned int order;
840
841         info->free_pages = 0;
842         info->free_blocks_total = 0;
843         info->free_blocks_suitable = 0;
844
845         for (order = 0; order < MAX_ORDER; order++) {
846                 unsigned long blocks;
847
848                 /* Count number of free blocks */
849                 blocks = zone->free_area[order].nr_free;
850                 info->free_blocks_total += blocks;
851
852                 /* Count free base pages */
853                 info->free_pages += blocks << order;
854
855                 /* Count the suitable free blocks */
856                 if (order >= suitable_order)
857                         info->free_blocks_suitable += blocks <<
858                                                 (order - suitable_order);
859         }
860 }
861
862 /*
863  * A fragmentation index only makes sense if an allocation of a requested
864  * size would fail. If that is true, the fragmentation index indicates
865  * whether external fragmentation or a lack of memory was the problem.
866  * The value can be used to determine if page reclaim or compaction
867  * should be used
868  */
869 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
870 {
871         unsigned long requested = 1UL << order;
872
873         if (!info->free_blocks_total)
874                 return 0;
875
876         /* Fragmentation index only makes sense when a request would fail */
877         if (info->free_blocks_suitable)
878                 return -1000;
879
880         /*
881          * Index is between 0 and 1 so return within 3 decimal places
882          *
883          * 0 => allocation would fail due to lack of memory
884          * 1 => allocation would fail due to fragmentation
885          */
886         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
887 }
888
889 /* Same as __fragmentation index but allocs contig_page_info on stack */
890 int fragmentation_index(struct zone *zone, unsigned int order)
891 {
892         struct contig_page_info info;
893
894         fill_contig_page_info(zone, order, &info);
895         return __fragmentation_index(order, &info);
896 }
897 #endif
898
899 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
900 #ifdef CONFIG_ZONE_DMA
901 #define TEXT_FOR_DMA(xx) xx "_dma",
902 #else
903 #define TEXT_FOR_DMA(xx)
904 #endif
905
906 #ifdef CONFIG_ZONE_DMA32
907 #define TEXT_FOR_DMA32(xx) xx "_dma32",
908 #else
909 #define TEXT_FOR_DMA32(xx)
910 #endif
911
912 #ifdef CONFIG_HIGHMEM
913 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
914 #else
915 #define TEXT_FOR_HIGHMEM(xx)
916 #endif
917
918 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
919                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
920
921 const char * const vmstat_text[] = {
922         /* enum zone_stat_item countes */
923         "nr_free_pages",
924         "nr_zone_inactive_anon",
925         "nr_zone_active_anon",
926         "nr_zone_inactive_file",
927         "nr_zone_active_file",
928         "nr_zone_unevictable",
929         "nr_zone_write_pending",
930         "nr_mlock",
931         "nr_slab_reclaimable",
932         "nr_slab_unreclaimable",
933         "nr_page_table_pages",
934         "nr_kernel_stack",
935         "nr_bounce",
936 #if IS_ENABLED(CONFIG_ZSMALLOC)
937         "nr_zspages",
938 #endif
939 #ifdef CONFIG_NUMA
940         "numa_hit",
941         "numa_miss",
942         "numa_foreign",
943         "numa_interleave",
944         "numa_local",
945         "numa_other",
946 #endif
947         "nr_free_cma",
948
949         /* Node-based counters */
950         "nr_inactive_anon",
951         "nr_active_anon",
952         "nr_inactive_file",
953         "nr_active_file",
954         "nr_unevictable",
955         "nr_isolated_anon",
956         "nr_isolated_file",
957         "workingset_refault",
958         "workingset_activate",
959         "workingset_nodereclaim",
960         "nr_anon_pages",
961         "nr_mapped",
962         "nr_file_pages",
963         "nr_dirty",
964         "nr_writeback",
965         "nr_writeback_temp",
966         "nr_shmem",
967         "nr_shmem_hugepages",
968         "nr_shmem_pmdmapped",
969         "nr_anon_transparent_hugepages",
970         "nr_unstable",
971         "nr_vmscan_write",
972         "nr_vmscan_immediate_reclaim",
973         "nr_dirtied",
974         "nr_written",
975
976         /* enum writeback_stat_item counters */
