]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/vmstat.c
mm/vmstat: make node_page_state() handles all zones by itself
[karo-tx-linux.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39         int cpu;
40         int i;
41
42         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44         for_each_online_cpu(cpu) {
45                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48                         ret[i] += this->event[i];
49         }
50 }
51
52 /*
53  * Accumulate the vm event counters across all CPUs.
54  * The result is unavoidably approximate - it can change
55  * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59         get_online_cpus();
60         sum_vm_events(ret);
61         put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66  * Fold the foreign cpu events into our own.
67  *
68  * This is adding to the events on one processor
69  * but keeps the global counts constant.
70  */
71 void vm_events_fold_cpu(int cpu)
72 {
73         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74         int i;
75
76         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77                 count_vm_events(i, fold_state->event[i]);
78                 fold_state->event[i] = 0;
79         }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85  * Manage combined zone based / global counters
86  *
87  * vm_stat contains the global counters
88  */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91
92 #ifdef CONFIG_SMP
93
94 int calculate_pressure_threshold(struct zone *zone)
95 {
96         int threshold;
97         int watermark_distance;
98
99         /*
100          * As vmstats are not up to date, there is drift between the estimated
101          * and real values. For high thresholds and a high number of CPUs, it
102          * is possible for the min watermark to be breached while the estimated
103          * value looks fine. The pressure threshold is a reduced value such
104          * that even the maximum amount of drift will not accidentally breach
105          * the min watermark
106          */
107         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110         /*
111          * Maximum threshold is 125
112          */
113         threshold = min(125, threshold);
114
115         return threshold;
116 }
117
118 int calculate_normal_threshold(struct zone *zone)
119 {
120         int threshold;
121         int mem;        /* memory in 128 MB units */
122
123         /*
124          * The threshold scales with the number of processors and the amount
125          * of memory per zone. More memory means that we can defer updates for
126          * longer, more processors could lead to more contention.
127          * fls() is used to have a cheap way of logarithmic scaling.
128          *
129          * Some sample thresholds:
130          *
131          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
132          * ------------------------------------------------------------------
133          * 8            1               1       0.9-1 GB        4
134          * 16           2               2       0.9-1 GB        4
135          * 20           2               2       1-2 GB          5
136          * 24           2               2       2-4 GB          6
137          * 28           2               2       4-8 GB          7
138          * 32           2               2       8-16 GB         8
139          * 4            2               2       <128M           1
140          * 30           4               3       2-4 GB          5
141          * 48           4               3       8-16 GB         8
142          * 32           8               4       1-2 GB          4
143          * 32           8               4       0.9-1GB         4
144          * 10           16              5       <128M           1
145          * 40           16              5       900M            4
146          * 70           64              7       2-4 GB          5
147          * 84           64              7       4-8 GB          6
148          * 108          512             9       4-8 GB          6
149          * 125          1024            10      8-16 GB         8
150          * 125          1024            10      16-32 GB        9
151          */
152
153         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154
155         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157         /*
158          * Maximum threshold is 125
159          */
160         threshold = min(125, threshold);
161
162         return threshold;
163 }
164
165 /*
166  * Refresh the thresholds for each zone.
167  */
168 void refresh_zone_stat_thresholds(void)
169 {
170         struct zone *zone;
171         int cpu;
172         int threshold;
173
174         for_each_populated_zone(zone) {
175                 unsigned long max_drift, tolerate_drift;
176
177                 threshold = calculate_normal_threshold(zone);
178
179                 for_each_online_cpu(cpu)
180                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181                                                         = threshold;
182
183                 /*
184                  * Only set percpu_drift_mark if there is a danger that
185                  * NR_FREE_PAGES reports the low watermark is ok when in fact
186                  * the min watermark could be breached by an allocation
187                  */
188                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189                 max_drift = num_online_cpus() * threshold;
190                 if (max_drift > tolerate_drift)
191                         zone->percpu_drift_mark = high_wmark_pages(zone) +
192                                         max_drift;
193         }
194 }
195
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197                                 int (*calculate_pressure)(struct zone *))
198 {
199         struct zone *zone;
200         int cpu;
201         int threshold;
202         int i;
203
204         for (i = 0; i < pgdat->nr_zones; i++) {
205                 zone = &pgdat->node_zones[i];
206                 if (!zone->percpu_drift_mark)
207                         continue;
208
209                 threshold = (*calculate_pressure)(zone);
210                 for_each_online_cpu(cpu)
211                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212                                                         = threshold;
213         }
214 }
215
216 /*
217  * For use when we know that interrupts are disabled,
218  * or when we know that preemption is disabled and that
219  * particular counter cannot be updated from interrupt context.
220  */
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222                            long delta)
223 {
224         struct per_cpu_pageset __percpu *pcp = zone->pageset;
225         s8 __percpu *p = pcp->vm_stat_diff + item;
226         long x;
227         long t;
228
229         x = delta + __this_cpu_read(*p);
230
231         t = __this_cpu_read(pcp->stat_threshold);
232
233         if (unlikely(x > t || x < -t)) {
234                 zone_page_state_add(x, zone, item);
235                 x = 0;
236         }
237         __this_cpu_write(*p, x);
238 }
239 EXPORT_SYMBOL(__mod_zone_page_state);
240
241 /*
242  * Optimized increment and decrement functions.
243  *
244  * These are only for a single page and therefore can take a struct page *
245  * argument instead of struct zone *. This allows the inclusion of the code
246  * generated for page_zone(page) into the optimized functions.
247  *
248  * No overflow check is necessary and therefore the differential can be
249  * incremented or decremented in place which may allow the compilers to
250  * generate better code.
251  * The increment or decrement is known and therefore one boundary check can
252  * be omitted.
253  *
254  * NOTE: These functions are very performance sensitive. Change only
255  * with care.
256  *
257  * Some processors have inc/dec instructions that are atomic vs an interrupt.
258  * However, the code must first determine the differential location in a zone
259  * based on the processor number and then inc/dec the counter. There is no
260  * guarantee without disabling preemption that the processor will not change
261  * in between and therefore the atomicity vs. interrupt cannot be exploited
262  * in a useful way here.
