]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmstat.c
mm/balloon_compaction: add vmstat counters and kpageflags bit
[karo-tx-linux.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 #include <linux/mm_inline.h>
23
24 #include "internal.h"
25
26 #ifdef CONFIG_VM_EVENT_COUNTERS
27 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
28 EXPORT_PER_CPU_SYMBOL(vm_event_states);
29
30 static void sum_vm_events(unsigned long *ret)
31 {
32         int cpu;
33         int i;
34
35         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
36
37         for_each_online_cpu(cpu) {
38                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
39
40                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
41                         ret[i] += this->event[i];
42         }
43 }
44
45 /*
46  * Accumulate the vm event counters across all CPUs.
47  * The result is unavoidably approximate - it can change
48  * during and after execution of this function.
49 */
50 void all_vm_events(unsigned long *ret)
51 {
52         get_online_cpus();
53         sum_vm_events(ret);
54         put_online_cpus();
55 }
56 EXPORT_SYMBOL_GPL(all_vm_events);
57
58 /*
59  * Fold the foreign cpu events into our own.
60  *
61  * This is adding to the events on one processor
62  * but keeps the global counts constant.
63  */
64 void vm_events_fold_cpu(int cpu)
65 {
66         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
67         int i;
68
69         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
70                 count_vm_events(i, fold_state->event[i]);
71                 fold_state->event[i] = 0;
72         }
73 }
74
75 #endif /* CONFIG_VM_EVENT_COUNTERS */
76
77 /*
78  * Manage combined zone based / global counters
79  *
80  * vm_stat contains the global counters
81  */
82 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
83 EXPORT_SYMBOL(vm_stat);
84
85 #ifdef CONFIG_SMP
86
87 int calculate_pressure_threshold(struct zone *zone)
88 {
89         int threshold;
90         int watermark_distance;
91
92         /*
93          * As vmstats are not up to date, there is drift between the estimated
94          * and real values. For high thresholds and a high number of CPUs, it
95          * is possible for the min watermark to be breached while the estimated
96          * value looks fine. The pressure threshold is a reduced value such
97          * that even the maximum amount of drift will not accidentally breach
98          * the min watermark
99          */
100         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
101         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
102
103         /*
104          * Maximum threshold is 125
105          */
106         threshold = min(125, threshold);
107
108         return threshold;
109 }
110
111 int calculate_normal_threshold(struct zone *zone)
112 {
113         int threshold;
114         int mem;        /* memory in 128 MB units */
115
116         /*
117          * The threshold scales with the number of processors and the amount
118          * of memory per zone. More memory means that we can defer updates for
119          * longer, more processors could lead to more contention.
120          * fls() is used to have a cheap way of logarithmic scaling.
121          *
122          * Some sample thresholds:
123          *
124          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
125          * ------------------------------------------------------------------
126          * 8            1               1       0.9-1 GB        4
127          * 16           2               2       0.9-1 GB        4
128          * 20           2               2       1-2 GB          5
129          * 24           2               2       2-4 GB          6
130          * 28           2               2       4-8 GB          7
131          * 32           2               2       8-16 GB         8
132          * 4            2               2       <128M           1
133          * 30           4               3       2-4 GB          5
134          * 48           4               3       8-16 GB         8
135          * 32           8               4       1-2 GB          4
136          * 32           8               4       0.9-1GB         4
137          * 10           16              5       <128M           1
138          * 40           16              5       900M            4
139          * 70           64              7       2-4 GB          5
140          * 84           64              7       4-8 GB          6
141          * 108          512             9       4-8 GB          6
142          * 125          1024            10      8-16 GB         8
143          * 125          1024            10      16-32 GB        9
144          */
145
146         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
147
148         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
149
150         /*
151          * Maximum threshold is 125
152          */
153         threshold = min(125, threshold);
154
155         return threshold;
156 }
157
158 /*
159  * Refresh the thresholds for each zone.
160  */
161 void refresh_zone_stat_thresholds(void)
162 {
163         struct zone *zone;
164         int cpu;
165         int threshold;
166
167         for_each_populated_zone(zone) {
168                 unsigned long max_drift, tolerate_drift;
169
170                 threshold = calculate_normal_threshold(zone);
171
172                 for_each_online_cpu(cpu)
173                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
174                                                         = threshold;
175
176                 /*
177                  * Only set percpu_drift_mark if there is a danger that
178                  * NR_FREE_PAGES reports the low watermark is ok when in fact
179                  * the min watermark could be breached by an allocation
180                  */
181                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
182                 max_drift = num_online_cpus() * threshold;
183                 if (max_drift > tolerate_drift)
184                         zone->percpu_drift_mark = high_wmark_pages(zone) +
185                                         max_drift;
186         }
187 }
188
189 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
190                                 int (*calculate_pressure)(struct zone *))
191 {
192         struct zone *zone;
193         int cpu;
194         int threshold;
195         int i;
196
197         for (i = 0; i < pgdat->nr_zones; i++) {
198                 zone = &pgdat->node_zones[i];
199                 if (!zone->percpu_drift_mark)
200                         continue;
201
202                 threshold = (*calculate_pressure)(zone);
203                 for_each_online_cpu(cpu)
204                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
205                                                         = threshold;
206         }
207 }
208
209 /*
210  * For use when we know that interrupts are disabled,
211  * or when we know that preemption is disabled and that
212  * particular counter cannot be updated from interrupt context.
