]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/core/dev.c
Merge tag 'stm32-defconfig-for-v4.12-1' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;       /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160                                          struct net_device *dev,
161                                          struct netdev_notifier_info *info);
162
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195         while (++net->dev_base_seq == 0)
196                 ;
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214         spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228         struct net *net = dev_net(dev);
229
230         ASSERT_RTNL();
231
232         write_lock_bh(&dev_base_lock);
233         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235         hlist_add_head_rcu(&dev->index_hlist,
236                            dev_index_hash(net, dev->ifindex));
237         write_unlock_bh(&dev_base_lock);
238
239         dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247         ASSERT_RTNL();
248
249         /* Unlink dev from the device chain */
250         write_lock_bh(&dev_base_lock);
251         list_del_rcu(&dev->dev_list);
252         hlist_del_rcu(&dev->name_hlist);
253         hlist_del_rcu(&dev->index_hlist);
254         write_unlock_bh(&dev_base_lock);
255
256         dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260  *      Our notifier list
261  */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266  *      Device drivers call our routines to queue packets here. We empty the
267  *      queue in the local softnet handler.
268  */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] = {
279          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] = {
296         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317         int i;
318
319         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320                 if (netdev_lock_type[i] == dev_type)
321                         return i;
322         /* the last key is used by default */
323         return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327                                                  unsigned short dev_type)
328 {
329         int i;
330
331         i = netdev_lock_pos(dev_type);
332         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333                                    netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338         int i;
339
340         i = netdev_lock_pos(dev->type);
341         lockdep_set_class_and_name(&dev->addr_list_lock,
342                                    &netdev_addr_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347                                                  unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356  *
357  *              Protocol management and registration routines
358  *
359  *******************************************************************************/
360
361
362 /*
363  *      Add a protocol ID to the list. Now that the input handler is
364  *      smarter we can dispense with all the messy stuff that used to be
365  *      here.
366  *
367  *      BEWARE!!! Protocol handlers, mangling input packets,
368  *      MUST BE last in hash buckets and checking protocol handlers
369  *      MUST start from promiscuous ptype_all chain in net_bh.
370  *      It is true now, do not change it.
371  *      Explanation follows: if protocol handler, mangling packet, will
372  *      be the first on list, it is not able to sense, that packet
373  *      is cloned and should be copied-on-write, so that it will
374  *      change it and subsequent readers will get broken packet.
375  *                                                      --ANK (980803)
376  */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380         if (pt->type == htons(ETH_P_ALL))
381                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
382         else
383                 return pt->dev ? &pt->dev->ptype_specific :
384                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
385 }
386
387 /**
388  *      dev_add_pack - add packet handler
389  *      @pt: packet type declaration
390  *
391  *      Add a protocol handler to the networking stack. The passed &packet_type
392  *      is linked into kernel lists and may not be freed until it has been
393  *      removed from the kernel lists.
394  *
395  *      This call does not sleep therefore it can not
396  *      guarantee all CPU's that are in middle of receiving packets
397  *      will see the new packet type (until the next received packet).
398  */
399
400 void dev_add_pack(struct packet_type *pt)
401 {
402         struct list_head *head = ptype_head(pt);
403
404         spin_lock(&ptype_lock);
405         list_add_rcu(&pt->list, head);
406         spin_unlock(&ptype_lock);
407 }
408 EXPORT_SYMBOL(dev_add_pack);
409
410 /**
411  *      __dev_remove_pack        - remove packet handler
412  *      @pt: packet type declaration
413  *
414  *      Remove a protocol handler that was previously added to the kernel
415  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
416  *      from the kernel lists and can be freed or reused once this function
417  *      returns.
418  *
419  *      The packet type might still be in use by receivers
420  *      and must not be freed until after all the CPU's have gone
421  *      through a quiescent state.
422  */
423 void __dev_remove_pack(struct packet_type *pt)
424 {
425         struct list_head *head = ptype_head(pt);
426         struct packet_type *pt1;
427
428         spin_lock(&ptype_lock);
429
430         list_for_each_entry(pt1, head, list) {
431                 if (pt == pt1) {
432                         list_del_rcu(&pt->list);
433                         goto out;
434                 }
435         }
436
437         pr_warn("dev_remove_pack: %p not found\n", pt);
438 out:
439         spin_unlock(&ptype_lock);
440 }
441 EXPORT_SYMBOL(__dev_remove_pack);
442
443 /**
444  *      dev_remove_pack  - remove packet handler
445  *      @pt: packet type declaration
446  *
447  *      Remove a protocol handler that was previously added to the kernel
448  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
449  *      from the kernel lists and can be freed or reused once this function
450  *      returns.
451  *
452  *      This call sleeps to guarantee that no CPU is looking at the packet
453  *      type after return.
454  */
455 void dev_remove_pack(struct packet_type *pt)
456 {
457         __dev_remove_pack(pt);
458
459         synchronize_net();
460 }
461 EXPORT_SYMBOL(dev_remove_pack);
462
463
464 /**
465  *      dev_add_offload - register offload handlers
466  *      @po: protocol offload declaration
467  *
468  *      Add protocol offload handlers to the networking stack. The passed
469  *      &proto_offload is linked into kernel lists and may not be freed until
470  *      it has been removed from the kernel lists.
471  *
472  *      This call does not sleep therefore it can not
473  *      guarantee all CPU's that are in middle of receiving packets
474  *      will see the new offload handlers (until the next received packet).
475  */
476 void dev_add_offload(struct packet_offload *po)
477 {
478         struct packet_offload *elem;
479
480         spin_lock(&offload_lock);
481         list_for_each_entry(elem, &offload_base, list) {
482                 if (po->priority < elem->priority)
483                         break;
484         }
485         list_add_rcu(&po->list, elem->list.prev);
486         spin_unlock(&offload_lock);
487 }
488 EXPORT_SYMBOL(dev_add_offload);
489
490 /**
491  *      __dev_remove_offload     - remove offload handler
492  *      @po: packet offload declaration
493  *
494  *      Remove a protocol offload handler that was previously added to the
495  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
496  *      is removed from the kernel lists and can be freed or reused once this
497  *      function returns.
498  *
499  *      The packet type might still be in use by receivers
500  *      and must not be freed until after all the CPU's have gone
501  *      through a quiescent state.
502  */
503 static void __dev_remove_offload(struct packet_offload *po)
504 {
505         struct list_head *head = &offload_base;
506         struct packet_offload *po1;
507
508         spin_lock(&offload_lock);
509
510         list_for_each_entry(po1, head, list) {
511                 if (po == po1) {
512                         list_del_rcu(&po->list);
513                         goto out;
514                 }
515         }
516
517         pr_warn("dev_remove_offload: %p not found\n", po);
518 out:
519         spin_unlock(&offload_lock);
520 }
521
522 /**
523  *      dev_remove_offload       - remove packet offload handler
524  *      @po: packet offload declaration
525  *
526  *      Remove a packet offload handler that was previously added to the kernel
527  *      offload handlers by dev_add_offload(). The passed &offload_type is
528  *      removed from the kernel lists and can be freed or reused once this
529  *      function returns.
530  *
531  *      This call sleeps to guarantee that no CPU is looking at the packet
532  *      type after return.
533  */
534 void dev_remove_offload(struct packet_offload *po)
535 {
536         __dev_remove_offload(po);
537
538         synchronize_net();
539 }
540 EXPORT_SYMBOL(dev_remove_offload);
541
542 /******************************************************************************
543  *
544  *                    Device Boot-time Settings Routines
545  *
546  ******************************************************************************/
547
548 /* Boot time configuration table */
549 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550
551 /**
552  *      netdev_boot_setup_add   - add new setup entry
553  *      @name: name of the device
554  *      @map: configured settings for the device
555  *
556  *      Adds new setup entry to the dev_boot_setup list.  The function
557  *      returns 0 on error and 1 on success.  This is a generic routine to
558  *      all netdevices.
559  */
560 static int netdev_boot_setup_add(char *name, struct ifmap *map)
561 {
562         struct netdev_boot_setup *s;
563         int i;
564
565         s = dev_boot_setup;
566         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
568                         memset(s[i].name, 0, sizeof(s[i].name));
569                         strlcpy(s[i].name, name, IFNAMSIZ);
570                         memcpy(&s[i].map, map, sizeof(s[i].map));
571                         break;
572                 }
573         }
574
575         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
576 }
577
578 /**
579  * netdev_boot_setup_check      - check boot time settings
580  * @dev: the netdevice
581  *
582  * Check boot time settings for the device.
583  * The found settings are set for the device to be used
584  * later in the device probing.
585  * Returns 0 if no settings found, 1 if they are.
586  */
587 int netdev_boot_setup_check(struct net_device *dev)
588 {
589         struct netdev_boot_setup *s = dev_boot_setup;
590         int i;
591
592         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
593                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
594                     !strcmp(dev->name, s[i].name)) {
595                         dev->irq = s[i].map.irq;
596                         dev->base_addr = s[i].map.base_addr;
597                         dev->mem_start = s[i].map.mem_start;
598                         dev->mem_end = s[i].map.mem_end;
599                         return 1;
600                 }
601         }
602         return 0;
603 }
604 EXPORT_SYMBOL(netdev_boot_setup_check);
605
606
607 /**
608  * netdev_boot_base     - get address from boot time settings
609  * @prefix: prefix for network device
610  * @unit: id for network device
611  *
612  * Check boot time settings for the base address of device.
613  * The found settings are set for the device to be used
614  * later in the device probing.
615  * Returns 0 if no settings found.
616  */
617 unsigned long netdev_boot_base(const char *prefix, int unit)
618 {
619         const struct netdev_boot_setup *s = dev_boot_setup;
620         char name[IFNAMSIZ];
621         int i;
622
623         sprintf(name, "%s%d", prefix, unit);
624
625         /*
626          * If device already registered then return base of 1
627          * to indicate not to probe for this interface
628          */
629         if (__dev_get_by_name(&init_net, name))
630                 return 1;
631
632         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
633                 if (!strcmp(name, s[i].name))
634                         return s[i].map.base_addr;
635         return 0;
636 }
637
638 /*
639  * Saves at boot time configured settings for any netdevice.
640  */
641 int __init netdev_boot_setup(char *str)
642 {
643         int ints[5];
644         struct ifmap map;
645
646         str = get_options(str, ARRAY_SIZE(ints), ints);
647         if (!str || !*str)
648                 return 0;
649
650         /* Save settings */
651         memset(&map, 0, sizeof(map));
652         if (ints[0] > 0)
653                 map.irq = ints[1];
654         if (ints[0] > 1)
655                 map.base_addr = ints[2];
656         if (ints[0] > 2)
657                 map.mem_start = ints[3];
658         if (ints[0] > 3)
659                 map.mem_end = ints[4];
660
661         /* Add new entry to the list */
662         return netdev_boot_setup_add(str, &map);
663 }
664
665 __setup("netdev=", netdev_boot_setup);
666
667 /*******************************************************************************
668  *
669  *                          Device Interface Subroutines
670  *
671  *******************************************************************************/
672
673 /**
674  *      dev_get_iflink  - get 'iflink' value of a interface
675  *      @dev: targeted interface
676  *
677  *      Indicates the ifindex the interface is linked to.
678  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
679  */
680
681 int dev_get_iflink(const struct net_device *dev)
682 {
683         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
684                 return dev->netdev_ops->ndo_get_iflink(dev);
685
686         return dev->ifindex;
687 }
688 EXPORT_SYMBOL(dev_get_iflink);
689
690 /**
691  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
692  *      @dev: targeted interface
693  *      @skb: The packet.
694  *
695  *      For better visibility of tunnel traffic OVS needs to retrieve
696  *      egress tunnel information for a packet. Following API allows
697  *      user to get this info.
698  */
699 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
700 {
701         struct ip_tunnel_info *info;
702
703         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
704                 return -EINVAL;
705
706         info = skb_tunnel_info_unclone(skb);
707         if (!info)
708                 return -ENOMEM;
709         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
710                 return -EINVAL;
711
712         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
713 }
714 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715
716 /**
717  *      __dev_get_by_name       - find a device by its name
718  *      @net: the applicable net namespace
719  *      @name: name to find
720  *
721  *      Find an interface by name. Must be called under RTNL semaphore
722  *      or @dev_base_lock. If the name is found a pointer to the device
723  *      is returned. If the name is not found then %NULL is returned. The
724  *      reference counters are not incremented so the caller must be
725  *      careful with locks.
726  */
727
728 struct net_device *__dev_get_by_name(struct net *net, const char *name)
729 {
730         struct net_device *dev;
731         struct hlist_head *head = dev_name_hash(net, name);
732
733         hlist_for_each_entry(dev, head, name_hlist)
734                 if (!strncmp(dev->name, name, IFNAMSIZ))
735                         return dev;
736
737         return NULL;
738 }
739 EXPORT_SYMBOL(__dev_get_by_name);
740
741 /**
742  * dev_get_by_name_rcu  - find a device by its name
743  * @net: the applicable net namespace
744  * @name: name to find
745  *
746  * Find an interface by name.
747  * If the name is found a pointer to the device is returned.
748  * If the name is not found then %NULL is returned.
749  * The reference counters are not incremented so the caller must be
750  * careful with locks. The caller must hold RCU lock.
751  */
752
753 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
754 {
755         struct net_device *dev;
756         struct hlist_head *head = dev_name_hash(net, name);
757
758         hlist_for_each_entry_rcu(dev, head, name_hlist)
759                 if (!strncmp(dev->name, name, IFNAMSIZ))
760                         return dev;
761
762         return NULL;
763 }
764 EXPORT_SYMBOL(dev_get_by_name_rcu);
765
766 /**
767  *      dev_get_by_name         - find a device by its name
768  *      @net: the applicable net namespace
769  *      @name: name to find
770  *
771  *      Find an interface by name. This can be called from any
772  *      context and does its own locking. The returned handle has
773  *      the usage count incremented and the caller must use dev_put() to
774  *      release it when it is no longer needed. %NULL is returned if no
775  *      matching device is found.
776  */
777
778 struct net_device *dev_get_by_name(struct net *net, const char *name)
779 {
780         struct net_device *dev;
781
782         rcu_read_lock();
783         dev = dev_get_by_name_rcu(net, name);
784         if (dev)
785                 dev_hold(dev);
786         rcu_read_unlock();
787         return dev;
788 }
789 EXPORT_SYMBOL(dev_get_by_name);
790
791 /**
792  *      __dev_get_by_index - find a device by its ifindex
793  *      @net: the applicable net namespace
794  *      @ifindex: index of device
795  *
796  *      Search for an interface by index. Returns %NULL if the device
797  *      is not found or a pointer to the device. The device has not
798  *      had its reference counter increased so the caller must be careful
799  *      about locking. The caller must hold either the RTNL semaphore
800  *      or @dev_base_lock.
801  */
802
803 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
804 {
805         struct net_device *dev;
806         struct hlist_head *head = dev_index_hash(net, ifindex);
807
808         hlist_for_each_entry(dev, head, index_hlist)
809                 if (dev->ifindex == ifindex)
810                         return dev;
811
812         return NULL;
813 }
814 EXPORT_SYMBOL(__dev_get_by_index);
815
816 /**
817  *      dev_get_by_index_rcu - find a device by its ifindex
818  *      @net: the applicable net namespace
819  *      @ifindex: index of device
820  *
821  *      Search for an interface by index. Returns %NULL if the device
822  *      is not found or a pointer to the device. The device has not
823  *      had its reference counter increased so the caller must be careful
824  *      about locking. The caller must hold RCU lock.
825  */
826
827 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
828 {
829         struct net_device *dev;
830         struct hlist_head *head = dev_index_hash(net, ifindex);
831
832         hlist_for_each_entry_rcu(dev, head, index_hlist)
833                 if (dev->ifindex == ifindex)
834                         return dev;
835
836         return NULL;
837 }
838 EXPORT_SYMBOL(dev_get_by_index_rcu);
839
840
841 /**
842  *      dev_get_by_index - find a device by its ifindex
843  *      @net: the applicable net namespace
844  *      @ifindex: index of device
845  *
846  *      Search for an interface by index. Returns NULL if the device
847  *      is not found or a pointer to the device. The device returned has
848  *      had a reference added and the pointer is safe until the user calls
849  *      dev_put to indicate they have finished with it.
850  */
851
852 struct net_device *dev_get_by_index(struct net *net, int ifindex)
853 {
854         struct net_device *dev;
855
856         rcu_read_lock();
857         dev = dev_get_by_index_rcu(net, ifindex);
858         if (dev)
859                 dev_hold(dev);
860         rcu_read_unlock();
861         return dev;
862 }
863 EXPORT_SYMBOL(dev_get_by_index);
864
865 /**
866  *      netdev_get_name - get a netdevice name, knowing its ifindex.
867  *      @net: network namespace
868  *      @name: a pointer to the buffer where the name will be stored.
869  *      @ifindex: the ifindex of the interface to get the name from.
870  *
871  *      The use of raw_seqcount_begin() and cond_resched() before
872  *      retrying is required as we want to give the writers a chance
873  *      to complete when CONFIG_PREEMPT is not set.
874  */
875 int netdev_get_name(struct net *net, char *name, int ifindex)
876 {
877         struct net_device *dev;
878         unsigned int seq;
879
880 retry:
881         seq = raw_seqcount_begin(&devnet_rename_seq);
882         rcu_read_lock();
883         dev = dev_get_by_index_rcu(net, ifindex);
884         if (!dev) {
885                 rcu_read_unlock();
886                 return -ENODEV;
887         }
888
889         strcpy(name, dev->name);
890         rcu_read_unlock();
891         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
892                 cond_resched();
893                 goto retry;
894         }
895
896         return 0;
897 }
898
899 /**
900  *      dev_getbyhwaddr_rcu - find a device by its hardware address
901  *      @net: the applicable net namespace
902  *      @type: media type of device
903  *      @ha: hardware address
904  *
905  *      Search for an interface by MAC address. Returns NULL if the device
906  *      is not found or a pointer to the device.
907  *      The caller must hold RCU or RTNL.
908  *      The returned device has not had its ref count increased
909  *      and the caller must therefore be careful about locking
910  *
911  */
912
913 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
914                                        const char *ha)
915 {
916         struct net_device *dev;
917
918         for_each_netdev_rcu(net, dev)
919                 if (dev->type == type &&
920                     !memcmp(dev->dev_addr, ha, dev->addr_len))
921                         return dev;
922
923         return NULL;
924 }
925 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
926
927 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
928 {
929         struct net_device *dev;
930
931         ASSERT_RTNL();
932         for_each_netdev(net, dev)
933                 if (dev->type == type)
934                         return dev;
935
936         return NULL;
937 }
938 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
939
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941 {
942         struct net_device *dev, *ret = NULL;
943
944         rcu_read_lock();
945         for_each_netdev_rcu(net, dev)
946                 if (dev->type == type) {
947                         dev_hold(dev);
948                         ret = dev;
949                         break;
950                 }
951         rcu_read_unlock();
952         return ret;
953 }
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955
956 /**
957  *      __dev_get_by_flags - find any device with given flags
958  *      @net: the applicable net namespace
959  *      @if_flags: IFF_* values
960  *      @mask: bitmask of bits in if_flags to check
961  *
962  *      Search for any interface with the given flags. Returns NULL if a device
963  *      is not found or a pointer to the device. Must be called inside
964  *      rtnl_lock(), and result refcount is unchanged.
965  */
966
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968                                       unsigned short mask)
969 {
970         struct net_device *dev, *ret;
971
972         ASSERT_RTNL();
973
974         ret = NULL;
975         for_each_netdev(net, dev) {
976                 if (((dev->flags ^ if_flags) & mask) == 0) {
977                         ret = dev;
978                         break;
979                 }
980         }
981         return ret;
982 }
983 EXPORT_SYMBOL(__dev_get_by_flags);
984
985 /**
986  *      dev_valid_name - check if name is okay for network device
987  *      @name: name string
988  *
989  *      Network device names need to be valid file names to
990  *      to allow sysfs to work.  We also disallow any kind of
991  *      whitespace.
992  */
993 bool dev_valid_name(const char *name)
994 {
995         if (*name == '\0')
996                 return false;
997         if (strlen(name) >= IFNAMSIZ)
998                 return false;
999         if (!strcmp(name, ".") || !strcmp(name, ".."))
1000                 return false;
1001
1002         while (*name) {
1003                 if (*name == '/' || *name == ':' || isspace(*name))
1004                         return false;
1005                 name++;
1006         }
1007         return true;
1008 }
1009 EXPORT_SYMBOL(dev_valid_name);
1010
1011 /**
1012  *      __dev_alloc_name - allocate a name for a device
1013  *      @net: network namespace to allocate the device name in
1014  *      @name: name format string
1015  *      @buf:  scratch buffer and result name string
1016  *
1017  *      Passed a format string - eg "lt%d" it will try and find a suitable
1018  *      id. It scans list of devices to build up a free map, then chooses
1019  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1020  *      while allocating the name and adding the device in order to avoid
1021  *      duplicates.
1022  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023  *      Returns the number of the unit assigned or a negative errno code.
1024  */
1025
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027 {
1028         int i = 0;
1029         const char *p;
1030         const int max_netdevices = 8*PAGE_SIZE;
1031         unsigned long *inuse;
1032         struct net_device *d;
1033
1034         p = strnchr(name, IFNAMSIZ-1, '%');
1035         if (p) {
1036                 /*
1037                  * Verify the string as this thing may have come from
1038                  * the user.  There must be either one "%d" and no other "%"
1039                  * characters.
1040                  */
1041                 if (p[1] != 'd' || strchr(p + 2, '%'))
1042                         return -EINVAL;
1043
1044                 /* Use one page as a bit array of possible slots */
1045                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046                 if (!inuse)
1047                         return -ENOMEM;
1048
1049                 for_each_netdev(net, d) {
1050                         if (!sscanf(d->name, name, &i))
1051                                 continue;
1052                         if (i < 0 || i >= max_netdevices)
1053                                 continue;
1054
1055                         /*  avoid cases where sscanf is not exact inverse of printf */
1056                         snprintf(buf, IFNAMSIZ, name, i);
1057                         if (!strncmp(buf, d->name, IFNAMSIZ))
1058                                 set_bit(i, inuse);
1059                 }
1060
1061                 i = find_first_zero_bit(inuse, max_netdevices);
1062                 free_page((unsigned long) inuse);
1063         }
1064
1065         if (buf != name)
1066                 snprintf(buf, IFNAMSIZ, name, i);
1067         if (!__dev_get_by_name(net, buf))
1068                 return i;
1069
1070         /* It is possible to run out of possible slots
1071          * when the name is long and there isn't enough space left
1072          * for the digits, or if all bits are used.
1073          */
1074         return -ENFILE;
1075 }
1076
1077 /**
1078  *      dev_alloc_name - allocate a name for a device
1079  *      @dev: device
1080  *      @name: name format string
1081  *
1082  *      Passed a format string - eg "lt%d" it will try and find a suitable
1083  *      id. It scans list of devices to build up a free map, then chooses
1084  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1085  *      while allocating the name and adding the device in order to avoid
1086  *      duplicates.
1087  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1088  *      Returns the number of the unit assigned or a negative errno code.
1089  */
1090
1091 int dev_alloc_name(struct net_device *dev, const char *name)
1092 {
1093         char buf[IFNAMSIZ];
1094         struct net *net;
1095         int ret;
1096
1097         BUG_ON(!dev_net(dev));
1098         net = dev_net(dev);
1099         ret = __dev_alloc_name(net, name, buf);
1100         if (ret >= 0)
1101                 strlcpy(dev->name, buf, IFNAMSIZ);
1102         return ret;
1103 }
1104 EXPORT_SYMBOL(dev_alloc_name);
1105
1106 static int dev_alloc_name_ns(struct net *net,
1107                              struct net_device *dev,
1108                              const char *name)
1109 {
1110         char buf[IFNAMSIZ];
1111         int ret;
1112
1113         ret = __dev_alloc_name(net, name, buf);
1114         if (ret >= 0)
1115                 strlcpy(dev->name, buf, IFNAMSIZ);
1116         return ret;
1117 }
1118
1119 static int dev_get_valid_name(struct net *net,
1120                               struct net_device *dev,
1121                               const char *name)
1122 {
1123         BUG_ON(!net);
1124
1125         if (!dev_valid_name(name))
1126                 return -EINVAL;
1127
1128         if (strchr(name, '%'))
1129                 return dev_alloc_name_ns(net, dev, name);
1130         else if (__dev_get_by_name(net, name))
1131                 return -EEXIST;
1132         else if (dev->name != name)
1133                 strlcpy(dev->name, name, IFNAMSIZ);
1134
1135         return 0;
1136 }
1137
1138 /**
1139  *      dev_change_name - change name of a device
1140  *      @dev: device
1141  *      @newname: name (or format string) must be at least IFNAMSIZ
1142  *
1143  *      Change name of a device, can pass format strings "eth%d".
1144  *      for wildcarding.
1145  */
1146 int dev_change_name(struct net_device *dev, const char *newname)
1147 {
1148         unsigned char old_assign_type;
1149         char oldname[IFNAMSIZ];
1150         int err = 0;
1151         int ret;
1152         struct net *net;
1153
1154         ASSERT_RTNL();
1155         BUG_ON(!dev_net(dev));
1156
1157         net = dev_net(dev);
1158         if (dev->flags & IFF_UP)
1159                 return -EBUSY;
1160
1161         write_seqcount_begin(&devnet_rename_seq);
1162
1163         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1164                 write_seqcount_end(&devnet_rename_seq);
1165                 return 0;
1166         }
1167
1168         memcpy(oldname, dev->name, IFNAMSIZ);
1169
1170         err = dev_get_valid_name(net, dev, newname);
1171         if (err < 0) {
1172                 write_seqcount_end(&devnet_rename_seq);
1173                 return err;
1174         }
1175
1176         if (oldname[0] && !strchr(oldname, '%'))
1177                 netdev_info(dev, "renamed from %s\n", oldname);
1178
1179         old_assign_type = dev->name_assign_type;
1180         dev->name_assign_type = NET_NAME_RENAMED;
1181
1182 rollback:
1183         ret = device_rename(&dev->dev, dev->name);
1184         if (ret) {
1185                 memcpy(dev->name, oldname, IFNAMSIZ);
1186                 dev->name_assign_type = old_assign_type;
1187                 write_seqcount_end(&devnet_rename_seq);
1188                 return ret;
1189         }
1190
1191         write_seqcount_end(&devnet_rename_seq);
1192
1193         netdev_adjacent_rename_links(dev, oldname);
1194
1195         write_lock_bh(&dev_base_lock);
1196         hlist_del_rcu(&dev->name_hlist);
1197         write_unlock_bh(&dev_base_lock);
1198
1199         synchronize_rcu();
1200
1201         write_lock_bh(&dev_base_lock);
1202         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1203         write_unlock_bh(&dev_base_lock);
1204
1205         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1206         ret = notifier_to_errno(ret);
1207
1208         if (ret) {
1209                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1210                 if (err >= 0) {
1211                         err = ret;
1212                         write_seqcount_begin(&devnet_rename_seq);
1213                         memcpy(dev->name, oldname, IFNAMSIZ);
1214                         memcpy(oldname, newname, IFNAMSIZ);
1215                         dev->name_assign_type = old_assign_type;
1216                         old_assign_type = NET_NAME_RENAMED;
1217                         goto rollback;
1218                 } else {
1219                         pr_err("%s: name change rollback failed: %d\n",
1220                                dev->name, ret);
1221                 }
1222         }
1223
1224         return err;
1225 }
1226
1227 /**
1228  *      dev_set_alias - change ifalias of a device
1229  *      @dev: device
1230  *      @alias: name up to IFALIASZ
1231  *      @len: limit of bytes to copy from info
1232  *
1233  *      Set ifalias for a device,
1234  */
1235 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1236 {
1237         char *new_ifalias;
1238
1239         ASSERT_RTNL();
1240
1241         if (len >= IFALIASZ)
1242                 return -EINVAL;
1243
1244         if (!len) {
1245                 kfree(dev->ifalias);
1246                 dev->ifalias = NULL;
1247                 return 0;
1248         }
1249
1250         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1251         if (!new_ifalias)
1252                 return -ENOMEM;
1253         dev->ifalias = new_ifalias;
1254
1255         strlcpy(dev->ifalias, alias, len+1);
1256         return len;
1257 }
1258
1259
1260 /**
1261  *      netdev_features_change - device changes features
1262  *      @dev: device to cause notification
1263  *
1264  *      Called to indicate a device has changed features.
1265  */
1266 void netdev_features_change(struct net_device *dev)
1267 {
1268         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1269 }
1270 EXPORT_SYMBOL(netdev_features_change);
1271
1272 /**
1273  *      netdev_state_change - device changes state
1274  *      @dev: device to cause notification
1275  *
1276  *      Called to indicate a device has changed state. This function calls
1277  *      the notifier chains for netdev_chain and sends a NEWLINK message
1278  *      to the routing socket.
1279  */
1280 void netdev_state_change(struct net_device *dev)
1281 {
1282         if (dev->flags & IFF_UP) {
1283                 struct netdev_notifier_change_info change_info;
1284
1285                 change_info.flags_changed = 0;
1286                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1287                                               &change_info.info);
1288                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1289         }
1290 }
1291 EXPORT_SYMBOL(netdev_state_change);
1292
1293 /**
1294  * netdev_notify_peers - notify network peers about existence of @dev
1295  * @dev: network device
1296  *
1297  * Generate traffic such that interested network peers are aware of
1298  * @dev, such as by generating a gratuitous ARP. This may be used when
1299  * a device wants to inform the rest of the network about some sort of
1300  * reconfiguration such as a failover event or virtual machine
1301  * migration.
1302  */
1303 void netdev_notify_peers(struct net_device *dev)
1304 {
1305         rtnl_lock();
1306         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1307         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1308         rtnl_unlock();
1309 }
1310 EXPORT_SYMBOL(netdev_notify_peers);
1311
1312 static int __dev_open(struct net_device *dev)
1313 {
1314         const struct net_device_ops *ops = dev->netdev_ops;
1315         int ret;
1316
1317         ASSERT_RTNL();
1318
1319         if (!netif_device_present(dev))
1320                 return -ENODEV;
1321
1322         /* Block netpoll from trying to do any rx path servicing.
