]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/bridge/br_netfilter.c
Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[karo-tx-linux.git] / net / bridge / br_netfilter.c
1 /*
2  *      Handle firewalling
3  *      Linux ethernet bridge
4  *
5  *      Authors:
6  *      Lennert Buytenhek               <buytenh@gnu.org>
7  *      Bart De Schuymer                <bdschuym@pandora.be>
8  *
9  *      This program is free software; you can redistribute it and/or
10  *      modify it under the terms of the GNU General Public License
11  *      as published by the Free Software Foundation; either version
12  *      2 of the License, or (at your option) any later version.
13  *
14  *      Lennert dedicates this file to Kerstin Wurdinger.
15  */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/ip.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_arp.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_pppox.h>
27 #include <linux/ppp_defs.h>
28 #include <linux/netfilter_bridge.h>
29 #include <linux/netfilter_ipv4.h>
30 #include <linux/netfilter_ipv6.h>
31 #include <linux/netfilter_arp.h>
32 #include <linux/in_route.h>
33 #include <linux/inetdevice.h>
34
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/route.h>
38
39 #include <asm/uaccess.h>
40 #include "br_private.h"
41 #ifdef CONFIG_SYSCTL
42 #include <linux/sysctl.h>
43 #endif
44
45 #define skb_origaddr(skb)        (((struct bridge_skb_cb *) \
46                                  (skb->nf_bridge->data))->daddr.ipv4)
47 #define store_orig_dstaddr(skb)  (skb_origaddr(skb) = ip_hdr(skb)->daddr)
48 #define dnat_took_place(skb)     (skb_origaddr(skb) != ip_hdr(skb)->daddr)
49
50 #ifdef CONFIG_SYSCTL
51 static struct ctl_table_header *brnf_sysctl_header;
52 static int brnf_call_iptables __read_mostly = 1;
53 static int brnf_call_ip6tables __read_mostly = 1;
54 static int brnf_call_arptables __read_mostly = 1;
55 static int brnf_filter_vlan_tagged __read_mostly = 0;
56 static int brnf_filter_pppoe_tagged __read_mostly = 0;
57 static int brnf_pass_vlan_indev __read_mostly = 0;
58 #else
59 #define brnf_call_iptables 1
60 #define brnf_call_ip6tables 1
61 #define brnf_call_arptables 1
62 #define brnf_filter_vlan_tagged 0
63 #define brnf_filter_pppoe_tagged 0
64 #define brnf_pass_vlan_indev 0
65 #endif
66
67 #define IS_IP(skb) \
68         (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
69
70 #define IS_IPV6(skb) \
71         (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
72
73 #define IS_ARP(skb) \
74         (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
75
76 static inline __be16 vlan_proto(const struct sk_buff *skb)
77 {
78         if (vlan_tx_tag_present(skb))
79                 return skb->protocol;
80         else if (skb->protocol == htons(ETH_P_8021Q))
81                 return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
82         else
83                 return 0;
84 }
85
86 #define IS_VLAN_IP(skb) \
87         (vlan_proto(skb) == htons(ETH_P_IP) && \
88          brnf_filter_vlan_tagged)
89
90 #define IS_VLAN_IPV6(skb) \
91         (vlan_proto(skb) == htons(ETH_P_IPV6) && \
92          brnf_filter_vlan_tagged)
93
94 #define IS_VLAN_ARP(skb) \
95         (vlan_proto(skb) == htons(ETH_P_ARP) && \
96          brnf_filter_vlan_tagged)
97
98 static inline __be16 pppoe_proto(const struct sk_buff *skb)
99 {
100         return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
101                             sizeof(struct pppoe_hdr)));
102 }
103
104 #define IS_PPPOE_IP(skb) \
105         (skb->protocol == htons(ETH_P_PPP_SES) && \
106          pppoe_proto(skb) == htons(PPP_IP) && \
107          brnf_filter_pppoe_tagged)
108
109 #define IS_PPPOE_IPV6(skb) \
110         (skb->protocol == htons(ETH_P_PPP_SES) && \
111          pppoe_proto(skb) == htons(PPP_IPV6) && \
112          brnf_filter_pppoe_tagged)
113
114 static void fake_update_pmtu(struct dst_entry *dst, struct sock *sk,
115                              struct sk_buff *skb, u32 mtu)
116 {
117 }
118
119 static void fake_redirect(struct dst_entry *dst, struct sock *sk,
120                           struct sk_buff *skb)
121 {
122 }
123
124 static u32 *fake_cow_metrics(struct dst_entry *dst, unsigned long old)
125 {
126         return NULL;
127 }
128
129 static struct neighbour *fake_neigh_lookup(const struct dst_entry *dst,
130                                            struct sk_buff *skb,
131                                            const void *daddr)
132 {
133         return NULL;
134 }
135
136 static unsigned int fake_mtu(const struct dst_entry *dst)
137 {
138         return dst->dev->mtu;
139 }
140
141 static struct dst_ops fake_dst_ops = {
142         .family =               AF_INET,
143         .protocol =             cpu_to_be16(ETH_P_IP),
144         .update_pmtu =          fake_update_pmtu,
145         .redirect =             fake_redirect,
146         .cow_metrics =          fake_cow_metrics,
147         .neigh_lookup =         fake_neigh_lookup,
148         .mtu =                  fake_mtu,
149 };
150
151 /*
152  * Initialize bogus route table used to keep netfilter happy.
