1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
44 * | NEW* | transient initial state
46 * | con_sock_state_init()
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
52 * | \ con_sock_state_connecting()
53 * | ----------------------
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
63 * | + con_sock_state_closing() \ |
65 * | / --------------- | |
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
73 * | CONNECTED | TCP connection established
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag)
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
121 BUG_ON(!con_flag_valid(con_flag));
123 clear_bit(con_flag, &con->flags);
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
128 BUG_ON(!con_flag_valid(con_flag));
130 set_bit(con_flag, &con->flags);
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
135 BUG_ON(!con_flag_valid(con_flag));
137 return test_bit(con_flag, &con->flags);
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
143 BUG_ON(!con_flag_valid(con_flag));
145 return test_and_clear_bit(con_flag, &con->flags);
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
151 BUG_ON(!con_flag_valid(con_flag));
153 return test_and_set_bit(con_flag, &con->flags);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
174 #define SKIP_BUF_SIZE 1024
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
193 static struct page *zero_page; /* used in certain error cases */
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
205 switch (ss->ss_family) {
207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 ntohs(in4->sin_port));
212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 ntohs(in6->sin6_port));
217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
223 EXPORT_SYMBOL(ceph_pr_addr);
225 static void encode_my_addr(struct ceph_messenger *msgr)
227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 ceph_encode_addr(&msgr->my_enc_addr);
232 * work queue for all reading and writing to/from the socket.
234 static struct workqueue_struct *ceph_msgr_wq;
236 static int ceph_msgr_slab_init(void)
238 BUG_ON(ceph_msg_cache);
239 ceph_msg_cache = kmem_cache_create("ceph_msg",
240 sizeof (struct ceph_msg),
241 __alignof__(struct ceph_msg), 0, NULL);
246 BUG_ON(ceph_msg_data_cache);
247 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 sizeof (struct ceph_msg_data),
249 __alignof__(struct ceph_msg_data),
251 if (ceph_msg_data_cache)
254 kmem_cache_destroy(ceph_msg_cache);
255 ceph_msg_cache = NULL;
260 static void ceph_msgr_slab_exit(void)
262 BUG_ON(!ceph_msg_data_cache);
263 kmem_cache_destroy(ceph_msg_data_cache);
264 ceph_msg_data_cache = NULL;
266 BUG_ON(!ceph_msg_cache);
267 kmem_cache_destroy(ceph_msg_cache);
268 ceph_msg_cache = NULL;
271 static void _ceph_msgr_exit(void)
274 destroy_workqueue(ceph_msgr_wq);
278 ceph_msgr_slab_exit();
280 BUG_ON(zero_page == NULL);
282 page_cache_release(zero_page);
286 int ceph_msgr_init(void)
288 BUG_ON(zero_page != NULL);
289 zero_page = ZERO_PAGE(0);
290 page_cache_get(zero_page);
292 if (ceph_msgr_slab_init())
296 * The number of active work items is limited by the number of
297 * connections, so leave @max_active at default.
299 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
303 pr_err("msgr_init failed to create workqueue\n");
308 EXPORT_SYMBOL(ceph_msgr_init);
310 void ceph_msgr_exit(void)
312 BUG_ON(ceph_msgr_wq == NULL);
316 EXPORT_SYMBOL(ceph_msgr_exit);
318 void ceph_msgr_flush(void)
320 flush_workqueue(ceph_msgr_wq);
322 EXPORT_SYMBOL(ceph_msgr_flush);
324 /* Connection socket state transition functions */
326 static void con_sock_state_init(struct ceph_connection *con)
330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
332 printk("%s: unexpected old state %d\n", __func__, old_state);
333 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
334 CON_SOCK_STATE_CLOSED);
337 static void con_sock_state_connecting(struct ceph_connection *con)
341 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
342 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
343 printk("%s: unexpected old state %d\n", __func__, old_state);
344 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 CON_SOCK_STATE_CONNECTING);
348 static void con_sock_state_connected(struct ceph_connection *con)
352 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
353 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
354 printk("%s: unexpected old state %d\n", __func__, old_state);
355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 CON_SOCK_STATE_CONNECTED);
359 static void con_sock_state_closing(struct ceph_connection *con)
363 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
364 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
365 old_state != CON_SOCK_STATE_CONNECTED &&
366 old_state != CON_SOCK_STATE_CLOSING))
367 printk("%s: unexpected old state %d\n", __func__, old_state);
368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 CON_SOCK_STATE_CLOSING);
372 static void con_sock_state_closed(struct ceph_connection *con)
376 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
377 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
378 old_state != CON_SOCK_STATE_CLOSING &&
379 old_state != CON_SOCK_STATE_CONNECTING &&
380 old_state != CON_SOCK_STATE_CLOSED))
381 printk("%s: unexpected old state %d\n", __func__, old_state);
382 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
383 CON_SOCK_STATE_CLOSED);
387 * socket callback functions
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock *sk)
393 struct ceph_connection *con = sk->sk_user_data;
394 if (atomic_read(&con->msgr->stopping)) {
398 if (sk->sk_state != TCP_CLOSE_WAIT) {
399 dout("%s on %p state = %lu, queueing work\n", __func__,
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock *sk)
408 struct ceph_connection *con = sk->sk_user_data;
410 /* only queue to workqueue if there is data we want to write,
411 * and there is sufficient space in the socket buffer to accept
412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
413 * doesn't get called again until try_write() fills the socket
414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 * and net/core/stream.c:sk_stream_write_space().
417 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
418 if (sk_stream_is_writeable(sk)) {
419 dout("%s %p queueing write work\n", __func__, con);
420 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
424 dout("%s %p nothing to write\n", __func__, con);
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock *sk)
431 struct ceph_connection *con = sk->sk_user_data;
433 dout("%s %p state = %lu sk_state = %u\n", __func__,
434 con, con->state, sk->sk_state);
436 switch (sk->sk_state) {
438 dout("%s TCP_CLOSE\n", __func__);
440 dout("%s TCP_CLOSE_WAIT\n", __func__);
441 con_sock_state_closing(con);
442 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
445 case TCP_ESTABLISHED:
446 dout("%s TCP_ESTABLISHED\n", __func__);
447 con_sock_state_connected(con);
450 default: /* Everything else is uninteresting */
456 * set up socket callbacks
458 static void set_sock_callbacks(struct socket *sock,
459 struct ceph_connection *con)
461 struct sock *sk = sock->sk;
462 sk->sk_user_data = con;
463 sk->sk_data_ready = ceph_sock_data_ready;
464 sk->sk_write_space = ceph_sock_write_space;
465 sk->sk_state_change = ceph_sock_state_change;
474 * initiate connection to a remote socket.
476 static int ceph_tcp_connect(struct ceph_connection *con)
478 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
483 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
487 sock->sk->sk_allocation = GFP_NOFS | __GFP_MEMALLOC;
489 #ifdef CONFIG_LOCKDEP
490 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
493 set_sock_callbacks(sock, con);
495 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
497 con_sock_state_connecting(con);
498 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
500 if (ret == -EINPROGRESS) {
501 dout("connect %s EINPROGRESS sk_state = %u\n",
502 ceph_pr_addr(&con->peer_addr.in_addr),
504 } else if (ret < 0) {
505 pr_err("connect %s error %d\n",
506 ceph_pr_addr(&con->peer_addr.in_addr), ret);
508 con->error_msg = "connect error";
513 sk_set_memalloc(sock->sk);
519 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
521 struct kvec iov = {buf, len};
522 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
525 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
531 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
532 int page_offset, size_t length)
537 BUG_ON(page_offset + length > PAGE_SIZE);
541 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
548 * write something. @more is true if caller will be sending more data
551 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
552 size_t kvlen, size_t len, int more)
554 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
558 msg.msg_flags |= MSG_MORE;
560 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
562 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
568 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
569 int offset, size_t size, bool more)
571 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
574 ret = kernel_sendpage(sock, page, offset, size, flags);
581 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
582 int offset, size_t size, bool more)
587 /* sendpage cannot properly handle pages with page_count == 0,
588 * we need to fallback to sendmsg if that's the case */
589 if (page_count(page) >= 1)
590 return __ceph_tcp_sendpage(sock, page, offset, size, more);
592 iov.iov_base = kmap(page) + offset;
594 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
601 * Shutdown/close the socket for the given connection.