1323          * If we don't do this there is a chance ndo_poll_controller
1324          * or ndo_poll may be running while we open the device
1325          */
1326         netpoll_poll_disable(dev);
1327
1328         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1329         ret = notifier_to_errno(ret);
1330         if (ret)
1331                 return ret;
1332
1333         set_bit(__LINK_STATE_START, &dev->state);
1334
1335         if (ops->ndo_validate_addr)
1336                 ret = ops->ndo_validate_addr(dev);
1337
1338         if (!ret && ops->ndo_open)
1339                 ret = ops->ndo_open(dev);
1340
1341         netpoll_poll_enable(dev);
1342
1343         if (ret)
1344                 clear_bit(__LINK_STATE_START, &dev->state);
1345         else {
1346                 dev->flags |= IFF_UP;
1347                 dev_set_rx_mode(dev);
1348                 dev_activate(dev);
1349                 add_device_randomness(dev->dev_addr, dev->addr_len);
1350         }
1351
1352         return ret;
1353 }
1354
1355 /**
1356  *      dev_open        - prepare an interface for use.
1357  *      @dev:   device to open
1358  *
1359  *      Takes a device from down to up state. The device's private open
1360  *      function is invoked and then the multicast lists are loaded. Finally
1361  *      the device is moved into the up state and a %NETDEV_UP message is
1362  *      sent to the netdev notifier chain.
1363  *
1364  *      Calling this function on an active interface is a nop. On a failure
1365  *      a negative errno code is returned.
1366  */
1367 int dev_open(struct net_device *dev)
1368 {
1369         int ret;
1370
1371         if (dev->flags & IFF_UP)
1372                 return 0;
1373
1374         ret = __dev_open(dev);
1375         if (ret < 0)
1376                 return ret;
1377
1378         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1379         call_netdevice_notifiers(NETDEV_UP, dev);
1380
1381         return ret;
1382 }
1383 EXPORT_SYMBOL(dev_open);
1384
1385 static int __dev_close_many(struct list_head *head)
1386 {
1387         struct net_device *dev;
1388
1389         ASSERT_RTNL();
1390         might_sleep();
1391
1392         list_for_each_entry(dev, head, close_list) {
1393                 /* Temporarily disable netpoll until the interface is down */
1394                 netpoll_poll_disable(dev);
1395
1396                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1397
1398                 clear_bit(__LINK_STATE_START, &dev->state);
1399
1400                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1401                  * can be even on different cpu. So just clear netif_running().
1402                  *
1403                  * dev->stop() will invoke napi_disable() on all of it's
1404                  * napi_struct instances on this device.
1405                  */
1406                 smp_mb__after_atomic(); /* Commit netif_running(). */
1407         }
1408
1409         dev_deactivate_many(head);
1410
1411         list_for_each_entry(dev, head, close_list) {
1412                 const struct net_device_ops *ops = dev->netdev_ops;
1413
1414                 /*
1415                  *      Call the device specific close. This cannot fail.
1416                  *      Only if device is UP
1417                  *
1418                  *      We allow it to be called even after a DETACH hot-plug
1419                  *      event.
1420                  */
1421                 if (ops->ndo_stop)
1422                         ops->ndo_stop(dev);
1423
1424                 dev->flags &= ~IFF_UP;
1425                 netpoll_poll_enable(dev);
1426         }
1427
1428         return 0;
1429 }
1430
1431 static int __dev_close(struct net_device *dev)
1432 {
1433         int retval;
1434         LIST_HEAD(single);
1435
1436         list_add(&dev->close_list, &single);
1437         retval = __dev_close_many(&single);
1438         list_del(&single);
1439
1440         return retval;
1441 }
1442
1443 int dev_close_many(struct list_head *head, bool unlink)
1444 {
1445         struct net_device *dev, *tmp;
1446
1447         /* Remove the devices that don't need to be closed */
1448         list_for_each_entry_safe(dev, tmp, head, close_list)
1449                 if (!(dev->flags & IFF_UP))
1450                         list_del_init(&dev->close_list);
1451
1452         __dev_close_many(head);
1453
1454         list_for_each_entry_safe(dev, tmp, head, close_list) {
1455                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1456                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1457                 if (unlink)
1458                         list_del_init(&dev->close_list);
1459         }
1460
1461         return 0;
1462 }
1463 EXPORT_SYMBOL(dev_close_many);
1464
1465 /**
1466  *      dev_close - shutdown an interface.
1467  *      @dev: device to shutdown
1468  *
1469  *      This function moves an active device into down state. A
1470  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1471  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1472  *      chain.
1473  */
1474 int dev_close(struct net_device *dev)
1475 {
1476         if (dev->flags & IFF_UP) {
1477                 LIST_HEAD(single);
1478
1479                 list_add(&dev->close_list, &single);
1480                 dev_close_many(&single, true);
1481                 list_del(&single);
1482         }
1483         return 0;
1484 }
1485 EXPORT_SYMBOL(dev_close);
1486
1487
1488 /**
1489  *      dev_disable_lro - disable Large Receive Offload on a device
1490  *      @dev: device
1491  *
1492  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1493  *      called under RTNL.  This is needed if received packets may be
1494  *      forwarded to another interface.
1495  */
1496 void dev_disable_lro(struct net_device *dev)
1497 {
1498         struct net_device *lower_dev;
1499         struct list_head *iter;
1500
1501         dev->wanted_features &= ~NETIF_F_LRO;
1502         netdev_update_features(dev);
1503
1504         if (unlikely(dev->features & NETIF_F_LRO))
1505                 netdev_WARN(dev, "failed to disable LRO!\n");
1506
1507         netdev_for_each_lower_dev(dev, lower_dev, iter)
1508                 dev_disable_lro(lower_dev);
1509 }
1510 EXPORT_SYMBOL(dev_disable_lro);
1511
1512 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1513                                    struct net_device *dev)
1514 {
1515         struct netdev_notifier_info info;
1516
1517         netdev_notifier_info_init(&info, dev);
1518         return nb->notifier_call(nb, val, &info);
1519 }
1520
1521 static int dev_boot_phase = 1;
1522
1523 /**
1524  * register_netdevice_notifier - register a network notifier block
1525  * @nb: notifier
1526  *
1527  * Register a notifier to be called when network device events occur.
1528  * The notifier passed is linked into the kernel structures and must
1529  * not be reused until it has been unregistered. A negative errno code
1530  * is returned on a failure.
1531  *
1532  * When registered all registration and up events are replayed
1533  * to the new notifier to allow device to have a race free
1534  * view of the network device list.
1535  */
1536
1537 int register_netdevice_notifier(struct notifier_block *nb)
1538 {
1539         struct net_device *dev;
1540         struct net_device *last;
1541         struct net *net;
1542         int err;
1543
1544         rtnl_lock();
1545         err = raw_notifier_chain_register(&netdev_chain, nb);
1546         if (err)
1547                 goto unlock;
1548         if (dev_boot_phase)
1549                 goto unlock;
1550         for_each_net(net) {
1551                 for_each_netdev(net, dev) {
1552                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1553                         err = notifier_to_errno(err);
1554                         if (err)
1555                                 goto rollback;
1556
1557                         if (!(dev->flags & IFF_UP))
1558                                 continue;
1559
1560                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1561                 }
1562         }
1563
1564 unlock:
1565         rtnl_unlock();
1566         return err;
1567
1568 rollback:
1569         last = dev;
1570         for_each_net(net) {
1571                 for_each_netdev(net, dev) {
1572                         if (dev == last)
1573                                 goto outroll;
1574
1575                         if (dev->flags & IFF_UP) {
1576                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1577                                                         dev);
1578                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1579                         }
1580                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1581                 }
1582         }
1583
1584 outroll:
1585         raw_notifier_chain_unregister(&netdev_chain, nb);
1586         goto unlock;
1587 }
1588 EXPORT_SYMBOL(register_netdevice_notifier);
1589
1590 /**
1591  * unregister_netdevice_notifier - unregister a network notifier block
1592  * @nb: notifier
1593  *
1594  * Unregister a notifier previously registered by
1595  * register_netdevice_notifier(). The notifier is unlinked into the
1596  * kernel structures and may then be reused. A negative errno code
1597  * is returned on a failure.
1598  *
1599  * After unregistering unregister and down device events are synthesized
1600  * for all devices on the device list to the removed notifier to remove
1601  * the need for special case cleanup code.
1602  */
1603
1604 int unregister_netdevice_notifier(struct notifier_block *nb)
1605 {
1606         struct net_device *dev;
1607         struct net *net;
1608         int err;
1609
1610         rtnl_lock();
1611         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1612         if (err)
1613                 goto unlock;
1614
1615         for_each_net(net) {
1616                 for_each_netdev(net, dev) {
1617                         if (dev->flags & IFF_UP) {
1618                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1619                                                         dev);
1620                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1621                         }
1622                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1623                 }
1624         }
1625 unlock:
1626         rtnl_unlock();
1627         return err;
1628 }
1629 EXPORT_SYMBOL(unregister_netdevice_notifier);
1630
1631 /**
1632  *      call_netdevice_notifiers_info - call all network notifier blocks
1633  *      @val: value passed unmodified to notifier function
1634  *      @dev: net_device pointer passed unmodified to notifier function
1635  *      @info: notifier information data
1636  *
1637  *      Call all network notifier blocks.  Parameters and return value
1638  *      are as for raw_notifier_call_chain().
1639  */
1640
1641 static int call_netdevice_notifiers_info(unsigned long val,
1642                                          struct net_device *dev,
1643                                          struct netdev_notifier_info *info)
1644 {
1645         ASSERT_RTNL();
1646         netdev_notifier_info_init(info, dev);
1647         return raw_notifier_call_chain(&netdev_chain, val, info);
1648 }
1649
1650 /**
1651  *      call_netdevice_notifiers - call all network notifier blocks
1652  *      @val: value passed unmodified to notifier function
1653  *      @dev: net_device pointer passed unmodified to notifier function
1654  *
1655  *      Call all network notifier blocks.  Parameters and return value
1656  *      are as for raw_notifier_call_chain().
1657  */
1658
1659 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1660 {
1661         struct netdev_notifier_info info;
1662
1663         return call_netdevice_notifiers_info(val, dev, &info);
1664 }
1665 EXPORT_SYMBOL(call_netdevice_notifiers);
1666
1667 #ifdef CONFIG_NET_INGRESS
1668 static struct static_key ingress_needed __read_mostly;
1669
1670 void net_inc_ingress_queue(void)
1671 {
1672         static_key_slow_inc(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1675
1676 void net_dec_ingress_queue(void)
1677 {
1678         static_key_slow_dec(&ingress_needed);
1679 }
1680 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1681 #endif
1682
1683 #ifdef CONFIG_NET_EGRESS
1684 static struct static_key egress_needed __read_mostly;
1685
1686 void net_inc_egress_queue(void)
1687 {
1688         static_key_slow_inc(&egress_needed);
1689 }
1690 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1691
1692 void net_dec_egress_queue(void)
1693 {
1694         static_key_slow_dec(&egress_needed);
1695 }
1696 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1697 #endif
1698
1699 static struct static_key netstamp_needed __read_mostly;
1700 #ifdef HAVE_JUMP_LABEL
1701 static atomic_t netstamp_needed_deferred;
1702 static atomic_t netstamp_wanted;
1703 static void netstamp_clear(struct work_struct *work)
1704 {
1705         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1706         int wanted;
1707
1708         wanted = atomic_add_return(deferred, &netstamp_wanted);
1709         if (wanted > 0)
1710                 static_key_enable(&netstamp_needed);
1711         else
1712                 static_key_disable(&netstamp_needed);
1713 }
1714 static DECLARE_WORK(netstamp_work, netstamp_clear);
1715 #endif
1716
1717 void net_enable_timestamp(void)
1718 {
1719 #ifdef HAVE_JUMP_LABEL
1720         int wanted;
1721
1722         while (1) {
1723                 wanted = atomic_read(&netstamp_wanted);
1724                 if (wanted <= 0)
1725                         break;
1726                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1727                         return;
1728         }
1729         atomic_inc(&netstamp_needed_deferred);
1730         schedule_work(&netstamp_work);
1731 #else
1732         static_key_slow_inc(&netstamp_needed);
1733 #endif
1734 }
1735 EXPORT_SYMBOL(net_enable_timestamp);
1736
1737 void net_disable_timestamp(void)
1738 {
1739 #ifdef HAVE_JUMP_LABEL
1740         int wanted;
1741
1742         while (1) {
1743                 wanted = atomic_read(&netstamp_wanted);
1744                 if (wanted <= 1)
1745                         break;
1746                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1747                         return;
1748         }
1749         atomic_dec(&netstamp_needed_deferred);
1750         schedule_work(&netstamp_work);
1751 #else
1752         static_key_slow_dec(&netstamp_needed);
1753 #endif
1754 }
1755 EXPORT_SYMBOL(net_disable_timestamp);
1756
1757 static inline void net_timestamp_set(struct sk_buff *skb)
1758 {
1759         skb->tstamp = 0;
1760         if (static_key_false(&netstamp_needed))
1761                 __net_timestamp(skb);
1762 }
1763
1764 #define net_timestamp_check(COND, SKB)                  \
1765         if (static_key_false(&netstamp_needed)) {               \
1766                 if ((COND) && !(SKB)->tstamp)   \
1767                         __net_timestamp(SKB);           \
1768         }                                               \
1769
1770 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1771 {
1772         unsigned int len;
1773
1774         if (!(dev->flags & IFF_UP))
1775                 return false;
1776
1777         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1778         if (skb->len <= len)
1779                 return true;
1780
1781         /* if TSO is enabled, we don't care about the length as the packet
1782          * could be forwarded without being segmented before
1783          */
1784         if (skb_is_gso(skb))
1785                 return true;
1786
1787         return false;
1788 }
1789 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1790
1791 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1792 {
1793         int ret = ____dev_forward_skb(dev, skb);
1794
1795         if (likely(!ret)) {
1796                 skb->protocol = eth_type_trans(skb, dev);
1797                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1798         }
1799
1800         return ret;
1801 }
1802 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1803
1804 /**
1805  * dev_forward_skb - loopback an skb to another netif
1806  *
1807  * @dev: destination network device
1808  * @skb: buffer to forward
1809  *
1810  * return values:
1811  *      NET_RX_SUCCESS  (no congestion)
1812  *      NET_RX_DROP     (packet was dropped, but freed)
1813  *
1814  * dev_forward_skb can be used for injecting an skb from the
1815  * start_xmit function of one device into the receive queue
1816  * of another device.
1817  *
1818  * The receiving device may be in another namespace, so
1819  * we have to clear all information in the skb that could
1820  * impact namespace isolation.
1821  */
1822 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1823 {
1824         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1825 }
1826 EXPORT_SYMBOL_GPL(dev_forward_skb);
1827
1828 static inline int deliver_skb(struct sk_buff *skb,
1829                               struct packet_type *pt_prev,
1830                               struct net_device *orig_dev)
1831 {
1832         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1833                 return -ENOMEM;
1834         atomic_inc(&skb->users);
1835         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1836 }
1837
1838 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1839                                           struct packet_type **pt,
1840                                           struct net_device *orig_dev,
1841                                           __be16 type,
1842                                           struct list_head *ptype_list)
1843 {
1844         struct packet_type *ptype, *pt_prev = *pt;
1845
1846         list_for_each_entry_rcu(ptype, ptype_list, list) {
1847                 if (ptype->type != type)
1848                         continue;
1849                 if (pt_prev)
1850                         deliver_skb(skb, pt_prev, orig_dev);
1851                 pt_prev = ptype;
1852         }
1853         *pt = pt_prev;
1854 }
1855
1856 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1857 {
1858         if (!ptype->af_packet_priv || !skb->sk)
1859                 return false;
1860
1861         if (ptype->id_match)
1862                 return ptype->id_match(ptype, skb->sk);
1863         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1864                 return true;
1865
1866         return false;
1867 }
1868
1869 /*
1870  *      Support routine. Sends outgoing frames to any network
1871  *      taps currently in use.
1872  */
1873
1874 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1875 {
1876         struct packet_type *ptype;
1877         struct sk_buff *skb2 = NULL;
1878         struct packet_type *pt_prev = NULL;
1879         struct list_head *ptype_list = &ptype_all;
1880
1881         rcu_read_lock();
1882 again:
1883         list_for_each_entry_rcu(ptype, ptype_list, list) {
1884                 /* Never send packets back to the socket
1885                  * they originated from - MvS (miquels@drinkel.ow.org)
1886                  */
1887                 if (skb_loop_sk(ptype, skb))
1888                         continue;
1889
1890                 if (pt_prev) {
1891                         deliver_skb(skb2, pt_prev, skb->dev);
1892                         pt_prev = ptype;
1893                         continue;
1894                 }
1895
1896                 /* need to clone skb, done only once */
1897                 skb2 = skb_clone(skb, GFP_ATOMIC);
1898                 if (!skb2)
1899                         goto out_unlock;
1900
1901                 net_timestamp_set(skb2);
1902
1903                 /* skb->nh should be correctly
1904                  * set by sender, so that the second statement is
1905                  * just protection against buggy protocols.
1906                  */
1907                 skb_reset_mac_header(skb2);
1908
1909                 if (skb_network_header(skb2) < skb2->data ||
1910                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1911                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1912                                              ntohs(skb2->protocol),
1913                                              dev->name);
1914                         skb_reset_network_header(skb2);
1915                 }
1916
1917                 skb2->transport_header = skb2->network_header;
1918                 skb2->pkt_type = PACKET_OUTGOING;
1919                 pt_prev = ptype;
1920         }
1921
1922         if (ptype_list == &ptype_all) {
1923                 ptype_list = &dev->ptype_all;
1924                 goto again;
1925         }
1926 out_unlock:
1927         if (pt_prev)
1928                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1929         rcu_read_unlock();
1930 }
1931 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1932
1933 /**
1934  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1935  * @dev: Network device
1936  * @txq: number of queues available
1937  *
1938  * If real_num_tx_queues is changed the tc mappings may no longer be
1939  * valid. To resolve this verify the tc mapping remains valid and if
1940  * not NULL the mapping. With no priorities mapping to this
1941  * offset/count pair it will no longer be used. In the worst case TC0
1942  * is invalid nothing can be done so disable priority mappings. If is
1943  * expected that drivers will fix this mapping if they can before
1944  * calling netif_set_real_num_tx_queues.
1945  */
1946 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1947 {
1948         int i;
1949         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950
1951         /* If TC0 is invalidated disable TC mapping */
1952         if (tc->offset + tc->count > txq) {
1953                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1954                 dev->num_tc = 0;
1955                 return;
1956         }
1957
1958         /* Invalidated prio to tc mappings set to TC0 */
1959         for (i = 1; i < TC_BITMASK + 1; i++) {
1960                 int q = netdev_get_prio_tc_map(dev, i);
1961
1962                 tc = &dev->tc_to_txq[q];
1963                 if (tc->offset + tc->count > txq) {
1964                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1965                                 i, q);
1966                         netdev_set_prio_tc_map(dev, i, 0);
1967                 }
1968         }
1969 }
1970
1971 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1972 {
1973         if (dev->num_tc) {
1974                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1975                 int i;
1976
1977                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1978                         if ((txq - tc->offset) < tc->count)
1979                                 return i;
1980                 }
1981
1982                 return -1;
1983         }
1984
1985         return 0;
1986 }
1987
1988 #ifdef CONFIG_XPS
1989 static DEFINE_MUTEX(xps_map_mutex);
1990 #define xmap_dereference(P)             \
1991         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1992
1993 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1994                              int tci, u16 index)
1995 {
1996         struct xps_map *map = NULL;
1997         int pos;
1998
1999         if (dev_maps)
2000                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2001         if (!map)
2002                 return false;
2003
2004         for (pos = map->len; pos--;) {
2005                 if (map->queues[pos] != index)
2006                         continue;
2007
2008                 if (map->len > 1) {
2009                         map->queues[pos] = map->queues[--map->len];
2010                         break;
2011                 }
2012
2013                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2014                 kfree_rcu(map, rcu);
2015                 return false;
2016         }
2017
2018         return true;
2019 }
2020
2021 static bool remove_xps_queue_cpu(struct net_device *dev,
2022                                  struct xps_dev_maps *dev_maps,
2023                                  int cpu, u16 offset, u16 count)
2024 {
2025         int num_tc = dev->num_tc ? : 1;
2026         bool active = false;
2027         int tci;
2028
2029         for (tci = cpu * num_tc; num_tc--; tci++) {
2030                 int i, j;
2031
2032                 for (i = count, j = offset; i--; j++) {
2033                         if (!remove_xps_queue(dev_maps, cpu, j))
2034                                 break;
2035                 }
2036
2037                 active |= i < 0;
2038         }
2039
2040         return active;
2041 }
2042
2043 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2044                                    u16 count)
2045 {
2046         struct xps_dev_maps *dev_maps;
2047         int cpu, i;
2048         bool active = false;
2049
2050         mutex_lock(&xps_map_mutex);
2051         dev_maps = xmap_dereference(dev->xps_maps);
2052
2053         if (!dev_maps)
2054                 goto out_no_maps;
2055
2056         for_each_possible_cpu(cpu)
2057                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2058                                                offset, count);
2059
2060         if (!active) {
2061                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2062                 kfree_rcu(dev_maps, rcu);
2063         }
2064
2065         for (i = offset + (count - 1); count--; i--)
2066                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2067                                              NUMA_NO_NODE);
2068
2069 out_no_maps:
2070         mutex_unlock(&xps_map_mutex);
2071 }
2072
2073 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2074 {
2075         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2076 }
2077
2078 static struct xps_map *expand_xps_map(struct xps_map *map,
2079                                       int cpu, u16 index)
2080 {
2081         struct xps_map *new_map;
2082         int alloc_len = XPS_MIN_MAP_ALLOC;
2083         int i, pos;
2084
2085         for (pos = 0; map && pos < map->len; pos++) {
2086                 if (map->queues[pos] != index)
2087                         continue;
2088                 return map;
2089         }
2090
2091         /* Need to add queue to this CPU's existing map */
2092         if (map) {
2093                 if (pos < map->alloc_len)
2094                         return map;
2095
2096                 alloc_len = map->alloc_len * 2;
2097         }
2098
2099         /* Need to allocate new map to store queue on this CPU's map */
2100         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2101                                cpu_to_node(cpu));
2102         if (!new_map)
2103                 return NULL;
2104
2105         for (i = 0; i < pos; i++)
2106                 new_map->queues[i] = map->queues[i];
2107         new_map->alloc_len = alloc_len;
2108         new_map->len = pos;
2109
2110         return new_map;
2111 }
2112
2113 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2114                         u16 index)
2115 {
2116         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2117         int i, cpu, tci, numa_node_id = -2;
2118         int maps_sz, num_tc = 1, tc = 0;
2119         struct xps_map *map, *new_map;
2120         bool active = false;
2121
2122         if (dev->num_tc) {
2123                 num_tc = dev->num_tc;
2124                 tc = netdev_txq_to_tc(dev, index);
2125                 if (tc < 0)
2126                         return -EINVAL;
2127         }
2128
2129         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2130         if (maps_sz < L1_CACHE_BYTES)
2131                 maps_sz = L1_CACHE_BYTES;
2132
2133         mutex_lock(&xps_map_mutex);
2134
2135         dev_maps = xmap_dereference(dev->xps_maps);
2136
2137         /* allocate memory for queue storage */
2138         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2139                 if (!new_dev_maps)
2140                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2141                 if (!new_dev_maps) {
2142                         mutex_unlock(&xps_map_mutex);
2143                         return -ENOMEM;
2144                 }
2145
2146                 tci = cpu * num_tc + tc;
2147                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2148                                  NULL;
2149
2150                 map = expand_xps_map(map, cpu, index);
2151                 if (!map)
2152                         goto error;
2153
2154                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2155         }
2156
2157         if (!new_dev_maps)
2158                 goto out_no_new_maps;
2159
2160         for_each_possible_cpu(cpu) {
2161                 /* copy maps belonging to foreign traffic classes */
2162                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2163                         /* fill in the new device map from the old device map */
2164                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2165                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2166                 }
2167
2168                 /* We need to explicitly update tci as prevous loop
2169                  * could break out early if dev_maps is NULL.
2170                  */
2171                 tci = cpu * num_tc + tc;
2172
2173                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2174                         /* add queue to CPU maps */
2175                         int pos = 0;
2176
2177                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2178                         while ((pos < map->len) && (map->queues[pos] != index))
2179                                 pos++;
2180
2181                         if (pos == map->len)
2182                                 map->queues[map->len++] = index;
2183 #ifdef CONFIG_NUMA
2184                         if (numa_node_id == -2)
2185                                 numa_node_id = cpu_to_node(cpu);
2186                         else if (numa_node_id != cpu_to_node(cpu))
2187                                 numa_node_id = -1;
2188 #endif
2189                 } else if (dev_maps) {
2190                         /* fill in the new device map from the old device map */
2191                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2192                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2193                 }
2194
2195                 /* copy maps belonging to foreign traffic classes */
2196                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2197                         /* fill in the new device map from the old device map */
2198                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2199                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2200                 }
2201         }
2202
2203         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2204
2205         /* Cleanup old maps */
2206         if (!dev_maps)
2207                 goto out_no_old_maps;
2208
2209         for_each_possible_cpu(cpu) {
2210                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2211                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2212                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2213                         if (map && map != new_map)
2214                                 kfree_rcu(map, rcu);
2215                 }
2216         }
2217
2218         kfree_rcu(dev_maps, rcu);
2219
2220 out_no_old_maps:
2221         dev_maps = new_dev_maps;
2222         active = true;
2223
2224 out_no_new_maps:
2225         /* update Tx queue numa node */
2226         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2227                                      (numa_node_id >= 0) ? numa_node_id :
2228                                      NUMA_NO_NODE);
2229
2230         if (!dev_maps)
2231                 goto out_no_maps;
2232
2233         /* removes queue from unused CPUs */
2234         for_each_possible_cpu(cpu) {
2235                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2236                         active |= remove_xps_queue(dev_maps, tci, index);
2237                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2238                         active |= remove_xps_queue(dev_maps, tci, index);
2239                 for (i = num_tc - tc, tci++; --i; tci++)
2240                         active |= remove_xps_queue(dev_maps, tci, index);
2241         }
2242
2243         /* free map if not active */
2244         if (!active) {
2245                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2246                 kfree_rcu(dev_maps, rcu);
2247         }
2248
2249 out_no_maps:
2250         mutex_unlock(&xps_map_mutex);
2251
2252         return 0;
2253 error:
2254         /* remove any maps that we added */
2255         for_each_possible_cpu(cpu) {
2256                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2257                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2258                         map = dev_maps ?
2259                               xmap_dereference(dev_maps->cpu_map[tci]) :
2260                               NULL;
2261                         if (new_map && new_map != map)
2262                                 kfree(new_map);
2263                 }
2264         }
2265
2266         mutex_unlock(&xps_map_mutex);
2267
2268         kfree(new_dev_maps);
2269         return -ENOMEM;
2270 }
2271 EXPORT_SYMBOL(netif_set_xps_queue);
2272
2273 #endif
2274 void netdev_reset_tc(struct net_device *dev)
2275 {
2276 #ifdef CONFIG_XPS
2277         netif_reset_xps_queues_gt(dev, 0);
2278 #endif
2279         dev->num_tc = 0;
2280         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2281         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2282 }
2283 EXPORT_SYMBOL(netdev_reset_tc);
2284
2285 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2286 {
2287         if (tc >= dev->num_tc)
2288                 return -EINVAL;
2289
2290 #ifdef CONFIG_XPS
2291         netif_reset_xps_queues(dev, offset, count);
2292 #endif
2293         dev->tc_to_txq[tc].count = count;
2294         dev->tc_to_txq[tc].offset = offset;
2295         return 0;
2296 }
2297 EXPORT_SYMBOL(netdev_set_tc_queue);
2298
2299 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2300 {
2301         if (num_tc > TC_MAX_QUEUE)
2302                 return -EINVAL;
2303
2304 #ifdef CONFIG_XPS
2305         netif_reset_xps_queues_gt(dev, 0);
2306 #endif
2307         dev->num_tc = num_tc;
2308         return 0;
2309 }
2310 EXPORT_SYMBOL(netdev_set_num_tc);
2311
2312 /*
2313  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2314  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2315  */
2316 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2317 {
2318         int rc;
2319
2320         if (txq < 1 || txq > dev->num_tx_queues)
2321                 return -EINVAL;
2322
2323         if (dev->reg_state == NETREG_REGISTERED ||
2324             dev->reg_state == NETREG_UNREGISTERING) {
2325                 ASSERT_RTNL();
2326
2327                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2328                                                   txq);
2329                 if (rc)
2330                         return rc;
2331
2332                 if (dev->num_tc)
2333                         netif_setup_tc(dev, txq);
2334
2335                 if (txq < dev->real_num_tx_queues) {
2336                         qdisc_reset_all_tx_gt(dev, txq);
2337 #ifdef CONFIG_XPS
2338                         netif_reset_xps_queues_gt(dev, txq);
2339 #endif
2340                 }
2341         }
2342
2343         dev->real_num_tx_queues = txq;
2344         return 0;
2345 }
2346 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2347
2348 #ifdef CONFIG_SYSFS
2349 /**
2350  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2351  *      @dev: Network device
2352  *      @rxq: Actual number of RX queues
2353  *
2354  *      This must be called either with the rtnl_lock held or before
2355  *      registration of the net device.  Returns 0 on success, or a
2356  *      negative error code.  If called before registration, it always
2357  *      succeeds.
