]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/8021q/vlan_dev.c
[PATCH] Make the bzImage format self-terminating
[karo-tx-linux.git] / net / 8021q / vlan_dev.c
1 /* -*- linux-c -*-
2  * INET         802.1Q VLAN
3  *              Ethernet-type device handling.
4  *
5  * Authors:     Ben Greear <greearb@candelatech.com>
6  *              Please send support related email to: vlan@scry.wanfear.com
7  *              VLAN Home Page: http://www.candelatech.com/~greear/vlan.html
8  * 
9  * Fixes:       Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com>
10  *                - reset skb->pkt_type on incoming packets when MAC was changed
11  *                - see that changed MAC is saddr for outgoing packets
12  *              Oct 20, 2001:  Ard van Breeman:
13  *                - Fix MC-list, finally.
14  *                - Flush MC-list on VLAN destroy.
15  *                
16  *
17  *              This program is free software; you can redistribute it and/or
18  *              modify it under the terms of the GNU General Public License
19  *              as published by the Free Software Foundation; either version
20  *              2 of the License, or (at your option) any later version.
21  */
22
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/in.h>
26 #include <linux/init.h>
27 #include <asm/uaccess.h> /* for copy_from_user */
28 #include <linux/skbuff.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <net/datalink.h>
32 #include <net/p8022.h>
33 #include <net/arp.h>
34
35 #include "vlan.h"
36 #include "vlanproc.h"
37 #include <linux/if_vlan.h>
38 #include <net/ip.h>
39
40 /*
41  *      Rebuild the Ethernet MAC header. This is called after an ARP
42  *      (or in future other address resolution) has completed on this
43  *      sk_buff. We now let ARP fill in the other fields.
44  *
45  *      This routine CANNOT use cached dst->neigh!
46  *      Really, it is used only when dst->neigh is wrong.
47  *
48  * TODO:  This needs a checkup, I'm ignorant here. --BLG
49  */
50 int vlan_dev_rebuild_header(struct sk_buff *skb)
51 {
52         struct net_device *dev = skb->dev;
53         struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
54
55         switch (veth->h_vlan_encapsulated_proto) {
56 #ifdef CONFIG_INET
57         case __constant_htons(ETH_P_IP):
58
59                 /* TODO:  Confirm this will work with VLAN headers... */
60                 return arp_find(veth->h_dest, skb);
61 #endif  
62         default:
63                 printk(VLAN_DBG
64                        "%s: unable to resolve type %X addresses.\n", 
65                        dev->name, (int)veth->h_vlan_encapsulated_proto);
66          
67                 memcpy(veth->h_source, dev->dev_addr, ETH_ALEN);
68                 break;
69         };
70
71         return 0;
72 }
73
74 static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb)
75 {
76         if (VLAN_DEV_INFO(skb->dev)->flags & 1) {
77                 if (skb_shared(skb) || skb_cloned(skb)) {
78                         struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
79                         kfree_skb(skb);
80                         skb = nskb;
81                 }
82                 if (skb) {
83                         /* Lifted from Gleb's VLAN code... */
84                         memmove(skb->data - ETH_HLEN,
85                                 skb->data - VLAN_ETH_HLEN, 12);
86                         skb->mac.raw += VLAN_HLEN;
87                 }
88         }
89
90         return skb;
91 }
92
93 /*
94  *      Determine the packet's protocol ID. The rule here is that we 
95  *      assume 802.3 if the type field is short enough to be a length.
96  *      This is normal practice and works for any 'now in use' protocol.
97  *
98  *  Also, at this point we assume that we ARE dealing exclusively with
99  *  VLAN packets, or packets that should be made into VLAN packets based
100  *  on a default VLAN ID.
101  *
102  *  NOTE:  Should be similar to ethernet/eth.c.
103  *
104  *  SANITY NOTE:  This method is called when a packet is moving up the stack
105  *                towards userland.  To get here, it would have already passed
106  *                through the ethernet/eth.c eth_type_trans() method.