977         "nr_dirty_threshold",
978         "nr_dirty_background_threshold",
979
980 #ifdef CONFIG_VM_EVENT_COUNTERS
981         /* enum vm_event_item counters */
982         "pgpgin",
983         "pgpgout",
984         "pswpin",
985         "pswpout",
986
987         TEXTS_FOR_ZONES("pgalloc")
988         TEXTS_FOR_ZONES("allocstall")
989         TEXTS_FOR_ZONES("pgskip")
990
991         "pgfree",
992         "pgactivate",
993         "pgdeactivate",
994         "pglazyfree",
995
996         "pgfault",
997         "pgmajfault",
998         "pglazyfreed",
999
1000         "pgrefill",
1001         "pgsteal_kswapd",
1002         "pgsteal_direct",
1003         "pgscan_kswapd",
1004         "pgscan_direct",
1005         "pgscan_direct_throttle",
1006
1007 #ifdef CONFIG_NUMA
1008         "zone_reclaim_failed",
1009 #endif
1010         "pginodesteal",
1011         "slabs_scanned",
1012         "kswapd_inodesteal",
1013         "kswapd_low_wmark_hit_quickly",
1014         "kswapd_high_wmark_hit_quickly",
1015         "pageoutrun",
1016
1017         "pgrotated",
1018
1019         "drop_pagecache",
1020         "drop_slab",
1021
1022 #ifdef CONFIG_NUMA_BALANCING
1023         "numa_pte_updates",
1024         "numa_huge_pte_updates",
1025         "numa_hint_faults",
1026         "numa_hint_faults_local",
1027         "numa_pages_migrated",
1028 #endif
1029 #ifdef CONFIG_MIGRATION
1030         "pgmigrate_success",
1031         "pgmigrate_fail",
1032 #endif
1033 #ifdef CONFIG_COMPACTION
1034         "compact_migrate_scanned",
1035         "compact_free_scanned",
1036         "compact_isolated",
1037         "compact_stall",
1038         "compact_fail",
1039         "compact_success",
1040         "compact_daemon_wake",
1041         "compact_daemon_migrate_scanned",
1042         "compact_daemon_free_scanned",
1043 #endif
1044
1045 #ifdef CONFIG_HUGETLB_PAGE
1046         "htlb_buddy_alloc_success",
1047         "htlb_buddy_alloc_fail",
1048 #endif
1049         "unevictable_pgs_culled",
1050         "unevictable_pgs_scanned",
1051         "unevictable_pgs_rescued",
1052         "unevictable_pgs_mlocked",
1053         "unevictable_pgs_munlocked",
1054         "unevictable_pgs_cleared",
1055         "unevictable_pgs_stranded",
1056
1057 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1058         "thp_fault_alloc",
1059         "thp_fault_fallback",
1060         "thp_collapse_alloc",
1061         "thp_collapse_alloc_failed",
1062         "thp_file_alloc",
1063         "thp_file_mapped",
1064         "thp_split_page",
1065         "thp_split_page_failed",
1066         "thp_deferred_split_page",
1067         "thp_split_pmd",
1068 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1069         "thp_split_pud",
1070 #endif
1071         "thp_zero_page_alloc",
1072         "thp_zero_page_alloc_failed",
1073 #endif
1074 #ifdef CONFIG_MEMORY_BALLOON
1075         "balloon_inflate",
1076         "balloon_deflate",
1077 #ifdef CONFIG_BALLOON_COMPACTION
1078         "balloon_migrate",
1079 #endif
1080 #endif /* CONFIG_MEMORY_BALLOON */
1081 #ifdef CONFIG_DEBUG_TLBFLUSH
1082 #ifdef CONFIG_SMP
1083         "nr_tlb_remote_flush",
1084         "nr_tlb_remote_flush_received",
1085 #endif /* CONFIG_SMP */
1086         "nr_tlb_local_flush_all",
1087         "nr_tlb_local_flush_one",
1088 #endif /* CONFIG_DEBUG_TLBFLUSH */
1089
1090 #ifdef CONFIG_DEBUG_VM_VMACACHE
1091         "vmacache_find_calls",
1092         "vmacache_find_hits",
1093         "vmacache_full_flushes",
1094 #endif
1095 #endif /* CONFIG_VM_EVENTS_COUNTERS */
1096 };
1097 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1098
1099
1100 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1101      defined(CONFIG_PROC_FS)
1102 static void *frag_start(struct seq_file *m, loff_t *pos)
1103 {
1104         pg_data_t *pgdat;
1105         loff_t node = *pos;
1106
1107         for (pgdat = first_online_pgdat();
1108              pgdat && node;
1109              pgdat = next_online_pgdat(pgdat))
1110                 --node;
1111
1112         return pgdat;
1113 }
1114
1115 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1116 {
1117         pg_data_t *pgdat = (pg_data_t *)arg;
1118
1119         (*pos)++;
1120         return next_online_pgdat(pgdat);
1121 }
1122
1123 static void frag_stop(struct seq_file *m, void *arg)
1124 {
1125 }
1126
1127 /*
1128  * Walk zones in a node and print using a callback.
