]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/core/dev.c
Merge branch 'ufs-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[karo-tx-linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145
146 #include "net-sysfs.h"
147
148 /* Instead of increasing this, you should create a hash table. */
149 #define MAX_GRO_SKBS 8
150
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;       /* Taps */
158 static struct list_head offload_base __read_mostly;
159
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162                                          struct net_device *dev,
163                                          struct netdev_notifier_info *info);
164
165 /*
166  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
167  * semaphore.
168  *
169  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
170  *
171  * Writers must hold the rtnl semaphore while they loop through the
172  * dev_base_head list, and hold dev_base_lock for writing when they do the
173  * actual updates.  This allows pure readers to access the list even
174  * while a writer is preparing to update it.
175  *
176  * To put it another way, dev_base_lock is held for writing only to
177  * protect against pure readers; the rtnl semaphore provides the
178  * protection against other writers.
179  *
180  * See, for example usages, register_netdevice() and
181  * unregister_netdevice(), which must be called with the rtnl
182  * semaphore held.
183  */
184 DEFINE_RWLOCK(dev_base_lock);
185 EXPORT_SYMBOL(dev_base_lock);
186
187 /* protects napi_hash addition/deletion and napi_gen_id */
188 static DEFINE_SPINLOCK(napi_hash_lock);
189
190 static unsigned int napi_gen_id = NR_CPUS;
191 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
192
193 static seqcount_t devnet_rename_seq;
194
195 static inline void dev_base_seq_inc(struct net *net)
196 {
197         while (++net->dev_base_seq == 0)
198                 ;
199 }
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
204
205         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216         spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223         spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 /* Device list insertion */
228 static void list_netdevice(struct net_device *dev)
229 {
230         struct net *net = dev_net(dev);
231
232         ASSERT_RTNL();
233
234         write_lock_bh(&dev_base_lock);
235         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237         hlist_add_head_rcu(&dev->index_hlist,
238                            dev_index_hash(net, dev->ifindex));
239         write_unlock_bh(&dev_base_lock);
240
241         dev_base_seq_inc(net);
242 }
243
244 /* Device list removal
245  * caller must respect a RCU grace period before freeing/reusing dev
246  */
247 static void unlist_netdevice(struct net_device *dev)
248 {
249         ASSERT_RTNL();
250
251         /* Unlink dev from the device chain */
252         write_lock_bh(&dev_base_lock);
253         list_del_rcu(&dev->dev_list);
254         hlist_del_rcu(&dev->name_hlist);
255         hlist_del_rcu(&dev->index_hlist);
256         write_unlock_bh(&dev_base_lock);
257
258         dev_base_seq_inc(dev_net(dev));
259 }
260
261 /*
262  *      Our notifier list
263  */
264
265 static RAW_NOTIFIER_HEAD(netdev_chain);
266
267 /*
268  *      Device drivers call our routines to queue packets here. We empty the
269  *      queue in the local softnet handler.
270  */
271
272 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
273 EXPORT_PER_CPU_SYMBOL(softnet_data);
274
275 #ifdef CONFIG_LOCKDEP
276 /*
277  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
278  * according to dev->type
279  */
280 static const unsigned short netdev_lock_type[] = {
281          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
282          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
283          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
284          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
285          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
286          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
287          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
288          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
289          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
290          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
291          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
292          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
293          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
294          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
295          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
296
297 static const char *const netdev_lock_name[] = {
298         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
299         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
300         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
301         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
302         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
303         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
304         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
305         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
306         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
307         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
308         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
309         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
310         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
311         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
312         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
313
314 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
315 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
316
317 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
318 {
319         int i;
320
321         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
322                 if (netdev_lock_type[i] == dev_type)
323                         return i;
324         /* the last key is used by default */
325         return ARRAY_SIZE(netdev_lock_type) - 1;
326 }
327
328 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
329                                                  unsigned short dev_type)
330 {
331         int i;
332
333         i = netdev_lock_pos(dev_type);
334         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
335                                    netdev_lock_name[i]);
336 }
337
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340         int i;
341
342         i = netdev_lock_pos(dev->type);
343         lockdep_set_class_and_name(&dev->addr_list_lock,
344                                    &netdev_addr_lock_key[i],
345                                    netdev_lock_name[i]);
346 }
347 #else
348 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
349                                                  unsigned short dev_type)
350 {
351 }
352 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353 {
354 }
355 #endif
356
357 /*******************************************************************************
358  *
359  *              Protocol management and registration routines
360  *
361  *******************************************************************************/
362
363
364 /*
365  *      Add a protocol ID to the list. Now that the input handler is
366  *      smarter we can dispense with all the messy stuff that used to be
367  *      here.
368  *
369  *      BEWARE!!! Protocol handlers, mangling input packets,
370  *      MUST BE last in hash buckets and checking protocol handlers
371  *      MUST start from promiscuous ptype_all chain in net_bh.
372  *      It is true now, do not change it.
373  *      Explanation follows: if protocol handler, mangling packet, will
374  *      be the first on list, it is not able to sense, that packet
375  *      is cloned and should be copied-on-write, so that it will
376  *      change it and subsequent readers will get broken packet.
377  *                                                      --ANK (980803)
378  */
379
380 static inline struct list_head *ptype_head(const struct packet_type *pt)
381 {
382         if (pt->type == htons(ETH_P_ALL))
383                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
384         else
385                 return pt->dev ? &pt->dev->ptype_specific :
386                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
387 }
388
389 /**
390  *      dev_add_pack - add packet handler
391  *      @pt: packet type declaration
392  *
393  *      Add a protocol handler to the networking stack. The passed &packet_type
394  *      is linked into kernel lists and may not be freed until it has been
395  *      removed from the kernel lists.
396  *
397  *      This call does not sleep therefore it can not
398  *      guarantee all CPU's that are in middle of receiving packets
399  *      will see the new packet type (until the next received packet).
400  */
401
402 void dev_add_pack(struct packet_type *pt)
403 {
404         struct list_head *head = ptype_head(pt);
405
406         spin_lock(&ptype_lock);
407         list_add_rcu(&pt->list, head);
408         spin_unlock(&ptype_lock);
409 }
410 EXPORT_SYMBOL(dev_add_pack);
411
412 /**
413  *      __dev_remove_pack        - remove packet handler
414  *      @pt: packet type declaration
415  *
416  *      Remove a protocol handler that was previously added to the kernel
417  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
418  *      from the kernel lists and can be freed or reused once this function
419  *      returns.
420  *
421  *      The packet type might still be in use by receivers
422  *      and must not be freed until after all the CPU's have gone
423  *      through a quiescent state.
424  */
425 void __dev_remove_pack(struct packet_type *pt)
426 {
427         struct list_head *head = ptype_head(pt);
428         struct packet_type *pt1;
429
430         spin_lock(&ptype_lock);
431
432         list_for_each_entry(pt1, head, list) {
433                 if (pt == pt1) {
434                         list_del_rcu(&pt->list);
435                         goto out;
436                 }
437         }
438
439         pr_warn("dev_remove_pack: %p not found\n", pt);
440 out:
441         spin_unlock(&ptype_lock);
442 }
443 EXPORT_SYMBOL(__dev_remove_pack);
444
445 /**
446  *      dev_remove_pack  - remove packet handler
447  *      @pt: packet type declaration
448  *
449  *      Remove a protocol handler that was previously added to the kernel
450  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
451  *      from the kernel lists and can be freed or reused once this function
452  *      returns.
453  *
454  *      This call sleeps to guarantee that no CPU is looking at the packet
455  *      type after return.
456  */
457 void dev_remove_pack(struct packet_type *pt)
458 {
459         __dev_remove_pack(pt);
460
461         synchronize_net();
462 }
463 EXPORT_SYMBOL(dev_remove_pack);
464
465
466 /**
467  *      dev_add_offload - register offload handlers
468  *      @po: protocol offload declaration
469  *
470  *      Add protocol offload handlers to the networking stack. The passed
471  *      &proto_offload is linked into kernel lists and may not be freed until
472  *      it has been removed from the kernel lists.
473  *
474  *      This call does not sleep therefore it can not
475  *      guarantee all CPU's that are in middle of receiving packets
476  *      will see the new offload handlers (until the next received packet).
477  */
478 void dev_add_offload(struct packet_offload *po)
479 {
480         struct packet_offload *elem;
481
482         spin_lock(&offload_lock);
483         list_for_each_entry(elem, &offload_base, list) {
484                 if (po->priority < elem->priority)
485                         break;
486         }
487         list_add_rcu(&po->list, elem->list.prev);
488         spin_unlock(&offload_lock);
489 }
490 EXPORT_SYMBOL(dev_add_offload);
491
492 /**
493  *      __dev_remove_offload     - remove offload handler
494  *      @po: packet offload declaration
495  *
496  *      Remove a protocol offload handler that was previously added to the
497  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
498  *      is removed from the kernel lists and can be freed or reused once this
499  *      function returns.
500  *
501  *      The packet type might still be in use by receivers
502  *      and must not be freed until after all the CPU's have gone
503  *      through a quiescent state.
504  */
505 static void __dev_remove_offload(struct packet_offload *po)
506 {
507         struct list_head *head = &offload_base;
508         struct packet_offload *po1;
509
510         spin_lock(&offload_lock);
511
512         list_for_each_entry(po1, head, list) {
513                 if (po == po1) {
514                         list_del_rcu(&po->list);
515                         goto out;
516                 }
517         }
518
519         pr_warn("dev_remove_offload: %p not found\n", po);
520 out:
521         spin_unlock(&offload_lock);
522 }
523
524 /**
525  *      dev_remove_offload       - remove packet offload handler
526  *      @po: packet offload declaration
527  *
528  *      Remove a packet offload handler that was previously added to the kernel
529  *      offload handlers by dev_add_offload(). The passed &offload_type is
530  *      removed from the kernel lists and can be freed or reused once this
531  *      function returns.
532  *
533  *      This call sleeps to guarantee that no CPU is looking at the packet
534  *      type after return.
535  */
536 void dev_remove_offload(struct packet_offload *po)
537 {
538         __dev_remove_offload(po);
539
540         synchronize_net();
541 }
542 EXPORT_SYMBOL(dev_remove_offload);
543
544 /******************************************************************************
545  *
546  *                    Device Boot-time Settings Routines
547  *
548  ******************************************************************************/
549
550 /* Boot time configuration table */
551 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
552
553 /**
554  *      netdev_boot_setup_add   - add new setup entry
555  *      @name: name of the device
556  *      @map: configured settings for the device
557  *
558  *      Adds new setup entry to the dev_boot_setup list.  The function
559  *      returns 0 on error and 1 on success.  This is a generic routine to
560  *      all netdevices.
561  */
562 static int netdev_boot_setup_add(char *name, struct ifmap *map)
563 {
564         struct netdev_boot_setup *s;
565         int i;
566
567         s = dev_boot_setup;
568         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
569                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
570                         memset(s[i].name, 0, sizeof(s[i].name));
571                         strlcpy(s[i].name, name, IFNAMSIZ);
572                         memcpy(&s[i].map, map, sizeof(s[i].map));
573                         break;
574                 }
575         }
576
577         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
578 }
579
580 /**
581  * netdev_boot_setup_check      - check boot time settings
582  * @dev: the netdevice
583  *
584  * Check boot time settings for the device.
585  * The found settings are set for the device to be used
586  * later in the device probing.
587  * Returns 0 if no settings found, 1 if they are.
588  */
589 int netdev_boot_setup_check(struct net_device *dev)
590 {
591         struct netdev_boot_setup *s = dev_boot_setup;
592         int i;
593
594         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
595                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
596                     !strcmp(dev->name, s[i].name)) {
597                         dev->irq = s[i].map.irq;
598                         dev->base_addr = s[i].map.base_addr;
599                         dev->mem_start = s[i].map.mem_start;
600                         dev->mem_end = s[i].map.mem_end;
601                         return 1;
602                 }
603         }
604         return 0;
605 }
606 EXPORT_SYMBOL(netdev_boot_setup_check);
607
608
609 /**
610  * netdev_boot_base     - get address from boot time settings
611  * @prefix: prefix for network device
612  * @unit: id for network device
613  *
614  * Check boot time settings for the base address of device.
615  * The found settings are set for the device to be used
616  * later in the device probing.
617  * Returns 0 if no settings found.
618  */
619 unsigned long netdev_boot_base(const char *prefix, int unit)
620 {
621         const struct netdev_boot_setup *s = dev_boot_setup;
622         char name[IFNAMSIZ];
623         int i;
624
625         sprintf(name, "%s%d", prefix, unit);
626
627         /*
628          * If device already registered then return base of 1
629          * to indicate not to probe for this interface
630          */
631         if (__dev_get_by_name(&init_net, name))
632                 return 1;
633
634         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
635                 if (!strcmp(name, s[i].name))
636                         return s[i].map.base_addr;
637         return 0;
638 }
639
640 /*
641  * Saves at boot time configured settings for any netdevice.
642  */
643 int __init netdev_boot_setup(char *str)
644 {
645         int ints[5];
646         struct ifmap map;
647
648         str = get_options(str, ARRAY_SIZE(ints), ints);
649         if (!str || !*str)
650                 return 0;
651
652         /* Save settings */
653         memset(&map, 0, sizeof(map));
654         if (ints[0] > 0)
655                 map.irq = ints[1];
656         if (ints[0] > 1)
657                 map.base_addr = ints[2];
658         if (ints[0] > 2)
659                 map.mem_start = ints[3];
660         if (ints[0] > 3)
661                 map.mem_end = ints[4];
662
663         /* Add new entry to the list */
664         return netdev_boot_setup_add(str, &map);
665 }
666
667 __setup("netdev=", netdev_boot_setup);
668
669 /*******************************************************************************
670  *
671  *                          Device Interface Subroutines
672  *
673  *******************************************************************************/
674
675 /**
676  *      dev_get_iflink  - get 'iflink' value of a interface
677  *      @dev: targeted interface
678  *
679  *      Indicates the ifindex the interface is linked to.
680  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
681  */
682
683 int dev_get_iflink(const struct net_device *dev)
684 {
685         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
686                 return dev->netdev_ops->ndo_get_iflink(dev);
687
688         return dev->ifindex;
689 }
690 EXPORT_SYMBOL(dev_get_iflink);
691
692 /**
693  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
694  *      @dev: targeted interface
695  *      @skb: The packet.
696  *
697  *      For better visibility of tunnel traffic OVS needs to retrieve
698  *      egress tunnel information for a packet. Following API allows
699  *      user to get this info.
700  */
701 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
702 {
703         struct ip_tunnel_info *info;
704
705         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
706                 return -EINVAL;
707
708         info = skb_tunnel_info_unclone(skb);
709         if (!info)
710                 return -ENOMEM;
711         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
712                 return -EINVAL;
713
714         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
715 }
716 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
717
718 /**
719  *      __dev_get_by_name       - find a device by its name
720  *      @net: the applicable net namespace
721  *      @name: name to find
722  *
723  *      Find an interface by name. Must be called under RTNL semaphore
724  *      or @dev_base_lock. If the name is found a pointer to the device
725  *      is returned. If the name is not found then %NULL is returned. The
726  *      reference counters are not incremented so the caller must be
727  *      careful with locks.
728  */
729
730 struct net_device *__dev_get_by_name(struct net *net, const char *name)
731 {
732         struct net_device *dev;
733         struct hlist_head *head = dev_name_hash(net, name);
734
735         hlist_for_each_entry(dev, head, name_hlist)
736                 if (!strncmp(dev->name, name, IFNAMSIZ))
737                         return dev;
738
739         return NULL;
740 }
741 EXPORT_SYMBOL(__dev_get_by_name);
742
743 /**
744  * dev_get_by_name_rcu  - find a device by its name
745  * @net: the applicable net namespace
746  * @name: name to find
747  *
748  * Find an interface by name.
749  * If the name is found a pointer to the device is returned.
750  * If the name is not found then %NULL is returned.
751  * The reference counters are not incremented so the caller must be
752  * careful with locks. The caller must hold RCU lock.
753  */
754
755 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
756 {
757         struct net_device *dev;
758         struct hlist_head *head = dev_name_hash(net, name);
759
760         hlist_for_each_entry_rcu(dev, head, name_hlist)
761                 if (!strncmp(dev->name, name, IFNAMSIZ))
762                         return dev;
763
764         return NULL;
765 }
766 EXPORT_SYMBOL(dev_get_by_name_rcu);
767
768 /**
769  *      dev_get_by_name         - find a device by its name
770  *      @net: the applicable net namespace
771  *      @name: name to find
772  *
773  *      Find an interface by name. This can be called from any
774  *      context and does its own locking. The returned handle has
775  *      the usage count incremented and the caller must use dev_put() to
776  *      release it when it is no longer needed. %NULL is returned if no
777  *      matching device is found.
778  */
779
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782         struct net_device *dev;
783
784         rcu_read_lock();
785         dev = dev_get_by_name_rcu(net, name);
786         if (dev)
787                 dev_hold(dev);
788         rcu_read_unlock();
789         return dev;
790 }
791 EXPORT_SYMBOL(dev_get_by_name);
792
793 /**
794  *      __dev_get_by_index - find a device by its ifindex
795  *      @net: the applicable net namespace
796  *      @ifindex: index of device
797  *
798  *      Search for an interface by index. Returns %NULL if the device
799  *      is not found or a pointer to the device. The device has not
800  *      had its reference counter increased so the caller must be careful
801  *      about locking. The caller must hold either the RTNL semaphore
802  *      or @dev_base_lock.
803  */
804
805 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
806 {
807         struct net_device *dev;
808         struct hlist_head *head = dev_index_hash(net, ifindex);
809
810         hlist_for_each_entry(dev, head, index_hlist)
811                 if (dev->ifindex == ifindex)
812                         return dev;
813
814         return NULL;
815 }
816 EXPORT_SYMBOL(__dev_get_by_index);
817
818 /**
819  *      dev_get_by_index_rcu - find a device by its ifindex
820  *      @net: the applicable net namespace
821  *      @ifindex: index of device
822  *
823  *      Search for an interface by index. Returns %NULL if the device
824  *      is not found or a pointer to the device. The device has not
825  *      had its reference counter increased so the caller must be careful
826  *      about locking. The caller must hold RCU lock.
827  */
828
829 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
830 {
831         struct net_device *dev;
832         struct hlist_head *head = dev_index_hash(net, ifindex);
833
834         hlist_for_each_entry_rcu(dev, head, index_hlist)
835                 if (dev->ifindex == ifindex)
836                         return dev;
837
838         return NULL;
839 }
840 EXPORT_SYMBOL(dev_get_by_index_rcu);
841
842
843 /**
844  *      dev_get_by_index - find a device by its ifindex
845  *      @net: the applicable net namespace
846  *      @ifindex: index of device
847  *
848  *      Search for an interface by index. Returns NULL if the device
849  *      is not found or a pointer to the device. The device returned has
850  *      had a reference added and the pointer is safe until the user calls
851  *      dev_put to indicate they have finished with it.
852  */
853
854 struct net_device *dev_get_by_index(struct net *net, int ifindex)
855 {
856         struct net_device *dev;
857
858         rcu_read_lock();
859         dev = dev_get_by_index_rcu(net, ifindex);
860         if (dev)
861                 dev_hold(dev);
862         rcu_read_unlock();
863         return dev;
864 }
865 EXPORT_SYMBOL(dev_get_by_index);
866
867 /**
868  *      netdev_get_name - get a netdevice name, knowing its ifindex.
869  *      @net: network namespace
870  *      @name: a pointer to the buffer where the name will be stored.
871  *      @ifindex: the ifindex of the interface to get the name from.
872  *
873  *      The use of raw_seqcount_begin() and cond_resched() before
874  *      retrying is required as we want to give the writers a chance
875  *      to complete when CONFIG_PREEMPT is not set.
876  */
877 int netdev_get_name(struct net *net, char *name, int ifindex)
878 {
879         struct net_device *dev;
880         unsigned int seq;
881
882 retry:
883         seq = raw_seqcount_begin(&devnet_rename_seq);
884         rcu_read_lock();
885         dev = dev_get_by_index_rcu(net, ifindex);
886         if (!dev) {
887                 rcu_read_unlock();
888                 return -ENODEV;
889         }
890
891         strcpy(name, dev->name);
892         rcu_read_unlock();
893         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
894                 cond_resched();
895                 goto retry;
896         }
897
898         return 0;
899 }
900
901 /**
902  *      dev_getbyhwaddr_rcu - find a device by its hardware address
903  *      @net: the applicable net namespace
904  *      @type: media type of device
905  *      @ha: hardware address
906  *
907  *      Search for an interface by MAC address. Returns NULL if the device
908  *      is not found or a pointer to the device.
909  *      The caller must hold RCU or RTNL.
910  *      The returned device has not had its ref count increased
911  *      and the caller must therefore be careful about locking
912  *
913  */
914
915 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
916                                        const char *ha)
917 {
918         struct net_device *dev;
919
920         for_each_netdev_rcu(net, dev)
921                 if (dev->type == type &&
922                     !memcmp(dev->dev_addr, ha, dev->addr_len))
923                         return dev;
924
925         return NULL;
926 }
927 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
928
929 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
930 {
931         struct net_device *dev;
932
933         ASSERT_RTNL();
934         for_each_netdev(net, dev)
935                 if (dev->type == type)
936                         return dev;
937
938         return NULL;
939 }
940 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
941
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973
974         ASSERT_RTNL();
975
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      to allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strlen(name) >= IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035
1036         p = strnchr(name, IFNAMSIZ-1, '%');
1037         if (p) {
1038                 /*
1039                  * Verify the string as this thing may have come from
1040                  * the user.  There must be either one "%d" and no other "%"
1041                  * characters.
1042                  */
1043                 if (p[1] != 'd' || strchr(p + 2, '%'))
1044                         return -EINVAL;
1045
1046                 /* Use one page as a bit array of possible slots */
1047                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1048                 if (!inuse)
1049                         return -ENOMEM;
1050
1051                 for_each_netdev(net, d) {
1052                         if (!sscanf(d->name, name, &i))
1053                                 continue;
1054                         if (i < 0 || i >= max_netdevices)
1055                                 continue;
1056
1057                         /*  avoid cases where sscanf is not exact inverse of printf */
1058                         snprintf(buf, IFNAMSIZ, name, i);
1059                         if (!strncmp(buf, d->name, IFNAMSIZ))
1060                                 set_bit(i, inuse);
1061                 }
1062
1063                 i = find_first_zero_bit(inuse, max_netdevices);
1064                 free_page((unsigned long) inuse);
1065         }
1066
1067         if (buf != name)
1068                 snprintf(buf, IFNAMSIZ, name, i);
1069         if (!__dev_get_by_name(net, buf))
1070                 return i;
1071
1072         /* It is possible to run out of possible slots
1073          * when the name is long and there isn't enough space left
1074          * for the digits, or if all bits are used.
1075          */
1076         return -ENFILE;
1077 }
1078
1079 /**
1080  *      dev_alloc_name - allocate a name for a device
1081  *      @dev: device
1082  *      @name: name format string
1083  *
1084  *      Passed a format string - eg "lt%d" it will try and find a suitable
1085  *      id. It scans list of devices to build up a free map, then chooses
1086  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1087  *      while allocating the name and adding the device in order to avoid
1088  *      duplicates.
1089  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1090  *      Returns the number of the unit assigned or a negative errno code.
1091  */
1092
1093 int dev_alloc_name(struct net_device *dev, const char *name)
1094 {
1095         char buf[IFNAMSIZ];
1096         struct net *net;
1097         int ret;
1098
1099         BUG_ON(!dev_net(dev));
1100         net = dev_net(dev);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strlcpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106 EXPORT_SYMBOL(dev_alloc_name);
1107
1108 static int dev_alloc_name_ns(struct net *net,
1109                              struct net_device *dev,
1110                              const char *name)
1111 {
1112         char buf[IFNAMSIZ];
1113         int ret;
1114
1115         ret = __dev_alloc_name(net, name, buf);
1116         if (ret >= 0)
1117                 strlcpy(dev->name, buf, IFNAMSIZ);
1118         return ret;
1119 }
1120
1121 static int dev_get_valid_name(struct net *net,
1122                               struct net_device *dev,
1123                               const char *name)
1124 {
1125         BUG_ON(!net);
1126
1127         if (!dev_valid_name(name))
1128                 return -EINVAL;
1129
1130         if (strchr(name, '%'))
1131                 return dev_alloc_name_ns(net, dev, name);
1132         else if (__dev_get_by_name(net, name))
1133                 return -EEXIST;
1134         else if (dev->name != name)
1135                 strlcpy(dev->name, name, IFNAMSIZ);
1136
1137         return 0;
1138 }
1139
1140 /**
1141  *      dev_change_name - change name of a device
1142  *      @dev: device
1143  *      @newname: name (or format string) must be at least IFNAMSIZ
1144  *
1145  *      Change name of a device, can pass format strings "eth%d".
1146  *      for wildcarding.
1147  */
1148 int dev_change_name(struct net_device *dev, const char *newname)
1149 {
1150         unsigned char old_assign_type;
1151         char oldname[IFNAMSIZ];
1152         int err = 0;
1153         int ret;
1154         struct net *net;
1155
1156         ASSERT_RTNL();
1157         BUG_ON(!dev_net(dev));
1158
1159         net = dev_net(dev);
1160         if (dev->flags & IFF_UP)
1161                 return -EBUSY;
1162
1163         write_seqcount_begin(&devnet_rename_seq);
1164
1165         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1166                 write_seqcount_end(&devnet_rename_seq);
1167                 return 0;
1168         }
1169
1170         memcpy(oldname, dev->name, IFNAMSIZ);
1171
1172         err = dev_get_valid_name(net, dev, newname);
1173         if (err < 0) {
1174                 write_seqcount_end(&devnet_rename_seq);
1175                 return err;
1176         }
1177
1178         if (oldname[0] && !strchr(oldname, '%'))
1179                 netdev_info(dev, "renamed from %s\n", oldname);
1180
1181         old_assign_type = dev->name_assign_type;
1182         dev->name_assign_type = NET_NAME_RENAMED;
1183
1184 rollback:
1185         ret = device_rename(&dev->dev, dev->name);
1186         if (ret) {
1187                 memcpy(dev->name, oldname, IFNAMSIZ);
1188                 dev->name_assign_type = old_assign_type;
1189                 write_seqcount_end(&devnet_rename_seq);
1190                 return ret;
1191         }
1192
1193         write_seqcount_end(&devnet_rename_seq);
1194
1195         netdev_adjacent_rename_links(dev, oldname);
1196
1197         write_lock_bh(&dev_base_lock);
1198         hlist_del_rcu(&dev->name_hlist);
1199         write_unlock_bh(&dev_base_lock);
1200
1201         synchronize_rcu();
1202
1203         write_lock_bh(&dev_base_lock);
1204         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1205         write_unlock_bh(&dev_base_lock);
1206
1207         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1208         ret = notifier_to_errno(ret);
1209
1210         if (ret) {
1211                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1212                 if (err >= 0) {
1213                         err = ret;
1214                         write_seqcount_begin(&devnet_rename_seq);
1215                         memcpy(dev->name, oldname, IFNAMSIZ);
1216                         memcpy(oldname, newname, IFNAMSIZ);
1217                         dev->name_assign_type = old_assign_type;
1218                         old_assign_type = NET_NAME_RENAMED;
1219                         goto rollback;
1220                 } else {
1221                         pr_err("%s: name change rollback failed: %d\n",
1222                                dev->name, ret);
1223                 }
1224         }
1225
1226         return err;
1227 }
1228
1229 /**
1230  *      dev_set_alias - change ifalias of a device
1231  *      @dev: device
1232  *      @alias: name up to IFALIASZ
1233  *      @len: limit of bytes to copy from info
1234  *
1235  *      Set ifalias for a device,
1236  */
1237 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1238 {
1239         char *new_ifalias;
1240
1241         ASSERT_RTNL();
1242
1243         if (len >= IFALIASZ)
1244                 return -EINVAL;
1245
1246         if (!len) {
1247                 kfree(dev->ifalias);
1248                 dev->ifalias = NULL;
1249                 return 0;
1250         }
1251
1252         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1253         if (!new_ifalias)
1254                 return -ENOMEM;
1255         dev->ifalias = new_ifalias;
1256         memcpy(dev->ifalias, alias, len);
1257         dev->ifalias[len] = 0;
1258
1259         return len;
1260 }
1261
1262
1263 /**
1264  *      netdev_features_change - device changes features
1265  *      @dev: device to cause notification
1266  *
1267  *      Called to indicate a device has changed features.
1268  */
1269 void netdev_features_change(struct net_device *dev)
1270 {
1271         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1272 }
1273 EXPORT_SYMBOL(netdev_features_change);
1274
1275 /**
1276  *      netdev_state_change - device changes state
1277  *      @dev: device to cause notification
1278  *
1279  *      Called to indicate a device has changed state. This function calls
1280  *      the notifier chains for netdev_chain and sends a NEWLINK message
1281  *      to the routing socket.
1282  */
1283 void netdev_state_change(struct net_device *dev)
1284 {
1285         if (dev->flags & IFF_UP) {
1286                 struct netdev_notifier_change_info change_info;
1287
1288                 change_info.flags_changed = 0;
1289                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1290                                               &change_info.info);
1291                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1292         }
1293 }
1294 EXPORT_SYMBOL(netdev_state_change);
1295
1296 /**
1297  * netdev_notify_peers - notify network peers about existence of @dev
1298  * @dev: network device
1299  *
1300  * Generate traffic such that interested network peers are aware of
1301  * @dev, such as by generating a gratuitous ARP. This may be used when
1302  * a device wants to inform the rest of the network about some sort of
1303  * reconfiguration such as a failover event or virtual machine
1304  * migration.
1305  */
1306 void netdev_notify_peers(struct net_device *dev)
1307 {
1308         rtnl_lock();
1309         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1310         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1311         rtnl_unlock();
1312 }
1313 EXPORT_SYMBOL(netdev_notify_peers);
1314
1315 static int __dev_open(struct net_device *dev)
1316 {
1317         const struct net_device_ops *ops = dev->netdev_ops;
1318         int ret;
1319
1320         ASSERT_RTNL();
1321
1322         if (!netif_device_present(dev))
1323                 return -ENODEV;
1324
1325         /* Block netpoll from trying to do any rx path servicing.