603 static int con_close_socket(struct ceph_connection *con)
607 dout("con_close_socket on %p sock %p\n", con, con->sock);
609 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
610 sock_release(con->sock);
615 * Forcibly clear the SOCK_CLOSED flag. It gets set
616 * independent of the connection mutex, and we could have
617 * received a socket close event before we had the chance to
618 * shut the socket down.
620 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
622 con_sock_state_closed(con);
627 * Reset a connection. Discard all incoming and outgoing messages
628 * and clear *_seq state.
630 static void ceph_msg_remove(struct ceph_msg *msg)
632 list_del_init(&msg->list_head);
633 BUG_ON(msg->con == NULL);
634 msg->con->ops->put(msg->con);
639 static void ceph_msg_remove_list(struct list_head *head)
641 while (!list_empty(head)) {
642 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
644 ceph_msg_remove(msg);
648 static void reset_connection(struct ceph_connection *con)
650 /* reset connection, out_queue, msg_ and connect_seq */
651 /* discard existing out_queue and msg_seq */
652 dout("reset_connection %p\n", con);
653 ceph_msg_remove_list(&con->out_queue);
654 ceph_msg_remove_list(&con->out_sent);
657 BUG_ON(con->in_msg->con != con);
658 con->in_msg->con = NULL;
659 ceph_msg_put(con->in_msg);
664 con->connect_seq = 0;
667 ceph_msg_put(con->out_msg);
671 con->in_seq_acked = 0;
675 * mark a peer down. drop any open connections.
677 void ceph_con_close(struct ceph_connection *con)
679 mutex_lock(&con->mutex);
680 dout("con_close %p peer %s\n", con,
681 ceph_pr_addr(&con->peer_addr.in_addr));
682 con->state = CON_STATE_CLOSED;
684 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
685 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
686 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
687 con_flag_clear(con, CON_FLAG_BACKOFF);
689 reset_connection(con);
690 con->peer_global_seq = 0;
692 con_close_socket(con);
693 mutex_unlock(&con->mutex);
695 EXPORT_SYMBOL(ceph_con_close);
698 * Reopen a closed connection, with a new peer address.
700 void ceph_con_open(struct ceph_connection *con,
701 __u8 entity_type, __u64 entity_num,
702 struct ceph_entity_addr *addr)
704 mutex_lock(&con->mutex);
705 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
707 WARN_ON(con->state != CON_STATE_CLOSED);
708 con->state = CON_STATE_PREOPEN;
710 con->peer_name.type = (__u8) entity_type;
711 con->peer_name.num = cpu_to_le64(entity_num);
713 memcpy(&con->peer_addr, addr, sizeof(*addr));
714 con->delay = 0; /* reset backoff memory */
715 mutex_unlock(&con->mutex);
718 EXPORT_SYMBOL(ceph_con_open);
721 * return true if this connection ever successfully opened
723 bool ceph_con_opened(struct ceph_connection *con)
725 return con->connect_seq > 0;
729 * initialize a new connection.
731 void ceph_con_init(struct ceph_connection *con, void *private,
732 const struct ceph_connection_operations *ops,
733 struct ceph_messenger *msgr)
735 dout("con_init %p\n", con);
736 memset(con, 0, sizeof(*con));
737 con->private = private;
741 con_sock_state_init(con);
743 mutex_init(&con->mutex);
744 INIT_LIST_HEAD(&con->out_queue);
745 INIT_LIST_HEAD(&con->out_sent);
746 INIT_DELAYED_WORK(&con->work, con_work);
748 con->state = CON_STATE_CLOSED;
750 EXPORT_SYMBOL(ceph_con_init);
754 * We maintain a global counter to order connection attempts. Get
755 * a unique seq greater than @gt.
757 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
761 spin_lock(&msgr->global_seq_lock);
762 if (msgr->global_seq < gt)
763 msgr->global_seq = gt;
764 ret = ++msgr->global_seq;
765 spin_unlock(&msgr->global_seq_lock);
769 static void con_out_kvec_reset(struct ceph_connection *con)
771 con->out_kvec_left = 0;
772 con->out_kvec_bytes = 0;
773 con->out_kvec_cur = &con->out_kvec[0];
776 static void con_out_kvec_add(struct ceph_connection *con,
777 size_t size, void *data)
781 index = con->out_kvec_left;
782 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
784 con->out_kvec[index].iov_len = size;
785 con->out_kvec[index].iov_base = data;
786 con->out_kvec_left++;
787 con->out_kvec_bytes += size;
793 * For a bio data item, a piece is whatever remains of the next
794 * entry in the current bio iovec, or the first entry in the next
797 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
800 struct ceph_msg_data *data = cursor->data;
803 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
808 cursor->resid = min(length, data->bio_length);
810 cursor->bvec_iter = bio->bi_iter;
812 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
815 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
819 struct ceph_msg_data *data = cursor->data;
821 struct bio_vec bio_vec;
823 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
828 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
830 *page_offset = (size_t) bio_vec.bv_offset;
831 BUG_ON(*page_offset >= PAGE_SIZE);
832 if (cursor->last_piece) /* pagelist offset is always 0 */
833 *length = cursor->resid;
835 *length = (size_t) bio_vec.bv_len;
836 BUG_ON(*length > cursor->resid);
837 BUG_ON(*page_offset + *length > PAGE_SIZE);
839 return bio_vec.bv_page;
842 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
846 struct bio_vec bio_vec;
848 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
853 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
855 /* Advance the cursor offset */
857 BUG_ON(cursor->resid < bytes);
858 cursor->resid -= bytes;
860 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
862 if (bytes < bio_vec.bv_len)
863 return false; /* more bytes to process in this segment */
865 /* Move on to the next segment, and possibly the next bio */
867 if (!cursor->bvec_iter.bi_size) {
871 cursor->bvec_iter = bio->bi_iter;
873 memset(&cursor->bvec_iter, 0,
874 sizeof(cursor->bvec_iter));
877 if (!cursor->last_piece) {
878 BUG_ON(!cursor->resid);
880 /* A short read is OK, so use <= rather than == */
881 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
882 cursor->last_piece = true;
887 #endif /* CONFIG_BLOCK */
890 * For a page array, a piece comes from the first page in the array
891 * that has not already been fully consumed.
893 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
896 struct ceph_msg_data *data = cursor->data;
899 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
901 BUG_ON(!data->pages);
902 BUG_ON(!data->length);
904 cursor->resid = min(length, data->length);
905 page_count = calc_pages_for(data->alignment, (u64)data->length);
906 cursor->page_offset = data->alignment & ~PAGE_MASK;
907 cursor->page_index = 0;
908 BUG_ON(page_count > (int)USHRT_MAX);
909 cursor->page_count = (unsigned short)page_count;
910 BUG_ON(length > SIZE_MAX - cursor->page_offset);
911 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
915 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
916 size_t *page_offset, size_t *length)
918 struct ceph_msg_data *data = cursor->data;
920 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
922 BUG_ON(cursor->page_index >= cursor->page_count);
923 BUG_ON(cursor->page_offset >= PAGE_SIZE);
925 *page_offset = cursor->page_offset;
926 if (cursor->last_piece)
927 *length = cursor->resid;
929 *length = PAGE_SIZE - *page_offset;
931 return data->pages[cursor->page_index];
934 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
937 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
939 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
941 /* Advance the cursor page offset */
943 cursor->resid -= bytes;
944 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
945 if (!bytes || cursor->page_offset)
946 return false; /* more bytes to process in the current page */
949 return false; /* no more data */
951 /* Move on to the next page; offset is already at 0 */
953 BUG_ON(cursor->page_index >= cursor->page_count);
954 cursor->page_index++;
955 cursor->last_piece = cursor->resid <= PAGE_SIZE;
961 * For a pagelist, a piece is whatever remains to be consumed in the
962 * first page in the list, or the front of the next page.
