]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/ceph/messenger.c
libceph: drop ceph_con_get/put helpers and nref member
[karo-tx-linux.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
33
34 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
35 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
36 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
37 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
38 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
39
40 /* static tag bytes (protocol control messages) */
41 static char tag_msg = CEPH_MSGR_TAG_MSG;
42 static char tag_ack = CEPH_MSGR_TAG_ACK;
43 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
44
45 #ifdef CONFIG_LOCKDEP
46 static struct lock_class_key socket_class;
47 #endif
48
49 /*
50  * When skipping (ignoring) a block of input we read it into a "skip
51  * buffer," which is this many bytes in size.
52  */
53 #define SKIP_BUF_SIZE   1024
54
55 static void queue_con(struct ceph_connection *con);
56 static void con_work(struct work_struct *);
57 static void ceph_fault(struct ceph_connection *con);
58
59 /*
60  * Nicely render a sockaddr as a string.  An array of formatted
61  * strings is used, to approximate reentrancy.
62  */
63 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
64 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
65 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
66 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
67
68 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
69 static atomic_t addr_str_seq = ATOMIC_INIT(0);
70
71 static struct page *zero_page;          /* used in certain error cases */
72
73 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
74 {
75         int i;
76         char *s;
77         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
78         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
79
80         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
81         s = addr_str[i];
82
83         switch (ss->ss_family) {
84         case AF_INET:
85                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
86                          ntohs(in4->sin_port));
87                 break;
88
89         case AF_INET6:
90                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
91                          ntohs(in6->sin6_port));
92                 break;
93
94         default:
95                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
96                          ss->ss_family);
97         }
98
99         return s;
100 }
101 EXPORT_SYMBOL(ceph_pr_addr);
102
103 static void encode_my_addr(struct ceph_messenger *msgr)
104 {
105         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
106         ceph_encode_addr(&msgr->my_enc_addr);
107 }
108
109 /*
110  * work queue for all reading and writing to/from the socket.
111  */
112 static struct workqueue_struct *ceph_msgr_wq;
113
114 void _ceph_msgr_exit(void)
115 {
116         if (ceph_msgr_wq) {
117                 destroy_workqueue(ceph_msgr_wq);
118                 ceph_msgr_wq = NULL;
119         }
120
121         BUG_ON(zero_page == NULL);
122         kunmap(zero_page);
123         page_cache_release(zero_page);
124         zero_page = NULL;
125 }
126
127 int ceph_msgr_init(void)
128 {
129         BUG_ON(zero_page != NULL);
130         zero_page = ZERO_PAGE(0);
131         page_cache_get(zero_page);
132
133         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
134         if (ceph_msgr_wq)
135                 return 0;
136
137         pr_err("msgr_init failed to create workqueue\n");
138         _ceph_msgr_exit();
139
140         return -ENOMEM;
141 }
142 EXPORT_SYMBOL(ceph_msgr_init);
143
144 void ceph_msgr_exit(void)
145 {
146         BUG_ON(ceph_msgr_wq == NULL);
147
148         _ceph_msgr_exit();
149 }
150 EXPORT_SYMBOL(ceph_msgr_exit);
151
152 void ceph_msgr_flush(void)
153 {
154         flush_workqueue(ceph_msgr_wq);
155 }
156 EXPORT_SYMBOL(ceph_msgr_flush);
157
158 /* Connection socket state transition functions */
159
160 static void con_sock_state_init(struct ceph_connection *con)
161 {
162         int old_state;
163
164         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
165         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
166                 printk("%s: unexpected old state %d\n", __func__, old_state);
167 }
168
169 static void con_sock_state_connecting(struct ceph_connection *con)
170 {
171         int old_state;
172
173         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
174         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
175                 printk("%s: unexpected old state %d\n", __func__, old_state);
176 }
177
178 static void con_sock_state_connected(struct ceph_connection *con)
179 {
180         int old_state;
181
182         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
183         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
184                 printk("%s: unexpected old state %d\n", __func__, old_state);
185 }
186
187 static void con_sock_state_closing(struct ceph_connection *con)
188 {
189         int old_state;
190
191         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
192         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
193                         old_state != CON_SOCK_STATE_CONNECTED &&
194                         old_state != CON_SOCK_STATE_CLOSING))
195                 printk("%s: unexpected old state %d\n", __func__, old_state);
196 }
197
198 static void con_sock_state_closed(struct ceph_connection *con)
199 {
200         int old_state;
201
202         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
203         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
204                         old_state != CON_SOCK_STATE_CLOSING))
205                 printk("%s: unexpected old state %d\n", __func__, old_state);
206 }
207
208 /*
209  * socket callback functions
210  */
211
212 /* data available on socket, or listen socket received a connect */
213 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
214 {
215         struct ceph_connection *con = sk->sk_user_data;
216
217         if (sk->sk_state != TCP_CLOSE_WAIT) {
218                 dout("%s on %p state = %lu, queueing work\n", __func__,
219                      con, con->state);
220                 queue_con(con);
221         }
222 }
223
224 /* socket has buffer space for writing */
225 static void ceph_sock_write_space(struct sock *sk)
226 {
227         struct ceph_connection *con = sk->sk_user_data;
228
229         /* only queue to workqueue if there is data we want to write,
230          * and there is sufficient space in the socket buffer to accept
231          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
232          * doesn't get called again until try_write() fills the socket
233          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
234          * and net/core/stream.c:sk_stream_write_space().
235          */
236         if (test_bit(WRITE_PENDING, &con->flags)) {
237                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
238                         dout("%s %p queueing write work\n", __func__, con);
239                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
240                         queue_con(con);
241                 }
242         } else {
243                 dout("%s %p nothing to write\n", __func__, con);
244         }
245 }
246
247 /* socket's state has changed */
248 static void ceph_sock_state_change(struct sock *sk)
249 {
250         struct ceph_connection *con = sk->sk_user_data;
251
252         dout("%s %p state = %lu sk_state = %u\n", __func__,
253              con, con->state, sk->sk_state);
254
255         if (test_bit(CLOSED, &con->state))
256                 return;
257
258         switch (sk->sk_state) {
259         case TCP_CLOSE:
260                 dout("%s TCP_CLOSE\n", __func__);
261         case TCP_CLOSE_WAIT:
262                 dout("%s TCP_CLOSE_WAIT\n", __func__);
263                 con_sock_state_closing(con);
264                 if (test_and_set_bit(SOCK_CLOSED, &con->flags) == 0) {
265                         if (test_bit(CONNECTING, &con->state))
266                                 con->error_msg = "connection failed";
267                         else
268                                 con->error_msg = "socket closed";
269                         queue_con(con);
270                 }
271                 break;
272         case TCP_ESTABLISHED:
273                 dout("%s TCP_ESTABLISHED\n", __func__);
274                 con_sock_state_connected(con);
275                 queue_con(con);
276                 break;
277         default:        /* Everything else is uninteresting */
278                 break;
279         }
280 }
281
282 /*
283  * set up socket callbacks
284  */
285 static void set_sock_callbacks(struct socket *sock,
286                                struct ceph_connection *con)
287 {
288         struct sock *sk = sock->sk;
289         sk->sk_user_data = con;
290         sk->sk_data_ready = ceph_sock_data_ready;
291         sk->sk_write_space = ceph_sock_write_space;
292         sk->sk_state_change = ceph_sock_state_change;
293 }
294
295
296 /*
297  * socket helpers
298  */
299
300 /*
301  * initiate connection to a remote socket.
302  */
303 static int ceph_tcp_connect(struct ceph_connection *con)
304 {
305         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
306         struct socket *sock;
307         int ret;
308
309         BUG_ON(con->sock);
310         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
311                                IPPROTO_TCP, &sock);
312         if (ret)
313                 return ret;
314         sock->sk->sk_allocation = GFP_NOFS;
315
316 #ifdef CONFIG_LOCKDEP
317         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
318 #endif
319
320         set_sock_callbacks(sock, con);
321
322         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
323
324         con_sock_state_connecting(con);
325         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
326                                  O_NONBLOCK);
327         if (ret == -EINPROGRESS) {
328                 dout("connect %s EINPROGRESS sk_state = %u\n",
329                      ceph_pr_addr(&con->peer_addr.in_addr),
330                      sock->sk->sk_state);
331         } else if (ret < 0) {
332                 pr_err("connect %s error %d\n",
333                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
334                 sock_release(sock);
335                 con->error_msg = "connect error";
336
337                 return ret;
338         }
339         con->sock = sock;
340         return 0;
341 }
342
343 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
344 {
345         struct kvec iov = {buf, len};
346         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
347         int r;
348
349         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
350         if (r == -EAGAIN)
351                 r = 0;
352         return r;
353 }
354
355 /*
356  * write something.  @more is true if caller will be sending more data
357  * shortly.
358  */
359 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
360                      size_t kvlen, size_t len, int more)
361 {
362         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
363         int r;
364
365         if (more)
366                 msg.msg_flags |= MSG_MORE;
367         else
368                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
369
370         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
371         if (r == -EAGAIN)
372                 r = 0;
373         return r;
374 }
375
376 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
377                      int offset, size_t size, int more)
378 {
379         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
380         int ret;
381
382         ret = kernel_sendpage(sock, page, offset, size, flags);
383         if (ret == -EAGAIN)
384                 ret = 0;
385
386         return ret;
387 }
388
389
390 /*
391  * Shutdown/close the socket for the given connection.
392  */
393 static int con_close_socket(struct ceph_connection *con)
394 {
395         int rc;
396
397         dout("con_close_socket on %p sock %p\n", con, con->sock);
398         if (!con->sock)
399                 return 0;
400         set_bit(SOCK_CLOSED, &con->state);
401         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
402         sock_release(con->sock);
403         con->sock = NULL;
404         clear_bit(SOCK_CLOSED, &con->state);
405         con_sock_state_closed(con);
406         return rc;
407 }
408
409 /*
410  * Reset a connection.  Discard all incoming and outgoing messages
411  * and clear *_seq state.