213  */
214 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
215                                 int delta)
216 {
217         struct per_cpu_pageset __percpu *pcp = zone->pageset;
218         s8 __percpu *p = pcp->vm_stat_diff + item;
219         long x;
220         long t;
221
222         x = delta + __this_cpu_read(*p);
223
224         t = __this_cpu_read(pcp->stat_threshold);
225
226         if (unlikely(x > t || x < -t)) {
227                 zone_page_state_add(x, zone, item);
228                 x = 0;
229         }
230         __this_cpu_write(*p, x);
231 }
232 EXPORT_SYMBOL(__mod_zone_page_state);
233
234 /*
235  * Optimized increment and decrement functions.
236  *
237  * These are only for a single page and therefore can take a struct page *
238  * argument instead of struct zone *. This allows the inclusion of the code
239  * generated for page_zone(page) into the optimized functions.
240  *
241  * No overflow check is necessary and therefore the differential can be
242  * incremented or decremented in place which may allow the compilers to
243  * generate better code.
244  * The increment or decrement is known and therefore one boundary check can
245  * be omitted.
246  *
247  * NOTE: These functions are very performance sensitive. Change only
248  * with care.
249  *
250  * Some processors have inc/dec instructions that are atomic vs an interrupt.
251  * However, the code must first determine the differential location in a zone
252  * based on the processor number and then inc/dec the counter. There is no
253  * guarantee without disabling preemption that the processor will not change
254  * in between and therefore the atomicity vs. interrupt cannot be exploited
255  * in a useful way here.
256  */
257 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
258 {
259         struct per_cpu_pageset __percpu *pcp = zone->pageset;
260         s8 __percpu *p = pcp->vm_stat_diff + item;
261         s8 v, t;
262
263         v = __this_cpu_inc_return(*p);
264         t = __this_cpu_read(pcp->stat_threshold);
265         if (unlikely(v > t)) {
266                 s8 overstep = t >> 1;
267
268                 zone_page_state_add(v + overstep, zone, item);
269                 __this_cpu_write(*p, -overstep);
270         }
271 }
272
273 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
274 {
275         __inc_zone_state(page_zone(page), item);
276 }
277 EXPORT_SYMBOL(__inc_zone_page_state);
278
279 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
280 {
281         struct per_cpu_pageset __percpu *pcp = zone->pageset;
282         s8 __percpu *p = pcp->vm_stat_diff + item;
283         s8 v, t;
284
285         v = __this_cpu_dec_return(*p);
286         t = __this_cpu_read(pcp->stat_threshold);
287         if (unlikely(v < - t)) {
288                 s8 overstep = t >> 1;
289
290                 zone_page_state_add(v - overstep, zone, item);
291                 __this_cpu_write(*p, overstep);
292         }
293 }
294
295 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
296 {
297         __dec_zone_state(page_zone(page), item);
298 }
299 EXPORT_SYMBOL(__dec_zone_page_state);
300
301 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
302 /*
303  * If we have cmpxchg_local support then we do not need to incur the overhead
304  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
305  *
306  * mod_state() modifies the zone counter state through atomic per cpu
307  * operations.
308  *
309  * Overstep mode specifies how overstep should handled:
310  *     0       No overstepping
311  *     1       Overstepping half of threshold
312  *     -1      Overstepping minus half of threshold
313 */
314 static inline void mod_state(struct zone *zone,
315        enum zone_stat_item item, int delta, int overstep_mode)
316 {
317         struct per_cpu_pageset __percpu *pcp = zone->pageset;
318         s8 __percpu *p = pcp->vm_stat_diff + item;
319         long o, n, t, z;
320
321         do {
322                 z = 0;  /* overflow to zone counters */
323
324                 /*
325                  * The fetching of the stat_threshold is racy. We may apply
326                  * a counter threshold to the wrong the cpu if we get
327                  * rescheduled while executing here. However, the next
328                  * counter update will apply the threshold again and
329                  * therefore bring the counter under the threshold again.
330                  *
331                  * Most of the time the thresholds are the same anyways
332                  * for all cpus in a zone.
333                  */
334                 t = this_cpu_read(pcp->stat_threshold);
335
336                 o = this_cpu_read(*p);
337                 n = delta + o;
338
339                 if (n > t || n < -t) {
340                         int os = overstep_mode * (t >> 1) ;
341
342                         /* Overflow must be added to zone counters */
343                         z = n + os;
344                         n = -os;
345                 }
346         } while (this_cpu_cmpxchg(*p, o, n) != o);
347
348         if (z)
349                 zone_page_state_add(z, zone, item);
350 }
351
352 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
353                                         int delta)
354 {
355         mod_state(zone, item, delta, 0);
356 }
357 EXPORT_SYMBOL(mod_zone_page_state);
358
359 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
360 {
361         mod_state(zone, item, 1, 1);
362 }
363
364 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
365 {
366         mod_state(page_zone(page), item, 1, 1);
367 }
368 EXPORT_SYMBOL(inc_zone_page_state);
369
370 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
371 {
372         mod_state(page_zone(page), item, -1, -1);
373 }
374 EXPORT_SYMBOL(dec_zone_page_state);
375 #else
376 /*
377  * Use interrupt disable to serialize counter updates
378  */
379 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
380                                         int delta)
381 {
382         unsigned long flags;
383
384         local_irq_save(flags);
385         __mod_zone_page_state(zone, item, delta);
386         local_irq_restore(flags);
387 }
388 EXPORT_SYMBOL(mod_zone_page_state);
389
390 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
391 {
392         unsigned long flags;
393
394         local_irq_save(flags);
395         __inc_zone_state(zone, item);
396         local_irq_restore(flags);
397 }
398
399 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
400 {
401         unsigned long flags;
402         struct zone *zone;
403
404         zone = page_zone(page);
405         local_irq_save(flags);
406         __inc_zone_state(zone, item);
407         local_irq_restore(flags);
408 }
409 EXPORT_SYMBOL(inc_zone_page_state);
410
411 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
412 {
413         unsigned long flags;
414
415         local_irq_save(flags);
416         __dec_zone_page_state(page, item);
417         local_irq_restore(flags);
418 }
419 EXPORT_SYMBOL(dec_zone_page_state);
420 #endif
421
422 static inline void fold_diff(int *diff)
423 {
424         int i;
425
426         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
427                 if (diff[i])
428                         atomic_long_add(diff[i], &vm_stat[i]);
429 }
430
431 /*
432  * Update the zone counters for the current cpu.