1326          * If we don't do this there is a chance ndo_poll_controller
1327          * or ndo_poll may be running while we open the device
1328          */
1329         netpoll_poll_disable(dev);
1330
1331         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1332         ret = notifier_to_errno(ret);
1333         if (ret)
1334                 return ret;
1335
1336         set_bit(__LINK_STATE_START, &dev->state);
1337
1338         if (ops->ndo_validate_addr)
1339                 ret = ops->ndo_validate_addr(dev);
1340
1341         if (!ret && ops->ndo_open)
1342                 ret = ops->ndo_open(dev);
1343
1344         netpoll_poll_enable(dev);
1345
1346         if (ret)
1347                 clear_bit(__LINK_STATE_START, &dev->state);
1348         else {
1349                 dev->flags |= IFF_UP;
1350                 dev_set_rx_mode(dev);
1351                 dev_activate(dev);
1352                 add_device_randomness(dev->dev_addr, dev->addr_len);
1353         }
1354
1355         return ret;
1356 }
1357
1358 /**
1359  *      dev_open        - prepare an interface for use.
1360  *      @dev:   device to open
1361  *
1362  *      Takes a device from down to up state. The device's private open
1363  *      function is invoked and then the multicast lists are loaded. Finally
1364  *      the device is moved into the up state and a %NETDEV_UP message is
1365  *      sent to the netdev notifier chain.
1366  *
1367  *      Calling this function on an active interface is a nop. On a failure
1368  *      a negative errno code is returned.
1369  */
1370 int dev_open(struct net_device *dev)
1371 {
1372         int ret;
1373
1374         if (dev->flags & IFF_UP)
1375                 return 0;
1376
1377         ret = __dev_open(dev);
1378         if (ret < 0)
1379                 return ret;
1380
1381         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1382         call_netdevice_notifiers(NETDEV_UP, dev);
1383
1384         return ret;
1385 }
1386 EXPORT_SYMBOL(dev_open);
1387
1388 static int __dev_close_many(struct list_head *head)
1389 {
1390         struct net_device *dev;
1391
1392         ASSERT_RTNL();
1393         might_sleep();
1394
1395         list_for_each_entry(dev, head, close_list) {
1396                 /* Temporarily disable netpoll until the interface is down */
1397                 netpoll_poll_disable(dev);
1398
1399                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1400
1401                 clear_bit(__LINK_STATE_START, &dev->state);
1402
1403                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1404                  * can be even on different cpu. So just clear netif_running().
1405                  *
1406                  * dev->stop() will invoke napi_disable() on all of it's
1407                  * napi_struct instances on this device.
1408                  */
1409                 smp_mb__after_atomic(); /* Commit netif_running(). */
1410         }
1411
1412         dev_deactivate_many(head);
1413
1414         list_for_each_entry(dev, head, close_list) {
1415                 const struct net_device_ops *ops = dev->netdev_ops;
1416
1417                 /*
1418                  *      Call the device specific close. This cannot fail.
1419                  *      Only if device is UP
1420                  *
1421                  *      We allow it to be called even after a DETACH hot-plug
1422                  *      event.
1423                  */
1424                 if (ops->ndo_stop)
1425                         ops->ndo_stop(dev);
1426
1427                 dev->flags &= ~IFF_UP;
1428                 netpoll_poll_enable(dev);
1429         }
1430
1431         return 0;
1432 }
1433
1434 static int __dev_close(struct net_device *dev)
1435 {
1436         int retval;
1437         LIST_HEAD(single);
1438
1439         list_add(&dev->close_list, &single);
1440         retval = __dev_close_many(&single);
1441         list_del(&single);
1442
1443         return retval;
1444 }
1445
1446 int dev_close_many(struct list_head *head, bool unlink)
1447 {
1448         struct net_device *dev, *tmp;
1449
1450         /* Remove the devices that don't need to be closed */
1451         list_for_each_entry_safe(dev, tmp, head, close_list)
1452                 if (!(dev->flags & IFF_UP))
1453                         list_del_init(&dev->close_list);
1454
1455         __dev_close_many(head);
1456
1457         list_for_each_entry_safe(dev, tmp, head, close_list) {
1458                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1459                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1460                 if (unlink)
1461                         list_del_init(&dev->close_list);
1462         }
1463
1464         return 0;
1465 }
1466 EXPORT_SYMBOL(dev_close_many);
1467
1468 /**
1469  *      dev_close - shutdown an interface.
1470  *      @dev: device to shutdown
1471  *
1472  *      This function moves an active device into down state. A
1473  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1474  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1475  *      chain.
1476  */
1477 int dev_close(struct net_device *dev)
1478 {
1479         if (dev->flags & IFF_UP) {
1480                 LIST_HEAD(single);
1481
1482                 list_add(&dev->close_list, &single);
1483                 dev_close_many(&single, true);
1484                 list_del(&single);
1485         }
1486         return 0;
1487 }
1488 EXPORT_SYMBOL(dev_close);
1489
1490
1491 /**
1492  *      dev_disable_lro - disable Large Receive Offload on a device
1493  *      @dev: device
1494  *
1495  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1496  *      called under RTNL.  This is needed if received packets may be
1497  *      forwarded to another interface.
1498  */
1499 void dev_disable_lro(struct net_device *dev)
1500 {
1501         struct net_device *lower_dev;
1502         struct list_head *iter;
1503
1504         dev->wanted_features &= ~NETIF_F_LRO;
1505         netdev_update_features(dev);
1506
1507         if (unlikely(dev->features & NETIF_F_LRO))
1508                 netdev_WARN(dev, "failed to disable LRO!\n");
1509
1510         netdev_for_each_lower_dev(dev, lower_dev, iter)
1511                 dev_disable_lro(lower_dev);
1512 }
1513 EXPORT_SYMBOL(dev_disable_lro);
1514
1515 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1516                                    struct net_device *dev)
1517 {
1518         struct netdev_notifier_info info;
1519
1520         netdev_notifier_info_init(&info, dev);
1521         return nb->notifier_call(nb, val, &info);
1522 }
1523
1524 static int dev_boot_phase = 1;
1525
1526 /**
1527  * register_netdevice_notifier - register a network notifier block
1528  * @nb: notifier
1529  *
1530  * Register a notifier to be called when network device events occur.
1531  * The notifier passed is linked into the kernel structures and must
1532  * not be reused until it has been unregistered. A negative errno code
1533  * is returned on a failure.
1534  *
1535  * When registered all registration and up events are replayed
1536  * to the new notifier to allow device to have a race free
1537  * view of the network device list.
1538  */
1539
1540 int register_netdevice_notifier(struct notifier_block *nb)
1541 {
1542         struct net_device *dev;
1543         struct net_device *last;
1544         struct net *net;
1545         int err;
1546
1547         rtnl_lock();
1548         err = raw_notifier_chain_register(&netdev_chain, nb);
1549         if (err)
1550                 goto unlock;
1551         if (dev_boot_phase)
1552                 goto unlock;
1553         for_each_net(net) {
1554                 for_each_netdev(net, dev) {
1555                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1556                         err = notifier_to_errno(err);
1557                         if (err)
1558                                 goto rollback;
1559
1560                         if (!(dev->flags & IFF_UP))
1561                                 continue;
1562
1563                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1564                 }
1565         }
1566
1567 unlock:
1568         rtnl_unlock();
1569         return err;
1570
1571 rollback:
1572         last = dev;
1573         for_each_net(net) {
1574                 for_each_netdev(net, dev) {
1575                         if (dev == last)
1576                                 goto outroll;
1577
1578                         if (dev->flags & IFF_UP) {
1579                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1580                                                         dev);
1581                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1582                         }
1583                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1584                 }
1585         }
1586
1587 outroll:
1588         raw_notifier_chain_unregister(&netdev_chain, nb);
1589         goto unlock;
1590 }
1591 EXPORT_SYMBOL(register_netdevice_notifier);
1592
1593 /**
1594  * unregister_netdevice_notifier - unregister a network notifier block
1595  * @nb: notifier
1596  *
1597  * Unregister a notifier previously registered by
1598  * register_netdevice_notifier(). The notifier is unlinked into the
1599  * kernel structures and may then be reused. A negative errno code
1600  * is returned on a failure.
1601  *
1602  * After unregistering unregister and down device events are synthesized
1603  * for all devices on the device list to the removed notifier to remove
1604  * the need for special case cleanup code.
1605  */
1606
1607 int unregister_netdevice_notifier(struct notifier_block *nb)
1608 {
1609         struct net_device *dev;
1610         struct net *net;
1611         int err;
1612
1613         rtnl_lock();
1614         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1615         if (err)
1616                 goto unlock;
1617
1618         for_each_net(net) {
1619                 for_each_netdev(net, dev) {
1620                         if (dev->flags & IFF_UP) {
1621                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1622                                                         dev);
1623                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1624                         }
1625                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1626                 }
1627         }
1628 unlock:
1629         rtnl_unlock();
1630         return err;
1631 }
1632 EXPORT_SYMBOL(unregister_netdevice_notifier);
1633
1634 /**
1635  *      call_netdevice_notifiers_info - call all network notifier blocks
1636  *      @val: value passed unmodified to notifier function
1637  *      @dev: net_device pointer passed unmodified to notifier function
1638  *      @info: notifier information data
1639  *
1640  *      Call all network notifier blocks.  Parameters and return value
1641  *      are as for raw_notifier_call_chain().
1642  */
1643
1644 static int call_netdevice_notifiers_info(unsigned long val,
1645                                          struct net_device *dev,
1646                                          struct netdev_notifier_info *info)
1647 {
1648         ASSERT_RTNL();
1649         netdev_notifier_info_init(info, dev);
1650         return raw_notifier_call_chain(&netdev_chain, val, info);
1651 }
1652
1653 /**
1654  *      call_netdevice_notifiers - call all network notifier blocks
1655  *      @val: value passed unmodified to notifier function
1656  *      @dev: net_device pointer passed unmodified to notifier function
1657  *
1658  *      Call all network notifier blocks.  Parameters and return value
1659  *      are as for raw_notifier_call_chain().
1660  */
1661
1662 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1663 {
1664         struct netdev_notifier_info info;
1665
1666         return call_netdevice_notifiers_info(val, dev, &info);
1667 }
1668 EXPORT_SYMBOL(call_netdevice_notifiers);
1669
1670 #ifdef CONFIG_NET_INGRESS
1671 static struct static_key ingress_needed __read_mostly;
1672
1673 void net_inc_ingress_queue(void)
1674 {
1675         static_key_slow_inc(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1678
1679 void net_dec_ingress_queue(void)
1680 {
1681         static_key_slow_dec(&ingress_needed);
1682 }
1683 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1684 #endif
1685
1686 #ifdef CONFIG_NET_EGRESS
1687 static struct static_key egress_needed __read_mostly;
1688
1689 void net_inc_egress_queue(void)
1690 {
1691         static_key_slow_inc(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1694
1695 void net_dec_egress_queue(void)
1696 {
1697         static_key_slow_dec(&egress_needed);
1698 }
1699 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1700 #endif
1701
1702 static struct static_key netstamp_needed __read_mostly;
1703 #ifdef HAVE_JUMP_LABEL
1704 static atomic_t netstamp_needed_deferred;
1705 static atomic_t netstamp_wanted;
1706 static void netstamp_clear(struct work_struct *work)
1707 {
1708         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709         int wanted;
1710
1711         wanted = atomic_add_return(deferred, &netstamp_wanted);
1712         if (wanted > 0)
1713                 static_key_enable(&netstamp_needed);
1714         else
1715                 static_key_disable(&netstamp_needed);
1716 }
1717 static DECLARE_WORK(netstamp_work, netstamp_clear);
1718 #endif
1719
1720 void net_enable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723         int wanted;
1724
1725         while (1) {
1726                 wanted = atomic_read(&netstamp_wanted);
1727                 if (wanted <= 0)
1728                         break;
1729                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1730                         return;
1731         }
1732         atomic_inc(&netstamp_needed_deferred);
1733         schedule_work(&netstamp_work);
1734 #else
1735         static_key_slow_inc(&netstamp_needed);
1736 #endif
1737 }
1738 EXPORT_SYMBOL(net_enable_timestamp);
1739
1740 void net_disable_timestamp(void)
1741 {
1742 #ifdef HAVE_JUMP_LABEL
1743         int wanted;
1744
1745         while (1) {
1746                 wanted = atomic_read(&netstamp_wanted);
1747                 if (wanted <= 1)
1748                         break;
1749                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1750                         return;
1751         }
1752         atomic_dec(&netstamp_needed_deferred);
1753         schedule_work(&netstamp_work);
1754 #else
1755         static_key_slow_dec(&netstamp_needed);
1756 #endif
1757 }
1758 EXPORT_SYMBOL(net_disable_timestamp);
1759
1760 static inline void net_timestamp_set(struct sk_buff *skb)
1761 {
1762         skb->tstamp = 0;
1763         if (static_key_false(&netstamp_needed))
1764                 __net_timestamp(skb);
1765 }
1766
1767 #define net_timestamp_check(COND, SKB)                  \
1768         if (static_key_false(&netstamp_needed)) {               \
1769                 if ((COND) && !(SKB)->tstamp)   \
1770                         __net_timestamp(SKB);           \
1771         }                                               \
1772
1773 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1774 {
1775         unsigned int len;
1776
1777         if (!(dev->flags & IFF_UP))
1778                 return false;
1779
1780         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1781         if (skb->len <= len)
1782                 return true;
1783
1784         /* if TSO is enabled, we don't care about the length as the packet
1785          * could be forwarded without being segmented before
1786          */
1787         if (skb_is_gso(skb))
1788                 return true;
1789
1790         return false;
1791 }
1792 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1793
1794 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1795 {
1796         int ret = ____dev_forward_skb(dev, skb);
1797
1798         if (likely(!ret)) {
1799                 skb->protocol = eth_type_trans(skb, dev);
1800                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1801         }
1802
1803         return ret;
1804 }
1805 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1806
1807 /**
1808  * dev_forward_skb - loopback an skb to another netif
1809  *
1810  * @dev: destination network device
1811  * @skb: buffer to forward
1812  *
1813  * return values:
1814  *      NET_RX_SUCCESS  (no congestion)
1815  *      NET_RX_DROP     (packet was dropped, but freed)
1816  *
1817  * dev_forward_skb can be used for injecting an skb from the
1818  * start_xmit function of one device into the receive queue
1819  * of another device.
1820  *
1821  * The receiving device may be in another namespace, so
1822  * we have to clear all information in the skb that could
1823  * impact namespace isolation.
1824  */
1825 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1826 {
1827         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1828 }
1829 EXPORT_SYMBOL_GPL(dev_forward_skb);
1830
1831 static inline int deliver_skb(struct sk_buff *skb,
1832                               struct packet_type *pt_prev,
1833                               struct net_device *orig_dev)
1834 {
1835         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1836                 return -ENOMEM;
1837         atomic_inc(&skb->users);
1838         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1839 }
1840
1841 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1842                                           struct packet_type **pt,
1843                                           struct net_device *orig_dev,
1844                                           __be16 type,
1845                                           struct list_head *ptype_list)
1846 {
1847         struct packet_type *ptype, *pt_prev = *pt;
1848
1849         list_for_each_entry_rcu(ptype, ptype_list, list) {
1850                 if (ptype->type != type)
1851                         continue;
1852                 if (pt_prev)
1853                         deliver_skb(skb, pt_prev, orig_dev);
1854                 pt_prev = ptype;
1855         }
1856         *pt = pt_prev;
1857 }
1858
1859 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1860 {
1861         if (!ptype->af_packet_priv || !skb->sk)
1862                 return false;
1863
1864         if (ptype->id_match)
1865                 return ptype->id_match(ptype, skb->sk);
1866         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1867                 return true;
1868
1869         return false;
1870 }
1871
1872 /*
1873  *      Support routine. Sends outgoing frames to any network
1874  *      taps currently in use.
1875  */
1876
1877 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1878 {
1879         struct packet_type *ptype;
1880         struct sk_buff *skb2 = NULL;
1881         struct packet_type *pt_prev = NULL;
1882         struct list_head *ptype_list = &ptype_all;
1883
1884         rcu_read_lock();
1885 again:
1886         list_for_each_entry_rcu(ptype, ptype_list, list) {
1887                 /* Never send packets back to the socket
1888                  * they originated from - MvS (miquels@drinkel.ow.org)
1889                  */
1890                 if (skb_loop_sk(ptype, skb))
1891                         continue;
1892
1893                 if (pt_prev) {
1894                         deliver_skb(skb2, pt_prev, skb->dev);
1895                         pt_prev = ptype;
1896                         continue;
1897                 }
1898
1899                 /* need to clone skb, done only once */
1900                 skb2 = skb_clone(skb, GFP_ATOMIC);
1901                 if (!skb2)
1902                         goto out_unlock;
1903
1904                 net_timestamp_set(skb2);
1905
1906                 /* skb->nh should be correctly
1907                  * set by sender, so that the second statement is
1908                  * just protection against buggy protocols.
1909                  */
1910                 skb_reset_mac_header(skb2);
1911
1912                 if (skb_network_header(skb2) < skb2->data ||
1913                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1914                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1915                                              ntohs(skb2->protocol),
1916                                              dev->name);
1917                         skb_reset_network_header(skb2);
1918                 }
1919
1920                 skb2->transport_header = skb2->network_header;
1921                 skb2->pkt_type = PACKET_OUTGOING;
1922                 pt_prev = ptype;
1923         }
1924
1925         if (ptype_list == &ptype_all) {
1926                 ptype_list = &dev->ptype_all;
1927                 goto again;
1928         }
1929 out_unlock:
1930         if (pt_prev)
1931                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1932         rcu_read_unlock();
1933 }
1934 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1935
1936 /**
1937  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1938  * @dev: Network device
1939  * @txq: number of queues available
1940  *
1941  * If real_num_tx_queues is changed the tc mappings may no longer be
1942  * valid. To resolve this verify the tc mapping remains valid and if
1943  * not NULL the mapping. With no priorities mapping to this
1944  * offset/count pair it will no longer be used. In the worst case TC0
1945  * is invalid nothing can be done so disable priority mappings. If is
1946  * expected that drivers will fix this mapping if they can before
1947  * calling netif_set_real_num_tx_queues.
1948  */
1949 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1950 {
1951         int i;
1952         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1953
1954         /* If TC0 is invalidated disable TC mapping */
1955         if (tc->offset + tc->count > txq) {
1956                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1957                 dev->num_tc = 0;
1958                 return;
1959         }
1960
1961         /* Invalidated prio to tc mappings set to TC0 */
1962         for (i = 1; i < TC_BITMASK + 1; i++) {
1963                 int q = netdev_get_prio_tc_map(dev, i);
1964
1965                 tc = &dev->tc_to_txq[q];
1966                 if (tc->offset + tc->count > txq) {
1967                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1968                                 i, q);
1969                         netdev_set_prio_tc_map(dev, i, 0);
1970                 }
1971         }
1972 }
1973
1974 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1975 {
1976         if (dev->num_tc) {
1977                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1978                 int i;
1979
1980                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1981                         if ((txq - tc->offset) < tc->count)
1982                                 return i;
1983                 }
1984
1985                 return -1;
1986         }
1987
1988         return 0;
1989 }
1990
1991 #ifdef CONFIG_XPS
1992 static DEFINE_MUTEX(xps_map_mutex);
1993 #define xmap_dereference(P)             \
1994         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1995
1996 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1997                              int tci, u16 index)
1998 {
1999         struct xps_map *map = NULL;
2000         int pos;
2001
2002         if (dev_maps)
2003                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2004         if (!map)
2005                 return false;
2006
2007         for (pos = map->len; pos--;) {
2008                 if (map->queues[pos] != index)
2009                         continue;
2010
2011                 if (map->len > 1) {
2012                         map->queues[pos] = map->queues[--map->len];
2013                         break;
2014                 }
2015
2016                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2017                 kfree_rcu(map, rcu);
2018                 return false;
2019         }
2020
2021         return true;
2022 }
2023
2024 static bool remove_xps_queue_cpu(struct net_device *dev,
2025                                  struct xps_dev_maps *dev_maps,
2026                                  int cpu, u16 offset, u16 count)
2027 {
2028         int num_tc = dev->num_tc ? : 1;
2029         bool active = false;
2030         int tci;
2031
2032         for (tci = cpu * num_tc; num_tc--; tci++) {
2033                 int i, j;
2034
2035                 for (i = count, j = offset; i--; j++) {
2036                         if (!remove_xps_queue(dev_maps, cpu, j))
2037                                 break;
2038                 }
2039
2040                 active |= i < 0;
2041         }
2042
2043         return active;
2044 }
2045
2046 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2047                                    u16 count)
2048 {
2049         struct xps_dev_maps *dev_maps;
2050         int cpu, i;
2051         bool active = false;
2052
2053         mutex_lock(&xps_map_mutex);
2054         dev_maps = xmap_dereference(dev->xps_maps);
2055
2056         if (!dev_maps)
2057                 goto out_no_maps;
2058
2059         for_each_possible_cpu(cpu)
2060                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2061                                                offset, count);
2062
2063         if (!active) {
2064                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2065                 kfree_rcu(dev_maps, rcu);
2066         }
2067
2068         for (i = offset + (count - 1); count--; i--)
2069                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2070                                              NUMA_NO_NODE);
2071
2072 out_no_maps:
2073         mutex_unlock(&xps_map_mutex);
2074 }
2075
2076 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2077 {
2078         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2079 }
2080
2081 static struct xps_map *expand_xps_map(struct xps_map *map,
2082                                       int cpu, u16 index)
2083 {
2084         struct xps_map *new_map;
2085         int alloc_len = XPS_MIN_MAP_ALLOC;
2086         int i, pos;
2087
2088         for (pos = 0; map && pos < map->len; pos++) {
2089                 if (map->queues[pos] != index)
2090                         continue;
2091                 return map;
2092         }
2093
2094         /* Need to add queue to this CPU's existing map */
2095         if (map) {
2096                 if (pos < map->alloc_len)
2097                         return map;
2098
2099                 alloc_len = map->alloc_len * 2;
2100         }
2101
2102         /* Need to allocate new map to store queue on this CPU's map */
2103         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2104                                cpu_to_node(cpu));
2105         if (!new_map)
2106                 return NULL;
2107
2108         for (i = 0; i < pos; i++)
2109                 new_map->queues[i] = map->queues[i];
2110         new_map->alloc_len = alloc_len;
2111         new_map->len = pos;
2112
2113         return new_map;
2114 }
2115
2116 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2117                         u16 index)
2118 {
2119         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2120         int i, cpu, tci, numa_node_id = -2;
2121         int maps_sz, num_tc = 1, tc = 0;
2122         struct xps_map *map, *new_map;
2123         bool active = false;
2124
2125         if (dev->num_tc) {
2126                 num_tc = dev->num_tc;
2127                 tc = netdev_txq_to_tc(dev, index);
2128                 if (tc < 0)
2129                         return -EINVAL;
2130         }
2131
2132         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2133         if (maps_sz < L1_CACHE_BYTES)
2134                 maps_sz = L1_CACHE_BYTES;
2135
2136         mutex_lock(&xps_map_mutex);
2137
2138         dev_maps = xmap_dereference(dev->xps_maps);
2139
2140         /* allocate memory for queue storage */
2141         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2142                 if (!new_dev_maps)
2143                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2144                 if (!new_dev_maps) {
2145                         mutex_unlock(&xps_map_mutex);
2146                         return -ENOMEM;
2147                 }
2148
2149                 tci = cpu * num_tc + tc;
2150                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2151                                  NULL;
2152
2153                 map = expand_xps_map(map, cpu, index);
2154                 if (!map)
2155                         goto error;
2156
2157                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2158         }
2159
2160         if (!new_dev_maps)
2161                 goto out_no_new_maps;
2162
2163         for_each_possible_cpu(cpu) {
2164                 /* copy maps belonging to foreign traffic classes */
2165                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2166                         /* fill in the new device map from the old device map */
2167                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2168                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2169                 }
2170
2171                 /* We need to explicitly update tci as prevous loop
2172                  * could break out early if dev_maps is NULL.
2173                  */
2174                 tci = cpu * num_tc + tc;
2175
2176                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2177                         /* add queue to CPU maps */
2178                         int pos = 0;
2179
2180                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2181                         while ((pos < map->len) && (map->queues[pos] != index))
2182                                 pos++;
2183
2184                         if (pos == map->len)
2185                                 map->queues[map->len++] = index;
2186 #ifdef CONFIG_NUMA
2187                         if (numa_node_id == -2)
2188                                 numa_node_id = cpu_to_node(cpu);
2189                         else if (numa_node_id != cpu_to_node(cpu))
2190                                 numa_node_id = -1;
2191 #endif
2192                 } else if (dev_maps) {
2193                         /* fill in the new device map from the old device map */
2194                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2195                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2196                 }
2197
2198                 /* copy maps belonging to foreign traffic classes */
2199                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2200                         /* fill in the new device map from the old device map */
2201                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2202                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2203                 }
2204         }
2205
2206         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2207
2208         /* Cleanup old maps */
2209         if (!dev_maps)
2210                 goto out_no_old_maps;
2211
2212         for_each_possible_cpu(cpu) {
2213                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2214                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2215                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2216                         if (map && map != new_map)
2217                                 kfree_rcu(map, rcu);
2218                 }
2219         }
2220
2221         kfree_rcu(dev_maps, rcu);
2222
2223 out_no_old_maps:
2224         dev_maps = new_dev_maps;
2225         active = true;
2226
2227 out_no_new_maps:
2228         /* update Tx queue numa node */
2229         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2230                                      (numa_node_id >= 0) ? numa_node_id :
2231                                      NUMA_NO_NODE);
2232
2233         if (!dev_maps)
2234                 goto out_no_maps;
2235
2236         /* removes queue from unused CPUs */
2237         for_each_possible_cpu(cpu) {
2238                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2239                         active |= remove_xps_queue(dev_maps, tci, index);
2240                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2241                         active |= remove_xps_queue(dev_maps, tci, index);
2242                 for (i = num_tc - tc, tci++; --i; tci++)
2243                         active |= remove_xps_queue(dev_maps, tci, index);
2244         }
2245
2246         /* free map if not active */
2247         if (!active) {
2248                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2249                 kfree_rcu(dev_maps, rcu);
2250         }
2251
2252 out_no_maps:
2253         mutex_unlock(&xps_map_mutex);
2254
2255         return 0;
2256 error:
2257         /* remove any maps that we added */
2258         for_each_possible_cpu(cpu) {
2259                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2260                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2261                         map = dev_maps ?
2262                               xmap_dereference(dev_maps->cpu_map[tci]) :
2263                               NULL;
2264                         if (new_map && new_map != map)
2265                                 kfree(new_map);
2266                 }
2267         }
2268
2269         mutex_unlock(&xps_map_mutex);
2270
2271         kfree(new_dev_maps);
2272         return -ENOMEM;
2273 }
2274 EXPORT_SYMBOL(netif_set_xps_queue);
2275
2276 #endif
2277 void netdev_reset_tc(struct net_device *dev)
2278 {
2279 #ifdef CONFIG_XPS
2280         netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282         dev->num_tc = 0;
2283         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2284         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2285 }
2286 EXPORT_SYMBOL(netdev_reset_tc);
2287
2288 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2289 {
2290         if (tc >= dev->num_tc)
2291                 return -EINVAL;
2292
2293 #ifdef CONFIG_XPS
2294         netif_reset_xps_queues(dev, offset, count);
2295 #endif
2296         dev->tc_to_txq[tc].count = count;
2297         dev->tc_to_txq[tc].offset = offset;
2298         return 0;
2299 }
2300 EXPORT_SYMBOL(netdev_set_tc_queue);
2301
2302 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2303 {
2304         if (num_tc > TC_MAX_QUEUE)
2305                 return -EINVAL;
2306
2307 #ifdef CONFIG_XPS
2308         netif_reset_xps_queues_gt(dev, 0);
2309 #endif
2310         dev->num_tc = num_tc;
2311         return 0;
2312 }
2313 EXPORT_SYMBOL(netdev_set_num_tc);
2314
2315 /*
2316  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2317  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2318  */
2319 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2320 {
2321         int rc;
2322
2323         if (txq < 1 || txq > dev->num_tx_queues)
2324                 return -EINVAL;
2325
2326         if (dev->reg_state == NETREG_REGISTERED ||
2327             dev->reg_state == NETREG_UNREGISTERING) {
2328                 ASSERT_RTNL();
2329
2330                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2331                                                   txq);
2332                 if (rc)
2333                         return rc;
2334
2335                 if (dev->num_tc)
2336                         netif_setup_tc(dev, txq);
2337
2338                 if (txq < dev->real_num_tx_queues) {
2339                         qdisc_reset_all_tx_gt(dev, txq);
2340 #ifdef CONFIG_XPS
2341                         netif_reset_xps_queues_gt(dev, txq);
2342 #endif
2343                 }
2344         }
2345
2346         dev->real_num_tx_queues = txq;
2347         return 0;
2348 }
2349 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2350
2351 #ifdef CONFIG_SYSFS
2352 /**
2353  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2354  *      @dev: Network device
2355  *      @rxq: Actual number of RX queues
2356  *
2357  *      This must be called either with the rtnl_lock held or before
2358  *      registration of the net device.  Returns 0 on success, or a
2359  *      negative error code.  If called before registration, it always
2360  *      succeeds.
2361  */
2362 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2363 {
2364         int rc;
2365
2366         if (rxq < 1 || rxq > dev->num_rx_queues)
2367                 return -EINVAL;
2368
2369         if (dev->reg_state == NETREG_REGISTERED) {
2370                 ASSERT_RTNL();
2371
2372                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2373                                                   rxq);
2374                 if (rc)
2375                         return rc;
2376         }
2377
2378         dev->real_num_rx_queues = rxq;
2379         return 0;
2380 }
2381 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2382 #endif
2383
2384 /**
2385  * netif_get_num_default_rss_queues - default number of RSS queues
2386  *
2387  * This routine should set an upper limit on the number of RSS queues
2388  * used by default by multiqueue devices.
2389  */
2390 int netif_get_num_default_rss_queues(void)
2391 {
2392         return is_kdump_kernel() ?
