]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/bridge/br_netfilter.c
Merge remote-tracking branch 'net-next/master'
[karo-tx-linux.git] / net / bridge / br_netfilter.c
1 /*
2  *      Handle firewalling
3  *      Linux ethernet bridge
4  *
5  *      Authors:
6  *      Lennert Buytenhek               <buytenh@gnu.org>
7  *      Bart De Schuymer                <bdschuym@pandora.be>
8  *
9  *      This program is free software; you can redistribute it and/or
10  *      modify it under the terms of the GNU General Public License
11  *      as published by the Free Software Foundation; either version
12  *      2 of the License, or (at your option) any later version.
13  *
14  *      Lennert dedicates this file to Kerstin Wurdinger.
15  */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/ip.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_arp.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_pppox.h>
27 #include <linux/ppp_defs.h>
28 #include <linux/netfilter_bridge.h>
29 #include <linux/netfilter_ipv4.h>
30 #include <linux/netfilter_ipv6.h>
31 #include <linux/netfilter_arp.h>
32 #include <linux/in_route.h>
33 #include <linux/inetdevice.h>
34
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/route.h>
38
39 #include <asm/uaccess.h>
40 #include "br_private.h"
41 #ifdef CONFIG_SYSCTL
42 #include <linux/sysctl.h>
43 #endif
44
45 #define skb_origaddr(skb)        (((struct bridge_skb_cb *) \
46                                  (skb->nf_bridge->data))->daddr.ipv4)
47 #define store_orig_dstaddr(skb)  (skb_origaddr(skb) = ip_hdr(skb)->daddr)
48 #define dnat_took_place(skb)     (skb_origaddr(skb) != ip_hdr(skb)->daddr)
49
50 #ifdef CONFIG_SYSCTL
51 static struct ctl_table_header *brnf_sysctl_header;
52 static int brnf_call_iptables __read_mostly = 1;
53 static int brnf_call_ip6tables __read_mostly = 1;
54 static int brnf_call_arptables __read_mostly = 1;
55 static int brnf_filter_vlan_tagged __read_mostly = 0;
56 static int brnf_filter_pppoe_tagged __read_mostly = 0;
57 static int brnf_pass_vlan_indev __read_mostly = 0;
58 #else
59 #define brnf_call_iptables 1
60 #define brnf_call_ip6tables 1
61 #define brnf_call_arptables 1
62 #define brnf_filter_vlan_tagged 0
63 #define brnf_filter_pppoe_tagged 0
64 #define brnf_pass_vlan_indev 0
65 #endif
66
67 #define IS_IP(skb) \
68         (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
69
70 #define IS_IPV6(skb) \
71         (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
72
73 #define IS_ARP(skb) \
74         (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
75
76 static inline __be16 vlan_proto(const struct sk_buff *skb)
77 {
78         if (vlan_tx_tag_present(skb))
79                 return skb->protocol;
80         else if (skb->protocol == htons(ETH_P_8021Q))
81                 return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
82         else
83                 return 0;
84 }
85
86 #define IS_VLAN_IP(skb) \
87         (vlan_proto(skb) == htons(ETH_P_IP) && \
88          brnf_filter_vlan_tagged)
89
90 #define IS_VLAN_IPV6(skb) \
91         (vlan_proto(skb) == htons(ETH_P_IPV6) && \
92          brnf_filter_vlan_tagged)
93
94 #define IS_VLAN_ARP(skb) \
95         (vlan_proto(skb) == htons(ETH_P_ARP) && \
96          brnf_filter_vlan_tagged)
97
98 static inline __be16 pppoe_proto(const struct sk_buff *skb)
99 {
100         return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
101                             sizeof(struct pppoe_hdr)));
102 }
103
104 #define IS_PPPOE_IP(skb) \
105         (skb->protocol == htons(ETH_P_PPP_SES) && \
106          pppoe_proto(skb) == htons(PPP_IP) && \
107          brnf_filter_pppoe_tagged)
108
109 #define IS_PPPOE_IPV6(skb) \
110         (skb->protocol == htons(ETH_P_PPP_SES) && \
111          pppoe_proto(skb) == htons(PPP_IPV6) && \
112          brnf_filter_pppoe_tagged)
113
114 static void fake_update_pmtu(struct dst_entry *dst, struct sock *sk,
115                              struct sk_buff *skb, u32 mtu)
116 {
117 }
118
119 static void fake_redirect(struct dst_entry *dst, struct sock *sk,
120                           struct sk_buff *skb)
121 {
122 }
123
124 static u32 *fake_cow_metrics(struct dst_entry *dst, unsigned long old)
125 {
126         return NULL;
127 }
128
129 static struct neighbour *fake_neigh_lookup(const struct dst_entry *dst,
130                                            struct sk_buff *skb,
131                                            const void *daddr)
132 {
133         return NULL;
134 }
135
136 static unsigned int fake_mtu(const struct dst_entry *dst)
137 {
138         return dst->dev->mtu;
139 }
140
141 static struct dst_ops fake_dst_ops = {
142         .family =               AF_INET,
143         .protocol =             cpu_to_be16(ETH_P_IP),
144         .update_pmtu =          fake_update_pmtu,
145         .redirect =             fake_redirect,
146         .cow_metrics =          fake_cow_metrics,
147         .neigh_lookup =         fake_neigh_lookup,
148         .mtu =                  fake_mtu,
149 };
150
151 /*
152  * Initialize bogus route table used to keep netfilter happy.