263  */
264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266         struct per_cpu_pageset __percpu *pcp = zone->pageset;
267         s8 __percpu *p = pcp->vm_stat_diff + item;
268         s8 v, t;
269
270         v = __this_cpu_inc_return(*p);
271         t = __this_cpu_read(pcp->stat_threshold);
272         if (unlikely(v > t)) {
273                 s8 overstep = t >> 1;
274
275                 zone_page_state_add(v + overstep, zone, item);
276                 __this_cpu_write(*p, -overstep);
277         }
278 }
279
280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281 {
282         __inc_zone_state(page_zone(page), item);
283 }
284 EXPORT_SYMBOL(__inc_zone_page_state);
285
286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287 {
288         struct per_cpu_pageset __percpu *pcp = zone->pageset;
289         s8 __percpu *p = pcp->vm_stat_diff + item;
290         s8 v, t;
291
292         v = __this_cpu_dec_return(*p);
293         t = __this_cpu_read(pcp->stat_threshold);
294         if (unlikely(v < - t)) {
295                 s8 overstep = t >> 1;
296
297                 zone_page_state_add(v - overstep, zone, item);
298                 __this_cpu_write(*p, overstep);
299         }
300 }
301
302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303 {
304         __dec_zone_state(page_zone(page), item);
305 }
306 EXPORT_SYMBOL(__dec_zone_page_state);
307
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309 /*
310  * If we have cmpxchg_local support then we do not need to incur the overhead
311  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312  *
313  * mod_state() modifies the zone counter state through atomic per cpu
314  * operations.
315  *
316  * Overstep mode specifies how overstep should handled:
317  *     0       No overstepping
318  *     1       Overstepping half of threshold
319  *     -1      Overstepping minus half of threshold
320 */
321 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322                              long delta, int overstep_mode)
323 {
324         struct per_cpu_pageset __percpu *pcp = zone->pageset;
325         s8 __percpu *p = pcp->vm_stat_diff + item;
326         long o, n, t, z;
327
328         do {
329                 z = 0;  /* overflow to zone counters */
330
331                 /*
332                  * The fetching of the stat_threshold is racy. We may apply
333                  * a counter threshold to the wrong the cpu if we get
334                  * rescheduled while executing here. However, the next
335                  * counter update will apply the threshold again and
336                  * therefore bring the counter under the threshold again.
337                  *
338                  * Most of the time the thresholds are the same anyways
339                  * for all cpus in a zone.
340                  */
341                 t = this_cpu_read(pcp->stat_threshold);
342
343                 o = this_cpu_read(*p);
344                 n = delta + o;
345
346                 if (n > t || n < -t) {
347                         int os = overstep_mode * (t >> 1) ;
348
349                         /* Overflow must be added to zone counters */
350                         z = n + os;
351                         n = -os;
352                 }
353         } while (this_cpu_cmpxchg(*p, o, n) != o);
354
355         if (z)
356                 zone_page_state_add(z, zone, item);
357 }
358
359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360                          long delta)
361 {
362         mod_state(zone, item, delta, 0);
363 }
364 EXPORT_SYMBOL(mod_zone_page_state);
365
366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367 {
368         mod_state(zone, item, 1, 1);
369 }
370
371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372 {
373         mod_state(page_zone(page), item, 1, 1);
374 }
375 EXPORT_SYMBOL(inc_zone_page_state);
376
377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379         mod_state(page_zone(page), item, -1, -1);
380 }
381 EXPORT_SYMBOL(dec_zone_page_state);
382 #else
383 /*
384  * Use interrupt disable to serialize counter updates
385  */
386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387                          long delta)
388 {
389         unsigned long flags;
390
391         local_irq_save(flags);
392         __mod_zone_page_state(zone, item, delta);
393         local_irq_restore(flags);
394 }
395 EXPORT_SYMBOL(mod_zone_page_state);
396
397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398 {
399         unsigned long flags;
400
401         local_irq_save(flags);
402         __inc_zone_state(zone, item);
403         local_irq_restore(flags);
404 }
405
406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408         unsigned long flags;
409         struct zone *zone;
410
411         zone = page_zone(page);
412         local_irq_save(flags);
413         __inc_zone_state(zone, item);
414         local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(inc_zone_page_state);
417
418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419 {
420         unsigned long flags;
421
422         local_irq_save(flags);
423         __dec_zone_page_state(page, item);
424         local_irq_restore(flags);
425 }
426 EXPORT_SYMBOL(dec_zone_page_state);
427 #endif
428
429
430 /*
431  * Fold a differential into the global counters.
432  * Returns the number of counters updated.
433  */
434 static int fold_diff(int *diff)
435 {
436         int i;
437         int changes = 0;
438
439         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440                 if (diff[i]) {
441                         atomic_long_add(diff[i], &vm_stat[i]);
442                         changes++;
443         }
444         return changes;
445 }
446
447 /*
448  * Update the zone counters for the current cpu.
449  *
450  * Note that refresh_cpu_vm_stats strives to only access
451  * node local memory. The per cpu pagesets on remote zones are placed
452  * in the memory local to the processor using that pageset. So the
453  * loop over all zones will access a series of cachelines local to
454  * the processor.
455  *
456  * The call to zone_page_state_add updates the cachelines with the
457  * statistics in the remote zone struct as well as the global cachelines
458  * with the global counters. These could cause remote node cache line
459  * bouncing and will have to be only done when necessary.
460  *
461  * The function returns the number of global counters updated.
462  */
463 static int refresh_cpu_vm_stats(bool do_pagesets)
464 {
465         struct zone *zone;
466         int i;
467         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468         int changes = 0;
469
470         for_each_populated_zone(zone) {
471                 struct per_cpu_pageset __percpu *p = zone->pageset;
472
473                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474                         int v;
475
476                         v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477                         if (v) {
478
479                                 atomic_long_add(v, &zone->vm_stat[i]);
480                                 global_diff[i] += v;
481 #ifdef CONFIG_NUMA
482                                 /* 3 seconds idle till flush */
483                                 __this_cpu_write(p->expire, 3);
484 #endif
485                         }
486                 }
487 #ifdef CONFIG_NUMA
488                 if (do_pagesets) {
489                         cond_resched();
490                         /*
491                          * Deal with draining the remote pageset of this
492                          * processor
493                          *
494                          * Check if there are pages remaining in this pageset
495                          * if not then there is nothing to expire.
496                          */
497                         if (!__this_cpu_read(p->expire) ||
498                                !__this_cpu_read(p->pcp.count))
499                                 continue;
500
501                         /*
502                          * We never drain zones local to this processor.