2358  */
2359 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2360 {
2361         int rc;
2362
2363         if (rxq < 1 || rxq > dev->num_rx_queues)
2364                 return -EINVAL;
2365
2366         if (dev->reg_state == NETREG_REGISTERED) {
2367                 ASSERT_RTNL();
2368
2369                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2370                                                   rxq);
2371                 if (rc)
2372                         return rc;
2373         }
2374
2375         dev->real_num_rx_queues = rxq;
2376         return 0;
2377 }
2378 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2379 #endif
2380
2381 /**
2382  * netif_get_num_default_rss_queues - default number of RSS queues
2383  *
2384  * This routine should set an upper limit on the number of RSS queues
2385  * used by default by multiqueue devices.
2386  */
2387 int netif_get_num_default_rss_queues(void)
2388 {
2389         return is_kdump_kernel() ?
2390                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2391 }
2392 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2393
2394 static void __netif_reschedule(struct Qdisc *q)
2395 {
2396         struct softnet_data *sd;
2397         unsigned long flags;
2398
2399         local_irq_save(flags);
2400         sd = this_cpu_ptr(&softnet_data);
2401         q->next_sched = NULL;
2402         *sd->output_queue_tailp = q;
2403         sd->output_queue_tailp = &q->next_sched;
2404         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2405         local_irq_restore(flags);
2406 }
2407
2408 void __netif_schedule(struct Qdisc *q)
2409 {
2410         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2411                 __netif_reschedule(q);
2412 }
2413 EXPORT_SYMBOL(__netif_schedule);
2414
2415 struct dev_kfree_skb_cb {
2416         enum skb_free_reason reason;
2417 };
2418
2419 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2420 {
2421         return (struct dev_kfree_skb_cb *)skb->cb;
2422 }
2423
2424 void netif_schedule_queue(struct netdev_queue *txq)
2425 {
2426         rcu_read_lock();
2427         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2428                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2429
2430                 __netif_schedule(q);
2431         }
2432         rcu_read_unlock();
2433 }
2434 EXPORT_SYMBOL(netif_schedule_queue);
2435
2436 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2437 {
2438         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2439                 struct Qdisc *q;
2440
2441                 rcu_read_lock();
2442                 q = rcu_dereference(dev_queue->qdisc);
2443                 __netif_schedule(q);
2444                 rcu_read_unlock();
2445         }
2446 }
2447 EXPORT_SYMBOL(netif_tx_wake_queue);
2448
2449 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2450 {
2451         unsigned long flags;
2452
2453         if (likely(atomic_read(&skb->users) == 1)) {
2454                 smp_rmb();
2455                 atomic_set(&skb->users, 0);
2456         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2457                 return;
2458         }
2459         get_kfree_skb_cb(skb)->reason = reason;
2460         local_irq_save(flags);
2461         skb->next = __this_cpu_read(softnet_data.completion_queue);
2462         __this_cpu_write(softnet_data.completion_queue, skb);
2463         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2464         local_irq_restore(flags);
2465 }
2466 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2467
2468 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2469 {
2470         if (in_irq() || irqs_disabled())
2471                 __dev_kfree_skb_irq(skb, reason);
2472         else
2473                 dev_kfree_skb(skb);
2474 }
2475 EXPORT_SYMBOL(__dev_kfree_skb_any);
2476
2477
2478 /**
2479  * netif_device_detach - mark device as removed
2480  * @dev: network device
2481  *
2482  * Mark device as removed from system and therefore no longer available.
2483  */
2484 void netif_device_detach(struct net_device *dev)
2485 {
2486         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2487             netif_running(dev)) {
2488                 netif_tx_stop_all_queues(dev);
2489         }
2490 }
2491 EXPORT_SYMBOL(netif_device_detach);
2492
2493 /**
2494  * netif_device_attach - mark device as attached
2495  * @dev: network device
2496  *
2497  * Mark device as attached from system and restart if needed.
2498  */
2499 void netif_device_attach(struct net_device *dev)
2500 {
2501         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2502             netif_running(dev)) {
2503                 netif_tx_wake_all_queues(dev);
2504                 __netdev_watchdog_up(dev);
2505         }
2506 }
2507 EXPORT_SYMBOL(netif_device_attach);
2508
2509 /*
2510  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2511  * to be used as a distribution range.
2512  */
2513 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2514                   unsigned int num_tx_queues)
2515 {
2516         u32 hash;
2517         u16 qoffset = 0;
2518         u16 qcount = num_tx_queues;
2519
2520         if (skb_rx_queue_recorded(skb)) {
2521                 hash = skb_get_rx_queue(skb);
2522                 while (unlikely(hash >= num_tx_queues))
2523                         hash -= num_tx_queues;
2524                 return hash;
2525         }
2526
2527         if (dev->num_tc) {
2528                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2529
2530                 qoffset = dev->tc_to_txq[tc].offset;
2531                 qcount = dev->tc_to_txq[tc].count;
2532         }
2533
2534         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2535 }
2536 EXPORT_SYMBOL(__skb_tx_hash);
2537
2538 static void skb_warn_bad_offload(const struct sk_buff *skb)
2539 {
2540         static const netdev_features_t null_features;
2541         struct net_device *dev = skb->dev;
2542         const char *name = "";
2543
2544         if (!net_ratelimit())
2545                 return;
2546
2547         if (dev) {
2548                 if (dev->dev.parent)
2549                         name = dev_driver_string(dev->dev.parent);
2550                 else
2551                         name = netdev_name(dev);
2552         }
2553         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2554              "gso_type=%d ip_summed=%d\n",
2555              name, dev ? &dev->features : &null_features,
2556              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2557              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2558              skb_shinfo(skb)->gso_type, skb->ip_summed);
2559 }
2560
2561 /*
2562  * Invalidate hardware checksum when packet is to be mangled, and
2563  * complete checksum manually on outgoing path.
2564  */
2565 int skb_checksum_help(struct sk_buff *skb)
2566 {
2567         __wsum csum;
2568         int ret = 0, offset;
2569
2570         if (skb->ip_summed == CHECKSUM_COMPLETE)
2571                 goto out_set_summed;
2572
2573         if (unlikely(skb_shinfo(skb)->gso_size)) {
2574                 skb_warn_bad_offload(skb);
2575                 return -EINVAL;
2576         }
2577
2578         /* Before computing a checksum, we should make sure no frag could
2579          * be modified by an external entity : checksum could be wrong.
2580          */
2581         if (skb_has_shared_frag(skb)) {
2582                 ret = __skb_linearize(skb);
2583                 if (ret)
2584                         goto out;
2585         }
2586
2587         offset = skb_checksum_start_offset(skb);
2588         BUG_ON(offset >= skb_headlen(skb));
2589         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2590
2591         offset += skb->csum_offset;
2592         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2593
2594         if (skb_cloned(skb) &&
2595             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2596                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2597                 if (ret)
2598                         goto out;
2599         }
2600
2601         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2602 out_set_summed:
2603         skb->ip_summed = CHECKSUM_NONE;
2604 out:
2605         return ret;
2606 }
2607 EXPORT_SYMBOL(skb_checksum_help);
2608
2609 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2610 {
2611         __be16 type = skb->protocol;
2612
2613         /* Tunnel gso handlers can set protocol to ethernet. */
2614         if (type == htons(ETH_P_TEB)) {
2615                 struct ethhdr *eth;
2616
2617                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2618                         return 0;
2619
2620                 eth = (struct ethhdr *)skb_mac_header(skb);
2621                 type = eth->h_proto;
2622         }
2623
2624         return __vlan_get_protocol(skb, type, depth);
2625 }
2626
2627 /**
2628  *      skb_mac_gso_segment - mac layer segmentation handler.
2629  *      @skb: buffer to segment
2630  *      @features: features for the output path (see dev->features)
2631  */
2632 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2633                                     netdev_features_t features)
2634 {
2635         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2636         struct packet_offload *ptype;
2637         int vlan_depth = skb->mac_len;
2638         __be16 type = skb_network_protocol(skb, &vlan_depth);
2639
2640         if (unlikely(!type))
2641                 return ERR_PTR(-EINVAL);
2642
2643         __skb_pull(skb, vlan_depth);
2644
2645         rcu_read_lock();
2646         list_for_each_entry_rcu(ptype, &offload_base, list) {
2647                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2648                         segs = ptype->callbacks.gso_segment(skb, features);
2649                         break;
2650                 }
2651         }
2652         rcu_read_unlock();
2653
2654         __skb_push(skb, skb->data - skb_mac_header(skb));
2655
2656         return segs;
2657 }
2658 EXPORT_SYMBOL(skb_mac_gso_segment);
2659
2660
2661 /* openvswitch calls this on rx path, so we need a different check.
2662  */
2663 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2664 {
2665         if (tx_path)
2666                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2667                        skb->ip_summed != CHECKSUM_NONE;
2668
2669         return skb->ip_summed == CHECKSUM_NONE;
2670 }
2671
2672 /**
2673  *      __skb_gso_segment - Perform segmentation on skb.
2674  *      @skb: buffer to segment
2675  *      @features: features for the output path (see dev->features)
2676  *      @tx_path: whether it is called in TX path
2677  *
2678  *      This function segments the given skb and returns a list of segments.
2679  *
2680  *      It may return NULL if the skb requires no segmentation.  This is
2681  *      only possible when GSO is used for verifying header integrity.
2682  *
2683  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2684  */
2685 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2686                                   netdev_features_t features, bool tx_path)
2687 {
2688         struct sk_buff *segs;
2689
2690         if (unlikely(skb_needs_check(skb, tx_path))) {
2691                 int err;
2692
2693                 /* We're going to init ->check field in TCP or UDP header */
2694                 err = skb_cow_head(skb, 0);
2695                 if (err < 0)
2696                         return ERR_PTR(err);
2697         }
2698
2699         /* Only report GSO partial support if it will enable us to
2700          * support segmentation on this frame without needing additional
2701          * work.
2702          */
2703         if (features & NETIF_F_GSO_PARTIAL) {
2704                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2705                 struct net_device *dev = skb->dev;
2706
2707                 partial_features |= dev->features & dev->gso_partial_features;
2708                 if (!skb_gso_ok(skb, features | partial_features))
2709                         features &= ~NETIF_F_GSO_PARTIAL;
2710         }
2711
2712         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2713                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2714
2715         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2716         SKB_GSO_CB(skb)->encap_level = 0;
2717
2718         skb_reset_mac_header(skb);
2719         skb_reset_mac_len(skb);
2720
2721         segs = skb_mac_gso_segment(skb, features);
2722
2723         if (unlikely(skb_needs_check(skb, tx_path)))
2724                 skb_warn_bad_offload(skb);
2725
2726         return segs;
2727 }
2728 EXPORT_SYMBOL(__skb_gso_segment);
2729
2730 /* Take action when hardware reception checksum errors are detected. */
2731 #ifdef CONFIG_BUG
2732 void netdev_rx_csum_fault(struct net_device *dev)
2733 {
2734         if (net_ratelimit()) {
2735                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2736                 dump_stack();
2737         }
2738 }
2739 EXPORT_SYMBOL(netdev_rx_csum_fault);
2740 #endif
2741
2742 /* Actually, we should eliminate this check as soon as we know, that:
2743  * 1. IOMMU is present and allows to map all the memory.
2744  * 2. No high memory really exists on this machine.
2745  */
2746
2747 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2748 {
2749 #ifdef CONFIG_HIGHMEM
2750         int i;
2751
2752         if (!(dev->features & NETIF_F_HIGHDMA)) {
2753                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755
2756                         if (PageHighMem(skb_frag_page(frag)))
2757                                 return 1;
2758                 }
2759         }
2760
2761         if (PCI_DMA_BUS_IS_PHYS) {
2762                 struct device *pdev = dev->dev.parent;
2763
2764                 if (!pdev)
2765                         return 0;
2766                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2769
2770                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2771                                 return 1;
2772                 }
2773         }
2774 #endif
2775         return 0;
2776 }
2777
2778 /* If MPLS offload request, verify we are testing hardware MPLS features
2779  * instead of standard features for the netdev.
2780  */
2781 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2782 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2783                                            netdev_features_t features,
2784                                            __be16 type)
2785 {
2786         if (eth_p_mpls(type))
2787                 features &= skb->dev->mpls_features;
2788
2789         return features;
2790 }
2791 #else
2792 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2793                                            netdev_features_t features,
2794                                            __be16 type)
2795 {
2796         return features;
2797 }
2798 #endif
2799
2800 static netdev_features_t harmonize_features(struct sk_buff *skb,
2801         netdev_features_t features)
2802 {
2803         int tmp;
2804         __be16 type;
2805
2806         type = skb_network_protocol(skb, &tmp);
2807         features = net_mpls_features(skb, features, type);
2808
2809         if (skb->ip_summed != CHECKSUM_NONE &&
2810             !can_checksum_protocol(features, type)) {
2811                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2812         }
2813         if (illegal_highdma(skb->dev, skb))
2814                 features &= ~NETIF_F_SG;
2815
2816         return features;
2817 }
2818
2819 netdev_features_t passthru_features_check(struct sk_buff *skb,
2820                                           struct net_device *dev,
2821                                           netdev_features_t features)
2822 {
2823         return features;
2824 }
2825 EXPORT_SYMBOL(passthru_features_check);
2826
2827 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2828                                              struct net_device *dev,
2829                                              netdev_features_t features)
2830 {
2831         return vlan_features_check(skb, features);
2832 }
2833
2834 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2835                                             struct net_device *dev,
2836                                             netdev_features_t features)
2837 {
2838         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2839
2840         if (gso_segs > dev->gso_max_segs)
2841                 return features & ~NETIF_F_GSO_MASK;
2842
2843         /* Support for GSO partial features requires software
2844          * intervention before we can actually process the packets
2845          * so we need to strip support for any partial features now
2846          * and we can pull them back in after we have partially
2847          * segmented the frame.
2848          */
2849         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2850                 features &= ~dev->gso_partial_features;
2851
2852         /* Make sure to clear the IPv4 ID mangling feature if the
2853          * IPv4 header has the potential to be fragmented.
2854          */
2855         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2856                 struct iphdr *iph = skb->encapsulation ?
2857                                     inner_ip_hdr(skb) : ip_hdr(skb);
2858
2859                 if (!(iph->frag_off & htons(IP_DF)))
2860                         features &= ~NETIF_F_TSO_MANGLEID;
2861         }
2862
2863         return features;
2864 }
2865
2866 netdev_features_t netif_skb_features(struct sk_buff *skb)
2867 {
2868         struct net_device *dev = skb->dev;
2869         netdev_features_t features = dev->features;
2870
2871         if (skb_is_gso(skb))
2872                 features = gso_features_check(skb, dev, features);
2873
2874         /* If encapsulation offload request, verify we are testing
2875          * hardware encapsulation features instead of standard
2876          * features for the netdev
2877          */
2878         if (skb->encapsulation)
2879                 features &= dev->hw_enc_features;
2880
2881         if (skb_vlan_tagged(skb))
2882                 features = netdev_intersect_features(features,
2883                                                      dev->vlan_features |
2884                                                      NETIF_F_HW_VLAN_CTAG_TX |
2885                                                      NETIF_F_HW_VLAN_STAG_TX);
2886
2887         if (dev->netdev_ops->ndo_features_check)
2888                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2889                                                                 features);
2890         else
2891                 features &= dflt_features_check(skb, dev, features);
2892
2893         return harmonize_features(skb, features);
2894 }
2895 EXPORT_SYMBOL(netif_skb_features);
2896
2897 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2898                     struct netdev_queue *txq, bool more)
2899 {
2900         unsigned int len;
2901         int rc;
2902
2903         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2904                 dev_queue_xmit_nit(skb, dev);
2905
2906         len = skb->len;
2907         trace_net_dev_start_xmit(skb, dev);
2908         rc = netdev_start_xmit(skb, dev, txq, more);
2909         trace_net_dev_xmit(skb, rc, dev, len);
2910
2911         return rc;
2912 }
2913
2914 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2915                                     struct netdev_queue *txq, int *ret)
2916 {
2917         struct sk_buff *skb = first;
2918         int rc = NETDEV_TX_OK;
2919
2920         while (skb) {
2921                 struct sk_buff *next = skb->next;
2922
2923                 skb->next = NULL;
2924                 rc = xmit_one(skb, dev, txq, next != NULL);
2925                 if (unlikely(!dev_xmit_complete(rc))) {
2926                         skb->next = next;
2927                         goto out;
2928                 }
2929
2930                 skb = next;
2931                 if (netif_xmit_stopped(txq) && skb) {
2932                         rc = NETDEV_TX_BUSY;
2933                         break;
2934                 }
2935         }
2936
2937 out:
2938         *ret = rc;
2939         return skb;
2940 }
2941
2942 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2943                                           netdev_features_t features)
2944 {
2945         if (skb_vlan_tag_present(skb) &&
2946             !vlan_hw_offload_capable(features, skb->vlan_proto))
2947                 skb = __vlan_hwaccel_push_inside(skb);
2948         return skb;
2949 }
2950
2951 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2952 {
2953         netdev_features_t features;
2954
2955         features = netif_skb_features(skb);
2956         skb = validate_xmit_vlan(skb, features);
2957         if (unlikely(!skb))
2958                 goto out_null;
2959
2960         if (netif_needs_gso(skb, features)) {
2961                 struct sk_buff *segs;
2962
2963                 segs = skb_gso_segment(skb, features);
2964                 if (IS_ERR(segs)) {
2965                         goto out_kfree_skb;
2966                 } else if (segs) {
2967                         consume_skb(skb);
2968                         skb = segs;
2969                 }
2970         } else {
2971                 if (skb_needs_linearize(skb, features) &&
2972                     __skb_linearize(skb))
2973                         goto out_kfree_skb;
2974
2975                 /* If packet is not checksummed and device does not
2976                  * support checksumming for this protocol, complete
2977                  * checksumming here.
2978                  */
2979                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2980                         if (skb->encapsulation)
2981                                 skb_set_inner_transport_header(skb,
2982                                                                skb_checksum_start_offset(skb));
2983                         else
2984                                 skb_set_transport_header(skb,
2985                                                          skb_checksum_start_offset(skb));
2986                         if (!(features & NETIF_F_CSUM_MASK) &&
2987                             skb_checksum_help(skb))
2988                                 goto out_kfree_skb;
2989                 }
2990         }
2991
2992         return skb;
2993
2994 out_kfree_skb:
2995         kfree_skb(skb);
2996 out_null:
2997         atomic_long_inc(&dev->tx_dropped);
2998         return NULL;
2999 }
3000
3001 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3002 {
3003         struct sk_buff *next, *head = NULL, *tail;
3004
3005         for (; skb != NULL; skb = next) {
3006                 next = skb->next;
3007                 skb->next = NULL;
3008
3009                 /* in case skb wont be segmented, point to itself */
3010                 skb->prev = skb;
3011
3012                 skb = validate_xmit_skb(skb, dev);
3013                 if (!skb)
3014                         continue;
3015
3016                 if (!head)
3017                         head = skb;
3018                 else
3019                         tail->next = skb;
3020                 /* If skb was segmented, skb->prev points to
3021                  * the last segment. If not, it still contains skb.
3022                  */
3023                 tail = skb->prev;
3024         }
3025         return head;
3026 }
3027 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3028
3029 static void qdisc_pkt_len_init(struct sk_buff *skb)
3030 {
3031         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3032
3033         qdisc_skb_cb(skb)->pkt_len = skb->len;
3034
3035         /* To get more precise estimation of bytes sent on wire,
3036          * we add to pkt_len the headers size of all segments
3037          */
3038         if (shinfo->gso_size)  {
3039                 unsigned int hdr_len;
3040                 u16 gso_segs = shinfo->gso_segs;
3041
3042                 /* mac layer + network layer */
3043                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3044
3045                 /* + transport layer */
3046                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3047                         hdr_len += tcp_hdrlen(skb);
3048                 else
3049                         hdr_len += sizeof(struct udphdr);
3050
3051                 if (shinfo->gso_type & SKB_GSO_DODGY)
3052                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3053                                                 shinfo->gso_size);
3054
3055                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3056         }
3057 }
3058
3059 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3060                                  struct net_device *dev,
3061                                  struct netdev_queue *txq)
3062 {
3063         spinlock_t *root_lock = qdisc_lock(q);
3064         struct sk_buff *to_free = NULL;
3065         bool contended;
3066         int rc;
3067
3068         qdisc_calculate_pkt_len(skb, q);
3069         /*
3070          * Heuristic to force contended enqueues to serialize on a
3071          * separate lock before trying to get qdisc main lock.
3072          * This permits qdisc->running owner to get the lock more
3073          * often and dequeue packets faster.
3074          */
3075         contended = qdisc_is_running(q);
3076         if (unlikely(contended))
3077                 spin_lock(&q->busylock);
3078
3079         spin_lock(root_lock);
3080         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3081                 __qdisc_drop(skb, &to_free);
3082                 rc = NET_XMIT_DROP;
3083         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3084                    qdisc_run_begin(q)) {
3085                 /*
3086                  * This is a work-conserving queue; there are no old skbs
3087                  * waiting to be sent out; and the qdisc is not running -
3088                  * xmit the skb directly.
3089                  */
3090
3091                 qdisc_bstats_update(q, skb);
3092
3093                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3094                         if (unlikely(contended)) {
3095                                 spin_unlock(&q->busylock);
3096                                 contended = false;
3097                         }
3098                         __qdisc_run(q);
3099                 } else
3100                         qdisc_run_end(q);
3101
3102                 rc = NET_XMIT_SUCCESS;
3103         } else {
3104                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3105                 if (qdisc_run_begin(q)) {
3106                         if (unlikely(contended)) {
3107                                 spin_unlock(&q->busylock);
3108                                 contended = false;
3109                         }
3110                         __qdisc_run(q);
3111                 }
3112         }
3113         spin_unlock(root_lock);
3114         if (unlikely(to_free))
3115                 kfree_skb_list(to_free);
3116         if (unlikely(contended))
3117                 spin_unlock(&q->busylock);
3118         return rc;
3119 }
3120
3121 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3122 static void skb_update_prio(struct sk_buff *skb)
3123 {
3124         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3125
3126         if (!skb->priority && skb->sk && map) {
3127                 unsigned int prioidx =
3128                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3129
3130                 if (prioidx < map->priomap_len)
3131                         skb->priority = map->priomap[prioidx];
3132         }
3133 }
3134 #else
3135 #define skb_update_prio(skb)
3136 #endif
3137
3138 DEFINE_PER_CPU(int, xmit_recursion);
3139 EXPORT_SYMBOL(xmit_recursion);
3140
3141 /**
3142  *      dev_loopback_xmit - loop back @skb
3143  *      @net: network namespace this loopback is happening in
3144  *      @sk:  sk needed to be a netfilter okfn
3145  *      @skb: buffer to transmit
3146  */
3147 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3148 {
3149         skb_reset_mac_header(skb);
3150         __skb_pull(skb, skb_network_offset(skb));
3151         skb->pkt_type = PACKET_LOOPBACK;
3152         skb->ip_summed = CHECKSUM_UNNECESSARY;
3153         WARN_ON(!skb_dst(skb));
3154         skb_dst_force(skb);
3155         netif_rx_ni(skb);
3156         return 0;
3157 }
3158 EXPORT_SYMBOL(dev_loopback_xmit);
3159
3160 #ifdef CONFIG_NET_EGRESS
3161 static struct sk_buff *
3162 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3163 {
3164         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3165         struct tcf_result cl_res;
3166
3167         if (!cl)
3168                 return skb;
3169
3170         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3171         qdisc_bstats_cpu_update(cl->q, skb);
3172
3173         switch (tc_classify(skb, cl, &cl_res, false)) {
3174         case TC_ACT_OK:
3175         case TC_ACT_RECLASSIFY:
3176                 skb->tc_index = TC_H_MIN(cl_res.classid);
3177                 break;
3178         case TC_ACT_SHOT:
3179                 qdisc_qstats_cpu_drop(cl->q);
3180                 *ret = NET_XMIT_DROP;
3181                 kfree_skb(skb);
3182                 return NULL;
3183         case TC_ACT_STOLEN:
3184         case TC_ACT_QUEUED:
3185                 *ret = NET_XMIT_SUCCESS;
3186                 consume_skb(skb);
3187                 return NULL;
3188         case TC_ACT_REDIRECT:
3189                 /* No need to push/pop skb's mac_header here on egress! */
3190                 skb_do_redirect(skb);
3191                 *ret = NET_XMIT_SUCCESS;
3192                 return NULL;
3193         default:
3194                 break;
3195         }
3196
3197         return skb;
3198 }
3199 #endif /* CONFIG_NET_EGRESS */
3200
3201 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3202 {
3203 #ifdef CONFIG_XPS
3204         struct xps_dev_maps *dev_maps;
3205         struct xps_map *map;
3206         int queue_index = -1;
3207
3208         rcu_read_lock();
3209         dev_maps = rcu_dereference(dev->xps_maps);
3210         if (dev_maps) {
3211                 unsigned int tci = skb->sender_cpu - 1;
3212
3213                 if (dev->num_tc) {
3214                         tci *= dev->num_tc;
3215                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3216                 }
3217
3218                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3219                 if (map) {
3220                         if (map->len == 1)
3221                                 queue_index = map->queues[0];
3222                         else
3223                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3224                                                                            map->len)];
3225                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3226                                 queue_index = -1;
3227                 }
3228         }
3229         rcu_read_unlock();
3230
3231         return queue_index;
3232 #else
3233         return -1;
3234 #endif
3235 }
3236
3237 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3238 {
3239         struct sock *sk = skb->sk;
3240         int queue_index = sk_tx_queue_get(sk);
3241
3242         if (queue_index < 0 || skb->ooo_okay ||
3243             queue_index >= dev->real_num_tx_queues) {
3244                 int new_index = get_xps_queue(dev, skb);
3245
3246                 if (new_index < 0)
3247                         new_index = skb_tx_hash(dev, skb);
3248
3249                 if (queue_index != new_index && sk &&
3250                     sk_fullsock(sk) &&
3251                     rcu_access_pointer(sk->sk_dst_cache))
3252                         sk_tx_queue_set(sk, new_index);
3253
3254                 queue_index = new_index;
3255         }
3256
3257         return queue_index;
3258 }
3259
3260 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3261                                     struct sk_buff *skb,
3262                                     void *accel_priv)
3263 {
3264         int queue_index = 0;
3265
3266 #ifdef CONFIG_XPS
3267         u32 sender_cpu = skb->sender_cpu - 1;
3268
3269         if (sender_cpu >= (u32)NR_CPUS)
3270                 skb->sender_cpu = raw_smp_processor_id() + 1;
3271 #endif
3272
3273         if (dev->real_num_tx_queues != 1) {
3274                 const struct net_device_ops *ops = dev->netdev_ops;
3275
3276                 if (ops->ndo_select_queue)
3277                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3278                                                             __netdev_pick_tx);
3279                 else
3280                         queue_index = __netdev_pick_tx(dev, skb);
3281
3282                 if (!accel_priv)
3283                         queue_index = netdev_cap_txqueue(dev, queue_index);
3284         }
3285
3286         skb_set_queue_mapping(skb, queue_index);
3287         return netdev_get_tx_queue(dev, queue_index);
3288 }
3289
3290 /**
3291  *      __dev_queue_xmit - transmit a buffer
3292  *      @skb: buffer to transmit
3293  *      @accel_priv: private data used for L2 forwarding offload
3294  *
3295  *      Queue a buffer for transmission to a network device. The caller must
3296  *      have set the device and priority and built the buffer before calling
3297  *      this function. The function can be called from an interrupt.
3298  *
3299  *      A negative errno code is returned on a failure. A success does not
3300  *      guarantee the frame will be transmitted as it may be dropped due
3301  *      to congestion or traffic shaping.
3302  *
3303  * -----------------------------------------------------------------------------------
3304  *      I notice this method can also return errors from the queue disciplines,
3305  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3306  *      be positive.
3307  *
3308  *      Regardless of the return value, the skb is consumed, so it is currently
3309  *      difficult to retry a send to this method.  (You can bump the ref count
3310  *      before sending to hold a reference for retry if you are careful.)
3311  *
3312  *      When calling this method, interrupts MUST be enabled.  This is because
3313  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3314  *          --BLG
3315  */
3316 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3317 {
3318         struct net_device *dev = skb->dev;
3319         struct netdev_queue *txq;
3320         struct Qdisc *q;
3321         int rc = -ENOMEM;
3322
3323         skb_reset_mac_header(skb);
3324
3325         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3326                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3327
3328         /* Disable soft irqs for various locks below. Also
3329          * stops preemption for RCU.
3330          */
3331         rcu_read_lock_bh();
3332
3333         skb_update_prio(skb);
3334
3335         qdisc_pkt_len_init(skb);
3336 #ifdef CONFIG_NET_CLS_ACT
3337         skb->tc_at_ingress = 0;
3338 # ifdef CONFIG_NET_EGRESS
3339         if (static_key_false(&egress_needed)) {
3340                 skb = sch_handle_egress(skb, &rc, dev);
3341                 if (!skb)
3342                         goto out;
3343         }
3344 # endif
3345 #endif
3346         /* If device/qdisc don't need skb->dst, release it right now while
3347          * its hot in this cpu cache.
3348          */
3349         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3350                 skb_dst_drop(skb);
3351         else
3352                 skb_dst_force(skb);
3353
3354         txq = netdev_pick_tx(dev, skb, accel_priv);
3355         q = rcu_dereference_bh(txq->qdisc);
3356
3357         trace_net_dev_queue(skb);
3358         if (q->enqueue) {
3359                 rc = __dev_xmit_skb(skb, q, dev, txq);
3360                 goto out;
3361         }
3362
3363         /* The device has no queue. Common case for software devices:
3364          * loopback, all the sorts of tunnels...
3365
3366          * Really, it is unlikely that netif_tx_lock protection is necessary
3367          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3368          * counters.)
3369          * However, it is possible, that they rely on protection
3370          * made by us here.
3371
3372          * Check this and shot the lock. It is not prone from deadlocks.