1129  * If @assert_populated is true, only use callback for zones that are populated.
1130  */
1131 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1132                 bool assert_populated,
1133                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1134 {
1135         struct zone *zone;
1136         struct zone *node_zones = pgdat->node_zones;
1137         unsigned long flags;
1138
1139         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1140                 if (assert_populated && !populated_zone(zone))
1141                         continue;
1142
1143                 spin_lock_irqsave(&zone->lock, flags);
1144                 print(m, pgdat, zone);
1145                 spin_unlock_irqrestore(&zone->lock, flags);
1146         }
1147 }
1148 #endif
1149
1150 #ifdef CONFIG_PROC_FS
1151 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1152                                                 struct zone *zone)
1153 {
1154         int order;
1155
1156         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1157         for (order = 0; order < MAX_ORDER; ++order)
1158                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1159         seq_putc(m, '\n');
1160 }
1161
1162 /*
1163  * This walks the free areas for each zone.
1164  */
1165 static int frag_show(struct seq_file *m, void *arg)
1166 {
1167         pg_data_t *pgdat = (pg_data_t *)arg;
1168         walk_zones_in_node(m, pgdat, true, frag_show_print);
1169         return 0;
1170 }
1171
1172 static void pagetypeinfo_showfree_print(struct seq_file *m,
1173                                         pg_data_t *pgdat, struct zone *zone)
1174 {
1175         int order, mtype;
1176
1177         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1178                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1179                                         pgdat->node_id,
1180                                         zone->name,
1181                                         migratetype_names[mtype]);
1182                 for (order = 0; order < MAX_ORDER; ++order) {
1183                         unsigned long freecount = 0;
1184                         struct free_area *area;
1185                         struct list_head *curr;
1186
1187                         area = &(zone->free_area[order]);
1188
1189                         list_for_each(curr, &area->free_list[mtype])
1190                                 freecount++;
1191                         seq_printf(m, "%6lu ", freecount);
1192                 }
1193                 seq_putc(m, '\n');
1194         }
1195 }
1196
1197 /* Print out the free pages at each order for each migatetype */
1198 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1199 {
1200         int order;
1201         pg_data_t *pgdat = (pg_data_t *)arg;
1202
1203         /* Print header */
1204         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1205         for (order = 0; order < MAX_ORDER; ++order)
1206                 seq_printf(m, "%6d ", order);
1207         seq_putc(m, '\n');
1208
1209         walk_zones_in_node(m, pgdat, true, pagetypeinfo_showfree_print);
1210
1211         return 0;
1212 }
1213
1214 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1215                                         pg_data_t *pgdat, struct zone *zone)
1216 {
1217         int mtype;
1218         unsigned long pfn;
1219         unsigned long start_pfn = zone->zone_start_pfn;
1220         unsigned long end_pfn = zone_end_pfn(zone);
1221         unsigned long count[MIGRATE_TYPES] = { 0, };
1222
1223         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1224                 struct page *page;
1225
1226                 if (!pfn_valid(pfn))
1227                         continue;
1228
1229                 page = pfn_to_page(pfn);
1230
1231                 /* Watch for unexpected holes punched in the memmap */
1232                 if (!memmap_valid_within(pfn, page, zone))
1233                         continue;
1234
1235                 if (page_zone(page) != zone)
1236                         continue;
1237
1238                 mtype = get_pageblock_migratetype(page);
1239
1240                 if (mtype < MIGRATE_TYPES)
1241                         count[mtype]++;
1242         }
1243
1244         /* Print counts */
1245         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1246         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1247                 seq_printf(m, "%12lu ", count[mtype]);
1248         seq_putc(m, '\n');
1249 }
1250
1251 /* Print out the free pages at each order for each migratetype */
1252 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1253 {
1254         int mtype;
1255         pg_data_t *pgdat = (pg_data_t *)arg;
1256
1257         seq_printf(m, "\n%-23s", "Number of blocks type ");
1258         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1259                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1260         seq_putc(m, '\n');
1261         walk_zones_in_node(m, pgdat, true, pagetypeinfo_showblockcount_print);
1262
1263         return 0;
1264 }
1265
1266 /*
1267  * Print out the number of pageblocks for each migratetype that contain pages
1268  * of other types. This gives an indication of how well fallbacks are being
1269  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1270  * to determine what is going on
1271  */
1272 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1273 {
1274 #ifdef CONFIG_PAGE_OWNER
1275         int mtype;
1276
1277         if (!static_branch_unlikely(&page_owner_inited))
1278                 return;
1279
1280         drain_all_pages(NULL);
1281
1282         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1283         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1284                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1285         seq_putc(m, '\n');
1286
1287         walk_zones_in_node(m, pgdat, true, pagetypeinfo_showmixedcount_print);
1288 #endif /* CONFIG_PAGE_OWNER */
1289 }
1290
1291 /*
1292  * This prints out statistics in relation to grouping pages by mobility.
