]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/core/dev.c
PM / OPP: Documentation: Fix opp-microvolt in examples
[karo-tx-linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;       /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160                                          struct net_device *dev,
161                                          struct netdev_notifier_info *info);
162
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195         while (++net->dev_base_seq == 0);
196 }
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201
202         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213         spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227         struct net *net = dev_net(dev);
228
229         ASSERT_RTNL();
230
231         write_lock_bh(&dev_base_lock);
232         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234         hlist_add_head_rcu(&dev->index_hlist,
235                            dev_index_hash(net, dev->ifindex));
236         write_unlock_bh(&dev_base_lock);
237
238         dev_base_seq_inc(net);
239 }
240
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246         ASSERT_RTNL();
247
248         /* Unlink dev from the device chain */
249         write_lock_bh(&dev_base_lock);
250         list_del_rcu(&dev->dev_list);
251         hlist_del_rcu(&dev->name_hlist);
252         hlist_del_rcu(&dev->index_hlist);
253         write_unlock_bh(&dev_base_lock);
254
255         dev_base_seq_inc(dev_net(dev));
256 }
257
258 /*
259  *      Our notifier list
260  */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265  *      Device drivers call our routines to queue packets here. We empty the
266  *      queue in the local softnet handler.
267  */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316         int i;
317
318         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319                 if (netdev_lock_type[i] == dev_type)
320                         return i;
321         /* the last key is used by default */
322         return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326                                                  unsigned short dev_type)
327 {
328         int i;
329
330         i = netdev_lock_pos(dev_type);
331         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332                                    netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev->type);
340         lockdep_set_class_and_name(&dev->addr_list_lock,
341                                    &netdev_addr_lock_key[i],
342                                    netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346                                                  unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356                 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361  *      Add a protocol ID to the list. Now that the input handler is
362  *      smarter we can dispense with all the messy stuff that used to be
363  *      here.
364  *
365  *      BEWARE!!! Protocol handlers, mangling input packets,
366  *      MUST BE last in hash buckets and checking protocol handlers
367  *      MUST start from promiscuous ptype_all chain in net_bh.
368  *      It is true now, do not change it.
369  *      Explanation follows: if protocol handler, mangling packet, will
370  *      be the first on list, it is not able to sense, that packet
371  *      is cloned and should be copied-on-write, so that it will
372  *      change it and subsequent readers will get broken packet.
373  *                                                      --ANK (980803)
374  */
375
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378         if (pt->type == htons(ETH_P_ALL))
379                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380         else
381                 return pt->dev ? &pt->dev->ptype_specific :
382                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386  *      dev_add_pack - add packet handler
387  *      @pt: packet type declaration
388  *
389  *      Add a protocol handler to the networking stack. The passed &packet_type
390  *      is linked into kernel lists and may not be freed until it has been
391  *      removed from the kernel lists.
392  *
393  *      This call does not sleep therefore it can not
394  *      guarantee all CPU's that are in middle of receiving packets
395  *      will see the new packet type (until the next received packet).
396  */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400         struct list_head *head = ptype_head(pt);
401
402         spin_lock(&ptype_lock);
403         list_add_rcu(&pt->list, head);
404         spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409  *      __dev_remove_pack        - remove packet handler
410  *      @pt: packet type declaration
411  *
412  *      Remove a protocol handler that was previously added to the kernel
413  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *      from the kernel lists and can be freed or reused once this function
415  *      returns.
416  *
417  *      The packet type might still be in use by receivers
418  *      and must not be freed until after all the CPU's have gone
419  *      through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423         struct list_head *head = ptype_head(pt);
424         struct packet_type *pt1;
425
426         spin_lock(&ptype_lock);
427
428         list_for_each_entry(pt1, head, list) {
429                 if (pt == pt1) {
430                         list_del_rcu(&pt->list);
431                         goto out;
432                 }
433         }
434
435         pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437         spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442  *      dev_remove_pack  - remove packet handler
443  *      @pt: packet type declaration
444  *
445  *      Remove a protocol handler that was previously added to the kernel
446  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *      from the kernel lists and can be freed or reused once this function
448  *      returns.
449  *
450  *      This call sleeps to guarantee that no CPU is looking at the packet
451  *      type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455         __dev_remove_pack(pt);
456
457         synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461
462 /**
463  *      dev_add_offload - register offload handlers
464  *      @po: protocol offload declaration
465  *
466  *      Add protocol offload handlers to the networking stack. The passed
467  *      &proto_offload is linked into kernel lists and may not be freed until
468  *      it has been removed from the kernel lists.
469  *
470  *      This call does not sleep therefore it can not
471  *      guarantee all CPU's that are in middle of receiving packets
472  *      will see the new offload handlers (until the next received packet).
473  */
474 void dev_add_offload(struct packet_offload *po)
475 {
476         struct packet_offload *elem;
477
478         spin_lock(&offload_lock);
479         list_for_each_entry(elem, &offload_base, list) {
480                 if (po->priority < elem->priority)
481                         break;
482         }
483         list_add_rcu(&po->list, elem->list.prev);
484         spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487
488 /**
489  *      __dev_remove_offload     - remove offload handler
490  *      @po: packet offload declaration
491  *
492  *      Remove a protocol offload handler that was previously added to the
493  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
494  *      is removed from the kernel lists and can be freed or reused once this
495  *      function returns.
496  *
497  *      The packet type might still be in use by receivers
498  *      and must not be freed until after all the CPU's have gone
499  *      through a quiescent state.
500  */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503         struct list_head *head = &offload_base;
504         struct packet_offload *po1;
505
506         spin_lock(&offload_lock);
507
508         list_for_each_entry(po1, head, list) {
509                 if (po == po1) {
510                         list_del_rcu(&po->list);
511                         goto out;
512                 }
513         }
514
515         pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517         spin_unlock(&offload_lock);
518 }
519
520 /**
521  *      dev_remove_offload       - remove packet offload handler
522  *      @po: packet offload declaration
523  *
524  *      Remove a packet offload handler that was previously added to the kernel
525  *      offload handlers by dev_add_offload(). The passed &offload_type is
526  *      removed from the kernel lists and can be freed or reused once this
527  *      function returns.
528  *
529  *      This call sleeps to guarantee that no CPU is looking at the packet
530  *      type after return.
531  */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534         __dev_remove_offload(po);
535
536         synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539
540 /******************************************************************************
541
542                       Device Boot-time Settings Routines
543
544 *******************************************************************************/
545
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549 /**
550  *      netdev_boot_setup_add   - add new setup entry
551  *      @name: name of the device
552  *      @map: configured settings for the device
553  *
554  *      Adds new setup entry to the dev_boot_setup list.  The function
555  *      returns 0 on error and 1 on success.  This is a generic routine to
556  *      all netdevices.
557  */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560         struct netdev_boot_setup *s;
561         int i;
562
563         s = dev_boot_setup;
564         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566                         memset(s[i].name, 0, sizeof(s[i].name));
567                         strlcpy(s[i].name, name, IFNAMSIZ);
568                         memcpy(&s[i].map, map, sizeof(s[i].map));
569                         break;
570                 }
571         }
572
573         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575
576 /**
577  *      netdev_boot_setup_check - check boot time settings
578  *      @dev: the netdevice
579  *
580  *      Check boot time settings for the device.
581  *      The found settings are set for the device to be used
582  *      later in the device probing.
583  *      Returns 0 if no settings found, 1 if they are.
584  */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587         struct netdev_boot_setup *s = dev_boot_setup;
588         int i;
589
590         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592                     !strcmp(dev->name, s[i].name)) {
593                         dev->irq        = s[i].map.irq;
594                         dev->base_addr  = s[i].map.base_addr;
595                         dev->mem_start  = s[i].map.mem_start;
596                         dev->mem_end    = s[i].map.mem_end;
597                         return 1;
598                 }
599         }
600         return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603
604
605 /**
606  *      netdev_boot_base        - get address from boot time settings
607  *      @prefix: prefix for network device
608  *      @unit: id for network device
609  *
610  *      Check boot time settings for the base address of device.
611  *      The found settings are set for the device to be used
612  *      later in the device probing.
613  *      Returns 0 if no settings found.
614  */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617         const struct netdev_boot_setup *s = dev_boot_setup;
618         char name[IFNAMSIZ];
619         int i;
620
621         sprintf(name, "%s%d", prefix, unit);
622
623         /*
624          * If device already registered then return base of 1
625          * to indicate not to probe for this interface
626          */
627         if (__dev_get_by_name(&init_net, name))
628                 return 1;
629
630         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631                 if (!strcmp(name, s[i].name))
632                         return s[i].map.base_addr;
633         return 0;
634 }
635
636 /*
637  * Saves at boot time configured settings for any netdevice.
638  */
639 int __init netdev_boot_setup(char *str)
640 {
641         int ints[5];
642         struct ifmap map;
643
644         str = get_options(str, ARRAY_SIZE(ints), ints);
645         if (!str || !*str)
646                 return 0;
647
648         /* Save settings */
649         memset(&map, 0, sizeof(map));
650         if (ints[0] > 0)
651                 map.irq = ints[1];
652         if (ints[0] > 1)
653                 map.base_addr = ints[2];
654         if (ints[0] > 2)
655                 map.mem_start = ints[3];
656         if (ints[0] > 3)
657                 map.mem_end = ints[4];
658
659         /* Add new entry to the list */
660         return netdev_boot_setup_add(str, &map);
661 }
662
663 __setup("netdev=", netdev_boot_setup);
664
665 /*******************************************************************************
666
667                             Device Interface Subroutines
668
669 *******************************************************************************/
670
671 /**
672  *      dev_get_iflink  - get 'iflink' value of a interface
673  *      @dev: targeted interface
674  *
675  *      Indicates the ifindex the interface is linked to.
676  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
677  */
678
679 int dev_get_iflink(const struct net_device *dev)
680 {
681         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682                 return dev->netdev_ops->ndo_get_iflink(dev);
683
684         return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687
688 /**
689  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
690  *      @dev: targeted interface
691  *      @skb: The packet.
692  *
693  *      For better visibility of tunnel traffic OVS needs to retrieve
694  *      egress tunnel information for a packet. Following API allows
695  *      user to get this info.
696  */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699         struct ip_tunnel_info *info;
700
701         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
702                 return -EINVAL;
703
704         info = skb_tunnel_info_unclone(skb);
705         if (!info)
706                 return -ENOMEM;
707         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708                 return -EINVAL;
709
710         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
714 /**
715  *      __dev_get_by_name       - find a device by its name
716  *      @net: the applicable net namespace
717  *      @name: name to find
718  *
719  *      Find an interface by name. Must be called under RTNL semaphore
720  *      or @dev_base_lock. If the name is found a pointer to the device
721  *      is returned. If the name is not found then %NULL is returned. The
722  *      reference counters are not incremented so the caller must be
723  *      careful with locks.
724  */
725
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728         struct net_device *dev;
729         struct hlist_head *head = dev_name_hash(net, name);
730
731         hlist_for_each_entry(dev, head, name_hlist)
732                 if (!strncmp(dev->name, name, IFNAMSIZ))
733                         return dev;
734
735         return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738
739 /**
740  *      dev_get_by_name_rcu     - find a device by its name
741  *      @net: the applicable net namespace
742  *      @name: name to find
743  *
744  *      Find an interface by name.
745  *      If the name is found a pointer to the device is returned.
746  *      If the name is not found then %NULL is returned.
747  *      The reference counters are not incremented so the caller must be
748  *      careful with locks. The caller must hold RCU lock.
749  */
750
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753         struct net_device *dev;
754         struct hlist_head *head = dev_name_hash(net, name);
755
756         hlist_for_each_entry_rcu(dev, head, name_hlist)
757                 if (!strncmp(dev->name, name, IFNAMSIZ))
758                         return dev;
759
760         return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763
764 /**
765  *      dev_get_by_name         - find a device by its name
766  *      @net: the applicable net namespace
767  *      @name: name to find
768  *
769  *      Find an interface by name. This can be called from any
770  *      context and does its own locking. The returned handle has
771  *      the usage count incremented and the caller must use dev_put() to
772  *      release it when it is no longer needed. %NULL is returned if no
773  *      matching device is found.
774  */
775
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778         struct net_device *dev;
779
780         rcu_read_lock();
781         dev = dev_get_by_name_rcu(net, name);
782         if (dev)
783                 dev_hold(dev);
784         rcu_read_unlock();
785         return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788
789 /**
790  *      __dev_get_by_index - find a device by its ifindex
791  *      @net: the applicable net namespace
792  *      @ifindex: index of device
793  *
794  *      Search for an interface by index. Returns %NULL if the device
795  *      is not found or a pointer to the device. The device has not
796  *      had its reference counter increased so the caller must be careful
797  *      about locking. The caller must hold either the RTNL semaphore
798  *      or @dev_base_lock.
799  */
800
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803         struct net_device *dev;
804         struct hlist_head *head = dev_index_hash(net, ifindex);
805
806         hlist_for_each_entry(dev, head, index_hlist)
807                 if (dev->ifindex == ifindex)
808                         return dev;
809
810         return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813
814 /**
815  *      dev_get_by_index_rcu - find a device by its ifindex
816  *      @net: the applicable net namespace
817  *      @ifindex: index of device
818  *
819  *      Search for an interface by index. Returns %NULL if the device
820  *      is not found or a pointer to the device. The device has not
821  *      had its reference counter increased so the caller must be careful
822  *      about locking. The caller must hold RCU lock.
823  */
824
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827         struct net_device *dev;
828         struct hlist_head *head = dev_index_hash(net, ifindex);
829
830         hlist_for_each_entry_rcu(dev, head, index_hlist)
831                 if (dev->ifindex == ifindex)
832                         return dev;
833
834         return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837
838
839 /**
840  *      dev_get_by_index - find a device by its ifindex
841  *      @net: the applicable net namespace
842  *      @ifindex: index of device
843  *
844  *      Search for an interface by index. Returns NULL if the device
845  *      is not found or a pointer to the device. The device returned has
846  *      had a reference added and the pointer is safe until the user calls
847  *      dev_put to indicate they have finished with it.
848  */
849
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852         struct net_device *dev;
853
854         rcu_read_lock();
855         dev = dev_get_by_index_rcu(net, ifindex);
856         if (dev)
857                 dev_hold(dev);
858         rcu_read_unlock();
859         return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862
863 /**
864  *      netdev_get_name - get a netdevice name, knowing its ifindex.
865  *      @net: network namespace
866  *      @name: a pointer to the buffer where the name will be stored.
867  *      @ifindex: the ifindex of the interface to get the name from.
868  *
869  *      The use of raw_seqcount_begin() and cond_resched() before
870  *      retrying is required as we want to give the writers a chance
871  *      to complete when CONFIG_PREEMPT is not set.
872  */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875         struct net_device *dev;
876         unsigned int seq;
877
878 retry:
879         seq = raw_seqcount_begin(&devnet_rename_seq);
880         rcu_read_lock();
881         dev = dev_get_by_index_rcu(net, ifindex);
882         if (!dev) {
883                 rcu_read_unlock();
884                 return -ENODEV;
885         }
886
887         strcpy(name, dev->name);
888         rcu_read_unlock();
889         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890                 cond_resched();
891                 goto retry;
892         }
893
894         return 0;
895 }
896
897 /**
898  *      dev_getbyhwaddr_rcu - find a device by its hardware address
899  *      @net: the applicable net namespace
900  *      @type: media type of device
901  *      @ha: hardware address
902  *
903  *      Search for an interface by MAC address. Returns NULL if the device
904  *      is not found or a pointer to the device.
905  *      The caller must hold RCU or RTNL.
906  *      The returned device has not had its ref count increased
907  *      and the caller must therefore be careful about locking
908  *
909  */
910
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912                                        const char *ha)
913 {
914         struct net_device *dev;
915
916         for_each_netdev_rcu(net, dev)
917                 if (dev->type == type &&
918                     !memcmp(dev->dev_addr, ha, dev->addr_len))
919                         return dev;
920
921         return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927         struct net_device *dev;
928
929         ASSERT_RTNL();
930         for_each_netdev(net, dev)
931                 if (dev->type == type)
932                         return dev;
933
934         return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940         struct net_device *dev, *ret = NULL;
941
942         rcu_read_lock();
943         for_each_netdev_rcu(net, dev)
944                 if (dev->type == type) {
945                         dev_hold(dev);
946                         ret = dev;
947                         break;
948                 }
949         rcu_read_unlock();
950         return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954 /**
955  *      __dev_get_by_flags - find any device with given flags
956  *      @net: the applicable net namespace
957  *      @if_flags: IFF_* values
958  *      @mask: bitmask of bits in if_flags to check
959  *
960  *      Search for any interface with the given flags. Returns NULL if a device
961  *      is not found or a pointer to the device. Must be called inside
962  *      rtnl_lock(), and result refcount is unchanged.
963  */
964
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966                                       unsigned short mask)
967 {
968         struct net_device *dev, *ret;
969
970         ASSERT_RTNL();
971
972         ret = NULL;
973         for_each_netdev(net, dev) {
974                 if (((dev->flags ^ if_flags) & mask) == 0) {
975                         ret = dev;
976                         break;
977                 }
978         }
979         return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982
983 /**
984  *      dev_valid_name - check if name is okay for network device
985  *      @name: name string
986  *
987  *      Network device names need to be valid file names to
988  *      to allow sysfs to work.  We also disallow any kind of
989  *      whitespace.
990  */
991 bool dev_valid_name(const char *name)
992 {
993         if (*name == '\0')
994                 return false;
995         if (strlen(name) >= IFNAMSIZ)
996                 return false;
997         if (!strcmp(name, ".") || !strcmp(name, ".."))
998                 return false;
999
1000         while (*name) {
1001                 if (*name == '/' || *name == ':' || isspace(*name))
1002                         return false;
1003                 name++;
1004         }
1005         return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008
1009 /**
1010  *      __dev_alloc_name - allocate a name for a device
1011  *      @net: network namespace to allocate the device name in
1012  *      @name: name format string
1013  *      @buf:  scratch buffer and result name string
1014  *
1015  *      Passed a format string - eg "lt%d" it will try and find a suitable
1016  *      id. It scans list of devices to build up a free map, then chooses
1017  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1018  *      while allocating the name and adding the device in order to avoid
1019  *      duplicates.
1020  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021  *      Returns the number of the unit assigned or a negative errno code.
1022  */
1023
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026         int i = 0;
1027         const char *p;
1028         const int max_netdevices = 8*PAGE_SIZE;
1029         unsigned long *inuse;
1030         struct net_device *d;
1031
1032         p = strnchr(name, IFNAMSIZ-1, '%');
1033         if (p) {
1034                 /*
1035                  * Verify the string as this thing may have come from
1036                  * the user.  There must be either one "%d" and no other "%"
1037                  * characters.
1038                  */
1039                 if (p[1] != 'd' || strchr(p + 2, '%'))
1040                         return -EINVAL;
1041
1042                 /* Use one page as a bit array of possible slots */
1043                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044                 if (!inuse)
1045                         return -ENOMEM;
1046
1047                 for_each_netdev(net, d) {
1048                         if (!sscanf(d->name, name, &i))
1049                                 continue;
1050                         if (i < 0 || i >= max_netdevices)
1051                                 continue;
1052
1053                         /*  avoid cases where sscanf is not exact inverse of printf */
1054                         snprintf(buf, IFNAMSIZ, name, i);
1055                         if (!strncmp(buf, d->name, IFNAMSIZ))
1056                                 set_bit(i, inuse);
1057                 }
1058
1059                 i = find_first_zero_bit(inuse, max_netdevices);
1060                 free_page((unsigned long) inuse);
1061         }
1062
1063         if (buf != name)
1064                 snprintf(buf, IFNAMSIZ, name, i);
1065         if (!__dev_get_by_name(net, buf))
1066                 return i;
1067
1068         /* It is possible to run out of possible slots
1069          * when the name is long and there isn't enough space left
1070          * for the digits, or if all bits are used.
1071          */
1072         return -ENFILE;
1073 }
1074
1075 /**
1076  *      dev_alloc_name - allocate a name for a device
1077  *      @dev: device
1078  *      @name: name format string
1079  *
1080  *      Passed a format string - eg "lt%d" it will try and find a suitable
1081  *      id. It scans list of devices to build up a free map, then chooses
1082  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *      while allocating the name and adding the device in order to avoid
1084  *      duplicates.
1085  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *      Returns the number of the unit assigned or a negative errno code.
1087  */
1088
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091         char buf[IFNAMSIZ];
1092         struct net *net;
1093         int ret;
1094
1095         BUG_ON(!dev_net(dev));
1096         net = dev_net(dev);
1097         ret = __dev_alloc_name(net, name, buf);
1098         if (ret >= 0)
1099                 strlcpy(dev->name, buf, IFNAMSIZ);
1100         return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103
1104 static int dev_alloc_name_ns(struct net *net,
1105                              struct net_device *dev,
1106                              const char *name)
1107 {
1108         char buf[IFNAMSIZ];
1109         int ret;
1110
1111         ret = __dev_alloc_name(net, name, buf);
1112         if (ret >= 0)
1113                 strlcpy(dev->name, buf, IFNAMSIZ);
1114         return ret;
1115 }
1116
1117 static int dev_get_valid_name(struct net *net,
1118                               struct net_device *dev,
1119                               const char *name)
1120 {
1121         BUG_ON(!net);
1122
1123         if (!dev_valid_name(name))
1124                 return -EINVAL;
1125
1126         if (strchr(name, '%'))
1127                 return dev_alloc_name_ns(net, dev, name);
1128         else if (__dev_get_by_name(net, name))
1129                 return -EEXIST;
1130         else if (dev->name != name)
1131                 strlcpy(dev->name, name, IFNAMSIZ);
1132
1133         return 0;
1134 }
1135
1136 /**
1137  *      dev_change_name - change name of a device
1138  *      @dev: device
1139  *      @newname: name (or format string) must be at least IFNAMSIZ
1140  *
1141  *      Change name of a device, can pass format strings "eth%d".
1142  *      for wildcarding.
1143  */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146         unsigned char old_assign_type;
1147         char oldname[IFNAMSIZ];
1148         int err = 0;
1149         int ret;
1150         struct net *net;
1151
1152         ASSERT_RTNL();
1153         BUG_ON(!dev_net(dev));
1154
1155         net = dev_net(dev);
1156         if (dev->flags & IFF_UP)
1157                 return -EBUSY;
1158
1159         write_seqcount_begin(&devnet_rename_seq);
1160
1161         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162                 write_seqcount_end(&devnet_rename_seq);
1163                 return 0;
1164         }
1165
1166         memcpy(oldname, dev->name, IFNAMSIZ);
1167
1168         err = dev_get_valid_name(net, dev, newname);
1169         if (err < 0) {
1170                 write_seqcount_end(&devnet_rename_seq);
1171                 return err;
1172         }
1173
1174         if (oldname[0] && !strchr(oldname, '%'))
1175                 netdev_info(dev, "renamed from %s\n", oldname);
1176
1177         old_assign_type = dev->name_assign_type;
1178         dev->name_assign_type = NET_NAME_RENAMED;
1179
1180 rollback:
1181         ret = device_rename(&dev->dev, dev->name);
1182         if (ret) {
1183                 memcpy(dev->name, oldname, IFNAMSIZ);
1184                 dev->name_assign_type = old_assign_type;
1185                 write_seqcount_end(&devnet_rename_seq);
1186                 return ret;
1187         }
1188
1189         write_seqcount_end(&devnet_rename_seq);
1190
1191         netdev_adjacent_rename_links(dev, oldname);
1192
1193         write_lock_bh(&dev_base_lock);
1194         hlist_del_rcu(&dev->name_hlist);
1195         write_unlock_bh(&dev_base_lock);
1196
1197         synchronize_rcu();
1198
1199         write_lock_bh(&dev_base_lock);
1200         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201         write_unlock_bh(&dev_base_lock);
1202
1203         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204         ret = notifier_to_errno(ret);
1205
1206         if (ret) {
1207                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208                 if (err >= 0) {
1209                         err = ret;
1210                         write_seqcount_begin(&devnet_rename_seq);
1211                         memcpy(dev->name, oldname, IFNAMSIZ);
1212                         memcpy(oldname, newname, IFNAMSIZ);
1213                         dev->name_assign_type = old_assign_type;
1214                         old_assign_type = NET_NAME_RENAMED;
1215                         goto rollback;
1216                 } else {
1217                         pr_err("%s: name change rollback failed: %d\n",
1218                                dev->name, ret);
1219                 }
1220         }
1221
1222         return err;
1223 }
1224
1225 /**
1226  *      dev_set_alias - change ifalias of a device
1227  *      @dev: device
1228  *      @alias: name up to IFALIASZ
1229  *      @len: limit of bytes to copy from info
1230  *
1231  *      Set ifalias for a device,
1232  */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235         char *new_ifalias;
1236
1237         ASSERT_RTNL();
1238
1239         if (len >= IFALIASZ)
1240                 return -EINVAL;
1241
1242         if (!len) {
1243                 kfree(dev->ifalias);
1244                 dev->ifalias = NULL;
1245                 return 0;
1246         }
1247
1248         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249         if (!new_ifalias)
1250                 return -ENOMEM;
1251         dev->ifalias = new_ifalias;
1252
1253         strlcpy(dev->ifalias, alias, len+1);
1254         return len;
1255 }
1256
1257
1258 /**
1259  *      netdev_features_change - device changes features
1260  *      @dev: device to cause notification
1261  *
1262  *      Called to indicate a device has changed features.
1263  */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269
1270 /**
1271  *      netdev_state_change - device changes state
1272  *      @dev: device to cause notification
1273  *
1274  *      Called to indicate a device has changed state. This function calls
1275  *      the notifier chains for netdev_chain and sends a NEWLINK message
1276  *      to the routing socket.
1277  */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280         if (dev->flags & IFF_UP) {
1281                 struct netdev_notifier_change_info change_info;
1282
1283                 change_info.flags_changed = 0;
1284                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285                                               &change_info.info);
1286                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287         }
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290
1291 /**
1292  *      netdev_notify_peers - notify network peers about existence of @dev
1293  *      @dev: network device
1294  *
1295  * Generate traffic such that interested network peers are aware of
1296  * @dev, such as by generating a gratuitous ARP. This may be used when
1297  * a device wants to inform the rest of the network about some sort of
1298  * reconfiguration such as a failover event or virtual machine
1299  * migration.
1300  */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303         rtnl_lock();
1304         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305         rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308
1309 static int __dev_open(struct net_device *dev)
1310 {
1311         const struct net_device_ops *ops = dev->netdev_ops;
1312         int ret;
1313
1314         ASSERT_RTNL();
1315
1316         if (!netif_device_present(dev))
1317                 return -ENODEV;
1318
1319         /* Block netpoll from trying to do any rx path servicing.
1320          * If we don't do this there is a chance ndo_poll_controller
1321          * or ndo_poll may be running while we open the device
1322          */
1323         netpoll_poll_disable(dev);
1324
1325         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326         ret = notifier_to_errno(ret);
1327         if (ret)
1328                 return ret;
1329
1330         set_bit(__LINK_STATE_START, &dev->state);
1331
1332         if (ops->ndo_validate_addr)
1333                 ret = ops->ndo_validate_addr(dev);
1334
1335         if (!ret && ops->ndo_open)
1336                 ret = ops->ndo_open(dev);
1337
1338         netpoll_poll_enable(dev);
1339
1340         if (ret)
1341                 clear_bit(__LINK_STATE_START, &dev->state);
1342         else {
1343                 dev->flags |= IFF_UP;
1344                 dev_set_rx_mode(dev);
1345                 dev_activate(dev);
1346                 add_device_randomness(dev->dev_addr, dev->addr_len);
1347         }
1348
1349         return ret;
1350 }
1351
1352 /**
1353  *      dev_open        - prepare an interface for use.
1354  *      @dev:   device to open
1355  *
1356  *      Takes a device from down to up state. The device's private open
1357  *      function is invoked and then the multicast lists are loaded. Finally
1358  *      the device is moved into the up state and a %NETDEV_UP message is
1359  *      sent to the netdev notifier chain.
1360  *
1361  *      Calling this function on an active interface is a nop. On a failure
1362  *      a negative errno code is returned.
1363  */
1364 int dev_open(struct net_device *dev)
1365 {
1366         int ret;
1367
1368         if (dev->flags & IFF_UP)
1369                 return 0;
1370
1371         ret = __dev_open(dev);
1372         if (ret < 0)
1373                 return ret;
1374
1375         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376         call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378         return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384         struct net_device *dev;
1385
1386         ASSERT_RTNL();
1387         might_sleep();
1388
1389         list_for_each_entry(dev, head, close_list) {
1390                 /* Temporarily disable netpoll until the interface is down */
1391                 netpoll_poll_disable(dev);
1392
1393                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394
1395                 clear_bit(__LINK_STATE_START, &dev->state);
1396
1397                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398                  * can be even on different cpu. So just clear netif_running().
1399                  *
1400                  * dev->stop() will invoke napi_disable() on all of it's
1401                  * napi_struct instances on this device.