3373          *Either shot noqueue qdisc, it is even simpler 8)
3374          */
3375         if (dev->flags & IFF_UP) {
3376                 int cpu = smp_processor_id(); /* ok because BHs are off */
3377
3378                 if (txq->xmit_lock_owner != cpu) {
3379                         if (unlikely(__this_cpu_read(xmit_recursion) >
3380                                      XMIT_RECURSION_LIMIT))
3381                                 goto recursion_alert;
3382
3383                         skb = validate_xmit_skb(skb, dev);
3384                         if (!skb)
3385                                 goto out;
3386
3387                         HARD_TX_LOCK(dev, txq, cpu);
3388
3389                         if (!netif_xmit_stopped(txq)) {
3390                                 __this_cpu_inc(xmit_recursion);
3391                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3392                                 __this_cpu_dec(xmit_recursion);
3393                                 if (dev_xmit_complete(rc)) {
3394                                         HARD_TX_UNLOCK(dev, txq);
3395                                         goto out;
3396                                 }
3397                         }
3398                         HARD_TX_UNLOCK(dev, txq);
3399                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3400                                              dev->name);
3401                 } else {
3402                         /* Recursion is detected! It is possible,
3403                          * unfortunately
3404                          */
3405 recursion_alert:
3406                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3407                                              dev->name);
3408                 }
3409         }
3410
3411         rc = -ENETDOWN;
3412         rcu_read_unlock_bh();
3413
3414         atomic_long_inc(&dev->tx_dropped);
3415         kfree_skb_list(skb);
3416         return rc;
3417 out:
3418         rcu_read_unlock_bh();
3419         return rc;
3420 }
3421
3422 int dev_queue_xmit(struct sk_buff *skb)
3423 {
3424         return __dev_queue_xmit(skb, NULL);
3425 }
3426 EXPORT_SYMBOL(dev_queue_xmit);
3427
3428 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3429 {
3430         return __dev_queue_xmit(skb, accel_priv);
3431 }
3432 EXPORT_SYMBOL(dev_queue_xmit_accel);
3433
3434
3435 /*************************************************************************
3436  *                      Receiver routines
3437  *************************************************************************/
3438
3439 int netdev_max_backlog __read_mostly = 1000;
3440 EXPORT_SYMBOL(netdev_max_backlog);
3441
3442 int netdev_tstamp_prequeue __read_mostly = 1;
3443 int netdev_budget __read_mostly = 300;
3444 int weight_p __read_mostly = 64;           /* old backlog weight */
3445 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3446 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3447 int dev_rx_weight __read_mostly = 64;
3448 int dev_tx_weight __read_mostly = 64;
3449
3450 /* Called with irq disabled */
3451 static inline void ____napi_schedule(struct softnet_data *sd,
3452                                      struct napi_struct *napi)
3453 {
3454         list_add_tail(&napi->poll_list, &sd->poll_list);
3455         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3456 }
3457
3458 #ifdef CONFIG_RPS
3459
3460 /* One global table that all flow-based protocols share. */
3461 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3462 EXPORT_SYMBOL(rps_sock_flow_table);
3463 u32 rps_cpu_mask __read_mostly;
3464 EXPORT_SYMBOL(rps_cpu_mask);
3465
3466 struct static_key rps_needed __read_mostly;
3467 EXPORT_SYMBOL(rps_needed);
3468 struct static_key rfs_needed __read_mostly;
3469 EXPORT_SYMBOL(rfs_needed);
3470
3471 static struct rps_dev_flow *
3472 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3473             struct rps_dev_flow *rflow, u16 next_cpu)
3474 {
3475         if (next_cpu < nr_cpu_ids) {
3476 #ifdef CONFIG_RFS_ACCEL
3477                 struct netdev_rx_queue *rxqueue;
3478                 struct rps_dev_flow_table *flow_table;
3479                 struct rps_dev_flow *old_rflow;
3480                 u32 flow_id;
3481                 u16 rxq_index;
3482                 int rc;
3483
3484                 /* Should we steer this flow to a different hardware queue? */
3485                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3486                     !(dev->features & NETIF_F_NTUPLE))
3487                         goto out;
3488                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3489                 if (rxq_index == skb_get_rx_queue(skb))
3490                         goto out;
3491
3492                 rxqueue = dev->_rx + rxq_index;
3493                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3494                 if (!flow_table)
3495                         goto out;
3496                 flow_id = skb_get_hash(skb) & flow_table->mask;
3497                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3498                                                         rxq_index, flow_id);
3499                 if (rc < 0)
3500                         goto out;
3501                 old_rflow = rflow;
3502                 rflow = &flow_table->flows[flow_id];
3503                 rflow->filter = rc;
3504                 if (old_rflow->filter == rflow->filter)
3505                         old_rflow->filter = RPS_NO_FILTER;
3506         out:
3507 #endif
3508                 rflow->last_qtail =
3509                         per_cpu(softnet_data, next_cpu).input_queue_head;
3510         }
3511
3512         rflow->cpu = next_cpu;
3513         return rflow;
3514 }
3515
3516 /*
3517  * get_rps_cpu is called from netif_receive_skb and returns the target
3518  * CPU from the RPS map of the receiving queue for a given skb.
3519  * rcu_read_lock must be held on entry.
3520  */
3521 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3522                        struct rps_dev_flow **rflowp)
3523 {
3524         const struct rps_sock_flow_table *sock_flow_table;
3525         struct netdev_rx_queue *rxqueue = dev->_rx;
3526         struct rps_dev_flow_table *flow_table;
3527         struct rps_map *map;
3528         int cpu = -1;
3529         u32 tcpu;
3530         u32 hash;
3531
3532         if (skb_rx_queue_recorded(skb)) {
3533                 u16 index = skb_get_rx_queue(skb);
3534
3535                 if (unlikely(index >= dev->real_num_rx_queues)) {
3536                         WARN_ONCE(dev->real_num_rx_queues > 1,
3537                                   "%s received packet on queue %u, but number "
3538                                   "of RX queues is %u\n",
3539                                   dev->name, index, dev->real_num_rx_queues);
3540                         goto done;
3541                 }
3542                 rxqueue += index;
3543         }
3544
3545         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3546
3547         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3548         map = rcu_dereference(rxqueue->rps_map);
3549         if (!flow_table && !map)
3550                 goto done;
3551
3552         skb_reset_network_header(skb);
3553         hash = skb_get_hash(skb);
3554         if (!hash)
3555                 goto done;
3556
3557         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3558         if (flow_table && sock_flow_table) {
3559                 struct rps_dev_flow *rflow;
3560                 u32 next_cpu;
3561                 u32 ident;
3562
3563                 /* First check into global flow table if there is a match */
3564                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3565                 if ((ident ^ hash) & ~rps_cpu_mask)
3566                         goto try_rps;
3567
3568                 next_cpu = ident & rps_cpu_mask;
3569
3570                 /* OK, now we know there is a match,
3571                  * we can look at the local (per receive queue) flow table
3572                  */
3573                 rflow = &flow_table->flows[hash & flow_table->mask];
3574                 tcpu = rflow->cpu;
3575
3576                 /*
3577                  * If the desired CPU (where last recvmsg was done) is
3578                  * different from current CPU (one in the rx-queue flow
3579                  * table entry), switch if one of the following holds:
3580                  *   - Current CPU is unset (>= nr_cpu_ids).
3581                  *   - Current CPU is offline.
3582                  *   - The current CPU's queue tail has advanced beyond the
3583                  *     last packet that was enqueued using this table entry.
3584                  *     This guarantees that all previous packets for the flow
3585                  *     have been dequeued, thus preserving in order delivery.
3586                  */
3587                 if (unlikely(tcpu != next_cpu) &&
3588                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3589                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3590                       rflow->last_qtail)) >= 0)) {
3591                         tcpu = next_cpu;
3592                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3593                 }
3594
3595                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3596                         *rflowp = rflow;
3597                         cpu = tcpu;
3598                         goto done;
3599                 }
3600         }
3601
3602 try_rps:
3603
3604         if (map) {
3605                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3606                 if (cpu_online(tcpu)) {
3607                         cpu = tcpu;
3608                         goto done;
3609                 }
3610         }
3611
3612 done:
3613         return cpu;
3614 }
3615
3616 #ifdef CONFIG_RFS_ACCEL
3617
3618 /**
3619  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3620  * @dev: Device on which the filter was set
3621  * @rxq_index: RX queue index
3622  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3623  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3624  *
3625  * Drivers that implement ndo_rx_flow_steer() should periodically call
3626  * this function for each installed filter and remove the filters for
3627  * which it returns %true.
3628  */
3629 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3630                          u32 flow_id, u16 filter_id)
3631 {
3632         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3633         struct rps_dev_flow_table *flow_table;
3634         struct rps_dev_flow *rflow;
3635         bool expire = true;
3636         unsigned int cpu;
3637
3638         rcu_read_lock();
3639         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3640         if (flow_table && flow_id <= flow_table->mask) {
3641                 rflow = &flow_table->flows[flow_id];
3642                 cpu = ACCESS_ONCE(rflow->cpu);
3643                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3644                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3645                            rflow->last_qtail) <
3646                      (int)(10 * flow_table->mask)))
3647                         expire = false;
3648         }
3649         rcu_read_unlock();
3650         return expire;
3651 }
3652 EXPORT_SYMBOL(rps_may_expire_flow);
3653
3654 #endif /* CONFIG_RFS_ACCEL */
3655
3656 /* Called from hardirq (IPI) context */
3657 static void rps_trigger_softirq(void *data)
3658 {
3659         struct softnet_data *sd = data;
3660
3661         ____napi_schedule(sd, &sd->backlog);
3662         sd->received_rps++;
3663 }
3664
3665 #endif /* CONFIG_RPS */
3666
3667 /*
3668  * Check if this softnet_data structure is another cpu one
3669  * If yes, queue it to our IPI list and return 1
3670  * If no, return 0
3671  */
3672 static int rps_ipi_queued(struct softnet_data *sd)
3673 {
3674 #ifdef CONFIG_RPS
3675         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3676
3677         if (sd != mysd) {
3678                 sd->rps_ipi_next = mysd->rps_ipi_list;
3679                 mysd->rps_ipi_list = sd;
3680
3681                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3682                 return 1;
3683         }
3684 #endif /* CONFIG_RPS */
3685         return 0;
3686 }
3687
3688 #ifdef CONFIG_NET_FLOW_LIMIT
3689 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3690 #endif
3691
3692 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3693 {
3694 #ifdef CONFIG_NET_FLOW_LIMIT
3695         struct sd_flow_limit *fl;
3696         struct softnet_data *sd;
3697         unsigned int old_flow, new_flow;
3698
3699         if (qlen < (netdev_max_backlog >> 1))
3700                 return false;
3701
3702         sd = this_cpu_ptr(&softnet_data);
3703
3704         rcu_read_lock();
3705         fl = rcu_dereference(sd->flow_limit);
3706         if (fl) {
3707                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3708                 old_flow = fl->history[fl->history_head];
3709                 fl->history[fl->history_head] = new_flow;
3710
3711                 fl->history_head++;
3712                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3713
3714                 if (likely(fl->buckets[old_flow]))
3715                         fl->buckets[old_flow]--;
3716
3717                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3718                         fl->count++;
3719                         rcu_read_unlock();
3720                         return true;
3721                 }
3722         }
3723         rcu_read_unlock();
3724 #endif
3725         return false;
3726 }
3727
3728 /*
3729  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3730  * queue (may be a remote CPU queue).
3731  */
3732 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3733                               unsigned int *qtail)
3734 {
3735         struct softnet_data *sd;
3736         unsigned long flags;
3737         unsigned int qlen;
3738
3739         sd = &per_cpu(softnet_data, cpu);
3740
3741         local_irq_save(flags);
3742
3743         rps_lock(sd);
3744         if (!netif_running(skb->dev))
3745                 goto drop;
3746         qlen = skb_queue_len(&sd->input_pkt_queue);
3747         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3748                 if (qlen) {
3749 enqueue:
3750                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3751                         input_queue_tail_incr_save(sd, qtail);
3752                         rps_unlock(sd);
3753                         local_irq_restore(flags);
3754                         return NET_RX_SUCCESS;
3755                 }
3756
3757                 /* Schedule NAPI for backlog device
3758                  * We can use non atomic operation since we own the queue lock
3759                  */
3760                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3761                         if (!rps_ipi_queued(sd))
3762                                 ____napi_schedule(sd, &sd->backlog);
3763                 }
3764                 goto enqueue;
3765         }
3766
3767 drop:
3768         sd->dropped++;
3769         rps_unlock(sd);
3770
3771         local_irq_restore(flags);
3772
3773         atomic_long_inc(&skb->dev->rx_dropped);
3774         kfree_skb(skb);
3775         return NET_RX_DROP;
3776 }
3777
3778 static int netif_rx_internal(struct sk_buff *skb)
3779 {
3780         int ret;
3781
3782         net_timestamp_check(netdev_tstamp_prequeue, skb);
3783
3784         trace_netif_rx(skb);
3785 #ifdef CONFIG_RPS
3786         if (static_key_false(&rps_needed)) {
3787                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3788                 int cpu;
3789
3790                 preempt_disable();
3791                 rcu_read_lock();
3792
3793                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3794                 if (cpu < 0)
3795                         cpu = smp_processor_id();
3796
3797                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3798
3799                 rcu_read_unlock();
3800                 preempt_enable();
3801         } else
3802 #endif
3803         {
3804                 unsigned int qtail;
3805
3806                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3807                 put_cpu();
3808         }
3809         return ret;
3810 }
3811
3812 /**
3813  *      netif_rx        -       post buffer to the network code
3814  *      @skb: buffer to post
3815  *
3816  *      This function receives a packet from a device driver and queues it for
3817  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3818  *      may be dropped during processing for congestion control or by the
3819  *      protocol layers.
3820  *
3821  *      return values:
3822  *      NET_RX_SUCCESS  (no congestion)
3823  *      NET_RX_DROP     (packet was dropped)
3824  *
3825  */
3826
3827 int netif_rx(struct sk_buff *skb)
3828 {
3829         trace_netif_rx_entry(skb);
3830
3831         return netif_rx_internal(skb);
3832 }
3833 EXPORT_SYMBOL(netif_rx);
3834
3835 int netif_rx_ni(struct sk_buff *skb)
3836 {
3837         int err;
3838
3839         trace_netif_rx_ni_entry(skb);
3840
3841         preempt_disable();
3842         err = netif_rx_internal(skb);
3843         if (local_softirq_pending())
3844                 do_softirq();
3845         preempt_enable();
3846
3847         return err;
3848 }
3849 EXPORT_SYMBOL(netif_rx_ni);
3850
3851 static __latent_entropy void net_tx_action(struct softirq_action *h)
3852 {
3853         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3854
3855         if (sd->completion_queue) {
3856                 struct sk_buff *clist;
3857
3858                 local_irq_disable();
3859                 clist = sd->completion_queue;
3860                 sd->completion_queue = NULL;
3861                 local_irq_enable();
3862
3863                 while (clist) {
3864                         struct sk_buff *skb = clist;
3865
3866                         clist = clist->next;
3867
3868                         WARN_ON(atomic_read(&skb->users));
3869                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3870                                 trace_consume_skb(skb);
3871                         else
3872                                 trace_kfree_skb(skb, net_tx_action);
3873
3874                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3875                                 __kfree_skb(skb);
3876                         else
3877                                 __kfree_skb_defer(skb);
3878                 }
3879
3880                 __kfree_skb_flush();
3881         }
3882
3883         if (sd->output_queue) {
3884                 struct Qdisc *head;
3885
3886                 local_irq_disable();
3887                 head = sd->output_queue;
3888                 sd->output_queue = NULL;
3889                 sd->output_queue_tailp = &sd->output_queue;
3890                 local_irq_enable();
3891
3892                 while (head) {
3893                         struct Qdisc *q = head;
3894                         spinlock_t *root_lock;
3895
3896                         head = head->next_sched;
3897
3898                         root_lock = qdisc_lock(q);
3899                         spin_lock(root_lock);
3900                         /* We need to make sure head->next_sched is read
3901                          * before clearing __QDISC_STATE_SCHED
3902                          */
3903                         smp_mb__before_atomic();
3904                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3905                         qdisc_run(q);
3906                         spin_unlock(root_lock);
3907                 }
3908         }
3909 }
3910
3911 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3912 /* This hook is defined here for ATM LANE */
3913 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3914                              unsigned char *addr) __read_mostly;
3915 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3916 #endif
3917
3918 static inline struct sk_buff *
3919 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3920                    struct net_device *orig_dev)
3921 {
3922 #ifdef CONFIG_NET_CLS_ACT
3923         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3924         struct tcf_result cl_res;
3925
3926         /* If there's at least one ingress present somewhere (so
3927          * we get here via enabled static key), remaining devices
3928          * that are not configured with an ingress qdisc will bail
3929          * out here.
3930          */
3931         if (!cl)
3932                 return skb;
3933         if (*pt_prev) {
3934                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3935                 *pt_prev = NULL;
3936         }
3937
3938         qdisc_skb_cb(skb)->pkt_len = skb->len;
3939         skb->tc_at_ingress = 1;
3940         qdisc_bstats_cpu_update(cl->q, skb);
3941
3942         switch (tc_classify(skb, cl, &cl_res, false)) {
3943         case TC_ACT_OK:
3944         case TC_ACT_RECLASSIFY:
3945                 skb->tc_index = TC_H_MIN(cl_res.classid);
3946                 break;
3947         case TC_ACT_SHOT:
3948                 qdisc_qstats_cpu_drop(cl->q);
3949                 kfree_skb(skb);
3950                 return NULL;
3951         case TC_ACT_STOLEN:
3952         case TC_ACT_QUEUED:
3953                 consume_skb(skb);
3954                 return NULL;
3955         case TC_ACT_REDIRECT:
3956                 /* skb_mac_header check was done by cls/act_bpf, so
3957                  * we can safely push the L2 header back before
3958                  * redirecting to another netdev
3959                  */
3960                 __skb_push(skb, skb->mac_len);
3961                 skb_do_redirect(skb);
3962                 return NULL;
3963         default:
3964                 break;
3965         }
3966 #endif /* CONFIG_NET_CLS_ACT */
3967         return skb;
3968 }
3969
3970 /**
3971  *      netdev_is_rx_handler_busy - check if receive handler is registered
3972  *      @dev: device to check
3973  *
3974  *      Check if a receive handler is already registered for a given device.
3975  *      Return true if there one.
3976  *
3977  *      The caller must hold the rtnl_mutex.
3978  */
3979 bool netdev_is_rx_handler_busy(struct net_device *dev)
3980 {
3981         ASSERT_RTNL();
3982         return dev && rtnl_dereference(dev->rx_handler);
3983 }
3984 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3985
3986 /**
3987  *      netdev_rx_handler_register - register receive handler
3988  *      @dev: device to register a handler for
3989  *      @rx_handler: receive handler to register
3990  *      @rx_handler_data: data pointer that is used by rx handler
3991  *
3992  *      Register a receive handler for a device. This handler will then be
3993  *      called from __netif_receive_skb. A negative errno code is returned
3994  *      on a failure.
3995  *
3996  *      The caller must hold the rtnl_mutex.
3997  *
3998  *      For a general description of rx_handler, see enum rx_handler_result.
3999  */
4000 int netdev_rx_handler_register(struct net_device *dev,
4001                                rx_handler_func_t *rx_handler,
4002                                void *rx_handler_data)
4003 {
4004         if (netdev_is_rx_handler_busy(dev))
4005                 return -EBUSY;
4006
4007         /* Note: rx_handler_data must be set before rx_handler */
4008         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4009         rcu_assign_pointer(dev->rx_handler, rx_handler);
4010
4011         return 0;
4012 }
4013 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4014
4015 /**
4016  *      netdev_rx_handler_unregister - unregister receive handler
4017  *      @dev: device to unregister a handler from
4018  *
4019  *      Unregister a receive handler from a device.
4020  *
4021  *      The caller must hold the rtnl_mutex.
4022  */
4023 void netdev_rx_handler_unregister(struct net_device *dev)
4024 {
4025
4026         ASSERT_RTNL();
4027         RCU_INIT_POINTER(dev->rx_handler, NULL);
4028         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4029          * section has a guarantee to see a non NULL rx_handler_data
4030          * as well.
4031          */
4032         synchronize_net();
4033         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4034 }
4035 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4036
4037 /*
4038  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4039  * the special handling of PFMEMALLOC skbs.
4040  */
4041 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4042 {
4043         switch (skb->protocol) {
4044         case htons(ETH_P_ARP):
4045         case htons(ETH_P_IP):
4046         case htons(ETH_P_IPV6):
4047         case htons(ETH_P_8021Q):
4048         case htons(ETH_P_8021AD):
4049                 return true;
4050         default:
4051                 return false;
4052         }
4053 }
4054
4055 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4056                              int *ret, struct net_device *orig_dev)
4057 {
4058 #ifdef CONFIG_NETFILTER_INGRESS
4059         if (nf_hook_ingress_active(skb)) {
4060                 int ingress_retval;
4061
4062                 if (*pt_prev) {
4063                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4064                         *pt_prev = NULL;
4065                 }
4066
4067                 rcu_read_lock();
4068                 ingress_retval = nf_hook_ingress(skb);
4069                 rcu_read_unlock();
4070                 return ingress_retval;
4071         }
4072 #endif /* CONFIG_NETFILTER_INGRESS */
4073         return 0;
4074 }
4075
4076 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4077 {
4078         struct packet_type *ptype, *pt_prev;
4079         rx_handler_func_t *rx_handler;
4080         struct net_device *orig_dev;
4081         bool deliver_exact = false;
4082         int ret = NET_RX_DROP;
4083         __be16 type;
4084
4085         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4086
4087         trace_netif_receive_skb(skb);
4088
4089         orig_dev = skb->dev;
4090
4091         skb_reset_network_header(skb);
4092         if (!skb_transport_header_was_set(skb))
4093                 skb_reset_transport_header(skb);
4094         skb_reset_mac_len(skb);
4095
4096         pt_prev = NULL;
4097
4098 another_round:
4099         skb->skb_iif = skb->dev->ifindex;
4100
4101         __this_cpu_inc(softnet_data.processed);
4102
4103         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4104             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4105                 skb = skb_vlan_untag(skb);
4106                 if (unlikely(!skb))
4107                         goto out;
4108         }
4109
4110         if (skb_skip_tc_classify(skb))
4111                 goto skip_classify;
4112
4113         if (pfmemalloc)
4114                 goto skip_taps;
4115
4116         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4117                 if (pt_prev)
4118                         ret = deliver_skb(skb, pt_prev, orig_dev);
4119                 pt_prev = ptype;
4120         }
4121
4122         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4123                 if (pt_prev)
4124                         ret = deliver_skb(skb, pt_prev, orig_dev);
4125                 pt_prev = ptype;
4126         }
4127
4128 skip_taps:
4129 #ifdef CONFIG_NET_INGRESS
4130         if (static_key_false(&ingress_needed)) {
4131                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4132                 if (!skb)
4133                         goto out;
4134
4135                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4136                         goto out;
4137         }
4138 #endif
4139         skb_reset_tc(skb);
4140 skip_classify:
4141         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4142                 goto drop;
4143
4144         if (skb_vlan_tag_present(skb)) {
4145                 if (pt_prev) {
4146                         ret = deliver_skb(skb, pt_prev, orig_dev);
4147                         pt_prev = NULL;
4148                 }
4149                 if (vlan_do_receive(&skb))
4150                         goto another_round;
4151                 else if (unlikely(!skb))
4152                         goto out;
4153         }
4154
4155         rx_handler = rcu_dereference(skb->dev->rx_handler);
4156         if (rx_handler) {
4157                 if (pt_prev) {
4158                         ret = deliver_skb(skb, pt_prev, orig_dev);
4159                         pt_prev = NULL;
4160                 }
4161                 switch (rx_handler(&skb)) {
4162                 case RX_HANDLER_CONSUMED:
4163                         ret = NET_RX_SUCCESS;
4164                         goto out;
4165                 case RX_HANDLER_ANOTHER:
4166                         goto another_round;
4167                 case RX_HANDLER_EXACT:
4168                         deliver_exact = true;
4169                 case RX_HANDLER_PASS:
4170                         break;
4171                 default:
4172                         BUG();
4173                 }
4174         }
4175
4176         if (unlikely(skb_vlan_tag_present(skb))) {
4177                 if (skb_vlan_tag_get_id(skb))
4178                         skb->pkt_type = PACKET_OTHERHOST;
4179                 /* Note: we might in the future use prio bits
4180                  * and set skb->priority like in vlan_do_receive()
4181                  * For the time being, just ignore Priority Code Point
4182                  */
4183                 skb->vlan_tci = 0;
4184         }
4185
4186         type = skb->protocol;
4187
4188         /* deliver only exact match when indicated */
4189         if (likely(!deliver_exact)) {
4190                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4191                                        &ptype_base[ntohs(type) &
4192                                                    PTYPE_HASH_MASK]);
4193         }
4194
4195         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4196                                &orig_dev->ptype_specific);
4197
4198         if (unlikely(skb->dev != orig_dev)) {
4199                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200                                        &skb->dev->ptype_specific);
4201         }
4202
4203         if (pt_prev) {
4204                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4205                         goto drop;
4206                 else
4207                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4208         } else {
4209 drop:
4210                 if (!deliver_exact)
4211                         atomic_long_inc(&skb->dev->rx_dropped);
4212                 else
4213                         atomic_long_inc(&skb->dev->rx_nohandler);
4214                 kfree_skb(skb);
4215                 /* Jamal, now you will not able to escape explaining
4216                  * me how you were going to use this. :-)
4217                  */
4218                 ret = NET_RX_DROP;
4219         }
4220
4221 out:
4222         return ret;
4223 }
4224
4225 static int __netif_receive_skb(struct sk_buff *skb)
4226 {
4227         int ret;
4228
4229         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4230                 unsigned long pflags = current->flags;
4231
4232                 /*
4233                  * PFMEMALLOC skbs are special, they should
4234                  * - be delivered to SOCK_MEMALLOC sockets only
4235                  * - stay away from userspace
4236                  * - have bounded memory usage
4237                  *
4238                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4239                  * context down to all allocation sites.
4240                  */
4241                 current->flags |= PF_MEMALLOC;
4242                 ret = __netif_receive_skb_core(skb, true);
4243                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4244         } else
4245                 ret = __netif_receive_skb_core(skb, false);
4246
4247         return ret;
4248 }
4249
4250 static int netif_receive_skb_internal(struct sk_buff *skb)
4251 {
4252         int ret;
4253
4254         net_timestamp_check(netdev_tstamp_prequeue, skb);
4255
4256         if (skb_defer_rx_timestamp(skb))
4257                 return NET_RX_SUCCESS;
4258
4259         rcu_read_lock();
4260
4261 #ifdef CONFIG_RPS
4262         if (static_key_false(&rps_needed)) {
4263                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4264                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4265
4266                 if (cpu >= 0) {
4267                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4268                         rcu_read_unlock();
4269                         return ret;
4270                 }
4271         }
4272 #endif
4273         ret = __netif_receive_skb(skb);
4274         rcu_read_unlock();
4275         return ret;
4276 }
4277
4278 /**
4279  *      netif_receive_skb - process receive buffer from network
4280  *      @skb: buffer to process
4281  *
4282  *      netif_receive_skb() is the main receive data processing function.
4283  *      It always succeeds. The buffer may be dropped during processing
4284  *      for congestion control or by the protocol layers.
4285  *
4286  *      This function may only be called from softirq context and interrupts
4287  *      should be enabled.
4288  *
4289  *      Return values (usually ignored):
4290  *      NET_RX_SUCCESS: no congestion
4291  *      NET_RX_DROP: packet was dropped
4292  */
4293 int netif_receive_skb(struct sk_buff *skb)
4294 {
4295         trace_netif_receive_skb_entry(skb);
4296
4297         return netif_receive_skb_internal(skb);
4298 }
4299 EXPORT_SYMBOL(netif_receive_skb);
4300
4301 DEFINE_PER_CPU(struct work_struct, flush_works);
4302
4303 /* Network device is going away, flush any packets still pending */
4304 static void flush_backlog(struct work_struct *work)
4305 {
4306         struct sk_buff *skb, *tmp;
4307         struct softnet_data *sd;
4308
4309         local_bh_disable();
4310         sd = this_cpu_ptr(&softnet_data);
4311
4312         local_irq_disable();
4313         rps_lock(sd);
4314         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4315                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4316                         __skb_unlink(skb, &sd->input_pkt_queue);
4317                         kfree_skb(skb);
4318                         input_queue_head_incr(sd);
4319                 }
4320         }
4321         rps_unlock(sd);
4322         local_irq_enable();
4323
4324         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4325                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4326                         __skb_unlink(skb, &sd->process_queue);
4327                         kfree_skb(skb);
4328                         input_queue_head_incr(sd);
4329                 }
4330         }
4331         local_bh_enable();
4332 }
4333
4334 static void flush_all_backlogs(void)
4335 {
4336         unsigned int cpu;
4337
4338         get_online_cpus();
4339
4340         for_each_online_cpu(cpu)
4341                 queue_work_on(cpu, system_highpri_wq,
4342                               per_cpu_ptr(&flush_works, cpu));
4343
4344         for_each_online_cpu(cpu)
4345                 flush_work(per_cpu_ptr(&flush_works, cpu));
4346
4347         put_online_cpus();
4348 }
4349
4350 static int napi_gro_complete(struct sk_buff *skb)
4351 {
4352         struct packet_offload *ptype;
4353         __be16 type = skb->protocol;
4354         struct list_head *head = &offload_base;
4355         int err = -ENOENT;
4356
4357         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4358
4359         if (NAPI_GRO_CB(skb)->count == 1) {
4360                 skb_shinfo(skb)->gso_size = 0;
4361                 goto out;
4362         }
4363
4364         rcu_read_lock();
4365         list_for_each_entry_rcu(ptype, head, list) {
4366                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4367                         continue;
4368
4369                 err = ptype->callbacks.gro_complete(skb, 0);
4370                 break;
4371         }
4372         rcu_read_unlock();
4373
4374         if (err) {
4375                 WARN_ON(&ptype->list == head);
4376                 kfree_skb(skb);
4377                 return NET_RX_SUCCESS;
4378         }
4379
4380 out:
4381         return netif_receive_skb_internal(skb);
4382 }
4383
4384 /* napi->gro_list contains packets ordered by age.