153  * Currently, we fill in the PMTU entry because netfilter
154  * refragmentation needs it, and the rt_flags entry because
155  * ipt_REJECT needs it.  Future netfilter modules might
156  * require us to fill additional fields.
157  */
158 static const u32 br_dst_default_metrics[RTAX_MAX] = {
159         [RTAX_MTU - 1] = 1500,
160 };
161
162 void br_netfilter_rtable_init(struct net_bridge *br)
163 {
164         struct rtable *rt = &br->fake_rtable;
165
166         atomic_set(&rt->dst.__refcnt, 1);
167         rt->dst.dev = br->dev;
168         rt->dst.path = &rt->dst;
169         dst_init_metrics(&rt->dst, br_dst_default_metrics, true);
170         rt->dst.flags   = DST_NOXFRM | DST_NOPEER | DST_FAKE_RTABLE;
171         rt->dst.ops = &fake_dst_ops;
172 }
173
174 static inline struct rtable *bridge_parent_rtable(const struct net_device *dev)
175 {
176         struct net_bridge_port *port;
177
178         port = br_port_get_rcu(dev);
179         return port ? &port->br->fake_rtable : NULL;
180 }
181
182 static inline struct net_device *bridge_parent(const struct net_device *dev)
183 {
184         struct net_bridge_port *port;
185
186         port = br_port_get_rcu(dev);
187         return port ? port->br->dev : NULL;
188 }
189
190 static inline struct nf_bridge_info *nf_bridge_alloc(struct sk_buff *skb)
191 {
192         skb->nf_bridge = kzalloc(sizeof(struct nf_bridge_info), GFP_ATOMIC);
193         if (likely(skb->nf_bridge))
194                 atomic_set(&(skb->nf_bridge->use), 1);
195
196         return skb->nf_bridge;
197 }
198
199 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
200 {
201         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
202
203         if (atomic_read(&nf_bridge->use) > 1) {
204                 struct nf_bridge_info *tmp = nf_bridge_alloc(skb);
205
206                 if (tmp) {
207                         memcpy(tmp, nf_bridge, sizeof(struct nf_bridge_info));
208                         atomic_set(&tmp->use, 1);
209                 }
210                 nf_bridge_put(nf_bridge);
211                 nf_bridge = tmp;
212         }
213         return nf_bridge;
214 }
215
216 static inline void nf_bridge_push_encap_header(struct sk_buff *skb)
217 {
218         unsigned int len = nf_bridge_encap_header_len(skb);
219
220         skb_push(skb, len);
221         skb->network_header -= len;
222 }
223
224 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
225 {
226         unsigned int len = nf_bridge_encap_header_len(skb);
227
228         skb_pull(skb, len);
229         skb->network_header += len;
230 }
231
232 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
233 {
234         unsigned int len = nf_bridge_encap_header_len(skb);
235
236         skb_pull_rcsum(skb, len);
237         skb->network_header += len;
238 }
239
240 static inline void nf_bridge_save_header(struct sk_buff *skb)
241 {
242         int header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
243
244         skb_copy_from_linear_data_offset(skb, -header_size,
245                                          skb->nf_bridge->data, header_size);
246 }
247
248 static inline void nf_bridge_update_protocol(struct sk_buff *skb)
249 {
250         if (skb->nf_bridge->mask & BRNF_8021Q)
251                 skb->protocol = htons(ETH_P_8021Q);
252         else if (skb->nf_bridge->mask & BRNF_PPPoE)
253                 skb->protocol = htons(ETH_P_PPP_SES);
254 }
255
256 /* When handing a packet over to the IP layer
257  * check whether we have a skb that is in the
258  * expected format
259  */
260
261 static int br_parse_ip_options(struct sk_buff *skb)
262 {
263         struct ip_options *opt;
264         const struct iphdr *iph;
265         struct net_device *dev = skb->dev;
266         u32 len;
267
268         if (!pskb_may_pull(skb, sizeof(struct iphdr)))
269                 goto inhdr_error;
270
271         iph = ip_hdr(skb);
272         opt = &(IPCB(skb)->opt);
273
274         /* Basic sanity checks */
275         if (iph->ihl < 5 || iph->version != 4)
276                 goto inhdr_error;
277
278         if (!pskb_may_pull(skb, iph->ihl*4))
279                 goto inhdr_error;
280
281         iph = ip_hdr(skb);
282         if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
283                 goto inhdr_error;
284
285         len = ntohs(iph->tot_len);
286         if (skb->len < len) {
287                 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INTRUNCATEDPKTS);
288                 goto drop;
289         } else if (len < (iph->ihl*4))
290                 goto inhdr_error;
291
292         if (pskb_trim_rcsum(skb, len)) {
293                 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);
294                 goto drop;
295         }
296
297         memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
298         if (iph->ihl == 5)
299                 return 0;
300
301         opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
302         if (ip_options_compile(dev_net(dev), opt, skb))
303                 goto inhdr_error;
304
305         /* Check correct handling of SRR option */
306         if (unlikely(opt->srr)) {
307                 struct in_device *in_dev = __in_dev_get_rcu(dev);
308                 if (in_dev && !IN_DEV_SOURCE_ROUTE(in_dev))
309                         goto drop;
310
311                 if (ip_options_rcv_srr(skb))
312                         goto drop;
313         }
314
315         return 0;
316
317 inhdr_error:
318         IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
319 drop:
320         return -1;
321 }
322
323 /* Fill in the header for fragmented IP packets handled by
324  * the IPv4 connection tracking code.