503                          */
504                         if (zone_to_nid(zone) == numa_node_id()) {
505                                 __this_cpu_write(p->expire, 0);
506                                 continue;
507                         }
508
509                         if (__this_cpu_dec_return(p->expire))
510                                 continue;
511
512                         if (__this_cpu_read(p->pcp.count)) {
513                                 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
514                                 changes++;
515                         }
516                 }
517 #endif
518         }
519         changes += fold_diff(global_diff);
520         return changes;
521 }
522
523 /*
524  * Fold the data for an offline cpu into the global array.
525  * There cannot be any access by the offline cpu and therefore
526  * synchronization is simplified.
527  */
528 void cpu_vm_stats_fold(int cpu)
529 {
530         struct zone *zone;
531         int i;
532         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
533
534         for_each_populated_zone(zone) {
535                 struct per_cpu_pageset *p;
536
537                 p = per_cpu_ptr(zone->pageset, cpu);
538
539                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
540                         if (p->vm_stat_diff[i]) {
541                                 int v;
542
543                                 v = p->vm_stat_diff[i];
544                                 p->vm_stat_diff[i] = 0;
545                                 atomic_long_add(v, &zone->vm_stat[i]);
546                                 global_diff[i] += v;
547                         }
548         }
549
550         fold_diff(global_diff);
551 }
552
553 /*
554  * this is only called if !populated_zone(zone), which implies no other users of
555  * pset->vm_stat_diff[] exsist.
556  */
557 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
558 {
559         int i;
560
561         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
562                 if (pset->vm_stat_diff[i]) {
563                         int v = pset->vm_stat_diff[i];
564                         pset->vm_stat_diff[i] = 0;
565                         atomic_long_add(v, &zone->vm_stat[i]);
566                         atomic_long_add(v, &vm_stat[i]);
567                 }
568 }
569 #endif
570
571 #ifdef CONFIG_NUMA
572 /*
573  * zonelist = the list of zones passed to the allocator
574  * z        = the zone from which the allocation occurred.
575  *
576  * Must be called with interrupts disabled.
577  *
578  * When __GFP_OTHER_NODE is set assume the node of the preferred
579  * zone is the local node. This is useful for daemons who allocate
580  * memory on behalf of other processes.
581  */
582 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
583 {
584         if (z->zone_pgdat == preferred_zone->zone_pgdat) {
585                 __inc_zone_state(z, NUMA_HIT);
586         } else {
587                 __inc_zone_state(z, NUMA_MISS);
588                 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
589         }
590         if (z->node == ((flags & __GFP_OTHER_NODE) ?
591                         preferred_zone->node : numa_node_id()))
592                 __inc_zone_state(z, NUMA_LOCAL);
593         else
594                 __inc_zone_state(z, NUMA_OTHER);
595 }
596
597 /*
598  * Determine the per node value of a stat item.
599  */
600 unsigned long node_page_state(int node, enum zone_stat_item item)
601 {
602         struct zone *zones = NODE_DATA(node)->node_zones;
603         int i;
604         unsigned long count = 0;
605
606         for (i = 0; i < MAX_NR_ZONES; i++)
607                 count += zone_page_state(zones + i, item);
608
609         return count;
610 }
611
612 #endif
613
614 #ifdef CONFIG_COMPACTION
615
616 struct contig_page_info {
617         unsigned long free_pages;
618         unsigned long free_blocks_total;
619         unsigned long free_blocks_suitable;
620 };
621
622 /*
623  * Calculate the number of free pages in a zone, how many contiguous
624  * pages are free and how many are large enough to satisfy an allocation of
625  * the target size. Note that this function makes no attempt to estimate
626  * how many suitable free blocks there *might* be if MOVABLE pages were
627  * migrated. Calculating that is possible, but expensive and can be
628  * figured out from userspace
629  */
630 static void fill_contig_page_info(struct zone *zone,
631                                 unsigned int suitable_order,
632                                 struct contig_page_info *info)
633 {
634         unsigned int order;
635
636         info->free_pages = 0;
637         info->free_blocks_total = 0;
638         info->free_blocks_suitable = 0;
639
640         for (order = 0; order < MAX_ORDER; order++) {
641                 unsigned long blocks;
642
643                 /* Count number of free blocks */
644                 blocks = zone->free_area[order].nr_free;
645                 info->free_blocks_total += blocks;
646
647                 /* Count free base pages */
648                 info->free_pages += blocks << order;
649
650                 /* Count the suitable free blocks */
651                 if (order >= suitable_order)
652                         info->free_blocks_suitable += blocks <<
653                                                 (order - suitable_order);
654         }
655 }
656
657 /*
658  * A fragmentation index only makes sense if an allocation of a requested
659  * size would fail. If that is true, the fragmentation index indicates
660  * whether external fragmentation or a lack of memory was the problem.