412  */
413 static void ceph_msg_remove(struct ceph_msg *msg)
414 {
415         list_del_init(&msg->list_head);
416         BUG_ON(msg->con == NULL);
417         msg->con->ops->put(msg->con);
418         msg->con = NULL;
419
420         ceph_msg_put(msg);
421 }
422 static void ceph_msg_remove_list(struct list_head *head)
423 {
424         while (!list_empty(head)) {
425                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
426                                                         list_head);
427                 ceph_msg_remove(msg);
428         }
429 }
430
431 static void reset_connection(struct ceph_connection *con)
432 {
433         /* reset connection, out_queue, msg_ and connect_seq */
434         /* discard existing out_queue and msg_seq */
435         ceph_msg_remove_list(&con->out_queue);
436         ceph_msg_remove_list(&con->out_sent);
437
438         if (con->in_msg) {
439                 BUG_ON(con->in_msg->con != con);
440                 con->in_msg->con = NULL;
441                 ceph_msg_put(con->in_msg);
442                 con->in_msg = NULL;
443                 con->ops->put(con);
444         }
445
446         con->connect_seq = 0;
447         con->out_seq = 0;
448         if (con->out_msg) {
449                 ceph_msg_put(con->out_msg);
450                 con->out_msg = NULL;
451         }
452         con->in_seq = 0;
453         con->in_seq_acked = 0;
454 }
455
456 /*
457  * mark a peer down.  drop any open connections.
458  */
459 void ceph_con_close(struct ceph_connection *con)
460 {
461         dout("con_close %p peer %s\n", con,
462              ceph_pr_addr(&con->peer_addr.in_addr));
463         clear_bit(NEGOTIATING, &con->state);
464         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
465         set_bit(CLOSED, &con->state);
466
467         clear_bit(LOSSYTX, &con->flags);  /* so we retry next connect */
468         clear_bit(KEEPALIVE_PENDING, &con->flags);
469         clear_bit(WRITE_PENDING, &con->flags);
470
471         mutex_lock(&con->mutex);
472         reset_connection(con);
473         con->peer_global_seq = 0;
474         cancel_delayed_work(&con->work);
475         mutex_unlock(&con->mutex);
476         queue_con(con);
477 }
478 EXPORT_SYMBOL(ceph_con_close);
479
480 /*
481  * Reopen a closed connection, with a new peer address.
482  */
483 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
484 {
485         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
486         set_bit(OPENING, &con->state);
487         WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
488
489         memcpy(&con->peer_addr, addr, sizeof(*addr));
490         con->delay = 0;      /* reset backoff memory */
491         queue_con(con);
492 }
493 EXPORT_SYMBOL(ceph_con_open);
494
495 /*
496  * return true if this connection ever successfully opened
497  */
498 bool ceph_con_opened(struct ceph_connection *con)
499 {
500         return con->connect_seq > 0;
501 }
502
503 /*
504  * initialize a new connection.
505  */
506 void ceph_con_init(struct ceph_connection *con, void *private,
507         const struct ceph_connection_operations *ops,
508         struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
509 {
510         dout("con_init %p\n", con);
511         memset(con, 0, sizeof(*con));
512         con->private = private;
513         con->ops = ops;
514         con->msgr = msgr;
515
516         con_sock_state_init(con);
517
518         con->peer_name.type = (__u8) entity_type;
519         con->peer_name.num = cpu_to_le64(entity_num);
520
521         mutex_init(&con->mutex);
522         INIT_LIST_HEAD(&con->out_queue);
523         INIT_LIST_HEAD(&con->out_sent);
524         INIT_DELAYED_WORK(&con->work, con_work);
525
526         set_bit(CLOSED, &con->state);
527 }
528 EXPORT_SYMBOL(ceph_con_init);
529
530
531 /*
532  * We maintain a global counter to order connection attempts.  Get
533  * a unique seq greater than @gt.
534  */
535 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
536 {
537         u32 ret;
538
539         spin_lock(&msgr->global_seq_lock);
540         if (msgr->global_seq < gt)
541                 msgr->global_seq = gt;
542         ret = ++msgr->global_seq;
543         spin_unlock(&msgr->global_seq_lock);
544         return ret;
545 }
546
547 static void con_out_kvec_reset(struct ceph_connection *con)
548 {
549         con->out_kvec_left = 0;
550         con->out_kvec_bytes = 0;
551         con->out_kvec_cur = &con->out_kvec[0];
552 }
553
554 static void con_out_kvec_add(struct ceph_connection *con,
555                                 size_t size, void *data)
556 {
557         int index;
558
559         index = con->out_kvec_left;
560         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
561
562         con->out_kvec[index].iov_len = size;
563         con->out_kvec[index].iov_base = data;
564         con->out_kvec_left++;
565         con->out_kvec_bytes += size;
566 }
567
568 /*
569  * Prepare footer for currently outgoing message, and finish things
570  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
571  */
572 static void prepare_write_message_footer(struct ceph_connection *con)
573 {
574         struct ceph_msg *m = con->out_msg;
575         int v = con->out_kvec_left;
576
577         dout("prepare_write_message_footer %p\n", con);
578         con->out_kvec_is_msg = true;
579         con->out_kvec[v].iov_base = &m->footer;
580         con->out_kvec[v].iov_len = sizeof(m->footer);
581         con->out_kvec_bytes += sizeof(m->footer);
582         con->out_kvec_left++;
583         con->out_more = m->more_to_follow;
584         con->out_msg_done = true;
585 }
586
587 /*
588  * Prepare headers for the next outgoing message.
589  */
590 static void prepare_write_message(struct ceph_connection *con)
591 {
592         struct ceph_msg *m;
593         u32 crc;
594
595         con_out_kvec_reset(con);
596         con->out_kvec_is_msg = true;
597         con->out_msg_done = false;
598
599         /* Sneak an ack in there first?  If we can get it into the same
600          * TCP packet that's a good thing. */
601         if (con->in_seq > con->in_seq_acked) {
602                 con->in_seq_acked = con->in_seq;
603                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
604                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
605                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
606                         &con->out_temp_ack);
607         }
608
609         BUG_ON(list_empty(&con->out_queue));
610         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
611         con->out_msg = m;
612         BUG_ON(m->con != con);
613
614         /* put message on sent list */
615         ceph_msg_get(m);
616         list_move_tail(&m->list_head, &con->out_sent);
617
618         /*
619          * only assign outgoing seq # if we haven't sent this message
620          * yet.  if it is requeued, resend with it's original seq.
621          */
622         if (m->needs_out_seq) {
623                 m->hdr.seq = cpu_to_le64(++con->out_seq);
624                 m->needs_out_seq = false;
625         }
626 #ifdef CONFIG_BLOCK
627         else
628                 m->bio_iter = NULL;
629 #endif
630
631         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
632              m, con->out_seq, le16_to_cpu(m->hdr.type),
633              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
634              le32_to_cpu(m->hdr.data_len),
635              m->nr_pages);
636         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
637
638         /* tag + hdr + front + middle */
639         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
640         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
641         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
642
643         if (m->middle)
644                 con_out_kvec_add(con, m->middle->vec.iov_len,
645                         m->middle->vec.iov_base);
646
647         /* fill in crc (except data pages), footer */
648         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
649         con->out_msg->hdr.crc = cpu_to_le32(crc);
650         con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
651
652         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
653         con->out_msg->footer.front_crc = cpu_to_le32(crc);
654         if (m->middle) {
655                 crc = crc32c(0, m->middle->vec.iov_base,
656                                 m->middle->vec.iov_len);
657                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
658         } else
659                 con->out_msg->footer.middle_crc = 0;
660         con->out_msg->footer.data_crc = 0;
661         dout("prepare_write_message front_crc %u data_crc %u\n",
662              le32_to_cpu(con->out_msg->footer.front_crc),
663              le32_to_cpu(con->out_msg->footer.middle_crc));
664
665         /* is there a data payload? */
666         if (le32_to_cpu(m->hdr.data_len) > 0) {
667                 /* initialize page iterator */
668                 con->out_msg_pos.page = 0;
669                 if (m->pages)
670                         con->out_msg_pos.page_pos = m->page_alignment;
671                 else
672                         con->out_msg_pos.page_pos = 0;
673                 con->out_msg_pos.data_pos = 0;
674                 con->out_msg_pos.did_page_crc = false;
675                 con->out_more = 1;  /* data + footer will follow */
676         } else {
677                 /* no, queue up footer too and be done */
678                 prepare_write_message_footer(con);
679         }
680
681         set_bit(WRITE_PENDING, &con->flags);
682 }
683
684 /*
685  * Prepare an ack.
686  */
687 static void prepare_write_ack(struct ceph_connection *con)
688 {
689         dout("prepare_write_ack %p %llu -> %llu\n", con,
690              con->in_seq_acked, con->in_seq);
691         con->in_seq_acked = con->in_seq;
692
693         con_out_kvec_reset(con);
694
695         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
696
697         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
698         con_out_kvec_add(con, sizeof (con->out_temp_ack),
699                                 &con->out_temp_ack);
700
701         con->out_more = 1;  /* more will follow.. eventually.. */
702         set_bit(WRITE_PENDING, &con->flags);
703 }
704
705 /*
706  * Prepare to write keepalive byte.
707  */
708 static void prepare_write_keepalive(struct ceph_connection *con)
709 {
710         dout("prepare_write_keepalive %p\n", con);
711         con_out_kvec_reset(con);
712         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
713         set_bit(WRITE_PENDING, &con->flags);
714 }
715
716 /*
717  * Connection negotiation.
718  */
719
720 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
721                                                 int *auth_proto)
722 {
723         struct ceph_auth_handshake *auth;
724
725         if (!con->ops->get_authorizer) {
726                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
727                 con->out_connect.authorizer_len = 0;
728
729                 return NULL;
730         }
731
732         /* Can't hold the mutex while getting authorizer */
733
734         mutex_unlock(&con->mutex);
735
736         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
737
738         mutex_lock(&con->mutex);
739
740         if (IS_ERR(auth))
741                 return auth;
742         if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
743                 return ERR_PTR(-EAGAIN);
744
745         con->auth_reply_buf = auth->authorizer_reply_buf;
746         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
747
748
749         return auth;
750 }
751
752 /*
753  * We connected to a peer and are saying hello.