325  */
326 int nf_bridge_copy_header(struct sk_buff *skb)
327 {
328         int err;
329         unsigned int header_size;
330
331         nf_bridge_update_protocol(skb);
332         header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
333         err = skb_cow_head(skb, header_size);
334         if (err)
335                 return err;
336
337         skb_copy_to_linear_data_offset(skb, -header_size,
338                                        skb->nf_bridge->data, header_size);
339         __skb_push(skb, nf_bridge_encap_header_len(skb));
340         return 0;
341 }
342
343 /* PF_BRIDGE/PRE_ROUTING *********************************************/
344 /* Undo the changes made for ip6tables PREROUTING and continue the
345  * bridge PRE_ROUTING hook. */
346 static int br_nf_pre_routing_finish_ipv6(struct sk_buff *skb)
347 {
348         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
349         struct rtable *rt;
350
351         if (nf_bridge->mask & BRNF_PKT_TYPE) {
352                 skb->pkt_type = PACKET_OTHERHOST;
353                 nf_bridge->mask ^= BRNF_PKT_TYPE;
354         }
355         nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
356
357         rt = bridge_parent_rtable(nf_bridge->physindev);
358         if (!rt) {
359                 kfree_skb(skb);
360                 return 0;
361         }
362         skb_dst_set_noref(skb, &rt->dst);
363
364         skb->dev = nf_bridge->physindev;
365         nf_bridge_update_protocol(skb);
366         nf_bridge_push_encap_header(skb);
367         NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
368                        br_handle_frame_finish, 1);
369
370         return 0;
371 }
372
373 /* Obtain the correct destination MAC address, while preserving the original
374  * source MAC address. If we already know this address, we just copy it. If we
375  * don't, we use the neighbour framework to find out. In both cases, we make
376  * sure that br_handle_frame_finish() is called afterwards.
377  */
378 static int br_nf_pre_routing_finish_bridge(struct sk_buff *skb)
379 {
380         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
381         struct neighbour *neigh;
382         struct dst_entry *dst;
383
384         skb->dev = bridge_parent(skb->dev);
385         if (!skb->dev)
386                 goto free_skb;
387         dst = skb_dst(skb);
388         neigh = dst_neigh_lookup_skb(dst, skb);
389         if (neigh) {
390                 int ret;
391
392                 if (neigh->hh.hh_len) {
393                         neigh_hh_bridge(&neigh->hh, skb);
394                         skb->dev = nf_bridge->physindev;
395                         ret = br_handle_frame_finish(skb);
396                 } else {
397                         /* the neighbour function below overwrites the complete
398                          * MAC header, so we save the Ethernet source address and
399                          * protocol number.
400                          */
401                         skb_copy_from_linear_data_offset(skb,
402                                                          -(ETH_HLEN-ETH_ALEN),
403                                                          skb->nf_bridge->data,
404                                                          ETH_HLEN-ETH_ALEN);
405                         /* tell br_dev_xmit to continue with forwarding */
406                         nf_bridge->mask |= BRNF_BRIDGED_DNAT;
407                         ret = neigh->output(neigh, skb);
408                 }
409                 neigh_release(neigh);
410                 return ret;
411         }
412 free_skb:
413         kfree_skb(skb);
414         return 0;
415 }
416
417 /* This requires some explaining. If DNAT has taken place,
418  * we will need to fix up the destination Ethernet address.
419  *
420  * There are two cases to consider:
421  * 1. The packet was DNAT'ed to a device in the same bridge
422  *    port group as it was received on. We can still bridge
423  *    the packet.
424  * 2. The packet was DNAT'ed to a different device, either
425  *    a non-bridged device or another bridge port group.
426  *    The packet will need to be routed.
427  *
428  * The correct way of distinguishing between these two cases is to
429  * call ip_route_input() and to look at skb->dst->dev, which is
430  * changed to the destination device if ip_route_input() succeeds.