2393                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2394 }
2395 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2396
2397 static void __netif_reschedule(struct Qdisc *q)
2398 {
2399         struct softnet_data *sd;
2400         unsigned long flags;
2401
2402         local_irq_save(flags);
2403         sd = this_cpu_ptr(&softnet_data);
2404         q->next_sched = NULL;
2405         *sd->output_queue_tailp = q;
2406         sd->output_queue_tailp = &q->next_sched;
2407         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2408         local_irq_restore(flags);
2409 }
2410
2411 void __netif_schedule(struct Qdisc *q)
2412 {
2413         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2414                 __netif_reschedule(q);
2415 }
2416 EXPORT_SYMBOL(__netif_schedule);
2417
2418 struct dev_kfree_skb_cb {
2419         enum skb_free_reason reason;
2420 };
2421
2422 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2423 {
2424         return (struct dev_kfree_skb_cb *)skb->cb;
2425 }
2426
2427 void netif_schedule_queue(struct netdev_queue *txq)
2428 {
2429         rcu_read_lock();
2430         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2431                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2432
2433                 __netif_schedule(q);
2434         }
2435         rcu_read_unlock();
2436 }
2437 EXPORT_SYMBOL(netif_schedule_queue);
2438
2439 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2440 {
2441         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2442                 struct Qdisc *q;
2443
2444                 rcu_read_lock();
2445                 q = rcu_dereference(dev_queue->qdisc);
2446                 __netif_schedule(q);
2447                 rcu_read_unlock();
2448         }
2449 }
2450 EXPORT_SYMBOL(netif_tx_wake_queue);
2451
2452 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2453 {
2454         unsigned long flags;
2455
2456         if (unlikely(!skb))
2457                 return;
2458
2459         if (likely(atomic_read(&skb->users) == 1)) {
2460                 smp_rmb();
2461                 atomic_set(&skb->users, 0);
2462         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2463                 return;
2464         }
2465         get_kfree_skb_cb(skb)->reason = reason;
2466         local_irq_save(flags);
2467         skb->next = __this_cpu_read(softnet_data.completion_queue);
2468         __this_cpu_write(softnet_data.completion_queue, skb);
2469         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2470         local_irq_restore(flags);
2471 }
2472 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2473
2474 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2475 {
2476         if (in_irq() || irqs_disabled())
2477                 __dev_kfree_skb_irq(skb, reason);
2478         else
2479                 dev_kfree_skb(skb);
2480 }
2481 EXPORT_SYMBOL(__dev_kfree_skb_any);
2482
2483
2484 /**
2485  * netif_device_detach - mark device as removed
2486  * @dev: network device
2487  *
2488  * Mark device as removed from system and therefore no longer available.
2489  */
2490 void netif_device_detach(struct net_device *dev)
2491 {
2492         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2493             netif_running(dev)) {
2494                 netif_tx_stop_all_queues(dev);
2495         }
2496 }
2497 EXPORT_SYMBOL(netif_device_detach);
2498
2499 /**
2500  * netif_device_attach - mark device as attached
2501  * @dev: network device
2502  *
2503  * Mark device as attached from system and restart if needed.
2504  */
2505 void netif_device_attach(struct net_device *dev)
2506 {
2507         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2508             netif_running(dev)) {
2509                 netif_tx_wake_all_queues(dev);
2510                 __netdev_watchdog_up(dev);
2511         }
2512 }
2513 EXPORT_SYMBOL(netif_device_attach);
2514
2515 /*
2516  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2517  * to be used as a distribution range.
2518  */
2519 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2520                   unsigned int num_tx_queues)
2521 {
2522         u32 hash;
2523         u16 qoffset = 0;
2524         u16 qcount = num_tx_queues;
2525
2526         if (skb_rx_queue_recorded(skb)) {
2527                 hash = skb_get_rx_queue(skb);
2528                 while (unlikely(hash >= num_tx_queues))
2529                         hash -= num_tx_queues;
2530                 return hash;
2531         }
2532
2533         if (dev->num_tc) {
2534                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2535
2536                 qoffset = dev->tc_to_txq[tc].offset;
2537                 qcount = dev->tc_to_txq[tc].count;
2538         }
2539
2540         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2541 }
2542 EXPORT_SYMBOL(__skb_tx_hash);
2543
2544 static void skb_warn_bad_offload(const struct sk_buff *skb)
2545 {
2546         static const netdev_features_t null_features;
2547         struct net_device *dev = skb->dev;
2548         const char *name = "";
2549
2550         if (!net_ratelimit())
2551                 return;
2552
2553         if (dev) {
2554                 if (dev->dev.parent)
2555                         name = dev_driver_string(dev->dev.parent);
2556                 else
2557                         name = netdev_name(dev);
2558         }
2559         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2560              "gso_type=%d ip_summed=%d\n",
2561              name, dev ? &dev->features : &null_features,
2562              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2563              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2564              skb_shinfo(skb)->gso_type, skb->ip_summed);
2565 }
2566
2567 /*
2568  * Invalidate hardware checksum when packet is to be mangled, and
2569  * complete checksum manually on outgoing path.
2570  */
2571 int skb_checksum_help(struct sk_buff *skb)
2572 {
2573         __wsum csum;
2574         int ret = 0, offset;
2575
2576         if (skb->ip_summed == CHECKSUM_COMPLETE)
2577                 goto out_set_summed;
2578
2579         if (unlikely(skb_shinfo(skb)->gso_size)) {
2580                 skb_warn_bad_offload(skb);
2581                 return -EINVAL;
2582         }
2583
2584         /* Before computing a checksum, we should make sure no frag could
2585          * be modified by an external entity : checksum could be wrong.
2586          */
2587         if (skb_has_shared_frag(skb)) {
2588                 ret = __skb_linearize(skb);
2589                 if (ret)
2590                         goto out;
2591         }
2592
2593         offset = skb_checksum_start_offset(skb);
2594         BUG_ON(offset >= skb_headlen(skb));
2595         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2596
2597         offset += skb->csum_offset;
2598         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2599
2600         if (skb_cloned(skb) &&
2601             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2602                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2603                 if (ret)
2604                         goto out;
2605         }
2606
2607         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2608 out_set_summed:
2609         skb->ip_summed = CHECKSUM_NONE;
2610 out:
2611         return ret;
2612 }
2613 EXPORT_SYMBOL(skb_checksum_help);
2614
2615 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2616 {
2617         __be16 type = skb->protocol;
2618
2619         /* Tunnel gso handlers can set protocol to ethernet. */
2620         if (type == htons(ETH_P_TEB)) {
2621                 struct ethhdr *eth;
2622
2623                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2624                         return 0;
2625
2626                 eth = (struct ethhdr *)skb_mac_header(skb);
2627                 type = eth->h_proto;
2628         }
2629
2630         return __vlan_get_protocol(skb, type, depth);
2631 }
2632
2633 /**
2634  *      skb_mac_gso_segment - mac layer segmentation handler.
2635  *      @skb: buffer to segment
2636  *      @features: features for the output path (see dev->features)
2637  */
2638 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2639                                     netdev_features_t features)
2640 {
2641         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2642         struct packet_offload *ptype;
2643         int vlan_depth = skb->mac_len;
2644         __be16 type = skb_network_protocol(skb, &vlan_depth);
2645
2646         if (unlikely(!type))
2647                 return ERR_PTR(-EINVAL);
2648
2649         __skb_pull(skb, vlan_depth);
2650
2651         rcu_read_lock();
2652         list_for_each_entry_rcu(ptype, &offload_base, list) {
2653                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2654                         segs = ptype->callbacks.gso_segment(skb, features);
2655                         break;
2656                 }
2657         }
2658         rcu_read_unlock();
2659
2660         __skb_push(skb, skb->data - skb_mac_header(skb));
2661
2662         return segs;
2663 }
2664 EXPORT_SYMBOL(skb_mac_gso_segment);
2665
2666
2667 /* openvswitch calls this on rx path, so we need a different check.
2668  */
2669 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2670 {
2671         if (tx_path)
2672                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2673                        skb->ip_summed != CHECKSUM_NONE;
2674
2675         return skb->ip_summed == CHECKSUM_NONE;
2676 }
2677
2678 /**
2679  *      __skb_gso_segment - Perform segmentation on skb.
2680  *      @skb: buffer to segment
2681  *      @features: features for the output path (see dev->features)
2682  *      @tx_path: whether it is called in TX path
2683  *
2684  *      This function segments the given skb and returns a list of segments.
2685  *
2686  *      It may return NULL if the skb requires no segmentation.  This is
2687  *      only possible when GSO is used for verifying header integrity.
2688  *
2689  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2690  */
2691 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2692                                   netdev_features_t features, bool tx_path)
2693 {
2694         struct sk_buff *segs;
2695
2696         if (unlikely(skb_needs_check(skb, tx_path))) {
2697                 int err;
2698
2699                 /* We're going to init ->check field in TCP or UDP header */
2700                 err = skb_cow_head(skb, 0);
2701                 if (err < 0)
2702                         return ERR_PTR(err);
2703         }
2704
2705         /* Only report GSO partial support if it will enable us to
2706          * support segmentation on this frame without needing additional
2707          * work.
2708          */
2709         if (features & NETIF_F_GSO_PARTIAL) {
2710                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2711                 struct net_device *dev = skb->dev;
2712
2713                 partial_features |= dev->features & dev->gso_partial_features;
2714                 if (!skb_gso_ok(skb, features | partial_features))
2715                         features &= ~NETIF_F_GSO_PARTIAL;
2716         }
2717
2718         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2719                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2720
2721         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2722         SKB_GSO_CB(skb)->encap_level = 0;
2723
2724         skb_reset_mac_header(skb);
2725         skb_reset_mac_len(skb);
2726
2727         segs = skb_mac_gso_segment(skb, features);
2728
2729         if (unlikely(skb_needs_check(skb, tx_path)))
2730                 skb_warn_bad_offload(skb);
2731
2732         return segs;
2733 }
2734 EXPORT_SYMBOL(__skb_gso_segment);
2735
2736 /* Take action when hardware reception checksum errors are detected. */
2737 #ifdef CONFIG_BUG
2738 void netdev_rx_csum_fault(struct net_device *dev)
2739 {
2740         if (net_ratelimit()) {
2741                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2742                 dump_stack();
2743         }
2744 }
2745 EXPORT_SYMBOL(netdev_rx_csum_fault);
2746 #endif
2747
2748 /* Actually, we should eliminate this check as soon as we know, that:
2749  * 1. IOMMU is present and allows to map all the memory.
2750  * 2. No high memory really exists on this machine.
2751  */
2752
2753 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2754 {
2755 #ifdef CONFIG_HIGHMEM
2756         int i;
2757
2758         if (!(dev->features & NETIF_F_HIGHDMA)) {
2759                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2760                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2761
2762                         if (PageHighMem(skb_frag_page(frag)))
2763                                 return 1;
2764                 }
2765         }
2766
2767         if (PCI_DMA_BUS_IS_PHYS) {
2768                 struct device *pdev = dev->dev.parent;
2769
2770                 if (!pdev)
2771                         return 0;
2772                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2773                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2774                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2775
2776                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2777                                 return 1;
2778                 }
2779         }
2780 #endif
2781         return 0;
2782 }
2783
2784 /* If MPLS offload request, verify we are testing hardware MPLS features
2785  * instead of standard features for the netdev.
2786  */
2787 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2788 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2789                                            netdev_features_t features,
2790                                            __be16 type)
2791 {
2792         if (eth_p_mpls(type))
2793                 features &= skb->dev->mpls_features;
2794
2795         return features;
2796 }
2797 #else
2798 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2799                                            netdev_features_t features,
2800                                            __be16 type)
2801 {
2802         return features;
2803 }
2804 #endif
2805
2806 static netdev_features_t harmonize_features(struct sk_buff *skb,
2807         netdev_features_t features)
2808 {
2809         int tmp;
2810         __be16 type;
2811
2812         type = skb_network_protocol(skb, &tmp);
2813         features = net_mpls_features(skb, features, type);
2814
2815         if (skb->ip_summed != CHECKSUM_NONE &&
2816             !can_checksum_protocol(features, type)) {
2817                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2818         }
2819         if (illegal_highdma(skb->dev, skb))
2820                 features &= ~NETIF_F_SG;
2821
2822         return features;
2823 }
2824
2825 netdev_features_t passthru_features_check(struct sk_buff *skb,
2826                                           struct net_device *dev,
2827                                           netdev_features_t features)
2828 {
2829         return features;
2830 }
2831 EXPORT_SYMBOL(passthru_features_check);
2832
2833 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2834                                              struct net_device *dev,
2835                                              netdev_features_t features)
2836 {
2837         return vlan_features_check(skb, features);
2838 }
2839
2840 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2841                                             struct net_device *dev,
2842                                             netdev_features_t features)
2843 {
2844         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2845
2846         if (gso_segs > dev->gso_max_segs)
2847                 return features & ~NETIF_F_GSO_MASK;
2848
2849         /* Support for GSO partial features requires software
2850          * intervention before we can actually process the packets
2851          * so we need to strip support for any partial features now
2852          * and we can pull them back in after we have partially
2853          * segmented the frame.
2854          */
2855         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2856                 features &= ~dev->gso_partial_features;
2857
2858         /* Make sure to clear the IPv4 ID mangling feature if the
2859          * IPv4 header has the potential to be fragmented.
2860          */
2861         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2862                 struct iphdr *iph = skb->encapsulation ?
2863                                     inner_ip_hdr(skb) : ip_hdr(skb);
2864
2865                 if (!(iph->frag_off & htons(IP_DF)))
2866                         features &= ~NETIF_F_TSO_MANGLEID;
2867         }
2868
2869         return features;
2870 }
2871
2872 netdev_features_t netif_skb_features(struct sk_buff *skb)
2873 {
2874         struct net_device *dev = skb->dev;
2875         netdev_features_t features = dev->features;
2876
2877         if (skb_is_gso(skb))
2878                 features = gso_features_check(skb, dev, features);
2879
2880         /* If encapsulation offload request, verify we are testing
2881          * hardware encapsulation features instead of standard
2882          * features for the netdev
2883          */
2884         if (skb->encapsulation)
2885                 features &= dev->hw_enc_features;
2886
2887         if (skb_vlan_tagged(skb))
2888                 features = netdev_intersect_features(features,
2889                                                      dev->vlan_features |
2890                                                      NETIF_F_HW_VLAN_CTAG_TX |
2891                                                      NETIF_F_HW_VLAN_STAG_TX);
2892
2893         if (dev->netdev_ops->ndo_features_check)
2894                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2895                                                                 features);
2896         else
2897                 features &= dflt_features_check(skb, dev, features);
2898
2899         return harmonize_features(skb, features);
2900 }
2901 EXPORT_SYMBOL(netif_skb_features);
2902
2903 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2904                     struct netdev_queue *txq, bool more)
2905 {
2906         unsigned int len;
2907         int rc;
2908
2909         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2910                 dev_queue_xmit_nit(skb, dev);
2911
2912         len = skb->len;
2913         trace_net_dev_start_xmit(skb, dev);
2914         rc = netdev_start_xmit(skb, dev, txq, more);
2915         trace_net_dev_xmit(skb, rc, dev, len);
2916
2917         return rc;
2918 }
2919
2920 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2921                                     struct netdev_queue *txq, int *ret)
2922 {
2923         struct sk_buff *skb = first;
2924         int rc = NETDEV_TX_OK;
2925
2926         while (skb) {
2927                 struct sk_buff *next = skb->next;
2928
2929                 skb->next = NULL;
2930                 rc = xmit_one(skb, dev, txq, next != NULL);
2931                 if (unlikely(!dev_xmit_complete(rc))) {
2932                         skb->next = next;
2933                         goto out;
2934                 }
2935
2936                 skb = next;
2937                 if (netif_xmit_stopped(txq) && skb) {
2938                         rc = NETDEV_TX_BUSY;
2939                         break;
2940                 }
2941         }
2942
2943 out:
2944         *ret = rc;
2945         return skb;
2946 }
2947
2948 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2949                                           netdev_features_t features)
2950 {
2951         if (skb_vlan_tag_present(skb) &&
2952             !vlan_hw_offload_capable(features, skb->vlan_proto))
2953                 skb = __vlan_hwaccel_push_inside(skb);
2954         return skb;
2955 }
2956
2957 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2958 {
2959         netdev_features_t features;
2960
2961         features = netif_skb_features(skb);
2962         skb = validate_xmit_vlan(skb, features);
2963         if (unlikely(!skb))
2964                 goto out_null;
2965
2966         if (netif_needs_gso(skb, features)) {
2967                 struct sk_buff *segs;
2968
2969                 segs = skb_gso_segment(skb, features);
2970                 if (IS_ERR(segs)) {
2971                         goto out_kfree_skb;
2972                 } else if (segs) {
2973                         consume_skb(skb);
2974                         skb = segs;
2975                 }
2976         } else {
2977                 if (skb_needs_linearize(skb, features) &&
2978                     __skb_linearize(skb))
2979                         goto out_kfree_skb;
2980
2981                 if (validate_xmit_xfrm(skb, features))
2982                         goto out_kfree_skb;
2983
2984                 /* If packet is not checksummed and device does not
2985                  * support checksumming for this protocol, complete
2986                  * checksumming here.
2987                  */
2988                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2989                         if (skb->encapsulation)
2990                                 skb_set_inner_transport_header(skb,
2991                                                                skb_checksum_start_offset(skb));
2992                         else
2993                                 skb_set_transport_header(skb,
2994                                                          skb_checksum_start_offset(skb));
2995                         if (!(features & NETIF_F_CSUM_MASK) &&
2996                             skb_checksum_help(skb))
2997                                 goto out_kfree_skb;
2998                 }
2999         }
3000
3001         return skb;
3002
3003 out_kfree_skb:
3004         kfree_skb(skb);
3005 out_null:
3006         atomic_long_inc(&dev->tx_dropped);
3007         return NULL;
3008 }
3009
3010 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3011 {
3012         struct sk_buff *next, *head = NULL, *tail;
3013
3014         for (; skb != NULL; skb = next) {
3015                 next = skb->next;
3016                 skb->next = NULL;
3017
3018                 /* in case skb wont be segmented, point to itself */
3019                 skb->prev = skb;
3020
3021                 skb = validate_xmit_skb(skb, dev);
3022                 if (!skb)
3023                         continue;
3024
3025                 if (!head)
3026                         head = skb;
3027                 else
3028                         tail->next = skb;
3029                 /* If skb was segmented, skb->prev points to
3030                  * the last segment. If not, it still contains skb.
3031                  */
3032                 tail = skb->prev;
3033         }
3034         return head;
3035 }
3036 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3037
3038 static void qdisc_pkt_len_init(struct sk_buff *skb)
3039 {
3040         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3041
3042         qdisc_skb_cb(skb)->pkt_len = skb->len;
3043
3044         /* To get more precise estimation of bytes sent on wire,
3045          * we add to pkt_len the headers size of all segments
3046          */
3047         if (shinfo->gso_size)  {
3048                 unsigned int hdr_len;
3049                 u16 gso_segs = shinfo->gso_segs;
3050
3051                 /* mac layer + network layer */
3052                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3053
3054                 /* + transport layer */
3055                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3056                         hdr_len += tcp_hdrlen(skb);
3057                 else
3058                         hdr_len += sizeof(struct udphdr);
3059
3060                 if (shinfo->gso_type & SKB_GSO_DODGY)
3061                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3062                                                 shinfo->gso_size);
3063
3064                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3065         }
3066 }
3067
3068 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3069                                  struct net_device *dev,
3070                                  struct netdev_queue *txq)
3071 {
3072         spinlock_t *root_lock = qdisc_lock(q);
3073         struct sk_buff *to_free = NULL;
3074         bool contended;
3075         int rc;
3076
3077         qdisc_calculate_pkt_len(skb, q);
3078         /*
3079          * Heuristic to force contended enqueues to serialize on a
3080          * separate lock before trying to get qdisc main lock.
3081          * This permits qdisc->running owner to get the lock more
3082          * often and dequeue packets faster.
3083          */
3084         contended = qdisc_is_running(q);
3085         if (unlikely(contended))
3086                 spin_lock(&q->busylock);
3087
3088         spin_lock(root_lock);
3089         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3090                 __qdisc_drop(skb, &to_free);
3091                 rc = NET_XMIT_DROP;
3092         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3093                    qdisc_run_begin(q)) {
3094                 /*
3095                  * This is a work-conserving queue; there are no old skbs
3096                  * waiting to be sent out; and the qdisc is not running -
3097                  * xmit the skb directly.
3098                  */
3099
3100                 qdisc_bstats_update(q, skb);
3101
3102                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3103                         if (unlikely(contended)) {
3104                                 spin_unlock(&q->busylock);
3105                                 contended = false;
3106                         }
3107                         __qdisc_run(q);
3108                 } else
3109                         qdisc_run_end(q);
3110
3111                 rc = NET_XMIT_SUCCESS;
3112         } else {
3113                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3114                 if (qdisc_run_begin(q)) {
3115                         if (unlikely(contended)) {
3116                                 spin_unlock(&q->busylock);
3117                                 contended = false;
3118                         }
3119                         __qdisc_run(q);
3120                 }
3121         }
3122         spin_unlock(root_lock);
3123         if (unlikely(to_free))
3124                 kfree_skb_list(to_free);
3125         if (unlikely(contended))
3126                 spin_unlock(&q->busylock);
3127         return rc;
3128 }
3129
3130 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3131 static void skb_update_prio(struct sk_buff *skb)
3132 {
3133         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3134
3135         if (!skb->priority && skb->sk && map) {
3136                 unsigned int prioidx =
3137                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3138
3139                 if (prioidx < map->priomap_len)
3140                         skb->priority = map->priomap[prioidx];
3141         }
3142 }
3143 #else
3144 #define skb_update_prio(skb)
3145 #endif
3146
3147 DEFINE_PER_CPU(int, xmit_recursion);
3148 EXPORT_SYMBOL(xmit_recursion);
3149
3150 /**
3151  *      dev_loopback_xmit - loop back @skb
3152  *      @net: network namespace this loopback is happening in
3153  *      @sk:  sk needed to be a netfilter okfn
3154  *      @skb: buffer to transmit
3155  */
3156 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3157 {
3158         skb_reset_mac_header(skb);
3159         __skb_pull(skb, skb_network_offset(skb));
3160         skb->pkt_type = PACKET_LOOPBACK;
3161         skb->ip_summed = CHECKSUM_UNNECESSARY;
3162         WARN_ON(!skb_dst(skb));
3163         skb_dst_force(skb);
3164         netif_rx_ni(skb);
3165         return 0;
3166 }
3167 EXPORT_SYMBOL(dev_loopback_xmit);
3168
3169 #ifdef CONFIG_NET_EGRESS
3170 static struct sk_buff *
3171 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3172 {
3173         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3174         struct tcf_result cl_res;
3175
3176         if (!cl)
3177                 return skb;
3178
3179         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3180         qdisc_bstats_cpu_update(cl->q, skb);
3181
3182         switch (tc_classify(skb, cl, &cl_res, false)) {
3183         case TC_ACT_OK:
3184         case TC_ACT_RECLASSIFY:
3185                 skb->tc_index = TC_H_MIN(cl_res.classid);
3186                 break;
3187         case TC_ACT_SHOT:
3188                 qdisc_qstats_cpu_drop(cl->q);
3189                 *ret = NET_XMIT_DROP;
3190                 kfree_skb(skb);
3191                 return NULL;
3192         case TC_ACT_STOLEN:
3193         case TC_ACT_QUEUED:
3194                 *ret = NET_XMIT_SUCCESS;
3195                 consume_skb(skb);
3196                 return NULL;
3197         case TC_ACT_REDIRECT:
3198                 /* No need to push/pop skb's mac_header here on egress! */
3199                 skb_do_redirect(skb);
3200                 *ret = NET_XMIT_SUCCESS;
3201                 return NULL;
3202         default:
3203                 break;
3204         }
3205
3206         return skb;
3207 }
3208 #endif /* CONFIG_NET_EGRESS */
3209
3210 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3211 {
3212 #ifdef CONFIG_XPS
3213         struct xps_dev_maps *dev_maps;
3214         struct xps_map *map;
3215         int queue_index = -1;
3216
3217         rcu_read_lock();
3218         dev_maps = rcu_dereference(dev->xps_maps);
3219         if (dev_maps) {
3220                 unsigned int tci = skb->sender_cpu - 1;
3221
3222                 if (dev->num_tc) {
3223                         tci *= dev->num_tc;
3224                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3225                 }
3226
3227                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3228                 if (map) {
3229                         if (map->len == 1)
3230                                 queue_index = map->queues[0];
3231                         else
3232                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3233                                                                            map->len)];
3234                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3235                                 queue_index = -1;
3236                 }
3237         }
3238         rcu_read_unlock();
3239
3240         return queue_index;
3241 #else
3242         return -1;
3243 #endif
3244 }
3245
3246 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3247 {
3248         struct sock *sk = skb->sk;
3249         int queue_index = sk_tx_queue_get(sk);
3250
3251         if (queue_index < 0 || skb->ooo_okay ||
3252             queue_index >= dev->real_num_tx_queues) {
3253                 int new_index = get_xps_queue(dev, skb);
3254
3255                 if (new_index < 0)
3256                         new_index = skb_tx_hash(dev, skb);
3257
3258                 if (queue_index != new_index && sk &&
3259                     sk_fullsock(sk) &&
3260                     rcu_access_pointer(sk->sk_dst_cache))
3261                         sk_tx_queue_set(sk, new_index);
3262
3263                 queue_index = new_index;
3264         }
3265
3266         return queue_index;
3267 }
3268
3269 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3270                                     struct sk_buff *skb,
3271                                     void *accel_priv)
3272 {
3273         int queue_index = 0;
3274
3275 #ifdef CONFIG_XPS
3276         u32 sender_cpu = skb->sender_cpu - 1;
3277
3278         if (sender_cpu >= (u32)NR_CPUS)
3279                 skb->sender_cpu = raw_smp_processor_id() + 1;
3280 #endif
3281
3282         if (dev->real_num_tx_queues != 1) {
3283                 const struct net_device_ops *ops = dev->netdev_ops;
3284
3285                 if (ops->ndo_select_queue)
3286                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3287                                                             __netdev_pick_tx);
3288                 else
3289                         queue_index = __netdev_pick_tx(dev, skb);
3290
3291                 if (!accel_priv)
3292                         queue_index = netdev_cap_txqueue(dev, queue_index);
3293         }
3294
3295         skb_set_queue_mapping(skb, queue_index);
3296         return netdev_get_tx_queue(dev, queue_index);
3297 }
3298
3299 /**
3300  *      __dev_queue_xmit - transmit a buffer
3301  *      @skb: buffer to transmit
3302  *      @accel_priv: private data used for L2 forwarding offload
3303  *
3304  *      Queue a buffer for transmission to a network device. The caller must
3305  *      have set the device and priority and built the buffer before calling
3306  *      this function. The function can be called from an interrupt.
3307  *
3308  *      A negative errno code is returned on a failure. A success does not
3309  *      guarantee the frame will be transmitted as it may be dropped due
3310  *      to congestion or traffic shaping.
3311  *
3312  * -----------------------------------------------------------------------------------
3313  *      I notice this method can also return errors from the queue disciplines,
3314  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3315  *      be positive.
3316  *
3317  *      Regardless of the return value, the skb is consumed, so it is currently
3318  *      difficult to retry a send to this method.  (You can bump the ref count
3319  *      before sending to hold a reference for retry if you are careful.)
3320  *
3321  *      When calling this method, interrupts MUST be enabled.  This is because
3322  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3323  *          --BLG
3324  */
3325 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3326 {
3327         struct net_device *dev = skb->dev;
3328         struct netdev_queue *txq;
3329         struct Qdisc *q;
3330         int rc = -ENOMEM;
3331
3332         skb_reset_mac_header(skb);
3333
3334         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3335                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3336
3337         /* Disable soft irqs for various locks below. Also
3338          * stops preemption for RCU.
3339          */
3340         rcu_read_lock_bh();
3341
3342         skb_update_prio(skb);
3343
3344         qdisc_pkt_len_init(skb);
3345 #ifdef CONFIG_NET_CLS_ACT
3346         skb->tc_at_ingress = 0;
3347 # ifdef CONFIG_NET_EGRESS
3348         if (static_key_false(&egress_needed)) {
3349                 skb = sch_handle_egress(skb, &rc, dev);
3350                 if (!skb)
3351                         goto out;
3352         }
3353 # endif
3354 #endif
3355         /* If device/qdisc don't need skb->dst, release it right now while
3356          * its hot in this cpu cache.
3357          */
3358         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3359                 skb_dst_drop(skb);
3360         else
3361                 skb_dst_force(skb);
3362
3363         txq = netdev_pick_tx(dev, skb, accel_priv);
3364         q = rcu_dereference_bh(txq->qdisc);
3365
3366         trace_net_dev_queue(skb);
3367         if (q->enqueue) {
3368                 rc = __dev_xmit_skb(skb, q, dev, txq);
3369                 goto out;
3370         }
3371
3372         /* The device has no queue. Common case for software devices:
3373          * loopback, all the sorts of tunnels...
3374
3375          * Really, it is unlikely that netif_tx_lock protection is necessary
3376          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3377          * counters.)
3378          * However, it is possible, that they rely on protection
3379          * made by us here.
3380
3381          * Check this and shot the lock. It is not prone from deadlocks.