153  * Currently, we fill in the PMTU entry because netfilter
154  * refragmentation needs it, and the rt_flags entry because
155  * ipt_REJECT needs it.  Future netfilter modules might
156  * require us to fill additional fields.
157  */
158 static const u32 br_dst_default_metrics[RTAX_MAX] = {
159         [RTAX_MTU - 1] = 1500,
160 };
161
162 void br_netfilter_rtable_init(struct net_bridge *br)
163 {
164         struct rtable *rt = &br->fake_rtable;
165
166         atomic_set(&rt->dst.__refcnt, 1);
167         rt->dst.dev = br->dev;
168         rt->dst.path = &rt->dst;
169         dst_init_metrics(&rt->dst, br_dst_default_metrics, true);
170         rt->dst.flags   = DST_NOXFRM | DST_NOPEER | DST_FAKE_RTABLE;
171         rt->dst.ops = &fake_dst_ops;
172 }
173
174 static inline struct rtable *bridge_parent_rtable(const struct net_device *dev)
175 {
176         struct net_bridge_port *port;
177
178         port = br_port_get_rcu(dev);
179         return port ? &port->br->fake_rtable : NULL;
180 }
181
182 static inline struct net_device *bridge_parent(const struct net_device *dev)
183 {
184         struct net_bridge_port *port;
185
186         port = br_port_get_rcu(dev);
187         return port ? port->br->dev : NULL;
188 }
189
190 static inline struct nf_bridge_info *nf_bridge_alloc(struct sk_buff *skb)
191 {
192         skb->nf_bridge = kzalloc(sizeof(struct nf_bridge_info), GFP_ATOMIC);
193         if (likely(skb->nf_bridge))
194                 atomic_set(&(skb->nf_bridge->use), 1);
195
196         return skb->nf_bridge;
197 }
198
199 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
200 {
201         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
202
203         if (atomic_read(&nf_bridge->use) > 1) {
204                 struct nf_bridge_info *tmp = nf_bridge_alloc(skb);
205
206                 if (tmp) {
207                         memcpy(tmp, nf_bridge, sizeof(struct nf_bridge_info));
208                         atomic_set(&tmp->use, 1);
209                 }
210                 nf_bridge_put(nf_bridge);
211                 nf_bridge = tmp;
212         }
213         return nf_bridge;
214 }
215
216 static inline void nf_bridge_push_encap_header(struct sk_buff *skb)
217 {
218         unsigned int len = nf_bridge_encap_header_len(skb);
219
220         skb_push(skb, len);
221         skb->network_header -= len;
222 }
223
224 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
225 {
226         unsigned int len = nf_bridge_encap_header_len(skb);
227
228         skb_pull(skb, len);
229         skb->network_header += len;
230 }
231
232 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
233 {
234         unsigned int len = nf_bridge_encap_header_len(skb);
235
236         skb_pull_rcsum(skb, len);
237         skb->network_header += len;
238 }
239
240 static inline void nf_bridge_save_header(struct sk_buff *skb)
241 {
242         int header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
243
244         skb_copy_from_linear_data_offset(skb, -header_size,
245                                          skb->nf_bridge->data, header_size);
246 }
247
248 static inline void nf_bridge_update_protocol(struct sk_buff *skb)
249 {
250         if (skb->nf_bridge->mask & BRNF_8021Q)
251                 skb->protocol = htons(ETH_P_8021Q);
252         else if (skb->nf_bridge->mask & BRNF_PPPoE)
253                 skb->protocol = htons(ETH_P_PPP_SES);
254 }
255
256 /* When handing a packet over to the IP layer
257  * check whether we have a skb that is in the
258  * expected format
259  */
260
261 static int br_parse_ip_options(struct sk_buff *skb)
262 {
263         struct ip_options *opt;
264         const struct iphdr *iph;
265         struct net_device *dev = skb->dev;
266         u32 len;
267
268         iph = ip_hdr(skb);
269         opt = &(IPCB(skb)->opt);
270
271         /* Basic sanity checks */
272         if (iph->ihl < 5 || iph->version != 4)
273                 goto inhdr_error;
274
275         if (!pskb_may_pull(skb, iph->ihl*4))
276                 goto inhdr_error;
277
278         iph = ip_hdr(skb);
279         if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
280                 goto inhdr_error;
281
282         len = ntohs(iph->tot_len);
283         if (skb->len < len) {
284                 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INTRUNCATEDPKTS);
285                 goto drop;
286         } else if (len < (iph->ihl*4))
287                 goto inhdr_error;
288
289         if (pskb_trim_rcsum(skb, len)) {
290                 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);
291                 goto drop;
292         }
293
294         memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
295         if (iph->ihl == 5)
296                 return 0;
297
298         opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
299         if (ip_options_compile(dev_net(dev), opt, skb))
300                 goto inhdr_error;
301
302         /* Check correct handling of SRR option */
303         if (unlikely(opt->srr)) {
304                 struct in_device *in_dev = __in_dev_get_rcu(dev);
305                 if (in_dev && !IN_DEV_SOURCE_ROUTE(in_dev))
306                         goto drop;
307
308                 if (ip_options_rcv_srr(skb))
309                         goto drop;
310         }
311
312         return 0;
313
314 inhdr_error:
315         IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
316 drop:
317         return -1;
318 }
319
320 /* Fill in the header for fragmented IP packets handled by
321  * the IPv4 connection tracking code.