431  *
432  * Let's first consider the case that ip_route_input() succeeds:
433  *
434  * If the output device equals the logical bridge device the packet
435  * came in on, we can consider this bridging. The corresponding MAC
436  * address will be obtained in br_nf_pre_routing_finish_bridge.
437  * Otherwise, the packet is considered to be routed and we just
438  * change the destination MAC address so that the packet will
439  * later be passed up to the IP stack to be routed. For a redirected
440  * packet, ip_route_input() will give back the localhost as output device,
441  * which differs from the bridge device.
442  *
443  * Let's now consider the case that ip_route_input() fails:
444  *
445  * This can be because the destination address is martian, in which case
446  * the packet will be dropped.
447  * If IP forwarding is disabled, ip_route_input() will fail, while
448  * ip_route_output_key() can return success. The source
449  * address for ip_route_output_key() is set to zero, so ip_route_output_key()
450  * thinks we're handling a locally generated packet and won't care
451  * if IP forwarding is enabled. If the output device equals the logical bridge
452  * device, we proceed as if ip_route_input() succeeded. If it differs from the
453  * logical bridge port or if ip_route_output_key() fails we drop the packet.
454  */
455 static int br_nf_pre_routing_finish(struct sk_buff *skb)
456 {
457         struct net_device *dev = skb->dev;
458         struct iphdr *iph = ip_hdr(skb);
459         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
460         struct rtable *rt;
461         int err;
462
463         if (nf_bridge->mask & BRNF_PKT_TYPE) {
464                 skb->pkt_type = PACKET_OTHERHOST;
465                 nf_bridge->mask ^= BRNF_PKT_TYPE;
466         }
467         nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
468         if (dnat_took_place(skb)) {
469                 if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
470                         struct in_device *in_dev = __in_dev_get_rcu(dev);
471
472                         /* If err equals -EHOSTUNREACH the error is due to a
473                          * martian destination or due to the fact that
474                          * forwarding is disabled. For most martian packets,
475                          * ip_route_output_key() will fail. It won't fail for 2 types of
476                          * martian destinations: loopback destinations and destination
477                          * 0.0.0.0. In both cases the packet will be dropped because the
478                          * destination is the loopback device and not the bridge. */
479                         if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
480                                 goto free_skb;
481
482                         rt = ip_route_output(dev_net(dev), iph->daddr, 0,
483                                              RT_TOS(iph->tos), 0);
484                         if (!IS_ERR(rt)) {
485                                 /* - Bridged-and-DNAT'ed traffic doesn't
486                                  *   require ip_forwarding. */
487                                 if (rt->dst.dev == dev) {
488                                         skb_dst_set(skb, &rt->dst);
489                                         goto bridged_dnat;
490                                 }
491                                 ip_rt_put(rt);
492                         }
493 free_skb:
494                         kfree_skb(skb);
495                         return 0;
496                 } else {
497                         if (skb_dst(skb)->dev == dev) {
498 bridged_dnat:
499                                 skb->dev = nf_bridge->physindev;
500                                 nf_bridge_update_protocol(skb);
501                                 nf_bridge_push_encap_header(skb);
502                                 NF_HOOK_THRESH(NFPROTO_BRIDGE,
503                                                NF_BR_PRE_ROUTING,
504                                                skb, skb->dev, NULL,
505                                                br_nf_pre_routing_finish_bridge,
506                                                1);
507                                 return 0;
508                         }
509                         memcpy(eth_hdr(skb)->h_dest, dev->dev_addr, ETH_ALEN);
510                         skb->pkt_type = PACKET_HOST;
511                 }
512         } else {
513                 rt = bridge_parent_rtable(nf_bridge->physindev);
514                 if (!rt) {
515                         kfree_skb(skb);
516                         return 0;
517                 }
518                 skb_dst_set_noref(skb, &rt->dst);
519         }
520
521         skb->dev = nf_bridge->physindev;
522         nf_bridge_update_protocol(skb);
523         nf_bridge_push_encap_header(skb);
524         NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
525                        br_handle_frame_finish, 1);
526
527         return 0;
528 }
529
530 static struct net_device *brnf_get_logical_dev(struct sk_buff *skb, const struct net_device *dev)