1293  * It is expensive to collect so do not constantly read the file.
1294  */
1295 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1296 {
1297         pg_data_t *pgdat = (pg_data_t *)arg;
1298
1299         /* check memoryless node */
1300         if (!node_state(pgdat->node_id, N_MEMORY))
1301                 return 0;
1302
1303         seq_printf(m, "Page block order: %d\n", pageblock_order);
1304         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1305         seq_putc(m, '\n');
1306         pagetypeinfo_showfree(m, pgdat);
1307         pagetypeinfo_showblockcount(m, pgdat);
1308         pagetypeinfo_showmixedcount(m, pgdat);
1309
1310         return 0;
1311 }
1312
1313 static const struct seq_operations fragmentation_op = {
1314         .start  = frag_start,
1315         .next   = frag_next,
1316         .stop   = frag_stop,
1317         .show   = frag_show,
1318 };
1319
1320 static int fragmentation_open(struct inode *inode, struct file *file)
1321 {
1322         return seq_open(file, &fragmentation_op);
1323 }
1324
1325 static const struct file_operations fragmentation_file_operations = {
1326         .open           = fragmentation_open,
1327         .read           = seq_read,
1328         .llseek         = seq_lseek,
1329         .release        = seq_release,
1330 };
1331
1332 static const struct seq_operations pagetypeinfo_op = {
1333         .start  = frag_start,
1334         .next   = frag_next,
1335         .stop   = frag_stop,
1336         .show   = pagetypeinfo_show,
1337 };
1338
1339 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1340 {
1341         return seq_open(file, &pagetypeinfo_op);
1342 }
1343
1344 static const struct file_operations pagetypeinfo_file_ops = {
1345         .open           = pagetypeinfo_open,
1346         .read           = seq_read,
1347         .llseek         = seq_lseek,
1348         .release        = seq_release,
1349 };
1350
1351 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1352 {
1353         int zid;
1354
1355         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1356                 struct zone *compare = &pgdat->node_zones[zid];
1357
1358                 if (populated_zone(compare))
1359                         return zone == compare;
1360         }
1361
1362         /* The zone must be somewhere! */
1363         WARN_ON_ONCE(1);
1364         return false;
1365 }
1366
1367 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1368                                                         struct zone *zone)
1369 {
1370         int i;
1371         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1372         if (is_zone_first_populated(pgdat, zone)) {
1373                 seq_printf(m, "\n  per-node stats");
1374                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1375                         seq_printf(m, "\n      %-12s %lu",
1376                                 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1377                                 node_page_state(pgdat, i));
1378                 }
1379         }
1380         seq_printf(m,
1381                    "\n  pages free     %lu"
1382                    "\n        min      %lu"
1383                    "\n        low      %lu"
1384                    "\n        high     %lu"
1385                    "\n        spanned  %lu"
1386                    "\n        present  %lu"
1387                    "\n        managed  %lu",
1388                    zone_page_state(zone, NR_FREE_PAGES),
1389                    min_wmark_pages(zone),
1390                    low_wmark_pages(zone),
1391                    high_wmark_pages(zone),
1392                    zone->spanned_pages,
1393                    zone->present_pages,
1394                    zone->managed_pages);
1395
1396         seq_printf(m,
1397                    "\n        protection: (%ld",
1398                    zone->lowmem_reserve[0]);
1399         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1400                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1401         seq_putc(m, ')');
1402
1403         /* If unpopulated, no other information is useful */
1404         if (!populated_zone(zone)) {
1405                 seq_putc(m, '\n');
1406                 return;
1407         }
1408
1409         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1410                 seq_printf(m, "\n      %-12s %lu", vmstat_text[i],
1411                                 zone_page_state(zone, i));
1412
1413         seq_printf(m, "\n  pagesets");
1414         for_each_online_cpu(i) {