1402                  */
1403                 smp_mb__after_atomic(); /* Commit netif_running(). */
1404         }
1405
1406         dev_deactivate_many(head);
1407
1408         list_for_each_entry(dev, head, close_list) {
1409                 const struct net_device_ops *ops = dev->netdev_ops;
1410
1411                 /*
1412                  *      Call the device specific close. This cannot fail.
1413                  *      Only if device is UP
1414                  *
1415                  *      We allow it to be called even after a DETACH hot-plug
1416                  *      event.
1417                  */
1418                 if (ops->ndo_stop)
1419                         ops->ndo_stop(dev);
1420
1421                 dev->flags &= ~IFF_UP;
1422                 netpoll_poll_enable(dev);
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int __dev_close(struct net_device *dev)
1429 {
1430         int retval;
1431         LIST_HEAD(single);
1432
1433         list_add(&dev->close_list, &single);
1434         retval = __dev_close_many(&single);
1435         list_del(&single);
1436
1437         return retval;
1438 }
1439
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442         struct net_device *dev, *tmp;
1443
1444         /* Remove the devices that don't need to be closed */
1445         list_for_each_entry_safe(dev, tmp, head, close_list)
1446                 if (!(dev->flags & IFF_UP))
1447                         list_del_init(&dev->close_list);
1448
1449         __dev_close_many(head);
1450
1451         list_for_each_entry_safe(dev, tmp, head, close_list) {
1452                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454                 if (unlink)
1455                         list_del_init(&dev->close_list);
1456         }
1457
1458         return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461
1462 /**
1463  *      dev_close - shutdown an interface.
1464  *      @dev: device to shutdown
1465  *
1466  *      This function moves an active device into down state. A
1467  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469  *      chain.
1470  */
1471 int dev_close(struct net_device *dev)
1472 {
1473         if (dev->flags & IFF_UP) {
1474                 LIST_HEAD(single);
1475
1476                 list_add(&dev->close_list, &single);
1477                 dev_close_many(&single, true);
1478                 list_del(&single);
1479         }
1480         return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483
1484
1485 /**
1486  *      dev_disable_lro - disable Large Receive Offload on a device
1487  *      @dev: device
1488  *
1489  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1490  *      called under RTNL.  This is needed if received packets may be
1491  *      forwarded to another interface.
1492  */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495         struct net_device *lower_dev;
1496         struct list_head *iter;
1497
1498         dev->wanted_features &= ~NETIF_F_LRO;
1499         netdev_update_features(dev);
1500
1501         if (unlikely(dev->features & NETIF_F_LRO))
1502                 netdev_WARN(dev, "failed to disable LRO!\n");
1503
1504         netdev_for_each_lower_dev(dev, lower_dev, iter)
1505                 dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510                                    struct net_device *dev)
1511 {
1512         struct netdev_notifier_info info;
1513
1514         netdev_notifier_info_init(&info, dev);
1515         return nb->notifier_call(nb, val, &info);
1516 }
1517
1518 static int dev_boot_phase = 1;
1519
1520 /**
1521  *      register_netdevice_notifier - register a network notifier block
1522  *      @nb: notifier
1523  *
1524  *      Register a notifier to be called when network device events occur.
1525  *      The notifier passed is linked into the kernel structures and must
1526  *      not be reused until it has been unregistered. A negative errno code
1527  *      is returned on a failure.
1528  *
1529  *      When registered all registration and up events are replayed
1530  *      to the new notifier to allow device to have a race free
1531  *      view of the network device list.
1532  */
1533
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536         struct net_device *dev;
1537         struct net_device *last;
1538         struct net *net;
1539         int err;
1540
1541         rtnl_lock();
1542         err = raw_notifier_chain_register(&netdev_chain, nb);
1543         if (err)
1544                 goto unlock;
1545         if (dev_boot_phase)
1546                 goto unlock;
1547         for_each_net(net) {
1548                 for_each_netdev(net, dev) {
1549                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550                         err = notifier_to_errno(err);
1551                         if (err)
1552                                 goto rollback;
1553
1554                         if (!(dev->flags & IFF_UP))
1555                                 continue;
1556
1557                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1558                 }
1559         }
1560
1561 unlock:
1562         rtnl_unlock();
1563         return err;
1564
1565 rollback:
1566         last = dev;
1567         for_each_net(net) {
1568                 for_each_netdev(net, dev) {
1569                         if (dev == last)
1570                                 goto outroll;
1571
1572                         if (dev->flags & IFF_UP) {
1573                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574                                                         dev);
1575                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576                         }
1577                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578                 }
1579         }
1580
1581 outroll:
1582         raw_notifier_chain_unregister(&netdev_chain, nb);
1583         goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586
1587 /**
1588  *      unregister_netdevice_notifier - unregister a network notifier block
1589  *      @nb: notifier
1590  *
1591  *      Unregister a notifier previously registered by
1592  *      register_netdevice_notifier(). The notifier is unlinked into the
1593  *      kernel structures and may then be reused. A negative errno code
1594  *      is returned on a failure.
1595  *
1596  *      After unregistering unregister and down device events are synthesized
1597  *      for all devices on the device list to the removed notifier to remove
1598  *      the need for special case cleanup code.
1599  */
1600
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603         struct net_device *dev;
1604         struct net *net;
1605         int err;
1606
1607         rtnl_lock();
1608         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609         if (err)
1610                 goto unlock;
1611
1612         for_each_net(net) {
1613                 for_each_netdev(net, dev) {
1614                         if (dev->flags & IFF_UP) {
1615                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616                                                         dev);
1617                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618                         }
1619                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620                 }
1621         }
1622 unlock:
1623         rtnl_unlock();
1624         return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627
1628 /**
1629  *      call_netdevice_notifiers_info - call all network notifier blocks
1630  *      @val: value passed unmodified to notifier function
1631  *      @dev: net_device pointer passed unmodified to notifier function
1632  *      @info: notifier information data
1633  *
1634  *      Call all network notifier blocks.  Parameters and return value
1635  *      are as for raw_notifier_call_chain().
1636  */
1637
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639                                          struct net_device *dev,
1640                                          struct netdev_notifier_info *info)
1641 {
1642         ASSERT_RTNL();
1643         netdev_notifier_info_init(info, dev);
1644         return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646
1647 /**
1648  *      call_netdevice_notifiers - call all network notifier blocks
1649  *      @val: value passed unmodified to notifier function
1650  *      @dev: net_device pointer passed unmodified to notifier function
1651  *
1652  *      Call all network notifier blocks.  Parameters and return value
1653  *      are as for raw_notifier_call_chain().
1654  */
1655
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658         struct netdev_notifier_info info;
1659
1660         return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666
1667 void net_inc_ingress_queue(void)
1668 {
1669         static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673 void net_dec_ingress_queue(void)
1674 {
1675         static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682
1683 void net_inc_egress_queue(void)
1684 {
1685         static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689 void net_dec_egress_queue(void)
1690 {
1691         static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699  * If net_disable_timestamp() is called from irq context, defer the
1700  * static_key_slow_dec() calls.
1701  */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710         if (deferred) {
1711                 while (--deferred)
1712                         static_key_slow_dec(&netstamp_needed);
1713                 return;
1714         }
1715 #endif
1716         static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723         if (in_interrupt()) {
1724                 atomic_inc(&netstamp_needed_deferred);
1725                 return;
1726         }
1727 #endif
1728         static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734         skb->tstamp = 0;
1735         if (static_key_false(&netstamp_needed))
1736                 __net_timestamp(skb);
1737 }
1738
1739 #define net_timestamp_check(COND, SKB)                  \
1740         if (static_key_false(&netstamp_needed)) {               \
1741                 if ((COND) && !(SKB)->tstamp)   \
1742                         __net_timestamp(SKB);           \
1743         }                                               \
1744
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747         unsigned int len;
1748
1749         if (!(dev->flags & IFF_UP))
1750                 return false;
1751
1752         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753         if (skb->len <= len)
1754                 return true;
1755
1756         /* if TSO is enabled, we don't care about the length as the packet
1757          * could be forwarded without being segmented before
1758          */
1759         if (skb_is_gso(skb))
1760                 return true;
1761
1762         return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768         int ret = ____dev_forward_skb(dev, skb);
1769
1770         if (likely(!ret)) {
1771                 skb->protocol = eth_type_trans(skb, dev);
1772                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773         }
1774
1775         return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778
1779 /**
1780  * dev_forward_skb - loopback an skb to another netif
1781  *
1782  * @dev: destination network device
1783  * @skb: buffer to forward
1784  *
1785  * return values:
1786  *      NET_RX_SUCCESS  (no congestion)
1787  *      NET_RX_DROP     (packet was dropped, but freed)
1788  *
1789  * dev_forward_skb can be used for injecting an skb from the
1790  * start_xmit function of one device into the receive queue
1791  * of another device.
1792  *
1793  * The receiving device may be in another namespace, so
1794  * we have to clear all information in the skb that could
1795  * impact namespace isolation.
1796  */
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798 {
1799         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1800 }
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1802
1803 static inline int deliver_skb(struct sk_buff *skb,
1804                               struct packet_type *pt_prev,
1805                               struct net_device *orig_dev)
1806 {
1807         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808                 return -ENOMEM;
1809         atomic_inc(&skb->users);
1810         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811 }
1812
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814                                           struct packet_type **pt,
1815                                           struct net_device *orig_dev,
1816                                           __be16 type,
1817                                           struct list_head *ptype_list)
1818 {
1819         struct packet_type *ptype, *pt_prev = *pt;
1820
1821         list_for_each_entry_rcu(ptype, ptype_list, list) {
1822                 if (ptype->type != type)
1823                         continue;
1824                 if (pt_prev)
1825                         deliver_skb(skb, pt_prev, orig_dev);
1826                 pt_prev = ptype;
1827         }
1828         *pt = pt_prev;
1829 }
1830
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832 {
1833         if (!ptype->af_packet_priv || !skb->sk)
1834                 return false;
1835
1836         if (ptype->id_match)
1837                 return ptype->id_match(ptype, skb->sk);
1838         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839                 return true;
1840
1841         return false;
1842 }
1843
1844 /*
1845  *      Support routine. Sends outgoing frames to any network
1846  *      taps currently in use.
1847  */
1848
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1850 {
1851         struct packet_type *ptype;
1852         struct sk_buff *skb2 = NULL;
1853         struct packet_type *pt_prev = NULL;
1854         struct list_head *ptype_list = &ptype_all;
1855
1856         rcu_read_lock();
1857 again:
1858         list_for_each_entry_rcu(ptype, ptype_list, list) {
1859                 /* Never send packets back to the socket
1860                  * they originated from - MvS (miquels@drinkel.ow.org)
1861                  */
1862                 if (skb_loop_sk(ptype, skb))
1863                         continue;
1864
1865                 if (pt_prev) {
1866                         deliver_skb(skb2, pt_prev, skb->dev);
1867                         pt_prev = ptype;
1868                         continue;
1869                 }
1870
1871                 /* need to clone skb, done only once */
1872                 skb2 = skb_clone(skb, GFP_ATOMIC);
1873                 if (!skb2)
1874                         goto out_unlock;
1875
1876                 net_timestamp_set(skb2);
1877
1878                 /* skb->nh should be correctly
1879                  * set by sender, so that the second statement is
1880                  * just protection against buggy protocols.
1881                  */
1882                 skb_reset_mac_header(skb2);
1883
1884                 if (skb_network_header(skb2) < skb2->data ||
1885                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887                                              ntohs(skb2->protocol),
1888                                              dev->name);
1889                         skb_reset_network_header(skb2);
1890                 }
1891
1892                 skb2->transport_header = skb2->network_header;
1893                 skb2->pkt_type = PACKET_OUTGOING;
1894                 pt_prev = ptype;
1895         }
1896
1897         if (ptype_list == &ptype_all) {
1898                 ptype_list = &dev->ptype_all;
1899                 goto again;
1900         }
1901 out_unlock:
1902         if (pt_prev)
1903                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1904         rcu_read_unlock();
1905 }
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1907
1908 /**
1909  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910  * @dev: Network device
1911  * @txq: number of queues available
1912  *
1913  * If real_num_tx_queues is changed the tc mappings may no longer be
1914  * valid. To resolve this verify the tc mapping remains valid and if
1915  * not NULL the mapping. With no priorities mapping to this
1916  * offset/count pair it will no longer be used. In the worst case TC0
1917  * is invalid nothing can be done so disable priority mappings. If is
1918  * expected that drivers will fix this mapping if they can before
1919  * calling netif_set_real_num_tx_queues.
1920  */
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1922 {
1923         int i;
1924         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925
1926         /* If TC0 is invalidated disable TC mapping */
1927         if (tc->offset + tc->count > txq) {
1928                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1929                 dev->num_tc = 0;
1930                 return;
1931         }
1932
1933         /* Invalidated prio to tc mappings set to TC0 */
1934         for (i = 1; i < TC_BITMASK + 1; i++) {
1935                 int q = netdev_get_prio_tc_map(dev, i);
1936
1937                 tc = &dev->tc_to_txq[q];
1938                 if (tc->offset + tc->count > txq) {
1939                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940                                 i, q);
1941                         netdev_set_prio_tc_map(dev, i, 0);
1942                 }
1943         }
1944 }
1945
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947 {
1948         if (dev->num_tc) {
1949                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950                 int i;
1951
1952                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953                         if ((txq - tc->offset) < tc->count)
1954                                 return i;
1955                 }
1956
1957                 return -1;
1958         }
1959
1960         return 0;
1961 }
1962
1963 #ifdef CONFIG_XPS
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P)             \
1966         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969                              int tci, u16 index)
1970 {
1971         struct xps_map *map = NULL;
1972         int pos;
1973
1974         if (dev_maps)
1975                 map = xmap_dereference(dev_maps->cpu_map[tci]);
1976         if (!map)
1977                 return false;
1978
1979         for (pos = map->len; pos--;) {
1980                 if (map->queues[pos] != index)
1981                         continue;
1982
1983                 if (map->len > 1) {
1984                         map->queues[pos] = map->queues[--map->len];
1985                         break;
1986                 }
1987
1988                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989                 kfree_rcu(map, rcu);
1990                 return false;
1991         }
1992
1993         return true;
1994 }
1995
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997                                  struct xps_dev_maps *dev_maps,
1998                                  int cpu, u16 offset, u16 count)
1999 {
2000         int num_tc = dev->num_tc ? : 1;
2001         bool active = false;
2002         int tci;
2003
2004         for (tci = cpu * num_tc; num_tc--; tci++) {
2005                 int i, j;
2006
2007                 for (i = count, j = offset; i--; j++) {
2008                         if (!remove_xps_queue(dev_maps, cpu, j))
2009                                 break;
2010                 }
2011
2012                 active |= i < 0;
2013         }
2014
2015         return active;
2016 }
2017
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019                                    u16 count)
2020 {
2021         struct xps_dev_maps *dev_maps;
2022         int cpu, i;
2023         bool active = false;
2024
2025         mutex_lock(&xps_map_mutex);
2026         dev_maps = xmap_dereference(dev->xps_maps);
2027
2028         if (!dev_maps)
2029                 goto out_no_maps;
2030
2031         for_each_possible_cpu(cpu)
2032                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033                                                offset, count);
2034
2035         if (!active) {
2036                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037                 kfree_rcu(dev_maps, rcu);
2038         }
2039
2040         for (i = offset + (count - 1); count--; i--)
2041                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042                                              NUMA_NO_NODE);
2043
2044 out_no_maps:
2045         mutex_unlock(&xps_map_mutex);
2046 }
2047
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049 {
2050         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051 }
2052
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2054                                       int cpu, u16 index)
2055 {
2056         struct xps_map *new_map;
2057         int alloc_len = XPS_MIN_MAP_ALLOC;
2058         int i, pos;
2059
2060         for (pos = 0; map && pos < map->len; pos++) {
2061                 if (map->queues[pos] != index)
2062                         continue;
2063                 return map;
2064         }
2065
2066         /* Need to add queue to this CPU's existing map */
2067         if (map) {
2068                 if (pos < map->alloc_len)
2069                         return map;
2070
2071                 alloc_len = map->alloc_len * 2;
2072         }
2073
2074         /* Need to allocate new map to store queue on this CPU's map */
2075         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076                                cpu_to_node(cpu));
2077         if (!new_map)
2078                 return NULL;
2079
2080         for (i = 0; i < pos; i++)
2081                 new_map->queues[i] = map->queues[i];
2082         new_map->alloc_len = alloc_len;
2083         new_map->len = pos;
2084
2085         return new_map;
2086 }
2087
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089                         u16 index)
2090 {
2091         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092         int i, cpu, tci, numa_node_id = -2;
2093         int maps_sz, num_tc = 1, tc = 0;
2094         struct xps_map *map, *new_map;
2095         bool active = false;
2096
2097         if (dev->num_tc) {
2098                 num_tc = dev->num_tc;
2099                 tc = netdev_txq_to_tc(dev, index);
2100                 if (tc < 0)
2101                         return -EINVAL;
2102         }
2103
2104         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105         if (maps_sz < L1_CACHE_BYTES)
2106                 maps_sz = L1_CACHE_BYTES;
2107
2108         mutex_lock(&xps_map_mutex);
2109
2110         dev_maps = xmap_dereference(dev->xps_maps);
2111
2112         /* allocate memory for queue storage */
2113         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2114                 if (!new_dev_maps)
2115                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116                 if (!new_dev_maps) {
2117                         mutex_unlock(&xps_map_mutex);
2118                         return -ENOMEM;
2119                 }
2120
2121                 tci = cpu * num_tc + tc;
2122                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2123                                  NULL;
2124
2125                 map = expand_xps_map(map, cpu, index);
2126                 if (!map)
2127                         goto error;
2128
2129                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2130         }
2131
2132         if (!new_dev_maps)
2133                 goto out_no_new_maps;
2134
2135         for_each_possible_cpu(cpu) {
2136                 /* copy maps belonging to foreign traffic classes */
2137                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138                         /* fill in the new device map from the old device map */
2139                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2140                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141                 }
2142
2143                 /* We need to explicitly update tci as prevous loop
2144                  * could break out early if dev_maps is NULL.
2145                  */
2146                 tci = cpu * num_tc + tc;
2147
2148                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149                         /* add queue to CPU maps */
2150                         int pos = 0;
2151
2152                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153                         while ((pos < map->len) && (map->queues[pos] != index))
2154                                 pos++;
2155
2156                         if (pos == map->len)
2157                                 map->queues[map->len++] = index;
2158 #ifdef CONFIG_NUMA
2159                         if (numa_node_id == -2)
2160                                 numa_node_id = cpu_to_node(cpu);
2161                         else if (numa_node_id != cpu_to_node(cpu))
2162                                 numa_node_id = -1;
2163 #endif
2164                 } else if (dev_maps) {
2165                         /* fill in the new device map from the old device map */
2166                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2167                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168                 }
2169
2170                 /* copy maps belonging to foreign traffic classes */
2171                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172                         /* fill in the new device map from the old device map */
2173                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2174                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175                 }
2176         }
2177
2178         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179
2180         /* Cleanup old maps */
2181         if (!dev_maps)
2182                 goto out_no_old_maps;
2183
2184         for_each_possible_cpu(cpu) {
2185                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2188                         if (map && map != new_map)
2189                                 kfree_rcu(map, rcu);
2190                 }
2191         }
2192
2193         kfree_rcu(dev_maps, rcu);
2194
2195 out_no_old_maps:
2196         dev_maps = new_dev_maps;
2197         active = true;
2198
2199 out_no_new_maps:
2200         /* update Tx queue numa node */
2201         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202                                      (numa_node_id >= 0) ? numa_node_id :
2203                                      NUMA_NO_NODE);
2204
2205         if (!dev_maps)
2206                 goto out_no_maps;
2207
2208         /* removes queue from unused CPUs */
2209         for_each_possible_cpu(cpu) {
2210                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211                         active |= remove_xps_queue(dev_maps, tci, index);
2212                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213                         active |= remove_xps_queue(dev_maps, tci, index);
2214                 for (i = num_tc - tc, tci++; --i; tci++)
2215                         active |= remove_xps_queue(dev_maps, tci, index);
2216         }
2217
2218         /* free map if not active */
2219         if (!active) {
2220                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221                 kfree_rcu(dev_maps, rcu);
2222         }
2223
2224 out_no_maps:
2225         mutex_unlock(&xps_map_mutex);
2226
2227         return 0;
2228 error:
2229         /* remove any maps that we added */
2230         for_each_possible_cpu(cpu) {
2231                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233                         map = dev_maps ?
2234                               xmap_dereference(dev_maps->cpu_map[tci]) :
2235                               NULL;
2236                         if (new_map && new_map != map)
2237                                 kfree(new_map);
2238                 }
2239         }
2240
2241         mutex_unlock(&xps_map_mutex);
2242
2243         kfree(new_dev_maps);
2244         return -ENOMEM;
2245 }
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2247
2248 #endif
2249 void netdev_reset_tc(struct net_device *dev)
2250 {
2251 #ifdef CONFIG_XPS
2252         netif_reset_xps_queues_gt(dev, 0);
2253 #endif
2254         dev->num_tc = 0;
2255         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257 }
2258 EXPORT_SYMBOL(netdev_reset_tc);
2259
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261 {
2262         if (tc >= dev->num_tc)
2263                 return -EINVAL;
2264
2265 #ifdef CONFIG_XPS
2266         netif_reset_xps_queues(dev, offset, count);
2267 #endif
2268         dev->tc_to_txq[tc].count = count;
2269         dev->tc_to_txq[tc].offset = offset;
2270         return 0;
2271 }
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2273
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275 {
2276         if (num_tc > TC_MAX_QUEUE)
2277                 return -EINVAL;
2278
2279 #ifdef CONFIG_XPS
2280         netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282         dev->num_tc = num_tc;
2283         return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2286
2287 /*
2288  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290  */
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2292 {
2293         int rc;
2294
2295         if (txq < 1 || txq > dev->num_tx_queues)
2296                 return -EINVAL;
2297
2298         if (dev->reg_state == NETREG_REGISTERED ||
2299             dev->reg_state == NETREG_UNREGISTERING) {
2300                 ASSERT_RTNL();
2301
2302                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303                                                   txq);
2304                 if (rc)
2305                         return rc;
2306
2307                 if (dev->num_tc)
2308                         netif_setup_tc(dev, txq);
2309
2310                 if (txq < dev->real_num_tx_queues) {
2311                         qdisc_reset_all_tx_gt(dev, txq);
2312 #ifdef CONFIG_XPS
2313                         netif_reset_xps_queues_gt(dev, txq);
2314 #endif
2315                 }
2316         }
2317
2318         dev->real_num_tx_queues = txq;
2319         return 0;
2320 }
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2322
2323 #ifdef CONFIG_SYSFS
2324 /**
2325  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2326  *      @dev: Network device
2327  *      @rxq: Actual number of RX queues
2328  *
2329  *      This must be called either with the rtnl_lock held or before
2330  *      registration of the net device.  Returns 0 on success, or a
2331  *      negative error code.  If called before registration, it always
2332  *      succeeds.
2333  */
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335 {
2336         int rc;
2337
2338         if (rxq < 1 || rxq > dev->num_rx_queues)
2339                 return -EINVAL;
2340
2341         if (dev->reg_state == NETREG_REGISTERED) {
2342                 ASSERT_RTNL();
2343
2344                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345                                                   rxq);
2346                 if (rc)
2347                         return rc;
2348         }
2349
2350         dev->real_num_rx_queues = rxq;
2351         return 0;
2352 }
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354 #endif
2355
2356 /**
2357  * netif_get_num_default_rss_queues - default number of RSS queues
2358  *
2359  * This routine should set an upper limit on the number of RSS queues
2360  * used by default by multiqueue devices.
2361  */
2362 int netif_get_num_default_rss_queues(void)
2363 {
2364         return is_kdump_kernel() ?
2365                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2366 }
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368
2369 static void __netif_reschedule(struct Qdisc *q)
2370 {
2371         struct softnet_data *sd;
2372         unsigned long flags;
2373
2374         local_irq_save(flags);
2375         sd = this_cpu_ptr(&softnet_data);
2376         q->next_sched = NULL;
2377         *sd->output_queue_tailp = q;
2378         sd->output_queue_tailp = &q->next_sched;
2379         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380         local_irq_restore(flags);
2381 }
2382
2383 void __netif_schedule(struct Qdisc *q)
2384 {
2385         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386                 __netif_reschedule(q);
2387 }
2388 EXPORT_SYMBOL(__netif_schedule);
2389
2390 struct dev_kfree_skb_cb {
2391         enum skb_free_reason reason;
2392 };
2393
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2395 {
2396         return (struct dev_kfree_skb_cb *)skb->cb;
2397 }
2398
2399 void netif_schedule_queue(struct netdev_queue *txq)
2400 {
2401         rcu_read_lock();
2402         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2404
2405                 __netif_schedule(q);
2406         }
2407         rcu_read_unlock();
2408 }
2409 EXPORT_SYMBOL(netif_schedule_queue);
2410
2411 /**
2412  *      netif_wake_subqueue - allow sending packets on subqueue
2413  *      @dev: network device
2414  *      @queue_index: sub queue index
2415  *
2416  * Resume individual transmit queue of a device with multiple transmit queues.
2417  */
2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2419 {
2420         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421
2422         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2423                 struct Qdisc *q;
2424
2425                 rcu_read_lock();
2426                 q = rcu_dereference(txq->qdisc);
2427                 __netif_schedule(q);
2428                 rcu_read_unlock();
2429         }
2430 }
2431 EXPORT_SYMBOL(netif_wake_subqueue);
2432
2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2434 {
2435         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2436                 struct Qdisc *q;
2437
2438                 rcu_read_lock();
2439                 q = rcu_dereference(dev_queue->qdisc);
2440                 __netif_schedule(q);
2441                 rcu_read_unlock();
2442         }
2443 }
2444 EXPORT_SYMBOL(netif_tx_wake_queue);
2445
2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2447 {
2448         unsigned long flags;
2449
2450         if (likely(atomic_read(&skb->users) == 1)) {
2451                 smp_rmb();
2452                 atomic_set(&skb->users, 0);
2453         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2454                 return;
2455         }
2456         get_kfree_skb_cb(skb)->reason = reason;
2457         local_irq_save(flags);
2458         skb->next = __this_cpu_read(softnet_data.completion_queue);
2459         __this_cpu_write(softnet_data.completion_queue, skb);
2460         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461         local_irq_restore(flags);
2462 }
2463 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2464
2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2466 {
2467         if (in_irq() || irqs_disabled())
2468                 __dev_kfree_skb_irq(skb, reason);
2469         else
2470                 dev_kfree_skb(skb);
2471 }
2472 EXPORT_SYMBOL(__dev_kfree_skb_any);
2473
2474
2475 /**
2476  * netif_device_detach - mark device as removed
2477  * @dev: network device
2478  *
2479  * Mark device as removed from system and therefore no longer available.
2480  */
2481 void netif_device_detach(struct net_device *dev)
2482 {
2483         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2484             netif_running(dev)) {
2485                 netif_tx_stop_all_queues(dev);
2486         }
2487 }
2488 EXPORT_SYMBOL(netif_device_detach);
2489
2490 /**
2491  * netif_device_attach - mark device as attached
2492  * @dev: network device
2493  *
2494  * Mark device as attached from system and restart if needed.
2495  */
2496 void netif_device_attach(struct net_device *dev)
2497 {
2498         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2499             netif_running(dev)) {
2500                 netif_tx_wake_all_queues(dev);
2501                 __netdev_watchdog_up(dev);
2502         }
2503 }
2504 EXPORT_SYMBOL(netif_device_attach);
2505
2506 /*
2507  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2508  * to be used as a distribution range.
2509  */
2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2511                   unsigned int num_tx_queues)
2512 {
2513         u32 hash;
2514         u16 qoffset = 0;
2515         u16 qcount = num_tx_queues;
2516
2517         if (skb_rx_queue_recorded(skb)) {
2518                 hash = skb_get_rx_queue(skb);
2519                 while (unlikely(hash >= num_tx_queues))
2520                         hash -= num_tx_queues;
2521                 return hash;
2522         }
2523
2524         if (dev->num_tc) {
2525                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2526                 qoffset = dev->tc_to_txq[tc].offset;
2527                 qcount = dev->tc_to_txq[tc].count;
2528         }
2529
2530         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2531 }
2532 EXPORT_SYMBOL(__skb_tx_hash);
2533
2534 static void skb_warn_bad_offload(const struct sk_buff *skb)
2535 {
2536         static const netdev_features_t null_features;
2537         struct net_device *dev = skb->dev;
2538         const char *name = "";
2539
2540         if (!net_ratelimit())
2541                 return;
2542
2543         if (dev) {
2544                 if (dev->dev.parent)
2545                         name = dev_driver_string(dev->dev.parent);
2546                 else
2547                         name = netdev_name(dev);
2548         }
2549         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2550              "gso_type=%d ip_summed=%d\n",
2551              name, dev ? &dev->features : &null_features,
2552              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2553              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2554              skb_shinfo(skb)->gso_type, skb->ip_summed);
2555 }
2556
2557 /*
2558  * Invalidate hardware checksum when packet is to be mangled, and
2559  * complete checksum manually on outgoing path.
