]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/core/dev.c
Merge remote-tracking branch 'tty/tty-next'
[karo-tx-linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142
143 #include "net-sysfs.h"
144
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly;       /* Taps */
155 static struct list_head offload_base __read_mostly;
156
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159                                          struct net_device *dev,
160                                          struct netdev_notifier_info *info);
161
162 /*
163  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164  * semaphore.
165  *
166  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167  *
168  * Writers must hold the rtnl semaphore while they loop through the
169  * dev_base_head list, and hold dev_base_lock for writing when they do the
170  * actual updates.  This allows pure readers to access the list even
171  * while a writer is preparing to update it.
172  *
173  * To put it another way, dev_base_lock is held for writing only to
174  * protect against pure readers; the rtnl semaphore provides the
175  * protection against other writers.
176  *
177  * See, for example usages, register_netdevice() and
178  * unregister_netdevice(), which must be called with the rtnl
179  * semaphore held.
180  */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189
190 static seqcount_t devnet_rename_seq;
191
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194         while (++net->dev_base_seq == 0);
195 }
196
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
201         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212         spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219         spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226         struct net *net = dev_net(dev);
227
228         ASSERT_RTNL();
229
230         write_lock_bh(&dev_base_lock);
231         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233         hlist_add_head_rcu(&dev->index_hlist,
234                            dev_index_hash(net, dev->ifindex));
235         write_unlock_bh(&dev_base_lock);
236
237         dev_base_seq_inc(net);
238 }
239
240 /* Device list removal
241  * caller must respect a RCU grace period before freeing/reusing dev
242  */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245         ASSERT_RTNL();
246
247         /* Unlink dev from the device chain */
248         write_lock_bh(&dev_base_lock);
249         list_del_rcu(&dev->dev_list);
250         hlist_del_rcu(&dev->name_hlist);
251         hlist_del_rcu(&dev->index_hlist);
252         write_unlock_bh(&dev_base_lock);
253
254         dev_base_seq_inc(dev_net(dev));
255 }
256
257 /*
258  *      Our notifier list
259  */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264  *      Device drivers call our routines to queue packets here. We empty the
265  *      queue in the local softnet handler.
266  */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274  * according to dev->type
275  */
276 static const unsigned short netdev_lock_type[] =
277         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315         int i;
316
317         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318                 if (netdev_lock_type[i] == dev_type)
319                         return i;
320         /* the last key is used by default */
321         return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325                                                  unsigned short dev_type)
326 {
327         int i;
328
329         i = netdev_lock_pos(dev_type);
330         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331                                    netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336         int i;
337
338         i = netdev_lock_pos(dev->type);
339         lockdep_set_class_and_name(&dev->addr_list_lock,
340                                    &netdev_addr_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345                                                  unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355                 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360  *      Add a protocol ID to the list. Now that the input handler is
361  *      smarter we can dispense with all the messy stuff that used to be
362  *      here.
363  *
364  *      BEWARE!!! Protocol handlers, mangling input packets,
365  *      MUST BE last in hash buckets and checking protocol handlers
366  *      MUST start from promiscuous ptype_all chain in net_bh.
367  *      It is true now, do not change it.
368  *      Explanation follows: if protocol handler, mangling packet, will
369  *      be the first on list, it is not able to sense, that packet
370  *      is cloned and should be copied-on-write, so that it will
371  *      change it and subsequent readers will get broken packet.
372  *                                                      --ANK (980803)
373  */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377         if (pt->type == htons(ETH_P_ALL))
378                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379         else
380                 return pt->dev ? &pt->dev->ptype_specific :
381                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383
384 /**
385  *      dev_add_pack - add packet handler
386  *      @pt: packet type declaration
387  *
388  *      Add a protocol handler to the networking stack. The passed &packet_type
389  *      is linked into kernel lists and may not be freed until it has been
390  *      removed from the kernel lists.
391  *
392  *      This call does not sleep therefore it can not
393  *      guarantee all CPU's that are in middle of receiving packets
394  *      will see the new packet type (until the next received packet).
395  */
396
397 void dev_add_pack(struct packet_type *pt)
398 {
399         struct list_head *head = ptype_head(pt);
400
401         spin_lock(&ptype_lock);
402         list_add_rcu(&pt->list, head);
403         spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406
407 /**
408  *      __dev_remove_pack        - remove packet handler
409  *      @pt: packet type declaration
410  *
411  *      Remove a protocol handler that was previously added to the kernel
412  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
413  *      from the kernel lists and can be freed or reused once this function
414  *      returns.
415  *
416  *      The packet type might still be in use by receivers
417  *      and must not be freed until after all the CPU's have gone
418  *      through a quiescent state.
419  */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422         struct list_head *head = ptype_head(pt);
423         struct packet_type *pt1;
424
425         spin_lock(&ptype_lock);
426
427         list_for_each_entry(pt1, head, list) {
428                 if (pt == pt1) {
429                         list_del_rcu(&pt->list);
430                         goto out;
431                 }
432         }
433
434         pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436         spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439
440 /**
441  *      dev_remove_pack  - remove packet handler
442  *      @pt: packet type declaration
443  *
444  *      Remove a protocol handler that was previously added to the kernel
445  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
446  *      from the kernel lists and can be freed or reused once this function
447  *      returns.
448  *
449  *      This call sleeps to guarantee that no CPU is looking at the packet
450  *      type after return.
451  */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454         __dev_remove_pack(pt);
455
456         synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459
460
461 /**
462  *      dev_add_offload - register offload handlers
463  *      @po: protocol offload declaration
464  *
465  *      Add protocol offload handlers to the networking stack. The passed
466  *      &proto_offload is linked into kernel lists and may not be freed until
467  *      it has been removed from the kernel lists.
468  *
469  *      This call does not sleep therefore it can not
470  *      guarantee all CPU's that are in middle of receiving packets
471  *      will see the new offload handlers (until the next received packet).
472  */
473 void dev_add_offload(struct packet_offload *po)
474 {
475         struct packet_offload *elem;
476
477         spin_lock(&offload_lock);
478         list_for_each_entry(elem, &offload_base, list) {
479                 if (po->priority < elem->priority)
480                         break;
481         }
482         list_add_rcu(&po->list, elem->list.prev);
483         spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486
487 /**
488  *      __dev_remove_offload     - remove offload handler
489  *      @po: packet offload declaration
490  *
491  *      Remove a protocol offload handler that was previously added to the
492  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
493  *      is removed from the kernel lists and can be freed or reused once this
494  *      function returns.