3382          *Either shot noqueue qdisc, it is even simpler 8)
3383          */
3384         if (dev->flags & IFF_UP) {
3385                 int cpu = smp_processor_id(); /* ok because BHs are off */
3386
3387                 if (txq->xmit_lock_owner != cpu) {
3388                         if (unlikely(__this_cpu_read(xmit_recursion) >
3389                                      XMIT_RECURSION_LIMIT))
3390                                 goto recursion_alert;
3391
3392                         skb = validate_xmit_skb(skb, dev);
3393                         if (!skb)
3394                                 goto out;
3395
3396                         HARD_TX_LOCK(dev, txq, cpu);
3397
3398                         if (!netif_xmit_stopped(txq)) {
3399                                 __this_cpu_inc(xmit_recursion);
3400                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3401                                 __this_cpu_dec(xmit_recursion);
3402                                 if (dev_xmit_complete(rc)) {
3403                                         HARD_TX_UNLOCK(dev, txq);
3404                                         goto out;
3405                                 }
3406                         }
3407                         HARD_TX_UNLOCK(dev, txq);
3408                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3409                                              dev->name);
3410                 } else {
3411                         /* Recursion is detected! It is possible,
3412                          * unfortunately
3413                          */
3414 recursion_alert:
3415                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3416                                              dev->name);
3417                 }
3418         }
3419
3420         rc = -ENETDOWN;
3421         rcu_read_unlock_bh();
3422
3423         atomic_long_inc(&dev->tx_dropped);
3424         kfree_skb_list(skb);
3425         return rc;
3426 out:
3427         rcu_read_unlock_bh();
3428         return rc;
3429 }
3430
3431 int dev_queue_xmit(struct sk_buff *skb)
3432 {
3433         return __dev_queue_xmit(skb, NULL);
3434 }
3435 EXPORT_SYMBOL(dev_queue_xmit);
3436
3437 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3438 {
3439         return __dev_queue_xmit(skb, accel_priv);
3440 }
3441 EXPORT_SYMBOL(dev_queue_xmit_accel);
3442
3443
3444 /*************************************************************************
3445  *                      Receiver routines
3446  *************************************************************************/
3447
3448 int netdev_max_backlog __read_mostly = 1000;
3449 EXPORT_SYMBOL(netdev_max_backlog);
3450
3451 int netdev_tstamp_prequeue __read_mostly = 1;
3452 int netdev_budget __read_mostly = 300;
3453 unsigned int __read_mostly netdev_budget_usecs = 2000;
3454 int weight_p __read_mostly = 64;           /* old backlog weight */
3455 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3456 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3457 int dev_rx_weight __read_mostly = 64;
3458 int dev_tx_weight __read_mostly = 64;
3459
3460 /* Called with irq disabled */
3461 static inline void ____napi_schedule(struct softnet_data *sd,
3462                                      struct napi_struct *napi)
3463 {
3464         list_add_tail(&napi->poll_list, &sd->poll_list);
3465         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3466 }
3467
3468 #ifdef CONFIG_RPS
3469
3470 /* One global table that all flow-based protocols share. */
3471 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3472 EXPORT_SYMBOL(rps_sock_flow_table);
3473 u32 rps_cpu_mask __read_mostly;
3474 EXPORT_SYMBOL(rps_cpu_mask);
3475
3476 struct static_key rps_needed __read_mostly;
3477 EXPORT_SYMBOL(rps_needed);
3478 struct static_key rfs_needed __read_mostly;
3479 EXPORT_SYMBOL(rfs_needed);
3480
3481 static struct rps_dev_flow *
3482 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483             struct rps_dev_flow *rflow, u16 next_cpu)
3484 {
3485         if (next_cpu < nr_cpu_ids) {
3486 #ifdef CONFIG_RFS_ACCEL
3487                 struct netdev_rx_queue *rxqueue;
3488                 struct rps_dev_flow_table *flow_table;
3489                 struct rps_dev_flow *old_rflow;
3490                 u32 flow_id;
3491                 u16 rxq_index;
3492                 int rc;
3493
3494                 /* Should we steer this flow to a different hardware queue? */
3495                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3496                     !(dev->features & NETIF_F_NTUPLE))
3497                         goto out;
3498                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3499                 if (rxq_index == skb_get_rx_queue(skb))
3500                         goto out;
3501
3502                 rxqueue = dev->_rx + rxq_index;
3503                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3504                 if (!flow_table)
3505                         goto out;
3506                 flow_id = skb_get_hash(skb) & flow_table->mask;
3507                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3508                                                         rxq_index, flow_id);
3509                 if (rc < 0)
3510                         goto out;
3511                 old_rflow = rflow;
3512                 rflow = &flow_table->flows[flow_id];
3513                 rflow->filter = rc;
3514                 if (old_rflow->filter == rflow->filter)
3515                         old_rflow->filter = RPS_NO_FILTER;
3516         out:
3517 #endif
3518                 rflow->last_qtail =
3519                         per_cpu(softnet_data, next_cpu).input_queue_head;
3520         }
3521
3522         rflow->cpu = next_cpu;
3523         return rflow;
3524 }
3525
3526 /*
3527  * get_rps_cpu is called from netif_receive_skb and returns the target
3528  * CPU from the RPS map of the receiving queue for a given skb.
3529  * rcu_read_lock must be held on entry.
3530  */
3531 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3532                        struct rps_dev_flow **rflowp)
3533 {
3534         const struct rps_sock_flow_table *sock_flow_table;
3535         struct netdev_rx_queue *rxqueue = dev->_rx;
3536         struct rps_dev_flow_table *flow_table;
3537         struct rps_map *map;
3538         int cpu = -1;
3539         u32 tcpu;
3540         u32 hash;
3541
3542         if (skb_rx_queue_recorded(skb)) {
3543                 u16 index = skb_get_rx_queue(skb);
3544
3545                 if (unlikely(index >= dev->real_num_rx_queues)) {
3546                         WARN_ONCE(dev->real_num_rx_queues > 1,
3547                                   "%s received packet on queue %u, but number "
3548                                   "of RX queues is %u\n",
3549                                   dev->name, index, dev->real_num_rx_queues);
3550                         goto done;
3551                 }
3552                 rxqueue += index;
3553         }
3554
3555         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3556
3557         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3558         map = rcu_dereference(rxqueue->rps_map);
3559         if (!flow_table && !map)
3560                 goto done;
3561
3562         skb_reset_network_header(skb);
3563         hash = skb_get_hash(skb);
3564         if (!hash)
3565                 goto done;
3566
3567         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3568         if (flow_table && sock_flow_table) {
3569                 struct rps_dev_flow *rflow;
3570                 u32 next_cpu;
3571                 u32 ident;
3572
3573                 /* First check into global flow table if there is a match */
3574                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3575                 if ((ident ^ hash) & ~rps_cpu_mask)
3576                         goto try_rps;
3577
3578                 next_cpu = ident & rps_cpu_mask;
3579
3580                 /* OK, now we know there is a match,
3581                  * we can look at the local (per receive queue) flow table
3582                  */
3583                 rflow = &flow_table->flows[hash & flow_table->mask];
3584                 tcpu = rflow->cpu;
3585
3586                 /*
3587                  * If the desired CPU (where last recvmsg was done) is
3588                  * different from current CPU (one in the rx-queue flow
3589                  * table entry), switch if one of the following holds:
3590                  *   - Current CPU is unset (>= nr_cpu_ids).
3591                  *   - Current CPU is offline.
3592                  *   - The current CPU's queue tail has advanced beyond the
3593                  *     last packet that was enqueued using this table entry.
3594                  *     This guarantees that all previous packets for the flow
3595                  *     have been dequeued, thus preserving in order delivery.
3596                  */
3597                 if (unlikely(tcpu != next_cpu) &&
3598                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3599                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3600                       rflow->last_qtail)) >= 0)) {
3601                         tcpu = next_cpu;
3602                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3603                 }
3604
3605                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3606                         *rflowp = rflow;
3607                         cpu = tcpu;
3608                         goto done;
3609                 }
3610         }
3611
3612 try_rps:
3613
3614         if (map) {
3615                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3616                 if (cpu_online(tcpu)) {
3617                         cpu = tcpu;
3618                         goto done;
3619                 }
3620         }
3621
3622 done:
3623         return cpu;
3624 }
3625
3626 #ifdef CONFIG_RFS_ACCEL
3627
3628 /**
3629  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3630  * @dev: Device on which the filter was set
3631  * @rxq_index: RX queue index
3632  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3633  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3634  *
3635  * Drivers that implement ndo_rx_flow_steer() should periodically call
3636  * this function for each installed filter and remove the filters for
3637  * which it returns %true.
3638  */
3639 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3640                          u32 flow_id, u16 filter_id)
3641 {
3642         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3643         struct rps_dev_flow_table *flow_table;
3644         struct rps_dev_flow *rflow;
3645         bool expire = true;
3646         unsigned int cpu;
3647
3648         rcu_read_lock();
3649         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3650         if (flow_table && flow_id <= flow_table->mask) {
3651                 rflow = &flow_table->flows[flow_id];
3652                 cpu = ACCESS_ONCE(rflow->cpu);
3653                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3654                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3655                            rflow->last_qtail) <
3656                      (int)(10 * flow_table->mask)))
3657                         expire = false;
3658         }
3659         rcu_read_unlock();
3660         return expire;
3661 }
3662 EXPORT_SYMBOL(rps_may_expire_flow);
3663
3664 #endif /* CONFIG_RFS_ACCEL */
3665
3666 /* Called from hardirq (IPI) context */
3667 static void rps_trigger_softirq(void *data)
3668 {
3669         struct softnet_data *sd = data;
3670
3671         ____napi_schedule(sd, &sd->backlog);
3672         sd->received_rps++;
3673 }
3674
3675 #endif /* CONFIG_RPS */
3676
3677 /*
3678  * Check if this softnet_data structure is another cpu one
3679  * If yes, queue it to our IPI list and return 1
3680  * If no, return 0
3681  */
3682 static int rps_ipi_queued(struct softnet_data *sd)
3683 {
3684 #ifdef CONFIG_RPS
3685         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3686
3687         if (sd != mysd) {
3688                 sd->rps_ipi_next = mysd->rps_ipi_list;
3689                 mysd->rps_ipi_list = sd;
3690
3691                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3692                 return 1;
3693         }
3694 #endif /* CONFIG_RPS */
3695         return 0;
3696 }
3697
3698 #ifdef CONFIG_NET_FLOW_LIMIT
3699 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3700 #endif
3701
3702 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3703 {
3704 #ifdef CONFIG_NET_FLOW_LIMIT
3705         struct sd_flow_limit *fl;
3706         struct softnet_data *sd;
3707         unsigned int old_flow, new_flow;
3708
3709         if (qlen < (netdev_max_backlog >> 1))
3710                 return false;
3711
3712         sd = this_cpu_ptr(&softnet_data);
3713
3714         rcu_read_lock();
3715         fl = rcu_dereference(sd->flow_limit);
3716         if (fl) {
3717                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3718                 old_flow = fl->history[fl->history_head];
3719                 fl->history[fl->history_head] = new_flow;
3720
3721                 fl->history_head++;
3722                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3723
3724                 if (likely(fl->buckets[old_flow]))
3725                         fl->buckets[old_flow]--;
3726
3727                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3728                         fl->count++;
3729                         rcu_read_unlock();
3730                         return true;
3731                 }
3732         }
3733         rcu_read_unlock();
3734 #endif
3735         return false;
3736 }
3737
3738 /*
3739  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3740  * queue (may be a remote CPU queue).
3741  */
3742 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3743                               unsigned int *qtail)
3744 {
3745         struct softnet_data *sd;
3746         unsigned long flags;
3747         unsigned int qlen;
3748
3749         sd = &per_cpu(softnet_data, cpu);
3750
3751         local_irq_save(flags);
3752
3753         rps_lock(sd);
3754         if (!netif_running(skb->dev))
3755                 goto drop;
3756         qlen = skb_queue_len(&sd->input_pkt_queue);
3757         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3758                 if (qlen) {
3759 enqueue:
3760                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3761                         input_queue_tail_incr_save(sd, qtail);
3762                         rps_unlock(sd);
3763                         local_irq_restore(flags);
3764                         return NET_RX_SUCCESS;
3765                 }
3766
3767                 /* Schedule NAPI for backlog device
3768                  * We can use non atomic operation since we own the queue lock
3769                  */
3770                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3771                         if (!rps_ipi_queued(sd))
3772                                 ____napi_schedule(sd, &sd->backlog);
3773                 }
3774                 goto enqueue;
3775         }
3776
3777 drop:
3778         sd->dropped++;
3779         rps_unlock(sd);
3780
3781         local_irq_restore(flags);
3782
3783         atomic_long_inc(&skb->dev->rx_dropped);
3784         kfree_skb(skb);
3785         return NET_RX_DROP;
3786 }
3787
3788 static int netif_rx_internal(struct sk_buff *skb)
3789 {
3790         int ret;
3791
3792         net_timestamp_check(netdev_tstamp_prequeue, skb);
3793
3794         trace_netif_rx(skb);
3795 #ifdef CONFIG_RPS
3796         if (static_key_false(&rps_needed)) {
3797                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3798                 int cpu;
3799
3800                 preempt_disable();
3801                 rcu_read_lock();
3802
3803                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3804                 if (cpu < 0)
3805                         cpu = smp_processor_id();
3806
3807                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3808
3809                 rcu_read_unlock();
3810                 preempt_enable();
3811         } else
3812 #endif
3813         {
3814                 unsigned int qtail;
3815
3816                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3817                 put_cpu();
3818         }
3819         return ret;
3820 }
3821
3822 /**
3823  *      netif_rx        -       post buffer to the network code
3824  *      @skb: buffer to post
3825  *
3826  *      This function receives a packet from a device driver and queues it for
3827  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3828  *      may be dropped during processing for congestion control or by the
3829  *      protocol layers.
3830  *
3831  *      return values:
3832  *      NET_RX_SUCCESS  (no congestion)
3833  *      NET_RX_DROP     (packet was dropped)
3834  *
3835  */
3836
3837 int netif_rx(struct sk_buff *skb)
3838 {
3839         trace_netif_rx_entry(skb);
3840
3841         return netif_rx_internal(skb);
3842 }
3843 EXPORT_SYMBOL(netif_rx);
3844
3845 int netif_rx_ni(struct sk_buff *skb)
3846 {
3847         int err;
3848
3849         trace_netif_rx_ni_entry(skb);
3850
3851         preempt_disable();
3852         err = netif_rx_internal(skb);
3853         if (local_softirq_pending())
3854                 do_softirq();
3855         preempt_enable();
3856
3857         return err;
3858 }
3859 EXPORT_SYMBOL(netif_rx_ni);
3860
3861 static __latent_entropy void net_tx_action(struct softirq_action *h)
3862 {
3863         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3864
3865         if (sd->completion_queue) {
3866                 struct sk_buff *clist;
3867
3868                 local_irq_disable();
3869                 clist = sd->completion_queue;
3870                 sd->completion_queue = NULL;
3871                 local_irq_enable();
3872
3873                 while (clist) {
3874                         struct sk_buff *skb = clist;
3875
3876                         clist = clist->next;
3877
3878                         WARN_ON(atomic_read(&skb->users));
3879                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3880                                 trace_consume_skb(skb);
3881                         else
3882                                 trace_kfree_skb(skb, net_tx_action);
3883
3884                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3885                                 __kfree_skb(skb);
3886                         else
3887                                 __kfree_skb_defer(skb);
3888                 }
3889
3890                 __kfree_skb_flush();
3891         }
3892
3893         if (sd->output_queue) {
3894                 struct Qdisc *head;
3895
3896                 local_irq_disable();
3897                 head = sd->output_queue;
3898                 sd->output_queue = NULL;
3899                 sd->output_queue_tailp = &sd->output_queue;
3900                 local_irq_enable();
3901
3902                 while (head) {
3903                         struct Qdisc *q = head;
3904                         spinlock_t *root_lock;
3905
3906                         head = head->next_sched;
3907
3908                         root_lock = qdisc_lock(q);
3909                         spin_lock(root_lock);
3910                         /* We need to make sure head->next_sched is read
3911                          * before clearing __QDISC_STATE_SCHED
3912                          */
3913                         smp_mb__before_atomic();
3914                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3915                         qdisc_run(q);
3916                         spin_unlock(root_lock);
3917                 }
3918         }
3919 }
3920
3921 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3922 /* This hook is defined here for ATM LANE */
3923 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3924                              unsigned char *addr) __read_mostly;
3925 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3926 #endif
3927
3928 static inline struct sk_buff *
3929 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3930                    struct net_device *orig_dev)
3931 {
3932 #ifdef CONFIG_NET_CLS_ACT
3933         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3934         struct tcf_result cl_res;
3935
3936         /* If there's at least one ingress present somewhere (so
3937          * we get here via enabled static key), remaining devices
3938          * that are not configured with an ingress qdisc will bail
3939          * out here.
3940          */
3941         if (!cl)
3942                 return skb;
3943         if (*pt_prev) {
3944                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3945                 *pt_prev = NULL;
3946         }
3947
3948         qdisc_skb_cb(skb)->pkt_len = skb->len;
3949         skb->tc_at_ingress = 1;
3950         qdisc_bstats_cpu_update(cl->q, skb);
3951
3952         switch (tc_classify(skb, cl, &cl_res, false)) {
3953         case TC_ACT_OK:
3954         case TC_ACT_RECLASSIFY:
3955                 skb->tc_index = TC_H_MIN(cl_res.classid);
3956                 break;
3957         case TC_ACT_SHOT:
3958                 qdisc_qstats_cpu_drop(cl->q);
3959                 kfree_skb(skb);
3960                 return NULL;
3961         case TC_ACT_STOLEN:
3962         case TC_ACT_QUEUED:
3963                 consume_skb(skb);
3964                 return NULL;
3965         case TC_ACT_REDIRECT:
3966                 /* skb_mac_header check was done by cls/act_bpf, so
3967                  * we can safely push the L2 header back before
3968                  * redirecting to another netdev
3969                  */
3970                 __skb_push(skb, skb->mac_len);
3971                 skb_do_redirect(skb);
3972                 return NULL;
3973         default:
3974                 break;
3975         }
3976 #endif /* CONFIG_NET_CLS_ACT */
3977         return skb;
3978 }
3979
3980 /**
3981  *      netdev_is_rx_handler_busy - check if receive handler is registered
3982  *      @dev: device to check
3983  *
3984  *      Check if a receive handler is already registered for a given device.
3985  *      Return true if there one.
3986  *
3987  *      The caller must hold the rtnl_mutex.
3988  */
3989 bool netdev_is_rx_handler_busy(struct net_device *dev)
3990 {
3991         ASSERT_RTNL();
3992         return dev && rtnl_dereference(dev->rx_handler);
3993 }
3994 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3995
3996 /**
3997  *      netdev_rx_handler_register - register receive handler
3998  *      @dev: device to register a handler for
3999  *      @rx_handler: receive handler to register
4000  *      @rx_handler_data: data pointer that is used by rx handler
4001  *
4002  *      Register a receive handler for a device. This handler will then be
4003  *      called from __netif_receive_skb. A negative errno code is returned
4004  *      on a failure.
4005  *
4006  *      The caller must hold the rtnl_mutex.
4007  *
4008  *      For a general description of rx_handler, see enum rx_handler_result.
4009  */
4010 int netdev_rx_handler_register(struct net_device *dev,
4011                                rx_handler_func_t *rx_handler,
4012                                void *rx_handler_data)
4013 {
4014         if (netdev_is_rx_handler_busy(dev))
4015                 return -EBUSY;
4016
4017         /* Note: rx_handler_data must be set before rx_handler */
4018         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4019         rcu_assign_pointer(dev->rx_handler, rx_handler);
4020
4021         return 0;
4022 }
4023 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4024
4025 /**
4026  *      netdev_rx_handler_unregister - unregister receive handler
4027  *      @dev: device to unregister a handler from
4028  *
4029  *      Unregister a receive handler from a device.
4030  *
4031  *      The caller must hold the rtnl_mutex.
4032  */
4033 void netdev_rx_handler_unregister(struct net_device *dev)
4034 {
4035
4036         ASSERT_RTNL();
4037         RCU_INIT_POINTER(dev->rx_handler, NULL);
4038         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4039          * section has a guarantee to see a non NULL rx_handler_data
4040          * as well.
4041          */
4042         synchronize_net();
4043         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4044 }
4045 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4046
4047 /*
4048  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4049  * the special handling of PFMEMALLOC skbs.
4050  */
4051 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4052 {
4053         switch (skb->protocol) {
4054         case htons(ETH_P_ARP):
4055         case htons(ETH_P_IP):
4056         case htons(ETH_P_IPV6):
4057         case htons(ETH_P_8021Q):
4058         case htons(ETH_P_8021AD):
4059                 return true;
4060         default:
4061                 return false;
4062         }
4063 }
4064
4065 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4066                              int *ret, struct net_device *orig_dev)
4067 {
4068 #ifdef CONFIG_NETFILTER_INGRESS
4069         if (nf_hook_ingress_active(skb)) {
4070                 int ingress_retval;
4071
4072                 if (*pt_prev) {
4073                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4074                         *pt_prev = NULL;
4075                 }
4076
4077                 rcu_read_lock();
4078                 ingress_retval = nf_hook_ingress(skb);
4079                 rcu_read_unlock();
4080                 return ingress_retval;
4081         }
4082 #endif /* CONFIG_NETFILTER_INGRESS */
4083         return 0;
4084 }
4085
4086 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4087 {
4088         struct packet_type *ptype, *pt_prev;
4089         rx_handler_func_t *rx_handler;
4090         struct net_device *orig_dev;
4091         bool deliver_exact = false;
4092         int ret = NET_RX_DROP;
4093         __be16 type;
4094
4095         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4096
4097         trace_netif_receive_skb(skb);
4098
4099         orig_dev = skb->dev;
4100
4101         skb_reset_network_header(skb);
4102         if (!skb_transport_header_was_set(skb))
4103                 skb_reset_transport_header(skb);
4104         skb_reset_mac_len(skb);
4105
4106         pt_prev = NULL;
4107
4108 another_round:
4109         skb->skb_iif = skb->dev->ifindex;
4110
4111         __this_cpu_inc(softnet_data.processed);
4112
4113         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4114             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4115                 skb = skb_vlan_untag(skb);
4116                 if (unlikely(!skb))
4117                         goto out;
4118         }
4119
4120         if (skb_skip_tc_classify(skb))
4121                 goto skip_classify;
4122
4123         if (pfmemalloc)
4124                 goto skip_taps;
4125
4126         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4127                 if (pt_prev)
4128                         ret = deliver_skb(skb, pt_prev, orig_dev);
4129                 pt_prev = ptype;
4130         }
4131
4132         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4133                 if (pt_prev)
4134                         ret = deliver_skb(skb, pt_prev, orig_dev);
4135                 pt_prev = ptype;
4136         }
4137
4138 skip_taps:
4139 #ifdef CONFIG_NET_INGRESS
4140         if (static_key_false(&ingress_needed)) {
4141                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4142                 if (!skb)
4143                         goto out;
4144
4145                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4146                         goto out;
4147         }
4148 #endif
4149         skb_reset_tc(skb);
4150 skip_classify:
4151         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4152                 goto drop;
4153
4154         if (skb_vlan_tag_present(skb)) {
4155                 if (pt_prev) {
4156                         ret = deliver_skb(skb, pt_prev, orig_dev);
4157                         pt_prev = NULL;
4158                 }
4159                 if (vlan_do_receive(&skb))
4160                         goto another_round;
4161                 else if (unlikely(!skb))
4162                         goto out;
4163         }
4164
4165         rx_handler = rcu_dereference(skb->dev->rx_handler);
4166         if (rx_handler) {
4167                 if (pt_prev) {
4168                         ret = deliver_skb(skb, pt_prev, orig_dev);
4169                         pt_prev = NULL;
4170                 }
4171                 switch (rx_handler(&skb)) {
4172                 case RX_HANDLER_CONSUMED:
4173                         ret = NET_RX_SUCCESS;
4174                         goto out;
4175                 case RX_HANDLER_ANOTHER:
4176                         goto another_round;
4177                 case RX_HANDLER_EXACT:
4178                         deliver_exact = true;
4179                 case RX_HANDLER_PASS:
4180                         break;
4181                 default:
4182                         BUG();
4183                 }
4184         }
4185
4186         if (unlikely(skb_vlan_tag_present(skb))) {
4187                 if (skb_vlan_tag_get_id(skb))
4188                         skb->pkt_type = PACKET_OTHERHOST;
4189                 /* Note: we might in the future use prio bits
4190                  * and set skb->priority like in vlan_do_receive()
4191                  * For the time being, just ignore Priority Code Point
4192                  */
4193                 skb->vlan_tci = 0;
4194         }
4195
4196         type = skb->protocol;
4197
4198         /* deliver only exact match when indicated */
4199         if (likely(!deliver_exact)) {
4200                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201                                        &ptype_base[ntohs(type) &
4202                                                    PTYPE_HASH_MASK]);
4203         }
4204
4205         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4206                                &orig_dev->ptype_specific);
4207
4208         if (unlikely(skb->dev != orig_dev)) {
4209                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4210                                        &skb->dev->ptype_specific);
4211         }
4212
4213         if (pt_prev) {
4214                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4215                         goto drop;
4216                 else
4217                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4218         } else {
4219 drop:
4220                 if (!deliver_exact)
4221                         atomic_long_inc(&skb->dev->rx_dropped);
4222                 else
4223                         atomic_long_inc(&skb->dev->rx_nohandler);
4224                 kfree_skb(skb);
4225                 /* Jamal, now you will not able to escape explaining
4226                  * me how you were going to use this. :-)
4227                  */
4228                 ret = NET_RX_DROP;
4229         }
4230
4231 out:
4232         return ret;
4233 }
4234
4235 static int __netif_receive_skb(struct sk_buff *skb)
4236 {
4237         int ret;
4238
4239         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4240                 unsigned int noreclaim_flag;
4241
4242                 /*
4243                  * PFMEMALLOC skbs are special, they should
4244                  * - be delivered to SOCK_MEMALLOC sockets only
4245                  * - stay away from userspace
4246                  * - have bounded memory usage
4247                  *
4248                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4249                  * context down to all allocation sites.
4250                  */
4251                 noreclaim_flag = memalloc_noreclaim_save();
4252                 ret = __netif_receive_skb_core(skb, true);
4253                 memalloc_noreclaim_restore(noreclaim_flag);
4254         } else
4255                 ret = __netif_receive_skb_core(skb, false);
4256
4257         return ret;
4258 }
4259
4260 static struct static_key generic_xdp_needed __read_mostly;
4261
4262 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4263 {
4264         struct bpf_prog *new = xdp->prog;
4265         int ret = 0;
4266
4267         switch (xdp->command) {
4268         case XDP_SETUP_PROG: {
4269                 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4270
4271                 rcu_assign_pointer(dev->xdp_prog, new);
4272                 if (old)
4273                         bpf_prog_put(old);
4274
4275                 if (old && !new) {
4276                         static_key_slow_dec(&generic_xdp_needed);
4277                 } else if (new && !old) {
4278                         static_key_slow_inc(&generic_xdp_needed);
4279                         dev_disable_lro(dev);
4280                 }
4281                 break;
4282         }
4283
4284         case XDP_QUERY_PROG:
4285                 xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog);
4286                 break;
4287
4288         default:
4289                 ret = -EINVAL;
4290                 break;
4291         }
4292
4293         return ret;
4294 }
4295
4296 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4297                                      struct bpf_prog *xdp_prog)
4298 {
4299         struct xdp_buff xdp;
4300         u32 act = XDP_DROP;
4301         void *orig_data;
4302         int hlen, off;
4303         u32 mac_len;
4304
4305         /* Reinjected packets coming from act_mirred or similar should
4306          * not get XDP generic processing.
4307          */
4308         if (skb_cloned(skb))
4309                 return XDP_PASS;
4310
4311         if (skb_linearize(skb))
4312                 goto do_drop;
4313
4314         /* The XDP program wants to see the packet starting at the MAC
4315          * header.
4316          */
4317         mac_len = skb->data - skb_mac_header(skb);
4318         hlen = skb_headlen(skb) + mac_len;
4319         xdp.data = skb->data - mac_len;
4320         xdp.data_end = xdp.data + hlen;
4321         xdp.data_hard_start = skb->data - skb_headroom(skb);
4322         orig_data = xdp.data;
4323
4324         act = bpf_prog_run_xdp(xdp_prog, &xdp);
4325
4326         off = xdp.data - orig_data;
4327         if (off > 0)
4328                 __skb_pull(skb, off);
4329         else if (off < 0)
4330                 __skb_push(skb, -off);
4331
4332         switch (act) {
4333         case XDP_TX:
4334                 __skb_push(skb, mac_len);
4335                 /* fall through */
4336         case XDP_PASS:
4337                 break;
4338
4339         default:
4340                 bpf_warn_invalid_xdp_action(act);
4341                 /* fall through */
4342         case XDP_ABORTED:
4343                 trace_xdp_exception(skb->dev, xdp_prog, act);
4344                 /* fall through */
4345         case XDP_DROP:
4346         do_drop:
4347                 kfree_skb(skb);
4348                 break;
4349         }
4350
4351         return act;
4352 }
4353
4354 /* When doing generic XDP we have to bypass the qdisc layer and the
4355  * network taps in order to match in-driver-XDP behavior.
4356  */
4357 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4358 {
4359         struct net_device *dev = skb->dev;
4360         struct netdev_queue *txq;
4361         bool free_skb = true;
4362         int cpu, rc;
4363
4364         txq = netdev_pick_tx(dev, skb, NULL);
4365         cpu = smp_processor_id();
4366         HARD_TX_LOCK(dev, txq, cpu);
4367         if (!netif_xmit_stopped(txq)) {
4368                 rc = netdev_start_xmit(skb, dev, txq, 0);
4369                 if (dev_xmit_complete(rc))
4370                         free_skb = false;
4371         }
4372         HARD_TX_UNLOCK(dev, txq);
4373         if (free_skb) {
4374                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4375                 kfree_skb(skb);
4376         }
4377 }
4378
4379 static int netif_receive_skb_internal(struct sk_buff *skb)
4380 {
4381         int ret;
4382
4383         net_timestamp_check(netdev_tstamp_prequeue, skb);
4384
4385         if (skb_defer_rx_timestamp(skb))
4386                 return NET_RX_SUCCESS;
4387
4388         rcu_read_lock();
4389
4390         if (static_key_false(&generic_xdp_needed)) {
4391                 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4392
4393                 if (xdp_prog) {
4394                         u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4395
4396                         if (act != XDP_PASS) {
4397                                 rcu_read_unlock();
4398                                 if (act == XDP_TX)
4399                                         generic_xdp_tx(skb, xdp_prog);
4400                                 return NET_RX_DROP;
4401                         }
4402                 }
4403         }
4404
4405 #ifdef CONFIG_RPS
4406         if (static_key_false(&rps_needed)) {
4407                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4408                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4409
4410                 if (cpu >= 0) {
4411                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4412                         rcu_read_unlock();
4413                         return ret;
4414                 }
4415         }
4416 #endif
4417         ret = __netif_receive_skb(skb);
4418         rcu_read_unlock();
4419         return ret;
4420 }
4421
4422 /**
4423  *      netif_receive_skb - process receive buffer from network
4424  *      @skb: buffer to process
4425  *
4426  *      netif_receive_skb() is the main receive data processing function.
4427  *      It always succeeds. The buffer may be dropped during processing
4428  *      for congestion control or by the protocol layers.
4429  *
4430  *      This function may only be called from softirq context and interrupts
4431  *      should be enabled.