2560  */
2561 int skb_checksum_help(struct sk_buff *skb)
2562 {
2563         __wsum csum;
2564         int ret = 0, offset;
2565
2566         if (skb->ip_summed == CHECKSUM_COMPLETE)
2567                 goto out_set_summed;
2568
2569         if (unlikely(skb_shinfo(skb)->gso_size)) {
2570                 skb_warn_bad_offload(skb);
2571                 return -EINVAL;
2572         }
2573
2574         /* Before computing a checksum, we should make sure no frag could
2575          * be modified by an external entity : checksum could be wrong.
2576          */
2577         if (skb_has_shared_frag(skb)) {
2578                 ret = __skb_linearize(skb);
2579                 if (ret)
2580                         goto out;
2581         }
2582
2583         offset = skb_checksum_start_offset(skb);
2584         BUG_ON(offset >= skb_headlen(skb));
2585         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2586
2587         offset += skb->csum_offset;
2588         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2589
2590         if (skb_cloned(skb) &&
2591             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2592                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2593                 if (ret)
2594                         goto out;
2595         }
2596
2597         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2598 out_set_summed:
2599         skb->ip_summed = CHECKSUM_NONE;
2600 out:
2601         return ret;
2602 }
2603 EXPORT_SYMBOL(skb_checksum_help);
2604
2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2606 {
2607         __be16 type = skb->protocol;
2608
2609         /* Tunnel gso handlers can set protocol to ethernet. */
2610         if (type == htons(ETH_P_TEB)) {
2611                 struct ethhdr *eth;
2612
2613                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2614                         return 0;
2615
2616                 eth = (struct ethhdr *)skb_mac_header(skb);
2617                 type = eth->h_proto;
2618         }
2619
2620         return __vlan_get_protocol(skb, type, depth);
2621 }
2622
2623 /**
2624  *      skb_mac_gso_segment - mac layer segmentation handler.
2625  *      @skb: buffer to segment
2626  *      @features: features for the output path (see dev->features)
2627  */
2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2629                                     netdev_features_t features)
2630 {
2631         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2632         struct packet_offload *ptype;
2633         int vlan_depth = skb->mac_len;
2634         __be16 type = skb_network_protocol(skb, &vlan_depth);
2635
2636         if (unlikely(!type))
2637                 return ERR_PTR(-EINVAL);
2638
2639         __skb_pull(skb, vlan_depth);
2640
2641         rcu_read_lock();
2642         list_for_each_entry_rcu(ptype, &offload_base, list) {
2643                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2644                         segs = ptype->callbacks.gso_segment(skb, features);
2645                         break;
2646                 }
2647         }
2648         rcu_read_unlock();
2649
2650         __skb_push(skb, skb->data - skb_mac_header(skb));
2651
2652         return segs;
2653 }
2654 EXPORT_SYMBOL(skb_mac_gso_segment);
2655
2656
2657 /* openvswitch calls this on rx path, so we need a different check.
2658  */
2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2660 {
2661         if (tx_path)
2662                 return skb->ip_summed != CHECKSUM_PARTIAL;
2663         else
2664                 return skb->ip_summed == CHECKSUM_NONE;
2665 }
2666
2667 /**
2668  *      __skb_gso_segment - Perform segmentation on skb.
2669  *      @skb: buffer to segment
2670  *      @features: features for the output path (see dev->features)
2671  *      @tx_path: whether it is called in TX path
2672  *
2673  *      This function segments the given skb and returns a list of segments.
2674  *
2675  *      It may return NULL if the skb requires no segmentation.  This is
2676  *      only possible when GSO is used for verifying header integrity.
2677  *
2678  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2679  */
2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2681                                   netdev_features_t features, bool tx_path)
2682 {
2683         if (unlikely(skb_needs_check(skb, tx_path))) {
2684                 int err;
2685
2686                 skb_warn_bad_offload(skb);
2687
2688                 err = skb_cow_head(skb, 0);
2689                 if (err < 0)
2690                         return ERR_PTR(err);
2691         }
2692
2693         /* Only report GSO partial support if it will enable us to
2694          * support segmentation on this frame without needing additional
2695          * work.
2696          */
2697         if (features & NETIF_F_GSO_PARTIAL) {
2698                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2699                 struct net_device *dev = skb->dev;
2700
2701                 partial_features |= dev->features & dev->gso_partial_features;
2702                 if (!skb_gso_ok(skb, features | partial_features))
2703                         features &= ~NETIF_F_GSO_PARTIAL;
2704         }
2705
2706         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2707                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2708
2709         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2710         SKB_GSO_CB(skb)->encap_level = 0;
2711
2712         skb_reset_mac_header(skb);
2713         skb_reset_mac_len(skb);
2714
2715         return skb_mac_gso_segment(skb, features);
2716 }
2717 EXPORT_SYMBOL(__skb_gso_segment);
2718
2719 /* Take action when hardware reception checksum errors are detected. */
2720 #ifdef CONFIG_BUG
2721 void netdev_rx_csum_fault(struct net_device *dev)
2722 {
2723         if (net_ratelimit()) {
2724                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2725                 dump_stack();
2726         }
2727 }
2728 EXPORT_SYMBOL(netdev_rx_csum_fault);
2729 #endif
2730
2731 /* Actually, we should eliminate this check as soon as we know, that:
2732  * 1. IOMMU is present and allows to map all the memory.
2733  * 2. No high memory really exists on this machine.
2734  */
2735
2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2737 {
2738 #ifdef CONFIG_HIGHMEM
2739         int i;
2740         if (!(dev->features & NETIF_F_HIGHDMA)) {
2741                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2743                         if (PageHighMem(skb_frag_page(frag)))
2744                                 return 1;
2745                 }
2746         }
2747
2748         if (PCI_DMA_BUS_IS_PHYS) {
2749                 struct device *pdev = dev->dev.parent;
2750
2751                 if (!pdev)
2752                         return 0;
2753                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2756                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2757                                 return 1;
2758                 }
2759         }
2760 #endif
2761         return 0;
2762 }
2763
2764 /* If MPLS offload request, verify we are testing hardware MPLS features
2765  * instead of standard features for the netdev.
2766  */
2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2768 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2769                                            netdev_features_t features,
2770                                            __be16 type)
2771 {
2772         if (eth_p_mpls(type))
2773                 features &= skb->dev->mpls_features;
2774
2775         return features;
2776 }
2777 #else
2778 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2779                                            netdev_features_t features,
2780                                            __be16 type)
2781 {
2782         return features;
2783 }
2784 #endif
2785
2786 static netdev_features_t harmonize_features(struct sk_buff *skb,
2787         netdev_features_t features)
2788 {
2789         int tmp;
2790         __be16 type;
2791
2792         type = skb_network_protocol(skb, &tmp);
2793         features = net_mpls_features(skb, features, type);
2794
2795         if (skb->ip_summed != CHECKSUM_NONE &&
2796             !can_checksum_protocol(features, type)) {
2797                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2798         } else if (illegal_highdma(skb->dev, skb)) {
2799                 features &= ~NETIF_F_SG;
2800         }
2801
2802         return features;
2803 }
2804
2805 netdev_features_t passthru_features_check(struct sk_buff *skb,
2806                                           struct net_device *dev,
2807                                           netdev_features_t features)
2808 {
2809         return features;
2810 }
2811 EXPORT_SYMBOL(passthru_features_check);
2812
2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2814                                              struct net_device *dev,
2815                                              netdev_features_t features)
2816 {
2817         return vlan_features_check(skb, features);
2818 }
2819
2820 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2821                                             struct net_device *dev,
2822                                             netdev_features_t features)
2823 {
2824         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2825
2826         if (gso_segs > dev->gso_max_segs)
2827                 return features & ~NETIF_F_GSO_MASK;
2828
2829         /* Support for GSO partial features requires software
2830          * intervention before we can actually process the packets
2831          * so we need to strip support for any partial features now
2832          * and we can pull them back in after we have partially
2833          * segmented the frame.
2834          */
2835         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2836                 features &= ~dev->gso_partial_features;
2837
2838         /* Make sure to clear the IPv4 ID mangling feature if the
2839          * IPv4 header has the potential to be fragmented.
2840          */
2841         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2842                 struct iphdr *iph = skb->encapsulation ?
2843                                     inner_ip_hdr(skb) : ip_hdr(skb);
2844
2845                 if (!(iph->frag_off & htons(IP_DF)))
2846                         features &= ~NETIF_F_TSO_MANGLEID;
2847         }
2848
2849         return features;
2850 }
2851
2852 netdev_features_t netif_skb_features(struct sk_buff *skb)
2853 {
2854         struct net_device *dev = skb->dev;
2855         netdev_features_t features = dev->features;
2856
2857         if (skb_is_gso(skb))
2858                 features = gso_features_check(skb, dev, features);
2859
2860         /* If encapsulation offload request, verify we are testing
2861          * hardware encapsulation features instead of standard
2862          * features for the netdev
2863          */
2864         if (skb->encapsulation)
2865                 features &= dev->hw_enc_features;
2866
2867         if (skb_vlan_tagged(skb))
2868                 features = netdev_intersect_features(features,
2869                                                      dev->vlan_features |
2870                                                      NETIF_F_HW_VLAN_CTAG_TX |
2871                                                      NETIF_F_HW_VLAN_STAG_TX);
2872
2873         if (dev->netdev_ops->ndo_features_check)
2874                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2875                                                                 features);
2876         else
2877                 features &= dflt_features_check(skb, dev, features);
2878
2879         return harmonize_features(skb, features);
2880 }
2881 EXPORT_SYMBOL(netif_skb_features);
2882
2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2884                     struct netdev_queue *txq, bool more)
2885 {
2886         unsigned int len;
2887         int rc;
2888
2889         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2890                 dev_queue_xmit_nit(skb, dev);
2891
2892         len = skb->len;
2893         trace_net_dev_start_xmit(skb, dev);
2894         rc = netdev_start_xmit(skb, dev, txq, more);
2895         trace_net_dev_xmit(skb, rc, dev, len);
2896
2897         return rc;
2898 }
2899
2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2901                                     struct netdev_queue *txq, int *ret)
2902 {
2903         struct sk_buff *skb = first;
2904         int rc = NETDEV_TX_OK;
2905
2906         while (skb) {
2907                 struct sk_buff *next = skb->next;
2908
2909                 skb->next = NULL;
2910                 rc = xmit_one(skb, dev, txq, next != NULL);
2911                 if (unlikely(!dev_xmit_complete(rc))) {
2912                         skb->next = next;
2913                         goto out;
2914                 }
2915
2916                 skb = next;
2917                 if (netif_xmit_stopped(txq) && skb) {
2918                         rc = NETDEV_TX_BUSY;
2919                         break;
2920                 }
2921         }
2922
2923 out:
2924         *ret = rc;
2925         return skb;
2926 }
2927
2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2929                                           netdev_features_t features)
2930 {
2931         if (skb_vlan_tag_present(skb) &&
2932             !vlan_hw_offload_capable(features, skb->vlan_proto))
2933                 skb = __vlan_hwaccel_push_inside(skb);
2934         return skb;
2935 }
2936
2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2938 {
2939         netdev_features_t features;
2940
2941         features = netif_skb_features(skb);
2942         skb = validate_xmit_vlan(skb, features);
2943         if (unlikely(!skb))
2944                 goto out_null;
2945
2946         if (netif_needs_gso(skb, features)) {
2947                 struct sk_buff *segs;
2948
2949                 segs = skb_gso_segment(skb, features);
2950                 if (IS_ERR(segs)) {
2951                         goto out_kfree_skb;
2952                 } else if (segs) {
2953                         consume_skb(skb);
2954                         skb = segs;
2955                 }
2956         } else {
2957                 if (skb_needs_linearize(skb, features) &&
2958                     __skb_linearize(skb))
2959                         goto out_kfree_skb;
2960
2961                 /* If packet is not checksummed and device does not
2962                  * support checksumming for this protocol, complete
2963                  * checksumming here.
2964                  */
2965                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2966                         if (skb->encapsulation)
2967                                 skb_set_inner_transport_header(skb,
2968                                                                skb_checksum_start_offset(skb));
2969                         else
2970                                 skb_set_transport_header(skb,
2971                                                          skb_checksum_start_offset(skb));
2972                         if (!(features & NETIF_F_CSUM_MASK) &&
2973                             skb_checksum_help(skb))
2974                                 goto out_kfree_skb;
2975                 }
2976         }
2977
2978         return skb;
2979
2980 out_kfree_skb:
2981         kfree_skb(skb);
2982 out_null:
2983         atomic_long_inc(&dev->tx_dropped);
2984         return NULL;
2985 }
2986
2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2988 {
2989         struct sk_buff *next, *head = NULL, *tail;
2990
2991         for (; skb != NULL; skb = next) {
2992                 next = skb->next;
2993                 skb->next = NULL;
2994
2995                 /* in case skb wont be segmented, point to itself */
2996                 skb->prev = skb;
2997
2998                 skb = validate_xmit_skb(skb, dev);
2999                 if (!skb)
3000                         continue;
3001
3002                 if (!head)
3003                         head = skb;
3004                 else
3005                         tail->next = skb;
3006                 /* If skb was segmented, skb->prev points to
3007                  * the last segment. If not, it still contains skb.
3008                  */
3009                 tail = skb->prev;
3010         }
3011         return head;
3012 }
3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3014
3015 static void qdisc_pkt_len_init(struct sk_buff *skb)
3016 {
3017         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3018
3019         qdisc_skb_cb(skb)->pkt_len = skb->len;
3020
3021         /* To get more precise estimation of bytes sent on wire,
3022          * we add to pkt_len the headers size of all segments
3023          */
3024         if (shinfo->gso_size)  {
3025                 unsigned int hdr_len;
3026                 u16 gso_segs = shinfo->gso_segs;
3027
3028                 /* mac layer + network layer */
3029                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3030
3031                 /* + transport layer */
3032                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033                         hdr_len += tcp_hdrlen(skb);
3034                 else
3035                         hdr_len += sizeof(struct udphdr);
3036
3037                 if (shinfo->gso_type & SKB_GSO_DODGY)
3038                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3039                                                 shinfo->gso_size);
3040
3041                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3042         }
3043 }
3044
3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046                                  struct net_device *dev,
3047                                  struct netdev_queue *txq)
3048 {
3049         spinlock_t *root_lock = qdisc_lock(q);
3050         struct sk_buff *to_free = NULL;
3051         bool contended;
3052         int rc;
3053
3054         qdisc_calculate_pkt_len(skb, q);
3055         /*
3056          * Heuristic to force contended enqueues to serialize on a
3057          * separate lock before trying to get qdisc main lock.
3058          * This permits qdisc->running owner to get the lock more
3059          * often and dequeue packets faster.
3060          */
3061         contended = qdisc_is_running(q);
3062         if (unlikely(contended))
3063                 spin_lock(&q->busylock);
3064
3065         spin_lock(root_lock);
3066         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3067                 __qdisc_drop(skb, &to_free);
3068                 rc = NET_XMIT_DROP;
3069         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3070                    qdisc_run_begin(q)) {
3071                 /*
3072                  * This is a work-conserving queue; there are no old skbs
3073                  * waiting to be sent out; and the qdisc is not running -
3074                  * xmit the skb directly.
3075                  */
3076
3077                 qdisc_bstats_update(q, skb);
3078
3079                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3080                         if (unlikely(contended)) {
3081                                 spin_unlock(&q->busylock);
3082                                 contended = false;
3083                         }
3084                         __qdisc_run(q);
3085                 } else
3086                         qdisc_run_end(q);
3087
3088                 rc = NET_XMIT_SUCCESS;
3089         } else {
3090                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3091                 if (qdisc_run_begin(q)) {
3092                         if (unlikely(contended)) {
3093                                 spin_unlock(&q->busylock);
3094                                 contended = false;
3095                         }
3096                         __qdisc_run(q);
3097                 }
3098         }
3099         spin_unlock(root_lock);
3100         if (unlikely(to_free))
3101                 kfree_skb_list(to_free);
3102         if (unlikely(contended))
3103                 spin_unlock(&q->busylock);
3104         return rc;
3105 }
3106
3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3108 static void skb_update_prio(struct sk_buff *skb)
3109 {
3110         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3111
3112         if (!skb->priority && skb->sk && map) {
3113                 unsigned int prioidx =
3114                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3115
3116                 if (prioidx < map->priomap_len)
3117                         skb->priority = map->priomap[prioidx];
3118         }
3119 }
3120 #else
3121 #define skb_update_prio(skb)
3122 #endif
3123
3124 DEFINE_PER_CPU(int, xmit_recursion);
3125 EXPORT_SYMBOL(xmit_recursion);
3126
3127 /**
3128  *      dev_loopback_xmit - loop back @skb
3129  *      @net: network namespace this loopback is happening in
3130  *      @sk:  sk needed to be a netfilter okfn
3131  *      @skb: buffer to transmit
3132  */
3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3134 {
3135         skb_reset_mac_header(skb);
3136         __skb_pull(skb, skb_network_offset(skb));
3137         skb->pkt_type = PACKET_LOOPBACK;
3138         skb->ip_summed = CHECKSUM_UNNECESSARY;
3139         WARN_ON(!skb_dst(skb));
3140         skb_dst_force(skb);
3141         netif_rx_ni(skb);
3142         return 0;
3143 }
3144 EXPORT_SYMBOL(dev_loopback_xmit);
3145
3146 #ifdef CONFIG_NET_EGRESS
3147 static struct sk_buff *
3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3149 {
3150         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3151         struct tcf_result cl_res;
3152
3153         if (!cl)
3154                 return skb;
3155
3156         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3157          * earlier by the caller.
3158          */
3159         qdisc_bstats_cpu_update(cl->q, skb);
3160
3161         switch (tc_classify(skb, cl, &cl_res, false)) {
3162         case TC_ACT_OK:
3163         case TC_ACT_RECLASSIFY:
3164                 skb->tc_index = TC_H_MIN(cl_res.classid);
3165                 break;
3166         case TC_ACT_SHOT:
3167                 qdisc_qstats_cpu_drop(cl->q);
3168                 *ret = NET_XMIT_DROP;
3169                 kfree_skb(skb);
3170                 return NULL;
3171         case TC_ACT_STOLEN:
3172         case TC_ACT_QUEUED:
3173                 *ret = NET_XMIT_SUCCESS;
3174                 consume_skb(skb);
3175                 return NULL;
3176         case TC_ACT_REDIRECT:
3177                 /* No need to push/pop skb's mac_header here on egress! */
3178                 skb_do_redirect(skb);
3179                 *ret = NET_XMIT_SUCCESS;
3180                 return NULL;
3181         default:
3182                 break;
3183         }
3184
3185         return skb;
3186 }
3187 #endif /* CONFIG_NET_EGRESS */
3188
3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3190 {
3191 #ifdef CONFIG_XPS
3192         struct xps_dev_maps *dev_maps;
3193         struct xps_map *map;
3194         int queue_index = -1;
3195
3196         rcu_read_lock();
3197         dev_maps = rcu_dereference(dev->xps_maps);
3198         if (dev_maps) {
3199                 unsigned int tci = skb->sender_cpu - 1;
3200
3201                 if (dev->num_tc) {
3202                         tci *= dev->num_tc;
3203                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3204                 }
3205
3206                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3207                 if (map) {
3208                         if (map->len == 1)
3209                                 queue_index = map->queues[0];
3210                         else
3211                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3212                                                                            map->len)];
3213                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3214                                 queue_index = -1;
3215                 }
3216         }
3217         rcu_read_unlock();
3218
3219         return queue_index;
3220 #else
3221         return -1;
3222 #endif
3223 }
3224
3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3226 {
3227         struct sock *sk = skb->sk;
3228         int queue_index = sk_tx_queue_get(sk);
3229
3230         if (queue_index < 0 || skb->ooo_okay ||
3231             queue_index >= dev->real_num_tx_queues) {
3232                 int new_index = get_xps_queue(dev, skb);
3233                 if (new_index < 0)
3234                         new_index = skb_tx_hash(dev, skb);
3235
3236                 if (queue_index != new_index && sk &&
3237                     sk_fullsock(sk) &&
3238                     rcu_access_pointer(sk->sk_dst_cache))
3239                         sk_tx_queue_set(sk, new_index);
3240
3241                 queue_index = new_index;
3242         }
3243
3244         return queue_index;
3245 }
3246
3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3248                                     struct sk_buff *skb,
3249                                     void *accel_priv)
3250 {
3251         int queue_index = 0;
3252
3253 #ifdef CONFIG_XPS
3254         u32 sender_cpu = skb->sender_cpu - 1;
3255
3256         if (sender_cpu >= (u32)NR_CPUS)
3257                 skb->sender_cpu = raw_smp_processor_id() + 1;
3258 #endif
3259
3260         if (dev->real_num_tx_queues != 1) {
3261                 const struct net_device_ops *ops = dev->netdev_ops;
3262                 if (ops->ndo_select_queue)
3263                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3264                                                             __netdev_pick_tx);
3265                 else
3266                         queue_index = __netdev_pick_tx(dev, skb);
3267
3268                 if (!accel_priv)
3269                         queue_index = netdev_cap_txqueue(dev, queue_index);
3270         }
3271
3272         skb_set_queue_mapping(skb, queue_index);
3273         return netdev_get_tx_queue(dev, queue_index);
3274 }
3275
3276 /**
3277  *      __dev_queue_xmit - transmit a buffer
3278  *      @skb: buffer to transmit
3279  *      @accel_priv: private data used for L2 forwarding offload
3280  *
3281  *      Queue a buffer for transmission to a network device. The caller must
3282  *      have set the device and priority and built the buffer before calling
3283  *      this function. The function can be called from an interrupt.
3284  *
3285  *      A negative errno code is returned on a failure. A success does not
3286  *      guarantee the frame will be transmitted as it may be dropped due
3287  *      to congestion or traffic shaping.
3288  *
3289  * -----------------------------------------------------------------------------------
3290  *      I notice this method can also return errors from the queue disciplines,
3291  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3292  *      be positive.
3293  *
3294  *      Regardless of the return value, the skb is consumed, so it is currently
3295  *      difficult to retry a send to this method.  (You can bump the ref count
3296  *      before sending to hold a reference for retry if you are careful.)
3297  *
3298  *      When calling this method, interrupts MUST be enabled.  This is because
3299  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3300  *          --BLG
3301  */
3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3303 {
3304         struct net_device *dev = skb->dev;
3305         struct netdev_queue *txq;
3306         struct Qdisc *q;
3307         int rc = -ENOMEM;
3308
3309         skb_reset_mac_header(skb);
3310
3311         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3312                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3313
3314         /* Disable soft irqs for various locks below. Also
3315          * stops preemption for RCU.
3316          */
3317         rcu_read_lock_bh();
3318
3319         skb_update_prio(skb);
3320
3321         qdisc_pkt_len_init(skb);
3322 #ifdef CONFIG_NET_CLS_ACT
3323         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3324 # ifdef CONFIG_NET_EGRESS
3325         if (static_key_false(&egress_needed)) {
3326                 skb = sch_handle_egress(skb, &rc, dev);
3327                 if (!skb)
3328                         goto out;
3329         }
3330 # endif
3331 #endif
3332         /* If device/qdisc don't need skb->dst, release it right now while
3333          * its hot in this cpu cache.
3334          */
3335         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3336                 skb_dst_drop(skb);
3337         else
3338                 skb_dst_force(skb);
3339
3340         txq = netdev_pick_tx(dev, skb, accel_priv);
3341         q = rcu_dereference_bh(txq->qdisc);
3342
3343         trace_net_dev_queue(skb);
3344         if (q->enqueue) {
3345                 rc = __dev_xmit_skb(skb, q, dev, txq);
3346                 goto out;
3347         }
3348
3349         /* The device has no queue. Common case for software devices:
3350            loopback, all the sorts of tunnels...
3351
3352            Really, it is unlikely that netif_tx_lock protection is necessary
3353            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3354            counters.)
3355            However, it is possible, that they rely on protection
3356            made by us here.
3357
3358            Check this and shot the lock. It is not prone from deadlocks.
3359            Either shot noqueue qdisc, it is even simpler 8)
3360          */
3361         if (dev->flags & IFF_UP) {
3362                 int cpu = smp_processor_id(); /* ok because BHs are off */
3363
3364                 if (txq->xmit_lock_owner != cpu) {
3365                         if (unlikely(__this_cpu_read(xmit_recursion) >
3366                                      XMIT_RECURSION_LIMIT))
3367                                 goto recursion_alert;
3368
3369                         skb = validate_xmit_skb(skb, dev);
3370                         if (!skb)
3371                                 goto out;
3372
3373                         HARD_TX_LOCK(dev, txq, cpu);
3374
3375                         if (!netif_xmit_stopped(txq)) {
3376                                 __this_cpu_inc(xmit_recursion);
3377                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3378                                 __this_cpu_dec(xmit_recursion);
3379                                 if (dev_xmit_complete(rc)) {
3380                                         HARD_TX_UNLOCK(dev, txq);
3381                                         goto out;
3382                                 }
3383                         }
3384                         HARD_TX_UNLOCK(dev, txq);
3385                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3386                                              dev->name);
3387                 } else {
3388                         /* Recursion is detected! It is possible,
3389                          * unfortunately
3390                          */
3391 recursion_alert:
3392                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3393                                              dev->name);
3394                 }
3395         }
3396
3397         rc = -ENETDOWN;
3398         rcu_read_unlock_bh();
3399
3400         atomic_long_inc(&dev->tx_dropped);
3401         kfree_skb_list(skb);
3402         return rc;
3403 out:
3404         rcu_read_unlock_bh();
3405         return rc;
3406 }
3407
3408 int dev_queue_xmit(struct sk_buff *skb)
3409 {
3410         return __dev_queue_xmit(skb, NULL);
3411 }
3412 EXPORT_SYMBOL(dev_queue_xmit);
3413
3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3415 {
3416         return __dev_queue_xmit(skb, accel_priv);
3417 }
3418 EXPORT_SYMBOL(dev_queue_xmit_accel);
3419
3420
3421 /*=======================================================================
3422                         Receiver routines
3423   =======================================================================*/
3424
3425 int netdev_max_backlog __read_mostly = 1000;
3426 EXPORT_SYMBOL(netdev_max_backlog);
3427
3428 int netdev_tstamp_prequeue __read_mostly = 1;
3429 int netdev_budget __read_mostly = 300;
3430 int weight_p __read_mostly = 64;            /* old backlog weight */
3431
3432 /* Called with irq disabled */
3433 static inline void ____napi_schedule(struct softnet_data *sd,
3434                                      struct napi_struct *napi)
3435 {
3436         list_add_tail(&napi->poll_list, &sd->poll_list);
3437         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3438 }
3439
3440 #ifdef CONFIG_RPS
3441
3442 /* One global table that all flow-based protocols share. */
3443 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3444 EXPORT_SYMBOL(rps_sock_flow_table);
3445 u32 rps_cpu_mask __read_mostly;
3446 EXPORT_SYMBOL(rps_cpu_mask);
3447
3448 struct static_key rps_needed __read_mostly;
3449 EXPORT_SYMBOL(rps_needed);
3450 struct static_key rfs_needed __read_mostly;
3451 EXPORT_SYMBOL(rfs_needed);
3452
3453 static struct rps_dev_flow *
3454 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3455             struct rps_dev_flow *rflow, u16 next_cpu)
3456 {
3457         if (next_cpu < nr_cpu_ids) {
3458 #ifdef CONFIG_RFS_ACCEL
3459                 struct netdev_rx_queue *rxqueue;
3460                 struct rps_dev_flow_table *flow_table;
3461                 struct rps_dev_flow *old_rflow;
3462                 u32 flow_id;
3463                 u16 rxq_index;
3464                 int rc;
3465
3466                 /* Should we steer this flow to a different hardware queue? */
3467                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3468                     !(dev->features & NETIF_F_NTUPLE))
3469                         goto out;
3470                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3471                 if (rxq_index == skb_get_rx_queue(skb))
3472                         goto out;
3473
3474                 rxqueue = dev->_rx + rxq_index;
3475                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3476                 if (!flow_table)
3477                         goto out;
3478                 flow_id = skb_get_hash(skb) & flow_table->mask;
3479                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3480                                                         rxq_index, flow_id);
3481                 if (rc < 0)
3482                         goto out;
3483                 old_rflow = rflow;
3484                 rflow = &flow_table->flows[flow_id];
3485                 rflow->filter = rc;
3486                 if (old_rflow->filter == rflow->filter)
3487                         old_rflow->filter = RPS_NO_FILTER;
3488         out:
3489 #endif
3490                 rflow->last_qtail =
3491                         per_cpu(softnet_data, next_cpu).input_queue_head;
3492         }
3493
3494         rflow->cpu = next_cpu;
3495         return rflow;
3496 }
3497
3498 /*
3499  * get_rps_cpu is called from netif_receive_skb and returns the target
3500  * CPU from the RPS map of the receiving queue for a given skb.