1415                 struct per_cpu_pageset *pageset;
1416
1417                 pageset = per_cpu_ptr(zone->pageset, i);
1418                 seq_printf(m,
1419                            "\n    cpu: %i"
1420                            "\n              count: %i"
1421                            "\n              high:  %i"
1422                            "\n              batch: %i",
1423                            i,
1424                            pageset->pcp.count,
1425                            pageset->pcp.high,
1426                            pageset->pcp.batch);
1427 #ifdef CONFIG_SMP
1428                 seq_printf(m, "\n  vm stats threshold: %d",
1429                                 pageset->stat_threshold);
1430 #endif
1431         }
1432         seq_printf(m,
1433                    "\n  node_unreclaimable:  %u"
1434                    "\n  start_pfn:           %lu"
1435                    "\n  node_inactive_ratio: %u",
1436                    pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1437                    zone->zone_start_pfn,
1438                    zone->zone_pgdat->inactive_ratio);
1439         seq_putc(m, '\n');
1440 }
1441
1442 /*
1443  * Output information about zones in @pgdat.  All zones are printed regardless
1444  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1445  * set of all zones and userspace would not be aware of such zones if they are
1446  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1447  */
1448 static int zoneinfo_show(struct seq_file *m, void *arg)
1449 {
1450         pg_data_t *pgdat = (pg_data_t *)arg;
1451         walk_zones_in_node(m, pgdat, false, zoneinfo_show_print);
1452         return 0;
1453 }
1454
1455 static const struct seq_operations zoneinfo_op = {
1456         .start  = frag_start, /* iterate over all zones. The same as in
1457                                * fragmentation. */
1458         .next   = frag_next,
1459         .stop   = frag_stop,
1460         .show   = zoneinfo_show,
1461 };
1462
1463 static int zoneinfo_open(struct inode *inode, struct file *file)
1464 {
1465         return seq_open(file, &zoneinfo_op);
1466 }
1467
1468 static const struct file_operations proc_zoneinfo_file_operations = {
1469         .open           = zoneinfo_open,
1470         .read           = seq_read,
1471         .llseek         = seq_lseek,
1472         .release        = seq_release,
1473 };
1474
1475 enum writeback_stat_item {
1476         NR_DIRTY_THRESHOLD,
1477         NR_DIRTY_BG_THRESHOLD,
1478         NR_VM_WRITEBACK_STAT_ITEMS,
1479 };
1480
1481 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1482 {
1483         unsigned long *v;
1484         int i, stat_items_size;
1485
1486         if (*pos >= ARRAY_SIZE(vmstat_text))
1487                 return NULL;
1488         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1489                           NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1490                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1491
1492 #ifdef CONFIG_VM_EVENT_COUNTERS
1493         stat_items_size += sizeof(struct vm_event_state);
1494 #endif
1495
1496         v = kmalloc(stat_items_size, GFP_KERNEL);
1497         m->private = v;
1498         if (!v)
1499                 return ERR_PTR(-ENOMEM);
1500         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1501                 v[i] = global_page_state(i);
1502         v += NR_VM_ZONE_STAT_ITEMS;
1503
1504         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1505                 v[i] = global_node_page_state(i);
1506         v += NR_VM_NODE_STAT_ITEMS;
1507
1508         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1509                             v + NR_DIRTY_THRESHOLD);
1510         v += NR_VM_WRITEBACK_STAT_ITEMS;
1511
1512 #ifdef CONFIG_VM_EVENT_COUNTERS
1513         all_vm_events(v);
1514         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1515         v[PGPGOUT] /= 2;
1516 #endif
1517         return (unsigned long *)m->private + *pos;
1518 }
1519
1520 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1521 {
1522         (*pos)++;
1523         if (*pos >= ARRAY_SIZE(vmstat_text))
1524                 return NULL;
1525         return (unsigned long *)m->private + *pos;
1526 }
1527
1528 static int vmstat_show(struct seq_file *m, void *arg)
1529 {
1530         unsigned long *l = arg;
1531         unsigned long off = l - (unsigned long *)m->private;
1532
1533         seq_puts(m, vmstat_text[off]);
1534         seq_put_decimal_ull(m, " ", *l);
1535         seq_putc(m, '\n');