107  *  SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be
108  *                 stored UNALIGNED in the memory.  RISC systems don't like
109  *                 such cases very much...
110  *  SANITY NOTE 2a:  According to Dave Miller & Alexey, it will always be aligned,
111  *                 so there doesn't need to be any of the unaligned stuff.  It has
112  *                 been commented out now...  --Ben
113  *
114  */
115 int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev,
116                   struct packet_type* ptype, struct net_device *orig_dev)
117 {
118         unsigned char *rawp = NULL;
119         struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data);
120         unsigned short vid;
121         struct net_device_stats *stats;
122         unsigned short vlan_TCI;
123         unsigned short proto;
124
125         /* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */
126         vlan_TCI = ntohs(vhdr->h_vlan_TCI);
127
128         vid = (vlan_TCI & VLAN_VID_MASK);
129
130 #ifdef VLAN_DEBUG
131         printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n",
132                 __FUNCTION__, skb, vid);
133 #endif
134
135         /* Ok, we will find the correct VLAN device, strip the header,
136          * and then go on as usual.
137          */
138
139         /* We have 12 bits of vlan ID.
140          *
141          * We must not drop allow preempt until we hold a
142          * reference to the device (netif_rx does that) or we
143          * fail.
144          */
145
146         rcu_read_lock();
147         skb->dev = __find_vlan_dev(dev, vid);
148         if (!skb->dev) {
149                 rcu_read_unlock();
150
151 #ifdef VLAN_DEBUG
152                 printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n",
153                         __FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex);
154 #endif
155                 kfree_skb(skb);
156                 return -1;
157         }
158
159         skb->dev->last_rx = jiffies;
160
161         /* Bump the rx counters for the VLAN device. */
162         stats = vlan_dev_get_stats(skb->dev);
163         stats->rx_packets++;
164         stats->rx_bytes += skb->len;
165
166         skb_pull(skb, VLAN_HLEN); /* take off the VLAN header (4 bytes currently) */
167
168         /* Ok, lets check to make sure the device (dev) we
169          * came in on is what this VLAN is attached to.
170          */
171
172         if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) {
173                 rcu_read_unlock();
174
175 #ifdef VLAN_DEBUG
176                 printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s  real_dev: %s, skb_dev: %s\n",
177                         __FUNCTION__, skb, dev->name, 
178                         VLAN_DEV_INFO(skb->dev)->real_dev->name, 
179                         skb->dev->name);
180 #endif
181                 kfree_skb(skb);
182                 stats->rx_errors++;
183                 return -1;
184         }
185
186         /*
187          * Deal with ingress priority mapping.
188          */
189         skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI));
190
191 #ifdef VLAN_DEBUG
192         printk(VLAN_DBG "%s: priority: %lu  for TCI: %hu (hbo)\n",
193                 __FUNCTION__, (unsigned long)(skb->priority), 
194                 ntohs(vhdr->h_vlan_TCI));
195 #endif
196
197         /* The ethernet driver already did the pkt_type calculations
198          * for us...
199          */
200         switch (skb->pkt_type) {
201         case PACKET_BROADCAST: /* Yeah, stats collect these together.. */
202                 // stats->broadcast ++; // no such counter :-(
203                 break;
204
205         case PACKET_MULTICAST:
206                 stats->multicast++;
207                 break;
208
209         case PACKET_OTHERHOST: 
210                 /* Our lower layer thinks this is not local, let's make sure.
211                  * This allows the VLAN to have a different MAC than the underlying
212                  * device, and still route correctly.
213                  */
214                 if (memcmp(eth_hdr(skb)->h_dest, skb->dev->dev_addr, ETH_ALEN) == 0) {
215                         /* It is for our (changed) MAC-address! */
216                         skb->pkt_type = PACKET_HOST;
217                 }
218                 break;
219         default:
220                 break;
221         };
222
223         /*  Was a VLAN packet, grab the encapsulated protocol, which the layer
224          * three protocols care about.