495  *
496  *      The packet type might still be in use by receivers
497  *      and must not be freed until after all the CPU's have gone
498  *      through a quiescent state.
499  */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502         struct list_head *head = &offload_base;
503         struct packet_offload *po1;
504
505         spin_lock(&offload_lock);
506
507         list_for_each_entry(po1, head, list) {
508                 if (po == po1) {
509                         list_del_rcu(&po->list);
510                         goto out;
511                 }
512         }
513
514         pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516         spin_unlock(&offload_lock);
517 }
518
519 /**
520  *      dev_remove_offload       - remove packet offload handler
521  *      @po: packet offload declaration
522  *
523  *      Remove a packet offload handler that was previously added to the kernel
524  *      offload handlers by dev_add_offload(). The passed &offload_type is
525  *      removed from the kernel lists and can be freed or reused once this
526  *      function returns.
527  *
528  *      This call sleeps to guarantee that no CPU is looking at the packet
529  *      type after return.
530  */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533         __dev_remove_offload(po);
534
535         synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538
539 /******************************************************************************
540
541                       Device Boot-time Settings Routines
542
543 *******************************************************************************/
544
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548 /**
549  *      netdev_boot_setup_add   - add new setup entry
550  *      @name: name of the device
551  *      @map: configured settings for the device
552  *
553  *      Adds new setup entry to the dev_boot_setup list.  The function
554  *      returns 0 on error and 1 on success.  This is a generic routine to
555  *      all netdevices.
556  */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559         struct netdev_boot_setup *s;
560         int i;
561
562         s = dev_boot_setup;
563         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565                         memset(s[i].name, 0, sizeof(s[i].name));
566                         strlcpy(s[i].name, name, IFNAMSIZ);
567                         memcpy(&s[i].map, map, sizeof(s[i].map));
568                         break;
569                 }
570         }
571
572         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574
575 /**
576  *      netdev_boot_setup_check - check boot time settings
577  *      @dev: the netdevice
578  *
579  *      Check boot time settings for the device.
580  *      The found settings are set for the device to be used
581  *      later in the device probing.
582  *      Returns 0 if no settings found, 1 if they are.
583  */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586         struct netdev_boot_setup *s = dev_boot_setup;
587         int i;
588
589         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591                     !strcmp(dev->name, s[i].name)) {
592                         dev->irq        = s[i].map.irq;
593                         dev->base_addr  = s[i].map.base_addr;
594                         dev->mem_start  = s[i].map.mem_start;
595                         dev->mem_end    = s[i].map.mem_end;
596                         return 1;
597                 }
598         }
599         return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602
603
604 /**
605  *      netdev_boot_base        - get address from boot time settings
606  *      @prefix: prefix for network device
607  *      @unit: id for network device
608  *
609  *      Check boot time settings for the base address of device.
610  *      The found settings are set for the device to be used
611  *      later in the device probing.
612  *      Returns 0 if no settings found.
613  */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616         const struct netdev_boot_setup *s = dev_boot_setup;
617         char name[IFNAMSIZ];
618         int i;
619
620         sprintf(name, "%s%d", prefix, unit);
621
622         /*
623          * If device already registered then return base of 1
624          * to indicate not to probe for this interface
625          */
626         if (__dev_get_by_name(&init_net, name))
627                 return 1;
628
629         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630                 if (!strcmp(name, s[i].name))
631                         return s[i].map.base_addr;
632         return 0;
633 }
634
635 /*
636  * Saves at boot time configured settings for any netdevice.
637  */
638 int __init netdev_boot_setup(char *str)
639 {
640         int ints[5];
641         struct ifmap map;
642
643         str = get_options(str, ARRAY_SIZE(ints), ints);
644         if (!str || !*str)
645                 return 0;
646
647         /* Save settings */
648         memset(&map, 0, sizeof(map));
649         if (ints[0] > 0)
650                 map.irq = ints[1];
651         if (ints[0] > 1)
652                 map.base_addr = ints[2];
653         if (ints[0] > 2)
654                 map.mem_start = ints[3];
655         if (ints[0] > 3)
656                 map.mem_end = ints[4];
657
658         /* Add new entry to the list */
659         return netdev_boot_setup_add(str, &map);
660 }
661
662 __setup("netdev=", netdev_boot_setup);
663
664 /*******************************************************************************
665
666                             Device Interface Subroutines
667
668 *******************************************************************************/
669
670 /**
671  *      dev_get_iflink  - get 'iflink' value of a interface
672  *      @dev: targeted interface
673  *
674  *      Indicates the ifindex the interface is linked to.
675  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
676  */
677
678 int dev_get_iflink(const struct net_device *dev)
679 {
680         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681                 return dev->netdev_ops->ndo_get_iflink(dev);
682
683         return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686
687 /**
688  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
689  *      @dev: targeted interface
690  *      @skb: The packet.
691  *
692  *      For better visibility of tunnel traffic OVS needs to retrieve
693  *      egress tunnel information for a packet. Following API allows
694  *      user to get this info.
695  */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698         struct ip_tunnel_info *info;
699
700         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
701                 return -EINVAL;
702
703         info = skb_tunnel_info_unclone(skb);
704         if (!info)
705                 return -ENOMEM;
706         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707                 return -EINVAL;
708
709         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
713 /**
714  *      __dev_get_by_name       - find a device by its name
715  *      @net: the applicable net namespace
716  *      @name: name to find
717  *
718  *      Find an interface by name. Must be called under RTNL semaphore
719  *      or @dev_base_lock. If the name is found a pointer to the device
720  *      is returned. If the name is not found then %NULL is returned. The
721  *      reference counters are not incremented so the caller must be
722  *      careful with locks.
723  */
724
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727         struct net_device *dev;
728         struct hlist_head *head = dev_name_hash(net, name);
729
730         hlist_for_each_entry(dev, head, name_hlist)
731                 if (!strncmp(dev->name, name, IFNAMSIZ))
732                         return dev;
733
734         return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737
738 /**
739  *      dev_get_by_name_rcu     - find a device by its name
740  *      @net: the applicable net namespace
741  *      @name: name to find
742  *
743  *      Find an interface by name.
744  *      If the name is found a pointer to the device is returned.