322  */
323 int nf_bridge_copy_header(struct sk_buff *skb)
324 {
325         int err;
326         unsigned int header_size;
327
328         nf_bridge_update_protocol(skb);
329         header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
330         err = skb_cow_head(skb, header_size);
331         if (err)
332                 return err;
333
334         skb_copy_to_linear_data_offset(skb, -header_size,
335                                        skb->nf_bridge->data, header_size);
336         __skb_push(skb, nf_bridge_encap_header_len(skb));
337         return 0;
338 }
339
340 /* PF_BRIDGE/PRE_ROUTING *********************************************/
341 /* Undo the changes made for ip6tables PREROUTING and continue the
342  * bridge PRE_ROUTING hook. */
343 static int br_nf_pre_routing_finish_ipv6(struct sk_buff *skb)
344 {
345         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
346         struct rtable *rt;
347
348         if (nf_bridge->mask & BRNF_PKT_TYPE) {
349                 skb->pkt_type = PACKET_OTHERHOST;
350                 nf_bridge->mask ^= BRNF_PKT_TYPE;
351         }
352         nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
353
354         rt = bridge_parent_rtable(nf_bridge->physindev);
355         if (!rt) {
356                 kfree_skb(skb);
357                 return 0;
358         }
359         skb_dst_set_noref(skb, &rt->dst);
360
361         skb->dev = nf_bridge->physindev;
362         nf_bridge_update_protocol(skb);
363         nf_bridge_push_encap_header(skb);
364         NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
365                        br_handle_frame_finish, 1);
366
367         return 0;
368 }
369
370 /* Obtain the correct destination MAC address, while preserving the original
371  * source MAC address. If we already know this address, we just copy it. If we
372  * don't, we use the neighbour framework to find out. In both cases, we make
373  * sure that br_handle_frame_finish() is called afterwards.
374  */
375 static int br_nf_pre_routing_finish_bridge(struct sk_buff *skb)
376 {
377         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
378         struct neighbour *neigh;
379         struct dst_entry *dst;
380
381         skb->dev = bridge_parent(skb->dev);
382         if (!skb->dev)
383                 goto free_skb;
384         dst = skb_dst(skb);
385         neigh = dst_neigh_lookup_skb(dst, skb);
386         if (neigh) {
387                 int ret;
388
389                 if (neigh->hh.hh_len) {
390                         neigh_hh_bridge(&neigh->hh, skb);
391                         skb->dev = nf_bridge->physindev;
392                         ret = br_handle_frame_finish(skb);
393                 } else {
394                         /* the neighbour function below overwrites the complete
395                          * MAC header, so we save the Ethernet source address and
396                          * protocol number.
397                          */
398                         skb_copy_from_linear_data_offset(skb,
399                                                          -(ETH_HLEN-ETH_ALEN),
400                                                          skb->nf_bridge->data,
401                                                          ETH_HLEN-ETH_ALEN);
402                         /* tell br_dev_xmit to continue with forwarding */
403                         nf_bridge->mask |= BRNF_BRIDGED_DNAT;
404                         ret = neigh->output(neigh, skb);
405                 }
406                 neigh_release(neigh);
407                 return ret;
408         }
409 free_skb:
410         kfree_skb(skb);
411         return 0;
412 }
413
414 /* This requires some explaining. If DNAT has taken place,
415  * we will need to fix up the destination Ethernet address.
416  *
417  * There are two cases to consider:
418  * 1. The packet was DNAT'ed to a device in the same bridge
419  *    port group as it was received on. We can still bridge
420  *    the packet.
421  * 2. The packet was DNAT'ed to a different device, either
422  *    a non-bridged device or another bridge port group.
423  *    The packet will need to be routed.
424  *
425  * The correct way of distinguishing between these two cases is to
426  * call ip_route_input() and to look at skb->dst->dev, which is
427  * changed to the destination device if ip_route_input() succeeds.