754  */
755 static void prepare_write_banner(struct ceph_connection *con)
756 {
757         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
758         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
759                                         &con->msgr->my_enc_addr);
760
761         con->out_more = 0;
762         set_bit(WRITE_PENDING, &con->flags);
763 }
764
765 static int prepare_write_connect(struct ceph_connection *con)
766 {
767         unsigned int global_seq = get_global_seq(con->msgr, 0);
768         int proto;
769         int auth_proto;
770         struct ceph_auth_handshake *auth;
771
772         switch (con->peer_name.type) {
773         case CEPH_ENTITY_TYPE_MON:
774                 proto = CEPH_MONC_PROTOCOL;
775                 break;
776         case CEPH_ENTITY_TYPE_OSD:
777                 proto = CEPH_OSDC_PROTOCOL;
778                 break;
779         case CEPH_ENTITY_TYPE_MDS:
780                 proto = CEPH_MDSC_PROTOCOL;
781                 break;
782         default:
783                 BUG();
784         }
785
786         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
787              con->connect_seq, global_seq, proto);
788
789         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
790         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
791         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
792         con->out_connect.global_seq = cpu_to_le32(global_seq);
793         con->out_connect.protocol_version = cpu_to_le32(proto);
794         con->out_connect.flags = 0;
795
796         auth_proto = CEPH_AUTH_UNKNOWN;
797         auth = get_connect_authorizer(con, &auth_proto);
798         if (IS_ERR(auth))
799                 return PTR_ERR(auth);
800
801         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
802         con->out_connect.authorizer_len = auth ?
803                 cpu_to_le32(auth->authorizer_buf_len) : 0;
804
805         con_out_kvec_add(con, sizeof (con->out_connect),
806                                         &con->out_connect);
807         if (auth && auth->authorizer_buf_len)
808                 con_out_kvec_add(con, auth->authorizer_buf_len,
809                                         auth->authorizer_buf);
810
811         con->out_more = 0;
812         set_bit(WRITE_PENDING, &con->flags);
813
814         return 0;
815 }
816
817 /*
818  * write as much of pending kvecs to the socket as we can.
819  *  1 -> done
820  *  0 -> socket full, but more to do
821  * <0 -> error
822  */
823 static int write_partial_kvec(struct ceph_connection *con)
824 {
825         int ret;
826
827         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
828         while (con->out_kvec_bytes > 0) {
829                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
830                                        con->out_kvec_left, con->out_kvec_bytes,
831                                        con->out_more);
832                 if (ret <= 0)
833                         goto out;
834                 con->out_kvec_bytes -= ret;
835                 if (con->out_kvec_bytes == 0)
836                         break;            /* done */
837
838                 /* account for full iov entries consumed */
839                 while (ret >= con->out_kvec_cur->iov_len) {
840                         BUG_ON(!con->out_kvec_left);
841                         ret -= con->out_kvec_cur->iov_len;
842                         con->out_kvec_cur++;
843                         con->out_kvec_left--;
844                 }
845                 /* and for a partially-consumed entry */
846                 if (ret) {
847                         con->out_kvec_cur->iov_len -= ret;
848                         con->out_kvec_cur->iov_base += ret;
849                 }
850         }
851         con->out_kvec_left = 0;
852         con->out_kvec_is_msg = false;
853         ret = 1;
854 out:
855         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
856              con->out_kvec_bytes, con->out_kvec_left, ret);
857         return ret;  /* done! */
858 }
859
860 #ifdef CONFIG_BLOCK
861 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
862 {
863         if (!bio) {
864                 *iter = NULL;
865                 *seg = 0;
866                 return;
867         }
868         *iter = bio;
869         *seg = bio->bi_idx;
870 }
871
872 static void iter_bio_next(struct bio **bio_iter, int *seg)
873 {
874         if (*bio_iter == NULL)
875                 return;
876
877         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
878
879         (*seg)++;
880         if (*seg == (*bio_iter)->bi_vcnt)
881                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
882 }
883 #endif
884
885 /*
886  * Write as much message data payload as we can.  If we finish, queue
887  * up the footer.
888  *  1 -> done, footer is now queued in out_kvec[].
889  *  0 -> socket full, but more to do
890  * <0 -> error
891  */
892 static int write_partial_msg_pages(struct ceph_connection *con)
893 {
894         struct ceph_msg *msg = con->out_msg;
895         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
896         size_t len;
897         bool do_datacrc = !con->msgr->nocrc;
898         int ret;
899         int total_max_write;
900         int in_trail = 0;
901         size_t trail_len = (msg->trail ? msg->trail->length : 0);
902
903         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
904              con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
905              con->out_msg_pos.page_pos);
906
907 #ifdef CONFIG_BLOCK
908         if (msg->bio && !msg->bio_iter)
909                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
910 #endif
911
912         while (data_len > con->out_msg_pos.data_pos) {
913                 struct page *page = NULL;
914                 int max_write = PAGE_SIZE;
915                 int bio_offset = 0;
916
917                 total_max_write = data_len - trail_len -
918                         con->out_msg_pos.data_pos;
919
920                 /*
921                  * if we are calculating the data crc (the default), we need
922                  * to map the page.  if our pages[] has been revoked, use the
923                  * zero page.
924                  */
925
926                 /* have we reached the trail part of the data? */
927                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
928                         in_trail = 1;
929
930                         total_max_write = data_len - con->out_msg_pos.data_pos;
931
932                         page = list_first_entry(&msg->trail->head,
933                                                 struct page, lru);
934                         max_write = PAGE_SIZE;
935                 } else if (msg->pages) {
936                         page = msg->pages[con->out_msg_pos.page];
937                 } else if (msg->pagelist) {
938                         page = list_first_entry(&msg->pagelist->head,
939                                                 struct page, lru);
940 #ifdef CONFIG_BLOCK
941                 } else if (msg->bio) {
942                         struct bio_vec *bv;
943
944                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
945                         page = bv->bv_page;
946                         bio_offset = bv->bv_offset;
947                         max_write = bv->bv_len;
948 #endif
949                 } else {
950                         page = zero_page;
951                 }
952                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
953                             total_max_write);
954
955                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
956                         void *base;
957                         u32 crc;
958                         u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
959                         char *kaddr;
960
961                         kaddr = kmap(page);
962                         BUG_ON(kaddr == NULL);
963                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
964                         crc = crc32c(tmpcrc, base, len);
965                         con->out_msg->footer.data_crc = cpu_to_le32(crc);
966                         con->out_msg_pos.did_page_crc = true;
967                 }
968                 ret = ceph_tcp_sendpage(con->sock, page,
969                                       con->out_msg_pos.page_pos + bio_offset,
970                                       len, 1);
971
972                 if (do_datacrc)
973                         kunmap(page);
974
975                 if (ret <= 0)
976                         goto out;
977
978                 con->out_msg_pos.data_pos += ret;
979                 con->out_msg_pos.page_pos += ret;
980                 if (ret == len) {
981                         con->out_msg_pos.page_pos = 0;
982                         con->out_msg_pos.page++;
983                         con->out_msg_pos.did_page_crc = false;
984                         if (in_trail)
985                                 list_move_tail(&page->lru,
986                                                &msg->trail->head);
987                         else if (msg->pagelist)
988                                 list_move_tail(&page->lru,
989                                                &msg->pagelist->head);
990 #ifdef CONFIG_BLOCK
991                         else if (msg->bio)
992                                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
993 #endif
994                 }
995         }
996
997         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
998
999         /* prepare and queue up footer, too */
1000         if (!do_datacrc)
1001                 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1002         con_out_kvec_reset(con);
1003         prepare_write_message_footer(con);
1004         ret = 1;
1005 out:
1006         return ret;
1007 }
1008
1009 /*
1010  * write some zeros
1011  */
1012 static int write_partial_skip(struct ceph_connection *con)
1013 {
1014         int ret;
1015
1016         while (con->out_skip > 0) {
1017                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1018
1019                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1020                 if (ret <= 0)
1021                         goto out;
1022                 con->out_skip -= ret;
1023         }
1024         ret = 1;
1025 out:
1026         return ret;
1027 }
1028
1029 /*
1030  * Prepare to read connection handshake, or an ack.
1031  */
1032 static void prepare_read_banner(struct ceph_connection *con)
1033 {
1034         dout("prepare_read_banner %p\n", con);
1035         con->in_base_pos = 0;
1036 }
1037
1038 static void prepare_read_connect(struct ceph_connection *con)
1039 {
1040         dout("prepare_read_connect %p\n", con);
1041         con->in_base_pos = 0;
1042 }
1043
1044 static void prepare_read_ack(struct ceph_connection *con)
1045 {
1046         dout("prepare_read_ack %p\n", con);
1047         con->in_base_pos = 0;
1048 }
1049
1050 static void prepare_read_tag(struct ceph_connection *con)
1051 {
1052         dout("prepare_read_tag %p\n", con);
1053         con->in_base_pos = 0;
1054         con->in_tag = CEPH_MSGR_TAG_READY;
1055 }
1056
1057 /*
1058  * Prepare to read a message.