3501  * rcu_read_lock must be held on entry.
3502  */
3503 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3504                        struct rps_dev_flow **rflowp)
3505 {
3506         const struct rps_sock_flow_table *sock_flow_table;
3507         struct netdev_rx_queue *rxqueue = dev->_rx;
3508         struct rps_dev_flow_table *flow_table;
3509         struct rps_map *map;
3510         int cpu = -1;
3511         u32 tcpu;
3512         u32 hash;
3513
3514         if (skb_rx_queue_recorded(skb)) {
3515                 u16 index = skb_get_rx_queue(skb);
3516
3517                 if (unlikely(index >= dev->real_num_rx_queues)) {
3518                         WARN_ONCE(dev->real_num_rx_queues > 1,
3519                                   "%s received packet on queue %u, but number "
3520                                   "of RX queues is %u\n",
3521                                   dev->name, index, dev->real_num_rx_queues);
3522                         goto done;
3523                 }
3524                 rxqueue += index;
3525         }
3526
3527         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3528
3529         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3530         map = rcu_dereference(rxqueue->rps_map);
3531         if (!flow_table && !map)
3532                 goto done;
3533
3534         skb_reset_network_header(skb);
3535         hash = skb_get_hash(skb);
3536         if (!hash)
3537                 goto done;
3538
3539         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3540         if (flow_table && sock_flow_table) {
3541                 struct rps_dev_flow *rflow;
3542                 u32 next_cpu;
3543                 u32 ident;
3544
3545                 /* First check into global flow table if there is a match */
3546                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3547                 if ((ident ^ hash) & ~rps_cpu_mask)
3548                         goto try_rps;
3549
3550                 next_cpu = ident & rps_cpu_mask;
3551
3552                 /* OK, now we know there is a match,
3553                  * we can look at the local (per receive queue) flow table
3554                  */
3555                 rflow = &flow_table->flows[hash & flow_table->mask];
3556                 tcpu = rflow->cpu;
3557
3558                 /*
3559                  * If the desired CPU (where last recvmsg was done) is
3560                  * different from current CPU (one in the rx-queue flow
3561                  * table entry), switch if one of the following holds:
3562                  *   - Current CPU is unset (>= nr_cpu_ids).
3563                  *   - Current CPU is offline.
3564                  *   - The current CPU's queue tail has advanced beyond the
3565                  *     last packet that was enqueued using this table entry.
3566                  *     This guarantees that all previous packets for the flow
3567                  *     have been dequeued, thus preserving in order delivery.
3568                  */
3569                 if (unlikely(tcpu != next_cpu) &&
3570                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3571                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3572                       rflow->last_qtail)) >= 0)) {
3573                         tcpu = next_cpu;
3574                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3575                 }
3576
3577                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3578                         *rflowp = rflow;
3579                         cpu = tcpu;
3580                         goto done;
3581                 }
3582         }
3583
3584 try_rps:
3585
3586         if (map) {
3587                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3588                 if (cpu_online(tcpu)) {
3589                         cpu = tcpu;
3590                         goto done;
3591                 }
3592         }
3593
3594 done:
3595         return cpu;
3596 }
3597
3598 #ifdef CONFIG_RFS_ACCEL
3599
3600 /**
3601  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3602  * @dev: Device on which the filter was set
3603  * @rxq_index: RX queue index
3604  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3605  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3606  *
3607  * Drivers that implement ndo_rx_flow_steer() should periodically call
3608  * this function for each installed filter and remove the filters for
3609  * which it returns %true.
3610  */
3611 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3612                          u32 flow_id, u16 filter_id)
3613 {
3614         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3615         struct rps_dev_flow_table *flow_table;
3616         struct rps_dev_flow *rflow;
3617         bool expire = true;
3618         unsigned int cpu;
3619
3620         rcu_read_lock();
3621         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3622         if (flow_table && flow_id <= flow_table->mask) {
3623                 rflow = &flow_table->flows[flow_id];
3624                 cpu = ACCESS_ONCE(rflow->cpu);
3625                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3626                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3627                            rflow->last_qtail) <
3628                      (int)(10 * flow_table->mask)))
3629                         expire = false;
3630         }
3631         rcu_read_unlock();
3632         return expire;
3633 }
3634 EXPORT_SYMBOL(rps_may_expire_flow);
3635
3636 #endif /* CONFIG_RFS_ACCEL */
3637
3638 /* Called from hardirq (IPI) context */
3639 static void rps_trigger_softirq(void *data)
3640 {
3641         struct softnet_data *sd = data;
3642
3643         ____napi_schedule(sd, &sd->backlog);
3644         sd->received_rps++;
3645 }
3646
3647 #endif /* CONFIG_RPS */
3648
3649 /*
3650  * Check if this softnet_data structure is another cpu one
3651  * If yes, queue it to our IPI list and return 1
3652  * If no, return 0
3653  */
3654 static int rps_ipi_queued(struct softnet_data *sd)
3655 {
3656 #ifdef CONFIG_RPS
3657         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3658
3659         if (sd != mysd) {
3660                 sd->rps_ipi_next = mysd->rps_ipi_list;
3661                 mysd->rps_ipi_list = sd;
3662
3663                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3664                 return 1;
3665         }
3666 #endif /* CONFIG_RPS */
3667         return 0;
3668 }
3669
3670 #ifdef CONFIG_NET_FLOW_LIMIT
3671 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3672 #endif
3673
3674 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3675 {
3676 #ifdef CONFIG_NET_FLOW_LIMIT
3677         struct sd_flow_limit *fl;
3678         struct softnet_data *sd;
3679         unsigned int old_flow, new_flow;
3680
3681         if (qlen < (netdev_max_backlog >> 1))
3682                 return false;
3683
3684         sd = this_cpu_ptr(&softnet_data);
3685
3686         rcu_read_lock();
3687         fl = rcu_dereference(sd->flow_limit);
3688         if (fl) {
3689                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3690                 old_flow = fl->history[fl->history_head];
3691                 fl->history[fl->history_head] = new_flow;
3692
3693                 fl->history_head++;
3694                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3695
3696                 if (likely(fl->buckets[old_flow]))
3697                         fl->buckets[old_flow]--;
3698
3699                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3700                         fl->count++;
3701                         rcu_read_unlock();
3702                         return true;
3703                 }
3704         }
3705         rcu_read_unlock();
3706 #endif
3707         return false;
3708 }
3709
3710 /*
3711  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3712  * queue (may be a remote CPU queue).
3713  */
3714 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3715                               unsigned int *qtail)
3716 {
3717         struct softnet_data *sd;
3718         unsigned long flags;
3719         unsigned int qlen;
3720
3721         sd = &per_cpu(softnet_data, cpu);
3722
3723         local_irq_save(flags);
3724
3725         rps_lock(sd);
3726         if (!netif_running(skb->dev))
3727                 goto drop;
3728         qlen = skb_queue_len(&sd->input_pkt_queue);
3729         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3730                 if (qlen) {
3731 enqueue:
3732                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3733                         input_queue_tail_incr_save(sd, qtail);
3734                         rps_unlock(sd);
3735                         local_irq_restore(flags);
3736                         return NET_RX_SUCCESS;
3737                 }
3738
3739                 /* Schedule NAPI for backlog device
3740                  * We can use non atomic operation since we own the queue lock
3741                  */
3742                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3743                         if (!rps_ipi_queued(sd))
3744                                 ____napi_schedule(sd, &sd->backlog);
3745                 }
3746                 goto enqueue;
3747         }
3748
3749 drop:
3750         sd->dropped++;
3751         rps_unlock(sd);
3752
3753         local_irq_restore(flags);
3754
3755         atomic_long_inc(&skb->dev->rx_dropped);
3756         kfree_skb(skb);
3757         return NET_RX_DROP;
3758 }
3759
3760 static int netif_rx_internal(struct sk_buff *skb)
3761 {
3762         int ret;
3763
3764         net_timestamp_check(netdev_tstamp_prequeue, skb);
3765
3766         trace_netif_rx(skb);
3767 #ifdef CONFIG_RPS
3768         if (static_key_false(&rps_needed)) {
3769                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3770                 int cpu;
3771
3772                 preempt_disable();
3773                 rcu_read_lock();
3774
3775                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3776                 if (cpu < 0)
3777                         cpu = smp_processor_id();
3778
3779                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3780
3781                 rcu_read_unlock();
3782                 preempt_enable();
3783         } else
3784 #endif
3785         {
3786                 unsigned int qtail;
3787                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3788                 put_cpu();
3789         }
3790         return ret;
3791 }
3792
3793 /**
3794  *      netif_rx        -       post buffer to the network code
3795  *      @skb: buffer to post
3796  *
3797  *      This function receives a packet from a device driver and queues it for
3798  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3799  *      may be dropped during processing for congestion control or by the
3800  *      protocol layers.
3801  *
3802  *      return values:
3803  *      NET_RX_SUCCESS  (no congestion)
3804  *      NET_RX_DROP     (packet was dropped)
3805  *
3806  */
3807
3808 int netif_rx(struct sk_buff *skb)
3809 {
3810         trace_netif_rx_entry(skb);
3811
3812         return netif_rx_internal(skb);
3813 }
3814 EXPORT_SYMBOL(netif_rx);
3815
3816 int netif_rx_ni(struct sk_buff *skb)
3817 {
3818         int err;
3819
3820         trace_netif_rx_ni_entry(skb);
3821
3822         preempt_disable();
3823         err = netif_rx_internal(skb);
3824         if (local_softirq_pending())
3825                 do_softirq();
3826         preempt_enable();
3827
3828         return err;
3829 }
3830 EXPORT_SYMBOL(netif_rx_ni);
3831
3832 static __latent_entropy void net_tx_action(struct softirq_action *h)
3833 {
3834         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3835
3836         if (sd->completion_queue) {
3837                 struct sk_buff *clist;
3838
3839                 local_irq_disable();
3840                 clist = sd->completion_queue;
3841                 sd->completion_queue = NULL;
3842                 local_irq_enable();
3843
3844                 while (clist) {
3845                         struct sk_buff *skb = clist;
3846                         clist = clist->next;
3847
3848                         WARN_ON(atomic_read(&skb->users));
3849                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3850                                 trace_consume_skb(skb);
3851                         else
3852                                 trace_kfree_skb(skb, net_tx_action);
3853
3854                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3855                                 __kfree_skb(skb);
3856                         else
3857                                 __kfree_skb_defer(skb);
3858                 }
3859
3860                 __kfree_skb_flush();
3861         }
3862
3863         if (sd->output_queue) {
3864                 struct Qdisc *head;
3865
3866                 local_irq_disable();
3867                 head = sd->output_queue;
3868                 sd->output_queue = NULL;
3869                 sd->output_queue_tailp = &sd->output_queue;
3870                 local_irq_enable();
3871
3872                 while (head) {
3873                         struct Qdisc *q = head;
3874                         spinlock_t *root_lock;
3875
3876                         head = head->next_sched;
3877
3878                         root_lock = qdisc_lock(q);
3879                         spin_lock(root_lock);
3880                         /* We need to make sure head->next_sched is read
3881                          * before clearing __QDISC_STATE_SCHED
3882                          */
3883                         smp_mb__before_atomic();
3884                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3885                         qdisc_run(q);
3886                         spin_unlock(root_lock);
3887                 }
3888         }
3889 }
3890
3891 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3892 /* This hook is defined here for ATM LANE */
3893 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3894                              unsigned char *addr) __read_mostly;
3895 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3896 #endif
3897
3898 static inline struct sk_buff *
3899 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3900                    struct net_device *orig_dev)
3901 {
3902 #ifdef CONFIG_NET_CLS_ACT
3903         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3904         struct tcf_result cl_res;
3905
3906         /* If there's at least one ingress present somewhere (so
3907          * we get here via enabled static key), remaining devices
3908          * that are not configured with an ingress qdisc will bail
3909          * out here.
3910          */
3911         if (!cl)
3912                 return skb;
3913         if (*pt_prev) {
3914                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3915                 *pt_prev = NULL;
3916         }
3917
3918         qdisc_skb_cb(skb)->pkt_len = skb->len;
3919         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3920         qdisc_bstats_cpu_update(cl->q, skb);
3921
3922         switch (tc_classify(skb, cl, &cl_res, false)) {
3923         case TC_ACT_OK:
3924         case TC_ACT_RECLASSIFY:
3925                 skb->tc_index = TC_H_MIN(cl_res.classid);
3926                 break;
3927         case TC_ACT_SHOT:
3928                 qdisc_qstats_cpu_drop(cl->q);
3929                 kfree_skb(skb);
3930                 return NULL;
3931         case TC_ACT_STOLEN:
3932         case TC_ACT_QUEUED:
3933                 consume_skb(skb);
3934                 return NULL;
3935         case TC_ACT_REDIRECT:
3936                 /* skb_mac_header check was done by cls/act_bpf, so
3937                  * we can safely push the L2 header back before
3938                  * redirecting to another netdev
3939                  */
3940                 __skb_push(skb, skb->mac_len);
3941                 skb_do_redirect(skb);
3942                 return NULL;
3943         default:
3944                 break;
3945         }
3946 #endif /* CONFIG_NET_CLS_ACT */
3947         return skb;
3948 }
3949
3950 /**
3951  *      netdev_is_rx_handler_busy - check if receive handler is registered
3952  *      @dev: device to check
3953  *
3954  *      Check if a receive handler is already registered for a given device.
3955  *      Return true if there one.
3956  *
3957  *      The caller must hold the rtnl_mutex.
3958  */
3959 bool netdev_is_rx_handler_busy(struct net_device *dev)
3960 {
3961         ASSERT_RTNL();
3962         return dev && rtnl_dereference(dev->rx_handler);
3963 }
3964 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3965
3966 /**
3967  *      netdev_rx_handler_register - register receive handler
3968  *      @dev: device to register a handler for
3969  *      @rx_handler: receive handler to register
3970  *      @rx_handler_data: data pointer that is used by rx handler
3971  *
3972  *      Register a receive handler for a device. This handler will then be
3973  *      called from __netif_receive_skb. A negative errno code is returned
3974  *      on a failure.
3975  *
3976  *      The caller must hold the rtnl_mutex.
3977  *
3978  *      For a general description of rx_handler, see enum rx_handler_result.
3979  */
3980 int netdev_rx_handler_register(struct net_device *dev,
3981                                rx_handler_func_t *rx_handler,
3982                                void *rx_handler_data)
3983 {
3984         ASSERT_RTNL();
3985
3986         if (dev->rx_handler)
3987                 return -EBUSY;
3988
3989         /* Note: rx_handler_data must be set before rx_handler */
3990         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3991         rcu_assign_pointer(dev->rx_handler, rx_handler);
3992
3993         return 0;
3994 }
3995 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3996
3997 /**
3998  *      netdev_rx_handler_unregister - unregister receive handler
3999  *      @dev: device to unregister a handler from
4000  *
4001  *      Unregister a receive handler from a device.
4002  *
4003  *      The caller must hold the rtnl_mutex.
4004  */
4005 void netdev_rx_handler_unregister(struct net_device *dev)
4006 {
4007
4008         ASSERT_RTNL();
4009         RCU_INIT_POINTER(dev->rx_handler, NULL);
4010         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4011          * section has a guarantee to see a non NULL rx_handler_data
4012          * as well.
4013          */
4014         synchronize_net();
4015         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4016 }
4017 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4018
4019 /*
4020  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4021  * the special handling of PFMEMALLOC skbs.
4022  */
4023 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4024 {
4025         switch (skb->protocol) {
4026         case htons(ETH_P_ARP):
4027         case htons(ETH_P_IP):
4028         case htons(ETH_P_IPV6):
4029         case htons(ETH_P_8021Q):
4030         case htons(ETH_P_8021AD):
4031                 return true;
4032         default:
4033                 return false;
4034         }
4035 }
4036
4037 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4038                              int *ret, struct net_device *orig_dev)
4039 {
4040 #ifdef CONFIG_NETFILTER_INGRESS
4041         if (nf_hook_ingress_active(skb)) {
4042                 int ingress_retval;
4043
4044                 if (*pt_prev) {
4045                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4046                         *pt_prev = NULL;
4047                 }
4048
4049                 rcu_read_lock();
4050                 ingress_retval = nf_hook_ingress(skb);
4051                 rcu_read_unlock();
4052                 return ingress_retval;
4053         }
4054 #endif /* CONFIG_NETFILTER_INGRESS */
4055         return 0;
4056 }
4057
4058 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4059 {
4060         struct packet_type *ptype, *pt_prev;
4061         rx_handler_func_t *rx_handler;
4062         struct net_device *orig_dev;
4063         bool deliver_exact = false;
4064         int ret = NET_RX_DROP;
4065         __be16 type;
4066
4067         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4068
4069         trace_netif_receive_skb(skb);
4070
4071         orig_dev = skb->dev;
4072
4073         skb_reset_network_header(skb);
4074         if (!skb_transport_header_was_set(skb))
4075                 skb_reset_transport_header(skb);
4076         skb_reset_mac_len(skb);
4077
4078         pt_prev = NULL;
4079
4080 another_round:
4081         skb->skb_iif = skb->dev->ifindex;
4082
4083         __this_cpu_inc(softnet_data.processed);
4084
4085         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4086             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4087                 skb = skb_vlan_untag(skb);
4088                 if (unlikely(!skb))
4089                         goto out;
4090         }
4091
4092 #ifdef CONFIG_NET_CLS_ACT
4093         if (skb->tc_verd & TC_NCLS) {
4094                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4095                 goto ncls;
4096         }
4097 #endif
4098
4099         if (pfmemalloc)
4100                 goto skip_taps;
4101
4102         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4103                 if (pt_prev)
4104                         ret = deliver_skb(skb, pt_prev, orig_dev);
4105                 pt_prev = ptype;
4106         }
4107
4108         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4109                 if (pt_prev)
4110                         ret = deliver_skb(skb, pt_prev, orig_dev);
4111                 pt_prev = ptype;
4112         }
4113
4114 skip_taps:
4115 #ifdef CONFIG_NET_INGRESS
4116         if (static_key_false(&ingress_needed)) {
4117                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4118                 if (!skb)
4119                         goto out;
4120
4121                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4122                         goto out;
4123         }
4124 #endif
4125 #ifdef CONFIG_NET_CLS_ACT
4126         skb->tc_verd = 0;
4127 ncls:
4128 #endif
4129         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4130                 goto drop;
4131
4132         if (skb_vlan_tag_present(skb)) {
4133                 if (pt_prev) {
4134                         ret = deliver_skb(skb, pt_prev, orig_dev);
4135                         pt_prev = NULL;
4136                 }
4137                 if (vlan_do_receive(&skb))
4138                         goto another_round;
4139                 else if (unlikely(!skb))
4140                         goto out;
4141         }
4142
4143         rx_handler = rcu_dereference(skb->dev->rx_handler);
4144         if (rx_handler) {
4145                 if (pt_prev) {
4146                         ret = deliver_skb(skb, pt_prev, orig_dev);
4147                         pt_prev = NULL;
4148                 }
4149                 switch (rx_handler(&skb)) {
4150                 case RX_HANDLER_CONSUMED:
4151                         ret = NET_RX_SUCCESS;
4152                         goto out;
4153                 case RX_HANDLER_ANOTHER:
4154                         goto another_round;
4155                 case RX_HANDLER_EXACT:
4156                         deliver_exact = true;
4157                 case RX_HANDLER_PASS:
4158                         break;
4159                 default:
4160                         BUG();
4161                 }
4162         }
4163
4164         if (unlikely(skb_vlan_tag_present(skb))) {
4165                 if (skb_vlan_tag_get_id(skb))
4166                         skb->pkt_type = PACKET_OTHERHOST;
4167                 /* Note: we might in the future use prio bits
4168                  * and set skb->priority like in vlan_do_receive()
4169                  * For the time being, just ignore Priority Code Point
4170                  */
4171                 skb->vlan_tci = 0;
4172         }
4173
4174         type = skb->protocol;
4175
4176         /* deliver only exact match when indicated */
4177         if (likely(!deliver_exact)) {
4178                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4179                                        &ptype_base[ntohs(type) &
4180                                                    PTYPE_HASH_MASK]);
4181         }
4182
4183         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4184                                &orig_dev->ptype_specific);
4185
4186         if (unlikely(skb->dev != orig_dev)) {
4187                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4188                                        &skb->dev->ptype_specific);
4189         }
4190
4191         if (pt_prev) {
4192                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4193                         goto drop;
4194                 else
4195                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4196         } else {
4197 drop:
4198                 if (!deliver_exact)
4199                         atomic_long_inc(&skb->dev->rx_dropped);
4200                 else
4201                         atomic_long_inc(&skb->dev->rx_nohandler);
4202                 kfree_skb(skb);
4203                 /* Jamal, now you will not able to escape explaining
4204                  * me how you were going to use this. :-)
4205                  */
4206                 ret = NET_RX_DROP;
4207         }
4208
4209 out:
4210         return ret;
4211 }
4212
4213 static int __netif_receive_skb(struct sk_buff *skb)
4214 {
4215         int ret;
4216
4217         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4218                 unsigned long pflags = current->flags;
4219
4220                 /*
4221                  * PFMEMALLOC skbs are special, they should
4222                  * - be delivered to SOCK_MEMALLOC sockets only
4223                  * - stay away from userspace
4224                  * - have bounded memory usage
4225                  *
4226                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4227                  * context down to all allocation sites.
4228                  */
4229                 current->flags |= PF_MEMALLOC;
4230                 ret = __netif_receive_skb_core(skb, true);
4231                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4232         } else
4233                 ret = __netif_receive_skb_core(skb, false);
4234
4235         return ret;
4236 }
4237
4238 static int netif_receive_skb_internal(struct sk_buff *skb)
4239 {
4240         int ret;
4241
4242         net_timestamp_check(netdev_tstamp_prequeue, skb);
4243
4244         if (skb_defer_rx_timestamp(skb))
4245                 return NET_RX_SUCCESS;
4246
4247         rcu_read_lock();
4248
4249 #ifdef CONFIG_RPS
4250         if (static_key_false(&rps_needed)) {
4251                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4252                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4253
4254                 if (cpu >= 0) {
4255                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4256                         rcu_read_unlock();
4257                         return ret;
4258                 }
4259         }
4260 #endif
4261         ret = __netif_receive_skb(skb);
4262         rcu_read_unlock();
4263         return ret;
4264 }
4265
4266 /**
4267  *      netif_receive_skb - process receive buffer from network
4268  *      @skb: buffer to process
4269  *
4270  *      netif_receive_skb() is the main receive data processing function.
4271  *      It always succeeds. The buffer may be dropped during processing
4272  *      for congestion control or by the protocol layers.
4273  *
4274  *      This function may only be called from softirq context and interrupts
4275  *      should be enabled.
4276  *
4277  *      Return values (usually ignored):
4278  *      NET_RX_SUCCESS: no congestion
4279  *      NET_RX_DROP: packet was dropped
4280  */
4281 int netif_receive_skb(struct sk_buff *skb)
4282 {
4283         trace_netif_receive_skb_entry(skb);
4284
4285         return netif_receive_skb_internal(skb);
4286 }
4287 EXPORT_SYMBOL(netif_receive_skb);
4288
4289 DEFINE_PER_CPU(struct work_struct, flush_works);
4290
4291 /* Network device is going away, flush any packets still pending */
4292 static void flush_backlog(struct work_struct *work)
4293 {
4294         struct sk_buff *skb, *tmp;
4295         struct softnet_data *sd;
4296
4297         local_bh_disable();
4298         sd = this_cpu_ptr(&softnet_data);
4299
4300         local_irq_disable();
4301         rps_lock(sd);
4302         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4303                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4304                         __skb_unlink(skb, &sd->input_pkt_queue);
4305                         kfree_skb(skb);
4306                         input_queue_head_incr(sd);
4307                 }
4308         }
4309         rps_unlock(sd);
4310         local_irq_enable();
4311
4312         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4313                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4314                         __skb_unlink(skb, &sd->process_queue);
4315                         kfree_skb(skb);
4316                         input_queue_head_incr(sd);
4317                 }
4318         }
4319         local_bh_enable();
4320 }
4321
4322 static void flush_all_backlogs(void)
4323 {
4324         unsigned int cpu;
4325
4326         get_online_cpus();
4327
4328         for_each_online_cpu(cpu)
4329                 queue_work_on(cpu, system_highpri_wq,
4330                               per_cpu_ptr(&flush_works, cpu));
4331
4332         for_each_online_cpu(cpu)
4333                 flush_work(per_cpu_ptr(&flush_works, cpu));
4334
4335         put_online_cpus();
4336 }
4337
4338 static int napi_gro_complete(struct sk_buff *skb)
4339 {
4340         struct packet_offload *ptype;
4341         __be16 type = skb->protocol;
4342         struct list_head *head = &offload_base;
4343         int err = -ENOENT;
4344
4345         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4346
4347         if (NAPI_GRO_CB(skb)->count == 1) {
4348                 skb_shinfo(skb)->gso_size = 0;
4349                 goto out;
4350         }
4351
4352         rcu_read_lock();
4353         list_for_each_entry_rcu(ptype, head, list) {
4354                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4355                         continue;
4356
4357                 err = ptype->callbacks.gro_complete(skb, 0);
4358                 break;
4359         }
4360         rcu_read_unlock();
4361
4362         if (err) {
4363                 WARN_ON(&ptype->list == head);
4364                 kfree_skb(skb);
4365                 return NET_RX_SUCCESS;
4366         }
4367
4368 out:
4369         return netif_receive_skb_internal(skb);
4370 }
4371
4372 /* napi->gro_list contains packets ordered by age.
4373  * youngest packets at the head of it.
4374  * Complete skbs in reverse order to reduce latencies.