965 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
968 struct ceph_msg_data *data = cursor->data;
969 struct ceph_pagelist *pagelist;
972 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
974 pagelist = data->pagelist;
978 return; /* pagelist can be assigned but empty */
980 BUG_ON(list_empty(&pagelist->head));
981 page = list_first_entry(&pagelist->head, struct page, lru);
983 cursor->resid = min(length, pagelist->length);
986 cursor->last_piece = cursor->resid <= PAGE_SIZE;
990 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
991 size_t *page_offset, size_t *length)
993 struct ceph_msg_data *data = cursor->data;
994 struct ceph_pagelist *pagelist;
996 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
998 pagelist = data->pagelist;
1001 BUG_ON(!cursor->page);
1002 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1004 /* offset of first page in pagelist is always 0 */
1005 *page_offset = cursor->offset & ~PAGE_MASK;
1006 if (cursor->last_piece)
1007 *length = cursor->resid;
1009 *length = PAGE_SIZE - *page_offset;
1011 return cursor->page;
1014 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1017 struct ceph_msg_data *data = cursor->data;
1018 struct ceph_pagelist *pagelist;
1020 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1022 pagelist = data->pagelist;
1025 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1026 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1028 /* Advance the cursor offset */
1030 cursor->resid -= bytes;
1031 cursor->offset += bytes;
1032 /* offset of first page in pagelist is always 0 */
1033 if (!bytes || cursor->offset & ~PAGE_MASK)
1034 return false; /* more bytes to process in the current page */
1037 return false; /* no more data */
1039 /* Move on to the next page */
1041 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1042 cursor->page = list_entry_next(cursor->page, lru);
1043 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1049 * Message data is handled (sent or received) in pieces, where each
1050 * piece resides on a single page. The network layer might not
1051 * consume an entire piece at once. A data item's cursor keeps
1052 * track of which piece is next to process and how much remains to
1053 * be processed in that piece. It also tracks whether the current
1054 * piece is the last one in the data item.
1056 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1058 size_t length = cursor->total_resid;
1060 switch (cursor->data->type) {
1061 case CEPH_MSG_DATA_PAGELIST:
1062 ceph_msg_data_pagelist_cursor_init(cursor, length);
1064 case CEPH_MSG_DATA_PAGES:
1065 ceph_msg_data_pages_cursor_init(cursor, length);
1068 case CEPH_MSG_DATA_BIO:
1069 ceph_msg_data_bio_cursor_init(cursor, length);
1071 #endif /* CONFIG_BLOCK */
1072 case CEPH_MSG_DATA_NONE:
1077 cursor->need_crc = true;
1080 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1082 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1083 struct ceph_msg_data *data;
1086 BUG_ON(length > msg->data_length);
1087 BUG_ON(list_empty(&msg->data));
1089 cursor->data_head = &msg->data;
1090 cursor->total_resid = length;
1091 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1092 cursor->data = data;
1094 __ceph_msg_data_cursor_init(cursor);
1098 * Return the page containing the next piece to process for a given
1099 * data item, and supply the page offset and length of that piece.
1100 * Indicate whether this is the last piece in this data item.
1102 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1103 size_t *page_offset, size_t *length,
1108 switch (cursor->data->type) {
1109 case CEPH_MSG_DATA_PAGELIST:
1110 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1112 case CEPH_MSG_DATA_PAGES:
1113 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1116 case CEPH_MSG_DATA_BIO:
1117 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1119 #endif /* CONFIG_BLOCK */
1120 case CEPH_MSG_DATA_NONE:
1126 BUG_ON(*page_offset + *length > PAGE_SIZE);
1129 *last_piece = cursor->last_piece;
1135 * Returns true if the result moves the cursor on to the next piece
1138 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1143 BUG_ON(bytes > cursor->resid);
1144 switch (cursor->data->type) {
1145 case CEPH_MSG_DATA_PAGELIST:
1146 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1148 case CEPH_MSG_DATA_PAGES:
1149 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1152 case CEPH_MSG_DATA_BIO:
1153 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1155 #endif /* CONFIG_BLOCK */
1156 case CEPH_MSG_DATA_NONE:
1161 cursor->total_resid -= bytes;
1163 if (!cursor->resid && cursor->total_resid) {
1164 WARN_ON(!cursor->last_piece);
1165 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1166 cursor->data = list_entry_next(cursor->data, links);
1167 __ceph_msg_data_cursor_init(cursor);
1170 cursor->need_crc = new_piece;
1175 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1180 /* Initialize data cursor */
1182 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1186 * Prepare footer for currently outgoing message, and finish things
1187 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1189 static void prepare_write_message_footer(struct ceph_connection *con)
1191 struct ceph_msg *m = con->out_msg;
1192 int v = con->out_kvec_left;
1194 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1196 dout("prepare_write_message_footer %p\n", con);
1197 con->out_kvec_is_msg = true;
1198 con->out_kvec[v].iov_base = &m->footer;
1199 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1200 if (con->ops->sign_message)
1201 con->ops->sign_message(con, m);
1204 con->out_kvec[v].iov_len = sizeof(m->footer);
1205 con->out_kvec_bytes += sizeof(m->footer);
1207 m->old_footer.flags = m->footer.flags;
1208 con->out_kvec[v].iov_len = sizeof(m->old_footer);
1209 con->out_kvec_bytes += sizeof(m->old_footer);
1211 con->out_kvec_left++;
1212 con->out_more = m->more_to_follow;
1213 con->out_msg_done = true;
1217 * Prepare headers for the next outgoing message.
1219 static void prepare_write_message(struct ceph_connection *con)
1224 con_out_kvec_reset(con);
1225 con->out_kvec_is_msg = true;
1226 con->out_msg_done = false;
1228 /* Sneak an ack in there first? If we can get it into the same
1229 * TCP packet that's a good thing. */
1230 if (con->in_seq > con->in_seq_acked) {
1231 con->in_seq_acked = con->in_seq;
1232 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1233 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1234 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1235 &con->out_temp_ack);
1238 BUG_ON(list_empty(&con->out_queue));
1239 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1241 BUG_ON(m->con != con);
1243 /* put message on sent list */
1245 list_move_tail(&m->list_head, &con->out_sent);
1248 * only assign outgoing seq # if we haven't sent this message
1249 * yet. if it is requeued, resend with it's original seq.
1251 if (m->needs_out_seq) {
1252 m->hdr.seq = cpu_to_le64(++con->out_seq);
1253 m->needs_out_seq = false;
1255 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1257 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1258 m, con->out_seq, le16_to_cpu(m->hdr.type),
1259 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1261 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1263 /* tag + hdr + front + middle */
1264 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1265 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1266 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1269 con_out_kvec_add(con, m->middle->vec.iov_len,
1270 m->middle->vec.iov_base);
1272 /* fill in crc (except data pages), footer */
1273 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1274 con->out_msg->hdr.crc = cpu_to_le32(crc);
1275 con->out_msg->footer.flags = 0;
1277 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1278 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1280 crc = crc32c(0, m->middle->vec.iov_base,
1281 m->middle->vec.iov_len);
1282 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1284 con->out_msg->footer.middle_crc = 0;
1285 dout("%s front_crc %u middle_crc %u\n", __func__,
1286 le32_to_cpu(con->out_msg->footer.front_crc),
1287 le32_to_cpu(con->out_msg->footer.middle_crc));
1289 /* is there a data payload? */
1290 con->out_msg->footer.data_crc = 0;
1291 if (m->data_length) {
1292 prepare_message_data(con->out_msg, m->data_length);
1293 con->out_more = 1; /* data + footer will follow */
1295 /* no, queue up footer too and be done */
1296 prepare_write_message_footer(con);
1299 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1305 static void prepare_write_ack(struct ceph_connection *con)
1307 dout("prepare_write_ack %p %llu -> %llu\n", con,
1308 con->in_seq_acked, con->in_seq);
1309 con->in_seq_acked = con->in_seq;
1311 con_out_kvec_reset(con);
1313 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1315 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1316 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1317 &con->out_temp_ack);
1319 con->out_more = 1; /* more will follow.. eventually.. */
1320 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1324 * Prepare to share the seq during handshake
1326 static void prepare_write_seq(struct ceph_connection *con)
1328 dout("prepare_write_seq %p %llu -> %llu\n", con,
1329 con->in_seq_acked, con->in_seq);
1330 con->in_seq_acked = con->in_seq;
1332 con_out_kvec_reset(con);
1334 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1335 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1336 &con->out_temp_ack);
1338 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1342 * Prepare to write keepalive byte.
1344 static void prepare_write_keepalive(struct ceph_connection *con)
1346 dout("prepare_write_keepalive %p\n", con);
1347 con_out_kvec_reset(con);
1348 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1349 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1353 * Connection negotiation.
1356 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1359 struct ceph_auth_handshake *auth;
1361 if (!con->ops->get_authorizer) {
1362 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1363 con->out_connect.authorizer_len = 0;
1367 /* Can't hold the mutex while getting authorizer */
1368 mutex_unlock(&con->mutex);
1369 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1370 mutex_lock(&con->mutex);
1374 if (con->state != CON_STATE_NEGOTIATING)
1375 return ERR_PTR(-EAGAIN);
1377 con->auth_reply_buf = auth->authorizer_reply_buf;
1378 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1383 * We connected to a peer and are saying hello.