428  *
429  * Let's first consider the case that ip_route_input() succeeds:
430  *
431  * If the output device equals the logical bridge device the packet
432  * came in on, we can consider this bridging. The corresponding MAC
433  * address will be obtained in br_nf_pre_routing_finish_bridge.
434  * Otherwise, the packet is considered to be routed and we just
435  * change the destination MAC address so that the packet will
436  * later be passed up to the IP stack to be routed. For a redirected
437  * packet, ip_route_input() will give back the localhost as output device,
438  * which differs from the bridge device.
439  *
440  * Let's now consider the case that ip_route_input() fails:
441  *
442  * This can be because the destination address is martian, in which case
443  * the packet will be dropped.
444  * If IP forwarding is disabled, ip_route_input() will fail, while
445  * ip_route_output_key() can return success. The source
446  * address for ip_route_output_key() is set to zero, so ip_route_output_key()
447  * thinks we're handling a locally generated packet and won't care
448  * if IP forwarding is enabled. If the output device equals the logical bridge
449  * device, we proceed as if ip_route_input() succeeded. If it differs from the
450  * logical bridge port or if ip_route_output_key() fails we drop the packet.
451  */
452 static int br_nf_pre_routing_finish(struct sk_buff *skb)
453 {
454         struct net_device *dev = skb->dev;
455         struct iphdr *iph = ip_hdr(skb);
456         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
457         struct rtable *rt;
458         int err;
459
460         if (nf_bridge->mask & BRNF_PKT_TYPE) {
461                 skb->pkt_type = PACKET_OTHERHOST;
462                 nf_bridge->mask ^= BRNF_PKT_TYPE;
463         }
464         nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
465         if (dnat_took_place(skb)) {
466                 if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
467                         struct in_device *in_dev = __in_dev_get_rcu(dev);
468
469                         /* If err equals -EHOSTUNREACH the error is due to a
470                          * martian destination or due to the fact that
471                          * forwarding is disabled. For most martian packets,
472                          * ip_route_output_key() will fail. It won't fail for 2 types of
473                          * martian destinations: loopback destinations and destination
474                          * 0.0.0.0. In both cases the packet will be dropped because the
475                          * destination is the loopback device and not the bridge. */
476                         if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
477                                 goto free_skb;
478
479                         rt = ip_route_output(dev_net(dev), iph->daddr, 0,
480                                              RT_TOS(iph->tos), 0);
481                         if (!IS_ERR(rt)) {
482                                 /* - Bridged-and-DNAT'ed traffic doesn't
483                                  *   require ip_forwarding. */
484                                 if (rt->dst.dev == dev) {
485                                         skb_dst_set(skb, &rt->dst);
486                                         goto bridged_dnat;
487                                 }
488                                 ip_rt_put(rt);
489                         }
490 free_skb:
491                         kfree_skb(skb);
492                         return 0;
493                 } else {
494                         if (skb_dst(skb)->dev == dev) {
495 bridged_dnat:
496                                 skb->dev = nf_bridge->physindev;
497                                 nf_bridge_update_protocol(skb);
498                                 nf_bridge_push_encap_header(skb);
499                                 NF_HOOK_THRESH(NFPROTO_BRIDGE,
500                                                NF_BR_PRE_ROUTING,
501                                                skb, skb->dev, NULL,
502                                                br_nf_pre_routing_finish_bridge,
503                                                1);
504                                 return 0;
505                         }
506                         memcpy(eth_hdr(skb)->h_dest, dev->dev_addr, ETH_ALEN);
507                         skb->pkt_type = PACKET_HOST;
508                 }
509         } else {
510                 rt = bridge_parent_rtable(nf_bridge->physindev);
511                 if (!rt) {
512                         kfree_skb(skb);
513                         return 0;
514                 }
515                 skb_dst_set_noref(skb, &rt->dst);
516         }
517
518         skb->dev = nf_bridge->physindev;
519         nf_bridge_update_protocol(skb);
520         nf_bridge_push_encap_header(skb);
521         NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
522                        br_handle_frame_finish, 1);
523
524         return 0;
525 }
526