661  * The value can be used to determine if page reclaim or compaction
662  * should be used
663  */
664 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
665 {
666         unsigned long requested = 1UL << order;
667
668         if (!info->free_blocks_total)
669                 return 0;
670
671         /* Fragmentation index only makes sense when a request would fail */
672         if (info->free_blocks_suitable)
673                 return -1000;
674
675         /*
676          * Index is between 0 and 1 so return within 3 decimal places
677          *
678          * 0 => allocation would fail due to lack of memory
679          * 1 => allocation would fail due to fragmentation
680          */
681         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
682 }
683
684 /* Same as __fragmentation index but allocs contig_page_info on stack */
685 int fragmentation_index(struct zone *zone, unsigned int order)
686 {
687         struct contig_page_info info;
688
689         fill_contig_page_info(zone, order, &info);
690         return __fragmentation_index(order, &info);
691 }
692 #endif
693
694 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
695 #ifdef CONFIG_ZONE_DMA
696 #define TEXT_FOR_DMA(xx) xx "_dma",
697 #else
698 #define TEXT_FOR_DMA(xx)
699 #endif
700
701 #ifdef CONFIG_ZONE_DMA32
702 #define TEXT_FOR_DMA32(xx) xx "_dma32",
703 #else
704 #define TEXT_FOR_DMA32(xx)
705 #endif
706
707 #ifdef CONFIG_HIGHMEM
708 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
709 #else
710 #define TEXT_FOR_HIGHMEM(xx)
711 #endif
712
713 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
714                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
715
716 const char * const vmstat_text[] = {
717         /* enum zone_stat_item countes */
718         "nr_free_pages",
719         "nr_alloc_batch",
720         "nr_inactive_anon",
721         "nr_active_anon",
722         "nr_inactive_file",
723         "nr_active_file",
724         "nr_unevictable",
725         "nr_mlock",
726         "nr_anon_pages",
727         "nr_mapped",
728         "nr_file_pages",
729         "nr_dirty",
730         "nr_writeback",
731         "nr_slab_reclaimable",
732         "nr_slab_unreclaimable",
733         "nr_page_table_pages",
734         "nr_kernel_stack",
735         "nr_unstable",
736         "nr_bounce",
737         "nr_vmscan_write",
738         "nr_vmscan_immediate_reclaim",
739         "nr_writeback_temp",
740         "nr_isolated_anon",
741         "nr_isolated_file",
742         "nr_shmem",
743         "nr_dirtied",
744         "nr_written",
745         "nr_pages_scanned",
746
747 #ifdef CONFIG_NUMA
748         "numa_hit",
749         "numa_miss",
750         "numa_foreign",
751         "numa_interleave",
752         "numa_local",
753         "numa_other",
754 #endif
755         "workingset_refault",
756         "workingset_activate",
757         "workingset_nodereclaim",
758         "nr_anon_transparent_hugepages",
759         "nr_free_cma",
760
761         /* enum writeback_stat_item counters */
762         "nr_dirty_threshold",
763         "nr_dirty_background_threshold",
764
765 #ifdef CONFIG_VM_EVENT_COUNTERS
766         /* enum vm_event_item counters */
767         "pgpgin",
768         "pgpgout",
769         "pswpin",
770         "pswpout",
771
772         TEXTS_FOR_ZONES("pgalloc")
773
774         "pgfree",
775         "pgactivate",
776         "pgdeactivate",
777
778         "pgfault",
779         "pgmajfault",
780         "pglazyfreed",
781
782         TEXTS_FOR_ZONES("pgrefill")
783         TEXTS_FOR_ZONES("pgsteal_kswapd")
784         TEXTS_FOR_ZONES("pgsteal_direct")
785         TEXTS_FOR_ZONES("pgscan_kswapd")
786         TEXTS_FOR_ZONES("pgscan_direct")
787         "pgscan_direct_throttle",
788
789 #ifdef CONFIG_NUMA
790         "zone_reclaim_failed",
791 #endif
792         "pginodesteal",
793         "slabs_scanned",
794         "kswapd_inodesteal",
795         "kswapd_low_wmark_hit_quickly",
796         "kswapd_high_wmark_hit_quickly",
797         "pageoutrun",
798         "allocstall",
799
800         "pgrotated",
801
802         "drop_pagecache",
803         "drop_slab",
804
805 #ifdef CONFIG_NUMA_BALANCING
806         "numa_pte_updates",
807         "numa_huge_pte_updates",
808         "numa_hint_faults",
809         "numa_hint_faults_local",
810         "numa_pages_migrated",
811 #endif
812 #ifdef CONFIG_MIGRATION
813         "pgmigrate_success",
814         "pgmigrate_fail",
815 #endif
816 #ifdef CONFIG_COMPACTION
817         "compact_migrate_scanned",
818         "compact_free_scanned",
819         "compact_isolated",
820         "compact_stall",
821         "compact_fail",
822         "compact_success",
823         "compact_daemon_wake",
824 #endif
825
826 #ifdef CONFIG_HUGETLB_PAGE
827         "htlb_buddy_alloc_success",
828         "htlb_buddy_alloc_fail",
829 #endif
830         "unevictable_pgs_culled",
831         "unevictable_pgs_scanned",
832         "unevictable_pgs_rescued",
833         "unevictable_pgs_mlocked",
834         "unevictable_pgs_munlocked",
835         "unevictable_pgs_cleared",
836         "unevictable_pgs_stranded",
837
838 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
839         "thp_fault_alloc",
840         "thp_fault_fallback",
841         "thp_collapse_alloc",
842         "thp_collapse_alloc_failed",
843         "thp_split_page",
844         "thp_split_page_failed",
845         "thp_deferred_split_page",
846         "thp_split_pmd",
847         "thp_zero_page_alloc",
848         "thp_zero_page_alloc_failed",
849 #endif
850 #ifdef CONFIG_MEMORY_BALLOON
851         "balloon_inflate",
852         "balloon_deflate",
853 #ifdef CONFIG_BALLOON_COMPACTION
854         "balloon_migrate",
855 #endif
856 #endif /* CONFIG_MEMORY_BALLOON */
857 #ifdef CONFIG_DEBUG_TLBFLUSH
858 #ifdef CONFIG_SMP
859         "nr_tlb_remote_flush",
860         "nr_tlb_remote_flush_received",
861 #endif /* CONFIG_SMP */
862         "nr_tlb_local_flush_all",
863         "nr_tlb_local_flush_one",
864 #endif /* CONFIG_DEBUG_TLBFLUSH */
865
866 #ifdef CONFIG_DEBUG_VM_VMACACHE
867         "vmacache_find_calls",
868         "vmacache_find_hits",
869         "vmacache_full_flushes",
870 #endif
871 #endif /* CONFIG_VM_EVENTS_COUNTERS */
872 };
873 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
874
875
876 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
877      defined(CONFIG_PROC_FS)
878 static void *frag_start(struct seq_file *m, loff_t *pos)
879 {
880         pg_data_t *pgdat;
881         loff_t node = *pos;
882
883         for (pgdat = first_online_pgdat();
884              pgdat && node;
885              pgdat = next_online_pgdat(pgdat))
886                 --node;
887
888         return pgdat;
889 }
890
891 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
892 {
893         pg_data_t *pgdat = (pg_data_t *)arg;
894
895         (*pos)++;
896         return next_online_pgdat(pgdat);
897 }
898
899 static void frag_stop(struct seq_file *m, void *arg)
900 {
901 }
902
903 /* Walk all the zones in a node and print using a callback */
904 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
905                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
906 {
907         struct zone *zone;
908         struct zone *node_zones = pgdat->node_zones;
909         unsigned long flags;
910
911         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
912                 if (!populated_zone(zone))
913                         continue;
914
915                 spin_lock_irqsave(&zone->lock, flags);
916                 print(m, pgdat, zone);
917                 spin_unlock_irqrestore(&zone->lock, flags);
918         }
919 }
920 #endif
921
922 #ifdef CONFIG_PROC_FS
923 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
924                                                 struct zone *zone)
925 {
926         int order;
927
928         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
929         for (order = 0; order < MAX_ORDER; ++order)
930                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
931         seq_putc(m, '\n');
932 }
933
934 /*
935  * This walks the free areas for each zone.