4385  * youngest packets at the head of it.
4386  * Complete skbs in reverse order to reduce latencies.
4387  */
4388 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4389 {
4390         struct sk_buff *skb, *prev = NULL;
4391
4392         /* scan list and build reverse chain */
4393         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4394                 skb->prev = prev;
4395                 prev = skb;
4396         }
4397
4398         for (skb = prev; skb; skb = prev) {
4399                 skb->next = NULL;
4400
4401                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4402                         return;
4403
4404                 prev = skb->prev;
4405                 napi_gro_complete(skb);
4406                 napi->gro_count--;
4407         }
4408
4409         napi->gro_list = NULL;
4410 }
4411 EXPORT_SYMBOL(napi_gro_flush);
4412
4413 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4414 {
4415         struct sk_buff *p;
4416         unsigned int maclen = skb->dev->hard_header_len;
4417         u32 hash = skb_get_hash_raw(skb);
4418
4419         for (p = napi->gro_list; p; p = p->next) {
4420                 unsigned long diffs;
4421
4422                 NAPI_GRO_CB(p)->flush = 0;
4423
4424                 if (hash != skb_get_hash_raw(p)) {
4425                         NAPI_GRO_CB(p)->same_flow = 0;
4426                         continue;
4427                 }
4428
4429                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4430                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4431                 diffs |= skb_metadata_dst_cmp(p, skb);
4432                 if (maclen == ETH_HLEN)
4433                         diffs |= compare_ether_header(skb_mac_header(p),
4434                                                       skb_mac_header(skb));
4435                 else if (!diffs)
4436                         diffs = memcmp(skb_mac_header(p),
4437                                        skb_mac_header(skb),
4438                                        maclen);
4439                 NAPI_GRO_CB(p)->same_flow = !diffs;
4440         }
4441 }
4442
4443 static void skb_gro_reset_offset(struct sk_buff *skb)
4444 {
4445         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4446         const skb_frag_t *frag0 = &pinfo->frags[0];
4447
4448         NAPI_GRO_CB(skb)->data_offset = 0;
4449         NAPI_GRO_CB(skb)->frag0 = NULL;
4450         NAPI_GRO_CB(skb)->frag0_len = 0;
4451
4452         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4453             pinfo->nr_frags &&
4454             !PageHighMem(skb_frag_page(frag0))) {
4455                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4456                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4457                                                     skb_frag_size(frag0),
4458                                                     skb->end - skb->tail);
4459         }
4460 }
4461
4462 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4463 {
4464         struct skb_shared_info *pinfo = skb_shinfo(skb);
4465
4466         BUG_ON(skb->end - skb->tail < grow);
4467
4468         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4469
4470         skb->data_len -= grow;
4471         skb->tail += grow;
4472
4473         pinfo->frags[0].page_offset += grow;
4474         skb_frag_size_sub(&pinfo->frags[0], grow);
4475
4476         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4477                 skb_frag_unref(skb, 0);
4478                 memmove(pinfo->frags, pinfo->frags + 1,
4479                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4480         }
4481 }
4482
4483 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4484 {
4485         struct sk_buff **pp = NULL;
4486         struct packet_offload *ptype;
4487         __be16 type = skb->protocol;
4488         struct list_head *head = &offload_base;
4489         int same_flow;
4490         enum gro_result ret;
4491         int grow;
4492
4493         if (!(skb->dev->features & NETIF_F_GRO))
4494                 goto normal;
4495
4496         if (skb->csum_bad)
4497                 goto normal;
4498
4499         gro_list_prepare(napi, skb);
4500
4501         rcu_read_lock();
4502         list_for_each_entry_rcu(ptype, head, list) {
4503                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4504                         continue;
4505
4506                 skb_set_network_header(skb, skb_gro_offset(skb));
4507                 skb_reset_mac_len(skb);
4508                 NAPI_GRO_CB(skb)->same_flow = 0;
4509                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4510                 NAPI_GRO_CB(skb)->free = 0;
4511                 NAPI_GRO_CB(skb)->encap_mark = 0;
4512                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4513                 NAPI_GRO_CB(skb)->is_fou = 0;
4514                 NAPI_GRO_CB(skb)->is_atomic = 1;
4515                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4516
4517                 /* Setup for GRO checksum validation */
4518                 switch (skb->ip_summed) {
4519                 case CHECKSUM_COMPLETE:
4520                         NAPI_GRO_CB(skb)->csum = skb->csum;
4521                         NAPI_GRO_CB(skb)->csum_valid = 1;
4522                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4523                         break;
4524                 case CHECKSUM_UNNECESSARY:
4525                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4526                         NAPI_GRO_CB(skb)->csum_valid = 0;
4527                         break;
4528                 default:
4529                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4530                         NAPI_GRO_CB(skb)->csum_valid = 0;
4531                 }
4532
4533                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4534                 break;
4535         }
4536         rcu_read_unlock();
4537
4538         if (&ptype->list == head)
4539                 goto normal;
4540
4541         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4542                 ret = GRO_CONSUMED;
4543                 goto ok;
4544         }
4545
4546         same_flow = NAPI_GRO_CB(skb)->same_flow;
4547         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4548
4549         if (pp) {
4550                 struct sk_buff *nskb = *pp;
4551
4552                 *pp = nskb->next;
4553                 nskb->next = NULL;
4554                 napi_gro_complete(nskb);
4555                 napi->gro_count--;
4556         }
4557
4558         if (same_flow)
4559                 goto ok;
4560
4561         if (NAPI_GRO_CB(skb)->flush)
4562                 goto normal;
4563
4564         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4565                 struct sk_buff *nskb = napi->gro_list;
4566
4567                 /* locate the end of the list to select the 'oldest' flow */
4568                 while (nskb->next) {
4569                         pp = &nskb->next;
4570                         nskb = *pp;
4571                 }
4572                 *pp = NULL;
4573                 nskb->next = NULL;
4574                 napi_gro_complete(nskb);
4575         } else {
4576                 napi->gro_count++;
4577         }
4578         NAPI_GRO_CB(skb)->count = 1;
4579         NAPI_GRO_CB(skb)->age = jiffies;
4580         NAPI_GRO_CB(skb)->last = skb;
4581         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4582         skb->next = napi->gro_list;
4583         napi->gro_list = skb;
4584         ret = GRO_HELD;
4585
4586 pull:
4587         grow = skb_gro_offset(skb) - skb_headlen(skb);
4588         if (grow > 0)
4589                 gro_pull_from_frag0(skb, grow);
4590 ok:
4591         return ret;
4592
4593 normal:
4594         ret = GRO_NORMAL;
4595         goto pull;
4596 }
4597
4598 struct packet_offload *gro_find_receive_by_type(__be16 type)
4599 {
4600         struct list_head *offload_head = &offload_base;
4601         struct packet_offload *ptype;
4602
4603         list_for_each_entry_rcu(ptype, offload_head, list) {
4604                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4605                         continue;
4606                 return ptype;
4607         }
4608         return NULL;
4609 }
4610 EXPORT_SYMBOL(gro_find_receive_by_type);
4611
4612 struct packet_offload *gro_find_complete_by_type(__be16 type)
4613 {
4614         struct list_head *offload_head = &offload_base;
4615         struct packet_offload *ptype;
4616
4617         list_for_each_entry_rcu(ptype, offload_head, list) {
4618                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4619                         continue;
4620                 return ptype;
4621         }
4622         return NULL;
4623 }
4624 EXPORT_SYMBOL(gro_find_complete_by_type);
4625
4626 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4627 {
4628         switch (ret) {
4629         case GRO_NORMAL:
4630                 if (netif_receive_skb_internal(skb))
4631                         ret = GRO_DROP;
4632                 break;
4633
4634         case GRO_DROP:
4635                 kfree_skb(skb);
4636                 break;
4637
4638         case GRO_MERGED_FREE:
4639                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4640                         skb_dst_drop(skb);
4641                         secpath_reset(skb);
4642                         kmem_cache_free(skbuff_head_cache, skb);
4643                 } else {
4644                         __kfree_skb(skb);
4645                 }
4646                 break;
4647
4648         case GRO_HELD:
4649         case GRO_MERGED:
4650         case GRO_CONSUMED:
4651                 break;
4652         }
4653
4654         return ret;
4655 }
4656
4657 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4658 {
4659         skb_mark_napi_id(skb, napi);
4660         trace_napi_gro_receive_entry(skb);
4661
4662         skb_gro_reset_offset(skb);
4663
4664         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4665 }
4666 EXPORT_SYMBOL(napi_gro_receive);
4667
4668 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4669 {
4670         if (unlikely(skb->pfmemalloc)) {
4671                 consume_skb(skb);
4672                 return;
4673         }
4674         __skb_pull(skb, skb_headlen(skb));
4675         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4676         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4677         skb->vlan_tci = 0;
4678         skb->dev = napi->dev;
4679         skb->skb_iif = 0;
4680         skb->encapsulation = 0;
4681         skb_shinfo(skb)->gso_type = 0;
4682         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4683         secpath_reset(skb);
4684
4685         napi->skb = skb;
4686 }
4687
4688 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4689 {
4690         struct sk_buff *skb = napi->skb;
4691
4692         if (!skb) {
4693                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4694                 if (skb) {
4695                         napi->skb = skb;
4696                         skb_mark_napi_id(skb, napi);
4697                 }
4698         }
4699         return skb;
4700 }
4701 EXPORT_SYMBOL(napi_get_frags);
4702
4703 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4704                                       struct sk_buff *skb,
4705                                       gro_result_t ret)
4706 {
4707         switch (ret) {
4708         case GRO_NORMAL:
4709         case GRO_HELD:
4710                 __skb_push(skb, ETH_HLEN);
4711                 skb->protocol = eth_type_trans(skb, skb->dev);
4712                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4713                         ret = GRO_DROP;
4714                 break;
4715
4716         case GRO_DROP:
4717         case GRO_MERGED_FREE:
4718                 napi_reuse_skb(napi, skb);
4719                 break;
4720
4721         case GRO_MERGED:
4722         case GRO_CONSUMED:
4723                 break;
4724         }
4725
4726         return ret;
4727 }
4728
4729 /* Upper GRO stack assumes network header starts at gro_offset=0
4730  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4731  * We copy ethernet header into skb->data to have a common layout.
4732  */
4733 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4734 {
4735         struct sk_buff *skb = napi->skb;
4736         const struct ethhdr *eth;
4737         unsigned int hlen = sizeof(*eth);
4738
4739         napi->skb = NULL;
4740
4741         skb_reset_mac_header(skb);
4742         skb_gro_reset_offset(skb);
4743
4744         eth = skb_gro_header_fast(skb, 0);
4745         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4746                 eth = skb_gro_header_slow(skb, hlen, 0);
4747                 if (unlikely(!eth)) {
4748                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4749                                              __func__, napi->dev->name);
4750                         napi_reuse_skb(napi, skb);
4751                         return NULL;
4752                 }
4753         } else {
4754                 gro_pull_from_frag0(skb, hlen);
4755                 NAPI_GRO_CB(skb)->frag0 += hlen;
4756                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4757         }
4758         __skb_pull(skb, hlen);
4759
4760         /*
4761          * This works because the only protocols we care about don't require
4762          * special handling.
4763          * We'll fix it up properly in napi_frags_finish()
4764          */
4765         skb->protocol = eth->h_proto;
4766
4767         return skb;
4768 }
4769
4770 gro_result_t napi_gro_frags(struct napi_struct *napi)
4771 {
4772         struct sk_buff *skb = napi_frags_skb(napi);
4773
4774         if (!skb)
4775                 return GRO_DROP;
4776
4777         trace_napi_gro_frags_entry(skb);
4778
4779         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4780 }
4781 EXPORT_SYMBOL(napi_gro_frags);
4782
4783 /* Compute the checksum from gro_offset and return the folded value
4784  * after adding in any pseudo checksum.
4785  */
4786 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4787 {
4788         __wsum wsum;
4789         __sum16 sum;
4790
4791         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4792
4793         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4794         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4795         if (likely(!sum)) {
4796                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4797                     !skb->csum_complete_sw)
4798                         netdev_rx_csum_fault(skb->dev);
4799         }
4800
4801         NAPI_GRO_CB(skb)->csum = wsum;
4802         NAPI_GRO_CB(skb)->csum_valid = 1;
4803
4804         return sum;
4805 }
4806 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4807
4808 /*
4809  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4810  * Note: called with local irq disabled, but exits with local irq enabled.
4811  */
4812 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4813 {
4814 #ifdef CONFIG_RPS
4815         struct softnet_data *remsd = sd->rps_ipi_list;
4816
4817         if (remsd) {
4818                 sd->rps_ipi_list = NULL;
4819
4820                 local_irq_enable();
4821
4822                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4823                 while (remsd) {
4824                         struct softnet_data *next = remsd->rps_ipi_next;
4825
4826                         if (cpu_online(remsd->cpu))
4827                                 smp_call_function_single_async(remsd->cpu,
4828                                                            &remsd->csd);
4829                         remsd = next;
4830                 }
4831         } else
4832 #endif
4833                 local_irq_enable();
4834 }
4835
4836 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4837 {
4838 #ifdef CONFIG_RPS
4839         return sd->rps_ipi_list != NULL;
4840 #else
4841         return false;
4842 #endif
4843 }
4844
4845 static int process_backlog(struct napi_struct *napi, int quota)
4846 {
4847         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4848         bool again = true;
4849         int work = 0;
4850
4851         /* Check if we have pending ipi, its better to send them now,
4852          * not waiting net_rx_action() end.
4853          */
4854         if (sd_has_rps_ipi_waiting(sd)) {
4855                 local_irq_disable();
4856                 net_rps_action_and_irq_enable(sd);
4857         }
4858
4859         napi->weight = dev_rx_weight;
4860         while (again) {
4861                 struct sk_buff *skb;
4862
4863                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4864                         rcu_read_lock();
4865                         __netif_receive_skb(skb);
4866                         rcu_read_unlock();
4867                         input_queue_head_incr(sd);
4868                         if (++work >= quota)
4869                                 return work;
4870
4871                 }
4872
4873                 local_irq_disable();
4874                 rps_lock(sd);
4875                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4876                         /*
4877                          * Inline a custom version of __napi_complete().
4878                          * only current cpu owns and manipulates this napi,
4879                          * and NAPI_STATE_SCHED is the only possible flag set
4880                          * on backlog.
4881                          * We can use a plain write instead of clear_bit(),
4882                          * and we dont need an smp_mb() memory barrier.
4883                          */
4884                         napi->state = 0;
4885                         again = false;
4886                 } else {
4887                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4888                                                    &sd->process_queue);
4889                 }
4890                 rps_unlock(sd);
4891                 local_irq_enable();
4892         }
4893
4894         return work;
4895 }
4896
4897 /**
4898  * __napi_schedule - schedule for receive
4899  * @n: entry to schedule
4900  *
4901  * The entry's receive function will be scheduled to run.
4902  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4903  */
4904 void __napi_schedule(struct napi_struct *n)
4905 {
4906         unsigned long flags;
4907
4908         local_irq_save(flags);
4909         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4910         local_irq_restore(flags);
4911 }
4912 EXPORT_SYMBOL(__napi_schedule);
4913
4914 /**
4915  *      napi_schedule_prep - check if napi can be scheduled
4916  *      @n: napi context
4917  *
4918  * Test if NAPI routine is already running, and if not mark
4919  * it as running.  This is used as a condition variable
4920  * insure only one NAPI poll instance runs.  We also make
4921  * sure there is no pending NAPI disable.
4922  */
4923 bool napi_schedule_prep(struct napi_struct *n)
4924 {
4925         unsigned long val, new;
4926
4927         do {
4928                 val = READ_ONCE(n->state);
4929                 if (unlikely(val & NAPIF_STATE_DISABLE))
4930                         return false;
4931                 new = val | NAPIF_STATE_SCHED;
4932
4933                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
4934                  * This was suggested by Alexander Duyck, as compiler
4935                  * emits better code than :
4936                  * if (val & NAPIF_STATE_SCHED)
4937                  *     new |= NAPIF_STATE_MISSED;
4938                  */
4939                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
4940                                                    NAPIF_STATE_MISSED;
4941         } while (cmpxchg(&n->state, val, new) != val);
4942
4943         return !(val & NAPIF_STATE_SCHED);
4944 }
4945 EXPORT_SYMBOL(napi_schedule_prep);
4946
4947 /**
4948  * __napi_schedule_irqoff - schedule for receive
4949  * @n: entry to schedule
4950  *
4951  * Variant of __napi_schedule() assuming hard irqs are masked
4952  */
4953 void __napi_schedule_irqoff(struct napi_struct *n)
4954 {
4955         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4956 }
4957 EXPORT_SYMBOL(__napi_schedule_irqoff);
4958
4959 bool napi_complete_done(struct napi_struct *n, int work_done)
4960 {
4961         unsigned long flags, val, new;
4962
4963         /*
4964          * 1) Don't let napi dequeue from the cpu poll list
4965          *    just in case its running on a different cpu.
4966          * 2) If we are busy polling, do nothing here, we have
4967          *    the guarantee we will be called later.
4968          */
4969         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4970                                  NAPIF_STATE_IN_BUSY_POLL)))
4971                 return false;
4972
4973         if (n->gro_list) {
4974                 unsigned long timeout = 0;
4975
4976                 if (work_done)
4977                         timeout = n->dev->gro_flush_timeout;
4978
4979                 if (timeout)
4980                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4981                                       HRTIMER_MODE_REL_PINNED);
4982                 else
4983                         napi_gro_flush(n, false);
4984         }
4985         if (unlikely(!list_empty(&n->poll_list))) {
4986                 /* If n->poll_list is not empty, we need to mask irqs */
4987                 local_irq_save(flags);
4988                 list_del_init(&n->poll_list);
4989                 local_irq_restore(flags);
4990         }
4991
4992         do {
4993                 val = READ_ONCE(n->state);
4994
4995                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
4996
4997                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
4998
4999                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5000                  * because we will call napi->poll() one more time.
5001                  * This C code was suggested by Alexander Duyck to help gcc.
5002                  */
5003                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5004                                                     NAPIF_STATE_SCHED;
5005         } while (cmpxchg(&n->state, val, new) != val);
5006
5007         if (unlikely(val & NAPIF_STATE_MISSED)) {
5008                 __napi_schedule(n);
5009                 return false;
5010         }
5011
5012         return true;
5013 }
5014 EXPORT_SYMBOL(napi_complete_done);
5015
5016 /* must be called under rcu_read_lock(), as we dont take a reference */
5017 static struct napi_struct *napi_by_id(unsigned int napi_id)
5018 {
5019         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5020         struct napi_struct *napi;
5021
5022         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5023                 if (napi->napi_id == napi_id)
5024                         return napi;
5025
5026         return NULL;
5027 }
5028
5029 #if defined(CONFIG_NET_RX_BUSY_POLL)
5030
5031 #define BUSY_POLL_BUDGET 8
5032
5033 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5034 {
5035         int rc;
5036
5037         /* Busy polling means there is a high chance device driver hard irq
5038          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5039          * set in napi_schedule_prep().
5040          * Since we are about to call napi->poll() once more, we can safely
5041          * clear NAPI_STATE_MISSED.
5042          *
5043          * Note: x86 could use a single "lock and ..." instruction
5044          * to perform these two clear_bit()
5045          */
5046         clear_bit(NAPI_STATE_MISSED, &napi->state);
5047         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5048
5049         local_bh_disable();
5050
5051         /* All we really want here is to re-enable device interrupts.
5052          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5053          */
5054         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5055         netpoll_poll_unlock(have_poll_lock);
5056         if (rc == BUSY_POLL_BUDGET)
5057                 __napi_schedule(napi);
5058         local_bh_enable();
5059         if (local_softirq_pending())
5060                 do_softirq();
5061 }
5062
5063 bool sk_busy_loop(struct sock *sk, int nonblock)
5064 {
5065         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
5066         int (*napi_poll)(struct napi_struct *napi, int budget);
5067         void *have_poll_lock = NULL;
5068         struct napi_struct *napi;
5069         int rc;
5070
5071 restart:
5072         rc = false;
5073         napi_poll = NULL;
5074
5075         rcu_read_lock();
5076
5077         napi = napi_by_id(sk->sk_napi_id);
5078         if (!napi)
5079                 goto out;
5080
5081         preempt_disable();
5082         for (;;) {
5083                 rc = 0;
5084                 local_bh_disable();
5085                 if (!napi_poll) {
5086                         unsigned long val = READ_ONCE(napi->state);
5087
5088                         /* If multiple threads are competing for this napi,
5089                          * we avoid dirtying napi->state as much as we can.
5090                          */
5091                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5092                                    NAPIF_STATE_IN_BUSY_POLL))
5093                                 goto count;
5094                         if (cmpxchg(&napi->state, val,
5095                                     val | NAPIF_STATE_IN_BUSY_POLL |
5096                                           NAPIF_STATE_SCHED) != val)
5097                                 goto count;
5098                         have_poll_lock = netpoll_poll_lock(napi);
5099                         napi_poll = napi->poll;
5100                 }
5101                 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5102                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5103 count:
5104                 if (rc > 0)
5105                         __NET_ADD_STATS(sock_net(sk),
5106                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5107                 local_bh_enable();
5108
5109                 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5110                     busy_loop_timeout(end_time))
5111                         break;
5112
5113                 if (unlikely(need_resched())) {
5114                         if (napi_poll)
5115                                 busy_poll_stop(napi, have_poll_lock);
5116                         preempt_enable();
5117                         rcu_read_unlock();
5118                         cond_resched();
5119                         rc = !skb_queue_empty(&sk->sk_receive_queue);
5120                         if (rc || busy_loop_timeout(end_time))
5121                                 return rc;
5122                         goto restart;
5123                 }
5124                 cpu_relax();
5125         }
5126         if (napi_poll)
5127                 busy_poll_stop(napi, have_poll_lock);
5128         preempt_enable();
5129         rc = !skb_queue_empty(&sk->sk_receive_queue);
5130 out:
5131         rcu_read_unlock();
5132         return rc;
5133 }
5134 EXPORT_SYMBOL(sk_busy_loop);
5135
5136 #endif /* CONFIG_NET_RX_BUSY_POLL */
5137
5138 static void napi_hash_add(struct napi_struct *napi)
5139 {
5140         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5141             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5142                 return;
5143
5144         spin_lock(&napi_hash_lock);
5145
5146         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5147         do {
5148                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5149                         napi_gen_id = NR_CPUS + 1;
5150         } while (napi_by_id(napi_gen_id));
5151         napi->napi_id = napi_gen_id;
5152
5153         hlist_add_head_rcu(&napi->napi_hash_node,
5154                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5155
5156         spin_unlock(&napi_hash_lock);
5157 }
5158
5159 /* Warning : caller is responsible to make sure rcu grace period
5160  * is respected before freeing memory containing @napi
5161  */
5162 bool napi_hash_del(struct napi_struct *napi)
5163 {
5164         bool rcu_sync_needed = false;
5165
5166         spin_lock(&napi_hash_lock);
5167
5168         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5169                 rcu_sync_needed = true;
5170                 hlist_del_rcu(&napi->napi_hash_node);
5171         }
5172         spin_unlock(&napi_hash_lock);
5173         return rcu_sync_needed;
5174 }
5175 EXPORT_SYMBOL_GPL(napi_hash_del);
5176
5177 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5178 {
5179         struct napi_struct *napi;
5180
5181         napi = container_of(timer, struct napi_struct, timer);
5182
5183         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5184          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5185          */
5186         if (napi->gro_list && !napi_disable_pending(napi) &&
5187             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5188                 __napi_schedule_irqoff(napi);
5189
5190         return HRTIMER_NORESTART;
5191 }
5192
5193 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5194                     int (*poll)(struct napi_struct *, int), int weight)
5195 {
5196         INIT_LIST_HEAD(&napi->poll_list);
5197         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5198         napi->timer.function = napi_watchdog;
5199         napi->gro_count = 0;
5200         napi->gro_list = NULL;
5201         napi->skb = NULL;
5202         napi->poll = poll;
5203         if (weight > NAPI_POLL_WEIGHT)
5204                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5205                             weight, dev->name);
5206         napi->weight = weight;
5207         list_add(&napi->dev_list, &dev->napi_list);
5208         napi->dev = dev;
5209 #ifdef CONFIG_NETPOLL
5210         napi->poll_owner = -1;
5211 #endif
5212         set_bit(NAPI_STATE_SCHED, &napi->state);
5213         napi_hash_add(napi);
5214 }
5215 EXPORT_SYMBOL(netif_napi_add);
5216
5217 void napi_disable(struct napi_struct *n)
5218 {
5219         might_sleep();
5220         set_bit(NAPI_STATE_DISABLE, &n->state);
5221
5222         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5223                 msleep(1);
5224         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5225                 msleep(1);
5226
5227         hrtimer_cancel(&n->timer);
5228
5229         clear_bit(NAPI_STATE_DISABLE, &n->state);
5230 }
5231 EXPORT_SYMBOL(napi_disable);
5232
5233 /* Must be called in process context */
5234 void netif_napi_del(struct napi_struct *napi)
5235 {
5236         might_sleep();
5237         if (napi_hash_del(napi))
5238                 synchronize_net();
5239         list_del_init(&napi->dev_list);
5240         napi_free_frags(napi);
5241
5242         kfree_skb_list(napi->gro_list);
5243         napi->gro_list = NULL;
5244         napi->gro_count = 0;
5245 }
5246 EXPORT_SYMBOL(netif_napi_del);
5247
5248 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5249 {
5250         void *have;
5251         int work, weight;
5252
5253         list_del_init(&n->poll_list);
5254
5255         have = netpoll_poll_lock(n);
5256
5257         weight = n->weight;
5258
5259         /* This NAPI_STATE_SCHED test is for avoiding a race
5260          * with netpoll's poll_napi().  Only the entity which
5261          * obtains the lock and sees NAPI_STATE_SCHED set will
5262          * actually make the ->poll() call.  Therefore we avoid
5263          * accidentally calling ->poll() when NAPI is not scheduled.
5264          */
5265         work = 0;
5266         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5267                 work = n->poll(n, weight);
5268                 trace_napi_poll(n, work, weight);
5269         }
5270
5271         WARN_ON_ONCE(work > weight);
5272
5273         if (likely(work < weight))
5274                 goto out_unlock;
5275
5276         /* Drivers must not modify the NAPI state if they
5277          * consume the entire weight.  In such cases this code
5278          * still "owns" the NAPI instance and therefore can
5279          * move the instance around on the list at-will.
5280          */
5281         if (unlikely(napi_disable_pending(n))) {
5282                 napi_complete(n);
5283                 goto out_unlock;
5284         }
5285
5286         if (n->gro_list) {
5287                 /* flush too old packets
5288                  * If HZ < 1000, flush all packets.
5289                  */
5290                 napi_gro_flush(n, HZ >= 1000);
5291         }
5292
5293         /* Some drivers may have called napi_schedule
5294          * prior to exhausting their budget.
5295          */
5296         if (unlikely(!list_empty(&n->poll_list))) {
5297                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5298                              n->dev ? n->dev->name : "backlog");
5299                 goto out_unlock;
5300         }
5301
5302         list_add_tail(&n->poll_list, repoll);
5303
5304 out_unlock:
5305         netpoll_poll_unlock(have);
5306
5307         return work;
5308 }
5309
5310 static __latent_entropy void net_rx_action(struct softirq_action *h)
5311 {
5312         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5313         unsigned long time_limit = jiffies + 2;
5314         int budget = netdev_budget;
5315         LIST_HEAD(list);
5316         LIST_HEAD(repoll);
5317
5318         local_irq_disable();
5319         list_splice_init(&sd->poll_list, &list);
5320         local_irq_enable();
5321
5322         for (;;) {
5323                 struct napi_struct *n;
5324
5325                 if (list_empty(&list)) {
5326                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5327                                 goto out;
5328                         break;
5329                 }
5330
5331                 n = list_first_entry(&list, struct napi_struct, poll_list);
5332                 budget -= napi_poll(n, &repoll);
5333
5334                 /* If softirq window is exhausted then punt.
5335                  * Allow this to run for 2 jiffies since which will allow
5336                  * an average latency of 1.5/HZ.
5337                  */
5338                 if (unlikely(budget <= 0 ||
5339                              time_after_eq(jiffies, time_limit))) {
5340                         sd->time_squeeze++;
5341                         break;
5342                 }
5343         }
5344
5345         local_irq_disable();
5346
5347         list_splice_tail_init(&sd->poll_list, &list);
5348         list_splice_tail(&repoll, &list);
5349         list_splice(&list, &sd->poll_list);
5350         if (!list_empty(&sd->poll_list))
5351                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5352
5353         net_rps_action_and_irq_enable(sd);
5354 out:
5355         __kfree_skb_flush();
5356 }
5357
5358 struct netdev_adjacent {
5359         struct net_device *dev;
5360
5361         /* upper master flag, there can only be one master device per list */
5362         bool master;
5363
5364         /* counter for the number of times this device was added to us */
5365         u16 ref_nr;
5366
5367         /* private field for the users */
5368         void *private;
5369
5370         struct list_head list;
5371         struct rcu_head rcu;
5372 };
5373
5374 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5375                                                  struct list_head *adj_list)
5376 {
5377         struct netdev_adjacent *adj;
5378
5379         list_for_each_entry(adj, adj_list, list) {
5380                 if (adj->dev == adj_dev)
5381                         return adj;
5382         }
5383         return NULL;
5384 }
5385
5386 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5387 {
5388         struct net_device *dev = data;
5389
5390         return upper_dev == dev;
5391 }
5392
5393 /**
5394  * netdev_has_upper_dev - Check if device is linked to an upper device
5395  * @dev: device
5396  * @upper_dev: upper device to check
5397  *
5398  * Find out if a device is linked to specified upper device and return true
5399  * in case it is. Note that this checks only immediate upper device,
5400  * not through a complete stack of devices. The caller must hold the RTNL lock.