433  *
434  * Note that refresh_cpu_vm_stats strives to only access
435  * node local memory. The per cpu pagesets on remote zones are placed
436  * in the memory local to the processor using that pageset. So the
437  * loop over all zones will access a series of cachelines local to
438  * the processor.
439  *
440  * The call to zone_page_state_add updates the cachelines with the
441  * statistics in the remote zone struct as well as the global cachelines
442  * with the global counters. These could cause remote node cache line
443  * bouncing and will have to be only done when necessary.
444  */
445 static void refresh_cpu_vm_stats(void)
446 {
447         struct zone *zone;
448         int i;
449         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
450
451         for_each_populated_zone(zone) {
452                 struct per_cpu_pageset __percpu *p = zone->pageset;
453
454                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
455                         int v;
456
457                         v = this_cpu_xchg(p->vm_stat_diff[i], 0);
458                         if (v) {
459
460                                 atomic_long_add(v, &zone->vm_stat[i]);
461                                 global_diff[i] += v;
462 #ifdef CONFIG_NUMA
463                                 /* 3 seconds idle till flush */
464                                 __this_cpu_write(p->expire, 3);
465 #endif
466                         }
467                 }
468                 cond_resched();
469 #ifdef CONFIG_NUMA
470                 /*
471                  * Deal with draining the remote pageset of this
472                  * processor
473                  *
474                  * Check if there are pages remaining in this pageset
475                  * if not then there is nothing to expire.
476                  */
477                 if (!__this_cpu_read(p->expire) ||
478                                !__this_cpu_read(p->pcp.count))
479                         continue;
480
481                 /*
482                  * We never drain zones local to this processor.
483                  */
484                 if (zone_to_nid(zone) == numa_node_id()) {
485                         __this_cpu_write(p->expire, 0);
486                         continue;
487                 }
488
489
490                 if (__this_cpu_dec_return(p->expire))
491                         continue;
492
493                 if (__this_cpu_read(p->pcp.count))
494                         drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
495 #endif
496         }
497         fold_diff(global_diff);
498 }
499
500 /*
501  * Fold the data for an offline cpu into the global array.
502  * There cannot be any access by the offline cpu and therefore
503  * synchronization is simplified.
504  */
505 void cpu_vm_stats_fold(int cpu)
506 {
507         struct zone *zone;
508         int i;
509         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
510
511         for_each_populated_zone(zone) {
512                 struct per_cpu_pageset *p;
513
514                 p = per_cpu_ptr(zone->pageset, cpu);
515
516                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
517                         if (p->vm_stat_diff[i]) {
518                                 int v;
519
520                                 v = p->vm_stat_diff[i];
521                                 p->vm_stat_diff[i] = 0;
522                                 atomic_long_add(v, &zone->vm_stat[i]);
523                                 global_diff[i] += v;
524                         }
525         }
526
527         fold_diff(global_diff);
528 }
529
530 /*
531  * this is only called if !populated_zone(zone), which implies no other users of
532  * pset->vm_stat_diff[] exsist.
533  */
534 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
535 {
536         int i;
537
538         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
539                 if (pset->vm_stat_diff[i]) {
540                         int v = pset->vm_stat_diff[i];
541                         pset->vm_stat_diff[i] = 0;
542                         atomic_long_add(v, &zone->vm_stat[i]);
543                         atomic_long_add(v, &vm_stat[i]);
544                 }
545 }
546 #endif
547
548 #ifdef CONFIG_NUMA
549 /*
550  * zonelist = the list of zones passed to the allocator
551  * z        = the zone from which the allocation occurred.
552  *
553  * Must be called with interrupts disabled.
554  *
555  * When __GFP_OTHER_NODE is set assume the node of the preferred
556  * zone is the local node. This is useful for daemons who allocate
557  * memory on behalf of other processes.
558  */
559 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
560 {
561         if (z->zone_pgdat == preferred_zone->zone_pgdat) {
562                 __inc_zone_state(z, NUMA_HIT);
563         } else {
564                 __inc_zone_state(z, NUMA_MISS);
565                 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
566         }
567         if (z->node == ((flags & __GFP_OTHER_NODE) ?