936  */
937 static int frag_show(struct seq_file *m, void *arg)
938 {
939         pg_data_t *pgdat = (pg_data_t *)arg;
940         walk_zones_in_node(m, pgdat, frag_show_print);
941         return 0;
942 }
943
944 static void pagetypeinfo_showfree_print(struct seq_file *m,
945                                         pg_data_t *pgdat, struct zone *zone)
946 {
947         int order, mtype;
948
949         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
950                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
951                                         pgdat->node_id,
952                                         zone->name,
953                                         migratetype_names[mtype]);
954                 for (order = 0; order < MAX_ORDER; ++order) {
955                         unsigned long freecount = 0;
956                         struct free_area *area;
957                         struct list_head *curr;
958
959                         area = &(zone->free_area[order]);
960
961                         list_for_each(curr, &area->free_list[mtype])
962                                 freecount++;
963                         seq_printf(m, "%6lu ", freecount);
964                 }
965                 seq_putc(m, '\n');
966         }
967 }
968
969 /* Print out the free pages at each order for each migatetype */
970 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
971 {
972         int order;
973         pg_data_t *pgdat = (pg_data_t *)arg;
974
975         /* Print header */
976         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
977         for (order = 0; order < MAX_ORDER; ++order)
978                 seq_printf(m, "%6d ", order);
979         seq_putc(m, '\n');
980
981         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
982
983         return 0;
984 }
985
986 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
987                                         pg_data_t *pgdat, struct zone *zone)
988 {
989         int mtype;
990         unsigned long pfn;
991         unsigned long start_pfn = zone->zone_start_pfn;
992         unsigned long end_pfn = zone_end_pfn(zone);
993         unsigned long count[MIGRATE_TYPES] = { 0, };
994
995         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
996                 struct page *page;
997
998                 if (!pfn_valid(pfn))
999                         continue;
1000
1001                 page = pfn_to_page(pfn);
1002
1003                 /* Watch for unexpected holes punched in the memmap */
1004                 if (!memmap_valid_within(pfn, page, zone))
1005                         continue;
1006
1007                 if (page_zone(page) != zone)
1008                         continue;
1009
1010                 mtype = get_pageblock_migratetype(page);
1011
1012                 if (mtype < MIGRATE_TYPES)
1013                         count[mtype]++;
1014         }
1015
1016         /* Print counts */
1017         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1018         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1019                 seq_printf(m, "%12lu ", count[mtype]);
1020         seq_putc(m, '\n');
1021 }
1022
1023 /* Print out the free pages at each order for each migratetype */
1024 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1025 {
1026         int mtype;
1027         pg_data_t *pgdat = (pg_data_t *)arg;
1028
1029         seq_printf(m, "\n%-23s", "Number of blocks type ");
1030         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1031                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1032         seq_putc(m, '\n');
1033         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1034
1035         return 0;
1036 }
1037
1038 #ifdef CONFIG_PAGE_OWNER
1039 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1040                                                         pg_data_t *pgdat,
1041                                                         struct zone *zone)
1042 {
1043         struct page *page;
1044         struct page_ext *page_ext;
1045         unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1046         unsigned long end_pfn = pfn + zone->spanned_pages;
1047         unsigned long count[MIGRATE_TYPES] = { 0, };
1048         int pageblock_mt, page_mt;
1049         int i;
1050
1051         /* Scan block by block. First and last block may be incomplete */
1052         pfn = zone->zone_start_pfn;
1053
1054         /*
1055          * Walk the zone in pageblock_nr_pages steps. If a page block spans
1056          * a zone boundary, it will be double counted between zones. This does
1057          * not matter as the mixed block count will still be correct
1058          */
1059         for (; pfn < end_pfn; ) {
1060                 if (!pfn_valid(pfn)) {
1061                         pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1062                         continue;
1063                 }
1064
1065                 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1066                 block_end_pfn = min(block_end_pfn, end_pfn);
1067
1068                 page = pfn_to_page(pfn);
1069                 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1070
1071                 for (; pfn < block_end_pfn; pfn++) {
1072                         if (!pfn_valid_within(pfn))
1073                                 continue;
1074
1075                         page = pfn_to_page(pfn);
1076
1077                         if (page_zone(page) != zone)
1078                                 continue;
1079
1080                         if (PageBuddy(page)) {
1081                                 pfn += (1UL << page_order(page)) - 1;
1082                                 continue;
1083                         }
1084
1085                         if (PageReserved(page))
1086                                 continue;
1087
1088                         page_ext = lookup_page_ext(page);
1089
1090                         if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1091                                 continue;
1092
1093                         page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1094                         if (pageblock_mt != page_mt) {
1095                                 if (is_migrate_cma(pageblock_mt))
1096                                         count[MIGRATE_MOVABLE]++;
1097                                 else
1098                                         count[pageblock_mt]++;
1099
1100                                 pfn = block_end_pfn;
1101                                 break;
1102                         }
1103                         pfn += (1UL << page_ext->order) - 1;
1104                 }
1105         }
1106
1107         /* Print counts */
1108         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1109         for (i = 0; i < MIGRATE_TYPES; i++)
1110                 seq_printf(m, "%12lu ", count[i]);
1111         seq_putc(m, '\n');
1112 }
1113 #endif /* CONFIG_PAGE_OWNER */
1114
1115 /*
1116  * Print out the number of pageblocks for each migratetype that contain pages
1117  * of other types. This gives an indication of how well fallbacks are being
1118  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1119  * to determine what is going on
1120  */
1121 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1122 {
1123 #ifdef CONFIG_PAGE_OWNER
1124         int mtype;
1125
1126         if (!static_branch_unlikely(&page_owner_inited))
1127                 return;
1128
1129         drain_all_pages(NULL);
1130
1131         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1132         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1133                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1134         seq_putc(m, '\n');
1135
1136         walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1137 #endif /* CONFIG_PAGE_OWNER */
1138 }
1139
1140 /*
1141  * This prints out statistics in relation to grouping pages by mobility.
1142  * It is expensive to collect so do not constantly read the file.