1059  */
1060 static int prepare_read_message(struct ceph_connection *con)
1061 {
1062         dout("prepare_read_message %p\n", con);
1063         BUG_ON(con->in_msg != NULL);
1064         con->in_base_pos = 0;
1065         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1066         return 0;
1067 }
1068
1069
1070 static int read_partial(struct ceph_connection *con,
1071                         int end, int size, void *object)
1072 {
1073         while (con->in_base_pos < end) {
1074                 int left = end - con->in_base_pos;
1075                 int have = size - left;
1076                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1077                 if (ret <= 0)
1078                         return ret;
1079                 con->in_base_pos += ret;
1080         }
1081         return 1;
1082 }
1083
1084
1085 /*
1086  * Read all or part of the connect-side handshake on a new connection
1087  */
1088 static int read_partial_banner(struct ceph_connection *con)
1089 {
1090         int size;
1091         int end;
1092         int ret;
1093
1094         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1095
1096         /* peer's banner */
1097         size = strlen(CEPH_BANNER);
1098         end = size;
1099         ret = read_partial(con, end, size, con->in_banner);
1100         if (ret <= 0)
1101                 goto out;
1102
1103         size = sizeof (con->actual_peer_addr);
1104         end += size;
1105         ret = read_partial(con, end, size, &con->actual_peer_addr);
1106         if (ret <= 0)
1107                 goto out;
1108
1109         size = sizeof (con->peer_addr_for_me);
1110         end += size;
1111         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1112         if (ret <= 0)
1113                 goto out;
1114
1115 out:
1116         return ret;
1117 }
1118
1119 static int read_partial_connect(struct ceph_connection *con)
1120 {
1121         int size;
1122         int end;
1123         int ret;
1124
1125         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1126
1127         size = sizeof (con->in_reply);
1128         end = size;
1129         ret = read_partial(con, end, size, &con->in_reply);
1130         if (ret <= 0)
1131                 goto out;
1132
1133         size = le32_to_cpu(con->in_reply.authorizer_len);
1134         end += size;
1135         ret = read_partial(con, end, size, con->auth_reply_buf);
1136         if (ret <= 0)
1137                 goto out;
1138
1139         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1140              con, (int)con->in_reply.tag,
1141              le32_to_cpu(con->in_reply.connect_seq),
1142              le32_to_cpu(con->in_reply.global_seq));
1143 out:
1144         return ret;
1145
1146 }
1147
1148 /*
1149  * Verify the hello banner looks okay.
1150  */
1151 static int verify_hello(struct ceph_connection *con)
1152 {
1153         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1154                 pr_err("connect to %s got bad banner\n",
1155                        ceph_pr_addr(&con->peer_addr.in_addr));
1156                 con->error_msg = "protocol error, bad banner";
1157                 return -1;
1158         }
1159         return 0;
1160 }
1161
1162 static bool addr_is_blank(struct sockaddr_storage *ss)
1163 {
1164         switch (ss->ss_family) {
1165         case AF_INET:
1166                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1167         case AF_INET6:
1168                 return
1169                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1170                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1171                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1172                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1173         }
1174         return false;
1175 }
1176
1177 static int addr_port(struct sockaddr_storage *ss)
1178 {
1179         switch (ss->ss_family) {
1180         case AF_INET:
1181                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1182         case AF_INET6:
1183                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1184         }
1185         return 0;
1186 }
1187
1188 static void addr_set_port(struct sockaddr_storage *ss, int p)
1189 {
1190         switch (ss->ss_family) {
1191         case AF_INET:
1192                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1193                 break;
1194         case AF_INET6:
1195                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1196                 break;
1197         }
1198 }
1199
1200 /*
1201  * Unlike other *_pton function semantics, zero indicates success.
1202  */
1203 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1204                 char delim, const char **ipend)
1205 {
1206         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1207         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1208
1209         memset(ss, 0, sizeof(*ss));
1210
1211         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1212                 ss->ss_family = AF_INET;
1213                 return 0;
1214         }
1215
1216         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1217                 ss->ss_family = AF_INET6;
1218                 return 0;
1219         }
1220
1221         return -EINVAL;
1222 }
1223
1224 /*
1225  * Extract hostname string and resolve using kernel DNS facility.
1226  */
1227 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1228 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1229                 struct sockaddr_storage *ss, char delim, const char **ipend)
1230 {
1231         const char *end, *delim_p;
1232         char *colon_p, *ip_addr = NULL;
1233         int ip_len, ret;
1234
1235         /*
1236          * The end of the hostname occurs immediately preceding the delimiter or
1237          * the port marker (':') where the delimiter takes precedence.
1238          */
1239         delim_p = memchr(name, delim, namelen);
1240         colon_p = memchr(name, ':', namelen);
1241
1242         if (delim_p && colon_p)
1243                 end = delim_p < colon_p ? delim_p : colon_p;
1244         else if (!delim_p && colon_p)
1245                 end = colon_p;
1246         else {
1247                 end = delim_p;
1248                 if (!end) /* case: hostname:/ */
1249                         end = name + namelen;
1250         }
1251
1252         if (end <= name)
1253                 return -EINVAL;
1254
1255         /* do dns_resolve upcall */
1256         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1257         if (ip_len > 0)
1258                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1259         else
1260                 ret = -ESRCH;
1261
1262         kfree(ip_addr);
1263
1264         *ipend = end;
1265
1266         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1267                         ret, ret ? "failed" : ceph_pr_addr(ss));
1268
1269         return ret;
1270 }
1271 #else
1272 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1273                 struct sockaddr_storage *ss, char delim, const char **ipend)
1274 {
1275         return -EINVAL;
1276 }
1277 #endif
1278
1279 /*
1280  * Parse a server name (IP or hostname). If a valid IP address is not found
1281  * then try to extract a hostname to resolve using userspace DNS upcall.
1282  */
1283 static int ceph_parse_server_name(const char *name, size_t namelen,
1284                         struct sockaddr_storage *ss, char delim, const char **ipend)
1285 {
1286         int ret;
1287
1288         ret = ceph_pton(name, namelen, ss, delim, ipend);
1289         if (ret)
1290                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1291
1292         return ret;
1293 }
1294
1295 /*
1296  * Parse an ip[:port] list into an addr array.  Use the default
1297  * monitor port if a port isn't specified.
1298  */
1299 int ceph_parse_ips(const char *c, const char *end,
1300                    struct ceph_entity_addr *addr,
1301                    int max_count, int *count)
1302 {
1303         int i, ret = -EINVAL;
1304         const char *p = c;
1305
1306         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1307         for (i = 0; i < max_count; i++) {
1308                 const char *ipend;
1309                 struct sockaddr_storage *ss = &addr[i].in_addr;
1310                 int port;
1311                 char delim = ',';
1312
1313                 if (*p == '[') {
1314                         delim = ']';
1315                         p++;
1316                 }
1317
1318                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1319                 if (ret)
1320                         goto bad;
1321                 ret = -EINVAL;
1322
1323                 p = ipend;
1324
1325                 if (delim == ']') {
1326                         if (*p != ']') {
1327                                 dout("missing matching ']'\n");
1328                                 goto bad;
1329                         }
1330                         p++;
1331                 }
1332
1333                 /* port? */
1334                 if (p < end && *p == ':') {
1335                         port = 0;
1336                         p++;
1337                         while (p < end && *p >= '0' && *p <= '9') {
1338                                 port = (port * 10) + (*p - '0');
1339                                 p++;
1340                         }
1341                         if (port > 65535 || port == 0)
1342                                 goto bad;
1343                 } else {
1344                         port = CEPH_MON_PORT;
1345                 }
1346
1347                 addr_set_port(ss, port);
1348
1349                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1350
1351                 if (p == end)
1352                         break;
1353                 if (*p != ',')
1354                         goto bad;
1355                 p++;
1356         }
1357
1358         if (p != end)
1359                 goto bad;
1360
1361         if (count)
1362                 *count = i + 1;
1363         return 0;
1364
1365 bad:
1366         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1367         return ret;
1368 }
1369 EXPORT_SYMBOL(ceph_parse_ips);
1370
1371 static int process_banner(struct ceph_connection *con)
1372 {
1373         dout("process_banner on %p\n", con);
1374
1375         if (verify_hello(con) < 0)
1376                 return -1;
1377
1378         ceph_decode_addr(&con->actual_peer_addr);
1379         ceph_decode_addr(&con->peer_addr_for_me);
1380
1381         /*
1382          * Make sure the other end is who we wanted.  note that the other
1383          * end may not yet know their ip address, so if it's 0.0.0.0, give
1384          * them the benefit of the doubt.
1385          */
1386         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1387                    sizeof(con->peer_addr)) != 0 &&
1388             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1389               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1390                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1391                            ceph_pr_addr(&con->peer_addr.in_addr),
1392                            (int)le32_to_cpu(con->peer_addr.nonce),
1393                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1394                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1395                 con->error_msg = "wrong peer at address";
1396                 return -1;
1397         }
1398
1399         /*
1400          * did we learn our address?
1401          */
1402         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1403                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1404
1405                 memcpy(&con->msgr->inst.addr.in_addr,
1406                        &con->peer_addr_for_me.in_addr,
1407                        sizeof(con->peer_addr_for_me.in_addr));
1408                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1409                 encode_my_addr(con->msgr);
1410                 dout("process_banner learned my addr is %s\n",
1411                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1412         }
1413
1414         set_bit(NEGOTIATING, &con->state);
1415         prepare_read_connect(con);
1416         return 0;
1417 }
1418
1419 static void fail_protocol(struct ceph_connection *con)
1420 {
1421         reset_connection(con);
1422         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1423 }
1424
1425 static int process_connect(struct ceph_connection *con)
1426 {
1427         u64 sup_feat = con->msgr->supported_features;
1428         u64 req_feat = con->msgr->required_features;
1429         u64 server_feat = le64_to_cpu(con->in_reply.features);
1430         int ret;
1431
1432         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1433
1434         switch (con->in_reply.tag) {
1435         case CEPH_MSGR_TAG_FEATURES:
1436                 pr_err("%s%lld %s feature set mismatch,"
1437                        " my %llx < server's %llx, missing %llx\n",
1438                        ENTITY_NAME(con->peer_name),
1439                        ceph_pr_addr(&con->peer_addr.in_addr),
1440                        sup_feat, server_feat, server_feat & ~sup_feat);
1441                 con->error_msg = "missing required protocol features";
1442                 fail_protocol(con);
1443                 return -1;
1444
1445         case CEPH_MSGR_TAG_BADPROTOVER:
1446                 pr_err("%s%lld %s protocol version mismatch,"
1447                        " my %d != server's %d\n",
1448                        ENTITY_NAME(con->peer_name),
1449                        ceph_pr_addr(&con->peer_addr.in_addr),
1450                        le32_to_cpu(con->out_connect.protocol_version),
1451                        le32_to_cpu(con->in_reply.protocol_version));
1452                 con->error_msg = "protocol version mismatch";
1453                 fail_protocol(con);
1454                 return -1;
1455
1456         case CEPH_MSGR_TAG_BADAUTHORIZER:
1457                 con->auth_retry++;
1458                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1459                      con->auth_retry);
1460                 if (con->auth_retry == 2) {
1461                         con->error_msg = "connect authorization failure";
1462                         return -1;
1463                 }
1464                 con->auth_retry = 1;
1465                 con_out_kvec_reset(con);
1466                 ret = prepare_write_connect(con);
1467                 if (ret < 0)
1468                         return ret;
1469                 prepare_read_connect(con);
1470                 break;
1471
1472         case CEPH_MSGR_TAG_RESETSESSION:
1473                 /*
1474                  * If we connected with a large connect_seq but the peer
1475                  * has no record of a session with us (no connection, or
1476                  * connect_seq == 0), they will send RESETSESION to indicate
1477                  * that they must have reset their session, and may have
1478                  * dropped messages.