745  *      If the name is not found then %NULL is returned.
746  *      The reference counters are not incremented so the caller must be
747  *      careful with locks. The caller must hold RCU lock.
748  */
749
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752         struct net_device *dev;
753         struct hlist_head *head = dev_name_hash(net, name);
754
755         hlist_for_each_entry_rcu(dev, head, name_hlist)
756                 if (!strncmp(dev->name, name, IFNAMSIZ))
757                         return dev;
758
759         return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         if (dev)
782                 dev_hold(dev);
783         rcu_read_unlock();
784         return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787
788 /**
789  *      __dev_get_by_index - find a device by its ifindex
790  *      @net: the applicable net namespace
791  *      @ifindex: index of device
792  *
793  *      Search for an interface by index. Returns %NULL if the device
794  *      is not found or a pointer to the device. The device has not
795  *      had its reference counter increased so the caller must be careful
796  *      about locking. The caller must hold either the RTNL semaphore
797  *      or @dev_base_lock.
798  */
799
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802         struct net_device *dev;
803         struct hlist_head *head = dev_index_hash(net, ifindex);
804
805         hlist_for_each_entry(dev, head, index_hlist)
806                 if (dev->ifindex == ifindex)
807                         return dev;
808
809         return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812
813 /**
814  *      dev_get_by_index_rcu - find a device by its ifindex
815  *      @net: the applicable net namespace
816  *      @ifindex: index of device
817  *
818  *      Search for an interface by index. Returns %NULL if the device
819  *      is not found or a pointer to the device. The device has not
820  *      had its reference counter increased so the caller must be careful
821  *      about locking. The caller must hold RCU lock.
822  */
823
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826         struct net_device *dev;
827         struct hlist_head *head = dev_index_hash(net, ifindex);
828
829         hlist_for_each_entry_rcu(dev, head, index_hlist)
830                 if (dev->ifindex == ifindex)
831                         return dev;
832
833         return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836
837
838 /**
839  *      dev_get_by_index - find a device by its ifindex
840  *      @net: the applicable net namespace
841  *      @ifindex: index of device
842  *
843  *      Search for an interface by index. Returns NULL if the device
844  *      is not found or a pointer to the device. The device returned has
845  *      had a reference added and the pointer is safe until the user calls
846  *      dev_put to indicate they have finished with it.
847  */
848
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851         struct net_device *dev;
852
853         rcu_read_lock();
854         dev = dev_get_by_index_rcu(net, ifindex);
855         if (dev)
856                 dev_hold(dev);
857         rcu_read_unlock();
858         return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861
862 /**
863  *      netdev_get_name - get a netdevice name, knowing its ifindex.
864  *      @net: network namespace
865  *      @name: a pointer to the buffer where the name will be stored.
866  *      @ifindex: the ifindex of the interface to get the name from.
867  *
868  *      The use of raw_seqcount_begin() and cond_resched() before
869  *      retrying is required as we want to give the writers a chance
870  *      to complete when CONFIG_PREEMPT is not set.
871  */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874         struct net_device *dev;
875         unsigned int seq;
876
877 retry:
878         seq = raw_seqcount_begin(&devnet_rename_seq);
879         rcu_read_lock();
880         dev = dev_get_by_index_rcu(net, ifindex);
881         if (!dev) {
882                 rcu_read_unlock();
883                 return -ENODEV;
884         }
885
886         strcpy(name, dev->name);
887         rcu_read_unlock();
888         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889                 cond_resched();
890                 goto retry;
891         }
892
893         return 0;
894 }
895
896 /**
897  *      dev_getbyhwaddr_rcu - find a device by its hardware address
898  *      @net: the applicable net namespace
899  *      @type: media type of device
900  *      @ha: hardware address
901  *
902  *      Search for an interface by MAC address. Returns NULL if the device
903  *      is not found or a pointer to the device.
904  *      The caller must hold RCU or RTNL.
905  *      The returned device has not had its ref count increased
906  *      and the caller must therefore be careful about locking
907  *
908  */
909
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911                                        const char *ha)
912 {
913         struct net_device *dev;
914
915         for_each_netdev_rcu(net, dev)
916                 if (dev->type == type &&
917                     !memcmp(dev->dev_addr, ha, dev->addr_len))
918                         return dev;
919
920         return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926         struct net_device *dev;
927
928         ASSERT_RTNL();
929         for_each_netdev(net, dev)
930                 if (dev->type == type)
931                         return dev;
932
933         return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939         struct net_device *dev, *ret = NULL;
940
941         rcu_read_lock();
942         for_each_netdev_rcu(net, dev)
943                 if (dev->type == type) {
944                         dev_hold(dev);
945                         ret = dev;
946                         break;
947                 }
948         rcu_read_unlock();
949         return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953 /**
954  *      __dev_get_by_flags - find any device with given flags
955  *      @net: the applicable net namespace
956  *      @if_flags: IFF_* values
957  *      @mask: bitmask of bits in if_flags to check
958  *
959  *      Search for any interface with the given flags. Returns NULL if a device
960  *      is not found or a pointer to the device. Must be called inside
961  *      rtnl_lock(), and result refcount is unchanged.
962  */
963
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965                                       unsigned short mask)
966 {
967         struct net_device *dev, *ret;
968
969         ASSERT_RTNL();
970
971         ret = NULL;
972         for_each_netdev(net, dev) {
973                 if (((dev->flags ^ if_flags) & mask) == 0) {
974                         ret = dev;
975                         break;
976                 }
977         }
978         return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981
982 /**
983  *      dev_valid_name - check if name is okay for network device
984  *      @name: name string
985  *
986  *      Network device names need to be valid file names to
987  *      to allow sysfs to work.  We also disallow any kind of
988  *      whitespace.
989  */
990 bool dev_valid_name(const char *name)
991 {
992         if (*name == '\0')
993                 return false;
994         if (strlen(name) >= IFNAMSIZ)
995                 return false;
996         if (!strcmp(name, ".") || !strcmp(name, ".."))
997                 return false;
998
999         while (*name) {
1000                 if (*name == '/' || *name == ':' || isspace(*name))
1001                         return false;
1002                 name++;
1003         }
1004         return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007
1008 /**
1009  *      __dev_alloc_name - allocate a name for a device
1010  *      @net: network namespace to allocate the device name in
1011  *      @name: name format string
1012  *      @buf:  scratch buffer and result name string
1013  *
1014  *      Passed a format string - eg "lt%d" it will try and find a suitable
1015  *      id. It scans list of devices to build up a free map, then chooses
1016  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1017  *      while allocating the name and adding the device in order to avoid
1018  *      duplicates.