4375  */
4376 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4377 {
4378         struct sk_buff *skb, *prev = NULL;
4379
4380         /* scan list and build reverse chain */
4381         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4382                 skb->prev = prev;
4383                 prev = skb;
4384         }
4385
4386         for (skb = prev; skb; skb = prev) {
4387                 skb->next = NULL;
4388
4389                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4390                         return;
4391
4392                 prev = skb->prev;
4393                 napi_gro_complete(skb);
4394                 napi->gro_count--;
4395         }
4396
4397         napi->gro_list = NULL;
4398 }
4399 EXPORT_SYMBOL(napi_gro_flush);
4400
4401 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4402 {
4403         struct sk_buff *p;
4404         unsigned int maclen = skb->dev->hard_header_len;
4405         u32 hash = skb_get_hash_raw(skb);
4406
4407         for (p = napi->gro_list; p; p = p->next) {
4408                 unsigned long diffs;
4409
4410                 NAPI_GRO_CB(p)->flush = 0;
4411
4412                 if (hash != skb_get_hash_raw(p)) {
4413                         NAPI_GRO_CB(p)->same_flow = 0;
4414                         continue;
4415                 }
4416
4417                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4418                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4419                 diffs |= skb_metadata_dst_cmp(p, skb);
4420                 if (maclen == ETH_HLEN)
4421                         diffs |= compare_ether_header(skb_mac_header(p),
4422                                                       skb_mac_header(skb));
4423                 else if (!diffs)
4424                         diffs = memcmp(skb_mac_header(p),
4425                                        skb_mac_header(skb),
4426                                        maclen);
4427                 NAPI_GRO_CB(p)->same_flow = !diffs;
4428         }
4429 }
4430
4431 static void skb_gro_reset_offset(struct sk_buff *skb)
4432 {
4433         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4434         const skb_frag_t *frag0 = &pinfo->frags[0];
4435
4436         NAPI_GRO_CB(skb)->data_offset = 0;
4437         NAPI_GRO_CB(skb)->frag0 = NULL;
4438         NAPI_GRO_CB(skb)->frag0_len = 0;
4439
4440         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4441             pinfo->nr_frags &&
4442             !PageHighMem(skb_frag_page(frag0))) {
4443                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4444                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4445                                                     skb_frag_size(frag0),
4446                                                     skb->end - skb->tail);
4447         }
4448 }
4449
4450 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4451 {
4452         struct skb_shared_info *pinfo = skb_shinfo(skb);
4453
4454         BUG_ON(skb->end - skb->tail < grow);
4455
4456         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4457
4458         skb->data_len -= grow;
4459         skb->tail += grow;
4460
4461         pinfo->frags[0].page_offset += grow;
4462         skb_frag_size_sub(&pinfo->frags[0], grow);
4463
4464         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4465                 skb_frag_unref(skb, 0);
4466                 memmove(pinfo->frags, pinfo->frags + 1,
4467                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4468         }
4469 }
4470
4471 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4472 {
4473         struct sk_buff **pp = NULL;
4474         struct packet_offload *ptype;
4475         __be16 type = skb->protocol;
4476         struct list_head *head = &offload_base;
4477         int same_flow;
4478         enum gro_result ret;
4479         int grow;
4480
4481         if (!(skb->dev->features & NETIF_F_GRO))
4482                 goto normal;
4483
4484         if (skb->csum_bad)
4485                 goto normal;
4486
4487         gro_list_prepare(napi, skb);
4488
4489         rcu_read_lock();
4490         list_for_each_entry_rcu(ptype, head, list) {
4491                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4492                         continue;
4493
4494                 skb_set_network_header(skb, skb_gro_offset(skb));
4495                 skb_reset_mac_len(skb);
4496                 NAPI_GRO_CB(skb)->same_flow = 0;
4497                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4498                 NAPI_GRO_CB(skb)->free = 0;
4499                 NAPI_GRO_CB(skb)->encap_mark = 0;
4500                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4501                 NAPI_GRO_CB(skb)->is_fou = 0;
4502                 NAPI_GRO_CB(skb)->is_atomic = 1;
4503                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4504
4505                 /* Setup for GRO checksum validation */
4506                 switch (skb->ip_summed) {
4507                 case CHECKSUM_COMPLETE:
4508                         NAPI_GRO_CB(skb)->csum = skb->csum;
4509                         NAPI_GRO_CB(skb)->csum_valid = 1;
4510                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4511                         break;
4512                 case CHECKSUM_UNNECESSARY:
4513                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4514                         NAPI_GRO_CB(skb)->csum_valid = 0;
4515                         break;
4516                 default:
4517                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4518                         NAPI_GRO_CB(skb)->csum_valid = 0;
4519                 }
4520
4521                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4522                 break;
4523         }
4524         rcu_read_unlock();
4525
4526         if (&ptype->list == head)
4527                 goto normal;
4528
4529         same_flow = NAPI_GRO_CB(skb)->same_flow;
4530         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4531
4532         if (pp) {
4533                 struct sk_buff *nskb = *pp;
4534
4535                 *pp = nskb->next;
4536                 nskb->next = NULL;
4537                 napi_gro_complete(nskb);
4538                 napi->gro_count--;
4539         }
4540
4541         if (same_flow)
4542                 goto ok;
4543
4544         if (NAPI_GRO_CB(skb)->flush)
4545                 goto normal;
4546
4547         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4548                 struct sk_buff *nskb = napi->gro_list;
4549
4550                 /* locate the end of the list to select the 'oldest' flow */
4551                 while (nskb->next) {
4552                         pp = &nskb->next;
4553                         nskb = *pp;
4554                 }
4555                 *pp = NULL;
4556                 nskb->next = NULL;
4557                 napi_gro_complete(nskb);
4558         } else {
4559                 napi->gro_count++;
4560         }
4561         NAPI_GRO_CB(skb)->count = 1;
4562         NAPI_GRO_CB(skb)->age = jiffies;
4563         NAPI_GRO_CB(skb)->last = skb;
4564         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4565         skb->next = napi->gro_list;
4566         napi->gro_list = skb;
4567         ret = GRO_HELD;
4568
4569 pull:
4570         grow = skb_gro_offset(skb) - skb_headlen(skb);
4571         if (grow > 0)
4572                 gro_pull_from_frag0(skb, grow);
4573 ok:
4574         return ret;
4575
4576 normal:
4577         ret = GRO_NORMAL;
4578         goto pull;
4579 }
4580
4581 struct packet_offload *gro_find_receive_by_type(__be16 type)
4582 {
4583         struct list_head *offload_head = &offload_base;
4584         struct packet_offload *ptype;
4585
4586         list_for_each_entry_rcu(ptype, offload_head, list) {
4587                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4588                         continue;
4589                 return ptype;
4590         }
4591         return NULL;
4592 }
4593 EXPORT_SYMBOL(gro_find_receive_by_type);
4594
4595 struct packet_offload *gro_find_complete_by_type(__be16 type)
4596 {
4597         struct list_head *offload_head = &offload_base;
4598         struct packet_offload *ptype;
4599
4600         list_for_each_entry_rcu(ptype, offload_head, list) {
4601                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4602                         continue;
4603                 return ptype;
4604         }
4605         return NULL;
4606 }
4607 EXPORT_SYMBOL(gro_find_complete_by_type);
4608
4609 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4610 {
4611         switch (ret) {
4612         case GRO_NORMAL:
4613                 if (netif_receive_skb_internal(skb))
4614                         ret = GRO_DROP;
4615                 break;
4616
4617         case GRO_DROP:
4618                 kfree_skb(skb);
4619                 break;
4620
4621         case GRO_MERGED_FREE:
4622                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4623                         skb_dst_drop(skb);
4624                         kmem_cache_free(skbuff_head_cache, skb);
4625                 } else {
4626                         __kfree_skb(skb);
4627                 }
4628                 break;
4629
4630         case GRO_HELD:
4631         case GRO_MERGED:
4632                 break;
4633         }
4634
4635         return ret;
4636 }
4637
4638 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4639 {
4640         skb_mark_napi_id(skb, napi);
4641         trace_napi_gro_receive_entry(skb);
4642
4643         skb_gro_reset_offset(skb);
4644
4645         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4646 }
4647 EXPORT_SYMBOL(napi_gro_receive);
4648
4649 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4650 {
4651         if (unlikely(skb->pfmemalloc)) {
4652                 consume_skb(skb);
4653                 return;
4654         }
4655         __skb_pull(skb, skb_headlen(skb));
4656         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4657         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4658         skb->vlan_tci = 0;
4659         skb->dev = napi->dev;
4660         skb->skb_iif = 0;
4661         skb->encapsulation = 0;
4662         skb_shinfo(skb)->gso_type = 0;
4663         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4664
4665         napi->skb = skb;
4666 }
4667
4668 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4669 {
4670         struct sk_buff *skb = napi->skb;
4671
4672         if (!skb) {
4673                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4674                 if (skb) {
4675                         napi->skb = skb;
4676                         skb_mark_napi_id(skb, napi);
4677                 }
4678         }
4679         return skb;
4680 }
4681 EXPORT_SYMBOL(napi_get_frags);
4682
4683 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4684                                       struct sk_buff *skb,
4685                                       gro_result_t ret)
4686 {
4687         switch (ret) {
4688         case GRO_NORMAL:
4689         case GRO_HELD:
4690                 __skb_push(skb, ETH_HLEN);
4691                 skb->protocol = eth_type_trans(skb, skb->dev);
4692                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4693                         ret = GRO_DROP;
4694                 break;
4695
4696         case GRO_DROP:
4697         case GRO_MERGED_FREE:
4698                 napi_reuse_skb(napi, skb);
4699                 break;
4700
4701         case GRO_MERGED:
4702                 break;
4703         }
4704
4705         return ret;
4706 }
4707
4708 /* Upper GRO stack assumes network header starts at gro_offset=0
4709  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4710  * We copy ethernet header into skb->data to have a common layout.
4711  */
4712 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4713 {
4714         struct sk_buff *skb = napi->skb;
4715         const struct ethhdr *eth;
4716         unsigned int hlen = sizeof(*eth);
4717
4718         napi->skb = NULL;
4719
4720         skb_reset_mac_header(skb);
4721         skb_gro_reset_offset(skb);
4722
4723         eth = skb_gro_header_fast(skb, 0);
4724         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4725                 eth = skb_gro_header_slow(skb, hlen, 0);
4726                 if (unlikely(!eth)) {
4727                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4728                                              __func__, napi->dev->name);
4729                         napi_reuse_skb(napi, skb);
4730                         return NULL;
4731                 }
4732         } else {
4733                 gro_pull_from_frag0(skb, hlen);
4734                 NAPI_GRO_CB(skb)->frag0 += hlen;
4735                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4736         }
4737         __skb_pull(skb, hlen);
4738
4739         /*
4740          * This works because the only protocols we care about don't require
4741          * special handling.
4742          * We'll fix it up properly in napi_frags_finish()
4743          */
4744         skb->protocol = eth->h_proto;
4745
4746         return skb;
4747 }
4748
4749 gro_result_t napi_gro_frags(struct napi_struct *napi)
4750 {
4751         struct sk_buff *skb = napi_frags_skb(napi);
4752
4753         if (!skb)
4754                 return GRO_DROP;
4755
4756         trace_napi_gro_frags_entry(skb);
4757
4758         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4759 }
4760 EXPORT_SYMBOL(napi_gro_frags);
4761
4762 /* Compute the checksum from gro_offset and return the folded value
4763  * after adding in any pseudo checksum.
4764  */
4765 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4766 {
4767         __wsum wsum;
4768         __sum16 sum;
4769
4770         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4771
4772         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4773         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4774         if (likely(!sum)) {
4775                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4776                     !skb->csum_complete_sw)
4777                         netdev_rx_csum_fault(skb->dev);
4778         }
4779
4780         NAPI_GRO_CB(skb)->csum = wsum;
4781         NAPI_GRO_CB(skb)->csum_valid = 1;
4782
4783         return sum;
4784 }
4785 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4786
4787 /*
4788  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4789  * Note: called with local irq disabled, but exits with local irq enabled.
4790  */
4791 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4792 {
4793 #ifdef CONFIG_RPS
4794         struct softnet_data *remsd = sd->rps_ipi_list;
4795
4796         if (remsd) {
4797                 sd->rps_ipi_list = NULL;
4798
4799                 local_irq_enable();
4800
4801                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4802                 while (remsd) {
4803                         struct softnet_data *next = remsd->rps_ipi_next;
4804
4805                         if (cpu_online(remsd->cpu))
4806                                 smp_call_function_single_async(remsd->cpu,
4807                                                            &remsd->csd);
4808                         remsd = next;
4809                 }
4810         } else
4811 #endif
4812                 local_irq_enable();
4813 }
4814
4815 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4816 {
4817 #ifdef CONFIG_RPS
4818         return sd->rps_ipi_list != NULL;
4819 #else
4820         return false;
4821 #endif
4822 }
4823
4824 static int process_backlog(struct napi_struct *napi, int quota)
4825 {
4826         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4827         bool again = true;
4828         int work = 0;
4829
4830         /* Check if we have pending ipi, its better to send them now,
4831          * not waiting net_rx_action() end.
4832          */
4833         if (sd_has_rps_ipi_waiting(sd)) {
4834                 local_irq_disable();
4835                 net_rps_action_and_irq_enable(sd);
4836         }
4837
4838         napi->weight = weight_p;
4839         while (again) {
4840                 struct sk_buff *skb;
4841
4842                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4843                         rcu_read_lock();
4844                         __netif_receive_skb(skb);
4845                         rcu_read_unlock();
4846                         input_queue_head_incr(sd);
4847                         if (++work >= quota)
4848                                 return work;
4849
4850                 }
4851
4852                 local_irq_disable();
4853                 rps_lock(sd);
4854                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4855                         /*
4856                          * Inline a custom version of __napi_complete().
4857                          * only current cpu owns and manipulates this napi,
4858                          * and NAPI_STATE_SCHED is the only possible flag set
4859                          * on backlog.
4860                          * We can use a plain write instead of clear_bit(),
4861                          * and we dont need an smp_mb() memory barrier.
4862                          */
4863                         napi->state = 0;
4864                         again = false;
4865                 } else {
4866                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4867                                                    &sd->process_queue);
4868                 }
4869                 rps_unlock(sd);
4870                 local_irq_enable();
4871         }
4872
4873         return work;
4874 }
4875
4876 /**
4877  * __napi_schedule - schedule for receive
4878  * @n: entry to schedule
4879  *
4880  * The entry's receive function will be scheduled to run.
4881  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4882  */
4883 void __napi_schedule(struct napi_struct *n)
4884 {
4885         unsigned long flags;
4886
4887         local_irq_save(flags);
4888         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4889         local_irq_restore(flags);
4890 }
4891 EXPORT_SYMBOL(__napi_schedule);
4892
4893 /**
4894  * __napi_schedule_irqoff - schedule for receive
4895  * @n: entry to schedule
4896  *
4897  * Variant of __napi_schedule() assuming hard irqs are masked
4898  */
4899 void __napi_schedule_irqoff(struct napi_struct *n)
4900 {
4901         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4902 }
4903 EXPORT_SYMBOL(__napi_schedule_irqoff);
4904
4905 bool __napi_complete(struct napi_struct *n)
4906 {
4907         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4908
4909         /* Some drivers call us directly, instead of calling
4910          * napi_complete_done().
4911          */
4912         if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4913                 return false;
4914
4915         list_del_init(&n->poll_list);
4916         smp_mb__before_atomic();
4917         clear_bit(NAPI_STATE_SCHED, &n->state);
4918         return true;
4919 }
4920 EXPORT_SYMBOL(__napi_complete);
4921
4922 bool napi_complete_done(struct napi_struct *n, int work_done)
4923 {
4924         unsigned long flags;
4925
4926         /*
4927          * 1) Don't let napi dequeue from the cpu poll list
4928          *    just in case its running on a different cpu.
4929          * 2) If we are busy polling, do nothing here, we have
4930          *    the guarantee we will be called later.
4931          */
4932         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4933                                  NAPIF_STATE_IN_BUSY_POLL)))
4934                 return false;
4935
4936         if (n->gro_list) {
4937                 unsigned long timeout = 0;
4938
4939                 if (work_done)
4940                         timeout = n->dev->gro_flush_timeout;
4941
4942                 if (timeout)
4943                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4944                                       HRTIMER_MODE_REL_PINNED);
4945                 else
4946                         napi_gro_flush(n, false);
4947         }
4948         if (likely(list_empty(&n->poll_list))) {
4949                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4950         } else {
4951                 /* If n->poll_list is not empty, we need to mask irqs */
4952                 local_irq_save(flags);
4953                 __napi_complete(n);
4954                 local_irq_restore(flags);
4955         }
4956         return true;
4957 }
4958 EXPORT_SYMBOL(napi_complete_done);
4959
4960 /* must be called under rcu_read_lock(), as we dont take a reference */
4961 static struct napi_struct *napi_by_id(unsigned int napi_id)
4962 {
4963         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4964         struct napi_struct *napi;
4965
4966         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4967                 if (napi->napi_id == napi_id)
4968                         return napi;
4969
4970         return NULL;
4971 }
4972
4973 #if defined(CONFIG_NET_RX_BUSY_POLL)
4974
4975 #define BUSY_POLL_BUDGET 8
4976
4977 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4978 {
4979         int rc;
4980
4981         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4982
4983         local_bh_disable();
4984
4985         /* All we really want here is to re-enable device interrupts.
4986          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4987          */
4988         rc = napi->poll(napi, BUSY_POLL_BUDGET);
4989         netpoll_poll_unlock(have_poll_lock);
4990         if (rc == BUSY_POLL_BUDGET)
4991                 __napi_schedule(napi);
4992         local_bh_enable();
4993         if (local_softirq_pending())
4994                 do_softirq();
4995 }
4996
4997 bool sk_busy_loop(struct sock *sk, int nonblock)
4998 {
4999         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
5000         int (*napi_poll)(struct napi_struct *napi, int budget);
5001         int (*busy_poll)(struct napi_struct *dev);
5002         void *have_poll_lock = NULL;
5003         struct napi_struct *napi;
5004         int rc;
5005
5006 restart:
5007         rc = false;
5008         napi_poll = NULL;
5009
5010         rcu_read_lock();
5011
5012         napi = napi_by_id(sk->sk_napi_id);
5013         if (!napi)
5014                 goto out;
5015
5016         /* Note: ndo_busy_poll method is optional in linux-4.5 */
5017         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
5018
5019         preempt_disable();
5020         for (;;) {
5021                 rc = 0;
5022                 local_bh_disable();
5023                 if (busy_poll) {
5024                         rc = busy_poll(napi);
5025                         goto count;
5026                 }
5027                 if (!napi_poll) {
5028                         unsigned long val = READ_ONCE(napi->state);
5029
5030                         /* If multiple threads are competing for this napi,
5031                          * we avoid dirtying napi->state as much as we can.
5032                          */
5033                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5034                                    NAPIF_STATE_IN_BUSY_POLL))
5035                                 goto count;
5036                         if (cmpxchg(&napi->state, val,
5037                                     val | NAPIF_STATE_IN_BUSY_POLL |
5038                                           NAPIF_STATE_SCHED) != val)
5039                                 goto count;
5040                         have_poll_lock = netpoll_poll_lock(napi);
5041                         napi_poll = napi->poll;
5042                 }
5043                 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5044                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5045 count:
5046                 if (rc > 0)
5047                         __NET_ADD_STATS(sock_net(sk),
5048                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5049                 local_bh_enable();
5050
5051                 if (rc == LL_FLUSH_FAILED)
5052                         break; /* permanent failure */
5053
5054                 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5055                     busy_loop_timeout(end_time))
5056                         break;
5057
5058                 if (unlikely(need_resched())) {
5059                         if (napi_poll)
5060                                 busy_poll_stop(napi, have_poll_lock);
5061                         preempt_enable();
5062                         rcu_read_unlock();
5063                         cond_resched();
5064                         rc = !skb_queue_empty(&sk->sk_receive_queue);
5065                         if (rc || busy_loop_timeout(end_time))
5066                                 return rc;
5067                         goto restart;
5068                 }
5069                 cpu_relax();
5070         }
5071         if (napi_poll)
5072                 busy_poll_stop(napi, have_poll_lock);
5073         preempt_enable();
5074         rc = !skb_queue_empty(&sk->sk_receive_queue);
5075 out:
5076         rcu_read_unlock();
5077         return rc;
5078 }
5079 EXPORT_SYMBOL(sk_busy_loop);
5080
5081 #endif /* CONFIG_NET_RX_BUSY_POLL */
5082
5083 static void napi_hash_add(struct napi_struct *napi)
5084 {
5085         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5086             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5087                 return;
5088
5089         spin_lock(&napi_hash_lock);
5090
5091         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5092         do {
5093                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5094                         napi_gen_id = NR_CPUS + 1;
5095         } while (napi_by_id(napi_gen_id));
5096         napi->napi_id = napi_gen_id;
5097
5098         hlist_add_head_rcu(&napi->napi_hash_node,
5099                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5100
5101         spin_unlock(&napi_hash_lock);
5102 }
5103
5104 /* Warning : caller is responsible to make sure rcu grace period
5105  * is respected before freeing memory containing @napi
5106  */
5107 bool napi_hash_del(struct napi_struct *napi)
5108 {
5109         bool rcu_sync_needed = false;
5110
5111         spin_lock(&napi_hash_lock);
5112
5113         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5114                 rcu_sync_needed = true;
5115                 hlist_del_rcu(&napi->napi_hash_node);
5116         }
5117         spin_unlock(&napi_hash_lock);
5118         return rcu_sync_needed;
5119 }
5120 EXPORT_SYMBOL_GPL(napi_hash_del);
5121
5122 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5123 {
5124         struct napi_struct *napi;
5125
5126         napi = container_of(timer, struct napi_struct, timer);
5127         if (napi->gro_list)
5128                 napi_schedule(napi);
5129
5130         return HRTIMER_NORESTART;
5131 }
5132
5133 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5134                     int (*poll)(struct napi_struct *, int), int weight)
5135 {
5136         INIT_LIST_HEAD(&napi->poll_list);
5137         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5138         napi->timer.function = napi_watchdog;
5139         napi->gro_count = 0;
5140         napi->gro_list = NULL;
5141         napi->skb = NULL;
5142         napi->poll = poll;
5143         if (weight > NAPI_POLL_WEIGHT)
5144                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5145                             weight, dev->name);
5146         napi->weight = weight;
5147         list_add(&napi->dev_list, &dev->napi_list);
5148         napi->dev = dev;
5149 #ifdef CONFIG_NETPOLL
5150         napi->poll_owner = -1;
5151 #endif
5152         set_bit(NAPI_STATE_SCHED, &napi->state);
5153         napi_hash_add(napi);
5154 }
5155 EXPORT_SYMBOL(netif_napi_add);
5156
5157 void napi_disable(struct napi_struct *n)
5158 {
5159         might_sleep();
5160         set_bit(NAPI_STATE_DISABLE, &n->state);
5161
5162         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5163                 msleep(1);
5164         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5165                 msleep(1);
5166
5167         hrtimer_cancel(&n->timer);
5168
5169         clear_bit(NAPI_STATE_DISABLE, &n->state);
5170 }
5171 EXPORT_SYMBOL(napi_disable);
5172
5173 /* Must be called in process context */
5174 void netif_napi_del(struct napi_struct *napi)
5175 {
5176         might_sleep();
5177         if (napi_hash_del(napi))
5178                 synchronize_net();
5179         list_del_init(&napi->dev_list);
5180         napi_free_frags(napi);
5181
5182         kfree_skb_list(napi->gro_list);
5183         napi->gro_list = NULL;
5184         napi->gro_count = 0;
5185 }
5186 EXPORT_SYMBOL(netif_napi_del);
5187
5188 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5189 {
5190         void *have;
5191         int work, weight;
5192
5193         list_del_init(&n->poll_list);
5194
5195         have = netpoll_poll_lock(n);
5196
5197         weight = n->weight;
5198
5199         /* This NAPI_STATE_SCHED test is for avoiding a race
5200          * with netpoll's poll_napi().  Only the entity which
5201          * obtains the lock and sees NAPI_STATE_SCHED set will
5202          * actually make the ->poll() call.  Therefore we avoid
5203          * accidentally calling ->poll() when NAPI is not scheduled.
5204          */
5205         work = 0;
5206         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5207                 work = n->poll(n, weight);
5208                 trace_napi_poll(n, work, weight);
5209         }
5210
5211         WARN_ON_ONCE(work > weight);
5212
5213         if (likely(work < weight))
5214                 goto out_unlock;
5215
5216         /* Drivers must not modify the NAPI state if they
5217          * consume the entire weight.  In such cases this code
5218          * still "owns" the NAPI instance and therefore can
5219          * move the instance around on the list at-will.
5220          */
5221         if (unlikely(napi_disable_pending(n))) {
5222                 napi_complete(n);
5223                 goto out_unlock;
5224         }
5225
5226         if (n->gro_list) {
5227                 /* flush too old packets
5228                  * If HZ < 1000, flush all packets.
5229                  */
5230                 napi_gro_flush(n, HZ >= 1000);
5231         }
5232
5233         /* Some drivers may have called napi_schedule
5234          * prior to exhausting their budget.
5235          */
5236         if (unlikely(!list_empty(&n->poll_list))) {
5237                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5238                              n->dev ? n->dev->name : "backlog");
5239                 goto out_unlock;
5240         }
5241
5242         list_add_tail(&n->poll_list, repoll);
5243
5244 out_unlock:
5245         netpoll_poll_unlock(have);
5246
5247         return work;
5248 }
5249
5250 static __latent_entropy void net_rx_action(struct softirq_action *h)
5251 {
5252         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5253         unsigned long time_limit = jiffies + 2;
5254         int budget = netdev_budget;
5255         LIST_HEAD(list);
5256         LIST_HEAD(repoll);
5257
5258         local_irq_disable();
5259         list_splice_init(&sd->poll_list, &list);
5260         local_irq_enable();
5261
5262         for (;;) {
5263                 struct napi_struct *n;
5264
5265                 if (list_empty(&list)) {
5266                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5267                                 goto out;
5268                         break;
5269                 }
5270
5271                 n = list_first_entry(&list, struct napi_struct, poll_list);
5272                 budget -= napi_poll(n, &repoll);
5273
5274                 /* If softirq window is exhausted then punt.
5275                  * Allow this to run for 2 jiffies since which will allow
5276                  * an average latency of 1.5/HZ.
5277                  */
5278                 if (unlikely(budget <= 0 ||
5279                              time_after_eq(jiffies, time_limit))) {
5280                         sd->time_squeeze++;
5281                         break;
5282                 }
5283         }
5284
5285         local_irq_disable();
5286
5287         list_splice_tail_init(&sd->poll_list, &list);
5288         list_splice_tail(&repoll, &list);
5289         list_splice(&list, &sd->poll_list);
5290         if (!list_empty(&sd->poll_list))
5291                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5292
5293         net_rps_action_and_irq_enable(sd);
5294 out:
5295         __kfree_skb_flush();
5296 }
5297
5298 struct netdev_adjacent {
5299         struct net_device *dev;
5300
5301         /* upper master flag, there can only be one master device per list */
5302         bool master;
5303
5304         /* counter for the number of times this device was added to us */
5305         u16 ref_nr;
5306
5307         /* private field for the users */
5308         void *private;
5309
5310         struct list_head list;
5311         struct rcu_head rcu;
5312 };
5313
5314 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5315                                                  struct list_head *adj_list)
5316 {
5317         struct netdev_adjacent *adj;
5318
5319         list_for_each_entry(adj, adj_list, list) {
5320                 if (adj->dev == adj_dev)
5321                         return adj;
5322         }
5323         return NULL;
5324 }
5325
5326 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5327 {
5328         struct net_device *dev = data;
5329
5330         return upper_dev == dev;
5331 }
5332
5333 /**
5334  * netdev_has_upper_dev - Check if device is linked to an upper device
5335  * @dev: device
5336  * @upper_dev: upper device to check
5337  *
5338  * Find out if a device is linked to specified upper device and return true
5339  * in case it is. Note that this checks only immediate upper device,
5340  * not through a complete stack of devices. The caller must hold the RTNL lock.
5341  */
5342 bool netdev_has_upper_dev(struct net_device *dev,
5343                           struct net_device *upper_dev)
5344 {
5345         ASSERT_RTNL();
5346
5347         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5348                                              upper_dev);
5349 }
5350 EXPORT_SYMBOL(netdev_has_upper_dev);
5351
5352 /**
5353  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5354  * @dev: device
5355  * @upper_dev: upper device to check
5356  *
5357  * Find out if a device is linked to specified upper device and return true
5358  * in case it is. Note that this checks the entire upper device chain.
5359  * The caller must hold rcu lock.
5360  */
5361
5362 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5363                                   struct net_device *upper_dev)
5364 {
5365         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5366                                                upper_dev);
5367 }
5368 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5369
5370 /**
5371  * netdev_has_any_upper_dev - Check if device is linked to some device
5372  * @dev: device
5373  *
5374  * Find out if a device is linked to an upper device and return true in case
5375  * it is. The caller must hold the RTNL lock.
5376  */
5377 static bool netdev_has_any_upper_dev(struct net_device *dev)
5378 {
5379         ASSERT_RTNL();
5380
5381         return !list_empty(&dev->adj_list.upper);
5382 }
5383
5384 /**
5385  * netdev_master_upper_dev_get - Get master upper device
5386  * @dev: device
5387  *
5388  * Find a master upper device and return pointer to it or NULL in case
5389  * it's not there. The caller must hold the RTNL lock.
5390  */
5391 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5392 {
5393         struct netdev_adjacent *upper;
5394
5395         ASSERT_RTNL();
5396
5397         if (list_empty(&dev->adj_list.upper))
5398                 return NULL;
5399
5400         upper = list_first_entry(&dev->adj_list.upper,
5401                                  struct netdev_adjacent, list);
5402         if (likely(upper->master))
5403                 return upper->dev;
5404         return NULL;
5405 }
5406 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5407
5408 /**
5409  * netdev_has_any_lower_dev - Check if device is linked to some device
5410  * @dev: device
5411  *
5412  * Find out if a device is linked to a lower device and return true in case
5413  * it is. The caller must hold the RTNL lock.
5414  */
5415 static bool netdev_has_any_lower_dev(struct net_device *dev)
5416 {
5417         ASSERT_RTNL();
5418
5419         return !list_empty(&dev->adj_list.lower);
5420 }
5421
5422 void *netdev_adjacent_get_private(struct list_head *adj_list)
5423 {
5424         struct netdev_adjacent *adj;
5425
5426         adj = list_entry(adj_list, struct netdev_adjacent, list);
5427
5428         return adj->private;
5429 }
5430 EXPORT_SYMBOL(netdev_adjacent_get_private);
5431
5432 /**
5433  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5434  * @dev: device
5435  * @iter: list_head ** of the current position
5436  *
5437  * Gets the next device from the dev's upper list, starting from iter
5438  * position. The caller must hold RCU read lock.
5439  */
5440 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5441                                                  struct list_head **iter)
5442 {
5443         struct netdev_adjacent *upper;
5444
5445         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5446
5447         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5448
5449         if (&upper->list == &dev->adj_list.upper)
5450                 return NULL;
5451
5452         *iter = &upper->list;
5453
5454         return upper->dev;
5455 }
5456 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5457
5458 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5459                                                     struct list_head **iter)
5460 {
5461         struct netdev_adjacent *upper;
5462
5463         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5464
5465         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5466
5467         if (&upper->list == &dev->adj_list.upper)
5468                 return NULL;
5469
5470         *iter = &upper->list;
5471
5472         return upper->dev;
5473 }
5474
5475 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5476                                   int (*fn)(struct net_device *dev,
5477                                             void *data),
5478                                   void *data)
5479 {
5480         struct net_device *udev;
5481         struct list_head *iter;
5482         int ret;
5483
5484         for (iter = &dev->adj_list.upper,
5485              udev = netdev_next_upper_dev_rcu(dev, &iter);
5486              udev;
5487              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5488                 /* first is the upper device itself */
5489                 ret = fn(udev, data);
5490                 if (ret)
5491                         return ret;
5492
5493                 /* then look at all of its upper devices */
5494                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5495                 if (ret)
5496                         return ret;
5497         }
5498
5499         return 0;
5500 }
5501 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5502
5503 /**
5504  * netdev_lower_get_next_private - Get the next ->private from the
5505  *                                 lower neighbour list
5506  * @dev: device
5507  * @iter: list_head ** of the current position
5508  *
5509  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5510  * list, starting from iter position. The caller must hold either hold the
5511  * RTNL lock or its own locking that guarantees that the neighbour lower
5512  * list will remain unchanged.