568                         preferred_zone->node : numa_node_id()))
569                 __inc_zone_state(z, NUMA_LOCAL);
570         else
571                 __inc_zone_state(z, NUMA_OTHER);
572 }
573 #endif
574
575 #ifdef CONFIG_COMPACTION
576
577 struct contig_page_info {
578         unsigned long free_pages;
579         unsigned long free_blocks_total;
580         unsigned long free_blocks_suitable;
581 };
582
583 /*
584  * Calculate the number of free pages in a zone, how many contiguous
585  * pages are free and how many are large enough to satisfy an allocation of
586  * the target size. Note that this function makes no attempt to estimate
587  * how many suitable free blocks there *might* be if MOVABLE pages were
588  * migrated. Calculating that is possible, but expensive and can be
589  * figured out from userspace
590  */
591 static void fill_contig_page_info(struct zone *zone,
592                                 unsigned int suitable_order,
593                                 struct contig_page_info *info)
594 {
595         unsigned int order;
596
597         info->free_pages = 0;
598         info->free_blocks_total = 0;
599         info->free_blocks_suitable = 0;
600
601         for (order = 0; order < MAX_ORDER; order++) {
602                 unsigned long blocks;
603
604                 /* Count number of free blocks */
605                 blocks = zone->free_area[order].nr_free;
606                 info->free_blocks_total += blocks;
607
608                 /* Count free base pages */
609                 info->free_pages += blocks << order;
610
611                 /* Count the suitable free blocks */
612                 if (order >= suitable_order)
613                         info->free_blocks_suitable += blocks <<
614                                                 (order - suitable_order);
615         }
616 }
617
618 /*
619  * A fragmentation index only makes sense if an allocation of a requested
620  * size would fail. If that is true, the fragmentation index indicates
621  * whether external fragmentation or a lack of memory was the problem.
622  * The value can be used to determine if page reclaim or compaction
623  * should be used
624  */
625 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
626 {
627         unsigned long requested = 1UL << order;
628
629         if (!info->free_blocks_total)
630                 return 0;
631
632         /* Fragmentation index only makes sense when a request would fail */
633         if (info->free_blocks_suitable)
634                 return -1000;
635
636         /*
637          * Index is between 0 and 1 so return within 3 decimal places
638          *
639          * 0 => allocation would fail due to lack of memory
640          * 1 => allocation would fail due to fragmentation
641          */
642         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
643 }
644
645 /* Same as __fragmentation index but allocs contig_page_info on stack */
646 int fragmentation_index(struct zone *zone, unsigned int order)
647 {
648         struct contig_page_info info;
649
650         fill_contig_page_info(zone, order, &info);
651         return __fragmentation_index(order, &info);
652 }
653 #endif
654
655 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
656 #include <linux/proc_fs.h>
657 #include <linux/seq_file.h>
658
659 static char * const migratetype_names[MIGRATE_TYPES] = {
660         "Unmovable",
661         "Reclaimable",
662         "Movable",
663         "Reserve",
664 #ifdef CONFIG_CMA
665         "CMA",
666 #endif
667 #ifdef CONFIG_MEMORY_ISOLATION
668         "Isolate",
669 #endif
670 };
671
672 static void *frag_start(struct seq_file *m, loff_t *pos)
673 {
674         pg_data_t *pgdat;
675         loff_t node = *pos;
676         for (pgdat = first_online_pgdat();
677              pgdat && node;
678              pgdat = next_online_pgdat(pgdat))
679                 --node;
680
681         return pgdat;
682 }
683
684 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
685 {
686         pg_data_t *pgdat = (pg_data_t *)arg;
687
688         (*pos)++;
689         return next_online_pgdat(pgdat);
690 }
691
692 static void frag_stop(struct seq_file *m, void *arg)
693 {
694 }
695
696 /* Walk all the zones in a node and print using a callback */
697 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
698                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
699 {
700         struct zone *zone;
701         struct zone *node_zones = pgdat->node_zones;
702         unsigned long flags;
703
704         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
705                 if (!populated_zone(zone))
706                         continue;
707
708                 spin_lock_irqsave(&zone->lock, flags);
709                 print(m, pgdat, zone);
710                 spin_unlock_irqrestore(&zone->lock, flags);
711         }
712 }
713 #endif
714
715 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
716 #ifdef CONFIG_ZONE_DMA
717 #define TEXT_FOR_DMA(xx) xx "_dma",
718 #else
719 #define TEXT_FOR_DMA(xx)
720 #endif
721
722 #ifdef CONFIG_ZONE_DMA32
723 #define TEXT_FOR_DMA32(xx) xx "_dma32",
724 #else
725 #define TEXT_FOR_DMA32(xx)
726 #endif
727
728 #ifdef CONFIG_HIGHMEM
729 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
730 #else
731 #define TEXT_FOR_HIGHMEM(xx)
732 #endif
733
734 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
735                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
736
737 const char * const vmstat_text[] = {
738         /* enum zone_stat_item countes */
739         "nr_free_pages",
740         "nr_alloc_batch",
741         "nr_inactive_anon",
742         "nr_active_anon",
743         "nr_inactive_file",
744         "nr_active_file",
745         "nr_unevictable",
746         "nr_mlock",
747         "nr_anon_pages",
748         "nr_mapped",
749         "nr_file_pages",
750         "nr_dirty",
751         "nr_writeback",
752         "nr_slab_reclaimable",
753         "nr_slab_unreclaimable",
754         "nr_page_table_pages",
755         "nr_kernel_stack",
756         "nr_unstable",
757         "nr_bounce",
758         "nr_vmscan_write",
759         "nr_vmscan_immediate_reclaim",
760         "nr_writeback_temp",
761         "nr_isolated_anon",
762         "nr_isolated_file",
763         "nr_shmem",
764         "nr_dirtied",
765         "nr_written",
766         "nr_pages_scanned",
767
768 #ifdef CONFIG_NUMA
769         "numa_hit",
770         "numa_miss",
771         "numa_foreign",
772         "numa_interleave",
773         "numa_local",
774         "numa_other",
775 #endif
776         "workingset_refault",
777         "workingset_activate",
778         "workingset_nodereclaim",
779         "nr_anon_transparent_hugepages",
780         "nr_free_cma",
781
782         /* enum writeback_stat_item counters */
783         "nr_dirty_threshold",
784         "nr_dirty_background_threshold",
785
786 #ifdef CONFIG_VM_EVENT_COUNTERS
787         /* enum vm_event_item counters */
788         "pgpgin",
789         "pgpgout",