225          */
226         /* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */
227         proto = vhdr->h_vlan_encapsulated_proto;
228
229         skb->protocol = proto;
230         if (ntohs(proto) >= 1536) {
231                 /* place it back on the queue to be handled by
232                  * true layer 3 protocols.
233                  */
234
235                 /* See if we are configured to re-write the VLAN header
236                  * to make it look like ethernet...
237                  */
238                 skb = vlan_check_reorder_header(skb);
239
240                 /* Can be null if skb-clone fails when re-ordering */
241                 if (skb) {
242                         netif_rx(skb);
243                 } else {
244                         /* TODO:  Add a more specific counter here. */
245                         stats->rx_errors++;
246                 }
247                 rcu_read_unlock();
248                 return 0;
249         }
250
251         rawp = skb->data;
252
253         /*
254          * This is a magic hack to spot IPX packets. Older Novell breaks
255          * the protocol design and runs IPX over 802.3 without an 802.2 LLC
256          * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
257          * won't work for fault tolerant netware but does for the rest.
258          */
259         if (*(unsigned short *)rawp == 0xFFFF) {
260                 skb->protocol = __constant_htons(ETH_P_802_3);
261                 /* place it back on the queue to be handled by true layer 3 protocols.
262                  */
263
264                 /* See if we are configured to re-write the VLAN header
265                  * to make it look like ethernet...
266                  */
267                 skb = vlan_check_reorder_header(skb);
268
269                 /* Can be null if skb-clone fails when re-ordering */
270                 if (skb) {
271                         netif_rx(skb);
272                 } else {
273                         /* TODO:  Add a more specific counter here. */
274                         stats->rx_errors++;
275                 }
276                 rcu_read_unlock();
277                 return 0;
278         }
279
280         /*
281          *      Real 802.2 LLC
282          */
283         skb->protocol = __constant_htons(ETH_P_802_2);
284         /* place it back on the queue to be handled by upper layer protocols.
285          */
286
287         /* See if we are configured to re-write the VLAN header
288          * to make it look like ethernet...
289          */
290         skb = vlan_check_reorder_header(skb);
291
292         /* Can be null if skb-clone fails when re-ordering */
293         if (skb) {
294                 netif_rx(skb);
295         } else {
296                 /* TODO:  Add a more specific counter here. */
297                 stats->rx_errors++;
298         }
299         rcu_read_unlock();
300         return 0;
301 }
302
303 static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev,
304                                                           struct sk_buff* skb)
305 {
306         struct vlan_priority_tci_mapping *mp =
307                 VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)];
308
309         while (mp) {
310                 if (mp->priority == skb->priority) {
311                         return mp->vlan_qos; /* This should already be shifted to mask
312                                               * correctly with the VLAN's TCI
313                                               */
314                 }
315                 mp = mp->next;
316         }
317         return 0;
318 }
319
320 /*
321  *      Create the VLAN header for an arbitrary protocol layer 
322  *
323  *      saddr=NULL      means use device source address
324  *      daddr=NULL      means leave destination address (eg unresolved arp)
325  *
326  *  This is called when the SKB is moving down the stack towards the
327  *  physical devices.
328  */
329 int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev,
330                          unsigned short type, void *daddr, void *saddr,
331                          unsigned len)
332 {
333         struct vlan_hdr *vhdr;
334         unsigned short veth_TCI = 0;
335         int rc = 0;
336         int build_vlan_header = 0;
337         struct net_device *vdev = dev; /* save this for the bottom of the method */
338
339 #ifdef VLAN_DEBUG
340         printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n",
341                 __FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr);
342 #endif
343
344         /* build vlan header only if re_order_header flag is NOT set.  This
345          * fixes some programs that get confused when they see a VLAN device
346          * sending a frame that is VLAN encoded (the consensus is that the VLAN
347          * device should look completely like an Ethernet device when the
348          * REORDER_HEADER flag is set)  The drawback to this is some extra 
349          * header shuffling in the hard_start_xmit.  Users can turn off this
350          * REORDER behaviour with the vconfig tool.