1479                  */
1480                 dout("process_connect got RESET peer seq %u\n",
1481                      le32_to_cpu(con->in_connect.connect_seq));
1482                 pr_err("%s%lld %s connection reset\n",
1483                        ENTITY_NAME(con->peer_name),
1484                        ceph_pr_addr(&con->peer_addr.in_addr));
1485                 reset_connection(con);
1486                 con_out_kvec_reset(con);
1487                 ret = prepare_write_connect(con);
1488                 if (ret < 0)
1489                         return ret;
1490                 prepare_read_connect(con);
1491
1492                 /* Tell ceph about it. */
1493                 mutex_unlock(&con->mutex);
1494                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1495                 if (con->ops->peer_reset)
1496                         con->ops->peer_reset(con);
1497                 mutex_lock(&con->mutex);
1498                 if (test_bit(CLOSED, &con->state) ||
1499                     test_bit(OPENING, &con->state))
1500                         return -EAGAIN;
1501                 break;
1502
1503         case CEPH_MSGR_TAG_RETRY_SESSION:
1504                 /*
1505                  * If we sent a smaller connect_seq than the peer has, try
1506                  * again with a larger value.
1507                  */
1508                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1509                      le32_to_cpu(con->out_connect.connect_seq),
1510                      le32_to_cpu(con->in_connect.connect_seq));
1511                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1512                 con_out_kvec_reset(con);
1513                 ret = prepare_write_connect(con);
1514                 if (ret < 0)
1515                         return ret;
1516                 prepare_read_connect(con);
1517                 break;
1518
1519         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1520                 /*
1521                  * If we sent a smaller global_seq than the peer has, try
1522                  * again with a larger value.
1523                  */
1524                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1525                      con->peer_global_seq,
1526                      le32_to_cpu(con->in_connect.global_seq));
1527                 get_global_seq(con->msgr,
1528                                le32_to_cpu(con->in_connect.global_seq));
1529                 con_out_kvec_reset(con);
1530                 ret = prepare_write_connect(con);
1531                 if (ret < 0)
1532                         return ret;
1533                 prepare_read_connect(con);
1534                 break;
1535
1536         case CEPH_MSGR_TAG_READY:
1537                 if (req_feat & ~server_feat) {
1538                         pr_err("%s%lld %s protocol feature mismatch,"
1539                                " my required %llx > server's %llx, need %llx\n",
1540                                ENTITY_NAME(con->peer_name),
1541                                ceph_pr_addr(&con->peer_addr.in_addr),
1542                                req_feat, server_feat, req_feat & ~server_feat);
1543                         con->error_msg = "missing required protocol features";
1544                         fail_protocol(con);
1545                         return -1;
1546                 }
1547                 clear_bit(CONNECTING, &con->state);
1548                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1549                 con->connect_seq++;
1550                 con->peer_features = server_feat;
1551                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1552                      con->peer_global_seq,
1553                      le32_to_cpu(con->in_reply.connect_seq),
1554                      con->connect_seq);
1555                 WARN_ON(con->connect_seq !=
1556                         le32_to_cpu(con->in_reply.connect_seq));
1557
1558                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1559                         set_bit(LOSSYTX, &con->flags);
1560
1561                 prepare_read_tag(con);
1562                 break;
1563
1564         case CEPH_MSGR_TAG_WAIT:
1565                 /*
1566                  * If there is a connection race (we are opening
1567                  * connections to each other), one of us may just have
1568                  * to WAIT.  This shouldn't happen if we are the
1569                  * client.
1570                  */
1571                 pr_err("process_connect got WAIT as client\n");
1572                 con->error_msg = "protocol error, got WAIT as client";
1573                 return -1;
1574
1575         default:
1576                 pr_err("connect protocol error, will retry\n");
1577                 con->error_msg = "protocol error, garbage tag during connect";
1578                 return -1;
1579         }
1580         return 0;
1581 }
1582
1583
1584 /*
1585  * read (part of) an ack
1586  */
1587 static int read_partial_ack(struct ceph_connection *con)
1588 {
1589         int size = sizeof (con->in_temp_ack);
1590         int end = size;
1591
1592         return read_partial(con, end, size, &con->in_temp_ack);
1593 }
1594
1595
1596 /*
1597  * We can finally discard anything that's been acked.
1598  */
1599 static void process_ack(struct ceph_connection *con)
1600 {
1601         struct ceph_msg *m;
1602         u64 ack = le64_to_cpu(con->in_temp_ack);
1603         u64 seq;
1604
1605         while (!list_empty(&con->out_sent)) {
1606                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1607                                      list_head);
1608                 seq = le64_to_cpu(m->hdr.seq);
1609                 if (seq > ack)
1610                         break;
1611                 dout("got ack for seq %llu type %d at %p\n", seq,
1612                      le16_to_cpu(m->hdr.type), m);
1613                 m->ack_stamp = jiffies;
1614                 ceph_msg_remove(m);
1615         }
1616         prepare_read_tag(con);
1617 }
1618
1619
1620
1621
1622 static int read_partial_message_section(struct ceph_connection *con,
1623                                         struct kvec *section,
1624                                         unsigned int sec_len, u32 *crc)
1625 {
1626         int ret, left;
1627
1628         BUG_ON(!section);
1629
1630         while (section->iov_len < sec_len) {
1631                 BUG_ON(section->iov_base == NULL);
1632                 left = sec_len - section->iov_len;
1633                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1634                                        section->iov_len, left);
1635                 if (ret <= 0)
1636                         return ret;
1637                 section->iov_len += ret;
1638         }
1639         if (section->iov_len == sec_len)
1640                 *crc = crc32c(0, section->iov_base, section->iov_len);
1641
1642         return 1;
1643 }
1644
1645 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1646                                 struct ceph_msg_header *hdr);
1647
1648
1649 static int read_partial_message_pages(struct ceph_connection *con,
1650                                       struct page **pages,
1651                                       unsigned int data_len, bool do_datacrc)
1652 {
1653         void *p;
1654         int ret;
1655         int left;
1656
1657         left = min((int)(data_len - con->in_msg_pos.data_pos),
1658                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1659         /* (page) data */
1660         BUG_ON(pages == NULL);
1661         p = kmap(pages[con->in_msg_pos.page]);
1662         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1663                                left);
1664         if (ret > 0 && do_datacrc)
1665                 con->in_data_crc =
1666                         crc32c(con->in_data_crc,
1667                                   p + con->in_msg_pos.page_pos, ret);
1668         kunmap(pages[con->in_msg_pos.page]);
1669         if (ret <= 0)
1670                 return ret;
1671         con->in_msg_pos.data_pos += ret;
1672         con->in_msg_pos.page_pos += ret;
1673         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1674                 con->in_msg_pos.page_pos = 0;
1675                 con->in_msg_pos.page++;
1676         }
1677
1678         return ret;
1679 }
1680
1681 #ifdef CONFIG_BLOCK
1682 static int read_partial_message_bio(struct ceph_connection *con,
1683                                     struct bio **bio_iter, int *bio_seg,
1684                                     unsigned int data_len, bool do_datacrc)
1685 {
1686         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1687         void *p;
1688         int ret, left;
1689
1690         if (IS_ERR(bv))
1691                 return PTR_ERR(bv);
1692
1693         left = min((int)(data_len - con->in_msg_pos.data_pos),
1694                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1695
1696         p = kmap(bv->bv_page) + bv->bv_offset;
1697
1698         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1699                                left);
1700         if (ret > 0 && do_datacrc)
1701                 con->in_data_crc =
1702                         crc32c(con->in_data_crc,
1703                                   p + con->in_msg_pos.page_pos, ret);
1704         kunmap(bv->bv_page);
1705         if (ret <= 0)
1706                 return ret;
1707         con->in_msg_pos.data_pos += ret;
1708         con->in_msg_pos.page_pos += ret;
1709         if (con->in_msg_pos.page_pos == bv->bv_len) {
1710                 con->in_msg_pos.page_pos = 0;
1711                 iter_bio_next(bio_iter, bio_seg);
1712         }
1713
1714         return ret;
1715 }
1716 #endif
1717
1718 /*
1719  * read (part of) a message.