4432  *
4433  *      Return values (usually ignored):
4434  *      NET_RX_SUCCESS: no congestion
4435  *      NET_RX_DROP: packet was dropped
4436  */
4437 int netif_receive_skb(struct sk_buff *skb)
4438 {
4439         trace_netif_receive_skb_entry(skb);
4440
4441         return netif_receive_skb_internal(skb);
4442 }
4443 EXPORT_SYMBOL(netif_receive_skb);
4444
4445 DEFINE_PER_CPU(struct work_struct, flush_works);
4446
4447 /* Network device is going away, flush any packets still pending */
4448 static void flush_backlog(struct work_struct *work)
4449 {
4450         struct sk_buff *skb, *tmp;
4451         struct softnet_data *sd;
4452
4453         local_bh_disable();
4454         sd = this_cpu_ptr(&softnet_data);
4455
4456         local_irq_disable();
4457         rps_lock(sd);
4458         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4459                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4460                         __skb_unlink(skb, &sd->input_pkt_queue);
4461                         kfree_skb(skb);
4462                         input_queue_head_incr(sd);
4463                 }
4464         }
4465         rps_unlock(sd);
4466         local_irq_enable();
4467
4468         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4469                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4470                         __skb_unlink(skb, &sd->process_queue);
4471                         kfree_skb(skb);
4472                         input_queue_head_incr(sd);
4473                 }
4474         }
4475         local_bh_enable();
4476 }
4477
4478 static void flush_all_backlogs(void)
4479 {
4480         unsigned int cpu;
4481
4482         get_online_cpus();
4483
4484         for_each_online_cpu(cpu)
4485                 queue_work_on(cpu, system_highpri_wq,
4486                               per_cpu_ptr(&flush_works, cpu));
4487
4488         for_each_online_cpu(cpu)
4489                 flush_work(per_cpu_ptr(&flush_works, cpu));
4490
4491         put_online_cpus();
4492 }
4493
4494 static int napi_gro_complete(struct sk_buff *skb)
4495 {
4496         struct packet_offload *ptype;
4497         __be16 type = skb->protocol;
4498         struct list_head *head = &offload_base;
4499         int err = -ENOENT;
4500
4501         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4502
4503         if (NAPI_GRO_CB(skb)->count == 1) {
4504                 skb_shinfo(skb)->gso_size = 0;
4505                 goto out;
4506         }
4507
4508         rcu_read_lock();
4509         list_for_each_entry_rcu(ptype, head, list) {
4510                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4511                         continue;
4512
4513                 err = ptype->callbacks.gro_complete(skb, 0);
4514                 break;
4515         }
4516         rcu_read_unlock();
4517
4518         if (err) {
4519                 WARN_ON(&ptype->list == head);
4520                 kfree_skb(skb);
4521                 return NET_RX_SUCCESS;
4522         }
4523
4524 out:
4525         return netif_receive_skb_internal(skb);
4526 }
4527
4528 /* napi->gro_list contains packets ordered by age.
4529  * youngest packets at the head of it.
4530  * Complete skbs in reverse order to reduce latencies.
4531  */
4532 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4533 {
4534         struct sk_buff *skb, *prev = NULL;
4535
4536         /* scan list and build reverse chain */
4537         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4538                 skb->prev = prev;
4539                 prev = skb;
4540         }
4541
4542         for (skb = prev; skb; skb = prev) {
4543                 skb->next = NULL;
4544
4545                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4546                         return;
4547
4548                 prev = skb->prev;
4549                 napi_gro_complete(skb);
4550                 napi->gro_count--;
4551         }
4552
4553         napi->gro_list = NULL;
4554 }
4555 EXPORT_SYMBOL(napi_gro_flush);
4556
4557 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4558 {
4559         struct sk_buff *p;
4560         unsigned int maclen = skb->dev->hard_header_len;
4561         u32 hash = skb_get_hash_raw(skb);
4562
4563         for (p = napi->gro_list; p; p = p->next) {
4564                 unsigned long diffs;
4565
4566                 NAPI_GRO_CB(p)->flush = 0;
4567
4568                 if (hash != skb_get_hash_raw(p)) {
4569                         NAPI_GRO_CB(p)->same_flow = 0;
4570                         continue;
4571                 }
4572
4573                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4574                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4575                 diffs |= skb_metadata_dst_cmp(p, skb);
4576                 if (maclen == ETH_HLEN)
4577                         diffs |= compare_ether_header(skb_mac_header(p),
4578                                                       skb_mac_header(skb));
4579                 else if (!diffs)
4580                         diffs = memcmp(skb_mac_header(p),
4581                                        skb_mac_header(skb),
4582                                        maclen);
4583                 NAPI_GRO_CB(p)->same_flow = !diffs;
4584         }
4585 }
4586
4587 static void skb_gro_reset_offset(struct sk_buff *skb)
4588 {
4589         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4590         const skb_frag_t *frag0 = &pinfo->frags[0];
4591
4592         NAPI_GRO_CB(skb)->data_offset = 0;
4593         NAPI_GRO_CB(skb)->frag0 = NULL;
4594         NAPI_GRO_CB(skb)->frag0_len = 0;
4595
4596         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4597             pinfo->nr_frags &&
4598             !PageHighMem(skb_frag_page(frag0))) {
4599                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4600                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4601                                                     skb_frag_size(frag0),
4602                                                     skb->end - skb->tail);
4603         }
4604 }
4605
4606 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4607 {
4608         struct skb_shared_info *pinfo = skb_shinfo(skb);
4609
4610         BUG_ON(skb->end - skb->tail < grow);
4611
4612         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4613
4614         skb->data_len -= grow;
4615         skb->tail += grow;
4616
4617         pinfo->frags[0].page_offset += grow;
4618         skb_frag_size_sub(&pinfo->frags[0], grow);
4619
4620         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4621                 skb_frag_unref(skb, 0);
4622                 memmove(pinfo->frags, pinfo->frags + 1,
4623                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4624         }
4625 }
4626
4627 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4628 {
4629         struct sk_buff **pp = NULL;
4630         struct packet_offload *ptype;
4631         __be16 type = skb->protocol;
4632         struct list_head *head = &offload_base;
4633         int same_flow;
4634         enum gro_result ret;
4635         int grow;
4636
4637         if (netif_elide_gro(skb->dev))
4638                 goto normal;
4639
4640         if (skb->csum_bad)
4641                 goto normal;
4642
4643         gro_list_prepare(napi, skb);
4644
4645         rcu_read_lock();
4646         list_for_each_entry_rcu(ptype, head, list) {
4647                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4648                         continue;
4649
4650                 skb_set_network_header(skb, skb_gro_offset(skb));
4651                 skb_reset_mac_len(skb);
4652                 NAPI_GRO_CB(skb)->same_flow = 0;
4653                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4654                 NAPI_GRO_CB(skb)->free = 0;
4655                 NAPI_GRO_CB(skb)->encap_mark = 0;
4656                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4657                 NAPI_GRO_CB(skb)->is_fou = 0;
4658                 NAPI_GRO_CB(skb)->is_atomic = 1;
4659                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4660
4661                 /* Setup for GRO checksum validation */
4662                 switch (skb->ip_summed) {
4663                 case CHECKSUM_COMPLETE:
4664                         NAPI_GRO_CB(skb)->csum = skb->csum;
4665                         NAPI_GRO_CB(skb)->csum_valid = 1;
4666                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4667                         break;
4668                 case CHECKSUM_UNNECESSARY:
4669                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4670                         NAPI_GRO_CB(skb)->csum_valid = 0;
4671                         break;
4672                 default:
4673                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4674                         NAPI_GRO_CB(skb)->csum_valid = 0;
4675                 }
4676
4677                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4678                 break;
4679         }
4680         rcu_read_unlock();
4681
4682         if (&ptype->list == head)
4683                 goto normal;
4684
4685         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4686                 ret = GRO_CONSUMED;
4687                 goto ok;
4688         }
4689
4690         same_flow = NAPI_GRO_CB(skb)->same_flow;
4691         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4692
4693         if (pp) {
4694                 struct sk_buff *nskb = *pp;
4695
4696                 *pp = nskb->next;
4697                 nskb->next = NULL;
4698                 napi_gro_complete(nskb);
4699                 napi->gro_count--;
4700         }
4701
4702         if (same_flow)
4703                 goto ok;
4704
4705         if (NAPI_GRO_CB(skb)->flush)
4706                 goto normal;
4707
4708         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4709                 struct sk_buff *nskb = napi->gro_list;
4710
4711                 /* locate the end of the list to select the 'oldest' flow */
4712                 while (nskb->next) {
4713                         pp = &nskb->next;
4714                         nskb = *pp;
4715                 }
4716                 *pp = NULL;
4717                 nskb->next = NULL;
4718                 napi_gro_complete(nskb);
4719         } else {
4720                 napi->gro_count++;
4721         }
4722         NAPI_GRO_CB(skb)->count = 1;
4723         NAPI_GRO_CB(skb)->age = jiffies;
4724         NAPI_GRO_CB(skb)->last = skb;
4725         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4726         skb->next = napi->gro_list;
4727         napi->gro_list = skb;
4728         ret = GRO_HELD;
4729
4730 pull:
4731         grow = skb_gro_offset(skb) - skb_headlen(skb);
4732         if (grow > 0)
4733                 gro_pull_from_frag0(skb, grow);
4734 ok:
4735         return ret;
4736
4737 normal:
4738         ret = GRO_NORMAL;
4739         goto pull;
4740 }
4741
4742 struct packet_offload *gro_find_receive_by_type(__be16 type)
4743 {
4744         struct list_head *offload_head = &offload_base;
4745         struct packet_offload *ptype;
4746
4747         list_for_each_entry_rcu(ptype, offload_head, list) {
4748                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4749                         continue;
4750                 return ptype;
4751         }
4752         return NULL;
4753 }
4754 EXPORT_SYMBOL(gro_find_receive_by_type);
4755
4756 struct packet_offload *gro_find_complete_by_type(__be16 type)
4757 {
4758         struct list_head *offload_head = &offload_base;
4759         struct packet_offload *ptype;
4760
4761         list_for_each_entry_rcu(ptype, offload_head, list) {
4762                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4763                         continue;
4764                 return ptype;
4765         }
4766         return NULL;
4767 }
4768 EXPORT_SYMBOL(gro_find_complete_by_type);
4769
4770 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4771 {
4772         switch (ret) {
4773         case GRO_NORMAL:
4774                 if (netif_receive_skb_internal(skb))
4775                         ret = GRO_DROP;
4776                 break;
4777
4778         case GRO_DROP:
4779                 kfree_skb(skb);
4780                 break;
4781
4782         case GRO_MERGED_FREE:
4783                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4784                         skb_dst_drop(skb);
4785                         secpath_reset(skb);
4786                         kmem_cache_free(skbuff_head_cache, skb);
4787                 } else {
4788                         __kfree_skb(skb);
4789                 }
4790                 break;
4791
4792         case GRO_HELD:
4793         case GRO_MERGED:
4794         case GRO_CONSUMED:
4795                 break;
4796         }
4797
4798         return ret;
4799 }
4800
4801 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4802 {
4803         skb_mark_napi_id(skb, napi);
4804         trace_napi_gro_receive_entry(skb);
4805
4806         skb_gro_reset_offset(skb);
4807
4808         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4809 }
4810 EXPORT_SYMBOL(napi_gro_receive);
4811
4812 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4813 {
4814         if (unlikely(skb->pfmemalloc)) {
4815                 consume_skb(skb);
4816                 return;
4817         }
4818         __skb_pull(skb, skb_headlen(skb));
4819         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4820         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4821         skb->vlan_tci = 0;
4822         skb->dev = napi->dev;
4823         skb->skb_iif = 0;
4824         skb->encapsulation = 0;
4825         skb_shinfo(skb)->gso_type = 0;
4826         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4827         secpath_reset(skb);
4828
4829         napi->skb = skb;
4830 }
4831
4832 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4833 {
4834         struct sk_buff *skb = napi->skb;
4835
4836         if (!skb) {
4837                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4838                 if (skb) {
4839                         napi->skb = skb;
4840                         skb_mark_napi_id(skb, napi);
4841                 }
4842         }
4843         return skb;
4844 }
4845 EXPORT_SYMBOL(napi_get_frags);
4846
4847 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4848                                       struct sk_buff *skb,
4849                                       gro_result_t ret)
4850 {
4851         switch (ret) {
4852         case GRO_NORMAL:
4853         case GRO_HELD:
4854                 __skb_push(skb, ETH_HLEN);
4855                 skb->protocol = eth_type_trans(skb, skb->dev);
4856                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4857                         ret = GRO_DROP;
4858                 break;
4859
4860         case GRO_DROP:
4861         case GRO_MERGED_FREE:
4862                 napi_reuse_skb(napi, skb);
4863                 break;
4864
4865         case GRO_MERGED:
4866         case GRO_CONSUMED:
4867                 break;
4868         }
4869
4870         return ret;
4871 }
4872
4873 /* Upper GRO stack assumes network header starts at gro_offset=0
4874  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4875  * We copy ethernet header into skb->data to have a common layout.
4876  */
4877 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4878 {
4879         struct sk_buff *skb = napi->skb;
4880         const struct ethhdr *eth;
4881         unsigned int hlen = sizeof(*eth);
4882
4883         napi->skb = NULL;
4884
4885         skb_reset_mac_header(skb);
4886         skb_gro_reset_offset(skb);
4887
4888         eth = skb_gro_header_fast(skb, 0);
4889         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4890                 eth = skb_gro_header_slow(skb, hlen, 0);
4891                 if (unlikely(!eth)) {
4892                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4893                                              __func__, napi->dev->name);
4894                         napi_reuse_skb(napi, skb);
4895                         return NULL;
4896                 }
4897         } else {
4898                 gro_pull_from_frag0(skb, hlen);
4899                 NAPI_GRO_CB(skb)->frag0 += hlen;
4900                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4901         }
4902         __skb_pull(skb, hlen);
4903
4904         /*
4905          * This works because the only protocols we care about don't require
4906          * special handling.
4907          * We'll fix it up properly in napi_frags_finish()
4908          */
4909         skb->protocol = eth->h_proto;
4910
4911         return skb;
4912 }
4913
4914 gro_result_t napi_gro_frags(struct napi_struct *napi)
4915 {
4916         struct sk_buff *skb = napi_frags_skb(napi);
4917
4918         if (!skb)
4919                 return GRO_DROP;
4920
4921         trace_napi_gro_frags_entry(skb);
4922
4923         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4924 }
4925 EXPORT_SYMBOL(napi_gro_frags);
4926
4927 /* Compute the checksum from gro_offset and return the folded value
4928  * after adding in any pseudo checksum.
4929  */
4930 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4931 {
4932         __wsum wsum;
4933         __sum16 sum;
4934
4935         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4936
4937         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4938         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4939         if (likely(!sum)) {
4940                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4941                     !skb->csum_complete_sw)
4942                         netdev_rx_csum_fault(skb->dev);
4943         }
4944
4945         NAPI_GRO_CB(skb)->csum = wsum;
4946         NAPI_GRO_CB(skb)->csum_valid = 1;
4947
4948         return sum;
4949 }
4950 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4951
4952 static void net_rps_send_ipi(struct softnet_data *remsd)
4953 {
4954 #ifdef CONFIG_RPS
4955         while (remsd) {
4956                 struct softnet_data *next = remsd->rps_ipi_next;
4957
4958                 if (cpu_online(remsd->cpu))
4959                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
4960                 remsd = next;
4961         }
4962 #endif
4963 }
4964
4965 /*
4966  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4967  * Note: called with local irq disabled, but exits with local irq enabled.
4968  */
4969 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4970 {
4971 #ifdef CONFIG_RPS
4972         struct softnet_data *remsd = sd->rps_ipi_list;
4973
4974         if (remsd) {
4975                 sd->rps_ipi_list = NULL;
4976
4977                 local_irq_enable();
4978
4979                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4980                 net_rps_send_ipi(remsd);
4981         } else
4982 #endif
4983                 local_irq_enable();
4984 }
4985
4986 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4987 {
4988 #ifdef CONFIG_RPS
4989         return sd->rps_ipi_list != NULL;
4990 #else
4991         return false;
4992 #endif
4993 }
4994
4995 static int process_backlog(struct napi_struct *napi, int quota)
4996 {
4997         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4998         bool again = true;
4999         int work = 0;
5000
5001         /* Check if we have pending ipi, its better to send them now,
5002          * not waiting net_rx_action() end.
5003          */
5004         if (sd_has_rps_ipi_waiting(sd)) {
5005                 local_irq_disable();
5006                 net_rps_action_and_irq_enable(sd);
5007         }
5008
5009         napi->weight = dev_rx_weight;
5010         while (again) {
5011                 struct sk_buff *skb;
5012
5013                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5014                         rcu_read_lock();
5015                         __netif_receive_skb(skb);
5016                         rcu_read_unlock();
5017                         input_queue_head_incr(sd);
5018                         if (++work >= quota)
5019                                 return work;
5020
5021                 }
5022
5023                 local_irq_disable();
5024                 rps_lock(sd);
5025                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5026                         /*
5027                          * Inline a custom version of __napi_complete().
5028                          * only current cpu owns and manipulates this napi,
5029                          * and NAPI_STATE_SCHED is the only possible flag set
5030                          * on backlog.
5031                          * We can use a plain write instead of clear_bit(),
5032                          * and we dont need an smp_mb() memory barrier.
5033                          */
5034                         napi->state = 0;
5035                         again = false;
5036                 } else {
5037                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5038                                                    &sd->process_queue);
5039                 }
5040                 rps_unlock(sd);
5041                 local_irq_enable();
5042         }
5043
5044         return work;
5045 }
5046
5047 /**
5048  * __napi_schedule - schedule for receive
5049  * @n: entry to schedule
5050  *
5051  * The entry's receive function will be scheduled to run.
5052  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5053  */
5054 void __napi_schedule(struct napi_struct *n)
5055 {
5056         unsigned long flags;
5057
5058         local_irq_save(flags);
5059         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5060         local_irq_restore(flags);
5061 }
5062 EXPORT_SYMBOL(__napi_schedule);
5063
5064 /**
5065  *      napi_schedule_prep - check if napi can be scheduled
5066  *      @n: napi context
5067  *
5068  * Test if NAPI routine is already running, and if not mark
5069  * it as running.  This is used as a condition variable
5070  * insure only one NAPI poll instance runs.  We also make
5071  * sure there is no pending NAPI disable.
5072  */
5073 bool napi_schedule_prep(struct napi_struct *n)
5074 {
5075         unsigned long val, new;
5076
5077         do {
5078                 val = READ_ONCE(n->state);
5079                 if (unlikely(val & NAPIF_STATE_DISABLE))
5080                         return false;
5081                 new = val | NAPIF_STATE_SCHED;
5082
5083                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5084                  * This was suggested by Alexander Duyck, as compiler
5085                  * emits better code than :
5086                  * if (val & NAPIF_STATE_SCHED)
5087                  *     new |= NAPIF_STATE_MISSED;
5088                  */
5089                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5090                                                    NAPIF_STATE_MISSED;
5091         } while (cmpxchg(&n->state, val, new) != val);
5092
5093         return !(val & NAPIF_STATE_SCHED);
5094 }
5095 EXPORT_SYMBOL(napi_schedule_prep);
5096
5097 /**
5098  * __napi_schedule_irqoff - schedule for receive
5099  * @n: entry to schedule
5100  *
5101  * Variant of __napi_schedule() assuming hard irqs are masked
5102  */
5103 void __napi_schedule_irqoff(struct napi_struct *n)
5104 {
5105         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5106 }
5107 EXPORT_SYMBOL(__napi_schedule_irqoff);
5108
5109 bool napi_complete_done(struct napi_struct *n, int work_done)
5110 {
5111         unsigned long flags, val, new;
5112
5113         /*
5114          * 1) Don't let napi dequeue from the cpu poll list
5115          *    just in case its running on a different cpu.
5116          * 2) If we are busy polling, do nothing here, we have
5117          *    the guarantee we will be called later.
5118          */
5119         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5120                                  NAPIF_STATE_IN_BUSY_POLL)))
5121                 return false;
5122
5123         if (n->gro_list) {
5124                 unsigned long timeout = 0;
5125
5126                 if (work_done)
5127                         timeout = n->dev->gro_flush_timeout;
5128
5129                 if (timeout)
5130                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5131                                       HRTIMER_MODE_REL_PINNED);
5132                 else
5133                         napi_gro_flush(n, false);
5134         }
5135         if (unlikely(!list_empty(&n->poll_list))) {
5136                 /* If n->poll_list is not empty, we need to mask irqs */
5137                 local_irq_save(flags);
5138                 list_del_init(&n->poll_list);
5139                 local_irq_restore(flags);
5140         }
5141
5142         do {
5143                 val = READ_ONCE(n->state);
5144
5145                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5146
5147                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5148
5149                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5150                  * because we will call napi->poll() one more time.
5151                  * This C code was suggested by Alexander Duyck to help gcc.
5152                  */
5153                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5154                                                     NAPIF_STATE_SCHED;
5155         } while (cmpxchg(&n->state, val, new) != val);
5156
5157         if (unlikely(val & NAPIF_STATE_MISSED)) {
5158                 __napi_schedule(n);
5159                 return false;
5160         }
5161
5162         return true;
5163 }
5164 EXPORT_SYMBOL(napi_complete_done);
5165
5166 /* must be called under rcu_read_lock(), as we dont take a reference */
5167 static struct napi_struct *napi_by_id(unsigned int napi_id)
5168 {
5169         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5170         struct napi_struct *napi;
5171
5172         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5173                 if (napi->napi_id == napi_id)
5174                         return napi;
5175
5176         return NULL;
5177 }
5178
5179 #if defined(CONFIG_NET_RX_BUSY_POLL)
5180
5181 #define BUSY_POLL_BUDGET 8
5182
5183 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5184 {
5185         int rc;
5186
5187         /* Busy polling means there is a high chance device driver hard irq
5188          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5189          * set in napi_schedule_prep().
5190          * Since we are about to call napi->poll() once more, we can safely
5191          * clear NAPI_STATE_MISSED.
5192          *
5193          * Note: x86 could use a single "lock and ..." instruction
5194          * to perform these two clear_bit()
5195          */
5196         clear_bit(NAPI_STATE_MISSED, &napi->state);
5197         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5198
5199         local_bh_disable();
5200
5201         /* All we really want here is to re-enable device interrupts.
5202          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5203          */
5204         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5205         netpoll_poll_unlock(have_poll_lock);
5206         if (rc == BUSY_POLL_BUDGET)
5207                 __napi_schedule(napi);
5208         local_bh_enable();
5209         if (local_softirq_pending())
5210                 do_softirq();
5211 }
5212
5213 void napi_busy_loop(unsigned int napi_id,
5214                     bool (*loop_end)(void *, unsigned long),
5215                     void *loop_end_arg)
5216 {
5217         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5218         int (*napi_poll)(struct napi_struct *napi, int budget);
5219         void *have_poll_lock = NULL;
5220         struct napi_struct *napi;
5221
5222 restart:
5223         napi_poll = NULL;
5224
5225         rcu_read_lock();
5226
5227         napi = napi_by_id(napi_id);
5228         if (!napi)
5229                 goto out;
5230
5231         preempt_disable();
5232         for (;;) {
5233                 int work = 0;
5234
5235                 local_bh_disable();
5236                 if (!napi_poll) {
5237                         unsigned long val = READ_ONCE(napi->state);
5238
5239                         /* If multiple threads are competing for this napi,
5240                          * we avoid dirtying napi->state as much as we can.
5241                          */
5242                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5243                                    NAPIF_STATE_IN_BUSY_POLL))
5244                                 goto count;
5245                         if (cmpxchg(&napi->state, val,
5246                                     val | NAPIF_STATE_IN_BUSY_POLL |
5247                                           NAPIF_STATE_SCHED) != val)
5248                                 goto count;
5249                         have_poll_lock = netpoll_poll_lock(napi);
5250                         napi_poll = napi->poll;
5251                 }
5252                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5253                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5254 count:
5255                 if (work > 0)
5256                         __NET_ADD_STATS(dev_net(napi->dev),
5257                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5258                 local_bh_enable();
5259
5260                 if (!loop_end || loop_end(loop_end_arg, start_time))
5261                         break;
5262
5263                 if (unlikely(need_resched())) {
5264                         if (napi_poll)
5265                                 busy_poll_stop(napi, have_poll_lock);
5266                         preempt_enable();
5267                         rcu_read_unlock();
5268                         cond_resched();
5269                         if (loop_end(loop_end_arg, start_time))
5270                                 return;
5271                         goto restart;
5272                 }
5273                 cpu_relax();
5274         }
5275         if (napi_poll)
5276                 busy_poll_stop(napi, have_poll_lock);
5277         preempt_enable();
5278 out:
5279         rcu_read_unlock();
5280 }
5281 EXPORT_SYMBOL(napi_busy_loop);
5282
5283 #endif /* CONFIG_NET_RX_BUSY_POLL */
5284
5285 static void napi_hash_add(struct napi_struct *napi)
5286 {
5287         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5288             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5289                 return;
5290
5291         spin_lock(&napi_hash_lock);
5292
5293         /* 0..NR_CPUS range is reserved for sender_cpu use */
5294         do {
5295                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5296                         napi_gen_id = MIN_NAPI_ID;
5297         } while (napi_by_id(napi_gen_id));
5298         napi->napi_id = napi_gen_id;
5299
5300         hlist_add_head_rcu(&napi->napi_hash_node,
5301                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5302
5303         spin_unlock(&napi_hash_lock);
5304 }
5305
5306 /* Warning : caller is responsible to make sure rcu grace period
5307  * is respected before freeing memory containing @napi
5308  */
5309 bool napi_hash_del(struct napi_struct *napi)
5310 {
5311         bool rcu_sync_needed = false;
5312
5313         spin_lock(&napi_hash_lock);
5314
5315         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5316                 rcu_sync_needed = true;
5317                 hlist_del_rcu(&napi->napi_hash_node);
5318         }
5319         spin_unlock(&napi_hash_lock);
5320         return rcu_sync_needed;
5321 }
5322 EXPORT_SYMBOL_GPL(napi_hash_del);
5323
5324 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5325 {
5326         struct napi_struct *napi;
5327
5328         napi = container_of(timer, struct napi_struct, timer);
5329
5330         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5331          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5332          */
5333         if (napi->gro_list && !napi_disable_pending(napi) &&
5334             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5335                 __napi_schedule_irqoff(napi);
5336
5337         return HRTIMER_NORESTART;
5338 }
5339
5340 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5341                     int (*poll)(struct napi_struct *, int), int weight)
5342 {
5343         INIT_LIST_HEAD(&napi->poll_list);
5344         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5345         napi->timer.function = napi_watchdog;
5346         napi->gro_count = 0;
5347         napi->gro_list = NULL;
5348         napi->skb = NULL;
5349         napi->poll = poll;
5350         if (weight > NAPI_POLL_WEIGHT)
5351                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5352                             weight, dev->name);
5353         napi->weight = weight;
5354         list_add(&napi->dev_list, &dev->napi_list);
5355         napi->dev = dev;
5356 #ifdef CONFIG_NETPOLL
5357         napi->poll_owner = -1;
5358 #endif
5359         set_bit(NAPI_STATE_SCHED, &napi->state);
5360         napi_hash_add(napi);
5361 }
5362 EXPORT_SYMBOL(netif_napi_add);
5363
5364 void napi_disable(struct napi_struct *n)
5365 {
5366         might_sleep();
5367         set_bit(NAPI_STATE_DISABLE, &n->state);
5368
5369         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5370                 msleep(1);
5371         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5372                 msleep(1);
5373
5374         hrtimer_cancel(&n->timer);
5375
5376         clear_bit(NAPI_STATE_DISABLE, &n->state);
5377 }
5378 EXPORT_SYMBOL(napi_disable);
5379
5380 /* Must be called in process context */
5381 void netif_napi_del(struct napi_struct *napi)
5382 {
5383         might_sleep();
5384         if (napi_hash_del(napi))
5385                 synchronize_net();
5386         list_del_init(&napi->dev_list);
5387         napi_free_frags(napi);
5388
5389         kfree_skb_list(napi->gro_list);
5390         napi->gro_list = NULL;
5391         napi->gro_count = 0;
5392 }
5393 EXPORT_SYMBOL(netif_napi_del);
5394
5395 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5396 {
5397         void *have;
5398         int work, weight;
5399
5400         list_del_init(&n->poll_list);
5401
5402         have = netpoll_poll_lock(n);
5403
5404         weight = n->weight;
5405
5406         /* This NAPI_STATE_SCHED test is for avoiding a race
5407          * with netpoll's poll_napi().  Only the entity which
5408          * obtains the lock and sees NAPI_STATE_SCHED set will
5409          * actually make the ->poll() call.  Therefore we avoid
5410          * accidentally calling ->poll() when NAPI is not scheduled.
5411          */
5412         work = 0;
5413         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5414                 work = n->poll(n, weight);
5415                 trace_napi_poll(n, work, weight);
5416         }
5417
5418         WARN_ON_ONCE(work > weight);
5419
5420         if (likely(work < weight))
5421                 goto out_unlock;
5422
5423         /* Drivers must not modify the NAPI state if they
5424          * consume the entire weight.  In such cases this code
5425          * still "owns" the NAPI instance and therefore can
5426          * move the instance around on the list at-will.
5427          */
5428         if (unlikely(napi_disable_pending(n))) {
5429                 napi_complete(n);
5430                 goto out_unlock;
5431         }
5432
5433         if (n->gro_list) {
5434                 /* flush too old packets
5435                  * If HZ < 1000, flush all packets.
5436                  */
5437                 napi_gro_flush(n, HZ >= 1000);
5438         }
5439
5440         /* Some drivers may have called napi_schedule
5441          * prior to exhausting their budget.
5442          */
5443         if (unlikely(!list_empty(&n->poll_list))) {
5444                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5445                              n->dev ? n->dev->name : "backlog");
5446                 goto out_unlock;
5447         }
5448
5449         list_add_tail(&n->poll_list, repoll);
5450
5451 out_unlock:
5452         netpoll_poll_unlock(have);
5453
5454         return work;
5455 }
5456
5457 static __latent_entropy void net_rx_action(struct softirq_action *h)
5458 {
5459         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5460         unsigned long time_limit = jiffies +
5461                 usecs_to_jiffies(netdev_budget_usecs);
5462         int budget = netdev_budget;
5463         LIST_HEAD(list);
5464         LIST_HEAD(repoll);
5465
5466         local_irq_disable();
5467         list_splice_init(&sd->poll_list, &list);
5468         local_irq_enable();
5469
5470         for (;;) {
5471                 struct napi_struct *n;
5472
5473                 if (list_empty(&list)) {
5474                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5475                                 goto out;
5476                         break;
5477                 }
5478
5479                 n = list_first_entry(&list, struct napi_struct, poll_list);
5480                 budget -= napi_poll(n, &repoll);
5481
5482                 /* If softirq window is exhausted then punt.
5483                  * Allow this to run for 2 jiffies since which will allow
5484                  * an average latency of 1.5/HZ.
5485                  */
5486                 if (unlikely(budget <= 0 ||
5487                              time_after_eq(jiffies, time_limit))) {
5488                         sd->time_squeeze++;
5489                         break;
5490                 }
5491         }
5492
5493         local_irq_disable();
5494
5495         list_splice_tail_init(&sd->poll_list, &list);
5496         list_splice_tail(&repoll, &list);
5497         list_splice(&list, &sd->poll_list);
5498         if (!list_empty(&sd->poll_list))
5499                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5500
5501         net_rps_action_and_irq_enable(sd);
5502 out:
5503         __kfree_skb_flush();
5504 }
5505
5506 struct netdev_adjacent {
5507         struct net_device *dev;
5508
5509         /* upper master flag, there can only be one master device per list */
5510         bool master;
5511
5512         /* counter for the number of times this device was added to us */
5513         u16 ref_nr;
5514
5515         /* private field for the users */
5516         void *private;
5517
5518         struct list_head list;
5519         struct rcu_head rcu;
5520 };
5521
5522 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5523                                                  struct list_head *adj_list)
5524 {
5525         struct netdev_adjacent *adj;
5526
5527         list_for_each_entry(adj, adj_list, list) {
5528                 if (adj->dev == adj_dev)
5529                         return adj;
5530         }
5531         return NULL;
5532 }
5533
5534 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5535 {
5536         struct net_device *dev = data;
5537
5538         return upper_dev == dev;
5539 }
5540
5541 /**
5542  * netdev_has_upper_dev - Check if device is linked to an upper device
5543  * @dev: device
5544  * @upper_dev: upper device to check
5545  *
5546  * Find out if a device is linked to specified upper device and return true
5547  * in case it is. Note that this checks only immediate upper device,
5548  * not through a complete stack of devices. The caller must hold the RTNL lock.