790         "pswpin",
791         "pswpout",
792
793         TEXTS_FOR_ZONES("pgalloc")
794
795         "pgfree",
796         "pgactivate",
797         "pgdeactivate",
798
799         "pgfault",
800         "pgmajfault",
801
802         TEXTS_FOR_ZONES("pgrefill")
803         TEXTS_FOR_ZONES("pgsteal_kswapd")
804         TEXTS_FOR_ZONES("pgsteal_direct")
805         TEXTS_FOR_ZONES("pgscan_kswapd")
806         TEXTS_FOR_ZONES("pgscan_direct")
807         "pgscan_direct_throttle",
808
809 #ifdef CONFIG_NUMA
810         "zone_reclaim_failed",
811 #endif
812         "pginodesteal",
813         "slabs_scanned",
814         "kswapd_inodesteal",
815         "kswapd_low_wmark_hit_quickly",
816         "kswapd_high_wmark_hit_quickly",
817         "pageoutrun",
818         "allocstall",
819
820         "pgrotated",
821
822         "drop_pagecache",
823         "drop_slab",
824
825 #ifdef CONFIG_NUMA_BALANCING
826         "numa_pte_updates",
827         "numa_huge_pte_updates",
828         "numa_hint_faults",
829         "numa_hint_faults_local",
830         "numa_pages_migrated",
831 #endif
832 #ifdef CONFIG_MIGRATION
833         "pgmigrate_success",
834         "pgmigrate_fail",
835 #endif
836 #ifdef CONFIG_COMPACTION
837         "compact_migrate_scanned",
838         "compact_free_scanned",
839         "compact_isolated",
840         "compact_stall",
841         "compact_fail",
842         "compact_success",
843 #endif
844
845 #ifdef CONFIG_HUGETLB_PAGE
846         "htlb_buddy_alloc_success",
847         "htlb_buddy_alloc_fail",
848 #endif
849         "unevictable_pgs_culled",
850         "unevictable_pgs_scanned",
851         "unevictable_pgs_rescued",
852         "unevictable_pgs_mlocked",
853         "unevictable_pgs_munlocked",
854         "unevictable_pgs_cleared",
855         "unevictable_pgs_stranded",
856
857 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
858         "thp_fault_alloc",
859         "thp_fault_fallback",
860         "thp_collapse_alloc",
861         "thp_collapse_alloc_failed",
862         "thp_split",
863         "thp_zero_page_alloc",
864         "thp_zero_page_alloc_failed",
865 #endif
866 #ifdef CONFIG_MEMORY_BALLOON
867         "balloon_inflate",
868         "balloon_deflate",
869 #ifdef CONFIG_BALLOON_COMPACTION
870         "balloon_migrate",
871 #endif
872 #endif /* CONFIG_MEMORY_BALLOON */
873 #ifdef CONFIG_DEBUG_TLBFLUSH
874 #ifdef CONFIG_SMP
875         "nr_tlb_remote_flush",
876         "nr_tlb_remote_flush_received",
877 #endif /* CONFIG_SMP */
878         "nr_tlb_local_flush_all",
879         "nr_tlb_local_flush_one",
880 #endif /* CONFIG_DEBUG_TLBFLUSH */
881
882 #ifdef CONFIG_DEBUG_VM_VMACACHE
883         "vmacache_find_calls",
884         "vmacache_find_hits",
885 #endif
886 #endif /* CONFIG_VM_EVENTS_COUNTERS */
887 };
888 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
889
890
891 #ifdef CONFIG_PROC_FS
892 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
893                                                 struct zone *zone)
894 {
895         int order;
896
897         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
898         for (order = 0; order < MAX_ORDER; ++order)
899                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
900         seq_putc(m, '\n');
901 }
902
903 /*
904  * This walks the free areas for each zone.
905  */
906 static int frag_show(struct seq_file *m, void *arg)
907 {
908         pg_data_t *pgdat = (pg_data_t *)arg;
909         walk_zones_in_node(m, pgdat, frag_show_print);
910         return 0;
911 }
912
913 static void pagetypeinfo_showfree_print(struct seq_file *m,
914                                         pg_data_t *pgdat, struct zone *zone)
915 {
916         int order, mtype;
917
918         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
919                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
920                                         pgdat->node_id,
921                                         zone->name,
922                                         migratetype_names[mtype]);
923                 for (order = 0; order < MAX_ORDER; ++order) {
924                         unsigned long freecount = 0;
925                         struct free_area *area;
926                         struct list_head *curr;
927
928                         area = &(zone->free_area[order]);
929
930                         list_for_each(curr, &area->free_list[mtype])
931                                 freecount++;
932                         seq_printf(m, "%6lu ", freecount);
933                 }
934                 seq_putc(m, '\n');
935         }
936 }
937
938 /* Print out the free pages at each order for each migatetype */
939 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
940 {
941         int order;
942         pg_data_t *pgdat = (pg_data_t *)arg;
943
944         /* Print header */
945         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
946         for (order = 0; order < MAX_ORDER; ++order)
947                 seq_printf(m, "%6d ", order);
948         seq_putc(m, '\n');
949
950         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
951
952         return 0;
953 }
954
955 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
956                                         pg_data_t *pgdat, struct zone *zone)
957 {
958         int mtype;
959         unsigned long pfn;
960         unsigned long start_pfn = zone->zone_start_pfn;
961         unsigned long end_pfn = zone_end_pfn(zone);
962         unsigned long count[MIGRATE_TYPES] = { 0, };
963
964         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
965                 struct page *page;
966
967                 if (!pfn_valid(pfn))
968                         continue;
969
970                 page = pfn_to_page(pfn);
971
972                 /* Watch for unexpected holes punched in the memmap */
973                 if (!memmap_valid_within(pfn, page, zone))
974                         continue;
975
976                 mtype = get_pageblock_migratetype(page);
977
978                 if (mtype < MIGRATE_TYPES)
979                         count[mtype]++;
980         }
981
982         /* Print counts */
983         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
984         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
985                 seq_printf(m, "%12lu ", count[mtype]);
986         seq_putc(m, '\n');
987 }
988
989 /* Print out the free pages at each order for each migratetype */
990 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
991 {
992         int mtype;
993         pg_data_t *pgdat = (pg_data_t *)arg;
994
995         seq_printf(m, "\n%-23s", "Number of blocks type ");
996         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
997                 seq_printf(m, "%12s ", migratetype_names[mtype]);
998         seq_putc(m, '\n');
999         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1000
1001         return 0;
1002 }
1003
1004 /*
1005  * This prints out statistics in relation to grouping pages by mobility.