527 static struct net_device *brnf_get_logical_dev(struct sk_buff *skb, const struct net_device *dev)
528 {
529         struct net_device *vlan, *br;
530
531         br = bridge_parent(dev);
532         if (brnf_pass_vlan_indev == 0 || !vlan_tx_tag_present(skb))
533                 return br;
534
535         vlan = __vlan_find_dev_deep(br, vlan_tx_tag_get(skb) & VLAN_VID_MASK);
536
537         return vlan ? vlan : br;
538 }
539
540 /* Some common code for IPv4/IPv6 */
541 static struct net_device *setup_pre_routing(struct sk_buff *skb)
542 {
543         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
544
545         if (skb->pkt_type == PACKET_OTHERHOST) {
546                 skb->pkt_type = PACKET_HOST;
547                 nf_bridge->mask |= BRNF_PKT_TYPE;
548         }
549
550         nf_bridge->mask |= BRNF_NF_BRIDGE_PREROUTING;
551         nf_bridge->physindev = skb->dev;
552         skb->dev = brnf_get_logical_dev(skb, skb->dev);
553         if (skb->protocol == htons(ETH_P_8021Q))
554                 nf_bridge->mask |= BRNF_8021Q;
555         else if (skb->protocol == htons(ETH_P_PPP_SES))
556                 nf_bridge->mask |= BRNF_PPPoE;
557
558         return skb->dev;
559 }
560
561 /* We only check the length. A bridge shouldn't do any hop-by-hop stuff anyway */
562 static int check_hbh_len(struct sk_buff *skb)
563 {
564         unsigned char *raw = (u8 *)(ipv6_hdr(skb) + 1);
565         u32 pkt_len;
566         const unsigned char *nh = skb_network_header(skb);
567         int off = raw - nh;
568         int len = (raw[1] + 1) << 3;
569
570         if ((raw + len) - skb->data > skb_headlen(skb))
571                 goto bad;
572
573         off += 2;
574         len -= 2;
575
576         while (len > 0) {
577                 int optlen = nh[off + 1] + 2;
578
579                 switch (nh[off]) {
580                 case IPV6_TLV_PAD1:
581                         optlen = 1;
582                         break;
583
584                 case IPV6_TLV_PADN:
585                         break;
586
587                 case IPV6_TLV_JUMBO:
588                         if (nh[off + 1] != 4 || (off & 3) != 2)
589                                 goto bad;
590                         pkt_len = ntohl(*(__be32 *) (nh + off + 2));
591                         if (pkt_len <= IPV6_MAXPLEN ||
592                             ipv6_hdr(skb)->payload_len)
593                                 goto bad;
594                         if (pkt_len > skb->len - sizeof(struct ipv6hdr))
595                                 goto bad;
596                         if (pskb_trim_rcsum(skb,
597                                             pkt_len + sizeof(struct ipv6hdr)))
598                                 goto bad;
599                         nh = skb_network_header(skb);
600                         break;
601                 default:
602                         if (optlen > len)
603                                 goto bad;
604                         break;
605                 }
606                 off += optlen;
607                 len -= optlen;
608         }
609         if (len == 0)
610                 return 0;
611 bad:
612         return -1;
613
614 }
615
616 /* Replicate the checks that IPv6 does on packet reception and pass the packet
617  * to ip6tables, which doesn't support NAT, so things are fairly simple. */
618 static unsigned int br_nf_pre_routing_ipv6(unsigned int hook,
619                                            struct sk_buff *skb,
620                                            const struct net_device *in,
621                                            const struct net_device *out,
622                                            int (*okfn)(struct sk_buff *))
623 {
624         const struct ipv6hdr *hdr;
625         u32 pkt_len;
626
627         if (skb->len < sizeof(struct ipv6hdr))
628                 return NF_DROP;
629
630         if (!pskb_may_pull(skb, sizeof(struct ipv6hdr)))
631                 return NF_DROP;
632
633         hdr = ipv6_hdr(skb);
634
635         if (hdr->version != 6)
636                 return NF_DROP;
637
638         pkt_len = ntohs(hdr->payload_len);
639
640         if (pkt_len || hdr->nexthdr != NEXTHDR_HOP) {
641                 if (pkt_len + sizeof(struct ipv6hdr) > skb->len)
642                         return NF_DROP;
643                 if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr)))
644                         return NF_DROP;
645         }
646         if (hdr->nexthdr == NEXTHDR_HOP && check_hbh_len(skb))
647                 return NF_DROP;
648
649         nf_bridge_put(skb->nf_bridge);
650         if (!nf_bridge_alloc(skb))
651                 return NF_DROP;
652         if (!setup_pre_routing(skb))
653                 return NF_DROP;
654
655         skb->protocol = htons(ETH_P_IPV6);
656         NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
657                 br_nf_pre_routing_finish_ipv6);
658
659         return NF_STOLEN;
660 }
661
662 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
663  * Replicate the checks that IPv4 does on packet reception.