1385 static void prepare_write_banner(struct ceph_connection *con)
1387 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1388 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1389 &con->msgr->my_enc_addr);
1392 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1395 static int prepare_write_connect(struct ceph_connection *con)
1397 unsigned int global_seq = get_global_seq(con->msgr, 0);
1400 struct ceph_auth_handshake *auth;
1402 switch (con->peer_name.type) {
1403 case CEPH_ENTITY_TYPE_MON:
1404 proto = CEPH_MONC_PROTOCOL;
1406 case CEPH_ENTITY_TYPE_OSD:
1407 proto = CEPH_OSDC_PROTOCOL;
1409 case CEPH_ENTITY_TYPE_MDS:
1410 proto = CEPH_MDSC_PROTOCOL;
1416 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1417 con->connect_seq, global_seq, proto);
1419 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1420 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1421 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1422 con->out_connect.global_seq = cpu_to_le32(global_seq);
1423 con->out_connect.protocol_version = cpu_to_le32(proto);
1424 con->out_connect.flags = 0;
1426 auth_proto = CEPH_AUTH_UNKNOWN;
1427 auth = get_connect_authorizer(con, &auth_proto);
1429 return PTR_ERR(auth);
1431 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1432 con->out_connect.authorizer_len = auth ?
1433 cpu_to_le32(auth->authorizer_buf_len) : 0;
1435 con_out_kvec_add(con, sizeof (con->out_connect),
1437 if (auth && auth->authorizer_buf_len)
1438 con_out_kvec_add(con, auth->authorizer_buf_len,
1439 auth->authorizer_buf);
1442 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1448 * write as much of pending kvecs to the socket as we can.
1450 * 0 -> socket full, but more to do
1453 static int write_partial_kvec(struct ceph_connection *con)
1457 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1458 while (con->out_kvec_bytes > 0) {
1459 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1460 con->out_kvec_left, con->out_kvec_bytes,
1464 con->out_kvec_bytes -= ret;
1465 if (con->out_kvec_bytes == 0)
1468 /* account for full iov entries consumed */
1469 while (ret >= con->out_kvec_cur->iov_len) {
1470 BUG_ON(!con->out_kvec_left);
1471 ret -= con->out_kvec_cur->iov_len;
1472 con->out_kvec_cur++;
1473 con->out_kvec_left--;
1475 /* and for a partially-consumed entry */
1477 con->out_kvec_cur->iov_len -= ret;
1478 con->out_kvec_cur->iov_base += ret;
1481 con->out_kvec_left = 0;
1482 con->out_kvec_is_msg = false;
1485 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1486 con->out_kvec_bytes, con->out_kvec_left, ret);
1487 return ret; /* done! */
1490 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1491 unsigned int page_offset,
1492 unsigned int length)
1497 BUG_ON(kaddr == NULL);
1498 crc = crc32c(crc, kaddr + page_offset, length);
1504 * Write as much message data payload as we can. If we finish, queue
1506 * 1 -> done, footer is now queued in out_kvec[].
1507 * 0 -> socket full, but more to do
1510 static int write_partial_message_data(struct ceph_connection *con)
1512 struct ceph_msg *msg = con->out_msg;
1513 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1514 bool do_datacrc = !con->msgr->nocrc;
1517 dout("%s %p msg %p\n", __func__, con, msg);
1519 if (list_empty(&msg->data))
1523 * Iterate through each page that contains data to be
1524 * written, and send as much as possible for each.
1526 * If we are calculating the data crc (the default), we will
1527 * need to map the page. If we have no pages, they have
1528 * been revoked, so use the zero page.
1530 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1531 while (cursor->resid) {
1539 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1541 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1542 length, last_piece);
1545 msg->footer.data_crc = cpu_to_le32(crc);
1549 if (do_datacrc && cursor->need_crc)
1550 crc = ceph_crc32c_page(crc, page, page_offset, length);
1551 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1554 dout("%s %p msg %p done\n", __func__, con, msg);
1556 /* prepare and queue up footer, too */
1558 msg->footer.data_crc = cpu_to_le32(crc);
1560 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1561 con_out_kvec_reset(con);
1562 prepare_write_message_footer(con);
1564 return 1; /* must return > 0 to indicate success */
1570 static int write_partial_skip(struct ceph_connection *con)
1574 while (con->out_skip > 0) {
1575 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1577 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1580 con->out_skip -= ret;
1588 * Prepare to read connection handshake, or an ack.
1590 static void prepare_read_banner(struct ceph_connection *con)
1592 dout("prepare_read_banner %p\n", con);
1593 con->in_base_pos = 0;
1596 static void prepare_read_connect(struct ceph_connection *con)
1598 dout("prepare_read_connect %p\n", con);
1599 con->in_base_pos = 0;
1602 static void prepare_read_ack(struct ceph_connection *con)
1604 dout("prepare_read_ack %p\n", con);
1605 con->in_base_pos = 0;
1608 static void prepare_read_seq(struct ceph_connection *con)
1610 dout("prepare_read_seq %p\n", con);
1611 con->in_base_pos = 0;
1612 con->in_tag = CEPH_MSGR_TAG_SEQ;
1615 static void prepare_read_tag(struct ceph_connection *con)
1617 dout("prepare_read_tag %p\n", con);
1618 con->in_base_pos = 0;
1619 con->in_tag = CEPH_MSGR_TAG_READY;
1623 * Prepare to read a message.
1625 static int prepare_read_message(struct ceph_connection *con)
1627 dout("prepare_read_message %p\n", con);
1628 BUG_ON(con->in_msg != NULL);
1629 con->in_base_pos = 0;
1630 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1635 static int read_partial(struct ceph_connection *con,
1636 int end, int size, void *object)
1638 while (con->in_base_pos < end) {
1639 int left = end - con->in_base_pos;
1640 int have = size - left;
1641 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1644 con->in_base_pos += ret;
1651 * Read all or part of the connect-side handshake on a new connection
1653 static int read_partial_banner(struct ceph_connection *con)
1659 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1662 size = strlen(CEPH_BANNER);
1664 ret = read_partial(con, end, size, con->in_banner);
1668 size = sizeof (con->actual_peer_addr);
1670 ret = read_partial(con, end, size, &con->actual_peer_addr);
1674 size = sizeof (con->peer_addr_for_me);
1676 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1684 static int read_partial_connect(struct ceph_connection *con)
1690 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1692 size = sizeof (con->in_reply);
1694 ret = read_partial(con, end, size, &con->in_reply);
1698 size = le32_to_cpu(con->in_reply.authorizer_len);
1700 ret = read_partial(con, end, size, con->auth_reply_buf);
1704 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1705 con, (int)con->in_reply.tag,
1706 le32_to_cpu(con->in_reply.connect_seq),
1707 le32_to_cpu(con->in_reply.global_seq));
1714 * Verify the hello banner looks okay.
1716 static int verify_hello(struct ceph_connection *con)
1718 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1719 pr_err("connect to %s got bad banner\n",
1720 ceph_pr_addr(&con->peer_addr.in_addr));
1721 con->error_msg = "protocol error, bad banner";
1727 static bool addr_is_blank(struct sockaddr_storage *ss)
1729 switch (ss->ss_family) {
1731 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1734 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1735 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1736 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1737 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1742 static int addr_port(struct sockaddr_storage *ss)
1744 switch (ss->ss_family) {
1746 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1748 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1753 static void addr_set_port(struct sockaddr_storage *ss, int p)
1755 switch (ss->ss_family) {
1757 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1760 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1766 * Unlike other *_pton function semantics, zero indicates success.
1768 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1769 char delim, const char **ipend)
1771 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1772 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1774 memset(ss, 0, sizeof(*ss));
1776 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1777 ss->ss_family = AF_INET;
1781 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1782 ss->ss_family = AF_INET6;
1790 * Extract hostname string and resolve using kernel DNS facility.
1792 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1793 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1794 struct sockaddr_storage *ss, char delim, const char **ipend)
1796 const char *end, *delim_p;
1797 char *colon_p, *ip_addr = NULL;
1801 * The end of the hostname occurs immediately preceding the delimiter or
1802 * the port marker (':') where the delimiter takes precedence.