5549  */
5550 bool netdev_has_upper_dev(struct net_device *dev,
5551                           struct net_device *upper_dev)
5552 {
5553         ASSERT_RTNL();
5554
5555         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5556                                              upper_dev);
5557 }
5558 EXPORT_SYMBOL(netdev_has_upper_dev);
5559
5560 /**
5561  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5562  * @dev: device
5563  * @upper_dev: upper device to check
5564  *
5565  * Find out if a device is linked to specified upper device and return true
5566  * in case it is. Note that this checks the entire upper device chain.
5567  * The caller must hold rcu lock.
5568  */
5569
5570 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5571                                   struct net_device *upper_dev)
5572 {
5573         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5574                                                upper_dev);
5575 }
5576 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5577
5578 /**
5579  * netdev_has_any_upper_dev - Check if device is linked to some device
5580  * @dev: device
5581  *
5582  * Find out if a device is linked to an upper device and return true in case
5583  * it is. The caller must hold the RTNL lock.
5584  */
5585 static bool netdev_has_any_upper_dev(struct net_device *dev)
5586 {
5587         ASSERT_RTNL();
5588
5589         return !list_empty(&dev->adj_list.upper);
5590 }
5591
5592 /**
5593  * netdev_master_upper_dev_get - Get master upper device
5594  * @dev: device
5595  *
5596  * Find a master upper device and return pointer to it or NULL in case
5597  * it's not there. The caller must hold the RTNL lock.
5598  */
5599 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5600 {
5601         struct netdev_adjacent *upper;
5602
5603         ASSERT_RTNL();
5604
5605         if (list_empty(&dev->adj_list.upper))
5606                 return NULL;
5607
5608         upper = list_first_entry(&dev->adj_list.upper,
5609                                  struct netdev_adjacent, list);
5610         if (likely(upper->master))
5611                 return upper->dev;
5612         return NULL;
5613 }
5614 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5615
5616 /**
5617  * netdev_has_any_lower_dev - Check if device is linked to some device
5618  * @dev: device
5619  *
5620  * Find out if a device is linked to a lower device and return true in case
5621  * it is. The caller must hold the RTNL lock.
5622  */
5623 static bool netdev_has_any_lower_dev(struct net_device *dev)
5624 {
5625         ASSERT_RTNL();
5626
5627         return !list_empty(&dev->adj_list.lower);
5628 }
5629
5630 void *netdev_adjacent_get_private(struct list_head *adj_list)
5631 {
5632         struct netdev_adjacent *adj;
5633
5634         adj = list_entry(adj_list, struct netdev_adjacent, list);
5635
5636         return adj->private;
5637 }
5638 EXPORT_SYMBOL(netdev_adjacent_get_private);
5639
5640 /**
5641  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5642  * @dev: device
5643  * @iter: list_head ** of the current position
5644  *
5645  * Gets the next device from the dev's upper list, starting from iter
5646  * position. The caller must hold RCU read lock.
5647  */
5648 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5649                                                  struct list_head **iter)
5650 {
5651         struct netdev_adjacent *upper;
5652
5653         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5654
5655         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5656
5657         if (&upper->list == &dev->adj_list.upper)
5658                 return NULL;
5659
5660         *iter = &upper->list;
5661
5662         return upper->dev;
5663 }
5664 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5665
5666 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5667                                                     struct list_head **iter)
5668 {
5669         struct netdev_adjacent *upper;
5670
5671         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5672
5673         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5674
5675         if (&upper->list == &dev->adj_list.upper)
5676                 return NULL;
5677
5678         *iter = &upper->list;
5679
5680         return upper->dev;
5681 }
5682
5683 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5684                                   int (*fn)(struct net_device *dev,
5685                                             void *data),
5686                                   void *data)
5687 {
5688         struct net_device *udev;
5689         struct list_head *iter;
5690         int ret;
5691
5692         for (iter = &dev->adj_list.upper,
5693              udev = netdev_next_upper_dev_rcu(dev, &iter);
5694              udev;
5695              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5696                 /* first is the upper device itself */
5697                 ret = fn(udev, data);
5698                 if (ret)
5699                         return ret;
5700
5701                 /* then look at all of its upper devices */
5702                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5703                 if (ret)
5704                         return ret;
5705         }
5706
5707         return 0;
5708 }
5709 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5710
5711 /**
5712  * netdev_lower_get_next_private - Get the next ->private from the
5713  *                                 lower neighbour list
5714  * @dev: device
5715  * @iter: list_head ** of the current position
5716  *
5717  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5718  * list, starting from iter position. The caller must hold either hold the
5719  * RTNL lock or its own locking that guarantees that the neighbour lower
5720  * list will remain unchanged.
5721  */
5722 void *netdev_lower_get_next_private(struct net_device *dev,
5723                                     struct list_head **iter)
5724 {
5725         struct netdev_adjacent *lower;
5726
5727         lower = list_entry(*iter, struct netdev_adjacent, list);
5728
5729         if (&lower->list == &dev->adj_list.lower)
5730                 return NULL;
5731
5732         *iter = lower->list.next;
5733
5734         return lower->private;
5735 }
5736 EXPORT_SYMBOL(netdev_lower_get_next_private);
5737
5738 /**
5739  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5740  *                                     lower neighbour list, RCU
5741  *                                     variant
5742  * @dev: device
5743  * @iter: list_head ** of the current position
5744  *
5745  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5746  * list, starting from iter position. The caller must hold RCU read lock.
5747  */
5748 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5749                                         struct list_head **iter)
5750 {
5751         struct netdev_adjacent *lower;
5752
5753         WARN_ON_ONCE(!rcu_read_lock_held());
5754
5755         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5756
5757         if (&lower->list == &dev->adj_list.lower)
5758                 return NULL;
5759
5760         *iter = &lower->list;
5761
5762         return lower->private;
5763 }
5764 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5765
5766 /**
5767  * netdev_lower_get_next - Get the next device from the lower neighbour
5768  *                         list
5769  * @dev: device
5770  * @iter: list_head ** of the current position
5771  *
5772  * Gets the next netdev_adjacent from the dev's lower neighbour
5773  * list, starting from iter position. The caller must hold RTNL lock or
5774  * its own locking that guarantees that the neighbour lower
5775  * list will remain unchanged.
5776  */
5777 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5778 {
5779         struct netdev_adjacent *lower;
5780
5781         lower = list_entry(*iter, struct netdev_adjacent, list);
5782
5783         if (&lower->list == &dev->adj_list.lower)
5784                 return NULL;
5785
5786         *iter = lower->list.next;
5787
5788         return lower->dev;
5789 }
5790 EXPORT_SYMBOL(netdev_lower_get_next);
5791
5792 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5793                                                 struct list_head **iter)
5794 {
5795         struct netdev_adjacent *lower;
5796
5797         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5798
5799         if (&lower->list == &dev->adj_list.lower)
5800                 return NULL;
5801
5802         *iter = &lower->list;
5803
5804         return lower->dev;
5805 }
5806
5807 int netdev_walk_all_lower_dev(struct net_device *dev,
5808                               int (*fn)(struct net_device *dev,
5809                                         void *data),
5810                               void *data)
5811 {
5812         struct net_device *ldev;
5813         struct list_head *iter;
5814         int ret;
5815
5816         for (iter = &dev->adj_list.lower,
5817              ldev = netdev_next_lower_dev(dev, &iter);
5818              ldev;
5819              ldev = netdev_next_lower_dev(dev, &iter)) {
5820                 /* first is the lower device itself */
5821                 ret = fn(ldev, data);
5822                 if (ret)
5823                         return ret;
5824
5825                 /* then look at all of its lower devices */
5826                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5827                 if (ret)
5828                         return ret;
5829         }
5830
5831         return 0;
5832 }
5833 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5834
5835 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5836                                                     struct list_head **iter)
5837 {
5838         struct netdev_adjacent *lower;
5839
5840         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5841         if (&lower->list == &dev->adj_list.lower)
5842                 return NULL;
5843
5844         *iter = &lower->list;
5845
5846         return lower->dev;
5847 }
5848
5849 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5850                                   int (*fn)(struct net_device *dev,
5851                                             void *data),
5852                                   void *data)
5853 {
5854         struct net_device *ldev;
5855         struct list_head *iter;
5856         int ret;
5857
5858         for (iter = &dev->adj_list.lower,
5859              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5860              ldev;
5861              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5862                 /* first is the lower device itself */
5863                 ret = fn(ldev, data);
5864                 if (ret)
5865                         return ret;
5866
5867                 /* then look at all of its lower devices */
5868                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5869                 if (ret)
5870                         return ret;
5871         }
5872
5873         return 0;
5874 }
5875 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5876
5877 /**
5878  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5879  *                                     lower neighbour list, RCU
5880  *                                     variant
5881  * @dev: device
5882  *
5883  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5884  * list. The caller must hold RCU read lock.
5885  */
5886 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5887 {
5888         struct netdev_adjacent *lower;
5889
5890         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5891                         struct netdev_adjacent, list);
5892         if (lower)
5893                 return lower->private;
5894         return NULL;
5895 }
5896 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5897
5898 /**
5899  * netdev_master_upper_dev_get_rcu - Get master upper device
5900  * @dev: device
5901  *
5902  * Find a master upper device and return pointer to it or NULL in case
5903  * it's not there. The caller must hold the RCU read lock.
5904  */
5905 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5906 {
5907         struct netdev_adjacent *upper;
5908
5909         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5910                                        struct netdev_adjacent, list);
5911         if (upper && likely(upper->master))
5912                 return upper->dev;
5913         return NULL;
5914 }
5915 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5916
5917 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5918                               struct net_device *adj_dev,
5919                               struct list_head *dev_list)
5920 {
5921         char linkname[IFNAMSIZ+7];
5922
5923         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5924                 "upper_%s" : "lower_%s", adj_dev->name);
5925         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5926                                  linkname);
5927 }
5928 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5929                                char *name,
5930                                struct list_head *dev_list)
5931 {
5932         char linkname[IFNAMSIZ+7];
5933
5934         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5935                 "upper_%s" : "lower_%s", name);
5936         sysfs_remove_link(&(dev->dev.kobj), linkname);
5937 }
5938
5939 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5940                                                  struct net_device *adj_dev,
5941                                                  struct list_head *dev_list)
5942 {
5943         return (dev_list == &dev->adj_list.upper ||
5944                 dev_list == &dev->adj_list.lower) &&
5945                 net_eq(dev_net(dev), dev_net(adj_dev));
5946 }
5947
5948 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5949                                         struct net_device *adj_dev,
5950                                         struct list_head *dev_list,
5951                                         void *private, bool master)
5952 {
5953         struct netdev_adjacent *adj;
5954         int ret;
5955
5956         adj = __netdev_find_adj(adj_dev, dev_list);
5957
5958         if (adj) {
5959                 adj->ref_nr += 1;
5960                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5961                          dev->name, adj_dev->name, adj->ref_nr);
5962
5963                 return 0;
5964         }
5965
5966         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5967         if (!adj)
5968                 return -ENOMEM;
5969
5970         adj->dev = adj_dev;
5971         adj->master = master;
5972         adj->ref_nr = 1;
5973         adj->private = private;
5974         dev_hold(adj_dev);
5975
5976         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5977                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5978
5979         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5980                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5981                 if (ret)
5982                         goto free_adj;
5983         }
5984
5985         /* Ensure that master link is always the first item in list. */
5986         if (master) {
5987                 ret = sysfs_create_link(&(dev->dev.kobj),
5988                                         &(adj_dev->dev.kobj), "master");
5989                 if (ret)
5990                         goto remove_symlinks;
5991
5992                 list_add_rcu(&adj->list, dev_list);
5993         } else {
5994                 list_add_tail_rcu(&adj->list, dev_list);
5995         }
5996
5997         return 0;
5998
5999 remove_symlinks:
6000         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6001                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6002 free_adj:
6003         kfree(adj);
6004         dev_put(adj_dev);
6005
6006         return ret;
6007 }
6008
6009 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6010                                          struct net_device *adj_dev,
6011                                          u16 ref_nr,
6012                                          struct list_head *dev_list)
6013 {
6014         struct netdev_adjacent *adj;
6015
6016         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6017                  dev->name, adj_dev->name, ref_nr);
6018
6019         adj = __netdev_find_adj(adj_dev, dev_list);
6020
6021         if (!adj) {
6022                 pr_err("Adjacency does not exist for device %s from %s\n",
6023                        dev->name, adj_dev->name);
6024                 WARN_ON(1);
6025                 return;
6026         }
6027
6028         if (adj->ref_nr > ref_nr) {
6029                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6030                          dev->name, adj_dev->name, ref_nr,
6031                          adj->ref_nr - ref_nr);
6032                 adj->ref_nr -= ref_nr;
6033                 return;
6034         }
6035
6036         if (adj->master)
6037                 sysfs_remove_link(&(dev->dev.kobj), "master");
6038
6039         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6040                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6041
6042         list_del_rcu(&adj->list);
6043         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6044                  adj_dev->name, dev->name, adj_dev->name);
6045         dev_put(adj_dev);
6046         kfree_rcu(adj, rcu);
6047 }
6048
6049 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6050                                             struct net_device *upper_dev,
6051                                             struct list_head *up_list,
6052                                             struct list_head *down_list,
6053                                             void *private, bool master)
6054 {
6055         int ret;
6056
6057         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6058                                            private, master);
6059         if (ret)
6060                 return ret;
6061
6062         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6063                                            private, false);
6064         if (ret) {
6065                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6066                 return ret;
6067         }
6068
6069         return 0;
6070 }
6071
6072 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6073                                                struct net_device *upper_dev,
6074                                                u16 ref_nr,
6075                                                struct list_head *up_list,
6076                                                struct list_head *down_list)
6077 {
6078         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6079         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6080 }
6081
6082 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6083                                                 struct net_device *upper_dev,
6084                                                 void *private, bool master)
6085 {
6086         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6087                                                 &dev->adj_list.upper,
6088                                                 &upper_dev->adj_list.lower,
6089                                                 private, master);
6090 }
6091
6092 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6093                                                    struct net_device *upper_dev)
6094 {
6095         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6096                                            &dev->adj_list.upper,
6097                                            &upper_dev->adj_list.lower);
6098 }
6099
6100 static int __netdev_upper_dev_link(struct net_device *dev,
6101                                    struct net_device *upper_dev, bool master,
6102                                    void *upper_priv, void *upper_info)
6103 {
6104         struct netdev_notifier_changeupper_info changeupper_info;
6105         int ret = 0;
6106
6107         ASSERT_RTNL();
6108
6109         if (dev == upper_dev)
6110                 return -EBUSY;
6111
6112         /* To prevent loops, check if dev is not upper device to upper_dev. */
6113         if (netdev_has_upper_dev(upper_dev, dev))
6114                 return -EBUSY;
6115
6116         if (netdev_has_upper_dev(dev, upper_dev))
6117                 return -EEXIST;
6118
6119         if (master && netdev_master_upper_dev_get(dev))
6120                 return -EBUSY;
6121
6122         changeupper_info.upper_dev = upper_dev;
6123         changeupper_info.master = master;
6124         changeupper_info.linking = true;
6125         changeupper_info.upper_info = upper_info;
6126
6127         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6128                                             &changeupper_info.info);
6129         ret = notifier_to_errno(ret);
6130         if (ret)
6131                 return ret;
6132
6133         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6134                                                    master);
6135         if (ret)
6136                 return ret;
6137
6138         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6139                                             &changeupper_info.info);
6140         ret = notifier_to_errno(ret);
6141         if (ret)
6142                 goto rollback;
6143
6144         return 0;
6145
6146 rollback:
6147         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6148
6149         return ret;
6150 }
6151
6152 /**
6153  * netdev_upper_dev_link - Add a link to the upper device
6154  * @dev: device
6155  * @upper_dev: new upper device
6156  *
6157  * Adds a link to device which is upper to this one. The caller must hold
6158  * the RTNL lock. On a failure a negative errno code is returned.
6159  * On success the reference counts are adjusted and the function
6160  * returns zero.
6161  */
6162 int netdev_upper_dev_link(struct net_device *dev,
6163                           struct net_device *upper_dev)
6164 {
6165         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6166 }
6167 EXPORT_SYMBOL(netdev_upper_dev_link);
6168
6169 /**
6170  * netdev_master_upper_dev_link - Add a master link to the upper device
6171  * @dev: device
6172  * @upper_dev: new upper device
6173  * @upper_priv: upper device private
6174  * @upper_info: upper info to be passed down via notifier
6175  *
6176  * Adds a link to device which is upper to this one. In this case, only
6177  * one master upper device can be linked, although other non-master devices
6178  * might be linked as well. The caller must hold the RTNL lock.
6179  * On a failure a negative errno code is returned. On success the reference
6180  * counts are adjusted and the function returns zero.
6181  */
6182 int netdev_master_upper_dev_link(struct net_device *dev,
6183                                  struct net_device *upper_dev,
6184                                  void *upper_priv, void *upper_info)
6185 {
6186         return __netdev_upper_dev_link(dev, upper_dev, true,
6187                                        upper_priv, upper_info);
6188 }
6189 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6190
6191 /**
6192  * netdev_upper_dev_unlink - Removes a link to upper device
6193  * @dev: device
6194  * @upper_dev: new upper device
6195  *
6196  * Removes a link to device which is upper to this one. The caller must hold
6197  * the RTNL lock.
6198  */
6199 void netdev_upper_dev_unlink(struct net_device *dev,
6200                              struct net_device *upper_dev)
6201 {
6202         struct netdev_notifier_changeupper_info changeupper_info;
6203
6204         ASSERT_RTNL();
6205
6206         changeupper_info.upper_dev = upper_dev;
6207         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6208         changeupper_info.linking = false;
6209
6210         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6211                                       &changeupper_info.info);
6212
6213         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6214
6215         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6216                                       &changeupper_info.info);
6217 }
6218 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6219
6220 /**
6221  * netdev_bonding_info_change - Dispatch event about slave change
6222  * @dev: device
6223  * @bonding_info: info to dispatch
6224  *
6225  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6226  * The caller must hold the RTNL lock.
6227  */
6228 void netdev_bonding_info_change(struct net_device *dev,
6229                                 struct netdev_bonding_info *bonding_info)
6230 {
6231         struct netdev_notifier_bonding_info     info;
6232
6233         memcpy(&info.bonding_info, bonding_info,
6234                sizeof(struct netdev_bonding_info));
6235         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6236                                       &info.info);
6237 }
6238 EXPORT_SYMBOL(netdev_bonding_info_change);
6239
6240 static void netdev_adjacent_add_links(struct net_device *dev)
6241 {
6242         struct netdev_adjacent *iter;
6243
6244         struct net *net = dev_net(dev);
6245
6246         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6247                 if (!net_eq(net, dev_net(iter->dev)))
6248                         continue;
6249                 netdev_adjacent_sysfs_add(iter->dev, dev,
6250                                           &iter->dev->adj_list.lower);
6251                 netdev_adjacent_sysfs_add(dev, iter->dev,
6252                                           &dev->adj_list.upper);
6253         }
6254
6255         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6256                 if (!net_eq(net, dev_net(iter->dev)))
6257                         continue;
6258                 netdev_adjacent_sysfs_add(iter->dev, dev,
6259                                           &iter->dev->adj_list.upper);
6260                 netdev_adjacent_sysfs_add(dev, iter->dev,
6261                                           &dev->adj_list.lower);
6262         }
6263 }
6264
6265 static void netdev_adjacent_del_links(struct net_device *dev)
6266 {
6267         struct netdev_adjacent *iter;
6268
6269         struct net *net = dev_net(dev);
6270
6271         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6272                 if (!net_eq(net, dev_net(iter->dev)))
6273                         continue;
6274                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6275                                           &iter->dev->adj_list.lower);
6276                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6277                                           &dev->adj_list.upper);
6278         }
6279
6280         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6281                 if (!net_eq(net, dev_net(iter->dev)))
6282                         continue;
6283                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6284                                           &iter->dev->adj_list.upper);
6285                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6286                                           &dev->adj_list.lower);
6287         }
6288 }
6289
6290 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6291 {
6292         struct netdev_adjacent *iter;
6293
6294         struct net *net = dev_net(dev);
6295
6296         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6297                 if (!net_eq(net, dev_net(iter->dev)))
6298                         continue;
6299                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6300                                           &iter->dev->adj_list.lower);
6301                 netdev_adjacent_sysfs_add(iter->dev, dev,
6302                                           &iter->dev->adj_list.lower);
6303         }
6304
6305         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6306                 if (!net_eq(net, dev_net(iter->dev)))
6307                         continue;
6308                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6309                                           &iter->dev->adj_list.upper);
6310                 netdev_adjacent_sysfs_add(iter->dev, dev,
6311                                           &iter->dev->adj_list.upper);
6312         }
6313 }
6314
6315 void *netdev_lower_dev_get_private(struct net_device *dev,
6316                                    struct net_device *lower_dev)
6317 {
6318         struct netdev_adjacent *lower;
6319
6320         if (!lower_dev)
6321                 return NULL;
6322         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6323         if (!lower)
6324                 return NULL;
6325
6326         return lower->private;
6327 }
6328 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6329
6330
6331 int dev_get_nest_level(struct net_device *dev)
6332 {
6333         struct net_device *lower = NULL;
6334         struct list_head *iter;
6335         int max_nest = -1;
6336         int nest;
6337
6338         ASSERT_RTNL();
6339
6340         netdev_for_each_lower_dev(dev, lower, iter) {
6341                 nest = dev_get_nest_level(lower);
6342                 if (max_nest < nest)
6343                         max_nest = nest;
6344         }
6345
6346         return max_nest + 1;
6347 }
6348 EXPORT_SYMBOL(dev_get_nest_level);
6349
6350 /**
6351  * netdev_lower_change - Dispatch event about lower device state change
6352  * @lower_dev: device
6353  * @lower_state_info: state to dispatch
6354  *
6355  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6356  * The caller must hold the RTNL lock.
6357  */
6358 void netdev_lower_state_changed(struct net_device *lower_dev,
6359                                 void *lower_state_info)
6360 {
6361         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6362
6363         ASSERT_RTNL();
6364         changelowerstate_info.lower_state_info = lower_state_info;
6365         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6366                                       &changelowerstate_info.info);
6367 }
6368 EXPORT_SYMBOL(netdev_lower_state_changed);
6369
6370 static void dev_change_rx_flags(struct net_device *dev, int flags)
6371 {
6372         const struct net_device_ops *ops = dev->netdev_ops;
6373
6374         if (ops->ndo_change_rx_flags)
6375                 ops->ndo_change_rx_flags(dev, flags);
6376 }
6377
6378 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6379 {
6380         unsigned int old_flags = dev->flags;
6381         kuid_t uid;
6382         kgid_t gid;
6383
6384         ASSERT_RTNL();
6385
6386         dev->flags |= IFF_PROMISC;
6387         dev->promiscuity += inc;
6388         if (dev->promiscuity == 0) {
6389                 /*
6390                  * Avoid overflow.
6391                  * If inc causes overflow, untouch promisc and return error.
6392                  */
6393                 if (inc < 0)
6394                         dev->flags &= ~IFF_PROMISC;
6395                 else {
6396                         dev->promiscuity -= inc;
6397                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6398                                 dev->name);
6399                         return -EOVERFLOW;
6400                 }
6401         }
6402         if (dev->flags != old_flags) {
6403                 pr_info("device %s %s promiscuous mode\n",
6404                         dev->name,
6405                         dev->flags & IFF_PROMISC ? "entered" : "left");
6406                 if (audit_enabled) {
6407                         current_uid_gid(&uid, &gid);
6408                         audit_log(current->audit_context, GFP_ATOMIC,
6409                                 AUDIT_ANOM_PROMISCUOUS,
6410                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6411                                 dev->name, (dev->flags & IFF_PROMISC),
6412                                 (old_flags & IFF_PROMISC),
6413                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6414                                 from_kuid(&init_user_ns, uid),
6415                                 from_kgid(&init_user_ns, gid),
6416                                 audit_get_sessionid(current));
6417                 }
6418
6419                 dev_change_rx_flags(dev, IFF_PROMISC);
6420         }
6421         if (notify)
6422                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6423         return 0;
6424 }
6425
6426 /**
6427  *      dev_set_promiscuity     - update promiscuity count on a device
6428  *      @dev: device
6429  *      @inc: modifier
6430  *
6431  *      Add or remove promiscuity from a device. While the count in the device
6432  *      remains above zero the interface remains promiscuous. Once it hits zero
6433  *      the device reverts back to normal filtering operation. A negative inc
6434  *      value is used to drop promiscuity on the device.
6435  *      Return 0 if successful or a negative errno code on error.
6436  */
6437 int dev_set_promiscuity(struct net_device *dev, int inc)
6438 {
6439         unsigned int old_flags = dev->flags;
6440         int err;
6441
6442         err = __dev_set_promiscuity(dev, inc, true);
6443         if (err < 0)
6444                 return err;
6445         if (dev->flags != old_flags)
6446                 dev_set_rx_mode(dev);
6447         return err;
6448 }
6449 EXPORT_SYMBOL(dev_set_promiscuity);
6450
6451 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6452 {
6453         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6454
6455         ASSERT_RTNL();
6456
6457         dev->flags |= IFF_ALLMULTI;
6458         dev->allmulti += inc;
6459         if (dev->allmulti == 0) {
6460                 /*
6461                  * Avoid overflow.
6462                  * If inc causes overflow, untouch allmulti and return error.
6463                  */
6464                 if (inc < 0)
6465                         dev->flags &= ~IFF_ALLMULTI;
6466                 else {
6467                         dev->allmulti -= inc;
6468                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6469                                 dev->name);
6470                         return -EOVERFLOW;
6471                 }
6472         }
6473         if (dev->flags ^ old_flags) {
6474                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6475                 dev_set_rx_mode(dev);
6476                 if (notify)
6477                         __dev_notify_flags(dev, old_flags,
6478                                            dev->gflags ^ old_gflags);
6479         }
6480         return 0;
6481 }
6482
6483 /**
6484  *      dev_set_allmulti        - update allmulti count on a device
6485  *      @dev: device
6486  *      @inc: modifier
6487  *
6488  *      Add or remove reception of all multicast frames to a device. While the
6489  *      count in the device remains above zero the interface remains listening
6490  *      to all interfaces. Once it hits zero the device reverts back to normal
6491  *      filtering operation. A negative @inc value is used to drop the counter
6492  *      when releasing a resource needing all multicasts.
6493  *      Return 0 if successful or a negative errno code on error.
6494  */
6495
6496 int dev_set_allmulti(struct net_device *dev, int inc)
6497 {
6498         return __dev_set_allmulti(dev, inc, true);
6499 }
6500 EXPORT_SYMBOL(dev_set_allmulti);
6501
6502 /*
6503  *      Upload unicast and multicast address lists to device and
6504  *      configure RX filtering. When the device doesn't support unicast
6505  *      filtering it is put in promiscuous mode while unicast addresses
6506  *      are present.
6507  */
6508 void __dev_set_rx_mode(struct net_device *dev)
6509 {
6510         const struct net_device_ops *ops = dev->netdev_ops;
6511
6512         /* dev_open will call this function so the list will stay sane. */
6513         if (!(dev->flags&IFF_UP))
6514                 return;
6515
6516         if (!netif_device_present(dev))
6517                 return;
6518
6519         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6520                 /* Unicast addresses changes may only happen under the rtnl,
6521                  * therefore calling __dev_set_promiscuity here is safe.
6522                  */
6523                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6524                         __dev_set_promiscuity(dev, 1, false);
6525                         dev->uc_promisc = true;
6526                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6527                         __dev_set_promiscuity(dev, -1, false);
6528                         dev->uc_promisc = false;
6529                 }
6530         }
6531
6532         if (ops->ndo_set_rx_mode)
6533                 ops->ndo_set_rx_mode(dev);
6534 }
6535
6536 void dev_set_rx_mode(struct net_device *dev)
6537 {
6538         netif_addr_lock_bh(dev);
6539         __dev_set_rx_mode(dev);
6540         netif_addr_unlock_bh(dev);
6541 }
6542
6543 /**
6544  *      dev_get_flags - get flags reported to userspace
6545  *      @dev: device
6546  *
6547  *      Get the combination of flag bits exported through APIs to userspace.
6548  */
6549 unsigned int dev_get_flags(const struct net_device *dev)
6550 {
6551         unsigned int flags;
6552
6553         flags = (dev->flags & ~(IFF_PROMISC |
6554                                 IFF_ALLMULTI |
6555                                 IFF_RUNNING |
6556                                 IFF_LOWER_UP |
6557                                 IFF_DORMANT)) |
6558                 (dev->gflags & (IFF_PROMISC |
6559                                 IFF_ALLMULTI));
6560
6561         if (netif_running(dev)) {
6562                 if (netif_oper_up(dev))
6563                         flags |= IFF_RUNNING;
6564                 if (netif_carrier_ok(dev))
6565                         flags |= IFF_LOWER_UP;
6566                 if (netif_dormant(dev))
6567                         flags |= IFF_DORMANT;
6568         }
6569
6570         return flags;
6571 }
6572 EXPORT_SYMBOL(dev_get_flags);
6573
6574 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6575 {
6576         unsigned int old_flags = dev->flags;
6577         int ret;
6578
6579         ASSERT_RTNL();
6580
6581         /*
6582          *      Set the flags on our device.
6583          */
6584
6585         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6586                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6587                                IFF_AUTOMEDIA)) |
6588                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6589                                     IFF_ALLMULTI));
6590
6591         /*
6592          *      Load in the correct multicast list now the flags have changed.
6593          */
6594
6595         if ((old_flags ^ flags) & IFF_MULTICAST)
6596                 dev_change_rx_flags(dev, IFF_MULTICAST);
6597
6598         dev_set_rx_mode(dev);
6599
6600         /*
6601          *      Have we downed the interface. We handle IFF_UP ourselves
6602          *      according to user attempts to set it, rather than blindly
6603          *      setting it.