664  * Set skb->dev to the bridge device (i.e. parent of the
665  * receiving device) to make netfilter happy, the REDIRECT
666  * target in particular.  Save the original destination IP
667  * address to be able to detect DNAT afterwards. */
668 static unsigned int br_nf_pre_routing(unsigned int hook, struct sk_buff *skb,
669                                       const struct net_device *in,
670                                       const struct net_device *out,
671                                       int (*okfn)(struct sk_buff *))
672 {
673         struct net_bridge_port *p;
674         struct net_bridge *br;
675         __u32 len = nf_bridge_encap_header_len(skb);
676
677         if (unlikely(!pskb_may_pull(skb, len)))
678                 return NF_DROP;
679
680         p = br_port_get_rcu(in);
681         if (p == NULL)
682                 return NF_DROP;
683         br = p->br;
684
685         if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb)) {
686                 if (!brnf_call_ip6tables && !br->nf_call_ip6tables)
687                         return NF_ACCEPT;
688
689                 nf_bridge_pull_encap_header_rcsum(skb);
690                 return br_nf_pre_routing_ipv6(hook, skb, in, out, okfn);
691         }
692
693         if (!brnf_call_iptables && !br->nf_call_iptables)
694                 return NF_ACCEPT;
695
696         if (!IS_IP(skb) && !IS_VLAN_IP(skb) && !IS_PPPOE_IP(skb))
697                 return NF_ACCEPT;
698
699         nf_bridge_pull_encap_header_rcsum(skb);
700
701         if (br_parse_ip_options(skb))
702                 return NF_DROP;
703
704         nf_bridge_put(skb->nf_bridge);
705         if (!nf_bridge_alloc(skb))
706                 return NF_DROP;
707         if (!setup_pre_routing(skb))
708                 return NF_DROP;
709         store_orig_dstaddr(skb);
710         skb->protocol = htons(ETH_P_IP);
711
712         NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
713                 br_nf_pre_routing_finish);
714
715         return NF_STOLEN;
716 }
717
718
719 /* PF_BRIDGE/LOCAL_IN ************************************************/
720 /* The packet is locally destined, which requires a real
721  * dst_entry, so detach the fake one.  On the way up, the
722  * packet would pass through PRE_ROUTING again (which already
723  * took place when the packet entered the bridge), but we
724  * register an IPv4 PRE_ROUTING 'sabotage' hook that will
725  * prevent this from happening. */
726 static unsigned int br_nf_local_in(unsigned int hook, struct sk_buff *skb,
727                                    const struct net_device *in,
728                                    const struct net_device *out,
729                                    int (*okfn)(struct sk_buff *))
730 {
731         br_drop_fake_rtable(skb);
732         return NF_ACCEPT;
733 }
734
735 /* PF_BRIDGE/FORWARD *************************************************/
736 static int br_nf_forward_finish(struct sk_buff *skb)
737 {
738         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
739         struct net_device *in;
740
741         if (!IS_ARP(skb) && !IS_VLAN_ARP(skb)) {
742                 in = nf_bridge->physindev;
743                 if (nf_bridge->mask & BRNF_PKT_TYPE) {
744                         skb->pkt_type = PACKET_OTHERHOST;
745                         nf_bridge->mask ^= BRNF_PKT_TYPE;
746                 }
747                 nf_bridge_update_protocol(skb);
748         } else {
749                 in = *((struct net_device **)(skb->cb));
750         }
751         nf_bridge_push_encap_header(skb);
752
753         NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_FORWARD, skb, in,
754                        skb->dev, br_forward_finish, 1);
755         return 0;
756 }
757
758
759 /* This is the 'purely bridged' case.  For IP, we pass the packet to
760  * netfilter with indev and outdev set to the bridge device,
761  * but we are still able to filter on the 'real' indev/outdev
762  * because of the physdev module. For ARP, indev and outdev are the
763  * bridge ports. */
764 static unsigned int br_nf_forward_ip(unsigned int hook, struct sk_buff *skb,
765                                      const struct net_device *in,
766                                      const struct net_device *out,
767                                      int (*okfn)(struct sk_buff *))
768 {
769         struct nf_bridge_info *nf_bridge;
770         struct net_device *parent;
771         u_int8_t pf;
772
773         if (!skb->nf_bridge)
774                 return NF_ACCEPT;
775
776         /* Need exclusive nf_bridge_info since we might have multiple
777          * different physoutdevs. */
778         if (!nf_bridge_unshare(skb))
779                 return NF_DROP;
780
781         parent = bridge_parent(out);
782         if (!parent)
783                 return NF_DROP;
784
785         if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
786                 pf = NFPROTO_IPV4;
787         else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
788                 pf = NFPROTO_IPV6;
789         else
790                 return NF_ACCEPT;
791
792         nf_bridge_pull_encap_header(skb);
793
794         nf_bridge = skb->nf_bridge;
795         if (skb->pkt_type == PACKET_OTHERHOST) {
796                 skb->pkt_type = PACKET_HOST;
797                 nf_bridge->mask |= BRNF_PKT_TYPE;