5513  */
5514 void *netdev_lower_get_next_private(struct net_device *dev,
5515                                     struct list_head **iter)
5516 {
5517         struct netdev_adjacent *lower;
5518
5519         lower = list_entry(*iter, struct netdev_adjacent, list);
5520
5521         if (&lower->list == &dev->adj_list.lower)
5522                 return NULL;
5523
5524         *iter = lower->list.next;
5525
5526         return lower->private;
5527 }
5528 EXPORT_SYMBOL(netdev_lower_get_next_private);
5529
5530 /**
5531  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5532  *                                     lower neighbour list, RCU
5533  *                                     variant
5534  * @dev: device
5535  * @iter: list_head ** of the current position
5536  *
5537  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5538  * list, starting from iter position. The caller must hold RCU read lock.
5539  */
5540 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5541                                         struct list_head **iter)
5542 {
5543         struct netdev_adjacent *lower;
5544
5545         WARN_ON_ONCE(!rcu_read_lock_held());
5546
5547         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5548
5549         if (&lower->list == &dev->adj_list.lower)
5550                 return NULL;
5551
5552         *iter = &lower->list;
5553
5554         return lower->private;
5555 }
5556 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5557
5558 /**
5559  * netdev_lower_get_next - Get the next device from the lower neighbour
5560  *                         list
5561  * @dev: device
5562  * @iter: list_head ** of the current position
5563  *
5564  * Gets the next netdev_adjacent from the dev's lower neighbour
5565  * list, starting from iter position. The caller must hold RTNL lock or
5566  * its own locking that guarantees that the neighbour lower
5567  * list will remain unchanged.
5568  */
5569 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5570 {
5571         struct netdev_adjacent *lower;
5572
5573         lower = list_entry(*iter, struct netdev_adjacent, list);
5574
5575         if (&lower->list == &dev->adj_list.lower)
5576                 return NULL;
5577
5578         *iter = lower->list.next;
5579
5580         return lower->dev;
5581 }
5582 EXPORT_SYMBOL(netdev_lower_get_next);
5583
5584 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5585                                                 struct list_head **iter)
5586 {
5587         struct netdev_adjacent *lower;
5588
5589         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5590
5591         if (&lower->list == &dev->adj_list.lower)
5592                 return NULL;
5593
5594         *iter = &lower->list;
5595
5596         return lower->dev;
5597 }
5598
5599 int netdev_walk_all_lower_dev(struct net_device *dev,
5600                               int (*fn)(struct net_device *dev,
5601                                         void *data),
5602                               void *data)
5603 {
5604         struct net_device *ldev;
5605         struct list_head *iter;
5606         int ret;
5607
5608         for (iter = &dev->adj_list.lower,
5609              ldev = netdev_next_lower_dev(dev, &iter);
5610              ldev;
5611              ldev = netdev_next_lower_dev(dev, &iter)) {
5612                 /* first is the lower device itself */
5613                 ret = fn(ldev, data);
5614                 if (ret)
5615                         return ret;
5616
5617                 /* then look at all of its lower devices */
5618                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5619                 if (ret)
5620                         return ret;
5621         }
5622
5623         return 0;
5624 }
5625 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5626
5627 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5628                                                     struct list_head **iter)
5629 {
5630         struct netdev_adjacent *lower;
5631
5632         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5633         if (&lower->list == &dev->adj_list.lower)
5634                 return NULL;
5635
5636         *iter = &lower->list;
5637
5638         return lower->dev;
5639 }
5640
5641 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5642                                   int (*fn)(struct net_device *dev,
5643                                             void *data),
5644                                   void *data)
5645 {
5646         struct net_device *ldev;
5647         struct list_head *iter;
5648         int ret;
5649
5650         for (iter = &dev->adj_list.lower,
5651              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5652              ldev;
5653              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5654                 /* first is the lower device itself */
5655                 ret = fn(ldev, data);
5656                 if (ret)
5657                         return ret;
5658
5659                 /* then look at all of its lower devices */
5660                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5661                 if (ret)
5662                         return ret;
5663         }
5664
5665         return 0;
5666 }
5667 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5668
5669 /**
5670  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5671  *                                     lower neighbour list, RCU
5672  *                                     variant
5673  * @dev: device
5674  *
5675  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5676  * list. The caller must hold RCU read lock.
5677  */
5678 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5679 {
5680         struct netdev_adjacent *lower;
5681
5682         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5683                         struct netdev_adjacent, list);
5684         if (lower)
5685                 return lower->private;
5686         return NULL;
5687 }
5688 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5689
5690 /**
5691  * netdev_master_upper_dev_get_rcu - Get master upper device
5692  * @dev: device
5693  *
5694  * Find a master upper device and return pointer to it or NULL in case
5695  * it's not there. The caller must hold the RCU read lock.
5696  */
5697 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5698 {
5699         struct netdev_adjacent *upper;
5700
5701         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5702                                        struct netdev_adjacent, list);
5703         if (upper && likely(upper->master))
5704                 return upper->dev;
5705         return NULL;
5706 }
5707 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5708
5709 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5710                               struct net_device *adj_dev,
5711                               struct list_head *dev_list)
5712 {
5713         char linkname[IFNAMSIZ+7];
5714         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5715                 "upper_%s" : "lower_%s", adj_dev->name);
5716         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5717                                  linkname);
5718 }
5719 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5720                                char *name,
5721                                struct list_head *dev_list)
5722 {
5723         char linkname[IFNAMSIZ+7];
5724         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5725                 "upper_%s" : "lower_%s", name);
5726         sysfs_remove_link(&(dev->dev.kobj), linkname);
5727 }
5728
5729 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5730                                                  struct net_device *adj_dev,
5731                                                  struct list_head *dev_list)
5732 {
5733         return (dev_list == &dev->adj_list.upper ||
5734                 dev_list == &dev->adj_list.lower) &&
5735                 net_eq(dev_net(dev), dev_net(adj_dev));
5736 }
5737
5738 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5739                                         struct net_device *adj_dev,
5740                                         struct list_head *dev_list,
5741                                         void *private, bool master)
5742 {
5743         struct netdev_adjacent *adj;
5744         int ret;
5745
5746         adj = __netdev_find_adj(adj_dev, dev_list);
5747
5748         if (adj) {
5749                 adj->ref_nr += 1;
5750                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5751                          dev->name, adj_dev->name, adj->ref_nr);
5752
5753                 return 0;
5754         }
5755
5756         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5757         if (!adj)
5758                 return -ENOMEM;
5759
5760         adj->dev = adj_dev;
5761         adj->master = master;
5762         adj->ref_nr = 1;
5763         adj->private = private;
5764         dev_hold(adj_dev);
5765
5766         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5767                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5768
5769         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5770                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5771                 if (ret)
5772                         goto free_adj;
5773         }
5774
5775         /* Ensure that master link is always the first item in list. */
5776         if (master) {
5777                 ret = sysfs_create_link(&(dev->dev.kobj),
5778                                         &(adj_dev->dev.kobj), "master");
5779                 if (ret)
5780                         goto remove_symlinks;
5781
5782                 list_add_rcu(&adj->list, dev_list);
5783         } else {
5784                 list_add_tail_rcu(&adj->list, dev_list);
5785         }
5786
5787         return 0;
5788
5789 remove_symlinks:
5790         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5791                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5792 free_adj:
5793         kfree(adj);
5794         dev_put(adj_dev);
5795
5796         return ret;
5797 }
5798
5799 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5800                                          struct net_device *adj_dev,
5801                                          u16 ref_nr,
5802                                          struct list_head *dev_list)
5803 {
5804         struct netdev_adjacent *adj;
5805
5806         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5807                  dev->name, adj_dev->name, ref_nr);
5808
5809         adj = __netdev_find_adj(adj_dev, dev_list);
5810
5811         if (!adj) {
5812                 pr_err("Adjacency does not exist for device %s from %s\n",
5813                        dev->name, adj_dev->name);
5814                 WARN_ON(1);
5815                 return;
5816         }
5817
5818         if (adj->ref_nr > ref_nr) {
5819                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5820                          dev->name, adj_dev->name, ref_nr,
5821                          adj->ref_nr - ref_nr);
5822                 adj->ref_nr -= ref_nr;
5823                 return;
5824         }
5825
5826         if (adj->master)
5827                 sysfs_remove_link(&(dev->dev.kobj), "master");
5828
5829         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5830                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831
5832         list_del_rcu(&adj->list);
5833         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5834                  adj_dev->name, dev->name, adj_dev->name);
5835         dev_put(adj_dev);
5836         kfree_rcu(adj, rcu);
5837 }
5838
5839 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5840                                             struct net_device *upper_dev,
5841                                             struct list_head *up_list,
5842                                             struct list_head *down_list,
5843                                             void *private, bool master)
5844 {
5845         int ret;
5846
5847         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5848                                            private, master);
5849         if (ret)
5850                 return ret;
5851
5852         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5853                                            private, false);
5854         if (ret) {
5855                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5856                 return ret;
5857         }
5858
5859         return 0;
5860 }
5861
5862 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5863                                                struct net_device *upper_dev,
5864                                                u16 ref_nr,
5865                                                struct list_head *up_list,
5866                                                struct list_head *down_list)
5867 {
5868         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5869         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5870 }
5871
5872 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5873                                                 struct net_device *upper_dev,
5874                                                 void *private, bool master)
5875 {
5876         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5877                                                 &dev->adj_list.upper,
5878                                                 &upper_dev->adj_list.lower,
5879                                                 private, master);
5880 }
5881
5882 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5883                                                    struct net_device *upper_dev)
5884 {
5885         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5886                                            &dev->adj_list.upper,
5887                                            &upper_dev->adj_list.lower);
5888 }
5889
5890 static int __netdev_upper_dev_link(struct net_device *dev,
5891                                    struct net_device *upper_dev, bool master,
5892                                    void *upper_priv, void *upper_info)
5893 {
5894         struct netdev_notifier_changeupper_info changeupper_info;
5895         int ret = 0;
5896
5897         ASSERT_RTNL();
5898
5899         if (dev == upper_dev)
5900                 return -EBUSY;
5901
5902         /* To prevent loops, check if dev is not upper device to upper_dev. */
5903         if (netdev_has_upper_dev(upper_dev, dev))
5904                 return -EBUSY;
5905
5906         if (netdev_has_upper_dev(dev, upper_dev))
5907                 return -EEXIST;
5908
5909         if (master && netdev_master_upper_dev_get(dev))
5910                 return -EBUSY;
5911
5912         changeupper_info.upper_dev = upper_dev;
5913         changeupper_info.master = master;
5914         changeupper_info.linking = true;
5915         changeupper_info.upper_info = upper_info;
5916
5917         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5918                                             &changeupper_info.info);
5919         ret = notifier_to_errno(ret);
5920         if (ret)
5921                 return ret;
5922
5923         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5924                                                    master);
5925         if (ret)
5926                 return ret;
5927
5928         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5929                                             &changeupper_info.info);
5930         ret = notifier_to_errno(ret);
5931         if (ret)
5932                 goto rollback;
5933
5934         return 0;
5935
5936 rollback:
5937         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5938
5939         return ret;
5940 }
5941
5942 /**
5943  * netdev_upper_dev_link - Add a link to the upper device
5944  * @dev: device
5945  * @upper_dev: new upper device
5946  *
5947  * Adds a link to device which is upper to this one. The caller must hold
5948  * the RTNL lock. On a failure a negative errno code is returned.
5949  * On success the reference counts are adjusted and the function
5950  * returns zero.
5951  */
5952 int netdev_upper_dev_link(struct net_device *dev,
5953                           struct net_device *upper_dev)
5954 {
5955         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5956 }
5957 EXPORT_SYMBOL(netdev_upper_dev_link);
5958
5959 /**
5960  * netdev_master_upper_dev_link - Add a master link to the upper device
5961  * @dev: device
5962  * @upper_dev: new upper device
5963  * @upper_priv: upper device private
5964  * @upper_info: upper info to be passed down via notifier
5965  *
5966  * Adds a link to device which is upper to this one. In this case, only
5967  * one master upper device can be linked, although other non-master devices
5968  * might be linked as well. The caller must hold the RTNL lock.
5969  * On a failure a negative errno code is returned. On success the reference
5970  * counts are adjusted and the function returns zero.
5971  */
5972 int netdev_master_upper_dev_link(struct net_device *dev,
5973                                  struct net_device *upper_dev,
5974                                  void *upper_priv, void *upper_info)
5975 {
5976         return __netdev_upper_dev_link(dev, upper_dev, true,
5977                                        upper_priv, upper_info);
5978 }
5979 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5980
5981 /**
5982  * netdev_upper_dev_unlink - Removes a link to upper device
5983  * @dev: device
5984  * @upper_dev: new upper device
5985  *
5986  * Removes a link to device which is upper to this one. The caller must hold
5987  * the RTNL lock.
5988  */
5989 void netdev_upper_dev_unlink(struct net_device *dev,
5990                              struct net_device *upper_dev)
5991 {
5992         struct netdev_notifier_changeupper_info changeupper_info;
5993         ASSERT_RTNL();
5994
5995         changeupper_info.upper_dev = upper_dev;
5996         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5997         changeupper_info.linking = false;
5998
5999         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6000                                       &changeupper_info.info);
6001
6002         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6003
6004         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6005                                       &changeupper_info.info);
6006 }
6007 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6008
6009 /**
6010  * netdev_bonding_info_change - Dispatch event about slave change
6011  * @dev: device
6012  * @bonding_info: info to dispatch
6013  *
6014  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6015  * The caller must hold the RTNL lock.
6016  */
6017 void netdev_bonding_info_change(struct net_device *dev,
6018                                 struct netdev_bonding_info *bonding_info)
6019 {
6020         struct netdev_notifier_bonding_info     info;
6021
6022         memcpy(&info.bonding_info, bonding_info,
6023                sizeof(struct netdev_bonding_info));
6024         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6025                                       &info.info);
6026 }
6027 EXPORT_SYMBOL(netdev_bonding_info_change);
6028
6029 static void netdev_adjacent_add_links(struct net_device *dev)
6030 {
6031         struct netdev_adjacent *iter;
6032
6033         struct net *net = dev_net(dev);
6034
6035         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6036                 if (!net_eq(net, dev_net(iter->dev)))
6037                         continue;
6038                 netdev_adjacent_sysfs_add(iter->dev, dev,
6039                                           &iter->dev->adj_list.lower);
6040                 netdev_adjacent_sysfs_add(dev, iter->dev,
6041                                           &dev->adj_list.upper);
6042         }
6043
6044         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6045                 if (!net_eq(net, dev_net(iter->dev)))
6046                         continue;
6047                 netdev_adjacent_sysfs_add(iter->dev, dev,
6048                                           &iter->dev->adj_list.upper);
6049                 netdev_adjacent_sysfs_add(dev, iter->dev,
6050                                           &dev->adj_list.lower);
6051         }
6052 }
6053
6054 static void netdev_adjacent_del_links(struct net_device *dev)
6055 {
6056         struct netdev_adjacent *iter;
6057
6058         struct net *net = dev_net(dev);
6059
6060         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6061                 if (!net_eq(net, dev_net(iter->dev)))
6062                         continue;
6063                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6064                                           &iter->dev->adj_list.lower);
6065                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6066                                           &dev->adj_list.upper);
6067         }
6068
6069         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6070                 if (!net_eq(net, dev_net(iter->dev)))
6071                         continue;
6072                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6073                                           &iter->dev->adj_list.upper);
6074                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6075                                           &dev->adj_list.lower);
6076         }
6077 }
6078
6079 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6080 {
6081         struct netdev_adjacent *iter;
6082
6083         struct net *net = dev_net(dev);
6084
6085         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6086                 if (!net_eq(net, dev_net(iter->dev)))
6087                         continue;
6088                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6089                                           &iter->dev->adj_list.lower);
6090                 netdev_adjacent_sysfs_add(iter->dev, dev,
6091                                           &iter->dev->adj_list.lower);
6092         }
6093
6094         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6095                 if (!net_eq(net, dev_net(iter->dev)))
6096                         continue;
6097                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6098                                           &iter->dev->adj_list.upper);
6099                 netdev_adjacent_sysfs_add(iter->dev, dev,
6100                                           &iter->dev->adj_list.upper);
6101         }
6102 }
6103
6104 void *netdev_lower_dev_get_private(struct net_device *dev,
6105                                    struct net_device *lower_dev)
6106 {
6107         struct netdev_adjacent *lower;
6108
6109         if (!lower_dev)
6110                 return NULL;
6111         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6112         if (!lower)
6113                 return NULL;
6114
6115         return lower->private;
6116 }
6117 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6118
6119
6120 int dev_get_nest_level(struct net_device *dev)
6121 {
6122         struct net_device *lower = NULL;
6123         struct list_head *iter;
6124         int max_nest = -1;
6125         int nest;
6126
6127         ASSERT_RTNL();
6128
6129         netdev_for_each_lower_dev(dev, lower, iter) {
6130                 nest = dev_get_nest_level(lower);
6131                 if (max_nest < nest)
6132                         max_nest = nest;
6133         }
6134
6135         return max_nest + 1;
6136 }
6137 EXPORT_SYMBOL(dev_get_nest_level);
6138
6139 /**
6140  * netdev_lower_change - Dispatch event about lower device state change
6141  * @lower_dev: device
6142  * @lower_state_info: state to dispatch
6143  *
6144  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6145  * The caller must hold the RTNL lock.
6146  */
6147 void netdev_lower_state_changed(struct net_device *lower_dev,
6148                                 void *lower_state_info)
6149 {
6150         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6151
6152         ASSERT_RTNL();
6153         changelowerstate_info.lower_state_info = lower_state_info;
6154         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6155                                       &changelowerstate_info.info);
6156 }
6157 EXPORT_SYMBOL(netdev_lower_state_changed);
6158
6159 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6160                                            struct neighbour *n)
6161 {
6162         struct net_device *lower_dev, *stop_dev;
6163         struct list_head *iter;
6164         int err;
6165
6166         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6167                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6168                         continue;
6169                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6170                 if (err) {
6171                         stop_dev = lower_dev;
6172                         goto rollback;
6173                 }
6174         }
6175         return 0;
6176
6177 rollback:
6178         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6179                 if (lower_dev == stop_dev)
6180                         break;
6181                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6182                         continue;
6183                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6184         }
6185         return err;
6186 }
6187 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6188
6189 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6190                                           struct neighbour *n)
6191 {
6192         struct net_device *lower_dev;
6193         struct list_head *iter;
6194
6195         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6196                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6197                         continue;
6198                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6199         }
6200 }
6201 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6202
6203 static void dev_change_rx_flags(struct net_device *dev, int flags)
6204 {
6205         const struct net_device_ops *ops = dev->netdev_ops;
6206
6207         if (ops->ndo_change_rx_flags)
6208                 ops->ndo_change_rx_flags(dev, flags);
6209 }
6210
6211 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6212 {
6213         unsigned int old_flags = dev->flags;
6214         kuid_t uid;
6215         kgid_t gid;
6216
6217         ASSERT_RTNL();
6218
6219         dev->flags |= IFF_PROMISC;
6220         dev->promiscuity += inc;
6221         if (dev->promiscuity == 0) {
6222                 /*
6223                  * Avoid overflow.
6224                  * If inc causes overflow, untouch promisc and return error.
6225                  */
6226                 if (inc < 0)
6227                         dev->flags &= ~IFF_PROMISC;
6228                 else {
6229                         dev->promiscuity -= inc;
6230                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6231                                 dev->name);
6232                         return -EOVERFLOW;
6233                 }
6234         }
6235         if (dev->flags != old_flags) {
6236                 pr_info("device %s %s promiscuous mode\n",
6237                         dev->name,
6238                         dev->flags & IFF_PROMISC ? "entered" : "left");
6239                 if (audit_enabled) {
6240                         current_uid_gid(&uid, &gid);
6241                         audit_log(current->audit_context, GFP_ATOMIC,
6242                                 AUDIT_ANOM_PROMISCUOUS,
6243                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6244                                 dev->name, (dev->flags & IFF_PROMISC),
6245                                 (old_flags & IFF_PROMISC),
6246                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6247                                 from_kuid(&init_user_ns, uid),
6248                                 from_kgid(&init_user_ns, gid),
6249                                 audit_get_sessionid(current));
6250                 }
6251
6252                 dev_change_rx_flags(dev, IFF_PROMISC);
6253         }
6254         if (notify)
6255                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6256         return 0;
6257 }
6258
6259 /**
6260  *      dev_set_promiscuity     - update promiscuity count on a device
6261  *      @dev: device
6262  *      @inc: modifier
6263  *
6264  *      Add or remove promiscuity from a device. While the count in the device
6265  *      remains above zero the interface remains promiscuous. Once it hits zero
6266  *      the device reverts back to normal filtering operation. A negative inc
6267  *      value is used to drop promiscuity on the device.
6268  *      Return 0 if successful or a negative errno code on error.
6269  */
6270 int dev_set_promiscuity(struct net_device *dev, int inc)
6271 {
6272         unsigned int old_flags = dev->flags;
6273         int err;
6274
6275         err = __dev_set_promiscuity(dev, inc, true);
6276         if (err < 0)
6277                 return err;
6278         if (dev->flags != old_flags)
6279                 dev_set_rx_mode(dev);
6280         return err;
6281 }
6282 EXPORT_SYMBOL(dev_set_promiscuity);
6283
6284 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6285 {
6286         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6287
6288         ASSERT_RTNL();
6289
6290         dev->flags |= IFF_ALLMULTI;
6291         dev->allmulti += inc;
6292         if (dev->allmulti == 0) {
6293                 /*
6294                  * Avoid overflow.
6295                  * If inc causes overflow, untouch allmulti and return error.
6296                  */
6297                 if (inc < 0)
6298                         dev->flags &= ~IFF_ALLMULTI;
6299                 else {
6300                         dev->allmulti -= inc;
6301                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6302                                 dev->name);
6303                         return -EOVERFLOW;
6304                 }
6305         }
6306         if (dev->flags ^ old_flags) {
6307                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6308                 dev_set_rx_mode(dev);
6309                 if (notify)
6310                         __dev_notify_flags(dev, old_flags,
6311                                            dev->gflags ^ old_gflags);
6312         }
6313         return 0;
6314 }
6315
6316 /**
6317  *      dev_set_allmulti        - update allmulti count on a device
6318  *      @dev: device
6319  *      @inc: modifier
6320  *
6321  *      Add or remove reception of all multicast frames to a device. While the
6322  *      count in the device remains above zero the interface remains listening
6323  *      to all interfaces. Once it hits zero the device reverts back to normal
6324  *      filtering operation. A negative @inc value is used to drop the counter
6325  *      when releasing a resource needing all multicasts.
6326  *      Return 0 if successful or a negative errno code on error.
6327  */
6328
6329 int dev_set_allmulti(struct net_device *dev, int inc)
6330 {
6331         return __dev_set_allmulti(dev, inc, true);
6332 }
6333 EXPORT_SYMBOL(dev_set_allmulti);
6334
6335 /*
6336  *      Upload unicast and multicast address lists to device and
6337  *      configure RX filtering. When the device doesn't support unicast
6338  *      filtering it is put in promiscuous mode while unicast addresses
6339  *      are present.
6340  */
6341 void __dev_set_rx_mode(struct net_device *dev)
6342 {
6343         const struct net_device_ops *ops = dev->netdev_ops;
6344
6345         /* dev_open will call this function so the list will stay sane. */
6346         if (!(dev->flags&IFF_UP))
6347                 return;
6348
6349         if (!netif_device_present(dev))
6350                 return;
6351
6352         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6353                 /* Unicast addresses changes may only happen under the rtnl,
6354                  * therefore calling __dev_set_promiscuity here is safe.
6355                  */
6356                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6357                         __dev_set_promiscuity(dev, 1, false);
6358                         dev->uc_promisc = true;
6359                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6360                         __dev_set_promiscuity(dev, -1, false);
6361                         dev->uc_promisc = false;
6362                 }
6363         }
6364
6365         if (ops->ndo_set_rx_mode)
6366                 ops->ndo_set_rx_mode(dev);
6367 }
6368
6369 void dev_set_rx_mode(struct net_device *dev)
6370 {
6371         netif_addr_lock_bh(dev);
6372         __dev_set_rx_mode(dev);
6373         netif_addr_unlock_bh(dev);
6374 }
6375
6376 /**
6377  *      dev_get_flags - get flags reported to userspace
6378  *      @dev: device
6379  *
6380  *      Get the combination of flag bits exported through APIs to userspace.
6381  */
6382 unsigned int dev_get_flags(const struct net_device *dev)
6383 {
6384         unsigned int flags;
6385
6386         flags = (dev->flags & ~(IFF_PROMISC |
6387                                 IFF_ALLMULTI |
6388                                 IFF_RUNNING |
6389                                 IFF_LOWER_UP |
6390                                 IFF_DORMANT)) |
6391                 (dev->gflags & (IFF_PROMISC |
6392                                 IFF_ALLMULTI));
6393
6394         if (netif_running(dev)) {
6395                 if (netif_oper_up(dev))
6396                         flags |= IFF_RUNNING;
6397                 if (netif_carrier_ok(dev))
6398                         flags |= IFF_LOWER_UP;
6399                 if (netif_dormant(dev))
6400                         flags |= IFF_DORMANT;
6401         }
6402
6403         return flags;
6404 }
6405 EXPORT_SYMBOL(dev_get_flags);
6406
6407 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6408 {
6409         unsigned int old_flags = dev->flags;
6410         int ret;
6411
6412         ASSERT_RTNL();
6413
6414         /*
6415          *      Set the flags on our device.
6416          */
6417
6418         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6419                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6420                                IFF_AUTOMEDIA)) |
6421                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6422                                     IFF_ALLMULTI));
6423
6424         /*
6425          *      Load in the correct multicast list now the flags have changed.
6426          */
6427
6428         if ((old_flags ^ flags) & IFF_MULTICAST)
6429                 dev_change_rx_flags(dev, IFF_MULTICAST);
6430
6431         dev_set_rx_mode(dev);
6432
6433         /*
6434          *      Have we downed the interface. We handle IFF_UP ourselves
6435          *      according to user attempts to set it, rather than blindly
6436          *      setting it.
6437          */
6438
6439         ret = 0;
6440         if ((old_flags ^ flags) & IFF_UP)
6441                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6442
6443         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6444                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6445                 unsigned int old_flags = dev->flags;
6446
6447                 dev->gflags ^= IFF_PROMISC;
6448
6449                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6450                         if (dev->flags != old_flags)
6451                                 dev_set_rx_mode(dev);
6452         }
6453
6454         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6455            is important. Some (broken) drivers set IFF_PROMISC, when
6456            IFF_ALLMULTI is requested not asking us and not reporting.
6457          */
6458         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6459                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6460
6461                 dev->gflags ^= IFF_ALLMULTI;
6462                 __dev_set_allmulti(dev, inc, false);
6463         }
6464
6465         return ret;
6466 }
6467
6468 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6469                         unsigned int gchanges)
6470 {
6471         unsigned int changes = dev->flags ^ old_flags;
6472
6473         if (gchanges)
6474                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6475
6476         if (changes & IFF_UP) {
6477                 if (dev->flags & IFF_UP)
6478                         call_netdevice_notifiers(NETDEV_UP, dev);
6479                 else
6480                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6481         }
6482
6483         if (dev->flags & IFF_UP &&
6484             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6485                 struct netdev_notifier_change_info change_info;
6486
6487                 change_info.flags_changed = changes;
6488                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6489                                               &change_info.info);
6490         }
6491 }
6492
6493 /**
6494  *      dev_change_flags - change device settings
6495  *      @dev: device
6496  *      @flags: device state flags
6497  *
6498  *      Change settings on device based state flags. The flags are
6499  *      in the userspace exported format.
6500  */
6501 int dev_change_flags(struct net_device *dev, unsigned int flags)
6502 {
6503         int ret;
6504         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6505
6506         ret = __dev_change_flags(dev, flags);
6507         if (ret < 0)
6508                 return ret;
6509
6510         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6511         __dev_notify_flags(dev, old_flags, changes);
6512         return ret;
6513 }
6514 EXPORT_SYMBOL(dev_change_flags);
6515
6516 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6517 {
6518         const struct net_device_ops *ops = dev->netdev_ops;
6519
6520         if (ops->ndo_change_mtu)
6521                 return ops->ndo_change_mtu(dev, new_mtu);
6522
6523         dev->mtu = new_mtu;
6524         return 0;
6525 }
6526
6527 /**
6528  *      dev_set_mtu - Change maximum transfer unit
6529  *      @dev: device
6530  *      @new_mtu: new transfer unit
6531  *
6532  *      Change the maximum transfer size of the network device.