1006  * It is expensive to collect so do not constantly read the file.
1007  */
1008 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1009 {
1010         pg_data_t *pgdat = (pg_data_t *)arg;
1011
1012         /* check memoryless node */
1013         if (!node_state(pgdat->node_id, N_MEMORY))
1014                 return 0;
1015
1016         seq_printf(m, "Page block order: %d\n", pageblock_order);
1017         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1018         seq_putc(m, '\n');
1019         pagetypeinfo_showfree(m, pgdat);
1020         pagetypeinfo_showblockcount(m, pgdat);
1021
1022         return 0;
1023 }
1024
1025 static const struct seq_operations fragmentation_op = {
1026         .start  = frag_start,
1027         .next   = frag_next,
1028         .stop   = frag_stop,
1029         .show   = frag_show,
1030 };
1031
1032 static int fragmentation_open(struct inode *inode, struct file *file)
1033 {
1034         return seq_open(file, &fragmentation_op);
1035 }
1036
1037 static const struct file_operations fragmentation_file_operations = {
1038         .open           = fragmentation_open,
1039         .read           = seq_read,
1040         .llseek         = seq_lseek,
1041         .release        = seq_release,
1042 };
1043
1044 static const struct seq_operations pagetypeinfo_op = {
1045         .start  = frag_start,
1046         .next   = frag_next,
1047         .stop   = frag_stop,
1048         .show   = pagetypeinfo_show,
1049 };
1050
1051 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1052 {
1053         return seq_open(file, &pagetypeinfo_op);
1054 }
1055
1056 static const struct file_operations pagetypeinfo_file_ops = {
1057         .open           = pagetypeinfo_open,
1058         .read           = seq_read,
1059         .llseek         = seq_lseek,
1060         .release        = seq_release,
1061 };
1062
1063 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1064                                                         struct zone *zone)
1065 {
1066         int i;
1067         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1068         seq_printf(m,
1069                    "\n  pages free     %lu"
1070                    "\n        min      %lu"
1071                    "\n        low      %lu"
1072                    "\n        high     %lu"
1073                    "\n        scanned  %lu"
1074                    "\n        spanned  %lu"
1075                    "\n        present  %lu"
1076                    "\n        managed  %lu",
1077                    zone_page_state(zone, NR_FREE_PAGES),
1078                    min_wmark_pages(zone),
1079                    low_wmark_pages(zone),
1080                    high_wmark_pages(zone),
1081                    zone_page_state(zone, NR_PAGES_SCANNED),
1082                    zone->spanned_pages,
1083                    zone->present_pages,
1084                    zone->managed_pages);
1085
1086         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1087                 seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1088                                 zone_page_state(zone, i));
1089
1090         seq_printf(m,
1091                    "\n        protection: (%ld",
1092                    zone->lowmem_reserve[0]);
1093         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1094                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1095         seq_printf(m,
1096                    ")"
1097                    "\n  pagesets");
1098         for_each_online_cpu(i) {
1099                 struct per_cpu_pageset *pageset;
1100
1101                 pageset = per_cpu_ptr(zone->pageset, i);
1102                 seq_printf(m,
1103                            "\n    cpu: %i"
1104                            "\n              count: %i"
1105                            "\n              high:  %i"
1106                            "\n              batch: %i",
1107                            i,
1108                            pageset->pcp.count,
1109                            pageset->pcp.high,
1110                            pageset->pcp.batch);
1111 #ifdef CONFIG_SMP
1112                 seq_printf(m, "\n  vm stats threshold: %d",
1113                                 pageset->stat_threshold);
1114 #endif
1115         }
1116         seq_printf(m,
1117                    "\n  all_unreclaimable: %u"
1118                    "\n  start_pfn:         %lu"
1119                    "\n  inactive_ratio:    %u",
1120                    !zone_reclaimable(zone),
1121                    zone->zone_start_pfn,
1122                    zone->inactive_ratio);
1123         seq_putc(m, '\n');
1124 }
1125
1126 /*
1127  * Output information about zones in @pgdat.