798         }
799
800         if (pf == NFPROTO_IPV4 && br_parse_ip_options(skb))
801                 return NF_DROP;
802
803         /* The physdev module checks on this */
804         nf_bridge->mask |= BRNF_BRIDGED;
805         nf_bridge->physoutdev = skb->dev;
806         if (pf == NFPROTO_IPV4)
807                 skb->protocol = htons(ETH_P_IP);
808         else
809                 skb->protocol = htons(ETH_P_IPV6);
810
811         NF_HOOK(pf, NF_INET_FORWARD, skb, brnf_get_logical_dev(skb, in), parent,
812                 br_nf_forward_finish);
813
814         return NF_STOLEN;
815 }
816
817 static unsigned int br_nf_forward_arp(unsigned int hook, struct sk_buff *skb,
818                                       const struct net_device *in,
819                                       const struct net_device *out,
820                                       int (*okfn)(struct sk_buff *))
821 {
822         struct net_bridge_port *p;
823         struct net_bridge *br;
824         struct net_device **d = (struct net_device **)(skb->cb);
825
826         p = br_port_get_rcu(out);
827         if (p == NULL)
828                 return NF_ACCEPT;
829         br = p->br;
830
831         if (!brnf_call_arptables && !br->nf_call_arptables)
832                 return NF_ACCEPT;
833
834         if (!IS_ARP(skb)) {
835                 if (!IS_VLAN_ARP(skb))
836                         return NF_ACCEPT;
837                 nf_bridge_pull_encap_header(skb);
838         }
839
840         if (arp_hdr(skb)->ar_pln != 4) {
841                 if (IS_VLAN_ARP(skb))
842                         nf_bridge_push_encap_header(skb);
843                 return NF_ACCEPT;
844         }
845         *d = (struct net_device *)in;
846         NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, skb, (struct net_device *)in,
847                 (struct net_device *)out, br_nf_forward_finish);
848
849         return NF_STOLEN;
850 }
851
852 #if IS_ENABLED(CONFIG_NF_CONNTRACK_IPV4)
853 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
854 {
855         int ret;
856
857         if (skb->nfct != NULL && skb->protocol == htons(ETH_P_IP) &&
858             skb->len + nf_bridge_mtu_reduction(skb) > skb->dev->mtu &&
859             !skb_is_gso(skb)) {
860                 if (br_parse_ip_options(skb))
861                         /* Drop invalid packet */
862                         return NF_DROP;
863                 ret = ip_fragment(skb, br_dev_queue_push_xmit);
864         } else
865                 ret = br_dev_queue_push_xmit(skb);
866
867         return ret;
868 }
869 #else
870 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
871 {
872         return br_dev_queue_push_xmit(skb);
873 }
874 #endif
875
876 /* PF_BRIDGE/POST_ROUTING ********************************************/
877 static unsigned int br_nf_post_routing(unsigned int hook, struct sk_buff *skb,
878                                        const struct net_device *in,
879                                        const struct net_device *out,
880                                        int (*okfn)(struct sk_buff *))
881 {
882         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
883         struct net_device *realoutdev = bridge_parent(skb->dev);
884         u_int8_t pf;
885
886         if (!nf_bridge || !(nf_bridge->mask & BRNF_BRIDGED))
887                 return NF_ACCEPT;
888
889         if (!realoutdev)
890                 return NF_DROP;
891
892         if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
893                 pf = NFPROTO_IPV4;
894         else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
895                 pf = NFPROTO_IPV6;
896         else
897                 return NF_ACCEPT;
898
899         /* We assume any code from br_dev_queue_push_xmit onwards doesn't care
900          * about the value of skb->pkt_type. */
901         if (skb->pkt_type == PACKET_OTHERHOST) {
902                 skb->pkt_type = PACKET_HOST;
903                 nf_bridge->mask |= BRNF_PKT_TYPE;
904         }
905
906         nf_bridge_pull_encap_header(skb);
907         nf_bridge_save_header(skb);
908         if (pf == NFPROTO_IPV4)
909                 skb->protocol = htons(ETH_P_IP);
910         else
911                 skb->protocol = htons(ETH_P_IPV6);
912
913         NF_HOOK(pf, NF_INET_POST_ROUTING, skb, NULL, realoutdev,
914                 br_nf_dev_queue_xmit);
915
916         return NF_STOLEN;
917 }
918
919 /* IP/SABOTAGE *****************************************************/
920 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
921  * for the second time. */
922 static unsigned int ip_sabotage_in(unsigned int hook, struct sk_buff *skb,
923                                    const struct net_device *in,
924                                    const struct net_device *out,
925                                    int (*okfn)(struct sk_buff *))
926 {
927         if (skb->nf_bridge &&
928             !(skb->nf_bridge->mask & BRNF_NF_BRIDGE_PREROUTING)) {
929                 return NF_STOP;
930         }
931
932         return NF_ACCEPT;
933 }
934
935 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
936  * br_dev_queue_push_xmit is called afterwards */
937 static struct nf_hook_ops br_nf_ops[] __read_mostly = {
938         {
939                 .hook = br_nf_pre_routing,
940                 .owner = THIS_MODULE,