6604          */
6605
6606         ret = 0;
6607         if ((old_flags ^ flags) & IFF_UP)
6608                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6609
6610         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6611                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6612                 unsigned int old_flags = dev->flags;
6613
6614                 dev->gflags ^= IFF_PROMISC;
6615
6616                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6617                         if (dev->flags != old_flags)
6618                                 dev_set_rx_mode(dev);
6619         }
6620
6621         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6622          * is important. Some (broken) drivers set IFF_PROMISC, when
6623          * IFF_ALLMULTI is requested not asking us and not reporting.
6624          */
6625         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6626                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6627
6628                 dev->gflags ^= IFF_ALLMULTI;
6629                 __dev_set_allmulti(dev, inc, false);
6630         }
6631
6632         return ret;
6633 }
6634
6635 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6636                         unsigned int gchanges)
6637 {
6638         unsigned int changes = dev->flags ^ old_flags;
6639
6640         if (gchanges)
6641                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6642
6643         if (changes & IFF_UP) {
6644                 if (dev->flags & IFF_UP)
6645                         call_netdevice_notifiers(NETDEV_UP, dev);
6646                 else
6647                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6648         }
6649
6650         if (dev->flags & IFF_UP &&
6651             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6652                 struct netdev_notifier_change_info change_info;
6653
6654                 change_info.flags_changed = changes;
6655                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6656                                               &change_info.info);
6657         }
6658 }
6659
6660 /**
6661  *      dev_change_flags - change device settings
6662  *      @dev: device
6663  *      @flags: device state flags
6664  *
6665  *      Change settings on device based state flags. The flags are
6666  *      in the userspace exported format.
6667  */
6668 int dev_change_flags(struct net_device *dev, unsigned int flags)
6669 {
6670         int ret;
6671         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6672
6673         ret = __dev_change_flags(dev, flags);
6674         if (ret < 0)
6675                 return ret;
6676
6677         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6678         __dev_notify_flags(dev, old_flags, changes);
6679         return ret;
6680 }
6681 EXPORT_SYMBOL(dev_change_flags);
6682
6683 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6684 {
6685         const struct net_device_ops *ops = dev->netdev_ops;
6686
6687         if (ops->ndo_change_mtu)
6688                 return ops->ndo_change_mtu(dev, new_mtu);
6689
6690         dev->mtu = new_mtu;
6691         return 0;
6692 }
6693
6694 /**
6695  *      dev_set_mtu - Change maximum transfer unit
6696  *      @dev: device
6697  *      @new_mtu: new transfer unit
6698  *
6699  *      Change the maximum transfer size of the network device.
6700  */
6701 int dev_set_mtu(struct net_device *dev, int new_mtu)
6702 {
6703         int err, orig_mtu;
6704
6705         if (new_mtu == dev->mtu)
6706                 return 0;
6707
6708         /* MTU must be positive, and in range */
6709         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6710                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6711                                     dev->name, new_mtu, dev->min_mtu);
6712                 return -EINVAL;
6713         }
6714
6715         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6716                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6717                                     dev->name, new_mtu, dev->max_mtu);
6718                 return -EINVAL;
6719         }
6720
6721         if (!netif_device_present(dev))
6722                 return -ENODEV;
6723
6724         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6725         err = notifier_to_errno(err);
6726         if (err)
6727                 return err;
6728
6729         orig_mtu = dev->mtu;
6730         err = __dev_set_mtu(dev, new_mtu);
6731
6732         if (!err) {
6733                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6734                 err = notifier_to_errno(err);
6735                 if (err) {
6736                         /* setting mtu back and notifying everyone again,
6737                          * so that they have a chance to revert changes.
6738                          */
6739                         __dev_set_mtu(dev, orig_mtu);
6740                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6741                 }
6742         }
6743         return err;
6744 }
6745 EXPORT_SYMBOL(dev_set_mtu);
6746
6747 /**
6748  *      dev_set_group - Change group this device belongs to
6749  *      @dev: device
6750  *      @new_group: group this device should belong to
6751  */
6752 void dev_set_group(struct net_device *dev, int new_group)
6753 {
6754         dev->group = new_group;
6755 }
6756 EXPORT_SYMBOL(dev_set_group);
6757
6758 /**
6759  *      dev_set_mac_address - Change Media Access Control Address
6760  *      @dev: device
6761  *      @sa: new address
6762  *
6763  *      Change the hardware (MAC) address of the device
6764  */
6765 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6766 {
6767         const struct net_device_ops *ops = dev->netdev_ops;
6768         int err;
6769
6770         if (!ops->ndo_set_mac_address)
6771                 return -EOPNOTSUPP;
6772         if (sa->sa_family != dev->type)
6773                 return -EINVAL;
6774         if (!netif_device_present(dev))
6775                 return -ENODEV;
6776         err = ops->ndo_set_mac_address(dev, sa);
6777         if (err)
6778                 return err;
6779         dev->addr_assign_type = NET_ADDR_SET;
6780         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6781         add_device_randomness(dev->dev_addr, dev->addr_len);
6782         return 0;
6783 }
6784 EXPORT_SYMBOL(dev_set_mac_address);
6785
6786 /**
6787  *      dev_change_carrier - Change device carrier
6788  *      @dev: device
6789  *      @new_carrier: new value
6790  *
6791  *      Change device carrier
6792  */
6793 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6794 {
6795         const struct net_device_ops *ops = dev->netdev_ops;
6796
6797         if (!ops->ndo_change_carrier)
6798                 return -EOPNOTSUPP;
6799         if (!netif_device_present(dev))
6800                 return -ENODEV;
6801         return ops->ndo_change_carrier(dev, new_carrier);
6802 }
6803 EXPORT_SYMBOL(dev_change_carrier);
6804
6805 /**
6806  *      dev_get_phys_port_id - Get device physical port ID
6807  *      @dev: device
6808  *      @ppid: port ID
6809  *
6810  *      Get device physical port ID
6811  */
6812 int dev_get_phys_port_id(struct net_device *dev,
6813                          struct netdev_phys_item_id *ppid)
6814 {
6815         const struct net_device_ops *ops = dev->netdev_ops;
6816
6817         if (!ops->ndo_get_phys_port_id)
6818                 return -EOPNOTSUPP;
6819         return ops->ndo_get_phys_port_id(dev, ppid);
6820 }
6821 EXPORT_SYMBOL(dev_get_phys_port_id);
6822
6823 /**
6824  *      dev_get_phys_port_name - Get device physical port name
6825  *      @dev: device
6826  *      @name: port name
6827  *      @len: limit of bytes to copy to name
6828  *
6829  *      Get device physical port name
6830  */
6831 int dev_get_phys_port_name(struct net_device *dev,
6832                            char *name, size_t len)
6833 {
6834         const struct net_device_ops *ops = dev->netdev_ops;
6835
6836         if (!ops->ndo_get_phys_port_name)
6837                 return -EOPNOTSUPP;
6838         return ops->ndo_get_phys_port_name(dev, name, len);
6839 }
6840 EXPORT_SYMBOL(dev_get_phys_port_name);
6841
6842 /**
6843  *      dev_change_proto_down - update protocol port state information
6844  *      @dev: device
6845  *      @proto_down: new value
6846  *
6847  *      This info can be used by switch drivers to set the phys state of the
6848  *      port.
6849  */
6850 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6851 {
6852         const struct net_device_ops *ops = dev->netdev_ops;
6853
6854         if (!ops->ndo_change_proto_down)
6855                 return -EOPNOTSUPP;
6856         if (!netif_device_present(dev))
6857                 return -ENODEV;
6858         return ops->ndo_change_proto_down(dev, proto_down);
6859 }
6860 EXPORT_SYMBOL(dev_change_proto_down);
6861
6862 bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op)
6863 {
6864         struct netdev_xdp xdp;
6865
6866         memset(&xdp, 0, sizeof(xdp));
6867         xdp.command = XDP_QUERY_PROG;
6868
6869         /* Query must always succeed. */
6870         WARN_ON(xdp_op(dev, &xdp) < 0);
6871         return xdp.prog_attached;
6872 }
6873
6874 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6875                            struct netlink_ext_ack *extack,
6876                            struct bpf_prog *prog)
6877 {
6878         struct netdev_xdp xdp;
6879
6880         memset(&xdp, 0, sizeof(xdp));
6881         xdp.command = XDP_SETUP_PROG;
6882         xdp.extack = extack;
6883         xdp.prog = prog;
6884
6885         return xdp_op(dev, &xdp);
6886 }
6887
6888 /**
6889  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6890  *      @dev: device
6891  *      @extack: netlink extended ack
6892  *      @fd: new program fd or negative value to clear
6893  *      @flags: xdp-related flags
6894  *
6895  *      Set or clear a bpf program for a device
6896  */
6897 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6898                       int fd, u32 flags)
6899 {
6900         const struct net_device_ops *ops = dev->netdev_ops;
6901         struct bpf_prog *prog = NULL;
6902         xdp_op_t xdp_op, xdp_chk;
6903         int err;
6904
6905         ASSERT_RTNL();
6906
6907         xdp_op = xdp_chk = ops->ndo_xdp;
6908         if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE))
6909                 return -EOPNOTSUPP;
6910         if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
6911                 xdp_op = generic_xdp_install;
6912         if (xdp_op == xdp_chk)
6913                 xdp_chk = generic_xdp_install;
6914
6915         if (fd >= 0) {
6916                 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk))
6917                         return -EEXIST;
6918                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
6919                     __dev_xdp_attached(dev, xdp_op))
6920                         return -EBUSY;
6921
6922                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6923                 if (IS_ERR(prog))
6924                         return PTR_ERR(prog);
6925         }
6926
6927         err = dev_xdp_install(dev, xdp_op, extack, prog);
6928         if (err < 0 && prog)
6929                 bpf_prog_put(prog);
6930
6931         return err;
6932 }
6933
6934 /**
6935  *      dev_new_index   -       allocate an ifindex
6936  *      @net: the applicable net namespace
6937  *
6938  *      Returns a suitable unique value for a new device interface
6939  *      number.  The caller must hold the rtnl semaphore or the
6940  *      dev_base_lock to be sure it remains unique.
6941  */
6942 static int dev_new_index(struct net *net)
6943 {
6944         int ifindex = net->ifindex;
6945
6946         for (;;) {
6947                 if (++ifindex <= 0)
6948                         ifindex = 1;
6949                 if (!__dev_get_by_index(net, ifindex))
6950                         return net->ifindex = ifindex;
6951         }
6952 }
6953
6954 /* Delayed registration/unregisteration */
6955 static LIST_HEAD(net_todo_list);
6956 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6957
6958 static void net_set_todo(struct net_device *dev)
6959 {
6960         list_add_tail(&dev->todo_list, &net_todo_list);
6961         dev_net(dev)->dev_unreg_count++;
6962 }
6963
6964 static void rollback_registered_many(struct list_head *head)
6965 {
6966         struct net_device *dev, *tmp;
6967         LIST_HEAD(close_head);
6968
6969         BUG_ON(dev_boot_phase);
6970         ASSERT_RTNL();
6971
6972         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6973                 /* Some devices call without registering
6974                  * for initialization unwind. Remove those
6975                  * devices and proceed with the remaining.
6976                  */
6977                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6978                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6979                                  dev->name, dev);
6980
6981                         WARN_ON(1);
6982                         list_del(&dev->unreg_list);
6983                         continue;
6984                 }
6985                 dev->dismantle = true;
6986                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6987         }
6988
6989         /* If device is running, close it first. */
6990         list_for_each_entry(dev, head, unreg_list)
6991                 list_add_tail(&dev->close_list, &close_head);
6992         dev_close_many(&close_head, true);
6993
6994         list_for_each_entry(dev, head, unreg_list) {
6995                 /* And unlink it from device chain. */
6996                 unlist_netdevice(dev);
6997
6998                 dev->reg_state = NETREG_UNREGISTERING;
6999         }
7000         flush_all_backlogs();
7001
7002         synchronize_net();
7003
7004         list_for_each_entry(dev, head, unreg_list) {
7005                 struct sk_buff *skb = NULL;
7006
7007                 /* Shutdown queueing discipline. */
7008                 dev_shutdown(dev);
7009
7010
7011                 /* Notify protocols, that we are about to destroy
7012                  * this device. They should clean all the things.
7013                  */
7014                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7015
7016                 if (!dev->rtnl_link_ops ||
7017                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7018                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
7019                                                      GFP_KERNEL);
7020
7021                 /*
7022                  *      Flush the unicast and multicast chains
7023                  */
7024                 dev_uc_flush(dev);
7025                 dev_mc_flush(dev);
7026
7027                 if (dev->netdev_ops->ndo_uninit)
7028                         dev->netdev_ops->ndo_uninit(dev);
7029
7030                 if (skb)
7031                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7032
7033                 /* Notifier chain MUST detach us all upper devices. */
7034                 WARN_ON(netdev_has_any_upper_dev(dev));
7035                 WARN_ON(netdev_has_any_lower_dev(dev));
7036
7037                 /* Remove entries from kobject tree */
7038                 netdev_unregister_kobject(dev);
7039 #ifdef CONFIG_XPS
7040                 /* Remove XPS queueing entries */
7041                 netif_reset_xps_queues_gt(dev, 0);
7042 #endif
7043         }
7044
7045         synchronize_net();
7046
7047         list_for_each_entry(dev, head, unreg_list)
7048                 dev_put(dev);
7049 }
7050
7051 static void rollback_registered(struct net_device *dev)
7052 {
7053         LIST_HEAD(single);
7054
7055         list_add(&dev->unreg_list, &single);
7056         rollback_registered_many(&single);
7057         list_del(&single);
7058 }
7059
7060 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7061         struct net_device *upper, netdev_features_t features)
7062 {
7063         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7064         netdev_features_t feature;
7065         int feature_bit;
7066
7067         for_each_netdev_feature(&upper_disables, feature_bit) {
7068                 feature = __NETIF_F_BIT(feature_bit);
7069                 if (!(upper->wanted_features & feature)
7070                     && (features & feature)) {
7071                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7072                                    &feature, upper->name);
7073                         features &= ~feature;
7074                 }
7075         }
7076
7077         return features;
7078 }
7079
7080 static void netdev_sync_lower_features(struct net_device *upper,
7081         struct net_device *lower, netdev_features_t features)
7082 {
7083         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7084         netdev_features_t feature;
7085         int feature_bit;
7086
7087         for_each_netdev_feature(&upper_disables, feature_bit) {
7088                 feature = __NETIF_F_BIT(feature_bit);
7089                 if (!(features & feature) && (lower->features & feature)) {
7090                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7091                                    &feature, lower->name);
7092                         lower->wanted_features &= ~feature;
7093                         netdev_update_features(lower);
7094
7095                         if (unlikely(lower->features & feature))
7096                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7097                                             &feature, lower->name);
7098                 }
7099         }
7100 }
7101
7102 static netdev_features_t netdev_fix_features(struct net_device *dev,
7103         netdev_features_t features)
7104 {
7105         /* Fix illegal checksum combinations */
7106         if ((features & NETIF_F_HW_CSUM) &&
7107             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7108                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7109                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7110         }
7111
7112         /* TSO requires that SG is present as well. */
7113         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7114                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7115                 features &= ~NETIF_F_ALL_TSO;
7116         }
7117
7118         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7119                                         !(features & NETIF_F_IP_CSUM)) {
7120                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7121                 features &= ~NETIF_F_TSO;
7122                 features &= ~NETIF_F_TSO_ECN;
7123         }
7124
7125         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7126                                          !(features & NETIF_F_IPV6_CSUM)) {
7127                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7128                 features &= ~NETIF_F_TSO6;
7129         }
7130
7131         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7132         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7133                 features &= ~NETIF_F_TSO_MANGLEID;
7134
7135         /* TSO ECN requires that TSO is present as well. */
7136         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7137                 features &= ~NETIF_F_TSO_ECN;
7138
7139         /* Software GSO depends on SG. */
7140         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7141                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7142                 features &= ~NETIF_F_GSO;
7143         }
7144
7145         /* UFO needs SG and checksumming */
7146         if (features & NETIF_F_UFO) {
7147                 /* maybe split UFO into V4 and V6? */
7148                 if (!(features & NETIF_F_HW_CSUM) &&
7149                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7150                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7151                         netdev_dbg(dev,
7152                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
7153                         features &= ~NETIF_F_UFO;
7154                 }
7155
7156                 if (!(features & NETIF_F_SG)) {
7157                         netdev_dbg(dev,
7158                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7159                         features &= ~NETIF_F_UFO;
7160                 }
7161         }
7162
7163         /* GSO partial features require GSO partial be set */
7164         if ((features & dev->gso_partial_features) &&
7165             !(features & NETIF_F_GSO_PARTIAL)) {
7166                 netdev_dbg(dev,
7167                            "Dropping partially supported GSO features since no GSO partial.\n");
7168                 features &= ~dev->gso_partial_features;
7169         }
7170
7171         return features;
7172 }
7173
7174 int __netdev_update_features(struct net_device *dev)
7175 {
7176         struct net_device *upper, *lower;
7177         netdev_features_t features;
7178         struct list_head *iter;
7179         int err = -1;
7180
7181         ASSERT_RTNL();
7182
7183         features = netdev_get_wanted_features(dev);
7184
7185         if (dev->netdev_ops->ndo_fix_features)
7186                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7187
7188         /* driver might be less strict about feature dependencies */
7189         features = netdev_fix_features(dev, features);
7190
7191         /* some features can't be enabled if they're off an an upper device */
7192         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7193                 features = netdev_sync_upper_features(dev, upper, features);
7194
7195         if (dev->features == features)
7196                 goto sync_lower;
7197
7198         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7199                 &dev->features, &features);
7200
7201         if (dev->netdev_ops->ndo_set_features)
7202                 err = dev->netdev_ops->ndo_set_features(dev, features);
7203         else
7204                 err = 0;
7205
7206         if (unlikely(err < 0)) {
7207                 netdev_err(dev,
7208                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7209                         err, &features, &dev->features);
7210                 /* return non-0 since some features might have changed and
7211                  * it's better to fire a spurious notification than miss it
7212                  */
7213                 return -1;
7214         }
7215
7216 sync_lower:
7217         /* some features must be disabled on lower devices when disabled
7218          * on an upper device (think: bonding master or bridge)
7219          */
7220         netdev_for_each_lower_dev(dev, lower, iter)
7221                 netdev_sync_lower_features(dev, lower, features);
7222
7223         if (!err)
7224                 dev->features = features;
7225
7226         return err < 0 ? 0 : 1;
7227 }
7228
7229 /**
7230  *      netdev_update_features - recalculate device features
7231  *      @dev: the device to check
7232  *
7233  *      Recalculate dev->features set and send notifications if it
7234  *      has changed. Should be called after driver or hardware dependent
7235  *      conditions might have changed that influence the features.
7236  */
7237 void netdev_update_features(struct net_device *dev)
7238 {
7239         if (__netdev_update_features(dev))
7240                 netdev_features_change(dev);
7241 }
7242 EXPORT_SYMBOL(netdev_update_features);
7243
7244 /**
7245  *      netdev_change_features - recalculate device features
7246  *      @dev: the device to check
7247  *
7248  *      Recalculate dev->features set and send notifications even
7249  *      if they have not changed. Should be called instead of
7250  *      netdev_update_features() if also dev->vlan_features might
7251  *      have changed to allow the changes to be propagated to stacked
7252  *      VLAN devices.
7253  */
7254 void netdev_change_features(struct net_device *dev)
7255 {
7256         __netdev_update_features(dev);
7257         netdev_features_change(dev);
7258 }
7259 EXPORT_SYMBOL(netdev_change_features);
7260
7261 /**
7262  *      netif_stacked_transfer_operstate -      transfer operstate
7263  *      @rootdev: the root or lower level device to transfer state from
7264  *      @dev: the device to transfer operstate to
7265  *
7266  *      Transfer operational state from root to device. This is normally
7267  *      called when a stacking relationship exists between the root
7268  *      device and the device(a leaf device).
7269  */
7270 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7271                                         struct net_device *dev)
7272 {
7273         if (rootdev->operstate == IF_OPER_DORMANT)
7274                 netif_dormant_on(dev);
7275         else
7276                 netif_dormant_off(dev);
7277
7278         if (netif_carrier_ok(rootdev))
7279                 netif_carrier_on(dev);
7280         else
7281                 netif_carrier_off(dev);
7282 }
7283 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7284
7285 #ifdef CONFIG_SYSFS
7286 static int netif_alloc_rx_queues(struct net_device *dev)
7287 {
7288         unsigned int i, count = dev->num_rx_queues;
7289         struct netdev_rx_queue *rx;
7290         size_t sz = count * sizeof(*rx);
7291
7292         BUG_ON(count < 1);
7293
7294         rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7295         if (!rx)
7296                 return -ENOMEM;
7297
7298         dev->_rx = rx;
7299
7300         for (i = 0; i < count; i++)
7301                 rx[i].dev = dev;
7302         return 0;
7303 }
7304 #endif
7305
7306 static void netdev_init_one_queue(struct net_device *dev,
7307                                   struct netdev_queue *queue, void *_unused)
7308 {
7309         /* Initialize queue lock */
7310         spin_lock_init(&queue->_xmit_lock);
7311         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7312         queue->xmit_lock_owner = -1;
7313         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7314         queue->dev = dev;
7315 #ifdef CONFIG_BQL
7316         dql_init(&queue->dql, HZ);
7317 #endif
7318 }
7319
7320 static void netif_free_tx_queues(struct net_device *dev)
7321 {
7322         kvfree(dev->_tx);
7323 }
7324
7325 static int netif_alloc_netdev_queues(struct net_device *dev)
7326 {
7327         unsigned int count = dev->num_tx_queues;
7328         struct netdev_queue *tx;
7329         size_t sz = count * sizeof(*tx);
7330
7331         if (count < 1 || count > 0xffff)
7332                 return -EINVAL;
7333
7334         tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7335         if (!tx)
7336                 return -ENOMEM;
7337
7338         dev->_tx = tx;
7339
7340         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7341         spin_lock_init(&dev->tx_global_lock);
7342
7343         return 0;
7344 }
7345
7346 void netif_tx_stop_all_queues(struct net_device *dev)
7347 {
7348         unsigned int i;
7349
7350         for (i = 0; i < dev->num_tx_queues; i++) {
7351                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7352
7353                 netif_tx_stop_queue(txq);
7354         }
7355 }
7356 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7357
7358 /**
7359  *      register_netdevice      - register a network device
7360  *      @dev: device to register
7361  *
7362  *      Take a completed network device structure and add it to the kernel
7363  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7364  *      chain. 0 is returned on success. A negative errno code is returned
7365  *      on a failure to set up the device, or if the name is a duplicate.
7366  *
7367  *      Callers must hold the rtnl semaphore. You may want
7368  *      register_netdev() instead of this.
7369  *
7370  *      BUGS:
7371  *      The locking appears insufficient to guarantee two parallel registers
7372  *      will not get the same name.
7373  */
7374
7375 int register_netdevice(struct net_device *dev)
7376 {
7377         int ret;
7378         struct net *net = dev_net(dev);
7379
7380         BUG_ON(dev_boot_phase);
7381         ASSERT_RTNL();
7382
7383         might_sleep();
7384
7385         /* When net_device's are persistent, this will be fatal. */
7386         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7387         BUG_ON(!net);
7388
7389         spin_lock_init(&dev->addr_list_lock);
7390         netdev_set_addr_lockdep_class(dev);
7391
7392         ret = dev_get_valid_name(net, dev, dev->name);
7393         if (ret < 0)
7394                 goto out;
7395
7396         /* Init, if this function is available */
7397         if (dev->netdev_ops->ndo_init) {
7398                 ret = dev->netdev_ops->ndo_init(dev);
7399                 if (ret) {
7400                         if (ret > 0)
7401                                 ret = -EIO;
7402                         goto out;
7403                 }
7404         }
7405
7406         if (((dev->hw_features | dev->features) &
7407              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7408             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7409              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7410                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7411                 ret = -EINVAL;
7412                 goto err_uninit;
7413         }
7414
7415         ret = -EBUSY;
7416         if (!dev->ifindex)
7417                 dev->ifindex = dev_new_index(net);
7418         else if (__dev_get_by_index(net, dev->ifindex))
7419                 goto err_uninit;
7420
7421         /* Transfer changeable features to wanted_features and enable
7422          * software offloads (GSO and GRO).
7423          */
7424         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7425         dev->features |= NETIF_F_SOFT_FEATURES;
7426         dev->wanted_features = dev->features & dev->hw_features;
7427
7428         if (!(dev->flags & IFF_LOOPBACK))
7429                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7430
7431         /* If IPv4 TCP segmentation offload is supported we should also
7432          * allow the device to enable segmenting the frame with the option
7433          * of ignoring a static IP ID value.  This doesn't enable the
7434          * feature itself but allows the user to enable it later.
7435          */
7436         if (dev->hw_features & NETIF_F_TSO)
7437                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7438         if (dev->vlan_features & NETIF_F_TSO)
7439                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7440         if (dev->mpls_features & NETIF_F_TSO)
7441                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7442         if (dev->hw_enc_features & NETIF_F_TSO)
7443                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7444
7445         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7446          */
7447         dev->vlan_features |= NETIF_F_HIGHDMA;
7448
7449         /* Make NETIF_F_SG inheritable to tunnel devices.
7450          */
7451         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7452
7453         /* Make NETIF_F_SG inheritable to MPLS.
7454          */
7455         dev->mpls_features |= NETIF_F_SG;
7456
7457         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7458         ret = notifier_to_errno(ret);
7459         if (ret)
7460                 goto err_uninit;
7461
7462         ret = netdev_register_kobject(dev);
7463         if (ret)
7464                 goto err_uninit;
7465         dev->reg_state = NETREG_REGISTERED;
7466
7467         __netdev_update_features(dev);
7468
7469         /*
7470          *      Default initial state at registry is that the
7471          *      device is present.
7472          */
7473
7474         set_bit(__LINK_STATE_PRESENT, &dev->state);
7475
7476         linkwatch_init_dev(dev);
7477
7478         dev_init_scheduler(dev);
7479         dev_hold(dev);
7480         list_netdevice(dev);
7481         add_device_randomness(dev->dev_addr, dev->addr_len);
7482
7483         /* If the device has permanent device address, driver should
7484          * set dev_addr and also addr_assign_type should be set to
7485          * NET_ADDR_PERM (default value).
7486          */
7487         if (dev->addr_assign_type == NET_ADDR_PERM)
7488                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7489
7490         /* Notify protocols, that a new device appeared. */
7491         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7492         ret = notifier_to_errno(ret);
7493         if (ret) {
7494                 rollback_registered(dev);
7495                 dev->reg_state = NETREG_UNREGISTERED;
7496         }
7497         /*
7498          *      Prevent userspace races by waiting until the network
7499          *      device is fully setup before sending notifications.
7500          */
7501         if (!dev->rtnl_link_ops ||
7502             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7503                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7504
7505 out:
7506         return ret;
7507
7508 err_uninit:
7509         if (dev->netdev_ops->ndo_uninit)
7510                 dev->netdev_ops->ndo_uninit(dev);
7511         if (dev->priv_destructor)
7512                 dev->priv_destructor(dev);
7513         goto out;
7514 }
7515 EXPORT_SYMBOL(register_netdevice);
7516
7517 /**
7518  *      init_dummy_netdev       - init a dummy network device for NAPI
7519  *      @dev: device to init
7520  *
7521  *      This takes a network device structure and initialize the minimum
7522  *      amount of fields so it can be used to schedule NAPI polls without
7523  *      registering a full blown interface. This is to be used by drivers
7524  *      that need to tie several hardware interfaces to a single NAPI
7525  *      poll scheduler due to HW limitations.
7526  */
7527 int init_dummy_netdev(struct net_device *dev)
7528 {
7529         /* Clear everything. Note we don't initialize spinlocks
7530          * are they aren't supposed to be taken by any of the
7531          * NAPI code and this dummy netdev is supposed to be
7532          * only ever used for NAPI polls
7533          */
7534         memset(dev, 0, sizeof(struct net_device));
7535
7536         /* make sure we BUG if trying to hit standard
7537          * register/unregister code path
7538          */
7539         dev->reg_state = NETREG_DUMMY;
7540
7541         /* NAPI wants this */
7542         INIT_LIST_HEAD(&dev->napi_list);
7543
7544         /* a dummy interface is started by default */
7545         set_bit(__LINK_STATE_PRESENT, &dev->state);
7546         set_bit(__LINK_STATE_START, &dev->state);
7547
7548         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7549          * because users of this 'device' dont need to change
7550          * its refcount.
7551          */
7552
7553         return 0;
7554 }
7555 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7556
7557
7558 /**
7559  *      register_netdev - register a network device
7560  *      @dev: device to register
7561  *
7562  *      Take a completed network device structure and add it to the kernel
7563  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7564  *      chain. 0 is returned on success. A negative errno code is returned
7565  *      on a failure to set up the device, or if the name is a duplicate.
7566  *
7567  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7568  *      and expands the device name if you passed a format string to
7569  *      alloc_netdev.
7570  */
7571 int register_netdev(struct net_device *dev)
7572 {
7573         int err;
7574
7575         rtnl_lock();
7576         err = register_netdevice(dev);
7577         rtnl_unlock();
7578         return err;
7579 }
7580 EXPORT_SYMBOL(register_netdev);
7581
7582 int netdev_refcnt_read(const struct net_device *dev)
7583 {
7584         int i, refcnt = 0;
7585
7586         for_each_possible_cpu(i)
7587                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7588         return refcnt;
7589 }
7590 EXPORT_SYMBOL(netdev_refcnt_read);
7591
7592 /**
7593  * netdev_wait_allrefs - wait until all references are gone.
7594  * @dev: target net_device
7595  *
7596  * This is called when unregistering network devices.
7597  *
7598  * Any protocol or device that holds a reference should register
7599  * for netdevice notification, and cleanup and put back the
7600  * reference if they receive an UNREGISTER event.
7601  * We can get stuck here if buggy protocols don't correctly
7602  * call dev_put.
7603  */
7604 static void netdev_wait_allrefs(struct net_device *dev)
7605 {
7606         unsigned long rebroadcast_time, warning_time;
7607         int refcnt;
7608
7609         linkwatch_forget_dev(dev);
7610
7611         rebroadcast_time = warning_time = jiffies;
7612         refcnt = netdev_refcnt_read(dev);
7613
7614         while (refcnt != 0) {
7615                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7616                         rtnl_lock();
7617
7618                         /* Rebroadcast unregister notification */
7619                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7620
7621                         __rtnl_unlock();
7622                         rcu_barrier();
7623                         rtnl_lock();
7624
7625                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7626                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7627                                      &dev->state)) {
7628                                 /* We must not have linkwatch events
7629                                  * pending on unregister. If this
7630                                  * happens, we simply run the queue
7631                                  * unscheduled, resulting in a noop
7632                                  * for this device.