1720  */
1721 static int read_partial_message(struct ceph_connection *con)
1722 {
1723         struct ceph_msg *m = con->in_msg;
1724         int size;
1725         int end;
1726         int ret;
1727         unsigned int front_len, middle_len, data_len;
1728         bool do_datacrc = !con->msgr->nocrc;
1729         u64 seq;
1730         u32 crc;
1731
1732         dout("read_partial_message con %p msg %p\n", con, m);
1733
1734         /* header */
1735         size = sizeof (con->in_hdr);
1736         end = size;
1737         ret = read_partial(con, end, size, &con->in_hdr);
1738         if (ret <= 0)
1739                 return ret;
1740
1741         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1742         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1743                 pr_err("read_partial_message bad hdr "
1744                        " crc %u != expected %u\n",
1745                        crc, con->in_hdr.crc);
1746                 return -EBADMSG;
1747         }
1748
1749         front_len = le32_to_cpu(con->in_hdr.front_len);
1750         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1751                 return -EIO;
1752         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1753         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1754                 return -EIO;
1755         data_len = le32_to_cpu(con->in_hdr.data_len);
1756         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1757                 return -EIO;
1758
1759         /* verify seq# */
1760         seq = le64_to_cpu(con->in_hdr.seq);
1761         if ((s64)seq - (s64)con->in_seq < 1) {
1762                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1763                         ENTITY_NAME(con->peer_name),
1764                         ceph_pr_addr(&con->peer_addr.in_addr),
1765                         seq, con->in_seq + 1);
1766                 con->in_base_pos = -front_len - middle_len - data_len -
1767                         sizeof(m->footer);
1768                 con->in_tag = CEPH_MSGR_TAG_READY;
1769                 return 0;
1770         } else if ((s64)seq - (s64)con->in_seq > 1) {
1771                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1772                        seq, con->in_seq + 1);
1773                 con->error_msg = "bad message sequence # for incoming message";
1774                 return -EBADMSG;
1775         }
1776
1777         /* allocate message? */
1778         if (!con->in_msg) {
1779                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1780                      con->in_hdr.front_len, con->in_hdr.data_len);
1781                 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1782                         /* skip this message */
1783                         dout("alloc_msg said skip message\n");
1784                         BUG_ON(con->in_msg);
1785                         con->in_base_pos = -front_len - middle_len - data_len -
1786                                 sizeof(m->footer);
1787                         con->in_tag = CEPH_MSGR_TAG_READY;
1788                         con->in_seq++;
1789                         return 0;
1790                 }
1791                 if (!con->in_msg) {
1792                         con->error_msg =
1793                                 "error allocating memory for incoming message";
1794                         return -ENOMEM;
1795                 }
1796
1797                 BUG_ON(con->in_msg->con != con);
1798                 m = con->in_msg;
1799                 m->front.iov_len = 0;    /* haven't read it yet */
1800                 if (m->middle)
1801                         m->middle->vec.iov_len = 0;
1802
1803                 con->in_msg_pos.page = 0;
1804                 if (m->pages)
1805                         con->in_msg_pos.page_pos = m->page_alignment;
1806                 else
1807                         con->in_msg_pos.page_pos = 0;
1808                 con->in_msg_pos.data_pos = 0;
1809         }
1810
1811         /* front */
1812         ret = read_partial_message_section(con, &m->front, front_len,
1813                                            &con->in_front_crc);
1814         if (ret <= 0)
1815                 return ret;
1816
1817         /* middle */
1818         if (m->middle) {
1819                 ret = read_partial_message_section(con, &m->middle->vec,
1820                                                    middle_len,
1821                                                    &con->in_middle_crc);
1822                 if (ret <= 0)
1823                         return ret;
1824         }
1825 #ifdef CONFIG_BLOCK
1826         if (m->bio && !m->bio_iter)
1827                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1828 #endif
1829
1830         /* (page) data */
1831         while (con->in_msg_pos.data_pos < data_len) {
1832                 if (m->pages) {
1833                         ret = read_partial_message_pages(con, m->pages,
1834                                                  data_len, do_datacrc);
1835                         if (ret <= 0)
1836                                 return ret;
1837 #ifdef CONFIG_BLOCK
1838                 } else if (m->bio) {
1839
1840                         ret = read_partial_message_bio(con,
1841                                                  &m->bio_iter, &m->bio_seg,
1842                                                  data_len, do_datacrc);
1843                         if (ret <= 0)
1844                                 return ret;
1845 #endif
1846                 } else {
1847                         BUG_ON(1);
1848                 }
1849         }
1850
1851         /* footer */
1852         size = sizeof (m->footer);
1853         end += size;
1854         ret = read_partial(con, end, size, &m->footer);
1855         if (ret <= 0)
1856                 return ret;
1857
1858         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1859              m, front_len, m->footer.front_crc, middle_len,
1860              m->footer.middle_crc, data_len, m->footer.data_crc);
1861
1862         /* crc ok? */
1863         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1864                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1865                        m, con->in_front_crc, m->footer.front_crc);
1866                 return -EBADMSG;
1867         }
1868         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1869                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1870                        m, con->in_middle_crc, m->footer.middle_crc);
1871                 return -EBADMSG;
1872         }
1873         if (do_datacrc &&
1874             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1875             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1876                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1877                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1878                 return -EBADMSG;
1879         }
1880
1881         return 1; /* done! */
1882 }
1883
1884 /*
1885  * Process message.  This happens in the worker thread.  The callback should
1886  * be careful not to do anything that waits on other incoming messages or it
1887  * may deadlock.
1888  */
1889 static void process_message(struct ceph_connection *con)
1890 {
1891         struct ceph_msg *msg;
1892
1893         BUG_ON(con->in_msg->con != con);
1894         con->in_msg->con = NULL;
1895         msg = con->in_msg;
1896         con->in_msg = NULL;
1897         con->ops->put(con);
1898
1899         /* if first message, set peer_name */
1900         if (con->peer_name.type == 0)
1901                 con->peer_name = msg->hdr.src;
1902
1903         con->in_seq++;
1904         mutex_unlock(&con->mutex);
1905
1906         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1907              msg, le64_to_cpu(msg->hdr.seq),
1908              ENTITY_NAME(msg->hdr.src),
1909              le16_to_cpu(msg->hdr.type),
1910              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1911              le32_to_cpu(msg->hdr.front_len),
1912              le32_to_cpu(msg->hdr.data_len),
1913              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1914         con->ops->dispatch(con, msg);
1915
1916         mutex_lock(&con->mutex);
1917         prepare_read_tag(con);
1918 }
1919
1920
1921 /*
1922  * Write something to the socket.  Called in a worker thread when the
1923  * socket appears to be writeable and we have something ready to send.
1924  */
1925 static int try_write(struct ceph_connection *con)
1926 {
1927         int ret = 1;
1928
1929         dout("try_write start %p state %lu\n", con, con->state);
1930
1931 more:
1932         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1933
1934         /* open the socket first? */
1935         if (con->sock == NULL) {
1936                 clear_bit(NEGOTIATING, &con->state);
1937                 set_bit(CONNECTING, &con->state);
1938
1939                 con_out_kvec_reset(con);
1940                 prepare_write_banner(con);
1941                 ret = prepare_write_connect(con);
1942                 if (ret < 0)
1943                         goto out;
1944                 prepare_read_banner(con);
1945
1946                 BUG_ON(con->in_msg);
1947                 con->in_tag = CEPH_MSGR_TAG_READY;
1948                 dout("try_write initiating connect on %p new state %lu\n",
1949                      con, con->state);
1950                 ret = ceph_tcp_connect(con);
1951                 if (ret < 0) {
1952                         con->error_msg = "connect error";
1953                         goto out;
1954                 }
1955         }
1956
1957 more_kvec:
1958         /* kvec data queued? */
1959         if (con->out_skip) {
1960                 ret = write_partial_skip(con);
1961                 if (ret <= 0)
1962                         goto out;
1963         }
1964         if (con->out_kvec_left) {
1965                 ret = write_partial_kvec(con);
1966                 if (ret <= 0)
1967                         goto out;
1968         }
1969
1970         /* msg pages? */
1971         if (con->out_msg) {
1972                 if (con->out_msg_done) {
1973                         ceph_msg_put(con->out_msg);
1974                         con->out_msg = NULL;   /* we're done with this one */
1975                         goto do_next;
1976                 }
1977
1978                 ret = write_partial_msg_pages(con);
1979                 if (ret == 1)
1980                         goto more_kvec;  /* we need to send the footer, too! */
1981                 if (ret == 0)
1982                         goto out;
1983                 if (ret < 0) {
1984                         dout("try_write write_partial_msg_pages err %d\n",
1985                              ret);
1986                         goto out;
1987                 }
1988         }
1989
1990 do_next:
1991         if (!test_bit(CONNECTING, &con->state)) {
1992                 /* is anything else pending? */
1993                 if (!list_empty(&con->out_queue)) {
1994                         prepare_write_message(con);
1995                         goto more;
1996                 }
1997                 if (con->in_seq > con->in_seq_acked) {
1998                         prepare_write_ack(con);
1999                         goto more;
2000                 }
2001                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2002                         prepare_write_keepalive(con);
2003                         goto more;
2004                 }
2005         }
2006
2007         /* Nothing to do! */
2008         clear_bit(WRITE_PENDING, &con->flags);
2009         dout("try_write nothing else to write.\n");
2010         ret = 0;
2011 out:
2012         dout("try_write done on %p ret %d\n", con, ret);
2013         return ret;
2014 }
2015
2016
2017
2018 /*
2019  * Read what we can from the socket.
2020  */
2021 static int try_read(struct ceph_connection *con)
2022 {
2023         int ret = -1;
2024
2025         if (!con->sock)
2026                 return 0;
2027
2028         if (test_bit(STANDBY, &con->state))
2029                 return 0;
2030
2031         dout("try_read start on %p\n", con);
2032
2033 more:
2034         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2035              con->in_base_pos);
2036
2037         /*
2038          * process_connect and process_message drop and re-take
2039          * con->mutex.  make sure we handle a racing close or reopen.
2040          */
2041         if (test_bit(CLOSED, &con->state) ||
2042             test_bit(OPENING, &con->state)) {
2043                 ret = -EAGAIN;
2044                 goto out;
2045         }
2046
2047         if (test_bit(CONNECTING, &con->state)) {
2048                 if (!test_bit(NEGOTIATING, &con->state)) {
2049                         dout("try_read connecting\n");
2050                         ret = read_partial_banner(con);
2051                         if (ret <= 0)
2052                                 goto out;
2053                         ret = process_banner(con);
2054                         if (ret < 0)
2055                                 goto out;
2056                 }
2057                 ret = read_partial_connect(con);
2058                 if (ret <= 0)
2059                         goto out;
2060                 ret = process_connect(con);
2061                 if (ret < 0)
2062                         goto out;
2063                 goto more;
2064         }
2065
2066         if (con->in_base_pos < 0) {
2067                 /*
2068                  * skipping + discarding content.
2069                  *
2070                  * FIXME: there must be a better way to do this!
2071                  */
2072                 static char buf[SKIP_BUF_SIZE];
2073                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2074
2075                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2076                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2077                 if (ret <= 0)
2078                         goto out;
2079                 con->in_base_pos += ret;
2080                 if (con->in_base_pos)
2081                         goto more;
2082         }
2083         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2084                 /*
2085                  * what's next?