351          */
352         build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0);
353
354         if (build_vlan_header) {
355                 vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN);
356
357                 /* build the four bytes that make this a VLAN header. */
358
359                 /* Now, construct the second two bytes. This field looks something
360                  * like:
361                  * usr_priority: 3 bits  (high bits)
362                  * CFI           1 bit
363                  * VLAN ID       12 bits (low bits)
364                  *
365                  */
366                 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
367                 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
368
369                 vhdr->h_vlan_TCI = htons(veth_TCI);
370
371                 /*
372                  *  Set the protocol type.
373                  *  For a packet of type ETH_P_802_3 we put the length in here instead.
374                  *  It is up to the 802.2 layer to carry protocol information.
375                  */
376
377                 if (type != ETH_P_802_3) {
378                         vhdr->h_vlan_encapsulated_proto = htons(type);
379                 } else {
380                         vhdr->h_vlan_encapsulated_proto = htons(len);
381                 }
382         }
383
384         /* Before delegating work to the lower layer, enter our MAC-address */
385         if (saddr == NULL)
386                 saddr = dev->dev_addr;
387
388         dev = VLAN_DEV_INFO(dev)->real_dev;
389
390         /* MPLS can send us skbuffs w/out enough space.  This check will grow the
391          * skb if it doesn't have enough headroom.  Not a beautiful solution, so
392          * I'll tick a counter so that users can know it's happening...  If they
393          * care...
394          */
395
396         /* NOTE:  This may still break if the underlying device is not the final
397          * device (and thus there are more headers to add...)  It should work for
398          * good-ole-ethernet though.
399          */
400         if (skb_headroom(skb) < dev->hard_header_len) {
401                 struct sk_buff *sk_tmp = skb;
402                 skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len);
403                 kfree_skb(sk_tmp);
404                 if (skb == NULL) {
405                         struct net_device_stats *stats = vlan_dev_get_stats(vdev);
406                         stats->tx_dropped++;
407                         return -ENOMEM;
408                 }
409                 VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++;
410 #ifdef VLAN_DEBUG
411                 printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name);
412 #endif
413         }
414
415         if (build_vlan_header) {
416                 /* Now make the underlying real hard header */
417                 rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN);
418
419                 if (rc > 0) {
420                         rc += VLAN_HLEN;
421                 } else if (rc < 0) {
422                         rc -= VLAN_HLEN;
423                 }
424         } else {
425                 /* If here, then we'll just make a normal looking ethernet frame,
426                  * but, the hard_start_xmit method will insert the tag (it has to
427                  * be able to do this for bridged and other skbs that don't come
428                  * down the protocol stack in an orderly manner.
429                  */
430                 rc = dev->hard_header(skb, dev, type, daddr, saddr, len);
431         }
432
433         return rc;
434 }
435
436 int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
437 {
438         struct net_device_stats *stats = vlan_dev_get_stats(dev);
439         struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
440
441         /* Handle non-VLAN frames if they are sent to us, for example by DHCP.
442          *
443          * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING
444          * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs...