6533  */
6534 int dev_set_mtu(struct net_device *dev, int new_mtu)
6535 {
6536         int err, orig_mtu;
6537
6538         if (new_mtu == dev->mtu)
6539                 return 0;
6540
6541         /* MTU must be positive, and in range */
6542         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6543                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6544                                     dev->name, new_mtu, dev->min_mtu);
6545                 return -EINVAL;
6546         }
6547
6548         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6549                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6550                                     dev->name, new_mtu, dev->max_mtu);
6551                 return -EINVAL;
6552         }
6553
6554         if (!netif_device_present(dev))
6555                 return -ENODEV;
6556
6557         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6558         err = notifier_to_errno(err);
6559         if (err)
6560                 return err;
6561
6562         orig_mtu = dev->mtu;
6563         err = __dev_set_mtu(dev, new_mtu);
6564
6565         if (!err) {
6566                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6567                 err = notifier_to_errno(err);
6568                 if (err) {
6569                         /* setting mtu back and notifying everyone again,
6570                          * so that they have a chance to revert changes.
6571                          */
6572                         __dev_set_mtu(dev, orig_mtu);
6573                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6574                 }
6575         }
6576         return err;
6577 }
6578 EXPORT_SYMBOL(dev_set_mtu);
6579
6580 /**
6581  *      dev_set_group - Change group this device belongs to
6582  *      @dev: device
6583  *      @new_group: group this device should belong to
6584  */
6585 void dev_set_group(struct net_device *dev, int new_group)
6586 {
6587         dev->group = new_group;
6588 }
6589 EXPORT_SYMBOL(dev_set_group);
6590
6591 /**
6592  *      dev_set_mac_address - Change Media Access Control Address
6593  *      @dev: device
6594  *      @sa: new address
6595  *
6596  *      Change the hardware (MAC) address of the device
6597  */
6598 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6599 {
6600         const struct net_device_ops *ops = dev->netdev_ops;
6601         int err;
6602
6603         if (!ops->ndo_set_mac_address)
6604                 return -EOPNOTSUPP;
6605         if (sa->sa_family != dev->type)
6606                 return -EINVAL;
6607         if (!netif_device_present(dev))
6608                 return -ENODEV;
6609         err = ops->ndo_set_mac_address(dev, sa);
6610         if (err)
6611                 return err;
6612         dev->addr_assign_type = NET_ADDR_SET;
6613         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6614         add_device_randomness(dev->dev_addr, dev->addr_len);
6615         return 0;
6616 }
6617 EXPORT_SYMBOL(dev_set_mac_address);
6618
6619 /**
6620  *      dev_change_carrier - Change device carrier
6621  *      @dev: device
6622  *      @new_carrier: new value
6623  *
6624  *      Change device carrier
6625  */
6626 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6627 {
6628         const struct net_device_ops *ops = dev->netdev_ops;
6629
6630         if (!ops->ndo_change_carrier)
6631                 return -EOPNOTSUPP;
6632         if (!netif_device_present(dev))
6633                 return -ENODEV;
6634         return ops->ndo_change_carrier(dev, new_carrier);
6635 }
6636 EXPORT_SYMBOL(dev_change_carrier);
6637
6638 /**
6639  *      dev_get_phys_port_id - Get device physical port ID
6640  *      @dev: device
6641  *      @ppid: port ID
6642  *
6643  *      Get device physical port ID
6644  */
6645 int dev_get_phys_port_id(struct net_device *dev,
6646                          struct netdev_phys_item_id *ppid)
6647 {
6648         const struct net_device_ops *ops = dev->netdev_ops;
6649
6650         if (!ops->ndo_get_phys_port_id)
6651                 return -EOPNOTSUPP;
6652         return ops->ndo_get_phys_port_id(dev, ppid);
6653 }
6654 EXPORT_SYMBOL(dev_get_phys_port_id);
6655
6656 /**
6657  *      dev_get_phys_port_name - Get device physical port name
6658  *      @dev: device
6659  *      @name: port name
6660  *      @len: limit of bytes to copy to name
6661  *
6662  *      Get device physical port name
6663  */
6664 int dev_get_phys_port_name(struct net_device *dev,
6665                            char *name, size_t len)
6666 {
6667         const struct net_device_ops *ops = dev->netdev_ops;
6668
6669         if (!ops->ndo_get_phys_port_name)
6670                 return -EOPNOTSUPP;
6671         return ops->ndo_get_phys_port_name(dev, name, len);
6672 }
6673 EXPORT_SYMBOL(dev_get_phys_port_name);
6674
6675 /**
6676  *      dev_change_proto_down - update protocol port state information
6677  *      @dev: device
6678  *      @proto_down: new value
6679  *
6680  *      This info can be used by switch drivers to set the phys state of the
6681  *      port.
6682  */
6683 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6684 {
6685         const struct net_device_ops *ops = dev->netdev_ops;
6686
6687         if (!ops->ndo_change_proto_down)
6688                 return -EOPNOTSUPP;
6689         if (!netif_device_present(dev))
6690                 return -ENODEV;
6691         return ops->ndo_change_proto_down(dev, proto_down);
6692 }
6693 EXPORT_SYMBOL(dev_change_proto_down);
6694
6695 /**
6696  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6697  *      @dev: device
6698  *      @fd: new program fd or negative value to clear
6699  *      @flags: xdp-related flags
6700  *
6701  *      Set or clear a bpf program for a device
6702  */
6703 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6704 {
6705         const struct net_device_ops *ops = dev->netdev_ops;
6706         struct bpf_prog *prog = NULL;
6707         struct netdev_xdp xdp;
6708         int err;
6709
6710         ASSERT_RTNL();
6711
6712         if (!ops->ndo_xdp)
6713                 return -EOPNOTSUPP;
6714         if (fd >= 0) {
6715                 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6716                         memset(&xdp, 0, sizeof(xdp));
6717                         xdp.command = XDP_QUERY_PROG;
6718
6719                         err = ops->ndo_xdp(dev, &xdp);
6720                         if (err < 0)
6721                                 return err;
6722                         if (xdp.prog_attached)
6723                                 return -EBUSY;
6724                 }
6725
6726                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6727                 if (IS_ERR(prog))
6728                         return PTR_ERR(prog);
6729         }
6730
6731         memset(&xdp, 0, sizeof(xdp));
6732         xdp.command = XDP_SETUP_PROG;
6733         xdp.prog = prog;
6734
6735         err = ops->ndo_xdp(dev, &xdp);
6736         if (err < 0 && prog)
6737                 bpf_prog_put(prog);
6738
6739         return err;
6740 }
6741 EXPORT_SYMBOL(dev_change_xdp_fd);
6742
6743 /**
6744  *      dev_new_index   -       allocate an ifindex
6745  *      @net: the applicable net namespace
6746  *
6747  *      Returns a suitable unique value for a new device interface
6748  *      number.  The caller must hold the rtnl semaphore or the
6749  *      dev_base_lock to be sure it remains unique.
6750  */
6751 static int dev_new_index(struct net *net)
6752 {
6753         int ifindex = net->ifindex;
6754         for (;;) {
6755                 if (++ifindex <= 0)
6756                         ifindex = 1;
6757                 if (!__dev_get_by_index(net, ifindex))
6758                         return net->ifindex = ifindex;
6759         }
6760 }
6761
6762 /* Delayed registration/unregisteration */
6763 static LIST_HEAD(net_todo_list);
6764 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6765
6766 static void net_set_todo(struct net_device *dev)
6767 {
6768         list_add_tail(&dev->todo_list, &net_todo_list);
6769         dev_net(dev)->dev_unreg_count++;
6770 }
6771
6772 static void rollback_registered_many(struct list_head *head)
6773 {
6774         struct net_device *dev, *tmp;
6775         LIST_HEAD(close_head);
6776
6777         BUG_ON(dev_boot_phase);
6778         ASSERT_RTNL();
6779
6780         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6781                 /* Some devices call without registering
6782                  * for initialization unwind. Remove those
6783                  * devices and proceed with the remaining.
6784                  */
6785                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6786                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6787                                  dev->name, dev);
6788
6789                         WARN_ON(1);
6790                         list_del(&dev->unreg_list);
6791                         continue;
6792                 }
6793                 dev->dismantle = true;
6794                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6795         }
6796
6797         /* If device is running, close it first. */
6798         list_for_each_entry(dev, head, unreg_list)
6799                 list_add_tail(&dev->close_list, &close_head);
6800         dev_close_many(&close_head, true);
6801
6802         list_for_each_entry(dev, head, unreg_list) {
6803                 /* And unlink it from device chain. */
6804                 unlist_netdevice(dev);
6805
6806                 dev->reg_state = NETREG_UNREGISTERING;
6807         }
6808         flush_all_backlogs();
6809
6810         synchronize_net();
6811
6812         list_for_each_entry(dev, head, unreg_list) {
6813                 struct sk_buff *skb = NULL;
6814
6815                 /* Shutdown queueing discipline. */
6816                 dev_shutdown(dev);
6817
6818
6819                 /* Notify protocols, that we are about to destroy
6820                    this device. They should clean all the things.
6821                 */
6822                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6823
6824                 if (!dev->rtnl_link_ops ||
6825                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6826                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6827                                                      GFP_KERNEL);
6828
6829                 /*
6830                  *      Flush the unicast and multicast chains
6831                  */
6832                 dev_uc_flush(dev);
6833                 dev_mc_flush(dev);
6834
6835                 if (dev->netdev_ops->ndo_uninit)
6836                         dev->netdev_ops->ndo_uninit(dev);
6837
6838                 if (skb)
6839                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6840
6841                 /* Notifier chain MUST detach us all upper devices. */
6842                 WARN_ON(netdev_has_any_upper_dev(dev));
6843                 WARN_ON(netdev_has_any_lower_dev(dev));
6844
6845                 /* Remove entries from kobject tree */
6846                 netdev_unregister_kobject(dev);
6847 #ifdef CONFIG_XPS
6848                 /* Remove XPS queueing entries */
6849                 netif_reset_xps_queues_gt(dev, 0);
6850 #endif
6851         }
6852
6853         synchronize_net();
6854
6855         list_for_each_entry(dev, head, unreg_list)
6856                 dev_put(dev);
6857 }
6858
6859 static void rollback_registered(struct net_device *dev)
6860 {
6861         LIST_HEAD(single);
6862
6863         list_add(&dev->unreg_list, &single);
6864         rollback_registered_many(&single);
6865         list_del(&single);
6866 }
6867
6868 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6869         struct net_device *upper, netdev_features_t features)
6870 {
6871         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6872         netdev_features_t feature;
6873         int feature_bit;
6874
6875         for_each_netdev_feature(&upper_disables, feature_bit) {
6876                 feature = __NETIF_F_BIT(feature_bit);
6877                 if (!(upper->wanted_features & feature)
6878                     && (features & feature)) {
6879                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6880                                    &feature, upper->name);
6881                         features &= ~feature;
6882                 }
6883         }
6884
6885         return features;
6886 }
6887
6888 static void netdev_sync_lower_features(struct net_device *upper,
6889         struct net_device *lower, netdev_features_t features)
6890 {
6891         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6892         netdev_features_t feature;
6893         int feature_bit;
6894
6895         for_each_netdev_feature(&upper_disables, feature_bit) {
6896                 feature = __NETIF_F_BIT(feature_bit);
6897                 if (!(features & feature) && (lower->features & feature)) {
6898                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6899                                    &feature, lower->name);
6900                         lower->wanted_features &= ~feature;
6901                         netdev_update_features(lower);
6902
6903                         if (unlikely(lower->features & feature))
6904                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6905                                             &feature, lower->name);
6906                 }
6907         }
6908 }
6909
6910 static netdev_features_t netdev_fix_features(struct net_device *dev,
6911         netdev_features_t features)
6912 {
6913         /* Fix illegal checksum combinations */
6914         if ((features & NETIF_F_HW_CSUM) &&
6915             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6916                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6917                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6918         }
6919
6920         /* TSO requires that SG is present as well. */
6921         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6922                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6923                 features &= ~NETIF_F_ALL_TSO;
6924         }
6925
6926         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6927                                         !(features & NETIF_F_IP_CSUM)) {
6928                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6929                 features &= ~NETIF_F_TSO;
6930                 features &= ~NETIF_F_TSO_ECN;
6931         }
6932
6933         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6934                                          !(features & NETIF_F_IPV6_CSUM)) {
6935                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6936                 features &= ~NETIF_F_TSO6;
6937         }
6938
6939         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6940         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6941                 features &= ~NETIF_F_TSO_MANGLEID;
6942
6943         /* TSO ECN requires that TSO is present as well. */
6944         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6945                 features &= ~NETIF_F_TSO_ECN;
6946
6947         /* Software GSO depends on SG. */
6948         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6949                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6950                 features &= ~NETIF_F_GSO;
6951         }
6952
6953         /* UFO needs SG and checksumming */
6954         if (features & NETIF_F_UFO) {
6955                 /* maybe split UFO into V4 and V6? */
6956                 if (!(features & NETIF_F_HW_CSUM) &&
6957                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6958                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6959                         netdev_dbg(dev,
6960                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6961                         features &= ~NETIF_F_UFO;
6962                 }
6963
6964                 if (!(features & NETIF_F_SG)) {
6965                         netdev_dbg(dev,
6966                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6967                         features &= ~NETIF_F_UFO;
6968                 }
6969         }
6970
6971         /* GSO partial features require GSO partial be set */
6972         if ((features & dev->gso_partial_features) &&
6973             !(features & NETIF_F_GSO_PARTIAL)) {
6974                 netdev_dbg(dev,
6975                            "Dropping partially supported GSO features since no GSO partial.\n");
6976                 features &= ~dev->gso_partial_features;
6977         }
6978
6979 #ifdef CONFIG_NET_RX_BUSY_POLL
6980         if (dev->netdev_ops->ndo_busy_poll)
6981                 features |= NETIF_F_BUSY_POLL;
6982         else
6983 #endif
6984                 features &= ~NETIF_F_BUSY_POLL;
6985
6986         return features;
6987 }
6988
6989 int __netdev_update_features(struct net_device *dev)
6990 {
6991         struct net_device *upper, *lower;
6992         netdev_features_t features;
6993         struct list_head *iter;
6994         int err = -1;
6995
6996         ASSERT_RTNL();
6997
6998         features = netdev_get_wanted_features(dev);
6999
7000         if (dev->netdev_ops->ndo_fix_features)
7001                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7002
7003         /* driver might be less strict about feature dependencies */
7004         features = netdev_fix_features(dev, features);
7005
7006         /* some features can't be enabled if they're off an an upper device */
7007         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7008                 features = netdev_sync_upper_features(dev, upper, features);
7009
7010         if (dev->features == features)
7011                 goto sync_lower;
7012
7013         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7014                 &dev->features, &features);
7015
7016         if (dev->netdev_ops->ndo_set_features)
7017                 err = dev->netdev_ops->ndo_set_features(dev, features);
7018         else
7019                 err = 0;
7020
7021         if (unlikely(err < 0)) {
7022                 netdev_err(dev,
7023                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7024                         err, &features, &dev->features);
7025                 /* return non-0 since some features might have changed and
7026                  * it's better to fire a spurious notification than miss it
7027                  */
7028                 return -1;
7029         }
7030
7031 sync_lower:
7032         /* some features must be disabled on lower devices when disabled
7033          * on an upper device (think: bonding master or bridge)
7034          */
7035         netdev_for_each_lower_dev(dev, lower, iter)
7036                 netdev_sync_lower_features(dev, lower, features);
7037
7038         if (!err)
7039                 dev->features = features;
7040
7041         return err < 0 ? 0 : 1;
7042 }
7043
7044 /**
7045  *      netdev_update_features - recalculate device features
7046  *      @dev: the device to check
7047  *
7048  *      Recalculate dev->features set and send notifications if it
7049  *      has changed. Should be called after driver or hardware dependent
7050  *      conditions might have changed that influence the features.
7051  */
7052 void netdev_update_features(struct net_device *dev)
7053 {
7054         if (__netdev_update_features(dev))
7055                 netdev_features_change(dev);
7056 }
7057 EXPORT_SYMBOL(netdev_update_features);
7058
7059 /**
7060  *      netdev_change_features - recalculate device features
7061  *      @dev: the device to check
7062  *
7063  *      Recalculate dev->features set and send notifications even
7064  *      if they have not changed. Should be called instead of
7065  *      netdev_update_features() if also dev->vlan_features might
7066  *      have changed to allow the changes to be propagated to stacked
7067  *      VLAN devices.
7068  */
7069 void netdev_change_features(struct net_device *dev)
7070 {
7071         __netdev_update_features(dev);
7072         netdev_features_change(dev);
7073 }
7074 EXPORT_SYMBOL(netdev_change_features);
7075
7076 /**
7077  *      netif_stacked_transfer_operstate -      transfer operstate
7078  *      @rootdev: the root or lower level device to transfer state from
7079  *      @dev: the device to transfer operstate to
7080  *
7081  *      Transfer operational state from root to device. This is normally
7082  *      called when a stacking relationship exists between the root
7083  *      device and the device(a leaf device).
7084  */
7085 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7086                                         struct net_device *dev)
7087 {
7088         if (rootdev->operstate == IF_OPER_DORMANT)
7089                 netif_dormant_on(dev);
7090         else
7091                 netif_dormant_off(dev);
7092
7093         if (netif_carrier_ok(rootdev)) {
7094                 if (!netif_carrier_ok(dev))
7095                         netif_carrier_on(dev);
7096         } else {
7097                 if (netif_carrier_ok(dev))
7098                         netif_carrier_off(dev);
7099         }
7100 }
7101 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7102
7103 #ifdef CONFIG_SYSFS
7104 static int netif_alloc_rx_queues(struct net_device *dev)
7105 {
7106         unsigned int i, count = dev->num_rx_queues;
7107         struct netdev_rx_queue *rx;
7108         size_t sz = count * sizeof(*rx);
7109
7110         BUG_ON(count < 1);
7111
7112         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7113         if (!rx) {
7114                 rx = vzalloc(sz);
7115                 if (!rx)
7116                         return -ENOMEM;
7117         }
7118         dev->_rx = rx;
7119
7120         for (i = 0; i < count; i++)
7121                 rx[i].dev = dev;
7122         return 0;
7123 }
7124 #endif
7125
7126 static void netdev_init_one_queue(struct net_device *dev,
7127                                   struct netdev_queue *queue, void *_unused)
7128 {
7129         /* Initialize queue lock */
7130         spin_lock_init(&queue->_xmit_lock);
7131         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7132         queue->xmit_lock_owner = -1;
7133         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7134         queue->dev = dev;
7135 #ifdef CONFIG_BQL
7136         dql_init(&queue->dql, HZ);
7137 #endif
7138 }
7139
7140 static void netif_free_tx_queues(struct net_device *dev)
7141 {
7142         kvfree(dev->_tx);
7143 }
7144
7145 static int netif_alloc_netdev_queues(struct net_device *dev)
7146 {
7147         unsigned int count = dev->num_tx_queues;
7148         struct netdev_queue *tx;
7149         size_t sz = count * sizeof(*tx);
7150
7151         if (count < 1 || count > 0xffff)
7152                 return -EINVAL;
7153
7154         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7155         if (!tx) {
7156                 tx = vzalloc(sz);
7157                 if (!tx)
7158                         return -ENOMEM;
7159         }
7160         dev->_tx = tx;
7161
7162         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7163         spin_lock_init(&dev->tx_global_lock);
7164
7165         return 0;
7166 }
7167
7168 void netif_tx_stop_all_queues(struct net_device *dev)
7169 {
7170         unsigned int i;
7171
7172         for (i = 0; i < dev->num_tx_queues; i++) {
7173                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7174                 netif_tx_stop_queue(txq);
7175         }
7176 }
7177 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7178
7179 /**
7180  *      register_netdevice      - register a network device
7181  *      @dev: device to register
7182  *
7183  *      Take a completed network device structure and add it to the kernel
7184  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7185  *      chain. 0 is returned on success. A negative errno code is returned
7186  *      on a failure to set up the device, or if the name is a duplicate.
7187  *
7188  *      Callers must hold the rtnl semaphore. You may want
7189  *      register_netdev() instead of this.
7190  *
7191  *      BUGS:
7192  *      The locking appears insufficient to guarantee two parallel registers
7193  *      will not get the same name.
7194  */
7195
7196 int register_netdevice(struct net_device *dev)
7197 {
7198         int ret;
7199         struct net *net = dev_net(dev);
7200
7201         BUG_ON(dev_boot_phase);
7202         ASSERT_RTNL();
7203
7204         might_sleep();
7205
7206         /* When net_device's are persistent, this will be fatal. */
7207         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7208         BUG_ON(!net);
7209
7210         spin_lock_init(&dev->addr_list_lock);
7211         netdev_set_addr_lockdep_class(dev);
7212
7213         ret = dev_get_valid_name(net, dev, dev->name);
7214         if (ret < 0)
7215                 goto out;
7216
7217         /* Init, if this function is available */
7218         if (dev->netdev_ops->ndo_init) {
7219                 ret = dev->netdev_ops->ndo_init(dev);
7220                 if (ret) {
7221                         if (ret > 0)
7222                                 ret = -EIO;
7223                         goto out;
7224                 }
7225         }
7226
7227         if (((dev->hw_features | dev->features) &
7228              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7229             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7230              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7231                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7232                 ret = -EINVAL;
7233                 goto err_uninit;
7234         }
7235
7236         ret = -EBUSY;
7237         if (!dev->ifindex)
7238                 dev->ifindex = dev_new_index(net);
7239         else if (__dev_get_by_index(net, dev->ifindex))
7240                 goto err_uninit;
7241
7242         /* Transfer changeable features to wanted_features and enable
7243          * software offloads (GSO and GRO).
7244          */
7245         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7246         dev->features |= NETIF_F_SOFT_FEATURES;
7247         dev->wanted_features = dev->features & dev->hw_features;
7248
7249         if (!(dev->flags & IFF_LOOPBACK))
7250                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7251
7252         /* If IPv4 TCP segmentation offload is supported we should also
7253          * allow the device to enable segmenting the frame with the option
7254          * of ignoring a static IP ID value.  This doesn't enable the
7255          * feature itself but allows the user to enable it later.
7256          */
7257         if (dev->hw_features & NETIF_F_TSO)
7258                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7259         if (dev->vlan_features & NETIF_F_TSO)
7260                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7261         if (dev->mpls_features & NETIF_F_TSO)
7262                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7263         if (dev->hw_enc_features & NETIF_F_TSO)
7264                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7265
7266         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7267          */
7268         dev->vlan_features |= NETIF_F_HIGHDMA;
7269
7270         /* Make NETIF_F_SG inheritable to tunnel devices.
7271          */
7272         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7273
7274         /* Make NETIF_F_SG inheritable to MPLS.
7275          */
7276         dev->mpls_features |= NETIF_F_SG;
7277
7278         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7279         ret = notifier_to_errno(ret);
7280         if (ret)
7281                 goto err_uninit;
7282
7283         ret = netdev_register_kobject(dev);
7284         if (ret)
7285                 goto err_uninit;
7286         dev->reg_state = NETREG_REGISTERED;
7287
7288         __netdev_update_features(dev);
7289
7290         /*
7291          *      Default initial state at registry is that the
7292          *      device is present.
7293          */
7294
7295         set_bit(__LINK_STATE_PRESENT, &dev->state);
7296
7297         linkwatch_init_dev(dev);
7298
7299         dev_init_scheduler(dev);
7300         dev_hold(dev);
7301         list_netdevice(dev);
7302         add_device_randomness(dev->dev_addr, dev->addr_len);
7303
7304         /* If the device has permanent device address, driver should
7305          * set dev_addr and also addr_assign_type should be set to
7306          * NET_ADDR_PERM (default value).
7307          */
7308         if (dev->addr_assign_type == NET_ADDR_PERM)
7309                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7310
7311         /* Notify protocols, that a new device appeared. */
7312         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7313         ret = notifier_to_errno(ret);
7314         if (ret) {
7315                 rollback_registered(dev);
7316                 dev->reg_state = NETREG_UNREGISTERED;
7317         }
7318         /*
7319          *      Prevent userspace races by waiting until the network
7320          *      device is fully setup before sending notifications.
7321          */
7322         if (!dev->rtnl_link_ops ||
7323             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7324                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7325
7326 out:
7327         return ret;
7328
7329 err_uninit:
7330         if (dev->netdev_ops->ndo_uninit)
7331                 dev->netdev_ops->ndo_uninit(dev);
7332         goto out;
7333 }
7334 EXPORT_SYMBOL(register_netdevice);
7335
7336 /**
7337  *      init_dummy_netdev       - init a dummy network device for NAPI
7338  *      @dev: device to init
7339  *
7340  *      This takes a network device structure and initialize the minimum
7341  *      amount of fields so it can be used to schedule NAPI polls without
7342  *      registering a full blown interface. This is to be used by drivers
7343  *      that need to tie several hardware interfaces to a single NAPI
7344  *      poll scheduler due to HW limitations.
7345  */
7346 int init_dummy_netdev(struct net_device *dev)
7347 {
7348         /* Clear everything. Note we don't initialize spinlocks
7349          * are they aren't supposed to be taken by any of the
7350          * NAPI code and this dummy netdev is supposed to be
7351          * only ever used for NAPI polls
7352          */
7353         memset(dev, 0, sizeof(struct net_device));
7354
7355         /* make sure we BUG if trying to hit standard
7356          * register/unregister code path
7357          */
7358         dev->reg_state = NETREG_DUMMY;
7359
7360         /* NAPI wants this */
7361         INIT_LIST_HEAD(&dev->napi_list);
7362
7363         /* a dummy interface is started by default */
7364         set_bit(__LINK_STATE_PRESENT, &dev->state);
7365         set_bit(__LINK_STATE_START, &dev->state);
7366
7367         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7368          * because users of this 'device' dont need to change
7369          * its refcount.
7370          */
7371
7372         return 0;
7373 }
7374 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7375
7376
7377 /**
7378  *      register_netdev - register a network device
7379  *      @dev: device to register
7380  *
7381  *      Take a completed network device structure and add it to the kernel
7382  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7383  *      chain. 0 is returned on success. A negative errno code is returned
7384  *      on a failure to set up the device, or if the name is a duplicate.
7385  *
7386  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7387  *      and expands the device name if you passed a format string to
7388  *      alloc_netdev.
7389  */
7390 int register_netdev(struct net_device *dev)
7391 {
7392         int err;
7393
7394         rtnl_lock();
7395         err = register_netdevice(dev);
7396         rtnl_unlock();
7397         return err;
7398 }
7399 EXPORT_SYMBOL(register_netdev);
7400
7401 int netdev_refcnt_read(const struct net_device *dev)
7402 {
7403         int i, refcnt = 0;
7404
7405         for_each_possible_cpu(i)
7406                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7407         return refcnt;
7408 }
7409 EXPORT_SYMBOL(netdev_refcnt_read);
7410
7411 /**
7412  * netdev_wait_allrefs - wait until all references are gone.
7413  * @dev: target net_device
7414  *
7415  * This is called when unregistering network devices.
7416  *
7417  * Any protocol or device that holds a reference should register
7418  * for netdevice notification, and cleanup and put back the
7419  * reference if they receive an UNREGISTER event.
7420  * We can get stuck here if buggy protocols don't correctly
7421  * call dev_put.
7422  */
7423 static void netdev_wait_allrefs(struct net_device *dev)
7424 {
7425         unsigned long rebroadcast_time, warning_time;
7426         int refcnt;
7427
7428         linkwatch_forget_dev(dev);
7429
7430         rebroadcast_time = warning_time = jiffies;
7431         refcnt = netdev_refcnt_read(dev);
7432
7433         while (refcnt != 0) {
7434                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7435                         rtnl_lock();
7436
7437                         /* Rebroadcast unregister notification */
7438                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7439
7440                         __rtnl_unlock();
7441                         rcu_barrier();
7442                         rtnl_lock();
7443
7444                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7445                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7446                                      &dev->state)) {
7447                                 /* We must not have linkwatch events
7448                                  * pending on unregister. If this
7449                                  * happens, we simply run the queue
7450                                  * unscheduled, resulting in a noop
7451                                  * for this device.
7452                                  */
7453                                 linkwatch_run_queue();
7454                         }
7455
7456                         __rtnl_unlock();
7457
7458                         rebroadcast_time = jiffies;
7459                 }
7460
7461                 msleep(250);
7462
7463                 refcnt = netdev_refcnt_read(dev);
7464
7465                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7466                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7467                                  dev->name, refcnt);
7468                         warning_time = jiffies;
7469                 }
7470         }
7471 }
7472
7473 /* The sequence is:
7474  *
7475  *      rtnl_lock();
7476  *      ...
7477  *      register_netdevice(x1);
7478  *      register_netdevice(x2);
7479  *      ...
7480  *      unregister_netdevice(y1);
7481  *      unregister_netdevice(y2);
7482  *      ...
7483  *      rtnl_unlock();
7484  *      free_netdev(y1);
7485  *      free_netdev(y2);
7486  *
7487  * We are invoked by rtnl_unlock().