2086                  */
2087                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2088                 if (ret <= 0)
2089                         goto out;
2090                 dout("try_read got tag %d\n", (int)con->in_tag);
2091                 switch (con->in_tag) {
2092                 case CEPH_MSGR_TAG_MSG:
2093                         prepare_read_message(con);
2094                         break;
2095                 case CEPH_MSGR_TAG_ACK:
2096                         prepare_read_ack(con);
2097                         break;
2098                 case CEPH_MSGR_TAG_CLOSE:
2099                         set_bit(CLOSED, &con->state);   /* fixme */
2100                         goto out;
2101                 default:
2102                         goto bad_tag;
2103                 }
2104         }
2105         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2106                 ret = read_partial_message(con);
2107                 if (ret <= 0) {
2108                         switch (ret) {
2109                         case -EBADMSG:
2110                                 con->error_msg = "bad crc";
2111                                 ret = -EIO;
2112                                 break;
2113                         case -EIO:
2114                                 con->error_msg = "io error";
2115                                 break;
2116                         }
2117                         goto out;
2118                 }
2119                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2120                         goto more;
2121                 process_message(con);
2122                 goto more;
2123         }
2124         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2125                 ret = read_partial_ack(con);
2126                 if (ret <= 0)
2127                         goto out;
2128                 process_ack(con);
2129                 goto more;
2130         }
2131
2132 out:
2133         dout("try_read done on %p ret %d\n", con, ret);
2134         return ret;
2135
2136 bad_tag:
2137         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2138         con->error_msg = "protocol error, garbage tag";
2139         ret = -1;
2140         goto out;
2141 }
2142
2143
2144 /*
2145  * Atomically queue work on a connection.  Bump @con reference to
2146  * avoid races with connection teardown.
2147  */
2148 static void queue_con(struct ceph_connection *con)
2149 {
2150         if (!con->ops->get(con)) {
2151                 dout("queue_con %p ref count 0\n", con);
2152                 return;
2153         }
2154
2155         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2156                 dout("queue_con %p - already queued\n", con);
2157                 con->ops->put(con);
2158         } else {
2159                 dout("queue_con %p\n", con);
2160         }
2161 }
2162
2163 /*
2164  * Do some work on a connection.  Drop a connection ref when we're done.
2165  */
2166 static void con_work(struct work_struct *work)
2167 {
2168         struct ceph_connection *con = container_of(work, struct ceph_connection,
2169                                                    work.work);
2170         int ret;
2171
2172         mutex_lock(&con->mutex);
2173 restart:
2174         if (test_and_clear_bit(BACKOFF, &con->flags)) {
2175                 dout("con_work %p backing off\n", con);
2176                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2177                                        round_jiffies_relative(con->delay))) {
2178                         dout("con_work %p backoff %lu\n", con, con->delay);
2179                         mutex_unlock(&con->mutex);
2180                         return;
2181                 } else {
2182                         con->ops->put(con);
2183                         dout("con_work %p FAILED to back off %lu\n", con,
2184                              con->delay);
2185                 }
2186         }
2187
2188         if (test_bit(STANDBY, &con->state)) {
2189                 dout("con_work %p STANDBY\n", con);
2190                 goto done;
2191         }
2192         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2193                 dout("con_work CLOSED\n");
2194                 con_close_socket(con);
2195                 goto done;
2196         }
2197         if (test_and_clear_bit(OPENING, &con->state)) {
2198                 /* reopen w/ new peer */
2199                 dout("con_work OPENING\n");
2200                 con_close_socket(con);
2201         }
2202
2203         if (test_and_clear_bit(SOCK_CLOSED, &con->flags))
2204                 goto fault;
2205
2206         ret = try_read(con);
2207         if (ret == -EAGAIN)
2208                 goto restart;
2209         if (ret < 0)
2210                 goto fault;
2211
2212         ret = try_write(con);
2213         if (ret == -EAGAIN)
2214                 goto restart;
2215         if (ret < 0)
2216                 goto fault;
2217
2218 done:
2219         mutex_unlock(&con->mutex);
2220 done_unlocked:
2221         con->ops->put(con);
2222         return;
2223
2224 fault:
2225         mutex_unlock(&con->mutex);
2226         ceph_fault(con);     /* error/fault path */
2227         goto done_unlocked;
2228 }
2229
2230
2231 /*
2232  * Generic error/fault handler.  A retry mechanism is used with
2233  * exponential backoff
2234  */
2235 static void ceph_fault(struct ceph_connection *con)
2236 {
2237         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2238                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2239         dout("fault %p state %lu to peer %s\n",
2240              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2241
2242         if (test_bit(LOSSYTX, &con->flags)) {
2243                 dout("fault on LOSSYTX channel\n");
2244                 goto out;
2245         }
2246
2247         mutex_lock(&con->mutex);
2248         if (test_bit(CLOSED, &con->state))
2249                 goto out_unlock;
2250
2251         con_close_socket(con);
2252
2253         if (con->in_msg) {
2254                 BUG_ON(con->in_msg->con != con);
2255                 con->in_msg->con = NULL;
2256                 ceph_msg_put(con->in_msg);
2257                 con->in_msg = NULL;
2258                 con->ops->put(con);
2259         }
2260
2261         /* Requeue anything that hasn't been acked */
2262         list_splice_init(&con->out_sent, &con->out_queue);
2263
2264         /* If there are no messages queued or keepalive pending, place
2265          * the connection in a STANDBY state */
2266         if (list_empty(&con->out_queue) &&
2267             !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2268                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2269                 clear_bit(WRITE_PENDING, &con->flags);
2270                 set_bit(STANDBY, &con->state);
2271         } else {
2272                 /* retry after a delay. */
2273                 if (con->delay == 0)
2274                         con->delay = BASE_DELAY_INTERVAL;
2275                 else if (con->delay < MAX_DELAY_INTERVAL)
2276                         con->delay *= 2;
2277                 con->ops->get(con);
2278                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2279                                        round_jiffies_relative(con->delay))) {
2280                         dout("fault queued %p delay %lu\n", con, con->delay);
2281                 } else {
2282                         con->ops->put(con);
2283                         dout("fault failed to queue %p delay %lu, backoff\n",
2284                              con, con->delay);
2285                         /*
2286                          * In many cases we see a socket state change
2287                          * while con_work is running and end up
2288                          * queuing (non-delayed) work, such that we
2289                          * can't backoff with a delay.  Set a flag so
2290                          * that when con_work restarts we schedule the
2291                          * delay then.
2292                          */
2293                         set_bit(BACKOFF, &con->flags);
2294                 }
2295         }
2296
2297 out_unlock:
2298         mutex_unlock(&con->mutex);
2299 out:
2300         /*
2301          * in case we faulted due to authentication, invalidate our
2302          * current tickets so that we can get new ones.
2303          */
2304         if (con->auth_retry && con->ops->invalidate_authorizer) {
2305                 dout("calling invalidate_authorizer()\n");
2306                 con->ops->invalidate_authorizer(con);
2307         }
2308
2309         if (con->ops->fault)
2310                 con->ops->fault(con);
2311 }
2312
2313
2314
2315 /*
2316  * initialize a new messenger instance
2317  */
2318 void ceph_messenger_init(struct ceph_messenger *msgr,
2319                         struct ceph_entity_addr *myaddr,
2320                         u32 supported_features,
2321                         u32 required_features,
2322                         bool nocrc)
2323 {
2324         msgr->supported_features = supported_features;
2325         msgr->required_features = required_features;
2326
2327         spin_lock_init(&msgr->global_seq_lock);
2328
2329         if (myaddr)
2330                 msgr->inst.addr = *myaddr;
2331
2332         /* select a random nonce */
2333         msgr->inst.addr.type = 0;
2334         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2335         encode_my_addr(msgr);
2336         msgr->nocrc = nocrc;
2337
2338         dout("%s %p\n", __func__, msgr);
2339 }
2340 EXPORT_SYMBOL(ceph_messenger_init);
2341
2342 static void clear_standby(struct ceph_connection *con)
2343 {
2344         /* come back from STANDBY? */
2345         if (test_and_clear_bit(STANDBY, &con->state)) {
2346                 mutex_lock(&con->mutex);
2347                 dout("clear_standby %p and ++connect_seq\n", con);
2348                 con->connect_seq++;
2349                 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2350                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2351                 mutex_unlock(&con->mutex);
2352         }
2353 }
2354
2355 /*
2356  * Queue up an outgoing message on the given connection.
2357  */
2358 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2359 {
2360         if (test_bit(CLOSED, &con->state)) {
2361                 dout("con_send %p closed, dropping %p\n", con, msg);
2362                 ceph_msg_put(msg);
2363                 return;
2364         }
2365
2366         /* set src+dst */
2367         msg->hdr.src = con->msgr->inst.name;
2368
2369         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2370
2371         msg->needs_out_seq = true;
2372
2373         /* queue */
2374         mutex_lock(&con->mutex);
2375
2376         BUG_ON(msg->con != NULL);
2377         msg->con = con->ops->get(con);
2378         BUG_ON(msg->con == NULL);
2379
2380         BUG_ON(!list_empty(&msg->list_head));
2381         list_add_tail(&msg->list_head, &con->out_queue);
2382         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2383              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2384              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2385              le32_to_cpu(msg->hdr.front_len),
2386              le32_to_cpu(msg->hdr.middle_len),
2387              le32_to_cpu(msg->hdr.data_len));
2388         mutex_unlock(&con->mutex);
2389
2390         /* if there wasn't anything waiting to send before, queue
2391          * new work */
2392         clear_standby(con);
2393         if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2394                 queue_con(con);
2395 }
2396 EXPORT_SYMBOL(ceph_con_send);
2397
2398 /*
2399  * Revoke a message that was previously queued for send
2400  */
2401 void ceph_msg_revoke(struct ceph_msg *msg)
2402 {
2403         struct ceph_connection *con = msg->con;
2404
2405         if (!con)
2406                 return;         /* Message not in our possession */
2407
2408         mutex_lock(&con->mutex);
2409         if (!list_empty(&msg->list_head)) {
2410                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2411                 list_del_init(&msg->list_head);
2412                 BUG_ON(msg->con == NULL);
2413                 msg->con->ops->put(msg->con);
2414                 msg->con = NULL;
2415                 msg->hdr.seq = 0;
2416
2417                 ceph_msg_put(msg);
2418         }
2419         if (con->out_msg == msg) {
2420                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2421                 con->out_msg = NULL;
2422                 if (con->out_kvec_is_msg) {
2423                         con->out_skip = con->out_kvec_bytes;
2424                         con->out_kvec_is_msg = false;
2425                 }
2426                 msg->hdr.seq = 0;
2427
2428                 ceph_msg_put(msg);
2429         }
2430         mutex_unlock(&con->mutex);
2431 }
2432
2433 /*
2434  * Revoke a message that we may be reading data into
2435  */
2436 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2437 {
2438         struct ceph_connection *con;
2439
2440         BUG_ON(msg == NULL);
2441         if (!msg->con) {
2442                 dout("%s msg %p null con\n", __func__, msg);
2443
2444                 return;         /* Message not in our possession */
2445         }
2446
2447         con = msg->con;
2448         mutex_lock(&con->mutex);
2449         if (con->in_msg == msg) {
2450                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2451                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2452                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2453
2454                 /* skip rest of message */
2455                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2456                 con->in_base_pos = con->in_base_pos -
2457                                 sizeof(struct ceph_msg_header) -
2458                                 front_len -
2459                                 middle_len -
2460                                 data_len -
2461                                 sizeof(struct ceph_msg_footer);
2462                 ceph_msg_put(con->in_msg);
2463                 con->in_msg = NULL;
2464                 con->in_tag = CEPH_MSGR_TAG_READY;
2465                 con->in_seq++;
2466         } else {
2467                 dout("%s %p in_msg %p msg %p no-op\n",
2468                      __func__, con, con->in_msg, msg);
2469         }
2470         mutex_unlock(&con->mutex);
2471 }
2472
2473 /*
2474  * Queue a keepalive byte to ensure the tcp connection is alive.