1143  */
1144 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1145 {
1146         pg_data_t *pgdat = (pg_data_t *)arg;
1147
1148         /* check memoryless node */
1149         if (!node_state(pgdat->node_id, N_MEMORY))
1150                 return 0;
1151
1152         seq_printf(m, "Page block order: %d\n", pageblock_order);
1153         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1154         seq_putc(m, '\n');
1155         pagetypeinfo_showfree(m, pgdat);
1156         pagetypeinfo_showblockcount(m, pgdat);
1157         pagetypeinfo_showmixedcount(m, pgdat);
1158
1159         return 0;
1160 }
1161
1162 static const struct seq_operations fragmentation_op = {
1163         .start  = frag_start,
1164         .next   = frag_next,
1165         .stop   = frag_stop,
1166         .show   = frag_show,
1167 };
1168
1169 static int fragmentation_open(struct inode *inode, struct file *file)
1170 {
1171         return seq_open(file, &fragmentation_op);
1172 }
1173
1174 static const struct file_operations fragmentation_file_operations = {
1175         .open           = fragmentation_open,
1176         .read           = seq_read,
1177         .llseek         = seq_lseek,
1178         .release        = seq_release,
1179 };
1180
1181 static const struct seq_operations pagetypeinfo_op = {
1182         .start  = frag_start,
1183         .next   = frag_next,
1184         .stop   = frag_stop,
1185         .show   = pagetypeinfo_show,
1186 };
1187
1188 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1189 {
1190         return seq_open(file, &pagetypeinfo_op);
1191 }
1192
1193 static const struct file_operations pagetypeinfo_file_ops = {
1194         .open           = pagetypeinfo_open,
1195         .read           = seq_read,
1196         .llseek         = seq_lseek,
1197         .release        = seq_release,
1198 };
1199
1200 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1201                                                         struct zone *zone)
1202 {
1203         int i;
1204         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1205         seq_printf(m,
1206                    "\n  pages free     %lu"
1207                    "\n        min      %lu"
1208                    "\n        low      %lu"
1209                    "\n        high     %lu"
1210                    "\n        scanned  %lu"
1211                    "\n        spanned  %lu"
1212                    "\n        present  %lu"
1213                    "\n        managed  %lu",
1214                    zone_page_state(zone, NR_FREE_PAGES),
1215                    min_wmark_pages(zone),
1216                    low_wmark_pages(zone),
1217                    high_wmark_pages(zone),
1218                    zone_page_state(zone, NR_PAGES_SCANNED),
1219                    zone->spanned_pages,
1220                    zone->present_pages,
1221                    zone->managed_pages);
1222
1223         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1224                 seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1225                                 zone_page_state(zone, i));
1226
1227         seq_printf(m,
1228                    "\n        protection: (%ld",
1229                    zone->lowmem_reserve[0]);
1230         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1231                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1232         seq_printf(m,
1233                    ")"
1234                    "\n  pagesets");
1235         for_each_online_cpu(i) {
1236                 struct per_cpu_pageset *pageset;
1237
1238                 pageset = per_cpu_ptr(zone->pageset, i);
1239                 seq_printf(m,
1240                            "\n    cpu: %i"
1241                            "\n              count: %i"
1242                            "\n              high:  %i"
1243                            "\n              batch: %i",
1244                            i,
1245                            pageset->pcp.count,
1246                            pageset->pcp.high,
1247                            pageset->pcp.batch);
1248 #ifdef CONFIG_SMP
1249                 seq_printf(m, "\n  vm stats threshold: %d",
1250                                 pageset->stat_threshold);
1251 #endif
1252         }
1253         seq_printf(m,
1254                    "\n  all_unreclaimable: %u"
1255                    "\n  start_pfn:         %lu"
1256                    "\n  inactive_ratio:    %u",
1257                    !zone_reclaimable(zone),
1258                    zone->zone_start_pfn,
1259                    zone->inactive_ratio);
1260         seq_putc(m, '\n');
1261 }
1262
1263 /*
1264  * Output information about zones in @pgdat.
1265  */
1266 static int zoneinfo_show(struct seq_file *m, void *arg)
1267 {
1268         pg_data_t *pgdat = (pg_data_t *)arg;
1269         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1270         return 0;
1271 }
1272
1273 static const struct seq_operations zoneinfo_op = {
1274         .start  = frag_start, /* iterate over all zones. The same as in
1275                                * fragmentation. */
1276         .next   = frag_next,
1277         .stop   = frag_stop,
1278         .show   = zoneinfo_show,
1279 };
1280
1281 static int zoneinfo_open(struct inode *inode, struct file *file)
1282 {
1283         return seq_open(file, &zoneinfo_op);
1284 }
1285
1286 static const struct file_operations proc_zoneinfo_file_operations = {
1287         .open           = zoneinfo_open,
1288         .read           = seq_read,
1289         .llseek         = seq_lseek,
1290         .release        = seq_release,
1291 };
1292
1293 enum writeback_stat_item {
1294         NR_DIRTY_THRESHOLD,
1295         NR_DIRTY_BG_THRESHOLD,
1296         NR_VM_WRITEBACK_STAT_ITEMS,
1297 };
1298
1299 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1300 {
1301         unsigned long *v;
1302         int i, stat_items_size;
1303
1304         if (*pos >= ARRAY_SIZE(vmstat_text))
1305                 return NULL;
1306         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1307                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1308
1309 #ifdef CONFIG_VM_EVENT_COUNTERS
1310         stat_items_size += sizeof(struct vm_event_state);
1311 #endif
1312
1313         v = kmalloc(stat_items_size, GFP_KERNEL);
1314         m->private = v;
1315         if (!v)
1316                 return ERR_PTR(-ENOMEM);
1317         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1318                 v[i] = global_page_state(i);
1319         v += NR_VM_ZONE_STAT_ITEMS;
1320
1321         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1322                             v + NR_DIRTY_THRESHOLD);
1323         v += NR_VM_WRITEBACK_STAT_ITEMS;
1324
1325 #ifdef CONFIG_VM_EVENT_COUNTERS
1326         all_vm_events(v);
1327         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1328         v[PGPGOUT] /= 2;
1329 #endif
1330         return (unsigned long *)m->private + *pos;
1331 }
1332
1333 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1334 {
1335         (*pos)++;
1336         if (*pos >= ARRAY_SIZE(vmstat_text))
1337                 return NULL;
1338         return (unsigned long *)m->private + *pos;
1339 }
1340
1341 static int vmstat_show(struct seq_file *m, void *arg)
1342 {
1343         unsigned long *l = arg;
1344         unsigned long off = l - (unsigned long *)m->private;
1345
1346         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1347         return 0;
1348 }
1349
1350 static void vmstat_stop(struct seq_file *m, void *arg)
1351 {
1352         kfree(m->private);
1353         m->private = NULL;
1354 }
1355
1356 static const struct seq_operations vmstat_op = {
1357         .start  = vmstat_start,
1358         .next   = vmstat_next,
1359         .stop   = vmstat_stop,
1360         .show   = vmstat_show,
1361 };
1362
1363 static int vmstat_open(struct inode *inode, struct file *file)
1364 {
1365         return seq_open(file, &vmstat_op);
1366 }
1367
1368 static const struct file_operations proc_vmstat_file_operations = {
1369         .open           = vmstat_open,
1370         .read           = seq_read,
1371         .llseek         = seq_lseek,
1372         .release        = seq_release,
1373 };
1374 #endif /* CONFIG_PROC_FS */
1375
1376 #ifdef CONFIG_SMP
1377 static struct workqueue_struct *vmstat_wq;
1378 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1379 int sysctl_stat_interval __read_mostly = HZ;
1380 static cpumask_var_t cpu_stat_off;
1381
1382 static void vmstat_update(struct work_struct *w)
1383 {
1384         if (refresh_cpu_vm_stats(true)) {
1385                 /*
1386                  * Counters were updated so we expect more updates
1387                  * to occur in the future. Keep on running the
1388                  * update worker thread.