5401  */
5402 bool netdev_has_upper_dev(struct net_device *dev,
5403                           struct net_device *upper_dev)
5404 {
5405         ASSERT_RTNL();
5406
5407         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5408                                              upper_dev);
5409 }
5410 EXPORT_SYMBOL(netdev_has_upper_dev);
5411
5412 /**
5413  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5414  * @dev: device
5415  * @upper_dev: upper device to check
5416  *
5417  * Find out if a device is linked to specified upper device and return true
5418  * in case it is. Note that this checks the entire upper device chain.
5419  * The caller must hold rcu lock.
5420  */
5421
5422 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5423                                   struct net_device *upper_dev)
5424 {
5425         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5426                                                upper_dev);
5427 }
5428 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5429
5430 /**
5431  * netdev_has_any_upper_dev - Check if device is linked to some device
5432  * @dev: device
5433  *
5434  * Find out if a device is linked to an upper device and return true in case
5435  * it is. The caller must hold the RTNL lock.
5436  */
5437 static bool netdev_has_any_upper_dev(struct net_device *dev)
5438 {
5439         ASSERT_RTNL();
5440
5441         return !list_empty(&dev->adj_list.upper);
5442 }
5443
5444 /**
5445  * netdev_master_upper_dev_get - Get master upper device
5446  * @dev: device
5447  *
5448  * Find a master upper device and return pointer to it or NULL in case
5449  * it's not there. The caller must hold the RTNL lock.
5450  */
5451 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5452 {
5453         struct netdev_adjacent *upper;
5454
5455         ASSERT_RTNL();
5456
5457         if (list_empty(&dev->adj_list.upper))
5458                 return NULL;
5459
5460         upper = list_first_entry(&dev->adj_list.upper,
5461                                  struct netdev_adjacent, list);
5462         if (likely(upper->master))
5463                 return upper->dev;
5464         return NULL;
5465 }
5466 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5467
5468 /**
5469  * netdev_has_any_lower_dev - Check if device is linked to some device
5470  * @dev: device
5471  *
5472  * Find out if a device is linked to a lower device and return true in case
5473  * it is. The caller must hold the RTNL lock.
5474  */
5475 static bool netdev_has_any_lower_dev(struct net_device *dev)
5476 {
5477         ASSERT_RTNL();
5478
5479         return !list_empty(&dev->adj_list.lower);
5480 }
5481
5482 void *netdev_adjacent_get_private(struct list_head *adj_list)
5483 {
5484         struct netdev_adjacent *adj;
5485
5486         adj = list_entry(adj_list, struct netdev_adjacent, list);
5487
5488         return adj->private;
5489 }
5490 EXPORT_SYMBOL(netdev_adjacent_get_private);
5491
5492 /**
5493  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5494  * @dev: device
5495  * @iter: list_head ** of the current position
5496  *
5497  * Gets the next device from the dev's upper list, starting from iter
5498  * position. The caller must hold RCU read lock.
5499  */
5500 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5501                                                  struct list_head **iter)
5502 {
5503         struct netdev_adjacent *upper;
5504
5505         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5506
5507         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5508
5509         if (&upper->list == &dev->adj_list.upper)
5510                 return NULL;
5511
5512         *iter = &upper->list;
5513
5514         return upper->dev;
5515 }
5516 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5517
5518 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5519                                                     struct list_head **iter)
5520 {
5521         struct netdev_adjacent *upper;
5522
5523         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5524
5525         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5526
5527         if (&upper->list == &dev->adj_list.upper)
5528                 return NULL;
5529
5530         *iter = &upper->list;
5531
5532         return upper->dev;
5533 }
5534
5535 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5536                                   int (*fn)(struct net_device *dev,
5537                                             void *data),
5538                                   void *data)
5539 {
5540         struct net_device *udev;
5541         struct list_head *iter;
5542         int ret;
5543
5544         for (iter = &dev->adj_list.upper,
5545              udev = netdev_next_upper_dev_rcu(dev, &iter);
5546              udev;
5547              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5548                 /* first is the upper device itself */
5549                 ret = fn(udev, data);
5550                 if (ret)
5551                         return ret;
5552
5553                 /* then look at all of its upper devices */
5554                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5555                 if (ret)
5556                         return ret;
5557         }
5558
5559         return 0;
5560 }
5561 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5562
5563 /**
5564  * netdev_lower_get_next_private - Get the next ->private from the
5565  *                                 lower neighbour list
5566  * @dev: device
5567  * @iter: list_head ** of the current position
5568  *
5569  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5570  * list, starting from iter position. The caller must hold either hold the
5571  * RTNL lock or its own locking that guarantees that the neighbour lower
5572  * list will remain unchanged.
5573  */
5574 void *netdev_lower_get_next_private(struct net_device *dev,
5575                                     struct list_head **iter)
5576 {
5577         struct netdev_adjacent *lower;
5578
5579         lower = list_entry(*iter, struct netdev_adjacent, list);
5580
5581         if (&lower->list == &dev->adj_list.lower)
5582                 return NULL;
5583
5584         *iter = lower->list.next;
5585
5586         return lower->private;
5587 }
5588 EXPORT_SYMBOL(netdev_lower_get_next_private);
5589
5590 /**
5591  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5592  *                                     lower neighbour list, RCU
5593  *                                     variant
5594  * @dev: device
5595  * @iter: list_head ** of the current position
5596  *
5597  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5598  * list, starting from iter position. The caller must hold RCU read lock.
5599  */
5600 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5601                                         struct list_head **iter)
5602 {
5603         struct netdev_adjacent *lower;
5604
5605         WARN_ON_ONCE(!rcu_read_lock_held());
5606
5607         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5608
5609         if (&lower->list == &dev->adj_list.lower)
5610                 return NULL;
5611
5612         *iter = &lower->list;
5613
5614         return lower->private;
5615 }
5616 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5617
5618 /**
5619  * netdev_lower_get_next - Get the next device from the lower neighbour
5620  *                         list
5621  * @dev: device
5622  * @iter: list_head ** of the current position
5623  *
5624  * Gets the next netdev_adjacent from the dev's lower neighbour
5625  * list, starting from iter position. The caller must hold RTNL lock or
5626  * its own locking that guarantees that the neighbour lower
5627  * list will remain unchanged.
5628  */
5629 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5630 {
5631         struct netdev_adjacent *lower;
5632
5633         lower = list_entry(*iter, struct netdev_adjacent, list);
5634
5635         if (&lower->list == &dev->adj_list.lower)
5636                 return NULL;
5637
5638         *iter = lower->list.next;
5639
5640         return lower->dev;
5641 }
5642 EXPORT_SYMBOL(netdev_lower_get_next);
5643
5644 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5645                                                 struct list_head **iter)
5646 {
5647         struct netdev_adjacent *lower;
5648
5649         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5650
5651         if (&lower->list == &dev->adj_list.lower)
5652                 return NULL;
5653
5654         *iter = &lower->list;
5655
5656         return lower->dev;
5657 }
5658
5659 int netdev_walk_all_lower_dev(struct net_device *dev,
5660                               int (*fn)(struct net_device *dev,
5661                                         void *data),
5662                               void *data)
5663 {
5664         struct net_device *ldev;
5665         struct list_head *iter;
5666         int ret;
5667
5668         for (iter = &dev->adj_list.lower,
5669              ldev = netdev_next_lower_dev(dev, &iter);
5670              ldev;
5671              ldev = netdev_next_lower_dev(dev, &iter)) {
5672                 /* first is the lower device itself */
5673                 ret = fn(ldev, data);
5674                 if (ret)
5675                         return ret;
5676
5677                 /* then look at all of its lower devices */
5678                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5679                 if (ret)
5680                         return ret;
5681         }
5682
5683         return 0;
5684 }
5685 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5686
5687 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5688                                                     struct list_head **iter)
5689 {
5690         struct netdev_adjacent *lower;
5691
5692         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5693         if (&lower->list == &dev->adj_list.lower)
5694                 return NULL;
5695
5696         *iter = &lower->list;
5697
5698         return lower->dev;
5699 }
5700
5701 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5702                                   int (*fn)(struct net_device *dev,
5703                                             void *data),
5704                                   void *data)
5705 {
5706         struct net_device *ldev;
5707         struct list_head *iter;
5708         int ret;
5709
5710         for (iter = &dev->adj_list.lower,
5711              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5712              ldev;
5713              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5714                 /* first is the lower device itself */
5715                 ret = fn(ldev, data);
5716                 if (ret)
5717                         return ret;
5718
5719                 /* then look at all of its lower devices */
5720                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5721                 if (ret)
5722                         return ret;
5723         }
5724
5725         return 0;
5726 }
5727 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5728
5729 /**
5730  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5731  *                                     lower neighbour list, RCU
5732  *                                     variant
5733  * @dev: device
5734  *
5735  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5736  * list. The caller must hold RCU read lock.
5737  */
5738 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5739 {
5740         struct netdev_adjacent *lower;
5741
5742         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5743                         struct netdev_adjacent, list);
5744         if (lower)
5745                 return lower->private;
5746         return NULL;
5747 }
5748 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5749
5750 /**
5751  * netdev_master_upper_dev_get_rcu - Get master upper device
5752  * @dev: device
5753  *
5754  * Find a master upper device and return pointer to it or NULL in case
5755  * it's not there. The caller must hold the RCU read lock.
5756  */
5757 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5758 {
5759         struct netdev_adjacent *upper;
5760
5761         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5762                                        struct netdev_adjacent, list);
5763         if (upper && likely(upper->master))
5764                 return upper->dev;
5765         return NULL;
5766 }
5767 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5768
5769 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5770                               struct net_device *adj_dev,
5771                               struct list_head *dev_list)
5772 {
5773         char linkname[IFNAMSIZ+7];
5774
5775         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5776                 "upper_%s" : "lower_%s", adj_dev->name);
5777         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5778                                  linkname);
5779 }
5780 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5781                                char *name,
5782                                struct list_head *dev_list)
5783 {
5784         char linkname[IFNAMSIZ+7];
5785
5786         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5787                 "upper_%s" : "lower_%s", name);
5788         sysfs_remove_link(&(dev->dev.kobj), linkname);
5789 }
5790
5791 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5792                                                  struct net_device *adj_dev,
5793                                                  struct list_head *dev_list)
5794 {
5795         return (dev_list == &dev->adj_list.upper ||
5796                 dev_list == &dev->adj_list.lower) &&
5797                 net_eq(dev_net(dev), dev_net(adj_dev));
5798 }
5799
5800 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5801                                         struct net_device *adj_dev,
5802                                         struct list_head *dev_list,
5803                                         void *private, bool master)
5804 {
5805         struct netdev_adjacent *adj;
5806         int ret;
5807
5808         adj = __netdev_find_adj(adj_dev, dev_list);
5809
5810         if (adj) {
5811                 adj->ref_nr += 1;
5812                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5813                          dev->name, adj_dev->name, adj->ref_nr);
5814
5815                 return 0;
5816         }
5817
5818         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5819         if (!adj)
5820                 return -ENOMEM;
5821
5822         adj->dev = adj_dev;
5823         adj->master = master;
5824         adj->ref_nr = 1;
5825         adj->private = private;
5826         dev_hold(adj_dev);
5827
5828         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5829                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5830
5831         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5832                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5833                 if (ret)
5834                         goto free_adj;
5835         }
5836
5837         /* Ensure that master link is always the first item in list. */
5838         if (master) {
5839                 ret = sysfs_create_link(&(dev->dev.kobj),
5840                                         &(adj_dev->dev.kobj), "master");
5841                 if (ret)
5842                         goto remove_symlinks;
5843
5844                 list_add_rcu(&adj->list, dev_list);
5845         } else {
5846                 list_add_tail_rcu(&adj->list, dev_list);
5847         }
5848
5849         return 0;
5850
5851 remove_symlinks:
5852         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5853                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5854 free_adj:
5855         kfree(adj);
5856         dev_put(adj_dev);
5857
5858         return ret;
5859 }
5860
5861 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5862                                          struct net_device *adj_dev,
5863                                          u16 ref_nr,
5864                                          struct list_head *dev_list)
5865 {
5866         struct netdev_adjacent *adj;
5867
5868         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5869                  dev->name, adj_dev->name, ref_nr);
5870
5871         adj = __netdev_find_adj(adj_dev, dev_list);
5872
5873         if (!adj) {
5874                 pr_err("Adjacency does not exist for device %s from %s\n",
5875                        dev->name, adj_dev->name);
5876                 WARN_ON(1);
5877                 return;
5878         }
5879
5880         if (adj->ref_nr > ref_nr) {
5881                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5882                          dev->name, adj_dev->name, ref_nr,
5883                          adj->ref_nr - ref_nr);
5884                 adj->ref_nr -= ref_nr;
5885                 return;
5886         }
5887
5888         if (adj->master)
5889                 sysfs_remove_link(&(dev->dev.kobj), "master");
5890
5891         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5892                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5893
5894         list_del_rcu(&adj->list);
5895         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5896                  adj_dev->name, dev->name, adj_dev->name);
5897         dev_put(adj_dev);
5898         kfree_rcu(adj, rcu);
5899 }
5900
5901 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5902                                             struct net_device *upper_dev,
5903                                             struct list_head *up_list,
5904                                             struct list_head *down_list,
5905                                             void *private, bool master)
5906 {
5907         int ret;
5908
5909         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5910                                            private, master);
5911         if (ret)
5912                 return ret;
5913
5914         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5915                                            private, false);
5916         if (ret) {
5917                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5918                 return ret;
5919         }
5920
5921         return 0;
5922 }
5923
5924 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5925                                                struct net_device *upper_dev,
5926                                                u16 ref_nr,
5927                                                struct list_head *up_list,
5928                                                struct list_head *down_list)
5929 {
5930         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5931         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5932 }
5933
5934 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5935                                                 struct net_device *upper_dev,
5936                                                 void *private, bool master)
5937 {
5938         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5939                                                 &dev->adj_list.upper,
5940                                                 &upper_dev->adj_list.lower,
5941                                                 private, master);
5942 }
5943
5944 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5945                                                    struct net_device *upper_dev)
5946 {
5947         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5948                                            &dev->adj_list.upper,
5949                                            &upper_dev->adj_list.lower);
5950 }
5951
5952 static int __netdev_upper_dev_link(struct net_device *dev,
5953                                    struct net_device *upper_dev, bool master,
5954                                    void *upper_priv, void *upper_info)
5955 {
5956         struct netdev_notifier_changeupper_info changeupper_info;
5957         int ret = 0;
5958
5959         ASSERT_RTNL();
5960
5961         if (dev == upper_dev)
5962                 return -EBUSY;
5963
5964         /* To prevent loops, check if dev is not upper device to upper_dev. */
5965         if (netdev_has_upper_dev(upper_dev, dev))
5966                 return -EBUSY;
5967
5968         if (netdev_has_upper_dev(dev, upper_dev))
5969                 return -EEXIST;
5970
5971         if (master && netdev_master_upper_dev_get(dev))
5972                 return -EBUSY;
5973
5974         changeupper_info.upper_dev = upper_dev;
5975         changeupper_info.master = master;
5976         changeupper_info.linking = true;
5977         changeupper_info.upper_info = upper_info;
5978
5979         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5980                                             &changeupper_info.info);
5981         ret = notifier_to_errno(ret);
5982         if (ret)
5983                 return ret;
5984
5985         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5986                                                    master);
5987         if (ret)
5988                 return ret;
5989
5990         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5991                                             &changeupper_info.info);
5992         ret = notifier_to_errno(ret);
5993         if (ret)
5994                 goto rollback;
5995
5996         return 0;
5997
5998 rollback:
5999         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6000
6001         return ret;
6002 }
6003
6004 /**
6005  * netdev_upper_dev_link - Add a link to the upper device
6006  * @dev: device
6007  * @upper_dev: new upper device
6008  *
6009  * Adds a link to device which is upper to this one. The caller must hold
6010  * the RTNL lock. On a failure a negative errno code is returned.
6011  * On success the reference counts are adjusted and the function
6012  * returns zero.
6013  */
6014 int netdev_upper_dev_link(struct net_device *dev,
6015                           struct net_device *upper_dev)
6016 {
6017         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6018 }
6019 EXPORT_SYMBOL(netdev_upper_dev_link);
6020
6021 /**
6022  * netdev_master_upper_dev_link - Add a master link to the upper device
6023  * @dev: device
6024  * @upper_dev: new upper device
6025  * @upper_priv: upper device private
6026  * @upper_info: upper info to be passed down via notifier
6027  *
6028  * Adds a link to device which is upper to this one. In this case, only
6029  * one master upper device can be linked, although other non-master devices
6030  * might be linked as well. The caller must hold the RTNL lock.
6031  * On a failure a negative errno code is returned. On success the reference
6032  * counts are adjusted and the function returns zero.
6033  */
6034 int netdev_master_upper_dev_link(struct net_device *dev,
6035                                  struct net_device *upper_dev,
6036                                  void *upper_priv, void *upper_info)
6037 {
6038         return __netdev_upper_dev_link(dev, upper_dev, true,
6039                                        upper_priv, upper_info);
6040 }
6041 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6042
6043 /**
6044  * netdev_upper_dev_unlink - Removes a link to upper device
6045  * @dev: device
6046  * @upper_dev: new upper device
6047  *
6048  * Removes a link to device which is upper to this one. The caller must hold
6049  * the RTNL lock.
6050  */
6051 void netdev_upper_dev_unlink(struct net_device *dev,
6052                              struct net_device *upper_dev)
6053 {
6054         struct netdev_notifier_changeupper_info changeupper_info;
6055
6056         ASSERT_RTNL();
6057
6058         changeupper_info.upper_dev = upper_dev;
6059         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6060         changeupper_info.linking = false;
6061
6062         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6063                                       &changeupper_info.info);
6064
6065         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6066
6067         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6068                                       &changeupper_info.info);
6069 }
6070 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6071
6072 /**
6073  * netdev_bonding_info_change - Dispatch event about slave change
6074  * @dev: device
6075  * @bonding_info: info to dispatch
6076  *
6077  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6078  * The caller must hold the RTNL lock.
6079  */
6080 void netdev_bonding_info_change(struct net_device *dev,
6081                                 struct netdev_bonding_info *bonding_info)
6082 {
6083         struct netdev_notifier_bonding_info     info;
6084
6085         memcpy(&info.bonding_info, bonding_info,
6086                sizeof(struct netdev_bonding_info));
6087         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6088                                       &info.info);
6089 }
6090 EXPORT_SYMBOL(netdev_bonding_info_change);
6091
6092 static void netdev_adjacent_add_links(struct net_device *dev)
6093 {
6094         struct netdev_adjacent *iter;
6095
6096         struct net *net = dev_net(dev);
6097
6098         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6099                 if (!net_eq(net, dev_net(iter->dev)))
6100                         continue;
6101                 netdev_adjacent_sysfs_add(iter->dev, dev,
6102                                           &iter->dev->adj_list.lower);
6103                 netdev_adjacent_sysfs_add(dev, iter->dev,
6104                                           &dev->adj_list.upper);
6105         }
6106
6107         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6108                 if (!net_eq(net, dev_net(iter->dev)))
6109                         continue;
6110                 netdev_adjacent_sysfs_add(iter->dev, dev,
6111                                           &iter->dev->adj_list.upper);
6112                 netdev_adjacent_sysfs_add(dev, iter->dev,
6113                                           &dev->adj_list.lower);
6114         }
6115 }
6116
6117 static void netdev_adjacent_del_links(struct net_device *dev)
6118 {
6119         struct netdev_adjacent *iter;
6120
6121         struct net *net = dev_net(dev);
6122
6123         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6124                 if (!net_eq(net, dev_net(iter->dev)))
6125                         continue;
6126                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6127                                           &iter->dev->adj_list.lower);
6128                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6129                                           &dev->adj_list.upper);
6130         }
6131
6132         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6133                 if (!net_eq(net, dev_net(iter->dev)))
6134                         continue;
6135                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6136                                           &iter->dev->adj_list.upper);
6137                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6138                                           &dev->adj_list.lower);
6139         }
6140 }
6141
6142 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6143 {
6144         struct netdev_adjacent *iter;
6145
6146         struct net *net = dev_net(dev);
6147
6148         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6149                 if (!net_eq(net, dev_net(iter->dev)))
6150                         continue;
6151                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6152                                           &iter->dev->adj_list.lower);
6153                 netdev_adjacent_sysfs_add(iter->dev, dev,
6154                                           &iter->dev->adj_list.lower);
6155         }
6156
6157         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6158                 if (!net_eq(net, dev_net(iter->dev)))
6159                         continue;
6160                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6161                                           &iter->dev->adj_list.upper);
6162                 netdev_adjacent_sysfs_add(iter->dev, dev,
6163                                           &iter->dev->adj_list.upper);
6164         }
6165 }
6166
6167 void *netdev_lower_dev_get_private(struct net_device *dev,
6168                                    struct net_device *lower_dev)
6169 {
6170         struct netdev_adjacent *lower;
6171
6172         if (!lower_dev)
6173                 return NULL;
6174         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6175         if (!lower)
6176                 return NULL;
6177
6178         return lower->private;
6179 }
6180 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6181
6182
6183 int dev_get_nest_level(struct net_device *dev)
6184 {
6185         struct net_device *lower = NULL;
6186         struct list_head *iter;
6187         int max_nest = -1;
6188         int nest;
6189
6190         ASSERT_RTNL();
6191
6192         netdev_for_each_lower_dev(dev, lower, iter) {
6193                 nest = dev_get_nest_level(lower);
6194                 if (max_nest < nest)
6195                         max_nest = nest;
6196         }
6197
6198         return max_nest + 1;
6199 }
6200 EXPORT_SYMBOL(dev_get_nest_level);
6201
6202 /**
6203  * netdev_lower_change - Dispatch event about lower device state change
6204  * @lower_dev: device
6205  * @lower_state_info: state to dispatch
6206  *
6207  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6208  * The caller must hold the RTNL lock.
6209  */
6210 void netdev_lower_state_changed(struct net_device *lower_dev,
6211                                 void *lower_state_info)
6212 {
6213         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6214
6215         ASSERT_RTNL();
6216         changelowerstate_info.lower_state_info = lower_state_info;
6217         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6218                                       &changelowerstate_info.info);
6219 }
6220 EXPORT_SYMBOL(netdev_lower_state_changed);
6221
6222 static void dev_change_rx_flags(struct net_device *dev, int flags)
6223 {
6224         const struct net_device_ops *ops = dev->netdev_ops;
6225
6226         if (ops->ndo_change_rx_flags)
6227                 ops->ndo_change_rx_flags(dev, flags);
6228 }
6229
6230 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6231 {
6232         unsigned int old_flags = dev->flags;
6233         kuid_t uid;
6234         kgid_t gid;
6235
6236         ASSERT_RTNL();
6237
6238         dev->flags |= IFF_PROMISC;
6239         dev->promiscuity += inc;
6240         if (dev->promiscuity == 0) {
6241                 /*
6242                  * Avoid overflow.
6243                  * If inc causes overflow, untouch promisc and return error.
6244                  */
6245                 if (inc < 0)
6246                         dev->flags &= ~IFF_PROMISC;
6247                 else {
6248                         dev->promiscuity -= inc;
6249                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6250                                 dev->name);
6251                         return -EOVERFLOW;
6252                 }
6253         }
6254         if (dev->flags != old_flags) {
6255                 pr_info("device %s %s promiscuous mode\n",
6256                         dev->name,
6257                         dev->flags & IFF_PROMISC ? "entered" : "left");
6258                 if (audit_enabled) {
6259                         current_uid_gid(&uid, &gid);
6260                         audit_log(current->audit_context, GFP_ATOMIC,
6261                                 AUDIT_ANOM_PROMISCUOUS,
6262                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6263                                 dev->name, (dev->flags & IFF_PROMISC),
6264                                 (old_flags & IFF_PROMISC),
6265                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6266                                 from_kuid(&init_user_ns, uid),
6267                                 from_kgid(&init_user_ns, gid),
6268                                 audit_get_sessionid(current));
6269                 }
6270
6271                 dev_change_rx_flags(dev, IFF_PROMISC);
6272         }
6273         if (notify)
6274                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6275         return 0;
6276 }
6277
6278 /**
6279  *      dev_set_promiscuity     - update promiscuity count on a device
6280  *      @dev: device
6281  *      @inc: modifier
6282  *
6283  *      Add or remove promiscuity from a device. While the count in the device
6284  *      remains above zero the interface remains promiscuous. Once it hits zero
6285  *      the device reverts back to normal filtering operation. A negative inc
6286  *      value is used to drop promiscuity on the device.
6287  *      Return 0 if successful or a negative errno code on error.
6288  */
6289 int dev_set_promiscuity(struct net_device *dev, int inc)
6290 {
6291         unsigned int old_flags = dev->flags;
6292         int err;
6293
6294         err = __dev_set_promiscuity(dev, inc, true);
6295         if (err < 0)
6296                 return err;
6297         if (dev->flags != old_flags)
6298                 dev_set_rx_mode(dev);
6299         return err;
6300 }
6301 EXPORT_SYMBOL(dev_set_promiscuity);
6302
6303 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6304 {
6305         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6306
6307         ASSERT_RTNL();
6308
6309         dev->flags |= IFF_ALLMULTI;
6310         dev->allmulti += inc;
6311         if (dev->allmulti == 0) {
6312                 /*
6313                  * Avoid overflow.
6314                  * If inc causes overflow, untouch allmulti and return error.
6315                  */
6316                 if (inc < 0)
6317                         dev->flags &= ~IFF_ALLMULTI;
6318                 else {
6319                         dev->allmulti -= inc;
6320                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6321                                 dev->name);
6322                         return -EOVERFLOW;
6323                 }
6324         }
6325         if (dev->flags ^ old_flags) {
6326                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6327                 dev_set_rx_mode(dev);
6328                 if (notify)
6329                         __dev_notify_flags(dev, old_flags,
6330                                            dev->gflags ^ old_gflags);
6331         }
6332         return 0;
6333 }
6334
6335 /**
6336  *      dev_set_allmulti        - update allmulti count on a device
6337  *      @dev: device
6338  *      @inc: modifier
6339  *
6340  *      Add or remove reception of all multicast frames to a device. While the
6341  *      count in the device remains above zero the interface remains listening
6342  *      to all interfaces. Once it hits zero the device reverts back to normal
6343  *      filtering operation. A negative @inc value is used to drop the counter
6344  *      when releasing a resource needing all multicasts.
6345  *      Return 0 if successful or a negative errno code on error.
6346  */
6347
6348 int dev_set_allmulti(struct net_device *dev, int inc)
6349 {
6350         return __dev_set_allmulti(dev, inc, true);
6351 }
6352 EXPORT_SYMBOL(dev_set_allmulti);
6353
6354 /*
6355  *      Upload unicast and multicast address lists to device and
6356  *      configure RX filtering. When the device doesn't support unicast
6357  *      filtering it is put in promiscuous mode while unicast addresses
6358  *      are present.
6359  */
6360 void __dev_set_rx_mode(struct net_device *dev)
6361 {
6362         const struct net_device_ops *ops = dev->netdev_ops;
6363
6364         /* dev_open will call this function so the list will stay sane. */
6365         if (!(dev->flags&IFF_UP))
6366                 return;
6367
6368         if (!netif_device_present(dev))
6369                 return;
6370
6371         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6372                 /* Unicast addresses changes may only happen under the rtnl,
6373                  * therefore calling __dev_set_promiscuity here is safe.
6374                  */
6375                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6376                         __dev_set_promiscuity(dev, 1, false);
6377                         dev->uc_promisc = true;
6378                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6379                         __dev_set_promiscuity(dev, -1, false);
6380                         dev->uc_promisc = false;
6381                 }
6382         }
6383
6384         if (ops->ndo_set_rx_mode)
6385                 ops->ndo_set_rx_mode(dev);
6386 }
6387
6388 void dev_set_rx_mode(struct net_device *dev)
6389 {
6390         netif_addr_lock_bh(dev);
6391         __dev_set_rx_mode(dev);
6392         netif_addr_unlock_bh(dev);
6393 }
6394
6395 /**
6396  *      dev_get_flags - get flags reported to userspace
6397  *      @dev: device
6398  *
6399  *      Get the combination of flag bits exported through APIs to userspace.
6400  */
6401 unsigned int dev_get_flags(const struct net_device *dev)
6402 {
6403         unsigned int flags;
6404
6405         flags = (dev->flags & ~(IFF_PROMISC |
6406                                 IFF_ALLMULTI |
6407                                 IFF_RUNNING |
6408                                 IFF_LOWER_UP |
6409                                 IFF_DORMANT)) |
6410                 (dev->gflags & (IFF_PROMISC |
6411                                 IFF_ALLMULTI));
6412
6413         if (netif_running(dev)) {
6414                 if (netif_oper_up(dev))
6415                         flags |= IFF_RUNNING;
6416                 if (netif_carrier_ok(dev))
6417                         flags |= IFF_LOWER_UP;
6418                 if (netif_dormant(dev))
6419                         flags |= IFF_DORMANT;
6420         }
6421
6422         return flags;
6423 }
6424 EXPORT_SYMBOL(dev_get_flags);
6425
6426 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6427 {
6428         unsigned int old_flags = dev->flags;
6429         int ret;
6430
6431         ASSERT_RTNL();
6432
6433         /*
6434          *      Set the flags on our device.
6435          */
6436
6437         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6438                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6439                                IFF_AUTOMEDIA)) |
6440                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6441                                     IFF_ALLMULTI));
6442
6443         /*
6444          *      Load in the correct multicast list now the flags have changed.
6445          */
6446
6447         if ((old_flags ^ flags) & IFF_MULTICAST)
6448                 dev_change_rx_flags(dev, IFF_MULTICAST);
6449
6450         dev_set_rx_mode(dev);
6451
6452         /*
6453          *      Have we downed the interface. We handle IFF_UP ourselves
6454          *      according to user attempts to set it, rather than blindly
6455          *      setting it.