1804 delim_p = memchr(name, delim, namelen);
1805 colon_p = memchr(name, ':', namelen);
1807 if (delim_p && colon_p)
1808 end = delim_p < colon_p ? delim_p : colon_p;
1809 else if (!delim_p && colon_p)
1813 if (!end) /* case: hostname:/ */
1814 end = name + namelen;
1820 /* do dns_resolve upcall */
1821 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1823 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1831 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1832 ret, ret ? "failed" : ceph_pr_addr(ss));
1837 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1838 struct sockaddr_storage *ss, char delim, const char **ipend)
1845 * Parse a server name (IP or hostname). If a valid IP address is not found
1846 * then try to extract a hostname to resolve using userspace DNS upcall.
1848 static int ceph_parse_server_name(const char *name, size_t namelen,
1849 struct sockaddr_storage *ss, char delim, const char **ipend)
1853 ret = ceph_pton(name, namelen, ss, delim, ipend);
1855 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1861 * Parse an ip[:port] list into an addr array. Use the default
1862 * monitor port if a port isn't specified.
1864 int ceph_parse_ips(const char *c, const char *end,
1865 struct ceph_entity_addr *addr,
1866 int max_count, int *count)
1868 int i, ret = -EINVAL;
1871 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1872 for (i = 0; i < max_count; i++) {
1874 struct sockaddr_storage *ss = &addr[i].in_addr;
1883 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1892 dout("missing matching ']'\n");
1899 if (p < end && *p == ':') {
1902 while (p < end && *p >= '0' && *p <= '9') {
1903 port = (port * 10) + (*p - '0');
1907 port = CEPH_MON_PORT;
1908 else if (port > 65535)
1911 port = CEPH_MON_PORT;
1914 addr_set_port(ss, port);
1916 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1933 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1936 EXPORT_SYMBOL(ceph_parse_ips);
1938 static int process_banner(struct ceph_connection *con)
1940 dout("process_banner on %p\n", con);
1942 if (verify_hello(con) < 0)
1945 ceph_decode_addr(&con->actual_peer_addr);
1946 ceph_decode_addr(&con->peer_addr_for_me);
1949 * Make sure the other end is who we wanted. note that the other
1950 * end may not yet know their ip address, so if it's 0.0.0.0, give
1951 * them the benefit of the doubt.
1953 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1954 sizeof(con->peer_addr)) != 0 &&
1955 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1956 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1957 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1958 ceph_pr_addr(&con->peer_addr.in_addr),
1959 (int)le32_to_cpu(con->peer_addr.nonce),
1960 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1961 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1962 con->error_msg = "wrong peer at address";
1967 * did we learn our address?
1969 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1970 int port = addr_port(&con->msgr->inst.addr.in_addr);
1972 memcpy(&con->msgr->inst.addr.in_addr,
1973 &con->peer_addr_for_me.in_addr,
1974 sizeof(con->peer_addr_for_me.in_addr));
1975 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1976 encode_my_addr(con->msgr);
1977 dout("process_banner learned my addr is %s\n",
1978 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1984 static int process_connect(struct ceph_connection *con)
1986 u64 sup_feat = con->msgr->supported_features;
1987 u64 req_feat = con->msgr->required_features;
1988 u64 server_feat = ceph_sanitize_features(
1989 le64_to_cpu(con->in_reply.features));
1992 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1994 switch (con->in_reply.tag) {
1995 case CEPH_MSGR_TAG_FEATURES:
1996 pr_err("%s%lld %s feature set mismatch,"
1997 " my %llx < server's %llx, missing %llx\n",
1998 ENTITY_NAME(con->peer_name),
1999 ceph_pr_addr(&con->peer_addr.in_addr),
2000 sup_feat, server_feat, server_feat & ~sup_feat);
2001 con->error_msg = "missing required protocol features";
2002 reset_connection(con);
2005 case CEPH_MSGR_TAG_BADPROTOVER:
2006 pr_err("%s%lld %s protocol version mismatch,"
2007 " my %d != server's %d\n",
2008 ENTITY_NAME(con->peer_name),
2009 ceph_pr_addr(&con->peer_addr.in_addr),
2010 le32_to_cpu(con->out_connect.protocol_version),
2011 le32_to_cpu(con->in_reply.protocol_version));
2012 con->error_msg = "protocol version mismatch";
2013 reset_connection(con);
2016 case CEPH_MSGR_TAG_BADAUTHORIZER:
2018 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2020 if (con->auth_retry == 2) {
2021 con->error_msg = "connect authorization failure";
2024 con_out_kvec_reset(con);
2025 ret = prepare_write_connect(con);
2028 prepare_read_connect(con);
2031 case CEPH_MSGR_TAG_RESETSESSION:
2033 * If we connected with a large connect_seq but the peer
2034 * has no record of a session with us (no connection, or
2035 * connect_seq == 0), they will send RESETSESION to indicate
2036 * that they must have reset their session, and may have
2039 dout("process_connect got RESET peer seq %u\n",
2040 le32_to_cpu(con->in_reply.connect_seq));
2041 pr_err("%s%lld %s connection reset\n",
2042 ENTITY_NAME(con->peer_name),
2043 ceph_pr_addr(&con->peer_addr.in_addr));
2044 reset_connection(con);
2045 con_out_kvec_reset(con);
2046 ret = prepare_write_connect(con);
2049 prepare_read_connect(con);
2051 /* Tell ceph about it. */
2052 mutex_unlock(&con->mutex);
2053 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2054 if (con->ops->peer_reset)
2055 con->ops->peer_reset(con);
2056 mutex_lock(&con->mutex);
2057 if (con->state != CON_STATE_NEGOTIATING)
2061 case CEPH_MSGR_TAG_RETRY_SESSION:
2063 * If we sent a smaller connect_seq than the peer has, try
2064 * again with a larger value.
2066 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2067 le32_to_cpu(con->out_connect.connect_seq),
2068 le32_to_cpu(con->in_reply.connect_seq));
2069 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2070 con_out_kvec_reset(con);
2071 ret = prepare_write_connect(con);
2074 prepare_read_connect(con);
2077 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2079 * If we sent a smaller global_seq than the peer has, try
2080 * again with a larger value.
2082 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2083 con->peer_global_seq,
2084 le32_to_cpu(con->in_reply.global_seq));
2085 get_global_seq(con->msgr,
2086 le32_to_cpu(con->in_reply.global_seq));
2087 con_out_kvec_reset(con);
2088 ret = prepare_write_connect(con);
2091 prepare_read_connect(con);
2094 case CEPH_MSGR_TAG_SEQ:
2095 case CEPH_MSGR_TAG_READY:
2096 if (req_feat & ~server_feat) {
2097 pr_err("%s%lld %s protocol feature mismatch,"
2098 " my required %llx > server's %llx, need %llx\n",
2099 ENTITY_NAME(con->peer_name),
2100 ceph_pr_addr(&con->peer_addr.in_addr),
2101 req_feat, server_feat, req_feat & ~server_feat);
2102 con->error_msg = "missing required protocol features";
2103 reset_connection(con);
2107 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2108 con->state = CON_STATE_OPEN;
2109 con->auth_retry = 0; /* we authenticated; clear flag */
2110 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2112 con->peer_features = server_feat;
2113 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2114 con->peer_global_seq,
2115 le32_to_cpu(con->in_reply.connect_seq),
2117 WARN_ON(con->connect_seq !=
2118 le32_to_cpu(con->in_reply.connect_seq));
2120 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2121 con_flag_set(con, CON_FLAG_LOSSYTX);
2123 con->delay = 0; /* reset backoff memory */
2125 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2126 prepare_write_seq(con);
2127 prepare_read_seq(con);
2129 prepare_read_tag(con);
2133 case CEPH_MSGR_TAG_WAIT:
2135 * If there is a connection race (we are opening
2136 * connections to each other), one of us may just have
2137 * to WAIT. This shouldn't happen if we are the
2140 pr_err("process_connect got WAIT as client\n");
2141 con->error_msg = "protocol error, got WAIT as client";
2145 pr_err("connect protocol error, will retry\n");
2146 con->error_msg = "protocol error, garbage tag during connect";
2154 * read (part of) an ack
2156 static int read_partial_ack(struct ceph_connection *con)
2158 int size = sizeof (con->in_temp_ack);
2161 return read_partial(con, end, size, &con->in_temp_ack);
2165 * We can finally discard anything that's been acked.