1019  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020  *      Returns the number of the unit assigned or a negative errno code.
1021  */
1022
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025         int i = 0;
1026         const char *p;
1027         const int max_netdevices = 8*PAGE_SIZE;
1028         unsigned long *inuse;
1029         struct net_device *d;
1030
1031         p = strnchr(name, IFNAMSIZ-1, '%');
1032         if (p) {
1033                 /*
1034                  * Verify the string as this thing may have come from
1035                  * the user.  There must be either one "%d" and no other "%"
1036                  * characters.
1037                  */
1038                 if (p[1] != 'd' || strchr(p + 2, '%'))
1039                         return -EINVAL;
1040
1041                 /* Use one page as a bit array of possible slots */
1042                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043                 if (!inuse)
1044                         return -ENOMEM;
1045
1046                 for_each_netdev(net, d) {
1047                         if (!sscanf(d->name, name, &i))
1048                                 continue;
1049                         if (i < 0 || i >= max_netdevices)
1050                                 continue;
1051
1052                         /*  avoid cases where sscanf is not exact inverse of printf */
1053                         snprintf(buf, IFNAMSIZ, name, i);
1054                         if (!strncmp(buf, d->name, IFNAMSIZ))
1055                                 set_bit(i, inuse);
1056                 }
1057
1058                 i = find_first_zero_bit(inuse, max_netdevices);
1059                 free_page((unsigned long) inuse);
1060         }
1061
1062         if (buf != name)
1063                 snprintf(buf, IFNAMSIZ, name, i);
1064         if (!__dev_get_by_name(net, buf))
1065                 return i;
1066
1067         /* It is possible to run out of possible slots
1068          * when the name is long and there isn't enough space left
1069          * for the digits, or if all bits are used.
1070          */
1071         return -ENFILE;
1072 }
1073
1074 /**
1075  *      dev_alloc_name - allocate a name for a device
1076  *      @dev: device
1077  *      @name: name format string
1078  *
1079  *      Passed a format string - eg "lt%d" it will try and find a suitable
1080  *      id. It scans list of devices to build up a free map, then chooses
1081  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1082  *      while allocating the name and adding the device in order to avoid
1083  *      duplicates.
1084  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085  *      Returns the number of the unit assigned or a negative errno code.
1086  */
1087
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090         char buf[IFNAMSIZ];
1091         struct net *net;
1092         int ret;
1093
1094         BUG_ON(!dev_net(dev));
1095         net = dev_net(dev);
1096         ret = __dev_alloc_name(net, name, buf);
1097         if (ret >= 0)
1098                 strlcpy(dev->name, buf, IFNAMSIZ);
1099         return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102
1103 static int dev_alloc_name_ns(struct net *net,
1104                              struct net_device *dev,
1105                              const char *name)
1106 {
1107         char buf[IFNAMSIZ];
1108         int ret;
1109
1110         ret = __dev_alloc_name(net, name, buf);
1111         if (ret >= 0)
1112                 strlcpy(dev->name, buf, IFNAMSIZ);
1113         return ret;
1114 }
1115
1116 static int dev_get_valid_name(struct net *net,
1117                               struct net_device *dev,
1118                               const char *name)
1119 {
1120         BUG_ON(!net);
1121
1122         if (!dev_valid_name(name))
1123                 return -EINVAL;
1124
1125         if (strchr(name, '%'))
1126                 return dev_alloc_name_ns(net, dev, name);
1127         else if (__dev_get_by_name(net, name))
1128                 return -EEXIST;
1129         else if (dev->name != name)
1130                 strlcpy(dev->name, name, IFNAMSIZ);
1131
1132         return 0;
1133 }
1134
1135 /**
1136  *      dev_change_name - change name of a device
1137  *      @dev: device
1138  *      @newname: name (or format string) must be at least IFNAMSIZ
1139  *
1140  *      Change name of a device, can pass format strings "eth%d".
1141  *      for wildcarding.
1142  */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145         unsigned char old_assign_type;
1146         char oldname[IFNAMSIZ];
1147         int err = 0;
1148         int ret;
1149         struct net *net;
1150
1151         ASSERT_RTNL();
1152         BUG_ON(!dev_net(dev));
1153
1154         net = dev_net(dev);
1155         if (dev->flags & IFF_UP)
1156                 return -EBUSY;
1157
1158         write_seqcount_begin(&devnet_rename_seq);
1159
1160         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161                 write_seqcount_end(&devnet_rename_seq);
1162                 return 0;
1163         }
1164
1165         memcpy(oldname, dev->name, IFNAMSIZ);
1166
1167         err = dev_get_valid_name(net, dev, newname);
1168         if (err < 0) {
1169                 write_seqcount_end(&devnet_rename_seq);
1170                 return err;
1171         }
1172
1173         if (oldname[0] && !strchr(oldname, '%'))
1174                 netdev_info(dev, "renamed from %s\n", oldname);
1175
1176         old_assign_type = dev->name_assign_type;
1177         dev->name_assign_type = NET_NAME_RENAMED;
1178
1179 rollback:
1180         ret = device_rename(&dev->dev, dev->name);
1181         if (ret) {
1182                 memcpy(dev->name, oldname, IFNAMSIZ);
1183                 dev->name_assign_type = old_assign_type;
1184                 write_seqcount_end(&devnet_rename_seq);
1185                 return ret;
1186         }
1187
1188         write_seqcount_end(&devnet_rename_seq);
1189
1190         netdev_adjacent_rename_links(dev, oldname);
1191
1192         write_lock_bh(&dev_base_lock);
1193         hlist_del_rcu(&dev->name_hlist);
1194         write_unlock_bh(&dev_base_lock);
1195
1196         synchronize_rcu();
1197
1198         write_lock_bh(&dev_base_lock);
1199         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200         write_unlock_bh(&dev_base_lock);
1201
1202         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203         ret = notifier_to_errno(ret);
1204
1205         if (ret) {
1206                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207                 if (err >= 0) {
1208                         err = ret;
1209                         write_seqcount_begin(&devnet_rename_seq);
1210                         memcpy(dev->name, oldname, IFNAMSIZ);
1211                         memcpy(oldname, newname, IFNAMSIZ);
1212                         dev->name_assign_type = old_assign_type;
1213                         old_assign_type = NET_NAME_RENAMED;
1214                         goto rollback;
1215                 } else {
1216                         pr_err("%s: name change rollback failed: %d\n",
1217                                dev->name, ret);
1218                 }
1219         }
1220
1221         return err;
1222 }
1223
1224 /**
1225  *      dev_set_alias - change ifalias of a device
1226  *      @dev: device
1227  *      @alias: name up to IFALIASZ
1228  *      @len: limit of bytes to copy from info
1229  *
1230  *      Set ifalias for a device,
1231  */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234         char *new_ifalias;
1235
1236         ASSERT_RTNL();
1237
1238         if (len >= IFALIASZ)
1239                 return -EINVAL;
1240
1241         if (!len) {
1242                 kfree(dev->ifalias);
1243                 dev->ifalias = NULL;
1244                 return 0;
1245         }
1246
1247         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248         if (!new_ifalias)
1249                 return -ENOMEM;
1250         dev->ifalias = new_ifalias;
1251
1252         strlcpy(dev->ifalias, alias, len+1);
1253         return len;
1254 }
1255
1256
1257 /**
1258  *      netdev_features_change - device changes features
1259  *      @dev: device to cause notification
1260  *
1261  *      Called to indicate a device has changed features.