531 {
532         struct net_device *vlan, *br;
533
534         br = bridge_parent(dev);
535         if (brnf_pass_vlan_indev == 0 || !vlan_tx_tag_present(skb))
536                 return br;
537
538         vlan = __vlan_find_dev_deep(br, skb->vlan_proto,
539                                     vlan_tx_tag_get(skb) & VLAN_VID_MASK);
540
541         return vlan ? vlan : br;
542 }
543
544 /* Some common code for IPv4/IPv6 */
545 static struct net_device *setup_pre_routing(struct sk_buff *skb)
546 {
547         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
548
549         if (skb->pkt_type == PACKET_OTHERHOST) {
550                 skb->pkt_type = PACKET_HOST;
551                 nf_bridge->mask |= BRNF_PKT_TYPE;
552         }
553
554         nf_bridge->mask |= BRNF_NF_BRIDGE_PREROUTING;
555         nf_bridge->physindev = skb->dev;
556         skb->dev = brnf_get_logical_dev(skb, skb->dev);
557         if (skb->protocol == htons(ETH_P_8021Q))
558                 nf_bridge->mask |= BRNF_8021Q;
559         else if (skb->protocol == htons(ETH_P_PPP_SES))
560                 nf_bridge->mask |= BRNF_PPPoE;
561
562         return skb->dev;
563 }
564
565 /* We only check the length. A bridge shouldn't do any hop-by-hop stuff anyway */
566 static int check_hbh_len(struct sk_buff *skb)
567 {
568         unsigned char *raw = (u8 *)(ipv6_hdr(skb) + 1);
569         u32 pkt_len;
570         const unsigned char *nh = skb_network_header(skb);
571         int off = raw - nh;
572         int len = (raw[1] + 1) << 3;
573
574         if ((raw + len) - skb->data > skb_headlen(skb))
575                 goto bad;
576
577         off += 2;
578         len -= 2;
579
580         while (len > 0) {
581                 int optlen = nh[off + 1] + 2;
582
583                 switch (nh[off]) {
584                 case IPV6_TLV_PAD1:
585                         optlen = 1;
586                         break;
587
588                 case IPV6_TLV_PADN:
589                         break;
590
591                 case IPV6_TLV_JUMBO:
592                         if (nh[off + 1] != 4 || (off & 3) != 2)
593                                 goto bad;
594                         pkt_len = ntohl(*(__be32 *) (nh + off + 2));
595                         if (pkt_len <= IPV6_MAXPLEN ||
596                             ipv6_hdr(skb)->payload_len)
597                                 goto bad;
598                         if (pkt_len > skb->len - sizeof(struct ipv6hdr))
599                                 goto bad;
600                         if (pskb_trim_rcsum(skb,
601                                             pkt_len + sizeof(struct ipv6hdr)))
602                                 goto bad;
603                         nh = skb_network_header(skb);
604                         break;
605                 default:
606                         if (optlen > len)
607                                 goto bad;
608                         break;
609                 }
610                 off += optlen;
611                 len -= optlen;
612         }
613         if (len == 0)
614                 return 0;
615 bad:
616         return -1;
617
618 }
619
620 /* Replicate the checks that IPv6 does on packet reception and pass the packet
621  * to ip6tables, which doesn't support NAT, so things are fairly simple. */
622 static unsigned int br_nf_pre_routing_ipv6(const struct nf_hook_ops *ops,
623                                            struct sk_buff *skb,
624                                            const struct net_device *in,
625                                            const struct net_device *out,
626                                            int (*okfn)(struct sk_buff *))
627 {
628         const struct ipv6hdr *hdr;
629         u32 pkt_len;
630
631         if (skb->len < sizeof(struct ipv6hdr))
632                 return NF_DROP;
633
634         if (!pskb_may_pull(skb, sizeof(struct ipv6hdr)))
635                 return NF_DROP;
636
637         hdr = ipv6_hdr(skb);
638
639         if (hdr->version != 6)
640                 return NF_DROP;
641
642         pkt_len = ntohs(hdr->payload_len);
643
644         if (pkt_len || hdr->nexthdr != NEXTHDR_HOP) {
645                 if (pkt_len + sizeof(struct ipv6hdr) > skb->len)
646                         return NF_DROP;
647                 if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr)))
648                         return NF_DROP;
649         }
650         if (hdr->nexthdr == NEXTHDR_HOP && check_hbh_len(skb))
651                 return NF_DROP;
652
653         nf_bridge_put(skb->nf_bridge);
654         if (!nf_bridge_alloc(skb))
655                 return NF_DROP;
656         if (!setup_pre_routing(skb))
657                 return NF_DROP;
658
659         skb->protocol = htons(ETH_P_IPV6);
660         NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
661                 br_nf_pre_routing_finish_ipv6);
662
663         return NF_STOLEN;
664 }
665
666 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
667  * Replicate the checks that IPv4 does on packet reception.