445          */
446
447         if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) {
448                 int orig_headroom = skb_headroom(skb);
449                 unsigned short veth_TCI;
450
451                 /* This is not a VLAN frame...but we can fix that! */
452                 VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++;
453
454 #ifdef VLAN_DEBUG
455                 printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n",
456                         __FUNCTION__, htons(veth->h_vlan_proto));
457 #endif
458                 /* Construct the second two bytes. This field looks something
459                  * like:
460                  * usr_priority: 3 bits  (high bits)
461                  * CFI           1 bit
462                  * VLAN ID       12 bits (low bits)
463                  */
464                 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
465                 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
466
467                 skb = __vlan_put_tag(skb, veth_TCI);
468                 if (!skb) {
469                         stats->tx_dropped++;
470                         return 0;
471                 }
472
473                 if (orig_headroom < VLAN_HLEN) {
474                         VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++;
475                 }
476         }
477
478 #ifdef VLAN_DEBUG
479         printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n",
480                 __FUNCTION__, skb, skb->dev->name);
481         printk(VLAN_DBG "  %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n",
482                veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5],
483                veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5],
484                veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto);
485 #endif
486
487         stats->tx_packets++; /* for statics only */
488         stats->tx_bytes += skb->len;
489
490         skb->dev = VLAN_DEV_INFO(dev)->real_dev;
491         dev_queue_xmit(skb);
492
493         return 0;
494 }
495
496 int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
497 {
498         struct net_device_stats *stats = vlan_dev_get_stats(dev);
499         unsigned short veth_TCI;
500
501         /* Construct the second two bytes. This field looks something
502          * like:
503          * usr_priority: 3 bits  (high bits)
504          * CFI           1 bit
505          * VLAN ID       12 bits (low bits)
506          */
507         veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
508         veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
509         skb = __vlan_hwaccel_put_tag(skb, veth_TCI);
510
511         stats->tx_packets++;
512         stats->tx_bytes += skb->len;
513
514         skb->dev = VLAN_DEV_INFO(dev)->real_dev;
515         dev_queue_xmit(skb);
516
517         return 0;
518 }
519
520 int vlan_dev_change_mtu(struct net_device *dev, int new_mtu)
521 {
522         /* TODO: gotta make sure the underlying layer can handle it,
523          * maybe an IFF_VLAN_CAPABLE flag for devices?
524          */
525         if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu)
526                 return -ERANGE;
527
528         dev->mtu = new_mtu;
529
530         return 0;
531 }
532
533 int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
534 {
535         struct net_device *dev = dev_get_by_name(dev_name);
536
537         if (dev) {
538                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
539                         /* see if a priority mapping exists.. */
540                         VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio;
541                         dev_put(dev);
542                         return 0;
543                 }
544
545                 dev_put(dev);
546         }
547         return -EINVAL;
548 }
549
550 int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
551 {
552         struct net_device *dev = dev_get_by_name(dev_name);
553         struct vlan_priority_tci_mapping *mp = NULL;
554         struct vlan_priority_tci_mapping *np;
555    
556         if (dev) {
557                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
558                         /* See if a priority mapping exists.. */
559                         mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
560                         while (mp) {
561                                 if (mp->priority == skb_prio) {
562                                         mp->vlan_qos = ((vlan_prio << 13) & 0xE000);
563                                         dev_put(dev);
564                                         return 0;
565                                 }
566                                 mp = mp->next;
567                         }
568
569                         /* Create a new mapping then. */
570                         mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
571                         np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL);
572                         if (np) {
573                                 np->next = mp;
574                                 np->priority = skb_prio;
575                                 np->vlan_qos = ((vlan_prio << 13) & 0xE000);
576                                 VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np;
577                                 dev_put(dev);
578                                 return 0;
579                         } else {
580                                 dev_put(dev);
581                                 return -ENOBUFS;
582                         }
583                 }
584                 dev_put(dev);
585         }
586         return -EINVAL;
587 }
588
589 /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */
590 int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val)
591 {
592         struct net_device *dev = dev_get_by_name(dev_name);
593
594         if (dev) {
595                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