1536         return 0;
1537 }
1538
1539 static void vmstat_stop(struct seq_file *m, void *arg)
1540 {
1541         kfree(m->private);
1542         m->private = NULL;
1543 }
1544
1545 static const struct seq_operations vmstat_op = {
1546         .start  = vmstat_start,
1547         .next   = vmstat_next,
1548         .stop   = vmstat_stop,
1549         .show   = vmstat_show,
1550 };
1551
1552 static int vmstat_open(struct inode *inode, struct file *file)
1553 {
1554         return seq_open(file, &vmstat_op);
1555 }
1556
1557 static const struct file_operations proc_vmstat_file_operations = {
1558         .open           = vmstat_open,
1559         .read           = seq_read,
1560         .llseek         = seq_lseek,
1561         .release        = seq_release,
1562 };
1563 #endif /* CONFIG_PROC_FS */
1564
1565 #ifdef CONFIG_SMP
1566 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1567 int sysctl_stat_interval __read_mostly = HZ;
1568
1569 #ifdef CONFIG_PROC_FS
1570 static void refresh_vm_stats(struct work_struct *work)
1571 {
1572         refresh_cpu_vm_stats(true);
1573 }
1574
1575 int vmstat_refresh(struct ctl_table *table, int write,
1576                    void __user *buffer, size_t *lenp, loff_t *ppos)
1577 {
1578         long val;
1579         int err;
1580         int i;
1581
1582         /*
1583          * The regular update, every sysctl_stat_interval, may come later
1584          * than expected: leaving a significant amount in per_cpu buckets.
1585          * This is particularly misleading when checking a quantity of HUGE
1586          * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1587          * which can equally be echo'ed to or cat'ted from (by root),
1588          * can be used to update the stats just before reading them.
1589          *
1590          * Oh, and since global_page_state() etc. are so careful to hide
1591          * transiently negative values, report an error here if any of
1592          * the stats is negative, so we know to go looking for imbalance.
1593          */
1594         err = schedule_on_each_cpu(refresh_vm_stats);
1595         if (err)
1596                 return err;
1597         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1598                 val = atomic_long_read(&vm_zone_stat[i]);
1599                 if (val < 0) {
1600                         pr_warn("%s: %s %ld\n",
1601                                 __func__, vmstat_text[i], val);
1602                         err = -EINVAL;
1603                 }
1604         }
1605         if (err)
1606                 return err;
1607         if (write)
1608                 *ppos += *lenp;
1609         else
1610                 *lenp = 0;
1611         return 0;
1612 }
1613 #endif /* CONFIG_PROC_FS */
1614
1615 static void vmstat_update(struct work_struct *w)
1616 {
1617         if (refresh_cpu_vm_stats(true)) {
1618                 /*
1619                  * Counters were updated so we expect more updates
1620                  * to occur in the future. Keep on running the
1621                  * update worker thread.
1622                  */
1623                 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1624                                 this_cpu_ptr(&vmstat_work),
1625                                 round_jiffies_relative(sysctl_stat_interval));
1626         }
1627 }
1628
1629 /*
1630  * Switch off vmstat processing and then fold all the remaining differentials
1631  * until the diffs stay at zero. The function is used by NOHZ and can only be
1632  * invoked when tick processing is not active.
1633  */
1634 /*
1635  * Check if the diffs for a certain cpu indicate that
1636  * an update is needed.
1637  */
1638 static bool need_update(int cpu)
1639 {
1640         struct zone *zone;
1641
1642         for_each_populated_zone(zone) {
1643                 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1644
1645                 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1646                 /*
1647                  * The fast way of checking if there are any vmstat diffs.
1648                  * This works because the diffs are byte sized items.
1649                  */
1650                 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1651                         return true;
1652
1653         }
1654         return false;
1655 }
1656
1657 /*
1658  * Switch off vmstat processing and then fold all the remaining differentials
1659  * until the diffs stay at zero. The function is used by NOHZ and can only be
1660  * invoked when tick processing is not active.