7633                                  */
7634                                 linkwatch_run_queue();
7635                         }
7636
7637                         __rtnl_unlock();
7638
7639                         rebroadcast_time = jiffies;
7640                 }
7641
7642                 msleep(250);
7643
7644                 refcnt = netdev_refcnt_read(dev);
7645
7646                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7647                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7648                                  dev->name, refcnt);
7649                         warning_time = jiffies;
7650                 }
7651         }
7652 }
7653
7654 /* The sequence is:
7655  *
7656  *      rtnl_lock();
7657  *      ...
7658  *      register_netdevice(x1);
7659  *      register_netdevice(x2);
7660  *      ...
7661  *      unregister_netdevice(y1);
7662  *      unregister_netdevice(y2);
7663  *      ...
7664  *      rtnl_unlock();
7665  *      free_netdev(y1);
7666  *      free_netdev(y2);
7667  *
7668  * We are invoked by rtnl_unlock().
7669  * This allows us to deal with problems:
7670  * 1) We can delete sysfs objects which invoke hotplug
7671  *    without deadlocking with linkwatch via keventd.
7672  * 2) Since we run with the RTNL semaphore not held, we can sleep
7673  *    safely in order to wait for the netdev refcnt to drop to zero.
7674  *
7675  * We must not return until all unregister events added during
7676  * the interval the lock was held have been completed.
7677  */
7678 void netdev_run_todo(void)
7679 {
7680         struct list_head list;
7681
7682         /* Snapshot list, allow later requests */
7683         list_replace_init(&net_todo_list, &list);
7684
7685         __rtnl_unlock();
7686
7687
7688         /* Wait for rcu callbacks to finish before next phase */
7689         if (!list_empty(&list))
7690                 rcu_barrier();
7691
7692         while (!list_empty(&list)) {
7693                 struct net_device *dev
7694                         = list_first_entry(&list, struct net_device, todo_list);
7695                 list_del(&dev->todo_list);
7696
7697                 rtnl_lock();
7698                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7699                 __rtnl_unlock();
7700
7701                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7702                         pr_err("network todo '%s' but state %d\n",
7703                                dev->name, dev->reg_state);
7704                         dump_stack();
7705                         continue;
7706                 }
7707
7708                 dev->reg_state = NETREG_UNREGISTERED;
7709
7710                 netdev_wait_allrefs(dev);
7711
7712                 /* paranoia */
7713                 BUG_ON(netdev_refcnt_read(dev));
7714                 BUG_ON(!list_empty(&dev->ptype_all));
7715                 BUG_ON(!list_empty(&dev->ptype_specific));
7716                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7717                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7718                 WARN_ON(dev->dn_ptr);
7719
7720                 if (dev->priv_destructor)
7721                         dev->priv_destructor(dev);
7722                 if (dev->needs_free_netdev)
7723                         free_netdev(dev);
7724
7725                 /* Report a network device has been unregistered */
7726                 rtnl_lock();
7727                 dev_net(dev)->dev_unreg_count--;
7728                 __rtnl_unlock();
7729                 wake_up(&netdev_unregistering_wq);
7730
7731                 /* Free network device */
7732                 kobject_put(&dev->dev.kobj);
7733         }
7734 }
7735
7736 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7737  * all the same fields in the same order as net_device_stats, with only
7738  * the type differing, but rtnl_link_stats64 may have additional fields
7739  * at the end for newer counters.
7740  */
7741 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7742                              const struct net_device_stats *netdev_stats)
7743 {
7744 #if BITS_PER_LONG == 64
7745         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7746         memcpy(stats64, netdev_stats, sizeof(*stats64));
7747         /* zero out counters that only exist in rtnl_link_stats64 */
7748         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7749                sizeof(*stats64) - sizeof(*netdev_stats));
7750 #else
7751         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7752         const unsigned long *src = (const unsigned long *)netdev_stats;
7753         u64 *dst = (u64 *)stats64;
7754
7755         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7756         for (i = 0; i < n; i++)
7757                 dst[i] = src[i];
7758         /* zero out counters that only exist in rtnl_link_stats64 */
7759         memset((char *)stats64 + n * sizeof(u64), 0,
7760                sizeof(*stats64) - n * sizeof(u64));
7761 #endif
7762 }
7763 EXPORT_SYMBOL(netdev_stats_to_stats64);
7764
7765 /**
7766  *      dev_get_stats   - get network device statistics
7767  *      @dev: device to get statistics from
7768  *      @storage: place to store stats
7769  *
7770  *      Get network statistics from device. Return @storage.
7771  *      The device driver may provide its own method by setting
7772  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7773  *      otherwise the internal statistics structure is used.
7774  */
7775 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7776                                         struct rtnl_link_stats64 *storage)
7777 {
7778         const struct net_device_ops *ops = dev->netdev_ops;
7779
7780         if (ops->ndo_get_stats64) {
7781                 memset(storage, 0, sizeof(*storage));
7782                 ops->ndo_get_stats64(dev, storage);
7783         } else if (ops->ndo_get_stats) {
7784                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7785         } else {
7786                 netdev_stats_to_stats64(storage, &dev->stats);
7787         }
7788         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7789         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7790         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7791         return storage;
7792 }
7793 EXPORT_SYMBOL(dev_get_stats);
7794
7795 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7796 {
7797         struct netdev_queue *queue = dev_ingress_queue(dev);
7798
7799 #ifdef CONFIG_NET_CLS_ACT
7800         if (queue)
7801                 return queue;
7802         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7803         if (!queue)
7804                 return NULL;
7805         netdev_init_one_queue(dev, queue, NULL);
7806         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7807         queue->qdisc_sleeping = &noop_qdisc;
7808         rcu_assign_pointer(dev->ingress_queue, queue);
7809 #endif
7810         return queue;
7811 }
7812
7813 static const struct ethtool_ops default_ethtool_ops;
7814
7815 void netdev_set_default_ethtool_ops(struct net_device *dev,
7816                                     const struct ethtool_ops *ops)
7817 {
7818         if (dev->ethtool_ops == &default_ethtool_ops)
7819                 dev->ethtool_ops = ops;
7820 }
7821 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7822
7823 void netdev_freemem(struct net_device *dev)
7824 {
7825         char *addr = (char *)dev - dev->padded;
7826
7827         kvfree(addr);
7828 }
7829
7830 /**
7831  * alloc_netdev_mqs - allocate network device
7832  * @sizeof_priv: size of private data to allocate space for
7833  * @name: device name format string
7834  * @name_assign_type: origin of device name
7835  * @setup: callback to initialize device
7836  * @txqs: the number of TX subqueues to allocate
7837  * @rxqs: the number of RX subqueues to allocate
7838  *
7839  * Allocates a struct net_device with private data area for driver use
7840  * and performs basic initialization.  Also allocates subqueue structs
7841  * for each queue on the device.
7842  */
7843 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7844                 unsigned char name_assign_type,
7845                 void (*setup)(struct net_device *),
7846                 unsigned int txqs, unsigned int rxqs)
7847 {
7848         struct net_device *dev;
7849         size_t alloc_size;
7850         struct net_device *p;
7851
7852         BUG_ON(strlen(name) >= sizeof(dev->name));
7853
7854         if (txqs < 1) {
7855                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7856                 return NULL;
7857         }
7858
7859 #ifdef CONFIG_SYSFS
7860         if (rxqs < 1) {
7861                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7862                 return NULL;
7863         }
7864 #endif
7865
7866         alloc_size = sizeof(struct net_device);
7867         if (sizeof_priv) {
7868                 /* ensure 32-byte alignment of private area */
7869                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7870                 alloc_size += sizeof_priv;
7871         }
7872         /* ensure 32-byte alignment of whole construct */
7873         alloc_size += NETDEV_ALIGN - 1;
7874
7875         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
7876         if (!p)
7877                 return NULL;
7878
7879         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7880         dev->padded = (char *)dev - (char *)p;
7881
7882         dev->pcpu_refcnt = alloc_percpu(int);
7883         if (!dev->pcpu_refcnt)
7884                 goto free_dev;
7885
7886         if (dev_addr_init(dev))
7887                 goto free_pcpu;
7888
7889         dev_mc_init(dev);
7890         dev_uc_init(dev);
7891
7892         dev_net_set(dev, &init_net);
7893
7894         dev->gso_max_size = GSO_MAX_SIZE;
7895         dev->gso_max_segs = GSO_MAX_SEGS;
7896
7897         INIT_LIST_HEAD(&dev->napi_list);
7898         INIT_LIST_HEAD(&dev->unreg_list);
7899         INIT_LIST_HEAD(&dev->close_list);
7900         INIT_LIST_HEAD(&dev->link_watch_list);
7901         INIT_LIST_HEAD(&dev->adj_list.upper);
7902         INIT_LIST_HEAD(&dev->adj_list.lower);
7903         INIT_LIST_HEAD(&dev->ptype_all);
7904         INIT_LIST_HEAD(&dev->ptype_specific);
7905 #ifdef CONFIG_NET_SCHED
7906         hash_init(dev->qdisc_hash);
7907 #endif
7908         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7909         setup(dev);
7910
7911         if (!dev->tx_queue_len) {
7912                 dev->priv_flags |= IFF_NO_QUEUE;
7913                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7914         }
7915
7916         dev->num_tx_queues = txqs;
7917         dev->real_num_tx_queues = txqs;
7918         if (netif_alloc_netdev_queues(dev))
7919                 goto free_all;
7920
7921 #ifdef CONFIG_SYSFS
7922         dev->num_rx_queues = rxqs;
7923         dev->real_num_rx_queues = rxqs;
7924         if (netif_alloc_rx_queues(dev))
7925                 goto free_all;
7926 #endif
7927
7928         strcpy(dev->name, name);
7929         dev->name_assign_type = name_assign_type;
7930         dev->group = INIT_NETDEV_GROUP;
7931         if (!dev->ethtool_ops)
7932                 dev->ethtool_ops = &default_ethtool_ops;
7933
7934         nf_hook_ingress_init(dev);
7935
7936         return dev;
7937
7938 free_all:
7939         free_netdev(dev);
7940         return NULL;
7941
7942 free_pcpu:
7943         free_percpu(dev->pcpu_refcnt);
7944 free_dev:
7945         netdev_freemem(dev);
7946         return NULL;
7947 }
7948 EXPORT_SYMBOL(alloc_netdev_mqs);
7949
7950 /**
7951  * free_netdev - free network device
7952  * @dev: device
7953  *
7954  * This function does the last stage of destroying an allocated device
7955  * interface. The reference to the device object is released. If this
7956  * is the last reference then it will be freed.Must be called in process
7957  * context.
7958  */
7959 void free_netdev(struct net_device *dev)
7960 {
7961         struct napi_struct *p, *n;
7962         struct bpf_prog *prog;
7963
7964         might_sleep();
7965         netif_free_tx_queues(dev);
7966 #ifdef CONFIG_SYSFS
7967         kvfree(dev->_rx);
7968 #endif
7969
7970         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7971
7972         /* Flush device addresses */
7973         dev_addr_flush(dev);
7974
7975         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7976                 netif_napi_del(p);
7977
7978         free_percpu(dev->pcpu_refcnt);
7979         dev->pcpu_refcnt = NULL;
7980
7981         prog = rcu_dereference_protected(dev->xdp_prog, 1);
7982         if (prog) {
7983                 bpf_prog_put(prog);
7984                 static_key_slow_dec(&generic_xdp_needed);
7985         }
7986
7987         /*  Compatibility with error handling in drivers */
7988         if (dev->reg_state == NETREG_UNINITIALIZED) {
7989                 netdev_freemem(dev);
7990                 return;
7991         }
7992
7993         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7994         dev->reg_state = NETREG_RELEASED;
7995
7996         /* will free via device release */
7997         put_device(&dev->dev);
7998 }
7999 EXPORT_SYMBOL(free_netdev);
8000
8001 /**
8002  *      synchronize_net -  Synchronize with packet receive processing
8003  *
8004  *      Wait for packets currently being received to be done.
8005  *      Does not block later packets from starting.
8006  */
8007 void synchronize_net(void)
8008 {
8009         might_sleep();
8010         if (rtnl_is_locked())
8011                 synchronize_rcu_expedited();
8012         else
8013                 synchronize_rcu();
8014 }
8015 EXPORT_SYMBOL(synchronize_net);
8016
8017 /**
8018  *      unregister_netdevice_queue - remove device from the kernel
8019  *      @dev: device
8020  *      @head: list
8021  *
8022  *      This function shuts down a device interface and removes it
8023  *      from the kernel tables.
8024  *      If head not NULL, device is queued to be unregistered later.
8025  *
8026  *      Callers must hold the rtnl semaphore.  You may want
8027  *      unregister_netdev() instead of this.
8028  */
8029
8030 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8031 {
8032         ASSERT_RTNL();
8033
8034         if (head) {
8035                 list_move_tail(&dev->unreg_list, head);
8036         } else {
8037                 rollback_registered(dev);
8038                 /* Finish processing unregister after unlock */
8039                 net_set_todo(dev);
8040         }
8041 }
8042 EXPORT_SYMBOL(unregister_netdevice_queue);
8043
8044 /**
8045  *      unregister_netdevice_many - unregister many devices
8046  *      @head: list of devices
8047  *
8048  *  Note: As most callers use a stack allocated list_head,
8049  *  we force a list_del() to make sure stack wont be corrupted later.
8050  */
8051 void unregister_netdevice_many(struct list_head *head)
8052 {
8053         struct net_device *dev;
8054
8055         if (!list_empty(head)) {
8056                 rollback_registered_many(head);
8057                 list_for_each_entry(dev, head, unreg_list)
8058                         net_set_todo(dev);
8059                 list_del(head);
8060         }
8061 }
8062 EXPORT_SYMBOL(unregister_netdevice_many);
8063
8064 /**
8065  *      unregister_netdev - remove device from the kernel
8066  *      @dev: device
8067  *
8068  *      This function shuts down a device interface and removes it
8069  *      from the kernel tables.
8070  *
8071  *      This is just a wrapper for unregister_netdevice that takes
8072  *      the rtnl semaphore.  In general you want to use this and not
8073  *      unregister_netdevice.
8074  */
8075 void unregister_netdev(struct net_device *dev)
8076 {
8077         rtnl_lock();
8078         unregister_netdevice(dev);
8079         rtnl_unlock();
8080 }
8081 EXPORT_SYMBOL(unregister_netdev);
8082
8083 /**
8084  *      dev_change_net_namespace - move device to different nethost namespace
8085  *      @dev: device
8086  *      @net: network namespace
8087  *      @pat: If not NULL name pattern to try if the current device name
8088  *            is already taken in the destination network namespace.
8089  *
8090  *      This function shuts down a device interface and moves it
8091  *      to a new network namespace. On success 0 is returned, on
8092  *      a failure a netagive errno code is returned.
8093  *
8094  *      Callers must hold the rtnl semaphore.
8095  */
8096
8097 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8098 {
8099         int err;
8100
8101         ASSERT_RTNL();
8102
8103         /* Don't allow namespace local devices to be moved. */
8104         err = -EINVAL;
8105         if (dev->features & NETIF_F_NETNS_LOCAL)
8106                 goto out;
8107
8108         /* Ensure the device has been registrered */
8109         if (dev->reg_state != NETREG_REGISTERED)
8110                 goto out;
8111
8112         /* Get out if there is nothing todo */
8113         err = 0;
8114         if (net_eq(dev_net(dev), net))
8115                 goto out;
8116
8117         /* Pick the destination device name, and ensure
8118          * we can use it in the destination network namespace.
8119          */
8120         err = -EEXIST;
8121         if (__dev_get_by_name(net, dev->name)) {
8122                 /* We get here if we can't use the current device name */
8123                 if (!pat)
8124                         goto out;
8125                 if (dev_get_valid_name(net, dev, pat) < 0)
8126                         goto out;
8127         }
8128
8129         /*
8130          * And now a mini version of register_netdevice unregister_netdevice.
8131          */
8132
8133         /* If device is running close it first. */
8134         dev_close(dev);
8135
8136         /* And unlink it from device chain */
8137         err = -ENODEV;
8138         unlist_netdevice(dev);
8139
8140         synchronize_net();
8141
8142         /* Shutdown queueing discipline. */
8143         dev_shutdown(dev);
8144
8145         /* Notify protocols, that we are about to destroy
8146          * this device. They should clean all the things.
8147          *
8148          * Note that dev->reg_state stays at NETREG_REGISTERED.
8149          * This is wanted because this way 8021q and macvlan know
8150          * the device is just moving and can keep their slaves up.
8151          */
8152         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8153         rcu_barrier();
8154         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8155         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8156
8157         /*
8158          *      Flush the unicast and multicast chains
8159          */
8160         dev_uc_flush(dev);
8161         dev_mc_flush(dev);
8162
8163         /* Send a netdev-removed uevent to the old namespace */
8164         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8165         netdev_adjacent_del_links(dev);
8166
8167         /* Actually switch the network namespace */
8168         dev_net_set(dev, net);
8169
8170         /* If there is an ifindex conflict assign a new one */
8171         if (__dev_get_by_index(net, dev->ifindex))
8172                 dev->ifindex = dev_new_index(net);
8173
8174         /* Send a netdev-add uevent to the new namespace */
8175         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8176         netdev_adjacent_add_links(dev);
8177
8178         /* Fixup kobjects */
8179         err = device_rename(&dev->dev, dev->name);
8180         WARN_ON(err);
8181
8182         /* Add the device back in the hashes */
8183         list_netdevice(dev);
8184
8185         /* Notify protocols, that a new device appeared. */
8186         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8187
8188         /*
8189          *      Prevent userspace races by waiting until the network
8190          *      device is fully setup before sending notifications.
8191          */
8192         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8193
8194         synchronize_net();
8195         err = 0;
8196 out:
8197         return err;
8198 }
8199 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8200
8201 static int dev_cpu_dead(unsigned int oldcpu)
8202 {
8203         struct sk_buff **list_skb;
8204         struct sk_buff *skb;
8205         unsigned int cpu;
8206         struct softnet_data *sd, *oldsd, *remsd = NULL;
8207
8208         local_irq_disable();
8209         cpu = smp_processor_id();
8210         sd = &per_cpu(softnet_data, cpu);
8211         oldsd = &per_cpu(softnet_data, oldcpu);
8212
8213         /* Find end of our completion_queue. */
8214         list_skb = &sd->completion_queue;
8215         while (*list_skb)
8216                 list_skb = &(*list_skb)->next;
8217         /* Append completion queue from offline CPU. */
8218         *list_skb = oldsd->completion_queue;
8219         oldsd->completion_queue = NULL;
8220
8221         /* Append output queue from offline CPU. */
8222         if (oldsd->output_queue) {
8223                 *sd->output_queue_tailp = oldsd->output_queue;
8224                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8225                 oldsd->output_queue = NULL;
8226                 oldsd->output_queue_tailp = &oldsd->output_queue;
8227         }
8228         /* Append NAPI poll list from offline CPU, with one exception :
8229          * process_backlog() must be called by cpu owning percpu backlog.
8230          * We properly handle process_queue & input_pkt_queue later.
8231          */
8232         while (!list_empty(&oldsd->poll_list)) {
8233                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8234                                                             struct napi_struct,
8235                                                             poll_list);
8236
8237                 list_del_init(&napi->poll_list);
8238                 if (napi->poll == process_backlog)
8239                         napi->state = 0;
8240                 else
8241                         ____napi_schedule(sd, napi);
8242         }
8243
8244         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8245         local_irq_enable();
8246
8247 #ifdef CONFIG_RPS
8248         remsd = oldsd->rps_ipi_list;
8249         oldsd->rps_ipi_list = NULL;
8250 #endif
8251         /* send out pending IPI's on offline CPU */
8252         net_rps_send_ipi(remsd);
8253
8254         /* Process offline CPU's input_pkt_queue */
8255         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8256                 netif_rx_ni(skb);
8257                 input_queue_head_incr(oldsd);
8258         }
8259         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8260                 netif_rx_ni(skb);
8261                 input_queue_head_incr(oldsd);
8262         }
8263
8264         return 0;
8265 }
8266
8267 /**
8268  *      netdev_increment_features - increment feature set by one
8269  *      @all: current feature set
8270  *      @one: new feature set
8271  *      @mask: mask feature set
8272  *
8273  *      Computes a new feature set after adding a device with feature set
8274  *      @one to the master device with current feature set @all.  Will not
8275  *      enable anything that is off in @mask. Returns the new feature set.
8276  */
8277 netdev_features_t netdev_increment_features(netdev_features_t all,
8278         netdev_features_t one, netdev_features_t mask)
8279 {
8280         if (mask & NETIF_F_HW_CSUM)
8281                 mask |= NETIF_F_CSUM_MASK;
8282         mask |= NETIF_F_VLAN_CHALLENGED;
8283
8284         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8285         all &= one | ~NETIF_F_ALL_FOR_ALL;
8286
8287         /* If one device supports hw checksumming, set for all. */
8288         if (all & NETIF_F_HW_CSUM)
8289                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8290
8291         return all;
8292 }
8293 EXPORT_SYMBOL(netdev_increment_features);
8294
8295 static struct hlist_head * __net_init netdev_create_hash(void)
8296 {
8297         int i;
8298         struct hlist_head *hash;
8299
8300         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8301         if (hash != NULL)
8302                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8303                         INIT_HLIST_HEAD(&hash[i]);
8304
8305         return hash;
8306 }
8307
8308 /* Initialize per network namespace state */
8309 static int __net_init netdev_init(struct net *net)
8310 {
8311         if (net != &init_net)
8312                 INIT_LIST_HEAD(&net->dev_base_head);
8313
8314         net->dev_name_head = netdev_create_hash();
8315         if (net->dev_name_head == NULL)
8316                 goto err_name;
8317
8318         net->dev_index_head = netdev_create_hash();
8319         if (net->dev_index_head == NULL)
8320                 goto err_idx;
8321
8322         return 0;
8323
8324 err_idx:
8325         kfree(net->dev_name_head);
8326 err_name:
8327         return -ENOMEM;
8328 }
8329
8330 /**
8331  *      netdev_drivername - network driver for the device
8332  *      @dev: network device
8333  *
8334  *      Determine network driver for device.
8335  */
8336 const char *netdev_drivername(const struct net_device *dev)
8337 {
8338         const struct device_driver *driver;
8339         const struct device *parent;
8340         const char *empty = "";
8341
8342         parent = dev->dev.parent;
8343         if (!parent)
8344                 return empty;
8345
8346         driver = parent->driver;
8347         if (driver && driver->name)
8348                 return driver->name;
8349         return empty;
8350 }
8351
8352 static void __netdev_printk(const char *level, const struct net_device *dev,
8353                             struct va_format *vaf)
8354 {
8355         if (dev && dev->dev.parent) {
8356                 dev_printk_emit(level[1] - '0',
8357                                 dev->dev.parent,
8358                                 "%s %s %s%s: %pV",
8359                                 dev_driver_string(dev->dev.parent),
8360                                 dev_name(dev->dev.parent),
8361                                 netdev_name(dev), netdev_reg_state(dev),
8362                                 vaf);
8363         } else if (dev) {
8364                 printk("%s%s%s: %pV",
8365                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8366         } else {
8367                 printk("%s(NULL net_device): %pV", level, vaf);
8368         }
8369 }
8370
8371 void netdev_printk(const char *level, const struct net_device *dev,
8372                    const char *format, ...)
8373 {
8374         struct va_format vaf;
8375         va_list args;
8376
8377         va_start(args, format);
8378
8379         vaf.fmt = format;
8380         vaf.va = &args;
8381
8382         __netdev_printk(level, dev, &vaf);
8383
8384         va_end(args);
8385 }
8386 EXPORT_SYMBOL(netdev_printk);
8387
8388 #define define_netdev_printk_level(func, level)                 \
8389 void func(const struct net_device *dev, const char *fmt, ...)   \
8390 {                                                               \
8391         struct va_format vaf;                                   \
8392         va_list args;                                           \
8393                                                                 \
8394         va_start(args, fmt);                                    \
8395                                                                 \
8396         vaf.fmt = fmt;                                          \
8397         vaf.va = &args;                                         \
8398                                                                 \
8399         __netdev_printk(level, dev, &vaf);                      \
8400                                                                 \
8401         va_end(args);                                           \
8402 }                                                               \
8403 EXPORT_SYMBOL(func);
8404
8405 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8406 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8407 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8408 define_netdev_printk_level(netdev_err, KERN_ERR);
8409 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8410 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8411 define_netdev_printk_level(netdev_info, KERN_INFO);
8412
8413 static void __net_exit netdev_exit(struct net *net)
8414 {
8415         kfree(net->dev_name_head);
8416         kfree(net->dev_index_head);
8417 }
8418
8419 static struct pernet_operations __net_initdata netdev_net_ops = {
8420         .init = netdev_init,
8421         .exit = netdev_exit,
8422 };
8423
8424 static void __net_exit default_device_exit(struct net *net)
8425 {
8426         struct net_device *dev, *aux;
8427         /*
8428          * Push all migratable network devices back to the
8429          * initial network namespace
8430          */
8431         rtnl_lock();
8432         for_each_netdev_safe(net, dev, aux) {
8433                 int err;
8434                 char fb_name[IFNAMSIZ];
8435
8436                 /* Ignore unmoveable devices (i.e. loopback) */
8437                 if (dev->features & NETIF_F_NETNS_LOCAL)
8438                         continue;
8439
8440                 /* Leave virtual devices for the generic cleanup */
8441                 if (dev->rtnl_link_ops)
8442                         continue;
8443
8444                 /* Push remaining network devices to init_net */
8445                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8446                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8447                 if (err) {
8448                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8449                                  __func__, dev->name, err);
8450                         BUG();
8451                 }
8452         }
8453         rtnl_unlock();
8454 }
8455
8456 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8457 {
8458         /* Return with the rtnl_lock held when there are no network
8459          * devices unregistering in any network namespace in net_list.
8460          */
8461         struct net *net;
8462         bool unregistering;
8463         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8464
8465         add_wait_queue(&netdev_unregistering_wq, &wait);
8466         for (;;) {
8467                 unregistering = false;
8468                 rtnl_lock();
8469                 list_for_each_entry(net, net_list, exit_list) {
8470                         if (net->dev_unreg_count > 0) {
8471                                 unregistering = true;
8472                                 break;
8473                         }
8474                 }
8475                 if (!unregistering)
8476                         break;
8477                 __rtnl_unlock();
8478
8479                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8480         }
8481         remove_wait_queue(&netdev_unregistering_wq, &wait);
8482 }
8483
8484 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8485 {
8486         /* At exit all network devices most be removed from a network
8487          * namespace.  Do this in the reverse order of registration.
8488          * Do this across as many network namespaces as possible to
8489          * improve batching efficiency.
8490          */
8491         struct net_device *dev;
8492         struct net *net;
8493         LIST_HEAD(dev_kill_list);
8494
8495         /* To prevent network device cleanup code from dereferencing
8496          * loopback devices or network devices that have been freed
8497          * wait here for all pending unregistrations to complete,
8498          * before unregistring the loopback device and allowing the
8499          * network namespace be freed.
8500          *
8501          * The netdev todo list containing all network devices
8502          * unregistrations that happen in default_device_exit_batch
8503          * will run in the rtnl_unlock() at the end of
8504          * default_device_exit_batch.
8505          */
8506         rtnl_lock_unregistering(net_list);
8507         list_for_each_entry(net, net_list, exit_list) {
8508                 for_each_netdev_reverse(net, dev) {
8509                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8510                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8511                         else
8512                                 unregister_netdevice_queue(dev, &dev_kill_list);
8513                 }
8514         }
8515         unregister_netdevice_many(&dev_kill_list);
8516         rtnl_unlock();
8517 }
8518
8519 static struct pernet_operations __net_initdata default_device_ops = {
8520         .exit = default_device_exit,
8521         .exit_batch = default_device_exit_batch,
8522 };
8523
8524 /*
8525  *      Initialize the DEV module. At boot time this walks the device list and
8526  *      unhooks any devices that fail to initialise (normally hardware not
8527  *      present) and leaves us with a valid list of present and active devices.
8528  *
8529  */
8530
8531 /*
8532  *       This is called single threaded during boot, so no need
8533  *       to take the rtnl semaphore.
8534  */
8535 static int __init net_dev_init(void)
8536 {
8537         int i, rc = -ENOMEM;
8538
8539         BUG_ON(!dev_boot_phase);
8540
8541         if (dev_proc_init())
8542                 goto out;
8543
8544         if (netdev_kobject_init())
8545                 goto out;
8546
8547         INIT_LIST_HEAD(&ptype_all);
8548         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8549                 INIT_LIST_HEAD(&ptype_base[i]);
8550
8551         INIT_LIST_HEAD(&offload_base);
8552
8553         if (register_pernet_subsys(&netdev_net_ops))
8554                 goto out;
8555
8556         /*
8557          *      Initialise the packet receive queues.
8558          */
8559
8560         for_each_possible_cpu(i) {
8561                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8562                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8563
8564                 INIT_WORK(flush, flush_backlog);
8565
8566                 skb_queue_head_init(&sd->input_pkt_queue);
8567                 skb_queue_head_init(&sd->process_queue);
8568                 INIT_LIST_HEAD(&sd->poll_list);
8569                 sd->output_queue_tailp = &sd->output_queue;
8570 #ifdef CONFIG_RPS
8571                 sd->csd.func = rps_trigger_softirq;
8572                 sd->csd.info = sd;
8573                 sd->cpu = i;
8574 #endif
8575
8576                 sd->backlog.poll = process_backlog;
8577                 sd->backlog.weight = weight_p;
8578         }
8579
8580         dev_boot_phase = 0;
8581
8582         /* The loopback device is special if any other network devices
8583          * is present in a network namespace the loopback device must
8584          * be present. Since we now dynamically allocate and free the
8585          * loopback device ensure this invariant is maintained by
8586          * keeping the loopback device as the first device on the
8587          * list of network devices.  Ensuring the loopback devices
8588          * is the first device that appears and the last network device
8589          * that disappears.
8590          */
8591         if (register_pernet_device(&loopback_net_ops))
8592                 goto out;
8593
8594         if (register_pernet_device(&default_device_ops))
8595                 goto out;
8596
8597         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8598         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8599
8600         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8601                                        NULL, dev_cpu_dead);
8602         WARN_ON(rc < 0);
8603         dst_subsys_init();
8604         rc = 0;
8605 out:
8606         return rc;
8607 }
8608
8609 subsys_initcall(net_dev_init);