668  * Set skb->dev to the bridge device (i.e. parent of the
669  * receiving device) to make netfilter happy, the REDIRECT
670  * target in particular.  Save the original destination IP
671  * address to be able to detect DNAT afterwards. */
672 static unsigned int br_nf_pre_routing(const struct nf_hook_ops *ops,
673                                       struct sk_buff *skb,
674                                       const struct net_device *in,
675                                       const struct net_device *out,
676                                       int (*okfn)(struct sk_buff *))
677 {
678         struct net_bridge_port *p;
679         struct net_bridge *br;
680         __u32 len = nf_bridge_encap_header_len(skb);
681
682         if (unlikely(!pskb_may_pull(skb, len)))
683                 return NF_DROP;
684
685         p = br_port_get_rcu(in);
686         if (p == NULL)
687                 return NF_DROP;
688         br = p->br;
689
690         if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb)) {
691                 if (!brnf_call_ip6tables && !br->nf_call_ip6tables)
692                         return NF_ACCEPT;
693
694                 nf_bridge_pull_encap_header_rcsum(skb);
695                 return br_nf_pre_routing_ipv6(ops, skb, in, out, okfn);
696         }
697
698         if (!brnf_call_iptables && !br->nf_call_iptables)
699                 return NF_ACCEPT;
700
701         if (!IS_IP(skb) && !IS_VLAN_IP(skb) && !IS_PPPOE_IP(skb))
702                 return NF_ACCEPT;
703
704         nf_bridge_pull_encap_header_rcsum(skb);
705
706         if (br_parse_ip_options(skb))
707                 return NF_DROP;
708
709         nf_bridge_put(skb->nf_bridge);
710         if (!nf_bridge_alloc(skb))
711                 return NF_DROP;
712         if (!setup_pre_routing(skb))
713                 return NF_DROP;
714         store_orig_dstaddr(skb);
715         skb->protocol = htons(ETH_P_IP);
716
717         NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
718                 br_nf_pre_routing_finish);
719
720         return NF_STOLEN;
721 }
722
723
724 /* PF_BRIDGE/LOCAL_IN ************************************************/
725 /* The packet is locally destined, which requires a real
726  * dst_entry, so detach the fake one.  On the way up, the
727  * packet would pass through PRE_ROUTING again (which already
728  * took place when the packet entered the bridge), but we
729  * register an IPv4 PRE_ROUTING 'sabotage' hook that will
730  * prevent this from happening. */
731 static unsigned int br_nf_local_in(const struct nf_hook_ops *ops,
732                                    struct sk_buff *skb,
733                                    const struct net_device *in,
734                                    const struct net_device *out,
735                                    int (*okfn)(struct sk_buff *))
736 {
737         br_drop_fake_rtable(skb);
738         return NF_ACCEPT;
739 }
740
741 /* PF_BRIDGE/FORWARD *************************************************/
742 static int br_nf_forward_finish(struct sk_buff *skb)
743 {
744         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
745         struct net_device *in;
746
747         if (!IS_ARP(skb) && !IS_VLAN_ARP(skb)) {
748                 in = nf_bridge->physindev;
749                 if (nf_bridge->mask & BRNF_PKT_TYPE) {
750                         skb->pkt_type = PACKET_OTHERHOST;
751                         nf_bridge->mask ^= BRNF_PKT_TYPE;
752                 }
753                 nf_bridge_update_protocol(skb);
754         } else {
755                 in = *((struct net_device **)(skb->cb));
756         }
757         nf_bridge_push_encap_header(skb);
758
759         NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_FORWARD, skb, in,
760                        skb->dev, br_forward_finish, 1);
761         return 0;
762 }
763
764
765 /* This is the 'purely bridged' case.  For IP, we pass the packet to
766  * netfilter with indev and outdev set to the bridge device,
767  * but we are still able to filter on the 'real' indev/outdev
768  * because of the physdev module. For ARP, indev and outdev are the
769  * bridge ports. */
770 static unsigned int br_nf_forward_ip(const struct nf_hook_ops *ops,
771                                      struct sk_buff *skb,
772                                      const struct net_device *in,
773                                      const struct net_device *out,
774                                      int (*okfn)(struct sk_buff *))
775 {
776         struct nf_bridge_info *nf_bridge;
777         struct net_device *parent;
778         u_int8_t pf;
779
780         if (!skb->nf_bridge)
781                 return NF_ACCEPT;
782
783         /* Need exclusive nf_bridge_info since we might have multiple
784          * different physoutdevs. */
785         if (!nf_bridge_unshare(skb))
786                 return NF_DROP;
787
788         parent = bridge_parent(out);
789         if (!parent)
790                 return NF_DROP;
791
792         if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
793                 pf = NFPROTO_IPV4;
794         else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
795                 pf = NFPROTO_IPV6;
796         else
797                 return NF_ACCEPT;
798
799         nf_bridge_pull_encap_header(skb);
800
801         nf_bridge = skb->nf_bridge;
802         if (skb->pkt_type == PACKET_OTHERHOST) {
803                 skb->pkt_type = PACKET_HOST;