1128  */
1129 static int zoneinfo_show(struct seq_file *m, void *arg)
1130 {
1131         pg_data_t *pgdat = (pg_data_t *)arg;
1132         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1133         return 0;
1134 }
1135
1136 static const struct seq_operations zoneinfo_op = {
1137         .start  = frag_start, /* iterate over all zones. The same as in
1138                                * fragmentation. */
1139         .next   = frag_next,
1140         .stop   = frag_stop,
1141         .show   = zoneinfo_show,
1142 };
1143
1144 static int zoneinfo_open(struct inode *inode, struct file *file)
1145 {
1146         return seq_open(file, &zoneinfo_op);
1147 }
1148
1149 static const struct file_operations proc_zoneinfo_file_operations = {
1150         .open           = zoneinfo_open,
1151         .read           = seq_read,
1152         .llseek         = seq_lseek,
1153         .release        = seq_release,
1154 };
1155
1156 enum writeback_stat_item {
1157         NR_DIRTY_THRESHOLD,
1158         NR_DIRTY_BG_THRESHOLD,
1159         NR_VM_WRITEBACK_STAT_ITEMS,
1160 };
1161
1162 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1163 {
1164         unsigned long *v;
1165         int i, stat_items_size;
1166
1167         if (*pos >= ARRAY_SIZE(vmstat_text))
1168                 return NULL;
1169         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1170                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1171
1172 #ifdef CONFIG_VM_EVENT_COUNTERS
1173         stat_items_size += sizeof(struct vm_event_state);
1174 #endif
1175
1176         v = kmalloc(stat_items_size, GFP_KERNEL);
1177         m->private = v;
1178         if (!v)
1179                 return ERR_PTR(-ENOMEM);
1180         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1181                 v[i] = global_page_state(i);
1182         v += NR_VM_ZONE_STAT_ITEMS;
1183
1184         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1185                             v + NR_DIRTY_THRESHOLD);
1186         v += NR_VM_WRITEBACK_STAT_ITEMS;
1187
1188 #ifdef CONFIG_VM_EVENT_COUNTERS
1189         all_vm_events(v);
1190         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1191         v[PGPGOUT] /= 2;
1192 #endif
1193         return (unsigned long *)m->private + *pos;
1194 }
1195
1196 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1197 {
1198         (*pos)++;
1199         if (*pos >= ARRAY_SIZE(vmstat_text))
1200                 return NULL;
1201         return (unsigned long *)m->private + *pos;
1202 }
1203
1204 static int vmstat_show(struct seq_file *m, void *arg)
1205 {
1206         unsigned long *l = arg;
1207         unsigned long off = l - (unsigned long *)m->private;
1208
1209         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1210         return 0;
1211 }
1212
1213 static void vmstat_stop(struct seq_file *m, void *arg)
1214 {
1215         kfree(m->private);
1216         m->private = NULL;
1217 }
1218
1219 static const struct seq_operations vmstat_op = {
1220         .start  = vmstat_start,
1221         .next   = vmstat_next,
1222         .stop   = vmstat_stop,
1223         .show   = vmstat_show,
1224 };
1225
1226 static int vmstat_open(struct inode *inode, struct file *file)
1227 {
1228         return seq_open(file, &vmstat_op);
1229 }
1230
1231 static const struct file_operations proc_vmstat_file_operations = {
1232         .open           = vmstat_open,
1233         .read           = seq_read,
1234         .llseek         = seq_lseek,
1235         .release        = seq_release,
1236 };
1237 #endif /* CONFIG_PROC_FS */
1238
1239 #ifdef CONFIG_SMP
1240 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1241 int sysctl_stat_interval __read_mostly = HZ;
1242
1243 static void vmstat_update(struct work_struct *w)
1244 {
1245         refresh_cpu_vm_stats();
1246         schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1247                 round_jiffies_relative(sysctl_stat_interval));
1248 }
1249
1250 static void start_cpu_timer(int cpu)
1251 {
1252         struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1253
1254         INIT_DEFERRABLE_WORK(work, vmstat_update);
1255         schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1256 }
1257
1258 static void vmstat_cpu_dead(int node)
1259 {
1260         int cpu;
1261
1262         get_online_cpus();
1263         for_each_online_cpu(cpu)
1264                 if (cpu_to_node(cpu) == node)
1265                         goto end;
1266
1267         node_clear_state(node, N_CPU);
1268 end:
1269         put_online_cpus();
1270 }
1271
1272 /*
1273  * Use the cpu notifier to insure that the thresholds are recalculated
1274  * when necessary.
1275  */
1276 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1277                 unsigned long action,
1278                 void *hcpu)
1279 {
1280         long cpu = (long)hcpu;
1281
1282         switch (action) {
1283         case CPU_ONLINE:
1284         case CPU_ONLINE_FROZEN:
1285                 refresh_zone_stat_thresholds();
1286                 start_cpu_timer(cpu);
1287                 node_set_state(cpu_to_node(cpu), N_CPU);
1288                 break;
1289         case CPU_DOWN_PREPARE:
1290         case CPU_DOWN_PREPARE_FROZEN:
1291                 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1292                 per_cpu(vmstat_work, cpu).work.func = NULL;
1293                 break;
1294         case CPU_DOWN_FAILED:
1295         case CPU_DOWN_FAILED_FROZEN:
1296                 start_cpu_timer(cpu);
1297                 break;
1298         case CPU_DEAD:
1299         case CPU_DEAD_FROZEN:
1300                 refresh_zone_stat_thresholds();
1301                 vmstat_cpu_dead(cpu_to_node(cpu));
1302                 break;
1303         default:
1304                 break;
1305         }
1306         return NOTIFY_OK;
1307 }
1308
1309 static struct notifier_block vmstat_notifier =
1310         { &vmstat_cpuup_callback, NULL, 0 };
1311 #endif
1312
1313 static int __init setup_vmstat(void)
1314 {
1315 #ifdef CONFIG_SMP
1316         int cpu;
1317
1318         cpu_notifier_register_begin();
1319         __register_cpu_notifier(&vmstat_notifier);
1320
1321         for_each_online_cpu(cpu) {
1322                 start_cpu_timer(cpu);
1323                 node_set_state(cpu_to_node(cpu), N_CPU);
1324         }
1325         cpu_notifier_register_done();
1326 #endif
1327 #ifdef CONFIG_PROC_FS
1328         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1329         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1330         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1331         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1332 #endif
1333         return 0;
1334 }
1335 module_init(setup_vmstat)
1336
1337 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1338 #include <linux/debugfs.h>
1339
1340
1341 /*
1342  * Return an index indicating how much of the available free memory is
1343  * unusable for an allocation of the requested size.