1661  */
1662 void quiet_vmstat(void)
1663 {
1664         if (system_state != SYSTEM_RUNNING)
1665                 return;
1666
1667         if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1668                 return;
1669
1670         if (!need_update(smp_processor_id()))
1671                 return;
1672
1673         /*
1674          * Just refresh counters and do not care about the pending delayed
1675          * vmstat_update. It doesn't fire that often to matter and canceling
1676          * it would be too expensive from this path.
1677          * vmstat_shepherd will take care about that for us.
1678          */
1679         refresh_cpu_vm_stats(false);
1680 }
1681
1682 /*
1683  * Shepherd worker thread that checks the
1684  * differentials of processors that have their worker
1685  * threads for vm statistics updates disabled because of
1686  * inactivity.
1687  */
1688 static void vmstat_shepherd(struct work_struct *w);
1689
1690 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1691
1692 static void vmstat_shepherd(struct work_struct *w)
1693 {
1694         int cpu;
1695
1696         get_online_cpus();
1697         /* Check processors whose vmstat worker threads have been disabled */
1698         for_each_online_cpu(cpu) {
1699                 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1700
1701                 if (!delayed_work_pending(dw) && need_update(cpu))
1702                         queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1703         }
1704         put_online_cpus();
1705
1706         schedule_delayed_work(&shepherd,
1707                 round_jiffies_relative(sysctl_stat_interval));
1708 }
1709
1710 static void __init start_shepherd_timer(void)
1711 {
1712         int cpu;
1713
1714         for_each_possible_cpu(cpu)
1715                 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1716                         vmstat_update);
1717
1718         schedule_delayed_work(&shepherd,
1719                 round_jiffies_relative(sysctl_stat_interval));
1720 }
1721
1722 static void __init init_cpu_node_state(void)
1723 {
1724         int node;
1725
1726         for_each_online_node(node) {
1727                 if (cpumask_weight(cpumask_of_node(node)) > 0)
1728                         node_set_state(node, N_CPU);
1729         }
1730 }
1731
1732 static int vmstat_cpu_online(unsigned int cpu)
1733 {
1734         refresh_zone_stat_thresholds();
1735         node_set_state(cpu_to_node(cpu), N_CPU);
1736         return 0;
1737 }
1738
1739 static int vmstat_cpu_down_prep(unsigned int cpu)
1740 {
1741         cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1742         return 0;
1743 }
1744
1745 static int vmstat_cpu_dead(unsigned int cpu)
1746 {
1747         const struct cpumask *node_cpus;
1748         int node;
1749
1750         node = cpu_to_node(cpu);
1751
1752         refresh_zone_stat_thresholds();
1753         node_cpus = cpumask_of_node(node);
1754         if (cpumask_weight(node_cpus) > 0)
1755                 return 0;
1756
1757         node_clear_state(node, N_CPU);
1758         return 0;
1759 }
1760
1761 #endif
1762
1763 struct workqueue_struct *mm_percpu_wq;
1764
1765 void __init init_mm_internals(void)
1766 {
1767         int ret __maybe_unused;
1768
1769         mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
1770
1771 #ifdef CONFIG_SMP
1772         ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1773                                         NULL, vmstat_cpu_dead);
1774         if (ret < 0)
1775                 pr_err("vmstat: failed to register 'dead' hotplug state\n");
1776
1777         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
1778                                         vmstat_cpu_online,
1779                                         vmstat_cpu_down_prep);
1780         if (ret < 0)
1781                 pr_err("vmstat: failed to register 'online' hotplug state\n");
1782
1783         get_online_cpus();
1784         init_cpu_node_state();
1785         put_online_cpus();
1786
1787         start_shepherd_timer();
1788 #endif
1789 #ifdef CONFIG_PROC_FS
1790         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1791         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1792         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1793         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1794 #endif
1795 }
1796
1797 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1798
1799 /*
1800  * Return an index indicating how much of the available free memory is
1801  * unusable for an allocation of the requested size.
1802  */
1803 static int unusable_free_index(unsigned int order,
1804                                 struct contig_page_info *info)
1805 {
1806         /* No free memory is interpreted as all free memory is unusable */
1807         if (info->free_pages == 0)
1808                 return 1000;
1809
1810         /*
1811          * Index should be a value between 0 and 1. Return a value to 3
1812          * decimal places.