804                 nf_bridge->mask |= BRNF_PKT_TYPE;
805         }
806
807         if (pf == NFPROTO_IPV4 && br_parse_ip_options(skb))
808                 return NF_DROP;
809
810         /* The physdev module checks on this */
811         nf_bridge->mask |= BRNF_BRIDGED;
812         nf_bridge->physoutdev = skb->dev;
813         if (pf == NFPROTO_IPV4)
814                 skb->protocol = htons(ETH_P_IP);
815         else
816                 skb->protocol = htons(ETH_P_IPV6);
817
818         NF_HOOK(pf, NF_INET_FORWARD, skb, brnf_get_logical_dev(skb, in), parent,
819                 br_nf_forward_finish);
820
821         return NF_STOLEN;
822 }
823
824 static unsigned int br_nf_forward_arp(const struct nf_hook_ops *ops,
825                                       struct sk_buff *skb,
826                                       const struct net_device *in,
827                                       const struct net_device *out,
828                                       int (*okfn)(struct sk_buff *))
829 {
830         struct net_bridge_port *p;
831         struct net_bridge *br;
832         struct net_device **d = (struct net_device **)(skb->cb);
833
834         p = br_port_get_rcu(out);
835         if (p == NULL)
836                 return NF_ACCEPT;
837         br = p->br;
838
839         if (!brnf_call_arptables && !br->nf_call_arptables)
840                 return NF_ACCEPT;
841
842         if (!IS_ARP(skb)) {
843                 if (!IS_VLAN_ARP(skb))
844                         return NF_ACCEPT;
845                 nf_bridge_pull_encap_header(skb);
846         }
847
848         if (arp_hdr(skb)->ar_pln != 4) {
849                 if (IS_VLAN_ARP(skb))
850                         nf_bridge_push_encap_header(skb);
851                 return NF_ACCEPT;
852         }
853         *d = (struct net_device *)in;
854         NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, skb, (struct net_device *)in,
855                 (struct net_device *)out, br_nf_forward_finish);
856
857         return NF_STOLEN;
858 }
859
860 #if IS_ENABLED(CONFIG_NF_CONNTRACK_IPV4)
861 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
862 {
863         int ret;
864
865         if (skb->nfct != NULL && skb->protocol == htons(ETH_P_IP) &&
866             skb->len + nf_bridge_mtu_reduction(skb) > skb->dev->mtu &&
867             !skb_is_gso(skb)) {
868                 if (br_parse_ip_options(skb))
869                         /* Drop invalid packet */
870                         return NF_DROP;
871                 ret = ip_fragment(skb, br_dev_queue_push_xmit);
872         } else
873                 ret = br_dev_queue_push_xmit(skb);
874
875         return ret;
876 }
877 #else
878 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
879 {
880         return br_dev_queue_push_xmit(skb);
881 }
882 #endif
883
884 /* PF_BRIDGE/POST_ROUTING ********************************************/
885 static unsigned int br_nf_post_routing(const struct nf_hook_ops *ops,
886                                        struct sk_buff *skb,
887                                        const struct net_device *in,
888                                        const struct net_device *out,
889                                        int (*okfn)(struct sk_buff *))
890 {
891         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
892         struct net_device *realoutdev = bridge_parent(skb->dev);
893         u_int8_t pf;
894
895         if (!nf_bridge || !(nf_bridge->mask & BRNF_BRIDGED))
896                 return NF_ACCEPT;
897
898         if (!realoutdev)
899                 return NF_DROP;
900
901         if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
902                 pf = NFPROTO_IPV4;
903         else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
904                 pf = NFPROTO_IPV6;
905         else
906                 return NF_ACCEPT;
907
908         /* We assume any code from br_dev_queue_push_xmit onwards doesn't care
909          * about the value of skb->pkt_type. */
910         if (skb->pkt_type == PACKET_OTHERHOST) {
911                 skb->pkt_type = PACKET_HOST;
912                 nf_bridge->mask |= BRNF_PKT_TYPE;
913         }
914
915         nf_bridge_pull_encap_header(skb);
916         nf_bridge_save_header(skb);
917         if (pf == NFPROTO_IPV4)
918                 skb->protocol = htons(ETH_P_IP);
919         else
920                 skb->protocol = htons(ETH_P_IPV6);
921
922         NF_HOOK(pf, NF_INET_POST_ROUTING, skb, NULL, realoutdev,
923                 br_nf_dev_queue_xmit);
924
925         return NF_STOLEN;
926 }
927
928 /* IP/SABOTAGE *****************************************************/
929 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
930  * for the second time. */
931 static unsigned int ip_sabotage_in(const struct nf_hook_ops *ops,
932                                    struct sk_buff *skb,
933                                    const struct net_device *in,
934                                    const struct net_device *out,
935                                    int (*okfn)(struct sk_buff *))
936 {
937         if (skb->nf_bridge &&
938             !(skb->nf_bridge->mask & BRNF_NF_BRIDGE_PREROUTING)) {
939                 return NF_STOP;
940         }
941
942         return NF_ACCEPT;
943 }
944
945 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
946  * br_dev_queue_push_xmit is called afterwards */
947 static struct nf_hook_ops br_nf_ops[] __read_mostly = {
948         {