1262  */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268
1269 /**
1270  *      netdev_state_change - device changes state
1271  *      @dev: device to cause notification
1272  *
1273  *      Called to indicate a device has changed state. This function calls
1274  *      the notifier chains for netdev_chain and sends a NEWLINK message
1275  *      to the routing socket.
1276  */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279         if (dev->flags & IFF_UP) {
1280                 struct netdev_notifier_change_info change_info;
1281
1282                 change_info.flags_changed = 0;
1283                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284                                               &change_info.info);
1285                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286         }
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289
1290 /**
1291  *      netdev_notify_peers - notify network peers about existence of @dev
1292  *      @dev: network device
1293  *
1294  * Generate traffic such that interested network peers are aware of
1295  * @dev, such as by generating a gratuitous ARP. This may be used when
1296  * a device wants to inform the rest of the network about some sort of
1297  * reconfiguration such as a failover event or virtual machine
1298  * migration.
1299  */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302         rtnl_lock();
1303         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304         rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307
1308 static int __dev_open(struct net_device *dev)
1309 {
1310         const struct net_device_ops *ops = dev->netdev_ops;
1311         int ret;
1312
1313         ASSERT_RTNL();
1314
1315         if (!netif_device_present(dev))
1316                 return -ENODEV;
1317
1318         /* Block netpoll from trying to do any rx path servicing.
1319          * If we don't do this there is a chance ndo_poll_controller
1320          * or ndo_poll may be running while we open the device
1321          */
1322         netpoll_poll_disable(dev);
1323
1324         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325         ret = notifier_to_errno(ret);
1326         if (ret)
1327                 return ret;
1328
1329         set_bit(__LINK_STATE_START, &dev->state);
1330
1331         if (ops->ndo_validate_addr)
1332                 ret = ops->ndo_validate_addr(dev);
1333
1334         if (!ret && ops->ndo_open)
1335                 ret = ops->ndo_open(dev);
1336
1337         netpoll_poll_enable(dev);
1338
1339         if (ret)
1340                 clear_bit(__LINK_STATE_START, &dev->state);
1341         else {
1342                 dev->flags |= IFF_UP;
1343                 dev_set_rx_mode(dev);
1344                 dev_activate(dev);
1345                 add_device_randomness(dev->dev_addr, dev->addr_len);
1346         }
1347
1348         return ret;
1349 }
1350
1351 /**
1352  *      dev_open        - prepare an interface for use.
1353  *      @dev:   device to open
1354  *
1355  *      Takes a device from down to up state. The device's private open
1356  *      function is invoked and then the multicast lists are loaded. Finally
1357  *      the device is moved into the up state and a %NETDEV_UP message is
1358  *      sent to the netdev notifier chain.
1359  *
1360  *      Calling this function on an active interface is a nop. On a failure
1361  *      a negative errno code is returned.
1362  */
1363 int dev_open(struct net_device *dev)
1364 {
1365         int ret;
1366
1367         if (dev->flags & IFF_UP)
1368                 return 0;
1369
1370         ret = __dev_open(dev);
1371         if (ret < 0)
1372                 return ret;
1373
1374         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375         call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377         return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383         struct net_device *dev;
1384
1385         ASSERT_RTNL();
1386         might_sleep();
1387
1388         list_for_each_entry(dev, head, close_list) {
1389                 /* Temporarily disable netpoll until the interface is down */
1390                 netpoll_poll_disable(dev);
1391
1392                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393
1394                 clear_bit(__LINK_STATE_START, &dev->state);
1395
1396                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397                  * can be even on different cpu. So just clear netif_running().
1398                  *
1399                  * dev->stop() will invoke napi_disable() on all of it's
1400                  * napi_struct instances on this device.
1401                  */
1402                 smp_mb__after_atomic(); /* Commit netif_running(). */
1403         }
1404
1405         dev_deactivate_many(head);
1406
1407         list_for_each_entry(dev, head, close_list) {
1408                 const struct net_device_ops *ops = dev->netdev_ops;
1409
1410                 /*
1411                  *      Call the device specific close. This cannot fail.
1412                  *      Only if device is UP
1413                  *
1414                  *      We allow it to be called even after a DETACH hot-plug
1415                  *      event.
1416                  */
1417                 if (ops->ndo_stop)
1418                         ops->ndo_stop(dev);
1419
1420                 dev->flags &= ~IFF_UP;
1421                 netpoll_poll_enable(dev);
1422         }
1423
1424         return 0;
1425 }
1426
1427 static int __dev_close(struct net_device *dev)
1428 {
1429         int retval;
1430         LIST_HEAD(single);
1431
1432         list_add(&dev->close_list, &single);
1433         retval = __dev_close_many(&single);
1434         list_del(&single);
1435
1436         return retval;
1437 }
1438
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441         struct net_device *dev, *tmp;
1442
1443         /* Remove the devices that don't need to be closed */
1444         list_for_each_entry_safe(dev, tmp, head, close_list)
1445                 if (!(dev->flags & IFF_UP))
1446                         list_del_init(&dev->close_list);
1447
1448         __dev_close_many(head);
1449
1450         list_for_each_entry_safe(dev, tmp, head, close_list) {
1451                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1453                 if (unlink)
1454                         list_del_init(&dev->close_list);
1455         }
1456
1457         return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460
1461 /**
1462  *      dev_close - shutdown an interface.