2167 static void process_ack(struct ceph_connection *con)
2170 u64 ack = le64_to_cpu(con->in_temp_ack);
2173 while (!list_empty(&con->out_sent)) {
2174 m = list_first_entry(&con->out_sent, struct ceph_msg,
2176 seq = le64_to_cpu(m->hdr.seq);
2179 dout("got ack for seq %llu type %d at %p\n", seq,
2180 le16_to_cpu(m->hdr.type), m);
2181 m->ack_stamp = jiffies;
2184 prepare_read_tag(con);
2188 static int read_partial_message_section(struct ceph_connection *con,
2189 struct kvec *section,
2190 unsigned int sec_len, u32 *crc)
2196 while (section->iov_len < sec_len) {
2197 BUG_ON(section->iov_base == NULL);
2198 left = sec_len - section->iov_len;
2199 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2200 section->iov_len, left);
2203 section->iov_len += ret;
2205 if (section->iov_len == sec_len)
2206 *crc = crc32c(0, section->iov_base, section->iov_len);
2211 static int read_partial_msg_data(struct ceph_connection *con)
2213 struct ceph_msg *msg = con->in_msg;
2214 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2215 const bool do_datacrc = !con->msgr->nocrc;
2223 if (list_empty(&msg->data))
2227 crc = con->in_data_crc;
2228 while (cursor->resid) {
2229 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2231 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2234 con->in_data_crc = crc;
2240 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2241 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2244 con->in_data_crc = crc;
2246 return 1; /* must return > 0 to indicate success */
2250 * read (part of) a message.
2252 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2254 static int read_partial_message(struct ceph_connection *con)
2256 struct ceph_msg *m = con->in_msg;
2260 unsigned int front_len, middle_len, data_len;
2261 bool do_datacrc = !con->msgr->nocrc;
2262 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2266 dout("read_partial_message con %p msg %p\n", con, m);
2269 size = sizeof (con->in_hdr);
2271 ret = read_partial(con, end, size, &con->in_hdr);
2275 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2276 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2277 pr_err("read_partial_message bad hdr "
2278 " crc %u != expected %u\n",
2279 crc, con->in_hdr.crc);
2283 front_len = le32_to_cpu(con->in_hdr.front_len);
2284 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2286 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2287 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2289 data_len = le32_to_cpu(con->in_hdr.data_len);
2290 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2294 seq = le64_to_cpu(con->in_hdr.seq);
2295 if ((s64)seq - (s64)con->in_seq < 1) {
2296 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2297 ENTITY_NAME(con->peer_name),
2298 ceph_pr_addr(&con->peer_addr.in_addr),
2299 seq, con->in_seq + 1);
2300 con->in_base_pos = -front_len - middle_len - data_len -
2302 con->in_tag = CEPH_MSGR_TAG_READY;
2304 } else if ((s64)seq - (s64)con->in_seq > 1) {
2305 pr_err("read_partial_message bad seq %lld expected %lld\n",
2306 seq, con->in_seq + 1);
2307 con->error_msg = "bad message sequence # for incoming message";
2311 /* allocate message? */
2315 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2316 front_len, data_len);
2317 ret = ceph_con_in_msg_alloc(con, &skip);
2321 BUG_ON(!con->in_msg ^ skip);
2322 if (con->in_msg && data_len > con->in_msg->data_length) {
2323 pr_warn("%s skipping long message (%u > %zd)\n",
2324 __func__, data_len, con->in_msg->data_length);
2325 ceph_msg_put(con->in_msg);
2330 /* skip this message */
2331 dout("alloc_msg said skip message\n");
2332 con->in_base_pos = -front_len - middle_len - data_len -
2334 con->in_tag = CEPH_MSGR_TAG_READY;
2339 BUG_ON(!con->in_msg);
2340 BUG_ON(con->in_msg->con != con);
2342 m->front.iov_len = 0; /* haven't read it yet */
2344 m->middle->vec.iov_len = 0;
2346 /* prepare for data payload, if any */
2349 prepare_message_data(con->in_msg, data_len);
2353 ret = read_partial_message_section(con, &m->front, front_len,
2354 &con->in_front_crc);
2360 ret = read_partial_message_section(con, &m->middle->vec,
2362 &con->in_middle_crc);
2369 ret = read_partial_msg_data(con);
2376 size = sizeof(m->footer);
2378 size = sizeof(m->old_footer);
2381 ret = read_partial(con, end, size, &m->footer);
2386 m->footer.flags = m->old_footer.flags;
2390 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2391 m, front_len, m->footer.front_crc, middle_len,
2392 m->footer.middle_crc, data_len, m->footer.data_crc);
2395 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2396 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2397 m, con->in_front_crc, m->footer.front_crc);
2400 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2401 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2402 m, con->in_middle_crc, m->footer.middle_crc);
2406 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2407 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2408 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2409 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2413 if (need_sign && con->ops->check_message_signature &&
2414 con->ops->check_message_signature(con, m)) {
2415 pr_err("read_partial_message %p signature check failed\n", m);
2419 return 1; /* done! */
2423 * Process message. This happens in the worker thread. The callback should
2424 * be careful not to do anything that waits on other incoming messages or it
2427 static void process_message(struct ceph_connection *con)
2429 struct ceph_msg *msg;
2431 BUG_ON(con->in_msg->con != con);
2432 con->in_msg->con = NULL;
2437 /* if first message, set peer_name */
2438 if (con->peer_name.type == 0)
2439 con->peer_name = msg->hdr.src;
2442 mutex_unlock(&con->mutex);
2444 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2445 msg, le64_to_cpu(msg->hdr.seq),
2446 ENTITY_NAME(msg->hdr.src),
2447 le16_to_cpu(msg->hdr.type),
2448 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2449 le32_to_cpu(msg->hdr.front_len),
2450 le32_to_cpu(msg->hdr.data_len),
2451 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2452 con->ops->dispatch(con, msg);
2454 mutex_lock(&con->mutex);
2459 * Write something to the socket. Called in a worker thread when the
2460 * socket appears to be writeable and we have something ready to send.
2462 static int try_write(struct ceph_connection *con)
2466 dout("try_write start %p state %lu\n", con, con->state);
2469 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2471 /* open the socket first? */
2472 if (con->state == CON_STATE_PREOPEN) {
2474 con->state = CON_STATE_CONNECTING;
2476 con_out_kvec_reset(con);
2477 prepare_write_banner(con);
2478 prepare_read_banner(con);
2480 BUG_ON(con->in_msg);
2481 con->in_tag = CEPH_MSGR_TAG_READY;
2482 dout("try_write initiating connect on %p new state %lu\n",
2484 ret = ceph_tcp_connect(con);
2486 con->error_msg = "connect error";
2492 /* kvec data queued? */
2493 if (con->out_skip) {
2494 ret = write_partial_skip(con);
2498 if (con->out_kvec_left) {
2499 ret = write_partial_kvec(con);
2506 if (con->out_msg_done) {
2507 ceph_msg_put(con->out_msg);
2508 con->out_msg = NULL; /* we're done with this one */
2512 ret = write_partial_message_data(con);
2514 goto more_kvec; /* we need to send the footer, too! */
2518 dout("try_write write_partial_message_data err %d\n",
2525 if (con->state == CON_STATE_OPEN) {
2526 /* is anything else pending? */
2527 if (!list_empty(&con->out_queue)) {
2528 prepare_write_message(con);
2531 if (con->in_seq > con->in_seq_acked) {
2532 prepare_write_ack(con);
2535 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2536 prepare_write_keepalive(con);
2541 /* Nothing to do! */
2542 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2543 dout("try_write nothing else to write.\n");
2546 dout("try_write done on %p ret %d\n", con, ret);
2553 * Read what we can from the socket.
2555 static int try_read(struct ceph_connection *con)
2560 dout("try_read start on %p state %lu\n", con, con->state);
2561 if (con->state != CON_STATE_CONNECTING &&
2562 con->state != CON_STATE_NEGOTIATING &&
2563 con->state != CON_STATE_OPEN)
2568 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2571 if (con->state == CON_STATE_CONNECTING) {
2572 dout("try_read connecting\n");
2573 ret = read_partial_banner(con);
2576 ret = process_banner(con);
2580 con->state = CON_STATE_NEGOTIATING;
2583 * Received banner is good, exchange connection info.
2584 * Do not reset out_kvec, as sending our banner raced
2585 * with receiving peer banner after connect completed.
2587 ret = prepare_write_connect(con);
2590 prepare_read_connect(con);
2592 /* Send connection info before awaiting response */
2596 if (con->state == CON_STATE_NEGOTIATING) {
2597 dout("try_read negotiating\n");
2598 ret = read_partial_connect(con);
2601 ret = process_connect(con);
2607 WARN_ON(con->state != CON_STATE_OPEN);
2609 if (con->in_base_pos < 0) {
2611 * skipping + discarding content.