1813          *
1814          * 0 => no fragmentation
1815          * 1 => high fragmentation
1816          */
1817         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1818
1819 }
1820
1821 static void unusable_show_print(struct seq_file *m,
1822                                         pg_data_t *pgdat, struct zone *zone)
1823 {
1824         unsigned int order;
1825         int index;
1826         struct contig_page_info info;
1827
1828         seq_printf(m, "Node %d, zone %8s ",
1829                                 pgdat->node_id,
1830                                 zone->name);
1831         for (order = 0; order < MAX_ORDER; ++order) {
1832                 fill_contig_page_info(zone, order, &info);
1833                 index = unusable_free_index(order, &info);
1834                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1835         }
1836
1837         seq_putc(m, '\n');
1838 }
1839
1840 /*
1841  * Display unusable free space index
1842  *
1843  * The unusable free space index measures how much of the available free
1844  * memory cannot be used to satisfy an allocation of a given size and is a
1845  * value between 0 and 1. The higher the value, the more of free memory is
1846  * unusable and by implication, the worse the external fragmentation is. This
1847  * can be expressed as a percentage by multiplying by 100.
1848  */
1849 static int unusable_show(struct seq_file *m, void *arg)
1850 {
1851         pg_data_t *pgdat = (pg_data_t *)arg;
1852
1853         /* check memoryless node */
1854         if (!node_state(pgdat->node_id, N_MEMORY))
1855                 return 0;
1856
1857         walk_zones_in_node(m, pgdat, true, unusable_show_print);
1858
1859         return 0;
1860 }
1861
1862 static const struct seq_operations unusable_op = {
1863         .start  = frag_start,
1864         .next   = frag_next,
1865         .stop   = frag_stop,
1866         .show   = unusable_show,
1867 };
1868
1869 static int unusable_open(struct inode *inode, struct file *file)
1870 {
1871         return seq_open(file, &unusable_op);
1872 }
1873
1874 static const struct file_operations unusable_file_ops = {
1875         .open           = unusable_open,
1876         .read           = seq_read,
1877         .llseek         = seq_lseek,
1878         .release        = seq_release,
1879 };
1880
1881 static void extfrag_show_print(struct seq_file *m,
1882                                         pg_data_t *pgdat, struct zone *zone)
1883 {
1884         unsigned int order;
1885         int index;
1886
1887         /* Alloc on stack as interrupts are disabled for zone walk */
1888         struct contig_page_info info;
1889
1890         seq_printf(m, "Node %d, zone %8s ",
1891                                 pgdat->node_id,
1892                                 zone->name);
1893         for (order = 0; order < MAX_ORDER; ++order) {
1894                 fill_contig_page_info(zone, order, &info);
1895                 index = __fragmentation_index(order, &info);
1896                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1897         }
1898
1899         seq_putc(m, '\n');
1900 }
1901
1902 /*
1903  * Display fragmentation index for orders that allocations would fail for
1904  */
1905 static int extfrag_show(struct seq_file *m, void *arg)
1906 {
1907         pg_data_t *pgdat = (pg_data_t *)arg;
1908
1909         walk_zones_in_node(m, pgdat, true, extfrag_show_print);
1910
1911         return 0;
1912 }
1913
1914 static const struct seq_operations extfrag_op = {
1915         .start  = frag_start,
1916         .next   = frag_next,
1917         .stop   = frag_stop,
1918         .show   = extfrag_show,
1919 };
1920
1921 static int extfrag_open(struct inode *inode, struct file *file)
1922 {
1923         return seq_open(file, &extfrag_op);
1924 }
1925
1926 static const struct file_operations extfrag_file_ops = {
1927         .open           = extfrag_open,
1928         .read           = seq_read,
1929         .llseek         = seq_lseek,
1930         .release        = seq_release,
1931 };
1932
1933 static int __init extfrag_debug_init(void)
1934 {
1935         struct dentry *extfrag_debug_root;
1936
1937         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1938         if (!extfrag_debug_root)
1939                 return -ENOMEM;
1940
1941         if (!debugfs_create_file("unusable_index", 0444,
1942                         extfrag_debug_root, NULL, &unusable_file_ops))
1943                 goto fail;
1944
1945         if (!debugfs_create_file("extfrag_index", 0444,
1946                         extfrag_debug_root, NULL, &extfrag_file_ops))
1947                 goto fail;
1948
1949         return 0;
1950 fail:
1951         debugfs_remove_recursive(extfrag_debug_root);
1952         return -ENOMEM;
1953 }
1954
1955 module_init(extfrag_debug_init);
1956 #endif