1463  *      @dev: device to shutdown
1464  *
1465  *      This function moves an active device into down state. A
1466  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468  *      chain.
1469  */
1470 int dev_close(struct net_device *dev)
1471 {
1472         if (dev->flags & IFF_UP) {
1473                 LIST_HEAD(single);
1474
1475                 list_add(&dev->close_list, &single);
1476                 dev_close_many(&single, true);
1477                 list_del(&single);
1478         }
1479         return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482
1483
1484 /**
1485  *      dev_disable_lro - disable Large Receive Offload on a device
1486  *      @dev: device
1487  *
1488  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1489  *      called under RTNL.  This is needed if received packets may be
1490  *      forwarded to another interface.
1491  */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494         struct net_device *lower_dev;
1495         struct list_head *iter;
1496
1497         dev->wanted_features &= ~NETIF_F_LRO;
1498         netdev_update_features(dev);
1499
1500         if (unlikely(dev->features & NETIF_F_LRO))
1501                 netdev_WARN(dev, "failed to disable LRO!\n");
1502
1503         netdev_for_each_lower_dev(dev, lower_dev, iter)
1504                 dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509                                    struct net_device *dev)
1510 {
1511         struct netdev_notifier_info info;
1512
1513         netdev_notifier_info_init(&info, dev);
1514         return nb->notifier_call(nb, val, &info);
1515 }
1516
1517 static int dev_boot_phase = 1;
1518
1519 /**
1520  *      register_netdevice_notifier - register a network notifier block
1521  *      @nb: notifier
1522  *
1523  *      Register a notifier to be called when network device events occur.
1524  *      The notifier passed is linked into the kernel structures and must
1525  *      not be reused until it has been unregistered. A negative errno code
1526  *      is returned on a failure.
1527  *
1528  *      When registered all registration and up events are replayed
1529  *      to the new notifier to allow device to have a race free
1530  *      view of the network device list.
1531  */
1532
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535         struct net_device *dev;
1536         struct net_device *last;
1537         struct net *net;
1538         int err;
1539
1540         rtnl_lock();
1541         err = raw_notifier_chain_register(&netdev_chain, nb);
1542         if (err)
1543                 goto unlock;
1544         if (dev_boot_phase)
1545                 goto unlock;
1546         for_each_net(net) {
1547                 for_each_netdev(net, dev) {
1548                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549                         err = notifier_to_errno(err);
1550                         if (err)
1551                                 goto rollback;
1552
1553                         if (!(dev->flags & IFF_UP))
1554                                 continue;
1555
1556                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1557                 }
1558         }
1559
1560 unlock:
1561         rtnl_unlock();
1562         return err;
1563
1564 rollback:
1565         last = dev;
1566         for_each_net(net) {
1567                 for_each_netdev(net, dev) {
1568                         if (dev == last)
1569                                 goto outroll;
1570
1571                         if (dev->flags & IFF_UP) {
1572                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573                                                         dev);
1574                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575                         }
1576                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577                 }
1578         }
1579
1580 outroll:
1581         raw_notifier_chain_unregister(&netdev_chain, nb);
1582         goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585
1586 /**
1587  *      unregister_netdevice_notifier - unregister a network notifier block
1588  *      @nb: notifier
1589  *
1590  *      Unregister a notifier previously registered by
1591  *      register_netdevice_notifier(). The notifier is unlinked into the
1592  *      kernel structures and may then be reused. A negative errno code
1593  *      is returned on a failure.
1594  *
1595  *      After unregistering unregister and down device events are synthesized
1596  *      for all devices on the device list to the removed notifier to remove
1597  *      the need for special case cleanup code.
1598  */
1599
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602         struct net_device *dev;
1603         struct net *net;
1604         int err;
1605
1606         rtnl_lock();
1607         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608         if (err)
1609                 goto unlock;
1610
1611         for_each_net(net) {
1612                 for_each_netdev(net, dev) {
1613                         if (dev->flags & IFF_UP) {
1614                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615                                                         dev);
1616                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617                         }
1618                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619                 }
1620         }
1621 unlock:
1622         rtnl_unlock();
1623         return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626
1627 /**
1628  *      call_netdevice_notifiers_info - call all network notifier blocks
1629  *      @val: value passed unmodified to notifier function
1630  *      @dev: net_device pointer passed unmodified to notifier function
1631  *      @info: notifier information data
1632  *
1633  *      Call all network notifier blocks.  Parameters and return value
1634  *      are as for raw_notifier_call_chain().
1635  */
1636
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638                                          struct net_device *dev,
1639                                          struct netdev_notifier_info *info)
1640 {
1641         ASSERT_RTNL();
1642         netdev_notifier_info_init(info, dev);
1643         return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645
1646 /**
1647  *      call_netdevice_notifiers - call all network notifier blocks
1648  *      @val: value passed unmodified to notifier function
1649  *      @dev: net_device pointer passed unmodified to notifier function
1650  *
1651  *      Call all network notifier blocks.  Parameters and return value
1652  *      are as for raw_notifier_call_chain().
1653  */
1654
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657         struct netdev_notifier_info info;
1658
1659         return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665
1666 void net_inc_ingress_queue(void)
1667 {
1668         static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672 void net_dec_ingress_queue(void)
1673 {
1674         static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681
1682 void net_inc_egress_queue(void)
1683 {
1684         static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688 void net_dec_egress_queue(void)
1689 {
1690         static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698  * If net_disable_timestamp() is called from irq context, defer the
1699  * static_key_slow_dec() calls.