6456          */
6457
6458         ret = 0;
6459         if ((old_flags ^ flags) & IFF_UP)
6460                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6461
6462         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6463                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6464                 unsigned int old_flags = dev->flags;
6465
6466                 dev->gflags ^= IFF_PROMISC;
6467
6468                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6469                         if (dev->flags != old_flags)
6470                                 dev_set_rx_mode(dev);
6471         }
6472
6473         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6474          * is important. Some (broken) drivers set IFF_PROMISC, when
6475          * IFF_ALLMULTI is requested not asking us and not reporting.
6476          */
6477         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6478                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6479
6480                 dev->gflags ^= IFF_ALLMULTI;
6481                 __dev_set_allmulti(dev, inc, false);
6482         }
6483
6484         return ret;
6485 }
6486
6487 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6488                         unsigned int gchanges)
6489 {
6490         unsigned int changes = dev->flags ^ old_flags;
6491
6492         if (gchanges)
6493                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6494
6495         if (changes & IFF_UP) {
6496                 if (dev->flags & IFF_UP)
6497                         call_netdevice_notifiers(NETDEV_UP, dev);
6498                 else
6499                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6500         }
6501
6502         if (dev->flags & IFF_UP &&
6503             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6504                 struct netdev_notifier_change_info change_info;
6505
6506                 change_info.flags_changed = changes;
6507                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6508                                               &change_info.info);
6509         }
6510 }
6511
6512 /**
6513  *      dev_change_flags - change device settings
6514  *      @dev: device
6515  *      @flags: device state flags
6516  *
6517  *      Change settings on device based state flags. The flags are
6518  *      in the userspace exported format.
6519  */
6520 int dev_change_flags(struct net_device *dev, unsigned int flags)
6521 {
6522         int ret;
6523         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6524
6525         ret = __dev_change_flags(dev, flags);
6526         if (ret < 0)
6527                 return ret;
6528
6529         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6530         __dev_notify_flags(dev, old_flags, changes);
6531         return ret;
6532 }
6533 EXPORT_SYMBOL(dev_change_flags);
6534
6535 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6536 {
6537         const struct net_device_ops *ops = dev->netdev_ops;
6538
6539         if (ops->ndo_change_mtu)
6540                 return ops->ndo_change_mtu(dev, new_mtu);
6541
6542         dev->mtu = new_mtu;
6543         return 0;
6544 }
6545
6546 /**
6547  *      dev_set_mtu - Change maximum transfer unit
6548  *      @dev: device
6549  *      @new_mtu: new transfer unit
6550  *
6551  *      Change the maximum transfer size of the network device.
6552  */
6553 int dev_set_mtu(struct net_device *dev, int new_mtu)
6554 {
6555         int err, orig_mtu;
6556
6557         if (new_mtu == dev->mtu)
6558                 return 0;
6559
6560         /* MTU must be positive, and in range */
6561         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6562                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6563                                     dev->name, new_mtu, dev->min_mtu);
6564                 return -EINVAL;
6565         }
6566
6567         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6568                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6569                                     dev->name, new_mtu, dev->max_mtu);
6570                 return -EINVAL;
6571         }
6572
6573         if (!netif_device_present(dev))
6574                 return -ENODEV;
6575
6576         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6577         err = notifier_to_errno(err);
6578         if (err)
6579                 return err;
6580
6581         orig_mtu = dev->mtu;
6582         err = __dev_set_mtu(dev, new_mtu);
6583
6584         if (!err) {
6585                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6586                 err = notifier_to_errno(err);
6587                 if (err) {
6588                         /* setting mtu back and notifying everyone again,
6589                          * so that they have a chance to revert changes.
6590                          */
6591                         __dev_set_mtu(dev, orig_mtu);
6592                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6593                 }
6594         }
6595         return err;
6596 }
6597 EXPORT_SYMBOL(dev_set_mtu);
6598
6599 /**
6600  *      dev_set_group - Change group this device belongs to
6601  *      @dev: device
6602  *      @new_group: group this device should belong to
6603  */
6604 void dev_set_group(struct net_device *dev, int new_group)
6605 {
6606         dev->group = new_group;
6607 }
6608 EXPORT_SYMBOL(dev_set_group);
6609
6610 /**
6611  *      dev_set_mac_address - Change Media Access Control Address
6612  *      @dev: device
6613  *      @sa: new address
6614  *
6615  *      Change the hardware (MAC) address of the device
6616  */
6617 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6618 {
6619         const struct net_device_ops *ops = dev->netdev_ops;
6620         int err;
6621
6622         if (!ops->ndo_set_mac_address)
6623                 return -EOPNOTSUPP;
6624         if (sa->sa_family != dev->type)
6625                 return -EINVAL;
6626         if (!netif_device_present(dev))
6627                 return -ENODEV;
6628         err = ops->ndo_set_mac_address(dev, sa);
6629         if (err)
6630                 return err;
6631         dev->addr_assign_type = NET_ADDR_SET;
6632         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6633         add_device_randomness(dev->dev_addr, dev->addr_len);
6634         return 0;
6635 }
6636 EXPORT_SYMBOL(dev_set_mac_address);
6637
6638 /**
6639  *      dev_change_carrier - Change device carrier
6640  *      @dev: device
6641  *      @new_carrier: new value
6642  *
6643  *      Change device carrier
6644  */
6645 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6646 {
6647         const struct net_device_ops *ops = dev->netdev_ops;
6648
6649         if (!ops->ndo_change_carrier)
6650                 return -EOPNOTSUPP;
6651         if (!netif_device_present(dev))
6652                 return -ENODEV;
6653         return ops->ndo_change_carrier(dev, new_carrier);
6654 }
6655 EXPORT_SYMBOL(dev_change_carrier);
6656
6657 /**
6658  *      dev_get_phys_port_id - Get device physical port ID
6659  *      @dev: device
6660  *      @ppid: port ID
6661  *
6662  *      Get device physical port ID
6663  */
6664 int dev_get_phys_port_id(struct net_device *dev,
6665                          struct netdev_phys_item_id *ppid)
6666 {
6667         const struct net_device_ops *ops = dev->netdev_ops;
6668
6669         if (!ops->ndo_get_phys_port_id)
6670                 return -EOPNOTSUPP;
6671         return ops->ndo_get_phys_port_id(dev, ppid);
6672 }
6673 EXPORT_SYMBOL(dev_get_phys_port_id);
6674
6675 /**
6676  *      dev_get_phys_port_name - Get device physical port name
6677  *      @dev: device
6678  *      @name: port name
6679  *      @len: limit of bytes to copy to name
6680  *
6681  *      Get device physical port name
6682  */
6683 int dev_get_phys_port_name(struct net_device *dev,
6684                            char *name, size_t len)
6685 {
6686         const struct net_device_ops *ops = dev->netdev_ops;
6687
6688         if (!ops->ndo_get_phys_port_name)
6689                 return -EOPNOTSUPP;
6690         return ops->ndo_get_phys_port_name(dev, name, len);
6691 }
6692 EXPORT_SYMBOL(dev_get_phys_port_name);
6693
6694 /**
6695  *      dev_change_proto_down - update protocol port state information
6696  *      @dev: device
6697  *      @proto_down: new value
6698  *
6699  *      This info can be used by switch drivers to set the phys state of the
6700  *      port.
6701  */
6702 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6703 {
6704         const struct net_device_ops *ops = dev->netdev_ops;
6705
6706         if (!ops->ndo_change_proto_down)
6707                 return -EOPNOTSUPP;
6708         if (!netif_device_present(dev))
6709                 return -ENODEV;
6710         return ops->ndo_change_proto_down(dev, proto_down);
6711 }
6712 EXPORT_SYMBOL(dev_change_proto_down);
6713
6714 /**
6715  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6716  *      @dev: device
6717  *      @fd: new program fd or negative value to clear
6718  *      @flags: xdp-related flags
6719  *
6720  *      Set or clear a bpf program for a device
6721  */
6722 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6723 {
6724         const struct net_device_ops *ops = dev->netdev_ops;
6725         struct bpf_prog *prog = NULL;
6726         struct netdev_xdp xdp;
6727         int err;
6728
6729         ASSERT_RTNL();
6730
6731         if (!ops->ndo_xdp)
6732                 return -EOPNOTSUPP;
6733         if (fd >= 0) {
6734                 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6735                         memset(&xdp, 0, sizeof(xdp));
6736                         xdp.command = XDP_QUERY_PROG;
6737
6738                         err = ops->ndo_xdp(dev, &xdp);
6739                         if (err < 0)
6740                                 return err;
6741                         if (xdp.prog_attached)
6742                                 return -EBUSY;
6743                 }
6744
6745                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6746                 if (IS_ERR(prog))
6747                         return PTR_ERR(prog);
6748         }
6749
6750         memset(&xdp, 0, sizeof(xdp));
6751         xdp.command = XDP_SETUP_PROG;
6752         xdp.prog = prog;
6753
6754         err = ops->ndo_xdp(dev, &xdp);
6755         if (err < 0 && prog)
6756                 bpf_prog_put(prog);
6757
6758         return err;
6759 }
6760 EXPORT_SYMBOL(dev_change_xdp_fd);
6761
6762 /**
6763  *      dev_new_index   -       allocate an ifindex
6764  *      @net: the applicable net namespace
6765  *
6766  *      Returns a suitable unique value for a new device interface
6767  *      number.  The caller must hold the rtnl semaphore or the
6768  *      dev_base_lock to be sure it remains unique.
6769  */
6770 static int dev_new_index(struct net *net)
6771 {
6772         int ifindex = net->ifindex;
6773
6774         for (;;) {
6775                 if (++ifindex <= 0)
6776                         ifindex = 1;
6777                 if (!__dev_get_by_index(net, ifindex))
6778                         return net->ifindex = ifindex;
6779         }
6780 }
6781
6782 /* Delayed registration/unregisteration */
6783 static LIST_HEAD(net_todo_list);
6784 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6785
6786 static void net_set_todo(struct net_device *dev)
6787 {
6788         list_add_tail(&dev->todo_list, &net_todo_list);
6789         dev_net(dev)->dev_unreg_count++;
6790 }
6791
6792 static void rollback_registered_many(struct list_head *head)
6793 {
6794         struct net_device *dev, *tmp;
6795         LIST_HEAD(close_head);
6796
6797         BUG_ON(dev_boot_phase);
6798         ASSERT_RTNL();
6799
6800         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6801                 /* Some devices call without registering
6802                  * for initialization unwind. Remove those
6803                  * devices and proceed with the remaining.
6804                  */
6805                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6806                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6807                                  dev->name, dev);
6808
6809                         WARN_ON(1);
6810                         list_del(&dev->unreg_list);
6811                         continue;
6812                 }
6813                 dev->dismantle = true;
6814                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6815         }
6816
6817         /* If device is running, close it first. */
6818         list_for_each_entry(dev, head, unreg_list)
6819                 list_add_tail(&dev->close_list, &close_head);
6820         dev_close_many(&close_head, true);
6821
6822         list_for_each_entry(dev, head, unreg_list) {
6823                 /* And unlink it from device chain. */
6824                 unlist_netdevice(dev);
6825
6826                 dev->reg_state = NETREG_UNREGISTERING;
6827         }
6828         flush_all_backlogs();
6829
6830         synchronize_net();
6831
6832         list_for_each_entry(dev, head, unreg_list) {
6833                 struct sk_buff *skb = NULL;
6834
6835                 /* Shutdown queueing discipline. */
6836                 dev_shutdown(dev);
6837
6838
6839                 /* Notify protocols, that we are about to destroy
6840                  * this device. They should clean all the things.
6841                  */
6842                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6843
6844                 if (!dev->rtnl_link_ops ||
6845                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6846                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6847                                                      GFP_KERNEL);
6848
6849                 /*
6850                  *      Flush the unicast and multicast chains
6851                  */
6852                 dev_uc_flush(dev);
6853                 dev_mc_flush(dev);
6854
6855                 if (dev->netdev_ops->ndo_uninit)
6856                         dev->netdev_ops->ndo_uninit(dev);
6857
6858                 if (skb)
6859                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6860
6861                 /* Notifier chain MUST detach us all upper devices. */
6862                 WARN_ON(netdev_has_any_upper_dev(dev));
6863                 WARN_ON(netdev_has_any_lower_dev(dev));
6864
6865                 /* Remove entries from kobject tree */
6866                 netdev_unregister_kobject(dev);
6867 #ifdef CONFIG_XPS
6868                 /* Remove XPS queueing entries */
6869                 netif_reset_xps_queues_gt(dev, 0);
6870 #endif
6871         }
6872
6873         synchronize_net();
6874
6875         list_for_each_entry(dev, head, unreg_list)
6876                 dev_put(dev);
6877 }
6878
6879 static void rollback_registered(struct net_device *dev)
6880 {
6881         LIST_HEAD(single);
6882
6883         list_add(&dev->unreg_list, &single);
6884         rollback_registered_many(&single);
6885         list_del(&single);
6886 }
6887
6888 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6889         struct net_device *upper, netdev_features_t features)
6890 {
6891         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6892         netdev_features_t feature;
6893         int feature_bit;
6894
6895         for_each_netdev_feature(&upper_disables, feature_bit) {
6896                 feature = __NETIF_F_BIT(feature_bit);
6897                 if (!(upper->wanted_features & feature)
6898                     && (features & feature)) {
6899                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6900                                    &feature, upper->name);
6901                         features &= ~feature;
6902                 }
6903         }
6904
6905         return features;
6906 }
6907
6908 static void netdev_sync_lower_features(struct net_device *upper,
6909         struct net_device *lower, netdev_features_t features)
6910 {
6911         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6912         netdev_features_t feature;
6913         int feature_bit;
6914
6915         for_each_netdev_feature(&upper_disables, feature_bit) {
6916                 feature = __NETIF_F_BIT(feature_bit);
6917                 if (!(features & feature) && (lower->features & feature)) {
6918                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6919                                    &feature, lower->name);
6920                         lower->wanted_features &= ~feature;
6921                         netdev_update_features(lower);
6922
6923                         if (unlikely(lower->features & feature))
6924                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6925                                             &feature, lower->name);
6926                 }
6927         }
6928 }
6929
6930 static netdev_features_t netdev_fix_features(struct net_device *dev,
6931         netdev_features_t features)
6932 {
6933         /* Fix illegal checksum combinations */
6934         if ((features & NETIF_F_HW_CSUM) &&
6935             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6936                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6937                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6938         }
6939
6940         /* TSO requires that SG is present as well. */
6941         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6942                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6943                 features &= ~NETIF_F_ALL_TSO;
6944         }
6945
6946         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6947                                         !(features & NETIF_F_IP_CSUM)) {
6948                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6949                 features &= ~NETIF_F_TSO;
6950                 features &= ~NETIF_F_TSO_ECN;
6951         }
6952
6953         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6954                                          !(features & NETIF_F_IPV6_CSUM)) {
6955                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6956                 features &= ~NETIF_F_TSO6;
6957         }
6958
6959         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6960         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6961                 features &= ~NETIF_F_TSO_MANGLEID;
6962
6963         /* TSO ECN requires that TSO is present as well. */
6964         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6965                 features &= ~NETIF_F_TSO_ECN;
6966
6967         /* Software GSO depends on SG. */
6968         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6969                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6970                 features &= ~NETIF_F_GSO;
6971         }
6972
6973         /* UFO needs SG and checksumming */
6974         if (features & NETIF_F_UFO) {
6975                 /* maybe split UFO into V4 and V6? */
6976                 if (!(features & NETIF_F_HW_CSUM) &&
6977                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6978                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6979                         netdev_dbg(dev,
6980                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6981                         features &= ~NETIF_F_UFO;
6982                 }
6983
6984                 if (!(features & NETIF_F_SG)) {
6985                         netdev_dbg(dev,
6986                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6987                         features &= ~NETIF_F_UFO;
6988                 }
6989         }
6990
6991         /* GSO partial features require GSO partial be set */
6992         if ((features & dev->gso_partial_features) &&
6993             !(features & NETIF_F_GSO_PARTIAL)) {
6994                 netdev_dbg(dev,
6995                            "Dropping partially supported GSO features since no GSO partial.\n");
6996                 features &= ~dev->gso_partial_features;
6997         }
6998
6999         return features;
7000 }
7001
7002 int __netdev_update_features(struct net_device *dev)
7003 {
7004         struct net_device *upper, *lower;
7005         netdev_features_t features;
7006         struct list_head *iter;
7007         int err = -1;
7008
7009         ASSERT_RTNL();
7010
7011         features = netdev_get_wanted_features(dev);
7012
7013         if (dev->netdev_ops->ndo_fix_features)
7014                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7015
7016         /* driver might be less strict about feature dependencies */
7017         features = netdev_fix_features(dev, features);
7018
7019         /* some features can't be enabled if they're off an an upper device */
7020         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7021                 features = netdev_sync_upper_features(dev, upper, features);
7022
7023         if (dev->features == features)
7024                 goto sync_lower;
7025
7026         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7027                 &dev->features, &features);
7028
7029         if (dev->netdev_ops->ndo_set_features)
7030                 err = dev->netdev_ops->ndo_set_features(dev, features);
7031         else
7032                 err = 0;
7033
7034         if (unlikely(err < 0)) {
7035                 netdev_err(dev,
7036                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7037                         err, &features, &dev->features);
7038                 /* return non-0 since some features might have changed and
7039                  * it's better to fire a spurious notification than miss it
7040                  */
7041                 return -1;
7042         }
7043
7044 sync_lower:
7045         /* some features must be disabled on lower devices when disabled
7046          * on an upper device (think: bonding master or bridge)
7047          */
7048         netdev_for_each_lower_dev(dev, lower, iter)
7049                 netdev_sync_lower_features(dev, lower, features);
7050
7051         if (!err)
7052                 dev->features = features;
7053
7054         return err < 0 ? 0 : 1;
7055 }
7056
7057 /**
7058  *      netdev_update_features - recalculate device features
7059  *      @dev: the device to check
7060  *
7061  *      Recalculate dev->features set and send notifications if it
7062  *      has changed. Should be called after driver or hardware dependent
7063  *      conditions might have changed that influence the features.
7064  */
7065 void netdev_update_features(struct net_device *dev)
7066 {
7067         if (__netdev_update_features(dev))
7068                 netdev_features_change(dev);
7069 }
7070 EXPORT_SYMBOL(netdev_update_features);
7071
7072 /**
7073  *      netdev_change_features - recalculate device features
7074  *      @dev: the device to check
7075  *
7076  *      Recalculate dev->features set and send notifications even
7077  *      if they have not changed. Should be called instead of
7078  *      netdev_update_features() if also dev->vlan_features might
7079  *      have changed to allow the changes to be propagated to stacked
7080  *      VLAN devices.
7081  */
7082 void netdev_change_features(struct net_device *dev)
7083 {
7084         __netdev_update_features(dev);
7085         netdev_features_change(dev);
7086 }
7087 EXPORT_SYMBOL(netdev_change_features);
7088
7089 /**
7090  *      netif_stacked_transfer_operstate -      transfer operstate
7091  *      @rootdev: the root or lower level device to transfer state from
7092  *      @dev: the device to transfer operstate to
7093  *
7094  *      Transfer operational state from root to device. This is normally
7095  *      called when a stacking relationship exists between the root
7096  *      device and the device(a leaf device).
7097  */
7098 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7099                                         struct net_device *dev)
7100 {
7101         if (rootdev->operstate == IF_OPER_DORMANT)
7102                 netif_dormant_on(dev);
7103         else
7104                 netif_dormant_off(dev);
7105
7106         if (netif_carrier_ok(rootdev)) {
7107                 if (!netif_carrier_ok(dev))
7108                         netif_carrier_on(dev);
7109         } else {
7110                 if (netif_carrier_ok(dev))
7111                         netif_carrier_off(dev);
7112         }
7113 }
7114 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7115
7116 #ifdef CONFIG_SYSFS
7117 static int netif_alloc_rx_queues(struct net_device *dev)
7118 {
7119         unsigned int i, count = dev->num_rx_queues;
7120         struct netdev_rx_queue *rx;
7121         size_t sz = count * sizeof(*rx);
7122
7123         BUG_ON(count < 1);
7124
7125         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7126         if (!rx) {
7127                 rx = vzalloc(sz);
7128                 if (!rx)
7129                         return -ENOMEM;
7130         }
7131         dev->_rx = rx;
7132
7133         for (i = 0; i < count; i++)
7134                 rx[i].dev = dev;
7135         return 0;
7136 }
7137 #endif
7138
7139 static void netdev_init_one_queue(struct net_device *dev,
7140                                   struct netdev_queue *queue, void *_unused)
7141 {
7142         /* Initialize queue lock */
7143         spin_lock_init(&queue->_xmit_lock);
7144         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7145         queue->xmit_lock_owner = -1;
7146         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7147         queue->dev = dev;
7148 #ifdef CONFIG_BQL
7149         dql_init(&queue->dql, HZ);
7150 #endif
7151 }
7152
7153 static void netif_free_tx_queues(struct net_device *dev)
7154 {
7155         kvfree(dev->_tx);
7156 }
7157
7158 static int netif_alloc_netdev_queues(struct net_device *dev)
7159 {
7160         unsigned int count = dev->num_tx_queues;
7161         struct netdev_queue *tx;
7162         size_t sz = count * sizeof(*tx);
7163
7164         if (count < 1 || count > 0xffff)
7165                 return -EINVAL;
7166
7167         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7168         if (!tx) {
7169                 tx = vzalloc(sz);
7170                 if (!tx)
7171                         return -ENOMEM;
7172         }
7173         dev->_tx = tx;
7174
7175         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7176         spin_lock_init(&dev->tx_global_lock);
7177
7178         return 0;
7179 }
7180
7181 void netif_tx_stop_all_queues(struct net_device *dev)
7182 {
7183         unsigned int i;
7184
7185         for (i = 0; i < dev->num_tx_queues; i++) {
7186                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7187
7188                 netif_tx_stop_queue(txq);
7189         }
7190 }
7191 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7192
7193 /**
7194  *      register_netdevice      - register a network device
7195  *      @dev: device to register
7196  *
7197  *      Take a completed network device structure and add it to the kernel
7198  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7199  *      chain. 0 is returned on success. A negative errno code is returned
7200  *      on a failure to set up the device, or if the name is a duplicate.
7201  *
7202  *      Callers must hold the rtnl semaphore. You may want
7203  *      register_netdev() instead of this.
7204  *
7205  *      BUGS:
7206  *      The locking appears insufficient to guarantee two parallel registers
7207  *      will not get the same name.
7208  */
7209
7210 int register_netdevice(struct net_device *dev)
7211 {
7212         int ret;
7213         struct net *net = dev_net(dev);
7214
7215         BUG_ON(dev_boot_phase);
7216         ASSERT_RTNL();
7217
7218         might_sleep();
7219
7220         /* When net_device's are persistent, this will be fatal. */
7221         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7222         BUG_ON(!net);
7223
7224         spin_lock_init(&dev->addr_list_lock);
7225         netdev_set_addr_lockdep_class(dev);
7226
7227         ret = dev_get_valid_name(net, dev, dev->name);
7228         if (ret < 0)
7229                 goto out;
7230
7231         /* Init, if this function is available */
7232         if (dev->netdev_ops->ndo_init) {
7233                 ret = dev->netdev_ops->ndo_init(dev);
7234                 if (ret) {
7235                         if (ret > 0)
7236                                 ret = -EIO;
7237                         goto out;
7238                 }
7239         }
7240
7241         if (((dev->hw_features | dev->features) &
7242              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7243             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7244              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7245                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7246                 ret = -EINVAL;
7247                 goto err_uninit;
7248         }
7249
7250         ret = -EBUSY;
7251         if (!dev->ifindex)
7252                 dev->ifindex = dev_new_index(net);
7253         else if (__dev_get_by_index(net, dev->ifindex))
7254                 goto err_uninit;
7255
7256         /* Transfer changeable features to wanted_features and enable
7257          * software offloads (GSO and GRO).
7258          */
7259         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7260         dev->features |= NETIF_F_SOFT_FEATURES;
7261         dev->wanted_features = dev->features & dev->hw_features;
7262
7263         if (!(dev->flags & IFF_LOOPBACK))
7264                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7265
7266         /* If IPv4 TCP segmentation offload is supported we should also
7267          * allow the device to enable segmenting the frame with the option
7268          * of ignoring a static IP ID value.  This doesn't enable the
7269          * feature itself but allows the user to enable it later.
7270          */
7271         if (dev->hw_features & NETIF_F_TSO)
7272                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7273         if (dev->vlan_features & NETIF_F_TSO)
7274                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7275         if (dev->mpls_features & NETIF_F_TSO)
7276                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7277         if (dev->hw_enc_features & NETIF_F_TSO)
7278                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7279
7280         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7281          */
7282         dev->vlan_features |= NETIF_F_HIGHDMA;
7283
7284         /* Make NETIF_F_SG inheritable to tunnel devices.
7285          */
7286         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7287
7288         /* Make NETIF_F_SG inheritable to MPLS.
7289          */
7290         dev->mpls_features |= NETIF_F_SG;
7291
7292         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7293         ret = notifier_to_errno(ret);
7294         if (ret)
7295                 goto err_uninit;
7296
7297         ret = netdev_register_kobject(dev);
7298         if (ret)
7299                 goto err_uninit;
7300         dev->reg_state = NETREG_REGISTERED;
7301
7302         __netdev_update_features(dev);
7303
7304         /*
7305          *      Default initial state at registry is that the
7306          *      device is present.
7307          */
7308
7309         set_bit(__LINK_STATE_PRESENT, &dev->state);
7310
7311         linkwatch_init_dev(dev);
7312
7313         dev_init_scheduler(dev);
7314         dev_hold(dev);
7315         list_netdevice(dev);
7316         add_device_randomness(dev->dev_addr, dev->addr_len);
7317
7318         /* If the device has permanent device address, driver should
7319          * set dev_addr and also addr_assign_type should be set to
7320          * NET_ADDR_PERM (default value).
7321          */
7322         if (dev->addr_assign_type == NET_ADDR_PERM)
7323                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7324
7325         /* Notify protocols, that a new device appeared. */
7326         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7327         ret = notifier_to_errno(ret);
7328         if (ret) {
7329                 rollback_registered(dev);
7330                 dev->reg_state = NETREG_UNREGISTERED;
7331         }
7332         /*
7333          *      Prevent userspace races by waiting until the network
7334          *      device is fully setup before sending notifications.
7335          */
7336         if (!dev->rtnl_link_ops ||
7337             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7338                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7339
7340 out:
7341         return ret;
7342
7343 err_uninit:
7344         if (dev->netdev_ops->ndo_uninit)
7345                 dev->netdev_ops->ndo_uninit(dev);
7346         goto out;
7347 }
7348 EXPORT_SYMBOL(register_netdevice);
7349
7350 /**
7351  *      init_dummy_netdev       - init a dummy network device for NAPI
7352  *      @dev: device to init
7353  *
7354  *      This takes a network device structure and initialize the minimum
7355  *      amount of fields so it can be used to schedule NAPI polls without
7356  *      registering a full blown interface. This is to be used by drivers
7357  *      that need to tie several hardware interfaces to a single NAPI
7358  *      poll scheduler due to HW limitations.
7359  */
7360 int init_dummy_netdev(struct net_device *dev)
7361 {
7362         /* Clear everything. Note we don't initialize spinlocks
7363          * are they aren't supposed to be taken by any of the
7364          * NAPI code and this dummy netdev is supposed to be
7365          * only ever used for NAPI polls
7366          */
7367         memset(dev, 0, sizeof(struct net_device));
7368
7369         /* make sure we BUG if trying to hit standard
7370          * register/unregister code path
7371          */
7372         dev->reg_state = NETREG_DUMMY;
7373
7374         /* NAPI wants this */
7375         INIT_LIST_HEAD(&dev->napi_list);
7376
7377         /* a dummy interface is started by default */
7378         set_bit(__LINK_STATE_PRESENT, &dev->state);
7379         set_bit(__LINK_STATE_START, &dev->state);
7380
7381         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7382          * because users of this 'device' dont need to change
7383          * its refcount.
7384          */
7385
7386         return 0;
7387 }
7388 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7389
7390
7391 /**
7392  *      register_netdev - register a network device
7393  *      @dev: device to register
7394  *
7395  *      Take a completed network device structure and add it to the kernel
7396  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7397  *      chain. 0 is returned on success. A negative errno code is returned
7398  *      on a failure to set up the device, or if the name is a duplicate.
7399  *
7400  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7401  *      and expands the device name if you passed a format string to
7402  *      alloc_netdev.
7403  */
7404 int register_netdev(struct net_device *dev)
7405 {
7406         int err;
7407
7408         rtnl_lock();
7409         err = register_netdevice(dev);
7410         rtnl_unlock();
7411         return err;
7412 }
7413 EXPORT_SYMBOL(register_netdev);
7414
7415 int netdev_refcnt_read(const struct net_device *dev)
7416 {
7417         int i, refcnt = 0;
7418
7419         for_each_possible_cpu(i)
7420                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7421         return refcnt;
7422 }
7423 EXPORT_SYMBOL(netdev_refcnt_read);
7424
7425 /**
7426  * netdev_wait_allrefs - wait until all references are gone.
7427  * @dev: target net_device
7428  *
7429  * This is called when unregistering network devices.
7430  *
7431  * Any protocol or device that holds a reference should register
7432  * for netdevice notification, and cleanup and put back the
7433  * reference if they receive an UNREGISTER event.
7434  * We can get stuck here if buggy protocols don't correctly
7435  * call dev_put.
7436  */
7437 static void netdev_wait_allrefs(struct net_device *dev)
7438 {
7439         unsigned long rebroadcast_time, warning_time;
7440         int refcnt;
7441
7442         linkwatch_forget_dev(dev);
7443
7444         rebroadcast_time = warning_time = jiffies;
7445         refcnt = netdev_refcnt_read(dev);
7446
7447         while (refcnt != 0) {
7448                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7449                         rtnl_lock();
7450
7451                         /* Rebroadcast unregister notification */
7452                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7453
7454                         __rtnl_unlock();
7455                         rcu_barrier();
7456                         rtnl_lock();
7457
7458                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7459                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7460                                      &dev->state)) {
7461                                 /* We must not have linkwatch events
7462                                  * pending on unregister. If this
7463                                  * happens, we simply run the queue
7464                                  * unscheduled, resulting in a noop
7465                                  * for this device.