949                 .hook = br_nf_pre_routing,
950                 .owner = THIS_MODULE,
951                 .pf = NFPROTO_BRIDGE,
952                 .hooknum = NF_BR_PRE_ROUTING,
953                 .priority = NF_BR_PRI_BRNF,
954         },
955         {
956                 .hook = br_nf_local_in,
957                 .owner = THIS_MODULE,
958                 .pf = NFPROTO_BRIDGE,
959                 .hooknum = NF_BR_LOCAL_IN,
960                 .priority = NF_BR_PRI_BRNF,
961         },
962         {
963                 .hook = br_nf_forward_ip,
964                 .owner = THIS_MODULE,
965                 .pf = NFPROTO_BRIDGE,
966                 .hooknum = NF_BR_FORWARD,
967                 .priority = NF_BR_PRI_BRNF - 1,
968         },
969         {
970                 .hook = br_nf_forward_arp,
971                 .owner = THIS_MODULE,
972                 .pf = NFPROTO_BRIDGE,
973                 .hooknum = NF_BR_FORWARD,
974                 .priority = NF_BR_PRI_BRNF,
975         },
976         {
977                 .hook = br_nf_post_routing,
978                 .owner = THIS_MODULE,
979                 .pf = NFPROTO_BRIDGE,
980                 .hooknum = NF_BR_POST_ROUTING,
981                 .priority = NF_BR_PRI_LAST,
982         },
983         {
984                 .hook = ip_sabotage_in,
985                 .owner = THIS_MODULE,
986                 .pf = NFPROTO_IPV4,
987                 .hooknum = NF_INET_PRE_ROUTING,
988                 .priority = NF_IP_PRI_FIRST,
989         },
990         {
991                 .hook = ip_sabotage_in,
992                 .owner = THIS_MODULE,
993                 .pf = NFPROTO_IPV6,
994                 .hooknum = NF_INET_PRE_ROUTING,
995                 .priority = NF_IP6_PRI_FIRST,
996         },
997 };
998
999 #ifdef CONFIG_SYSCTL
1000 static
1001 int brnf_sysctl_call_tables(struct ctl_table *ctl, int write,
1002                             void __user * buffer, size_t * lenp, loff_t * ppos)
1003 {
1004         int ret;
1005
1006         ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
1007
1008         if (write && *(int *)(ctl->data))
1009                 *(int *)(ctl->data) = 1;
1010         return ret;
1011 }
1012
1013 static struct ctl_table brnf_table[] = {
1014         {
1015                 .procname       = "bridge-nf-call-arptables",
1016                 .data           = &brnf_call_arptables,
1017                 .maxlen         = sizeof(int),
1018                 .mode           = 0644,
1019                 .proc_handler   = brnf_sysctl_call_tables,
1020         },
1021         {
1022                 .procname       = "bridge-nf-call-iptables",
1023                 .data           = &brnf_call_iptables,
1024                 .maxlen         = sizeof(int),
1025                 .mode           = 0644,
1026                 .proc_handler   = brnf_sysctl_call_tables,
1027         },
1028         {
1029                 .procname       = "bridge-nf-call-ip6tables",
1030                 .data           = &brnf_call_ip6tables,
1031                 .maxlen         = sizeof(int),
1032                 .mode           = 0644,
1033                 .proc_handler   = brnf_sysctl_call_tables,
1034         },
1035         {
1036                 .procname       = "bridge-nf-filter-vlan-tagged",
1037                 .data           = &brnf_filter_vlan_tagged,
1038                 .maxlen         = sizeof(int),
1039                 .mode           = 0644,
1040                 .proc_handler   = brnf_sysctl_call_tables,
1041         },
1042         {
1043                 .procname       = "bridge-nf-filter-pppoe-tagged",
1044                 .data           = &brnf_filter_pppoe_tagged,
1045                 .maxlen         = sizeof(int),
1046                 .mode           = 0644,
1047                 .proc_handler   = brnf_sysctl_call_tables,
1048         },
1049         {
1050                 .procname       = "bridge-nf-pass-vlan-input-dev",
1051                 .data           = &brnf_pass_vlan_indev,
1052                 .maxlen         = sizeof(int),
1053                 .mode           = 0644,
1054                 .proc_handler   = brnf_sysctl_call_tables,
1055         },
1056         { }
1057 };
1058 #endif
1059
1060 int __init br_netfilter_init(void)
1061 {
1062         int ret;
1063
1064         ret = dst_entries_init(&fake_dst_ops);
1065         if (ret < 0)
1066                 return ret;
1067
1068         ret = nf_register_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1069         if (ret < 0) {
1070                 dst_entries_destroy(&fake_dst_ops);
1071                 return ret;
1072         }
1073 #ifdef CONFIG_SYSCTL
1074         brnf_sysctl_header = register_net_sysctl(&init_net, "net/bridge", brnf_table);
1075         if (brnf_sysctl_header == NULL) {
1076                 printk(KERN_WARNING
1077                        "br_netfilter: can't register to sysctl.\n");
1078                 nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1079                 dst_entries_destroy(&fake_dst_ops);
1080                 return -ENOMEM;
1081         }
1082 #endif
1083         printk(KERN_NOTICE "Bridge firewalling registered\n");
1084         return 0;
1085 }
1086
1087 void br_netfilter_fini(void)
1088 {
1089         nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1090 #ifdef CONFIG_SYSCTL
1091         unregister_net_sysctl_table(brnf_sysctl_header);
1092 #endif
1093         dst_entries_destroy(&fake_dst_ops);
1094 }