1700  */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709         if (deferred) {
1710                 while (--deferred)
1711                         static_key_slow_dec(&netstamp_needed);
1712                 return;
1713         }
1714 #endif
1715         static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722         if (in_interrupt()) {
1723                 atomic_inc(&netstamp_needed_deferred);
1724                 return;
1725         }
1726 #endif
1727         static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733         skb->tstamp.tv64 = 0;
1734         if (static_key_false(&netstamp_needed))
1735                 __net_timestamp(skb);
1736 }
1737
1738 #define net_timestamp_check(COND, SKB)                  \
1739         if (static_key_false(&netstamp_needed)) {               \
1740                 if ((COND) && !(SKB)->tstamp.tv64)      \
1741                         __net_timestamp(SKB);           \
1742         }                                               \
1743
1744 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1745 {
1746         unsigned int len;
1747
1748         if (!(dev->flags & IFF_UP))
1749                 return false;
1750
1751         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752         if (skb->len <= len)
1753                 return true;
1754
1755         /* if TSO is enabled, we don't care about the length as the packet
1756          * could be forwarded without being segmented before
1757          */
1758         if (skb_is_gso(skb))
1759                 return true;
1760
1761         return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768             unlikely(!is_skb_forwardable(dev, skb))) {
1769                 atomic_long_inc(&dev->rx_dropped);
1770                 kfree_skb(skb);
1771                 return NET_RX_DROP;
1772         }
1773
1774         skb_scrub_packet(skb, true);
1775         skb->priority = 0;
1776         skb->protocol = eth_type_trans(skb, dev);
1777         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778
1779         return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
1783 /**
1784  * dev_forward_skb - loopback an skb to another netif
1785  *
1786  * @dev: destination network device
1787  * @skb: buffer to forward
1788  *
1789  * return values:
1790  *      NET_RX_SUCCESS  (no congestion)
1791  *      NET_RX_DROP     (packet was dropped, but freed)
1792  *
1793  * dev_forward_skb can be used for injecting an skb from the
1794  * start_xmit function of one device into the receive queue
1795  * of another device.
1796  *
1797  * The receiving device may be in another namespace, so
1798  * we have to clear all information in the skb that could
1799  * impact namespace isolation.
1800  */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
1807 static inline int deliver_skb(struct sk_buff *skb,
1808                               struct packet_type *pt_prev,
1809                               struct net_device *orig_dev)
1810 {
1811         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812                 return -ENOMEM;
1813         atomic_inc(&skb->users);
1814         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818                                           struct packet_type **pt,
1819                                           struct net_device *orig_dev,
1820                                           __be16 type,
1821                                           struct list_head *ptype_list)
1822 {
1823         struct packet_type *ptype, *pt_prev = *pt;
1824
1825         list_for_each_entry_rcu(ptype, ptype_list, list) {
1826                 if (ptype->type != type)
1827                         continue;
1828                 if (pt_prev)
1829                         deliver_skb(skb, pt_prev, orig_dev);
1830                 pt_prev = ptype;
1831         }
1832         *pt = pt_prev;
1833 }
1834
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837         if (!ptype->af_packet_priv || !skb->sk)
1838                 return false;
1839
1840         if (ptype->id_match)
1841                 return ptype->id_match(ptype, skb->sk);
1842         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843                 return true;
1844
1845         return false;
1846 }
1847
1848 /*
1849  *      Support routine. Sends outgoing frames to any network
1850  *      taps currently in use.
1851  */
1852
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855         struct packet_type *ptype;
1856         struct sk_buff *skb2 = NULL;
1857         struct packet_type *pt_prev = NULL;
1858         struct list_head *ptype_list = &ptype_all;
1859
1860         rcu_read_lock();
1861 again:
1862         list_for_each_entry_rcu(ptype, ptype_list, list) {
1863                 /* Never send packets back to the socket
1864                  * they originated from - MvS (miquels@drinkel.ow.org)
1865                  */
1866                 if (skb_loop_sk(ptype, skb))
1867                         continue;
1868
1869                 if (pt_prev) {
1870                         deliver_skb(skb2, pt_prev, skb->dev);
1871                         pt_prev = ptype;
1872                         continue;
1873                 }
1874
1875                 /* need to clone skb, done only once */
1876                 skb2 = skb_clone(skb, GFP_ATOMIC);
1877                 if (!skb2)
1878                         goto out_unlock;
1879
1880                 net_timestamp_set(skb2);
1881
1882                 /* skb->nh should be correctly
1883                  * set by sender, so that the second statement is
1884                  * just protection against buggy protocols.
1885                  */
1886                 skb_reset_mac_header(skb2);
1887
1888                 if (skb_network_header(skb2) < skb2->data ||
1889                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891                                              ntohs(skb2->protocol),
1892                                              dev->name);
1893                         skb_reset_network_header(skb2);
1894                 }
1895
1896                 skb2->transport_header = skb2->network_header;
1897                 skb2->pkt_type = PACKET_OUTGOING;
1898                 pt_prev = ptype;
1899         }
1900
1901         if (ptype_list == &ptype_all) {
1902                 ptype_list = &dev->ptype_all;
1903                 goto again;
1904         }
1905 out_unlock:
1906         if (pt_prev)
1907                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908         rcu_read_unlock();
1909 }
1910
1911 /**
1912  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913  * @dev: Network device
1914  * @txq: number of queues available
1915  *
1916  * If real_num_tx_queues is changed the tc mappings may no longer be
1917  * valid. To resolve this verify the tc mapping remains valid and if
1918  * not NULL the mapping. With no priorities mapping to this
1919  * offset/count pair it will no longer be used. In the worst case TC0
1920  * is invalid nothing can be done so disable priority mappings. If is
1921  * expected that drivers will fix this mapping if they can before
1922  * calling netif_set_real_num_tx_queues.