7466                                  */
7467                                 linkwatch_run_queue();
7468                         }
7469
7470                         __rtnl_unlock();
7471
7472                         rebroadcast_time = jiffies;
7473                 }
7474
7475                 msleep(250);
7476
7477                 refcnt = netdev_refcnt_read(dev);
7478
7479                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7480                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7481                                  dev->name, refcnt);
7482                         warning_time = jiffies;
7483                 }
7484         }
7485 }
7486
7487 /* The sequence is:
7488  *
7489  *      rtnl_lock();
7490  *      ...
7491  *      register_netdevice(x1);
7492  *      register_netdevice(x2);
7493  *      ...
7494  *      unregister_netdevice(y1);
7495  *      unregister_netdevice(y2);
7496  *      ...
7497  *      rtnl_unlock();
7498  *      free_netdev(y1);
7499  *      free_netdev(y2);
7500  *
7501  * We are invoked by rtnl_unlock().
7502  * This allows us to deal with problems:
7503  * 1) We can delete sysfs objects which invoke hotplug
7504  *    without deadlocking with linkwatch via keventd.
7505  * 2) Since we run with the RTNL semaphore not held, we can sleep
7506  *    safely in order to wait for the netdev refcnt to drop to zero.
7507  *
7508  * We must not return until all unregister events added during
7509  * the interval the lock was held have been completed.
7510  */
7511 void netdev_run_todo(void)
7512 {
7513         struct list_head list;
7514
7515         /* Snapshot list, allow later requests */
7516         list_replace_init(&net_todo_list, &list);
7517
7518         __rtnl_unlock();
7519
7520
7521         /* Wait for rcu callbacks to finish before next phase */
7522         if (!list_empty(&list))
7523                 rcu_barrier();
7524
7525         while (!list_empty(&list)) {
7526                 struct net_device *dev
7527                         = list_first_entry(&list, struct net_device, todo_list);
7528                 list_del(&dev->todo_list);
7529
7530                 rtnl_lock();
7531                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7532                 __rtnl_unlock();
7533
7534                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7535                         pr_err("network todo '%s' but state %d\n",
7536                                dev->name, dev->reg_state);
7537                         dump_stack();
7538                         continue;
7539                 }
7540
7541                 dev->reg_state = NETREG_UNREGISTERED;
7542
7543                 netdev_wait_allrefs(dev);
7544
7545                 /* paranoia */
7546                 BUG_ON(netdev_refcnt_read(dev));
7547                 BUG_ON(!list_empty(&dev->ptype_all));
7548                 BUG_ON(!list_empty(&dev->ptype_specific));
7549                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7550                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7551                 WARN_ON(dev->dn_ptr);
7552
7553                 if (dev->destructor)
7554                         dev->destructor(dev);
7555
7556                 /* Report a network device has been unregistered */
7557                 rtnl_lock();
7558                 dev_net(dev)->dev_unreg_count--;
7559                 __rtnl_unlock();
7560                 wake_up(&netdev_unregistering_wq);
7561
7562                 /* Free network device */
7563                 kobject_put(&dev->dev.kobj);
7564         }
7565 }
7566
7567 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7568  * all the same fields in the same order as net_device_stats, with only
7569  * the type differing, but rtnl_link_stats64 may have additional fields
7570  * at the end for newer counters.
7571  */
7572 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7573                              const struct net_device_stats *netdev_stats)
7574 {
7575 #if BITS_PER_LONG == 64
7576         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7577         memcpy(stats64, netdev_stats, sizeof(*stats64));
7578         /* zero out counters that only exist in rtnl_link_stats64 */
7579         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7580                sizeof(*stats64) - sizeof(*netdev_stats));
7581 #else
7582         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7583         const unsigned long *src = (const unsigned long *)netdev_stats;
7584         u64 *dst = (u64 *)stats64;
7585
7586         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7587         for (i = 0; i < n; i++)
7588                 dst[i] = src[i];
7589         /* zero out counters that only exist in rtnl_link_stats64 */
7590         memset((char *)stats64 + n * sizeof(u64), 0,
7591                sizeof(*stats64) - n * sizeof(u64));
7592 #endif
7593 }
7594 EXPORT_SYMBOL(netdev_stats_to_stats64);
7595
7596 /**
7597  *      dev_get_stats   - get network device statistics
7598  *      @dev: device to get statistics from
7599  *      @storage: place to store stats
7600  *
7601  *      Get network statistics from device. Return @storage.
7602  *      The device driver may provide its own method by setting
7603  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7604  *      otherwise the internal statistics structure is used.
7605  */
7606 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7607                                         struct rtnl_link_stats64 *storage)
7608 {
7609         const struct net_device_ops *ops = dev->netdev_ops;
7610
7611         if (ops->ndo_get_stats64) {
7612                 memset(storage, 0, sizeof(*storage));
7613                 ops->ndo_get_stats64(dev, storage);
7614         } else if (ops->ndo_get_stats) {
7615                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7616         } else {
7617                 netdev_stats_to_stats64(storage, &dev->stats);
7618         }
7619         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7620         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7621         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7622         return storage;
7623 }
7624 EXPORT_SYMBOL(dev_get_stats);
7625
7626 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7627 {
7628         struct netdev_queue *queue = dev_ingress_queue(dev);
7629
7630 #ifdef CONFIG_NET_CLS_ACT
7631         if (queue)
7632                 return queue;
7633         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7634         if (!queue)
7635                 return NULL;
7636         netdev_init_one_queue(dev, queue, NULL);
7637         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7638         queue->qdisc_sleeping = &noop_qdisc;
7639         rcu_assign_pointer(dev->ingress_queue, queue);
7640 #endif
7641         return queue;
7642 }
7643
7644 static const struct ethtool_ops default_ethtool_ops;
7645
7646 void netdev_set_default_ethtool_ops(struct net_device *dev,
7647                                     const struct ethtool_ops *ops)
7648 {
7649         if (dev->ethtool_ops == &default_ethtool_ops)
7650                 dev->ethtool_ops = ops;
7651 }
7652 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7653
7654 void netdev_freemem(struct net_device *dev)
7655 {
7656         char *addr = (char *)dev - dev->padded;
7657
7658         kvfree(addr);
7659 }
7660
7661 /**
7662  * alloc_netdev_mqs - allocate network device
7663  * @sizeof_priv: size of private data to allocate space for
7664  * @name: device name format string
7665  * @name_assign_type: origin of device name
7666  * @setup: callback to initialize device
7667  * @txqs: the number of TX subqueues to allocate
7668  * @rxqs: the number of RX subqueues to allocate
7669  *
7670  * Allocates a struct net_device with private data area for driver use
7671  * and performs basic initialization.  Also allocates subqueue structs
7672  * for each queue on the device.
7673  */
7674 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7675                 unsigned char name_assign_type,
7676                 void (*setup)(struct net_device *),
7677                 unsigned int txqs, unsigned int rxqs)
7678 {
7679         struct net_device *dev;
7680         size_t alloc_size;
7681         struct net_device *p;
7682
7683         BUG_ON(strlen(name) >= sizeof(dev->name));
7684
7685         if (txqs < 1) {
7686                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7687                 return NULL;
7688         }
7689
7690 #ifdef CONFIG_SYSFS
7691         if (rxqs < 1) {
7692                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7693                 return NULL;
7694         }
7695 #endif
7696
7697         alloc_size = sizeof(struct net_device);
7698         if (sizeof_priv) {
7699                 /* ensure 32-byte alignment of private area */
7700                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7701                 alloc_size += sizeof_priv;
7702         }
7703         /* ensure 32-byte alignment of whole construct */
7704         alloc_size += NETDEV_ALIGN - 1;
7705
7706         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7707         if (!p)
7708                 p = vzalloc(alloc_size);
7709         if (!p)
7710                 return NULL;
7711
7712         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7713         dev->padded = (char *)dev - (char *)p;
7714
7715         dev->pcpu_refcnt = alloc_percpu(int);
7716         if (!dev->pcpu_refcnt)
7717                 goto free_dev;
7718
7719         if (dev_addr_init(dev))
7720                 goto free_pcpu;
7721
7722         dev_mc_init(dev);
7723         dev_uc_init(dev);
7724
7725         dev_net_set(dev, &init_net);
7726
7727         dev->gso_max_size = GSO_MAX_SIZE;
7728         dev->gso_max_segs = GSO_MAX_SEGS;
7729
7730         INIT_LIST_HEAD(&dev->napi_list);
7731         INIT_LIST_HEAD(&dev->unreg_list);
7732         INIT_LIST_HEAD(&dev->close_list);
7733         INIT_LIST_HEAD(&dev->link_watch_list);
7734         INIT_LIST_HEAD(&dev->adj_list.upper);
7735         INIT_LIST_HEAD(&dev->adj_list.lower);
7736         INIT_LIST_HEAD(&dev->ptype_all);
7737         INIT_LIST_HEAD(&dev->ptype_specific);
7738 #ifdef CONFIG_NET_SCHED
7739         hash_init(dev->qdisc_hash);
7740 #endif
7741         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7742         setup(dev);
7743
7744         if (!dev->tx_queue_len) {
7745                 dev->priv_flags |= IFF_NO_QUEUE;
7746                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7747         }
7748
7749         dev->num_tx_queues = txqs;
7750         dev->real_num_tx_queues = txqs;
7751         if (netif_alloc_netdev_queues(dev))
7752                 goto free_all;
7753
7754 #ifdef CONFIG_SYSFS
7755         dev->num_rx_queues = rxqs;
7756         dev->real_num_rx_queues = rxqs;
7757         if (netif_alloc_rx_queues(dev))
7758                 goto free_all;
7759 #endif
7760
7761         strcpy(dev->name, name);
7762         dev->name_assign_type = name_assign_type;
7763         dev->group = INIT_NETDEV_GROUP;
7764         if (!dev->ethtool_ops)
7765                 dev->ethtool_ops = &default_ethtool_ops;
7766
7767         nf_hook_ingress_init(dev);
7768
7769         return dev;
7770
7771 free_all:
7772         free_netdev(dev);
7773         return NULL;
7774
7775 free_pcpu:
7776         free_percpu(dev->pcpu_refcnt);
7777 free_dev:
7778         netdev_freemem(dev);
7779         return NULL;
7780 }
7781 EXPORT_SYMBOL(alloc_netdev_mqs);
7782
7783 /**
7784  * free_netdev - free network device
7785  * @dev: device
7786  *
7787  * This function does the last stage of destroying an allocated device
7788  * interface. The reference to the device object is released. If this
7789  * is the last reference then it will be freed.Must be called in process
7790  * context.
7791  */
7792 void free_netdev(struct net_device *dev)
7793 {
7794         struct napi_struct *p, *n;
7795
7796         might_sleep();
7797         netif_free_tx_queues(dev);
7798 #ifdef CONFIG_SYSFS
7799         kvfree(dev->_rx);
7800 #endif
7801
7802         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7803
7804         /* Flush device addresses */
7805         dev_addr_flush(dev);
7806
7807         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7808                 netif_napi_del(p);
7809
7810         free_percpu(dev->pcpu_refcnt);
7811         dev->pcpu_refcnt = NULL;
7812
7813         /*  Compatibility with error handling in drivers */
7814         if (dev->reg_state == NETREG_UNINITIALIZED) {
7815                 netdev_freemem(dev);
7816                 return;
7817         }
7818
7819         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7820         dev->reg_state = NETREG_RELEASED;
7821
7822         /* will free via device release */
7823         put_device(&dev->dev);
7824 }
7825 EXPORT_SYMBOL(free_netdev);
7826
7827 /**
7828  *      synchronize_net -  Synchronize with packet receive processing
7829  *
7830  *      Wait for packets currently being received to be done.
7831  *      Does not block later packets from starting.
7832  */
7833 void synchronize_net(void)
7834 {
7835         might_sleep();
7836         if (rtnl_is_locked())
7837                 synchronize_rcu_expedited();
7838         else
7839                 synchronize_rcu();
7840 }
7841 EXPORT_SYMBOL(synchronize_net);
7842
7843 /**
7844  *      unregister_netdevice_queue - remove device from the kernel
7845  *      @dev: device
7846  *      @head: list
7847  *
7848  *      This function shuts down a device interface and removes it
7849  *      from the kernel tables.
7850  *      If head not NULL, device is queued to be unregistered later.
7851  *
7852  *      Callers must hold the rtnl semaphore.  You may want
7853  *      unregister_netdev() instead of this.
7854  */
7855
7856 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7857 {
7858         ASSERT_RTNL();
7859
7860         if (head) {
7861                 list_move_tail(&dev->unreg_list, head);
7862         } else {
7863                 rollback_registered(dev);
7864                 /* Finish processing unregister after unlock */
7865                 net_set_todo(dev);
7866         }
7867 }
7868 EXPORT_SYMBOL(unregister_netdevice_queue);
7869
7870 /**
7871  *      unregister_netdevice_many - unregister many devices
7872  *      @head: list of devices
7873  *
7874  *  Note: As most callers use a stack allocated list_head,
7875  *  we force a list_del() to make sure stack wont be corrupted later.
7876  */
7877 void unregister_netdevice_many(struct list_head *head)
7878 {
7879         struct net_device *dev;
7880
7881         if (!list_empty(head)) {
7882                 rollback_registered_many(head);
7883                 list_for_each_entry(dev, head, unreg_list)
7884                         net_set_todo(dev);
7885                 list_del(head);
7886         }
7887 }
7888 EXPORT_SYMBOL(unregister_netdevice_many);
7889
7890 /**
7891  *      unregister_netdev - remove device from the kernel
7892  *      @dev: device
7893  *
7894  *      This function shuts down a device interface and removes it
7895  *      from the kernel tables.
7896  *
7897  *      This is just a wrapper for unregister_netdevice that takes
7898  *      the rtnl semaphore.  In general you want to use this and not
7899  *      unregister_netdevice.
7900  */
7901 void unregister_netdev(struct net_device *dev)
7902 {
7903         rtnl_lock();
7904         unregister_netdevice(dev);
7905         rtnl_unlock();
7906 }
7907 EXPORT_SYMBOL(unregister_netdev);
7908
7909 /**
7910  *      dev_change_net_namespace - move device to different nethost namespace
7911  *      @dev: device
7912  *      @net: network namespace
7913  *      @pat: If not NULL name pattern to try if the current device name
7914  *            is already taken in the destination network namespace.
7915  *
7916  *      This function shuts down a device interface and moves it
7917  *      to a new network namespace. On success 0 is returned, on
7918  *      a failure a netagive errno code is returned.
7919  *
7920  *      Callers must hold the rtnl semaphore.
7921  */
7922
7923 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7924 {
7925         int err;
7926
7927         ASSERT_RTNL();
7928
7929         /* Don't allow namespace local devices to be moved. */
7930         err = -EINVAL;
7931         if (dev->features & NETIF_F_NETNS_LOCAL)
7932                 goto out;
7933
7934         /* Ensure the device has been registrered */
7935         if (dev->reg_state != NETREG_REGISTERED)
7936                 goto out;
7937
7938         /* Get out if there is nothing todo */
7939         err = 0;
7940         if (net_eq(dev_net(dev), net))
7941                 goto out;
7942
7943         /* Pick the destination device name, and ensure
7944          * we can use it in the destination network namespace.
7945          */
7946         err = -EEXIST;
7947         if (__dev_get_by_name(net, dev->name)) {
7948                 /* We get here if we can't use the current device name */
7949                 if (!pat)
7950                         goto out;
7951                 if (dev_get_valid_name(net, dev, pat) < 0)
7952                         goto out;
7953         }
7954
7955         /*
7956          * And now a mini version of register_netdevice unregister_netdevice.
7957          */
7958
7959         /* If device is running close it first. */
7960         dev_close(dev);
7961
7962         /* And unlink it from device chain */
7963         err = -ENODEV;
7964         unlist_netdevice(dev);
7965
7966         synchronize_net();
7967
7968         /* Shutdown queueing discipline. */
7969         dev_shutdown(dev);
7970
7971         /* Notify protocols, that we are about to destroy
7972          * this device. They should clean all the things.
7973          *
7974          * Note that dev->reg_state stays at NETREG_REGISTERED.
7975          * This is wanted because this way 8021q and macvlan know
7976          * the device is just moving and can keep their slaves up.
7977          */
7978         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7979         rcu_barrier();
7980         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7981         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7982
7983         /*
7984          *      Flush the unicast and multicast chains
7985          */
7986         dev_uc_flush(dev);
7987         dev_mc_flush(dev);
7988
7989         /* Send a netdev-removed uevent to the old namespace */
7990         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7991         netdev_adjacent_del_links(dev);
7992
7993         /* Actually switch the network namespace */
7994         dev_net_set(dev, net);
7995
7996         /* If there is an ifindex conflict assign a new one */
7997         if (__dev_get_by_index(net, dev->ifindex))
7998                 dev->ifindex = dev_new_index(net);
7999
8000         /* Send a netdev-add uevent to the new namespace */
8001         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8002         netdev_adjacent_add_links(dev);
8003
8004         /* Fixup kobjects */
8005         err = device_rename(&dev->dev, dev->name);
8006         WARN_ON(err);
8007
8008         /* Add the device back in the hashes */
8009         list_netdevice(dev);
8010
8011         /* Notify protocols, that a new device appeared. */
8012         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8013
8014         /*
8015          *      Prevent userspace races by waiting until the network
8016          *      device is fully setup before sending notifications.
8017          */
8018         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8019
8020         synchronize_net();
8021         err = 0;
8022 out:
8023         return err;
8024 }
8025 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8026
8027 static int dev_cpu_dead(unsigned int oldcpu)
8028 {
8029         struct sk_buff **list_skb;
8030         struct sk_buff *skb;
8031         unsigned int cpu;
8032         struct softnet_data *sd, *oldsd;
8033
8034         local_irq_disable();
8035         cpu = smp_processor_id();
8036         sd = &per_cpu(softnet_data, cpu);
8037         oldsd = &per_cpu(softnet_data, oldcpu);
8038
8039         /* Find end of our completion_queue. */
8040         list_skb = &sd->completion_queue;
8041         while (*list_skb)
8042                 list_skb = &(*list_skb)->next;
8043         /* Append completion queue from offline CPU. */
8044         *list_skb = oldsd->completion_queue;
8045         oldsd->completion_queue = NULL;
8046
8047         /* Append output queue from offline CPU. */
8048         if (oldsd->output_queue) {
8049                 *sd->output_queue_tailp = oldsd->output_queue;
8050                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8051                 oldsd->output_queue = NULL;
8052                 oldsd->output_queue_tailp = &oldsd->output_queue;
8053         }
8054         /* Append NAPI poll list from offline CPU, with one exception :
8055          * process_backlog() must be called by cpu owning percpu backlog.
8056          * We properly handle process_queue & input_pkt_queue later.
8057          */
8058         while (!list_empty(&oldsd->poll_list)) {
8059                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8060                                                             struct napi_struct,
8061                                                             poll_list);
8062
8063                 list_del_init(&napi->poll_list);
8064                 if (napi->poll == process_backlog)
8065                         napi->state = 0;
8066                 else
8067                         ____napi_schedule(sd, napi);
8068         }
8069
8070         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8071         local_irq_enable();
8072
8073         /* Process offline CPU's input_pkt_queue */
8074         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8075                 netif_rx_ni(skb);
8076                 input_queue_head_incr(oldsd);
8077         }
8078         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8079                 netif_rx_ni(skb);
8080                 input_queue_head_incr(oldsd);
8081         }
8082
8083         return 0;
8084 }
8085
8086 /**
8087  *      netdev_increment_features - increment feature set by one
8088  *      @all: current feature set
8089  *      @one: new feature set
8090  *      @mask: mask feature set
8091  *
8092  *      Computes a new feature set after adding a device with feature set
8093  *      @one to the master device with current feature set @all.  Will not
8094  *      enable anything that is off in @mask. Returns the new feature set.
8095  */
8096 netdev_features_t netdev_increment_features(netdev_features_t all,
8097         netdev_features_t one, netdev_features_t mask)
8098 {
8099         if (mask & NETIF_F_HW_CSUM)
8100                 mask |= NETIF_F_CSUM_MASK;
8101         mask |= NETIF_F_VLAN_CHALLENGED;
8102
8103         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8104         all &= one | ~NETIF_F_ALL_FOR_ALL;
8105
8106         /* If one device supports hw checksumming, set for all. */
8107         if (all & NETIF_F_HW_CSUM)
8108                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8109
8110         return all;
8111 }
8112 EXPORT_SYMBOL(netdev_increment_features);
8113
8114 static struct hlist_head * __net_init netdev_create_hash(void)
8115 {
8116         int i;
8117         struct hlist_head *hash;
8118
8119         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8120         if (hash != NULL)
8121                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8122                         INIT_HLIST_HEAD(&hash[i]);
8123
8124         return hash;
8125 }
8126
8127 /* Initialize per network namespace state */
8128 static int __net_init netdev_init(struct net *net)
8129 {
8130         if (net != &init_net)
8131                 INIT_LIST_HEAD(&net->dev_base_head);
8132
8133         net->dev_name_head = netdev_create_hash();
8134         if (net->dev_name_head == NULL)
8135                 goto err_name;
8136
8137         net->dev_index_head = netdev_create_hash();
8138         if (net->dev_index_head == NULL)
8139                 goto err_idx;
8140
8141         return 0;
8142
8143 err_idx:
8144         kfree(net->dev_name_head);
8145 err_name:
8146         return -ENOMEM;
8147 }
8148
8149 /**
8150  *      netdev_drivername - network driver for the device
8151  *      @dev: network device
8152  *
8153  *      Determine network driver for device.
8154  */
8155 const char *netdev_drivername(const struct net_device *dev)
8156 {
8157         const struct device_driver *driver;
8158         const struct device *parent;
8159         const char *empty = "";
8160
8161         parent = dev->dev.parent;
8162         if (!parent)
8163                 return empty;
8164
8165         driver = parent->driver;
8166         if (driver && driver->name)
8167                 return driver->name;
8168         return empty;
8169 }
8170
8171 static void __netdev_printk(const char *level, const struct net_device *dev,
8172                             struct va_format *vaf)
8173 {
8174         if (dev && dev->dev.parent) {
8175                 dev_printk_emit(level[1] - '0',
8176                                 dev->dev.parent,
8177                                 "%s %s %s%s: %pV",
8178                                 dev_driver_string(dev->dev.parent),
8179                                 dev_name(dev->dev.parent),
8180                                 netdev_name(dev), netdev_reg_state(dev),
8181                                 vaf);
8182         } else if (dev) {
8183                 printk("%s%s%s: %pV",
8184                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8185         } else {
8186                 printk("%s(NULL net_device): %pV", level, vaf);
8187         }
8188 }
8189
8190 void netdev_printk(const char *level, const struct net_device *dev,
8191                    const char *format, ...)
8192 {
8193         struct va_format vaf;
8194         va_list args;
8195
8196         va_start(args, format);
8197
8198         vaf.fmt = format;
8199         vaf.va = &args;
8200
8201         __netdev_printk(level, dev, &vaf);
8202
8203         va_end(args);
8204 }
8205 EXPORT_SYMBOL(netdev_printk);
8206
8207 #define define_netdev_printk_level(func, level)                 \
8208 void func(const struct net_device *dev, const char *fmt, ...)   \
8209 {                                                               \
8210         struct va_format vaf;                                   \
8211         va_list args;                                           \
8212                                                                 \
8213         va_start(args, fmt);                                    \
8214                                                                 \
8215         vaf.fmt = fmt;                                          \
8216         vaf.va = &args;                                         \
8217                                                                 \
8218         __netdev_printk(level, dev, &vaf);                      \
8219                                                                 \
8220         va_end(args);                                           \
8221 }                                                               \
8222 EXPORT_SYMBOL(func);
8223
8224 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8225 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8226 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8227 define_netdev_printk_level(netdev_err, KERN_ERR);
8228 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8229 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8230 define_netdev_printk_level(netdev_info, KERN_INFO);
8231
8232 static void __net_exit netdev_exit(struct net *net)
8233 {
8234         kfree(net->dev_name_head);
8235         kfree(net->dev_index_head);
8236 }
8237
8238 static struct pernet_operations __net_initdata netdev_net_ops = {
8239         .init = netdev_init,
8240         .exit = netdev_exit,
8241 };
8242
8243 static void __net_exit default_device_exit(struct net *net)
8244 {
8245         struct net_device *dev, *aux;
8246         /*
8247          * Push all migratable network devices back to the
8248          * initial network namespace
8249          */
8250         rtnl_lock();
8251         for_each_netdev_safe(net, dev, aux) {
8252                 int err;
8253                 char fb_name[IFNAMSIZ];
8254
8255                 /* Ignore unmoveable devices (i.e. loopback) */
8256                 if (dev->features & NETIF_F_NETNS_LOCAL)
8257                         continue;
8258
8259                 /* Leave virtual devices for the generic cleanup */
8260                 if (dev->rtnl_link_ops)
8261                         continue;
8262
8263                 /* Push remaining network devices to init_net */
8264                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8265                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8266                 if (err) {
8267                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8268                                  __func__, dev->name, err);
8269                         BUG();
8270                 }
8271         }
8272         rtnl_unlock();
8273 }
8274
8275 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8276 {
8277         /* Return with the rtnl_lock held when there are no network
8278          * devices unregistering in any network namespace in net_list.
8279          */
8280         struct net *net;
8281         bool unregistering;
8282         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8283
8284         add_wait_queue(&netdev_unregistering_wq, &wait);
8285         for (;;) {
8286                 unregistering = false;
8287                 rtnl_lock();
8288                 list_for_each_entry(net, net_list, exit_list) {
8289                         if (net->dev_unreg_count > 0) {
8290                                 unregistering = true;
8291                                 break;
8292                         }
8293                 }
8294                 if (!unregistering)
8295                         break;
8296                 __rtnl_unlock();
8297
8298                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8299         }
8300         remove_wait_queue(&netdev_unregistering_wq, &wait);
8301 }
8302
8303 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8304 {
8305         /* At exit all network devices most be removed from a network
8306          * namespace.  Do this in the reverse order of registration.
8307          * Do this across as many network namespaces as possible to
8308          * improve batching efficiency.
8309          */
8310         struct net_device *dev;
8311         struct net *net;
8312         LIST_HEAD(dev_kill_list);
8313
8314         /* To prevent network device cleanup code from dereferencing
8315          * loopback devices or network devices that have been freed
8316          * wait here for all pending unregistrations to complete,
8317          * before unregistring the loopback device and allowing the
8318          * network namespace be freed.
8319          *
8320          * The netdev todo list containing all network devices
8321          * unregistrations that happen in default_device_exit_batch
8322          * will run in the rtnl_unlock() at the end of
8323          * default_device_exit_batch.
8324          */
8325         rtnl_lock_unregistering(net_list);
8326         list_for_each_entry(net, net_list, exit_list) {
8327                 for_each_netdev_reverse(net, dev) {
8328                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8329                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8330                         else
8331                                 unregister_netdevice_queue(dev, &dev_kill_list);
8332                 }
8333         }
8334         unregister_netdevice_many(&dev_kill_list);
8335         rtnl_unlock();
8336 }
8337
8338 static struct pernet_operations __net_initdata default_device_ops = {
8339         .exit = default_device_exit,
8340         .exit_batch = default_device_exit_batch,
8341 };
8342
8343 /*
8344  *      Initialize the DEV module. At boot time this walks the device list and
8345  *      unhooks any devices that fail to initialise (normally hardware not
8346  *      present) and leaves us with a valid list of present and active devices.
8347  *
8348  */
8349
8350 /*
8351  *       This is called single threaded during boot, so no need
8352  *       to take the rtnl semaphore.
8353  */
8354 static int __init net_dev_init(void)
8355 {
8356         int i, rc = -ENOMEM;
8357
8358         BUG_ON(!dev_boot_phase);
8359
8360         if (dev_proc_init())
8361                 goto out;
8362
8363         if (netdev_kobject_init())
8364                 goto out;
8365
8366         INIT_LIST_HEAD(&ptype_all);
8367         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8368                 INIT_LIST_HEAD(&ptype_base[i]);
8369
8370         INIT_LIST_HEAD(&offload_base);
8371
8372         if (register_pernet_subsys(&netdev_net_ops))
8373                 goto out;
8374
8375         /*
8376          *      Initialise the packet receive queues.
8377          */
8378
8379         for_each_possible_cpu(i) {
8380                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8381                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8382
8383                 INIT_WORK(flush, flush_backlog);
8384
8385                 skb_queue_head_init(&sd->input_pkt_queue);
8386                 skb_queue_head_init(&sd->process_queue);
8387                 INIT_LIST_HEAD(&sd->poll_list);
8388                 sd->output_queue_tailp = &sd->output_queue;
8389 #ifdef CONFIG_RPS
8390                 sd->csd.func = rps_trigger_softirq;
8391                 sd->csd.info = sd;
8392                 sd->cpu = i;
8393 #endif
8394
8395                 sd->backlog.poll = process_backlog;
8396                 sd->backlog.weight = weight_p;
8397         }
8398
8399         dev_boot_phase = 0;
8400
8401         /* The loopback device is special if any other network devices
8402          * is present in a network namespace the loopback device must
8403          * be present. Since we now dynamically allocate and free the
8404          * loopback device ensure this invariant is maintained by
8405          * keeping the loopback device as the first device on the
8406          * list of network devices.  Ensuring the loopback devices
8407          * is the first device that appears and the last network device
8408          * that disappears.
8409          */
8410         if (register_pernet_device(&loopback_net_ops))
8411                 goto out;
8412
8413         if (register_pernet_device(&default_device_ops))
8414                 goto out;
8415
8416         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8417         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8418
8419         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8420                                        NULL, dev_cpu_dead);
8421         WARN_ON(rc < 0);
8422         dst_subsys_init();
8423         rc = 0;
8424 out:
8425         return rc;
8426 }
8427
8428 subsys_initcall(net_dev_init);