2613 * FIXME: there must be a better way to do this!
2615 static char buf[SKIP_BUF_SIZE];
2616 int skip = min((int) sizeof (buf), -con->in_base_pos);
2618 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2619 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2622 con->in_base_pos += ret;
2623 if (con->in_base_pos)
2626 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2630 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2633 dout("try_read got tag %d\n", (int)con->in_tag);
2634 switch (con->in_tag) {
2635 case CEPH_MSGR_TAG_MSG:
2636 prepare_read_message(con);
2638 case CEPH_MSGR_TAG_ACK:
2639 prepare_read_ack(con);
2641 case CEPH_MSGR_TAG_CLOSE:
2642 con_close_socket(con);
2643 con->state = CON_STATE_CLOSED;
2649 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2650 ret = read_partial_message(con);
2654 con->error_msg = "bad crc";
2658 con->error_msg = "io error";
2663 if (con->in_tag == CEPH_MSGR_TAG_READY)
2665 process_message(con);
2666 if (con->state == CON_STATE_OPEN)
2667 prepare_read_tag(con);
2670 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2671 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2673 * the final handshake seq exchange is semantically
2674 * equivalent to an ACK
2676 ret = read_partial_ack(con);
2684 dout("try_read done on %p ret %d\n", con, ret);
2688 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2689 con->error_msg = "protocol error, garbage tag";
2696 * Atomically queue work on a connection after the specified delay.
2697 * Bump @con reference to avoid races with connection teardown.
2698 * Returns 0 if work was queued, or an error code otherwise.
2700 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2702 if (!con->ops->get(con)) {
2703 dout("%s %p ref count 0\n", __func__, con);
2707 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2708 dout("%s %p - already queued\n", __func__, con);
2713 dout("%s %p %lu\n", __func__, con, delay);
2717 static void queue_con(struct ceph_connection *con)
2719 (void) queue_con_delay(con, 0);
2722 static void cancel_con(struct ceph_connection *con)
2724 if (cancel_delayed_work(&con->work)) {
2725 dout("%s %p\n", __func__, con);
2730 static bool con_sock_closed(struct ceph_connection *con)
2732 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2736 case CON_STATE_ ## x: \
2737 con->error_msg = "socket closed (con state " #x ")"; \
2740 switch (con->state) {
2748 pr_warn("%s con %p unrecognized state %lu\n",
2749 __func__, con, con->state);
2750 con->error_msg = "unrecognized con state";
2759 static bool con_backoff(struct ceph_connection *con)
2763 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2766 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2768 dout("%s: con %p FAILED to back off %lu\n", __func__,
2770 BUG_ON(ret == -ENOENT);
2771 con_flag_set(con, CON_FLAG_BACKOFF);
2777 /* Finish fault handling; con->mutex must *not* be held here */
2779 static void con_fault_finish(struct ceph_connection *con)
2782 * in case we faulted due to authentication, invalidate our
2783 * current tickets so that we can get new ones.
2785 if (con->auth_retry && con->ops->invalidate_authorizer) {
2786 dout("calling invalidate_authorizer()\n");
2787 con->ops->invalidate_authorizer(con);
2790 if (con->ops->fault)
2791 con->ops->fault(con);
2795 * Do some work on a connection. Drop a connection ref when we're done.
2797 static void con_work(struct work_struct *work)
2799 struct ceph_connection *con = container_of(work, struct ceph_connection,
2801 unsigned long pflags = current->flags;
2804 current->flags |= PF_MEMALLOC;
2806 mutex_lock(&con->mutex);
2810 if ((fault = con_sock_closed(con))) {
2811 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2814 if (con_backoff(con)) {
2815 dout("%s: con %p BACKOFF\n", __func__, con);
2818 if (con->state == CON_STATE_STANDBY) {
2819 dout("%s: con %p STANDBY\n", __func__, con);
2822 if (con->state == CON_STATE_CLOSED) {
2823 dout("%s: con %p CLOSED\n", __func__, con);
2827 if (con->state == CON_STATE_PREOPEN) {
2828 dout("%s: con %p PREOPEN\n", __func__, con);
2832 ret = try_read(con);
2836 con->error_msg = "socket error on read";
2841 ret = try_write(con);
2845 con->error_msg = "socket error on write";
2849 break; /* If we make it to here, we're done */
2853 mutex_unlock(&con->mutex);
2856 con_fault_finish(con);
2860 tsk_restore_flags(current, pflags, PF_MEMALLOC);
2864 * Generic error/fault handler. A retry mechanism is used with
2865 * exponential backoff
2867 static void con_fault(struct ceph_connection *con)
2869 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2870 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2871 dout("fault %p state %lu to peer %s\n",
2872 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2874 WARN_ON(con->state != CON_STATE_CONNECTING &&
2875 con->state != CON_STATE_NEGOTIATING &&
2876 con->state != CON_STATE_OPEN);
2878 con_close_socket(con);
2880 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2881 dout("fault on LOSSYTX channel, marking CLOSED\n");
2882 con->state = CON_STATE_CLOSED;
2887 BUG_ON(con->in_msg->con != con);
2888 con->in_msg->con = NULL;
2889 ceph_msg_put(con->in_msg);
2894 /* Requeue anything that hasn't been acked */
2895 list_splice_init(&con->out_sent, &con->out_queue);
2897 /* If there are no messages queued or keepalive pending, place
2898 * the connection in a STANDBY state */
2899 if (list_empty(&con->out_queue) &&
2900 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2901 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2902 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2903 con->state = CON_STATE_STANDBY;
2905 /* retry after a delay. */
2906 con->state = CON_STATE_PREOPEN;
2907 if (con->delay == 0)
2908 con->delay = BASE_DELAY_INTERVAL;
2909 else if (con->delay < MAX_DELAY_INTERVAL)
2911 con_flag_set(con, CON_FLAG_BACKOFF);
2919 * initialize a new messenger instance
2921 void ceph_messenger_init(struct ceph_messenger *msgr,
2922 struct ceph_entity_addr *myaddr,
2923 u64 supported_features,
2924 u64 required_features,
2927 msgr->supported_features = supported_features;
2928 msgr->required_features = required_features;
2930 spin_lock_init(&msgr->global_seq_lock);
2933 msgr->inst.addr = *myaddr;
2935 /* select a random nonce */
2936 msgr->inst.addr.type = 0;
2937 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2938 encode_my_addr(msgr);
2939 msgr->nocrc = nocrc;
2941 atomic_set(&msgr->stopping, 0);
2943 dout("%s %p\n", __func__, msgr);
2945 EXPORT_SYMBOL(ceph_messenger_init);
2947 static void clear_standby(struct ceph_connection *con)
2949 /* come back from STANDBY? */
2950 if (con->state == CON_STATE_STANDBY) {
2951 dout("clear_standby %p and ++connect_seq\n", con);
2952 con->state = CON_STATE_PREOPEN;
2954 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2955 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2960 * Queue up an outgoing message on the given connection.