1344  */
1345 static int unusable_free_index(unsigned int order,
1346                                 struct contig_page_info *info)
1347 {
1348         /* No free memory is interpreted as all free memory is unusable */
1349         if (info->free_pages == 0)
1350                 return 1000;
1351
1352         /*
1353          * Index should be a value between 0 and 1. Return a value to 3
1354          * decimal places.
1355          *
1356          * 0 => no fragmentation
1357          * 1 => high fragmentation
1358          */
1359         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1360
1361 }
1362
1363 static void unusable_show_print(struct seq_file *m,
1364                                         pg_data_t *pgdat, struct zone *zone)
1365 {
1366         unsigned int order;
1367         int index;
1368         struct contig_page_info info;
1369
1370         seq_printf(m, "Node %d, zone %8s ",
1371                                 pgdat->node_id,
1372                                 zone->name);
1373         for (order = 0; order < MAX_ORDER; ++order) {
1374                 fill_contig_page_info(zone, order, &info);
1375                 index = unusable_free_index(order, &info);
1376                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1377         }
1378
1379         seq_putc(m, '\n');
1380 }
1381
1382 /*
1383  * Display unusable free space index
1384  *
1385  * The unusable free space index measures how much of the available free
1386  * memory cannot be used to satisfy an allocation of a given size and is a
1387  * value between 0 and 1. The higher the value, the more of free memory is
1388  * unusable and by implication, the worse the external fragmentation is. This
1389  * can be expressed as a percentage by multiplying by 100.
1390  */
1391 static int unusable_show(struct seq_file *m, void *arg)
1392 {
1393         pg_data_t *pgdat = (pg_data_t *)arg;
1394
1395         /* check memoryless node */
1396         if (!node_state(pgdat->node_id, N_MEMORY))
1397                 return 0;
1398
1399         walk_zones_in_node(m, pgdat, unusable_show_print);
1400
1401         return 0;
1402 }
1403
1404 static const struct seq_operations unusable_op = {
1405         .start  = frag_start,
1406         .next   = frag_next,
1407         .stop   = frag_stop,
1408         .show   = unusable_show,
1409 };
1410
1411 static int unusable_open(struct inode *inode, struct file *file)
1412 {
1413         return seq_open(file, &unusable_op);
1414 }
1415
1416 static const struct file_operations unusable_file_ops = {
1417         .open           = unusable_open,
1418         .read           = seq_read,
1419         .llseek         = seq_lseek,
1420         .release        = seq_release,
1421 };
1422
1423 static void extfrag_show_print(struct seq_file *m,
1424                                         pg_data_t *pgdat, struct zone *zone)
1425 {
1426         unsigned int order;
1427         int index;
1428
1429         /* Alloc on stack as interrupts are disabled for zone walk */
1430         struct contig_page_info info;
1431
1432         seq_printf(m, "Node %d, zone %8s ",
1433                                 pgdat->node_id,
1434                                 zone->name);
1435         for (order = 0; order < MAX_ORDER; ++order) {
1436                 fill_contig_page_info(zone, order, &info);
1437                 index = __fragmentation_index(order, &info);
1438                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1439         }
1440
1441         seq_putc(m, '\n');
1442 }
1443
1444 /*
1445  * Display fragmentation index for orders that allocations would fail for
1446  */
1447 static int extfrag_show(struct seq_file *m, void *arg)
1448 {
1449         pg_data_t *pgdat = (pg_data_t *)arg;
1450
1451         walk_zones_in_node(m, pgdat, extfrag_show_print);
1452
1453         return 0;
1454 }
1455
1456 static const struct seq_operations extfrag_op = {
1457         .start  = frag_start,
1458         .next   = frag_next,
1459         .stop   = frag_stop,
1460         .show   = extfrag_show,
1461 };
1462
1463 static int extfrag_open(struct inode *inode, struct file *file)
1464 {
1465         return seq_open(file, &extfrag_op);
1466 }
1467
1468 static const struct file_operations extfrag_file_ops = {
1469         .open           = extfrag_open,
1470         .read           = seq_read,
1471         .llseek         = seq_lseek,
1472         .release        = seq_release,
1473 };
1474
1475 static int __init extfrag_debug_init(void)
1476 {
1477         struct dentry *extfrag_debug_root;
1478
1479         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1480         if (!extfrag_debug_root)
1481                 return -ENOMEM;
1482
1483         if (!debugfs_create_file("unusable_index", 0444,
1484                         extfrag_debug_root, NULL, &unusable_file_ops))
1485                 goto fail;
1486
1487         if (!debugfs_create_file("extfrag_index", 0444,
1488                         extfrag_debug_root, NULL, &extfrag_file_ops))
1489                 goto fail;
1490
1491         return 0;
1492 fail:
1493         debugfs_remove_recursive(extfrag_debug_root);
1494         return -ENOMEM;
1495 }
1496
1497 module_init(extfrag_debug_init);
1498 #endif