7488  * This allows us to deal with problems:
7489  * 1) We can delete sysfs objects which invoke hotplug
7490  *    without deadlocking with linkwatch via keventd.
7491  * 2) Since we run with the RTNL semaphore not held, we can sleep
7492  *    safely in order to wait for the netdev refcnt to drop to zero.
7493  *
7494  * We must not return until all unregister events added during
7495  * the interval the lock was held have been completed.
7496  */
7497 void netdev_run_todo(void)
7498 {
7499         struct list_head list;
7500
7501         /* Snapshot list, allow later requests */
7502         list_replace_init(&net_todo_list, &list);
7503
7504         __rtnl_unlock();
7505
7506
7507         /* Wait for rcu callbacks to finish before next phase */
7508         if (!list_empty(&list))
7509                 rcu_barrier();
7510
7511         while (!list_empty(&list)) {
7512                 struct net_device *dev
7513                         = list_first_entry(&list, struct net_device, todo_list);
7514                 list_del(&dev->todo_list);
7515
7516                 rtnl_lock();
7517                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7518                 __rtnl_unlock();
7519
7520                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7521                         pr_err("network todo '%s' but state %d\n",
7522                                dev->name, dev->reg_state);
7523                         dump_stack();
7524                         continue;
7525                 }
7526
7527                 dev->reg_state = NETREG_UNREGISTERED;
7528
7529                 netdev_wait_allrefs(dev);
7530
7531                 /* paranoia */
7532                 BUG_ON(netdev_refcnt_read(dev));
7533                 BUG_ON(!list_empty(&dev->ptype_all));
7534                 BUG_ON(!list_empty(&dev->ptype_specific));
7535                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7536                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7537                 WARN_ON(dev->dn_ptr);
7538
7539                 if (dev->destructor)
7540                         dev->destructor(dev);
7541
7542                 /* Report a network device has been unregistered */
7543                 rtnl_lock();
7544                 dev_net(dev)->dev_unreg_count--;
7545                 __rtnl_unlock();
7546                 wake_up(&netdev_unregistering_wq);
7547
7548                 /* Free network device */
7549                 kobject_put(&dev->dev.kobj);
7550         }
7551 }
7552
7553 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7554  * all the same fields in the same order as net_device_stats, with only
7555  * the type differing, but rtnl_link_stats64 may have additional fields
7556  * at the end for newer counters.
7557  */
7558 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7559                              const struct net_device_stats *netdev_stats)
7560 {
7561 #if BITS_PER_LONG == 64
7562         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7563         memcpy(stats64, netdev_stats, sizeof(*stats64));
7564         /* zero out counters that only exist in rtnl_link_stats64 */
7565         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7566                sizeof(*stats64) - sizeof(*netdev_stats));
7567 #else
7568         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7569         const unsigned long *src = (const unsigned long *)netdev_stats;
7570         u64 *dst = (u64 *)stats64;
7571
7572         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7573         for (i = 0; i < n; i++)
7574                 dst[i] = src[i];
7575         /* zero out counters that only exist in rtnl_link_stats64 */
7576         memset((char *)stats64 + n * sizeof(u64), 0,
7577                sizeof(*stats64) - n * sizeof(u64));
7578 #endif
7579 }
7580 EXPORT_SYMBOL(netdev_stats_to_stats64);
7581
7582 /**
7583  *      dev_get_stats   - get network device statistics
7584  *      @dev: device to get statistics from
7585  *      @storage: place to store stats
7586  *
7587  *      Get network statistics from device. Return @storage.
7588  *      The device driver may provide its own method by setting
7589  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7590  *      otherwise the internal statistics structure is used.
7591  */
7592 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7593                                         struct rtnl_link_stats64 *storage)
7594 {
7595         const struct net_device_ops *ops = dev->netdev_ops;
7596
7597         if (ops->ndo_get_stats64) {
7598                 memset(storage, 0, sizeof(*storage));
7599                 ops->ndo_get_stats64(dev, storage);
7600         } else if (ops->ndo_get_stats) {
7601                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7602         } else {
7603                 netdev_stats_to_stats64(storage, &dev->stats);
7604         }
7605         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7606         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7607         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7608         return storage;
7609 }
7610 EXPORT_SYMBOL(dev_get_stats);
7611
7612 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7613 {
7614         struct netdev_queue *queue = dev_ingress_queue(dev);
7615
7616 #ifdef CONFIG_NET_CLS_ACT
7617         if (queue)
7618                 return queue;
7619         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7620         if (!queue)
7621                 return NULL;
7622         netdev_init_one_queue(dev, queue, NULL);
7623         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7624         queue->qdisc_sleeping = &noop_qdisc;
7625         rcu_assign_pointer(dev->ingress_queue, queue);
7626 #endif
7627         return queue;
7628 }
7629
7630 static const struct ethtool_ops default_ethtool_ops;
7631
7632 void netdev_set_default_ethtool_ops(struct net_device *dev,
7633                                     const struct ethtool_ops *ops)
7634 {
7635         if (dev->ethtool_ops == &default_ethtool_ops)
7636                 dev->ethtool_ops = ops;
7637 }
7638 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7639
7640 void netdev_freemem(struct net_device *dev)
7641 {
7642         char *addr = (char *)dev - dev->padded;
7643
7644         kvfree(addr);
7645 }
7646
7647 /**
7648  *      alloc_netdev_mqs - allocate network device
7649  *      @sizeof_priv:           size of private data to allocate space for
7650  *      @name:                  device name format string
7651  *      @name_assign_type:      origin of device name
7652  *      @setup:                 callback to initialize device
7653  *      @txqs:                  the number of TX subqueues to allocate
7654  *      @rxqs:                  the number of RX subqueues to allocate
7655  *
7656  *      Allocates a struct net_device with private data area for driver use
7657  *      and performs basic initialization.  Also allocates subqueue structs
7658  *      for each queue on the device.
7659  */
7660 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7661                 unsigned char name_assign_type,
7662                 void (*setup)(struct net_device *),
7663                 unsigned int txqs, unsigned int rxqs)
7664 {
7665         struct net_device *dev;
7666         size_t alloc_size;
7667         struct net_device *p;
7668
7669         BUG_ON(strlen(name) >= sizeof(dev->name));
7670
7671         if (txqs < 1) {
7672                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7673                 return NULL;
7674         }
7675
7676 #ifdef CONFIG_SYSFS
7677         if (rxqs < 1) {
7678                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7679                 return NULL;
7680         }
7681 #endif
7682
7683         alloc_size = sizeof(struct net_device);
7684         if (sizeof_priv) {
7685                 /* ensure 32-byte alignment of private area */
7686                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7687                 alloc_size += sizeof_priv;
7688         }
7689         /* ensure 32-byte alignment of whole construct */
7690         alloc_size += NETDEV_ALIGN - 1;
7691
7692         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7693         if (!p)
7694                 p = vzalloc(alloc_size);
7695         if (!p)
7696                 return NULL;
7697
7698         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7699         dev->padded = (char *)dev - (char *)p;
7700
7701         dev->pcpu_refcnt = alloc_percpu(int);
7702         if (!dev->pcpu_refcnt)
7703                 goto free_dev;
7704
7705         if (dev_addr_init(dev))
7706                 goto free_pcpu;
7707
7708         dev_mc_init(dev);
7709         dev_uc_init(dev);
7710
7711         dev_net_set(dev, &init_net);
7712
7713         dev->gso_max_size = GSO_MAX_SIZE;
7714         dev->gso_max_segs = GSO_MAX_SEGS;
7715
7716         INIT_LIST_HEAD(&dev->napi_list);
7717         INIT_LIST_HEAD(&dev->unreg_list);
7718         INIT_LIST_HEAD(&dev->close_list);
7719         INIT_LIST_HEAD(&dev->link_watch_list);
7720         INIT_LIST_HEAD(&dev->adj_list.upper);
7721         INIT_LIST_HEAD(&dev->adj_list.lower);
7722         INIT_LIST_HEAD(&dev->ptype_all);
7723         INIT_LIST_HEAD(&dev->ptype_specific);
7724 #ifdef CONFIG_NET_SCHED
7725         hash_init(dev->qdisc_hash);
7726 #endif
7727         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7728         setup(dev);
7729
7730         if (!dev->tx_queue_len) {
7731                 dev->priv_flags |= IFF_NO_QUEUE;
7732                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7733         }
7734
7735         dev->num_tx_queues = txqs;
7736         dev->real_num_tx_queues = txqs;
7737         if (netif_alloc_netdev_queues(dev))
7738                 goto free_all;
7739
7740 #ifdef CONFIG_SYSFS
7741         dev->num_rx_queues = rxqs;
7742         dev->real_num_rx_queues = rxqs;
7743         if (netif_alloc_rx_queues(dev))
7744                 goto free_all;
7745 #endif
7746
7747         strcpy(dev->name, name);
7748         dev->name_assign_type = name_assign_type;
7749         dev->group = INIT_NETDEV_GROUP;
7750         if (!dev->ethtool_ops)
7751                 dev->ethtool_ops = &default_ethtool_ops;
7752
7753         nf_hook_ingress_init(dev);
7754
7755         return dev;
7756
7757 free_all:
7758         free_netdev(dev);
7759         return NULL;
7760
7761 free_pcpu:
7762         free_percpu(dev->pcpu_refcnt);
7763 free_dev:
7764         netdev_freemem(dev);
7765         return NULL;
7766 }
7767 EXPORT_SYMBOL(alloc_netdev_mqs);
7768
7769 /**
7770  *      free_netdev - free network device
7771  *      @dev: device
7772  *
7773  *      This function does the last stage of destroying an allocated device
7774  *      interface. The reference to the device object is released.
7775  *      If this is the last reference then it will be freed.
7776  *      Must be called in process context.
7777  */
7778 void free_netdev(struct net_device *dev)
7779 {
7780         struct napi_struct *p, *n;
7781
7782         might_sleep();
7783         netif_free_tx_queues(dev);
7784 #ifdef CONFIG_SYSFS
7785         kvfree(dev->_rx);
7786 #endif
7787
7788         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7789
7790         /* Flush device addresses */
7791         dev_addr_flush(dev);
7792
7793         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7794                 netif_napi_del(p);
7795
7796         free_percpu(dev->pcpu_refcnt);
7797         dev->pcpu_refcnt = NULL;
7798
7799         /*  Compatibility with error handling in drivers */
7800         if (dev->reg_state == NETREG_UNINITIALIZED) {
7801                 netdev_freemem(dev);
7802                 return;
7803         }
7804
7805         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7806         dev->reg_state = NETREG_RELEASED;
7807
7808         /* will free via device release */
7809         put_device(&dev->dev);
7810 }
7811 EXPORT_SYMBOL(free_netdev);
7812
7813 /**
7814  *      synchronize_net -  Synchronize with packet receive processing
7815  *
7816  *      Wait for packets currently being received to be done.
7817  *      Does not block later packets from starting.
7818  */
7819 void synchronize_net(void)
7820 {
7821         might_sleep();
7822         if (rtnl_is_locked())
7823                 synchronize_rcu_expedited();
7824         else
7825                 synchronize_rcu();
7826 }
7827 EXPORT_SYMBOL(synchronize_net);
7828
7829 /**
7830  *      unregister_netdevice_queue - remove device from the kernel
7831  *      @dev: device
7832  *      @head: list
7833  *
7834  *      This function shuts down a device interface and removes it
7835  *      from the kernel tables.
7836  *      If head not NULL, device is queued to be unregistered later.
7837  *
7838  *      Callers must hold the rtnl semaphore.  You may want
7839  *      unregister_netdev() instead of this.
7840  */
7841
7842 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7843 {
7844         ASSERT_RTNL();
7845
7846         if (head) {
7847                 list_move_tail(&dev->unreg_list, head);
7848         } else {
7849                 rollback_registered(dev);
7850                 /* Finish processing unregister after unlock */
7851                 net_set_todo(dev);
7852         }
7853 }
7854 EXPORT_SYMBOL(unregister_netdevice_queue);
7855
7856 /**
7857  *      unregister_netdevice_many - unregister many devices
7858  *      @head: list of devices
7859  *
7860  *  Note: As most callers use a stack allocated list_head,
7861  *  we force a list_del() to make sure stack wont be corrupted later.
7862  */
7863 void unregister_netdevice_many(struct list_head *head)
7864 {
7865         struct net_device *dev;
7866
7867         if (!list_empty(head)) {
7868                 rollback_registered_many(head);
7869                 list_for_each_entry(dev, head, unreg_list)
7870                         net_set_todo(dev);
7871                 list_del(head);
7872         }
7873 }
7874 EXPORT_SYMBOL(unregister_netdevice_many);
7875
7876 /**
7877  *      unregister_netdev - remove device from the kernel
7878  *      @dev: device
7879  *
7880  *      This function shuts down a device interface and removes it
7881  *      from the kernel tables.
7882  *
7883  *      This is just a wrapper for unregister_netdevice that takes
7884  *      the rtnl semaphore.  In general you want to use this and not
7885  *      unregister_netdevice.
7886  */
7887 void unregister_netdev(struct net_device *dev)
7888 {
7889         rtnl_lock();
7890         unregister_netdevice(dev);
7891         rtnl_unlock();
7892 }
7893 EXPORT_SYMBOL(unregister_netdev);
7894
7895 /**
7896  *      dev_change_net_namespace - move device to different nethost namespace
7897  *      @dev: device
7898  *      @net: network namespace
7899  *      @pat: If not NULL name pattern to try if the current device name
7900  *            is already taken in the destination network namespace.
7901  *
7902  *      This function shuts down a device interface and moves it
7903  *      to a new network namespace. On success 0 is returned, on
7904  *      a failure a netagive errno code is returned.
7905  *
7906  *      Callers must hold the rtnl semaphore.
7907  */
7908
7909 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7910 {
7911         int err;
7912
7913         ASSERT_RTNL();
7914
7915         /* Don't allow namespace local devices to be moved. */
7916         err = -EINVAL;
7917         if (dev->features & NETIF_F_NETNS_LOCAL)
7918                 goto out;
7919
7920         /* Ensure the device has been registrered */
7921         if (dev->reg_state != NETREG_REGISTERED)
7922                 goto out;
7923
7924         /* Get out if there is nothing todo */
7925         err = 0;
7926         if (net_eq(dev_net(dev), net))
7927                 goto out;
7928
7929         /* Pick the destination device name, and ensure
7930          * we can use it in the destination network namespace.
7931          */
7932         err = -EEXIST;
7933         if (__dev_get_by_name(net, dev->name)) {
7934                 /* We get here if we can't use the current device name */
7935                 if (!pat)
7936                         goto out;
7937                 if (dev_get_valid_name(net, dev, pat) < 0)
7938                         goto out;
7939         }
7940
7941         /*
7942          * And now a mini version of register_netdevice unregister_netdevice.
7943          */
7944
7945         /* If device is running close it first. */
7946         dev_close(dev);
7947
7948         /* And unlink it from device chain */
7949         err = -ENODEV;
7950         unlist_netdevice(dev);
7951
7952         synchronize_net();
7953
7954         /* Shutdown queueing discipline. */
7955         dev_shutdown(dev);
7956
7957         /* Notify protocols, that we are about to destroy
7958            this device. They should clean all the things.
7959
7960            Note that dev->reg_state stays at NETREG_REGISTERED.
7961            This is wanted because this way 8021q and macvlan know
7962            the device is just moving and can keep their slaves up.
7963         */
7964         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7965         rcu_barrier();
7966         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7967         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7968
7969         /*
7970          *      Flush the unicast and multicast chains
7971          */
7972         dev_uc_flush(dev);
7973         dev_mc_flush(dev);
7974
7975         /* Send a netdev-removed uevent to the old namespace */
7976         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7977         netdev_adjacent_del_links(dev);
7978
7979         /* Actually switch the network namespace */
7980         dev_net_set(dev, net);
7981
7982         /* If there is an ifindex conflict assign a new one */
7983         if (__dev_get_by_index(net, dev->ifindex))
7984                 dev->ifindex = dev_new_index(net);
7985
7986         /* Send a netdev-add uevent to the new namespace */
7987         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7988         netdev_adjacent_add_links(dev);
7989
7990         /* Fixup kobjects */
7991         err = device_rename(&dev->dev, dev->name);
7992         WARN_ON(err);
7993
7994         /* Add the device back in the hashes */
7995         list_netdevice(dev);
7996
7997         /* Notify protocols, that a new device appeared. */
7998         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7999
8000         /*
8001          *      Prevent userspace races by waiting until the network
8002          *      device is fully setup before sending notifications.
8003          */
8004         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8005
8006         synchronize_net();
8007         err = 0;
8008 out:
8009         return err;
8010 }
8011 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8012
8013 static int dev_cpu_dead(unsigned int oldcpu)
8014 {
8015         struct sk_buff **list_skb;
8016         struct sk_buff *skb;
8017         unsigned int cpu;
8018         struct softnet_data *sd, *oldsd;
8019
8020         local_irq_disable();
8021         cpu = smp_processor_id();
8022         sd = &per_cpu(softnet_data, cpu);
8023         oldsd = &per_cpu(softnet_data, oldcpu);
8024
8025         /* Find end of our completion_queue. */
8026         list_skb = &sd->completion_queue;
8027         while (*list_skb)
8028                 list_skb = &(*list_skb)->next;
8029         /* Append completion queue from offline CPU. */
8030         *list_skb = oldsd->completion_queue;
8031         oldsd->completion_queue = NULL;
8032
8033         /* Append output queue from offline CPU. */
8034         if (oldsd->output_queue) {
8035                 *sd->output_queue_tailp = oldsd->output_queue;
8036                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8037                 oldsd->output_queue = NULL;
8038                 oldsd->output_queue_tailp = &oldsd->output_queue;
8039         }
8040         /* Append NAPI poll list from offline CPU, with one exception :
8041          * process_backlog() must be called by cpu owning percpu backlog.
8042          * We properly handle process_queue & input_pkt_queue later.
8043          */
8044         while (!list_empty(&oldsd->poll_list)) {
8045                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8046                                                             struct napi_struct,
8047                                                             poll_list);
8048
8049                 list_del_init(&napi->poll_list);
8050                 if (napi->poll == process_backlog)
8051                         napi->state = 0;
8052                 else
8053                         ____napi_schedule(sd, napi);
8054         }
8055
8056         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8057         local_irq_enable();
8058
8059         /* Process offline CPU's input_pkt_queue */
8060         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8061                 netif_rx_ni(skb);
8062                 input_queue_head_incr(oldsd);
8063         }
8064         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8065                 netif_rx_ni(skb);
8066                 input_queue_head_incr(oldsd);
8067         }
8068
8069         return 0;
8070 }
8071
8072 /**
8073  *      netdev_increment_features - increment feature set by one
8074  *      @all: current feature set
8075  *      @one: new feature set
8076  *      @mask: mask feature set
8077  *
8078  *      Computes a new feature set after adding a device with feature set
8079  *      @one to the master device with current feature set @all.  Will not
8080  *      enable anything that is off in @mask. Returns the new feature set.
8081  */
8082 netdev_features_t netdev_increment_features(netdev_features_t all,
8083         netdev_features_t one, netdev_features_t mask)
8084 {
8085         if (mask & NETIF_F_HW_CSUM)
8086                 mask |= NETIF_F_CSUM_MASK;
8087         mask |= NETIF_F_VLAN_CHALLENGED;
8088
8089         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8090         all &= one | ~NETIF_F_ALL_FOR_ALL;
8091
8092         /* If one device supports hw checksumming, set for all. */
8093         if (all & NETIF_F_HW_CSUM)
8094                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8095
8096         return all;
8097 }
8098 EXPORT_SYMBOL(netdev_increment_features);
8099
8100 static struct hlist_head * __net_init netdev_create_hash(void)
8101 {
8102         int i;
8103         struct hlist_head *hash;
8104
8105         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8106         if (hash != NULL)
8107                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8108                         INIT_HLIST_HEAD(&hash[i]);
8109
8110         return hash;
8111 }
8112
8113 /* Initialize per network namespace state */
8114 static int __net_init netdev_init(struct net *net)
8115 {
8116         if (net != &init_net)
8117                 INIT_LIST_HEAD(&net->dev_base_head);
8118
8119         net->dev_name_head = netdev_create_hash();
8120         if (net->dev_name_head == NULL)
8121                 goto err_name;
8122
8123         net->dev_index_head = netdev_create_hash();
8124         if (net->dev_index_head == NULL)
8125                 goto err_idx;
8126
8127         return 0;
8128
8129 err_idx:
8130         kfree(net->dev_name_head);
8131 err_name:
8132         return -ENOMEM;
8133 }
8134
8135 /**
8136  *      netdev_drivername - network driver for the device
8137  *      @dev: network device
8138  *
8139  *      Determine network driver for device.
8140  */
8141 const char *netdev_drivername(const struct net_device *dev)
8142 {
8143         const struct device_driver *driver;
8144         const struct device *parent;
8145         const char *empty = "";
8146
8147         parent = dev->dev.parent;
8148         if (!parent)
8149                 return empty;
8150
8151         driver = parent->driver;
8152         if (driver && driver->name)
8153                 return driver->name;
8154         return empty;
8155 }
8156
8157 static void __netdev_printk(const char *level, const struct net_device *dev,
8158                             struct va_format *vaf)
8159 {
8160         if (dev && dev->dev.parent) {
8161                 dev_printk_emit(level[1] - '0',
8162                                 dev->dev.parent,
8163                                 "%s %s %s%s: %pV",
8164                                 dev_driver_string(dev->dev.parent),
8165                                 dev_name(dev->dev.parent),
8166                                 netdev_name(dev), netdev_reg_state(dev),
8167                                 vaf);
8168         } else if (dev) {
8169                 printk("%s%s%s: %pV",
8170                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8171         } else {
8172                 printk("%s(NULL net_device): %pV", level, vaf);
8173         }
8174 }
8175
8176 void netdev_printk(const char *level, const struct net_device *dev,
8177                    const char *format, ...)
8178 {
8179         struct va_format vaf;
8180         va_list args;
8181
8182         va_start(args, format);
8183
8184         vaf.fmt = format;
8185         vaf.va = &args;
8186
8187         __netdev_printk(level, dev, &vaf);
8188
8189         va_end(args);
8190 }
8191 EXPORT_SYMBOL(netdev_printk);
8192
8193 #define define_netdev_printk_level(func, level)                 \
8194 void func(const struct net_device *dev, const char *fmt, ...)   \
8195 {                                                               \
8196         struct va_format vaf;                                   \
8197         va_list args;                                           \
8198                                                                 \
8199         va_start(args, fmt);                                    \
8200                                                                 \
8201         vaf.fmt = fmt;                                          \
8202         vaf.va = &args;                                         \
8203                                                                 \
8204         __netdev_printk(level, dev, &vaf);                      \
8205                                                                 \
8206         va_end(args);                                           \
8207 }                                                               \
8208 EXPORT_SYMBOL(func);
8209
8210 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8211 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8212 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8213 define_netdev_printk_level(netdev_err, KERN_ERR);
8214 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8215 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8216 define_netdev_printk_level(netdev_info, KERN_INFO);
8217
8218 static void __net_exit netdev_exit(struct net *net)
8219 {
8220         kfree(net->dev_name_head);
8221         kfree(net->dev_index_head);
8222 }
8223
8224 static struct pernet_operations __net_initdata netdev_net_ops = {
8225         .init = netdev_init,
8226         .exit = netdev_exit,
8227 };
8228
8229 static void __net_exit default_device_exit(struct net *net)
8230 {
8231         struct net_device *dev, *aux;
8232         /*
8233          * Push all migratable network devices back to the
8234          * initial network namespace
8235          */
8236         rtnl_lock();
8237         for_each_netdev_safe(net, dev, aux) {
8238                 int err;
8239                 char fb_name[IFNAMSIZ];
8240
8241                 /* Ignore unmoveable devices (i.e. loopback) */
8242                 if (dev->features & NETIF_F_NETNS_LOCAL)
8243                         continue;
8244
8245                 /* Leave virtual devices for the generic cleanup */
8246                 if (dev->rtnl_link_ops)
8247                         continue;
8248
8249                 /* Push remaining network devices to init_net */
8250                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8251                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8252                 if (err) {
8253                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8254                                  __func__, dev->name, err);
8255                         BUG();
8256                 }
8257         }
8258         rtnl_unlock();
8259 }
8260
8261 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8262 {
8263         /* Return with the rtnl_lock held when there are no network
8264          * devices unregistering in any network namespace in net_list.
8265          */
8266         struct net *net;
8267         bool unregistering;
8268         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8269
8270         add_wait_queue(&netdev_unregistering_wq, &wait);
8271         for (;;) {
8272                 unregistering = false;
8273                 rtnl_lock();
8274                 list_for_each_entry(net, net_list, exit_list) {
8275                         if (net->dev_unreg_count > 0) {
8276                                 unregistering = true;
8277                                 break;
8278                         }
8279                 }
8280                 if (!unregistering)
8281                         break;
8282                 __rtnl_unlock();
8283
8284                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8285         }
8286         remove_wait_queue(&netdev_unregistering_wq, &wait);
8287 }
8288
8289 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8290 {
8291         /* At exit all network devices most be removed from a network
8292          * namespace.  Do this in the reverse order of registration.
8293          * Do this across as many network namespaces as possible to
8294          * improve batching efficiency.
8295          */
8296         struct net_device *dev;
8297         struct net *net;
8298         LIST_HEAD(dev_kill_list);
8299
8300         /* To prevent network device cleanup code from dereferencing
8301          * loopback devices or network devices that have been freed
8302          * wait here for all pending unregistrations to complete,
8303          * before unregistring the loopback device and allowing the
8304          * network namespace be freed.
8305          *
8306          * The netdev todo list containing all network devices
8307          * unregistrations that happen in default_device_exit_batch
8308          * will run in the rtnl_unlock() at the end of
8309          * default_device_exit_batch.
8310          */
8311         rtnl_lock_unregistering(net_list);
8312         list_for_each_entry(net, net_list, exit_list) {
8313                 for_each_netdev_reverse(net, dev) {
8314                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8315                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8316                         else
8317                                 unregister_netdevice_queue(dev, &dev_kill_list);
8318                 }
8319         }
8320         unregister_netdevice_many(&dev_kill_list);
8321         rtnl_unlock();
8322 }
8323
8324 static struct pernet_operations __net_initdata default_device_ops = {
8325         .exit = default_device_exit,
8326         .exit_batch = default_device_exit_batch,
8327 };
8328
8329 /*
8330  *      Initialize the DEV module. At boot time this walks the device list and
8331  *      unhooks any devices that fail to initialise (normally hardware not
8332  *      present) and leaves us with a valid list of present and active devices.
8333  *
8334  */
8335
8336 /*
8337  *       This is called single threaded during boot, so no need
8338  *       to take the rtnl semaphore.
8339  */
8340 static int __init net_dev_init(void)
8341 {
8342         int i, rc = -ENOMEM;
8343
8344         BUG_ON(!dev_boot_phase);
8345
8346         if (dev_proc_init())
8347                 goto out;
8348
8349         if (netdev_kobject_init())
8350                 goto out;
8351
8352         INIT_LIST_HEAD(&ptype_all);
8353         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8354                 INIT_LIST_HEAD(&ptype_base[i]);
8355
8356         INIT_LIST_HEAD(&offload_base);
8357
8358         if (register_pernet_subsys(&netdev_net_ops))
8359                 goto out;
8360
8361         /*
8362          *      Initialise the packet receive queues.
8363          */
8364
8365         for_each_possible_cpu(i) {
8366                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8367                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8368
8369                 INIT_WORK(flush, flush_backlog);
8370
8371                 skb_queue_head_init(&sd->input_pkt_queue);
8372                 skb_queue_head_init(&sd->process_queue);
8373                 INIT_LIST_HEAD(&sd->poll_list);
8374                 sd->output_queue_tailp = &sd->output_queue;
8375 #ifdef CONFIG_RPS
8376                 sd->csd.func = rps_trigger_softirq;
8377                 sd->csd.info = sd;
8378                 sd->cpu = i;
8379 #endif
8380
8381                 sd->backlog.poll = process_backlog;
8382                 sd->backlog.weight = weight_p;
8383         }
8384
8385         dev_boot_phase = 0;
8386
8387         /* The loopback device is special if any other network devices
8388          * is present in a network namespace the loopback device must
8389          * be present. Since we now dynamically allocate and free the
8390          * loopback device ensure this invariant is maintained by
8391          * keeping the loopback device as the first device on the
8392          * list of network devices.  Ensuring the loopback devices
8393          * is the first device that appears and the last network device
8394          * that disappears.
8395          */
8396         if (register_pernet_device(&loopback_net_ops))
8397                 goto out;
8398
8399         if (register_pernet_device(&default_device_ops))
8400                 goto out;
8401
8402         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8403         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8404
8405         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8406                                        NULL, dev_cpu_dead);
8407         WARN_ON(rc < 0);
8408         dst_subsys_init();
8409         rc = 0;
8410 out:
8411         return rc;
8412 }
8413
8414 subsys_initcall(net_dev_init);