2475  */
2476 void ceph_con_keepalive(struct ceph_connection *con)
2477 {
2478         dout("con_keepalive %p\n", con);
2479         clear_standby(con);
2480         if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2481             test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2482                 queue_con(con);
2483 }
2484 EXPORT_SYMBOL(ceph_con_keepalive);
2485
2486
2487 /*
2488  * construct a new message with given type, size
2489  * the new msg has a ref count of 1.
2490  */
2491 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2492                               bool can_fail)
2493 {
2494         struct ceph_msg *m;
2495
2496         m = kmalloc(sizeof(*m), flags);
2497         if (m == NULL)
2498                 goto out;
2499         kref_init(&m->kref);
2500
2501         m->con = NULL;
2502         INIT_LIST_HEAD(&m->list_head);
2503
2504         m->hdr.tid = 0;
2505         m->hdr.type = cpu_to_le16(type);
2506         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2507         m->hdr.version = 0;
2508         m->hdr.front_len = cpu_to_le32(front_len);
2509         m->hdr.middle_len = 0;
2510         m->hdr.data_len = 0;
2511         m->hdr.data_off = 0;
2512         m->hdr.reserved = 0;
2513         m->footer.front_crc = 0;
2514         m->footer.middle_crc = 0;
2515         m->footer.data_crc = 0;
2516         m->footer.flags = 0;
2517         m->front_max = front_len;
2518         m->front_is_vmalloc = false;
2519         m->more_to_follow = false;
2520         m->ack_stamp = 0;
2521         m->pool = NULL;
2522
2523         /* middle */
2524         m->middle = NULL;
2525
2526         /* data */
2527         m->nr_pages = 0;
2528         m->page_alignment = 0;
2529         m->pages = NULL;
2530         m->pagelist = NULL;
2531         m->bio = NULL;
2532         m->bio_iter = NULL;
2533         m->bio_seg = 0;
2534         m->trail = NULL;
2535
2536         /* front */
2537         if (front_len) {
2538                 if (front_len > PAGE_CACHE_SIZE) {
2539                         m->front.iov_base = __vmalloc(front_len, flags,
2540                                                       PAGE_KERNEL);
2541                         m->front_is_vmalloc = true;
2542                 } else {
2543                         m->front.iov_base = kmalloc(front_len, flags);
2544                 }
2545                 if (m->front.iov_base == NULL) {
2546                         dout("ceph_msg_new can't allocate %d bytes\n",
2547                              front_len);
2548                         goto out2;
2549                 }
2550         } else {
2551                 m->front.iov_base = NULL;
2552         }
2553         m->front.iov_len = front_len;
2554
2555         dout("ceph_msg_new %p front %d\n", m, front_len);
2556         return m;
2557
2558 out2:
2559         ceph_msg_put(m);
2560 out:
2561         if (!can_fail) {
2562                 pr_err("msg_new can't create type %d front %d\n", type,
2563                        front_len);
2564                 WARN_ON(1);
2565         } else {
2566                 dout("msg_new can't create type %d front %d\n", type,
2567                      front_len);
2568         }
2569         return NULL;
2570 }
2571 EXPORT_SYMBOL(ceph_msg_new);
2572
2573 /*
2574  * Allocate "middle" portion of a message, if it is needed and wasn't
2575  * allocated by alloc_msg.  This allows us to read a small fixed-size
2576  * per-type header in the front and then gracefully fail (i.e.,
2577  * propagate the error to the caller based on info in the front) when
2578  * the middle is too large.
2579  */
2580 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2581 {
2582         int type = le16_to_cpu(msg->hdr.type);
2583         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2584
2585         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2586              ceph_msg_type_name(type), middle_len);
2587         BUG_ON(!middle_len);
2588         BUG_ON(msg->middle);
2589
2590         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2591         if (!msg->middle)
2592                 return -ENOMEM;
2593         return 0;
2594 }
2595
2596 /*
2597  * Allocate a message for receiving an incoming message on a
2598  * connection, and save the result in con->in_msg.  Uses the
2599  * connection's private alloc_msg op if available.
2600  *
2601  * Returns true if the message should be skipped, false otherwise.
2602  * If true is returned (skip message), con->in_msg will be NULL.
2603  * If false is returned, con->in_msg will contain a pointer to the
2604  * newly-allocated message, or NULL in case of memory exhaustion.
2605  */
2606 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2607                                 struct ceph_msg_header *hdr)
2608 {
2609         int type = le16_to_cpu(hdr->type);
2610         int front_len = le32_to_cpu(hdr->front_len);
2611         int middle_len = le32_to_cpu(hdr->middle_len);
2612         int ret;
2613
2614         BUG_ON(con->in_msg != NULL);
2615
2616         if (con->ops->alloc_msg) {
2617                 int skip = 0;
2618
2619                 mutex_unlock(&con->mutex);
2620                 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2621                 mutex_lock(&con->mutex);
2622                 if (con->in_msg) {
2623                         con->in_msg->con = con->ops->get(con);
2624                         BUG_ON(con->in_msg->con == NULL);
2625                 }
2626                 if (skip)
2627                         con->in_msg = NULL;
2628
2629                 if (!con->in_msg)
2630                         return skip != 0;
2631         }
2632         if (!con->in_msg) {
2633                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2634                 if (!con->in_msg) {
2635                         pr_err("unable to allocate msg type %d len %d\n",
2636                                type, front_len);
2637                         return false;
2638                 }
2639                 con->in_msg->con = con->ops->get(con);
2640                 BUG_ON(con->in_msg->con == NULL);
2641                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2642         }
2643         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2644
2645         if (middle_len && !con->in_msg->middle) {
2646                 ret = ceph_alloc_middle(con, con->in_msg);
2647                 if (ret < 0) {
2648                         ceph_msg_put(con->in_msg);
2649                         con->in_msg = NULL;
2650                 }
2651         }
2652
2653         return false;
2654 }
2655
2656
2657 /*
2658  * Free a generically kmalloc'd message.
2659  */
2660 void ceph_msg_kfree(struct ceph_msg *m)
2661 {
2662         dout("msg_kfree %p\n", m);
2663         if (m->front_is_vmalloc)
2664                 vfree(m->front.iov_base);
2665         else
2666                 kfree(m->front.iov_base);
2667         kfree(m);
2668 }
2669
2670 /*
2671  * Drop a msg ref.  Destroy as needed.
2672  */
2673 void ceph_msg_last_put(struct kref *kref)
2674 {
2675         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2676
2677         dout("ceph_msg_put last one on %p\n", m);
2678         WARN_ON(!list_empty(&m->list_head));
2679
2680         /* drop middle, data, if any */
2681         if (m->middle) {
2682                 ceph_buffer_put(m->middle);
2683                 m->middle = NULL;
2684         }
2685         m->nr_pages = 0;
2686         m->pages = NULL;
2687
2688         if (m->pagelist) {
2689                 ceph_pagelist_release(m->pagelist);
2690                 kfree(m->pagelist);
2691                 m->pagelist = NULL;
2692         }
2693
2694         m->trail = NULL;
2695
2696         if (m->pool)
2697                 ceph_msgpool_put(m->pool, m);
2698         else
2699                 ceph_msg_kfree(m);
2700 }
2701 EXPORT_SYMBOL(ceph_msg_last_put);
2702
2703 void ceph_msg_dump(struct ceph_msg *msg)
2704 {
2705         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2706                  msg->front_max, msg->nr_pages);
2707         print_hex_dump(KERN_DEBUG, "header: ",
2708                        DUMP_PREFIX_OFFSET, 16, 1,
2709                        &msg->hdr, sizeof(msg->hdr), true);
2710         print_hex_dump(KERN_DEBUG, " front: ",
2711                        DUMP_PREFIX_OFFSET, 16, 1,
2712                        msg->front.iov_base, msg->front.iov_len, true);
2713         if (msg->middle)
2714                 print_hex_dump(KERN_DEBUG, "middle: ",
2715                                DUMP_PREFIX_OFFSET, 16, 1,
2716                                msg->middle->vec.iov_base,
2717                                msg->middle->vec.iov_len, true);
2718         print_hex_dump(KERN_DEBUG, "footer: ",
2719                        DUMP_PREFIX_OFFSET, 16, 1,
2720                        &msg->footer, sizeof(msg->footer), true);
2721 }
2722 EXPORT_SYMBOL(ceph_msg_dump);