1389                  * If we were marked on cpu_stat_off clear the flag
1390                  * so that vmstat_shepherd doesn't schedule us again.
1391                  */
1392                 if (!cpumask_test_and_clear_cpu(smp_processor_id(),
1393                                                 cpu_stat_off)) {
1394                         queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1395                                 this_cpu_ptr(&vmstat_work),
1396                                 round_jiffies_relative(sysctl_stat_interval));
1397                 }
1398         } else {
1399                 /*
1400                  * We did not update any counters so the app may be in
1401                  * a mode where it does not cause counter updates.
1402                  * We may be uselessly running vmstat_update.
1403                  * Defer the checking for differentials to the
1404                  * shepherd thread on a different processor.
1405                  */
1406                 cpumask_set_cpu(smp_processor_id(), cpu_stat_off);
1407         }
1408 }
1409
1410 /*
1411  * Switch off vmstat processing and then fold all the remaining differentials
1412  * until the diffs stay at zero. The function is used by NOHZ and can only be
1413  * invoked when tick processing is not active.
1414  */
1415 /*
1416  * Check if the diffs for a certain cpu indicate that
1417  * an update is needed.
1418  */
1419 static bool need_update(int cpu)
1420 {
1421         struct zone *zone;
1422
1423         for_each_populated_zone(zone) {
1424                 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1425
1426                 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1427                 /*
1428                  * The fast way of checking if there are any vmstat diffs.
1429                  * This works because the diffs are byte sized items.
1430                  */
1431                 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1432                         return true;
1433
1434         }
1435         return false;
1436 }
1437
1438 void quiet_vmstat(void)
1439 {
1440         if (system_state != SYSTEM_RUNNING)
1441                 return;
1442
1443         /*
1444          * If we are already in hands of the shepherd then there
1445          * is nothing for us to do here.
1446          */
1447         if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1448                 return;
1449
1450         if (!need_update(smp_processor_id()))
1451                 return;
1452
1453         /*
1454          * Just refresh counters and do not care about the pending delayed
1455          * vmstat_update. It doesn't fire that often to matter and canceling
1456          * it would be too expensive from this path.
1457          * vmstat_shepherd will take care about that for us.
1458          */
1459         refresh_cpu_vm_stats(false);
1460 }
1461
1462
1463 /*
1464  * Shepherd worker thread that checks the
1465  * differentials of processors that have their worker
1466  * threads for vm statistics updates disabled because of
1467  * inactivity.
1468  */
1469 static void vmstat_shepherd(struct work_struct *w);
1470
1471 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1472
1473 static void vmstat_shepherd(struct work_struct *w)
1474 {
1475         int cpu;
1476
1477         get_online_cpus();
1478         /* Check processors whose vmstat worker threads have been disabled */
1479         for_each_cpu(cpu, cpu_stat_off) {
1480                 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1481
1482                 if (need_update(cpu)) {
1483                         if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1484                                 queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1485                 } else {
1486                         /*
1487                          * Cancel the work if quiet_vmstat has put this
1488                          * cpu on cpu_stat_off because the work item might
1489                          * be still scheduled
1490                          */
1491                         cancel_delayed_work(dw);
1492                 }
1493         }
1494         put_online_cpus();
1495
1496         schedule_delayed_work(&shepherd,
1497                 round_jiffies_relative(sysctl_stat_interval));
1498 }
1499
1500 static void __init start_shepherd_timer(void)
1501 {
1502         int cpu;
1503
1504         for_each_possible_cpu(cpu)
1505                 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1506                         vmstat_update);
1507
1508         if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1509                 BUG();
1510         cpumask_copy(cpu_stat_off, cpu_online_mask);
1511
1512         vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1513         schedule_delayed_work(&shepherd,
1514                 round_jiffies_relative(sysctl_stat_interval));
1515 }
1516
1517 static void vmstat_cpu_dead(int node)
1518 {
1519         int cpu;
1520
1521         get_online_cpus();
1522         for_each_online_cpu(cpu)
1523                 if (cpu_to_node(cpu) == node)
1524                         goto end;
1525
1526         node_clear_state(node, N_CPU);
1527 end:
1528         put_online_cpus();
1529 }
1530
1531 /*
1532  * Use the cpu notifier to insure that the thresholds are recalculated
1533  * when necessary.