596                         /* verify flag is supported */
597                         if (flag == 1) {
598                                 if (flag_val) {
599                                         VLAN_DEV_INFO(dev)->flags |= 1;
600                                 } else {
601                                         VLAN_DEV_INFO(dev)->flags &= ~1;
602                                 }
603                                 dev_put(dev);
604                                 return 0;
605                         } else {
606                                 printk(KERN_ERR  "%s: flag %i is not valid.\n",
607                                         __FUNCTION__, (int)(flag));
608                                 dev_put(dev);
609                                 return -EINVAL;
610                         }
611                 } else {
612                         printk(KERN_ERR 
613                                "%s: %s is not a vlan device, priv_flags: %hX.\n",
614                                __FUNCTION__, dev->name, dev->priv_flags);
615                         dev_put(dev);
616                 }
617         } else {
618                 printk(KERN_ERR  "%s: Could not find device: %s\n", 
619                         __FUNCTION__, dev_name);
620         }
621
622         return -EINVAL;
623 }
624
625
626 int vlan_dev_get_realdev_name(const char *dev_name, char* result)
627 {
628         struct net_device *dev = dev_get_by_name(dev_name);
629         int rv = 0;
630         if (dev) {
631                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
632                         strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23);
633                         rv = 0;
634                 } else {
635                         rv = -EINVAL;
636                 }
637                 dev_put(dev);
638         } else {
639                 rv = -ENODEV;
640         }
641         return rv;
642 }
643
644 int vlan_dev_get_vid(const char *dev_name, unsigned short* result)
645 {
646         struct net_device *dev = dev_get_by_name(dev_name);
647         int rv = 0;
648         if (dev) {
649                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
650                         *result = VLAN_DEV_INFO(dev)->vlan_id;
651                         rv = 0;
652                 } else {
653                         rv = -EINVAL;
654                 }
655                 dev_put(dev);
656         } else {
657                 rv = -ENODEV;
658         }
659         return rv;
660 }
661
662
663 int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p)
664 {
665         struct sockaddr *addr = (struct sockaddr *)(addr_struct_p);
666         int i;
667
668         if (netif_running(dev))
669                 return -EBUSY;
670
671         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
672
673         printk("%s: Setting MAC address to ", dev->name);
674         for (i = 0; i < 6; i++)
675                 printk(" %2.2x", dev->dev_addr[i]);
676         printk(".\n");
677
678         if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr,
679                    dev->dev_addr,
680                    dev->addr_len) != 0) {
681                 if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) {
682                         int flgs = VLAN_DEV_INFO(dev)->real_dev->flags;
683
684                         /* Increment our in-use promiscuity counter */
685                         dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1);
686
687                         /* Make PROMISC visible to the user. */
688                         flgs |= IFF_PROMISC;
689                         printk("VLAN (%s):  Setting underlying device (%s) to promiscious mode.\n",
690                                dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
691                         dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs);
692                 }
693         } else {
694                 printk("VLAN (%s):  Underlying device (%s) has same MAC, not checking promiscious mode.\n",
695                        dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
696         }
697
698         return 0;
699 }
700
701 static inline int vlan_dmi_equals(struct dev_mc_list *dmi1,
702                                   struct dev_mc_list *dmi2)
703 {
704         return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) &&
705                 (memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0));
706 }
707
708 /** dmi is a single entry into a dev_mc_list, a single node.  mc_list is
709  *  an entire list, and we'll iterate through it.
710  */
711 static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
712 {
713         struct dev_mc_list *idmi;
714
715         for (idmi = mc_list; idmi != NULL; ) {
716                 if (vlan_dmi_equals(dmi, idmi)) {
717                         if (dmi->dmi_users > idmi->dmi_users)
718                                 return 1;
719                         else
720                                 return 0;
721                 } else {
722                         idmi = idmi->next;
723                 }
724         }
725
726         return 1;
727 }
728
729 static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list)
730 {
731         struct dev_mc_list *dmi = mc_list;
732         struct dev_mc_list *next;
733
734         while(dmi) {
735                 next = dmi->next;
736                 kfree(dmi);
737                 dmi = next;
738         }
739 }
740
741 static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info)
742 {
743         struct dev_mc_list *dmi, *new_dmi;
744
745         vlan_destroy_mc_list(vlan_info->old_mc_list);
746         vlan_info->old_mc_list = NULL;
747
748         for (dmi = mc_list; dmi != NULL; dmi = dmi->next) {
749                 new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC);
750                 if (new_dmi == NULL) {
751                         printk(KERN_ERR "vlan: cannot allocate memory. "
752                                "Multicast may not work properly from now.\n");