941                 .pf = NFPROTO_BRIDGE,
942                 .hooknum = NF_BR_PRE_ROUTING,
943                 .priority = NF_BR_PRI_BRNF,
944         },
945         {
946                 .hook = br_nf_local_in,
947                 .owner = THIS_MODULE,
948                 .pf = NFPROTO_BRIDGE,
949                 .hooknum = NF_BR_LOCAL_IN,
950                 .priority = NF_BR_PRI_BRNF,
951         },
952         {
953                 .hook = br_nf_forward_ip,
954                 .owner = THIS_MODULE,
955                 .pf = NFPROTO_BRIDGE,
956                 .hooknum = NF_BR_FORWARD,
957                 .priority = NF_BR_PRI_BRNF - 1,
958         },
959         {
960                 .hook = br_nf_forward_arp,
961                 .owner = THIS_MODULE,
962                 .pf = NFPROTO_BRIDGE,
963                 .hooknum = NF_BR_FORWARD,
964                 .priority = NF_BR_PRI_BRNF,
965         },
966         {
967                 .hook = br_nf_post_routing,
968                 .owner = THIS_MODULE,
969                 .pf = NFPROTO_BRIDGE,
970                 .hooknum = NF_BR_POST_ROUTING,
971                 .priority = NF_BR_PRI_LAST,
972         },
973         {
974                 .hook = ip_sabotage_in,
975                 .owner = THIS_MODULE,
976                 .pf = NFPROTO_IPV4,
977                 .hooknum = NF_INET_PRE_ROUTING,
978                 .priority = NF_IP_PRI_FIRST,
979         },
980         {
981                 .hook = ip_sabotage_in,
982                 .owner = THIS_MODULE,
983                 .pf = NFPROTO_IPV6,
984                 .hooknum = NF_INET_PRE_ROUTING,
985                 .priority = NF_IP6_PRI_FIRST,
986         },
987 };
988
989 #ifdef CONFIG_SYSCTL
990 static
991 int brnf_sysctl_call_tables(ctl_table * ctl, int write,
992                             void __user * buffer, size_t * lenp, loff_t * ppos)
993 {
994         int ret;
995
996         ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
997
998         if (write && *(int *)(ctl->data))
999                 *(int *)(ctl->data) = 1;
1000         return ret;
1001 }
1002
1003 static ctl_table brnf_table[] = {
1004         {
1005                 .procname       = "bridge-nf-call-arptables",
1006                 .data           = &brnf_call_arptables,
1007                 .maxlen         = sizeof(int),
1008                 .mode           = 0644,
1009                 .proc_handler   = brnf_sysctl_call_tables,
1010         },
1011         {
1012                 .procname       = "bridge-nf-call-iptables",
1013                 .data           = &brnf_call_iptables,
1014                 .maxlen         = sizeof(int),
1015                 .mode           = 0644,
1016                 .proc_handler   = brnf_sysctl_call_tables,
1017         },
1018         {
1019                 .procname       = "bridge-nf-call-ip6tables",
1020                 .data           = &brnf_call_ip6tables,
1021                 .maxlen         = sizeof(int),
1022                 .mode           = 0644,
1023                 .proc_handler   = brnf_sysctl_call_tables,
1024         },
1025         {
1026                 .procname       = "bridge-nf-filter-vlan-tagged",
1027                 .data           = &brnf_filter_vlan_tagged,
1028                 .maxlen         = sizeof(int),
1029                 .mode           = 0644,
1030                 .proc_handler   = brnf_sysctl_call_tables,
1031         },
1032         {
1033                 .procname       = "bridge-nf-filter-pppoe-tagged",
1034                 .data           = &brnf_filter_pppoe_tagged,
1035                 .maxlen         = sizeof(int),
1036                 .mode           = 0644,
1037                 .proc_handler   = brnf_sysctl_call_tables,
1038         },
1039         {
1040                 .procname       = "bridge-nf-pass-vlan-input-dev",
1041                 .data           = &brnf_pass_vlan_indev,
1042                 .maxlen         = sizeof(int),
1043                 .mode           = 0644,
1044                 .proc_handler   = brnf_sysctl_call_tables,
1045         },
1046         { }
1047 };
1048 #endif
1049
1050 int __init br_netfilter_init(void)
1051 {
1052         int ret;
1053
1054         ret = dst_entries_init(&fake_dst_ops);
1055         if (ret < 0)
1056                 return ret;
1057
1058         ret = nf_register_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1059         if (ret < 0) {
1060                 dst_entries_destroy(&fake_dst_ops);
1061                 return ret;
1062         }
1063 #ifdef CONFIG_SYSCTL
1064         brnf_sysctl_header = register_net_sysctl(&init_net, "net/bridge", brnf_table);
1065         if (brnf_sysctl_header == NULL) {
1066                 printk(KERN_WARNING
1067                        "br_netfilter: can't register to sysctl.\n");
1068                 nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1069                 dst_entries_destroy(&fake_dst_ops);
1070                 return -ENOMEM;
1071         }
1072 #endif
1073         printk(KERN_NOTICE "Bridge firewalling registered\n");
1074         return 0;
1075 }
1076
1077 void br_netfilter_fini(void)
1078 {
1079         nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1080 #ifdef CONFIG_SYSCTL
1081         unregister_net_sysctl_table(brnf_sysctl_header);
1082 #endif
1083         dst_entries_destroy(&fake_dst_ops);
1084 }