1534  */
1535 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1536                 unsigned long action,
1537                 void *hcpu)
1538 {
1539         long cpu = (long)hcpu;
1540
1541         switch (action) {
1542         case CPU_ONLINE:
1543         case CPU_ONLINE_FROZEN:
1544                 refresh_zone_stat_thresholds();
1545                 node_set_state(cpu_to_node(cpu), N_CPU);
1546                 cpumask_set_cpu(cpu, cpu_stat_off);
1547                 break;
1548         case CPU_DOWN_PREPARE:
1549         case CPU_DOWN_PREPARE_FROZEN:
1550                 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1551                 cpumask_clear_cpu(cpu, cpu_stat_off);
1552                 break;
1553         case CPU_DOWN_FAILED:
1554         case CPU_DOWN_FAILED_FROZEN:
1555                 cpumask_set_cpu(cpu, cpu_stat_off);
1556                 break;
1557         case CPU_DEAD:
1558         case CPU_DEAD_FROZEN:
1559                 refresh_zone_stat_thresholds();
1560                 vmstat_cpu_dead(cpu_to_node(cpu));
1561                 break;
1562         default:
1563                 break;
1564         }
1565         return NOTIFY_OK;
1566 }
1567
1568 static struct notifier_block vmstat_notifier =
1569         { &vmstat_cpuup_callback, NULL, 0 };
1570 #endif
1571
1572 static int __init setup_vmstat(void)
1573 {
1574 #ifdef CONFIG_SMP
1575         cpu_notifier_register_begin();
1576         __register_cpu_notifier(&vmstat_notifier);
1577
1578         start_shepherd_timer();
1579         cpu_notifier_register_done();
1580 #endif
1581 #ifdef CONFIG_PROC_FS
1582         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1583         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1584         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1585         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1586 #endif
1587         return 0;
1588 }
1589 module_init(setup_vmstat)
1590
1591 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1592
1593 /*
1594  * Return an index indicating how much of the available free memory is
1595  * unusable for an allocation of the requested size.
1596  */
1597 static int unusable_free_index(unsigned int order,
1598                                 struct contig_page_info *info)
1599 {
1600         /* No free memory is interpreted as all free memory is unusable */
1601         if (info->free_pages == 0)
1602                 return 1000;
1603
1604         /*
1605          * Index should be a value between 0 and 1. Return a value to 3
1606          * decimal places.
1607          *
1608          * 0 => no fragmentation
1609          * 1 => high fragmentation
1610          */
1611         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1612
1613 }
1614
1615 static void unusable_show_print(struct seq_file *m,
1616                                         pg_data_t *pgdat, struct zone *zone)
1617 {
1618         unsigned int order;
1619         int index;
1620         struct contig_page_info info;
1621
1622         seq_printf(m, "Node %d, zone %8s ",
1623                                 pgdat->node_id,
1624                                 zone->name);
1625         for (order = 0; order < MAX_ORDER; ++order) {
1626                 fill_contig_page_info(zone, order, &info);
1627                 index = unusable_free_index(order, &info);
1628                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1629         }
1630
1631         seq_putc(m, '\n');
1632 }
1633
1634 /*
1635  * Display unusable free space index
1636  *
1637  * The unusable free space index measures how much of the available free
1638  * memory cannot be used to satisfy an allocation of a given size and is a
1639  * value between 0 and 1. The higher the value, the more of free memory is
1640  * unusable and by implication, the worse the external fragmentation is. This
1641  * can be expressed as a percentage by multiplying by 100.
1642  */
1643 static int unusable_show(struct seq_file *m, void *arg)
1644 {
1645         pg_data_t *pgdat = (pg_data_t *)arg;
1646
1647         /* check memoryless node */
1648         if (!node_state(pgdat->node_id, N_MEMORY))
1649                 return 0;
1650
1651         walk_zones_in_node(m, pgdat, unusable_show_print);
1652
1653         return 0;
1654 }
1655
1656 static const struct seq_operations unusable_op = {
1657         .start  = frag_start,
1658         .next   = frag_next,
1659         .stop   = frag_stop,
1660         .show   = unusable_show,
1661 };
1662
1663 static int unusable_open(struct inode *inode, struct file *file)
1664 {
1665         return seq_open(file, &unusable_op);
1666 }
1667
1668 static const struct file_operations unusable_file_ops = {
1669         .open           = unusable_open,
1670         .read           = seq_read,
1671         .llseek         = seq_lseek,
1672         .release        = seq_release,
1673 };
1674
1675 static void extfrag_show_print(struct seq_file *m,
1676                                         pg_data_t *pgdat, struct zone *zone)
1677 {
1678         unsigned int order;
1679         int index;
1680
1681         /* Alloc on stack as interrupts are disabled for zone walk */
1682         struct contig_page_info info;
1683
1684         seq_printf(m, "Node %d, zone %8s ",
1685                                 pgdat->node_id,
1686                                 zone->name);
1687         for (order = 0; order < MAX_ORDER; ++order) {
1688                 fill_contig_page_info(zone, order, &info);
1689                 index = __fragmentation_index(order, &info);
1690                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1691         }
1692
1693         seq_putc(m, '\n');
1694 }
1695
1696 /*
1697  * Display fragmentation index for orders that allocations would fail for
1698  */
1699 static int extfrag_show(struct seq_file *m, void *arg)
1700 {
1701         pg_data_t *pgdat = (pg_data_t *)arg;
1702
1703         walk_zones_in_node(m, pgdat, extfrag_show_print);
1704
1705         return 0;
1706 }
1707
1708 static const struct seq_operations extfrag_op = {
1709         .start  = frag_start,
1710         .next   = frag_next,
1711         .stop   = frag_stop,
1712         .show   = extfrag_show,
1713 };
1714
1715 static int extfrag_open(struct inode *inode, struct file *file)
1716 {
1717         return seq_open(file, &extfrag_op);
1718 }
1719
1720 static const struct file_operations extfrag_file_ops = {
1721         .open           = extfrag_open,
1722         .read           = seq_read,
1723         .llseek         = seq_lseek,
1724         .release        = seq_release,
1725 };
1726
1727 static int __init extfrag_debug_init(void)
1728 {
1729         struct dentry *extfrag_debug_root;
1730
1731         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1732         if (!extfrag_debug_root)
1733                 return -ENOMEM;
1734
1735         if (!debugfs_create_file("unusable_index", 0444,
1736                         extfrag_debug_root, NULL, &unusable_file_ops))
1737                 goto fail;
1738
1739         if (!debugfs_create_file("extfrag_index", 0444,
1740                         extfrag_debug_root, NULL, &extfrag_file_ops))
1741                 goto fail;
1742
1743         return 0;
1744 fail:
1745         debugfs_remove_recursive(extfrag_debug_root);
1746         return -ENOMEM;
1747 }
1748
1749 module_init(extfrag_debug_init);
1750 #endif