2962 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2965 msg->hdr.src = con->msgr->inst.name;
2966 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2967 msg->needs_out_seq = true;
2969 mutex_lock(&con->mutex);
2971 if (con->state == CON_STATE_CLOSED) {
2972 dout("con_send %p closed, dropping %p\n", con, msg);
2974 mutex_unlock(&con->mutex);
2978 BUG_ON(msg->con != NULL);
2979 msg->con = con->ops->get(con);
2980 BUG_ON(msg->con == NULL);
2982 BUG_ON(!list_empty(&msg->list_head));
2983 list_add_tail(&msg->list_head, &con->out_queue);
2984 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2985 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2986 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2987 le32_to_cpu(msg->hdr.front_len),
2988 le32_to_cpu(msg->hdr.middle_len),
2989 le32_to_cpu(msg->hdr.data_len));
2992 mutex_unlock(&con->mutex);
2994 /* if there wasn't anything waiting to send before, queue
2996 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2999 EXPORT_SYMBOL(ceph_con_send);
3002 * Revoke a message that was previously queued for send
3004 void ceph_msg_revoke(struct ceph_msg *msg)
3006 struct ceph_connection *con = msg->con;
3009 return; /* Message not in our possession */
3011 mutex_lock(&con->mutex);
3012 if (!list_empty(&msg->list_head)) {
3013 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3014 list_del_init(&msg->list_head);
3015 BUG_ON(msg->con == NULL);
3016 msg->con->ops->put(msg->con);
3022 if (con->out_msg == msg) {
3023 dout("%s %p msg %p - was sending\n", __func__, con, msg);
3024 con->out_msg = NULL;
3025 if (con->out_kvec_is_msg) {
3026 con->out_skip = con->out_kvec_bytes;
3027 con->out_kvec_is_msg = false;
3033 mutex_unlock(&con->mutex);
3037 * Revoke a message that we may be reading data into
3039 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3041 struct ceph_connection *con;
3043 BUG_ON(msg == NULL);
3045 dout("%s msg %p null con\n", __func__, msg);
3047 return; /* Message not in our possession */
3051 mutex_lock(&con->mutex);
3052 if (con->in_msg == msg) {
3053 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3054 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3055 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3057 /* skip rest of message */
3058 dout("%s %p msg %p revoked\n", __func__, con, msg);
3059 con->in_base_pos = con->in_base_pos -
3060 sizeof(struct ceph_msg_header) -
3064 sizeof(struct ceph_msg_footer);
3065 ceph_msg_put(con->in_msg);
3067 con->in_tag = CEPH_MSGR_TAG_READY;
3070 dout("%s %p in_msg %p msg %p no-op\n",
3071 __func__, con, con->in_msg, msg);
3073 mutex_unlock(&con->mutex);
3077 * Queue a keepalive byte to ensure the tcp connection is alive.
3079 void ceph_con_keepalive(struct ceph_connection *con)
3081 dout("con_keepalive %p\n", con);
3082 mutex_lock(&con->mutex);
3084 mutex_unlock(&con->mutex);
3085 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3086 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3089 EXPORT_SYMBOL(ceph_con_keepalive);
3091 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3093 struct ceph_msg_data *data;
3095 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3098 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3101 INIT_LIST_HEAD(&data->links);
3106 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3111 WARN_ON(!list_empty(&data->links));
3112 if (data->type == CEPH_MSG_DATA_PAGELIST)
3113 ceph_pagelist_release(data->pagelist);
3114 kmem_cache_free(ceph_msg_data_cache, data);
3117 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3118 size_t length, size_t alignment)
3120 struct ceph_msg_data *data;
3125 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3127 data->pages = pages;
3128 data->length = length;
3129 data->alignment = alignment & ~PAGE_MASK;
3131 list_add_tail(&data->links, &msg->data);
3132 msg->data_length += length;
3134 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3136 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3137 struct ceph_pagelist *pagelist)
3139 struct ceph_msg_data *data;
3142 BUG_ON(!pagelist->length);
3144 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3146 data->pagelist = pagelist;
3148 list_add_tail(&data->links, &msg->data);
3149 msg->data_length += pagelist->length;
3151 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3154 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3157 struct ceph_msg_data *data;
3161 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3164 data->bio_length = length;
3166 list_add_tail(&data->links, &msg->data);
3167 msg->data_length += length;
3169 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3170 #endif /* CONFIG_BLOCK */
3173 * construct a new message with given type, size
3174 * the new msg has a ref count of 1.
3176 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3181 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3185 m->hdr.type = cpu_to_le16(type);
3186 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3187 m->hdr.front_len = cpu_to_le32(front_len);
3189 INIT_LIST_HEAD(&m->list_head);
3190 kref_init(&m->kref);
3191 INIT_LIST_HEAD(&m->data);
3195 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3196 if (m->front.iov_base == NULL) {
3197 dout("ceph_msg_new can't allocate %d bytes\n",
3202 m->front.iov_base = NULL;
3204 m->front_alloc_len = m->front.iov_len = front_len;
3206 dout("ceph_msg_new %p front %d\n", m, front_len);
3213 pr_err("msg_new can't create type %d front %d\n", type,
3217 dout("msg_new can't create type %d front %d\n", type,
3222 EXPORT_SYMBOL(ceph_msg_new);
3225 * Allocate "middle" portion of a message, if it is needed and wasn't
3226 * allocated by alloc_msg. This allows us to read a small fixed-size
3227 * per-type header in the front and then gracefully fail (i.e.,
3228 * propagate the error to the caller based on info in the front) when
3229 * the middle is too large.
3231 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3233 int type = le16_to_cpu(msg->hdr.type);
3234 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3236 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3237 ceph_msg_type_name(type), middle_len);
3238 BUG_ON(!middle_len);
3239 BUG_ON(msg->middle);
3241 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3248 * Allocate a message for receiving an incoming message on a
3249 * connection, and save the result in con->in_msg. Uses the
3250 * connection's private alloc_msg op if available.
3252 * Returns 0 on success, or a negative error code.
3254 * On success, if we set *skip = 1:
3255 * - the next message should be skipped and ignored.
3256 * - con->in_msg == NULL
3257 * or if we set *skip = 0:
3258 * - con->in_msg is non-null.
3259 * On error (ENOMEM, EAGAIN, ...),
3260 * - con->in_msg == NULL
3262 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3264 struct ceph_msg_header *hdr = &con->in_hdr;
3265 int middle_len = le32_to_cpu(hdr->middle_len);
3266 struct ceph_msg *msg;
3269 BUG_ON(con->in_msg != NULL);
3270 BUG_ON(!con->ops->alloc_msg);
3272 mutex_unlock(&con->mutex);
3273 msg = con->ops->alloc_msg(con, hdr, skip);
3274 mutex_lock(&con->mutex);
3275 if (con->state != CON_STATE_OPEN) {
3283 con->in_msg->con = con->ops->get(con);
3284 BUG_ON(con->in_msg->con == NULL);
3287 * Null message pointer means either we should skip
3288 * this message or we couldn't allocate memory. The
3289 * former is not an error.
3293 con->error_msg = "error allocating memory for incoming message";
3297 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3299 if (middle_len && !con->in_msg->middle) {
3300 ret = ceph_alloc_middle(con, con->in_msg);
3302 ceph_msg_put(con->in_msg);
3312 * Free a generically kmalloc'd message.
3314 static void ceph_msg_free(struct ceph_msg *m)
3316 dout("%s %p\n", __func__, m);
3317 kvfree(m->front.iov_base);
3318 kmem_cache_free(ceph_msg_cache, m);
3321 static void ceph_msg_release(struct kref *kref)
3323 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3325 struct list_head *links;
3326 struct list_head *next;
3328 dout("%s %p\n", __func__, m);
3329 WARN_ON(!list_empty(&m->list_head));
3331 /* drop middle, data, if any */
3333 ceph_buffer_put(m->middle);
3337 list_splice_init(&m->data, &data);
3338 list_for_each_safe(links, next, &data) {
3339 struct ceph_msg_data *data;
3341 data = list_entry(links, struct ceph_msg_data, links);
3342 list_del_init(links);
3343 ceph_msg_data_destroy(data);
3348 ceph_msgpool_put(m->pool, m);
3353 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3355 dout("%s %p (was %d)\n", __func__, msg,
3356 atomic_read(&msg->kref.refcount));
3357 kref_get(&msg->kref);
3360 EXPORT_SYMBOL(ceph_msg_get);
3362 void ceph_msg_put(struct ceph_msg *msg)
3364 dout("%s %p (was %d)\n", __func__, msg,
3365 atomic_read(&msg->kref.refcount));
3366 kref_put(&msg->kref, ceph_msg_release);
3368 EXPORT_SYMBOL(ceph_msg_put);
3370 void ceph_msg_dump(struct ceph_msg *msg)
3372 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3373 msg->front_alloc_len, msg->data_length);
3374 print_hex_dump(KERN_DEBUG, "header: ",
3375 DUMP_PREFIX_OFFSET, 16, 1,
3376 &msg->hdr, sizeof(msg->hdr), true);
3377 print_hex_dump(KERN_DEBUG, " front: ",
3378 DUMP_PREFIX_OFFSET, 16, 1,
3379 msg->front.iov_base, msg->front.iov_len, true);
3381 print_hex_dump(KERN_DEBUG, "middle: ",
3382 DUMP_PREFIX_OFFSET, 16, 1,
3383 msg->middle->vec.iov_base,
3384 msg->middle->vec.iov_len, true);
3385 print_hex_dump(KERN_DEBUG, "footer: ",
3386 DUMP_PREFIX_OFFSET, 16, 1,
3387 &msg->footer, sizeof(msg->footer), true);
3389 EXPORT_SYMBOL(ceph_msg_dump);