753                         return;
754                 }
755
756                 /* Copy whole structure, then make new 'next' pointer */
757                 *new_dmi = *dmi;
758                 new_dmi->next = vlan_info->old_mc_list;
759                 vlan_info->old_mc_list = new_dmi;
760         }
761 }
762
763 static void vlan_flush_mc_list(struct net_device *dev)
764 {
765         struct dev_mc_list *dmi = dev->mc_list;
766
767         while (dmi) {
768                 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n",
769                        dev->name,
770                        dmi->dmi_addr[0],
771                        dmi->dmi_addr[1],
772                        dmi->dmi_addr[2],
773                        dmi->dmi_addr[3],
774                        dmi->dmi_addr[4],
775                        dmi->dmi_addr[5]);
776                 dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
777                 dmi = dev->mc_list;
778         }
779
780         /* dev->mc_list is NULL by the time we get here. */
781         vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list);
782         VLAN_DEV_INFO(dev)->old_mc_list = NULL;
783 }
784
785 int vlan_dev_open(struct net_device *dev)
786 {
787         if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP))
788                 return -ENETDOWN;
789
790         return 0;
791 }
792
793 int vlan_dev_stop(struct net_device *dev)
794 {
795         vlan_flush_mc_list(dev);
796         return 0;
797 }
798
799 int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
800 {
801         struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev;
802         struct ifreq ifrr;
803         int err = -EOPNOTSUPP;
804
805         strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
806         ifrr.ifr_ifru = ifr->ifr_ifru;
807
808         switch(cmd) {
809         case SIOCGMIIPHY:
810         case SIOCGMIIREG:
811         case SIOCSMIIREG:
812                 if (real_dev->do_ioctl && netif_device_present(real_dev)) 
813                         err = real_dev->do_ioctl(real_dev, &ifrr, cmd);
814                 break;
815
816         case SIOCETHTOOL:
817                 err = dev_ethtool(&ifrr);
818         }
819
820         if (!err) 
821                 ifr->ifr_ifru = ifrr.ifr_ifru;
822
823         return err;
824 }
825
826 /** Taken from Gleb + Lennert's VLAN code, and modified... */
827 void vlan_dev_set_multicast_list(struct net_device *vlan_dev)
828 {
829         struct dev_mc_list *dmi;
830         struct net_device *real_dev;
831         int inc;
832
833         if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) {
834                 /* Then it's a real vlan device, as far as we can tell.. */
835                 real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev;
836
837                 /* compare the current promiscuity to the last promisc we had.. */
838                 inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity;
839                 if (inc) {
840                         printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n",
841                                vlan_dev->name, inc);
842                         dev_set_promiscuity(real_dev, inc); /* found in dev.c */
843                         VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity;
844                 }
845
846                 inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti;
847                 if (inc) {
848                         printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n",
849                                vlan_dev->name, inc);
850                         dev_set_allmulti(real_dev, inc); /* dev.c */
851                         VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti;
852                 }
853
854                 /* looking for addresses to add to master's list */
855                 for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) {
856                         if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) {
857                                 dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
858                                 printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n",
859                                        vlan_dev->name,
860                                        dmi->dmi_addr[0],
861                                        dmi->dmi_addr[1],
862                                        dmi->dmi_addr[2],
863                                        dmi->dmi_addr[3],
864                                        dmi->dmi_addr[4],
865                                        dmi->dmi_addr[5]);
866                         }
867                 }
868
869                 /* looking for addresses to delete from master's list */
870                 for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) {
871                         if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) {
872                                 /* if we think we should add it to the new list, then we should really
873                                  * delete it from the real list on the underlying device.
874                                  */
875                                 dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
876                                 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n",
877                                        vlan_dev->name,
878                                        dmi->dmi_addr[0],
879                                        dmi->dmi_addr[1],
880                                        dmi->dmi_addr[2],
881                                        dmi->dmi_addr[3],
882                                        dmi->dmi_addr[4],
883                                        dmi->dmi_addr[5]);
884                         }
885                 }
886
887                 /* save multicast list */
888                 vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev));
889         }
890 }