1923  */
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1925 {
1926         int i;
1927         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929         /* If TC0 is invalidated disable TC mapping */
1930         if (tc->offset + tc->count > txq) {
1931                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932                 dev->num_tc = 0;
1933                 return;
1934         }
1935
1936         /* Invalidated prio to tc mappings set to TC0 */
1937         for (i = 1; i < TC_BITMASK + 1; i++) {
1938                 int q = netdev_get_prio_tc_map(dev, i);
1939
1940                 tc = &dev->tc_to_txq[q];
1941                 if (tc->offset + tc->count > txq) {
1942                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943                                 i, q);
1944                         netdev_set_prio_tc_map(dev, i, 0);
1945                 }
1946         }
1947 }
1948
1949 #ifdef CONFIG_XPS
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P)             \
1952         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955                                         int cpu, u16 index)
1956 {
1957         struct xps_map *map = NULL;
1958         int pos;
1959
1960         if (dev_maps)
1961                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1962
1963         for (pos = 0; map && pos < map->len; pos++) {
1964                 if (map->queues[pos] == index) {
1965                         if (map->len > 1) {
1966                                 map->queues[pos] = map->queues[--map->len];
1967                         } else {
1968                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969                                 kfree_rcu(map, rcu);
1970                                 map = NULL;
1971                         }
1972                         break;
1973                 }
1974         }
1975
1976         return map;
1977 }
1978
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1980 {
1981         struct xps_dev_maps *dev_maps;
1982         int cpu, i;
1983         bool active = false;
1984
1985         mutex_lock(&xps_map_mutex);
1986         dev_maps = xmap_dereference(dev->xps_maps);
1987
1988         if (!dev_maps)
1989                 goto out_no_maps;
1990
1991         for_each_possible_cpu(cpu) {
1992                 for (i = index; i < dev->num_tx_queues; i++) {
1993                         if (!remove_xps_queue(dev_maps, cpu, i))
1994                                 break;
1995                 }
1996                 if (i == dev->num_tx_queues)
1997                         active = true;
1998         }
1999
2000         if (!active) {
2001                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002                 kfree_rcu(dev_maps, rcu);
2003         }
2004
2005         for (i = index; i < dev->num_tx_queues; i++)
2006                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007                                              NUMA_NO_NODE);
2008
2009 out_no_maps:
2010         mutex_unlock(&xps_map_mutex);
2011 }
2012
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2014                                       int cpu, u16 index)
2015 {
2016         struct xps_map *new_map;
2017         int alloc_len = XPS_MIN_MAP_ALLOC;
2018         int i, pos;
2019
2020         for (pos = 0; map && pos < map->len; pos++) {
2021                 if (map->queues[pos] != index)
2022                         continue;
2023                 return map;
2024         }
2025
2026         /* Need to add queue to this CPU's existing map */
2027         if (map) {
2028                 if (pos < map->alloc_len)
2029                         return map;
2030
2031                 alloc_len = map->alloc_len * 2;
2032         }
2033
2034         /* Need to allocate new map to store queue on this CPU's map */
2035         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036                                cpu_to_node(cpu));
2037         if (!new_map)
2038                 return NULL;
2039
2040         for (i = 0; i < pos; i++)
2041                 new_map->queues[i] = map->queues[i];
2042         new_map->alloc_len = alloc_len;
2043         new_map->len = pos;
2044
2045         return new_map;
2046 }
2047
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049                         u16 index)
2050 {
2051         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052         struct xps_map *map, *new_map;
2053         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054         int cpu, numa_node_id = -2;
2055         bool active = false;
2056
2057         mutex_lock(&xps_map_mutex);
2058
2059         dev_maps = xmap_dereference(dev->xps_maps);
2060
2061         /* allocate memory for queue storage */
2062         for_each_online_cpu(cpu) {
2063                 if (!cpumask_test_cpu(cpu, mask))
2064                         continue;
2065
2066                 if (!new_dev_maps)
2067                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068                 if (!new_dev_maps) {
2069                         mutex_unlock(&xps_map_mutex);
2070                         return -ENOMEM;
2071                 }
2072
2073                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074                                  NULL;
2075
2076                 map = expand_xps_map(map, cpu, index);
2077                 if (!map)
2078                         goto error;
2079
2080                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081         }
2082
2083         if (!new_dev_maps)
2084                 goto out_no_new_maps;
2085
2086         for_each_possible_cpu(cpu) {
2087                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088                         /* add queue to CPU maps */
2089                         int pos = 0;
2090
2091                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092                         while ((pos < map->len) && (map->queues[pos] != index))
2093                                 pos++;
2094
2095                         if (pos == map->len)
2096                                 map->queues[map->len++] = index;
2097 #ifdef CONFIG_NUMA
2098                         if (numa_node_id == -2)
2099                                 numa_node_id = cpu_to_node(cpu);
2100                         else if (numa_node_id != cpu_to_node(cpu))
2101                                 numa_node_id = -1;
2102 #endif
2103                 } else if (dev_maps) {
2104                         /* fill in the new device map from the old device map */
2105                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2107                 }
2108
2109         }
2110
2111         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
2113         /* Cleanup old maps */
2114         if (dev_maps) {
2115                 for_each_possible_cpu(cpu) {
2116                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118                         if (map && map != new_map)
2119                                 kfree_rcu(map, rcu);
2120                 }
2121
2122                 kfree_rcu(dev_maps, rcu);
2123         }
2124
2125         dev_maps = new_dev_maps;
2126         active = true;
2127
2128 out_no_new_maps:
2129         /* update Tx queue numa node */
2130         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131                                      (numa_node_id >= 0) ? numa_node_id :
2132                                      NUMA_NO_NODE);
2133
2134         if (!dev_maps)
2135                 goto out_no_maps;
2136
2137         /* removes queue from unused CPUs */
2138         for_each_possible_cpu(cpu) {
2139                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140                         continue;
2141
2142                 if (remove_xps_queue(dev_maps, cpu, index))
2143                         active = true;
2144         }
2145
2146         /* free map if not active */
2147         if (!active) {
2148                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149                 kfree_rcu(dev_maps, rcu);
2150         }
2151
2152 out_no_maps:
2153         mutex_unlock(&xps_map_mutex);
2154
2155         return 0;
2156 error:
2157         /* remove any maps that we added */
2158         for_each_possible_cpu(cpu) {
2159                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161                                  NULL;
2162                 if (new_map && new_map != map)
2163                         kfree(new_map);
2164         }
2165
2166         mutex_unlock(&xps_map_mutex);
2167
2168         kfree(new_dev_maps);
2169         return -ENOMEM;
2170 }
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173 #endif
2174 /*
2175  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177  */
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2179 {
2180         int rc;
2181
2182         if (txq < 1 || txq > dev->num_tx_queues)
2183                 return -EINVAL;
2184
2185         if (dev->reg_state == NETREG_REGISTERED ||
2186             dev->reg_state == NETREG_UNREGISTERING) {
2187                 ASSERT_RTNL();
2188
2189                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190                                                   txq);
2191                 if (rc)
2192                         return rc;
2193
2194                 if (dev->num_tc)
2195                         netif_setup_tc(dev, txq);
2196
2197                 if (txq < dev->real_num_tx_queues) {
2198                         qdisc_reset_all_tx_gt(dev, txq);
2199 #ifdef CONFIG_XPS
2200                         netif_reset_xps_queues_gt(dev, txq);
2201 #endif
2202                 }
2203         }
2204
2205         dev->real_num_tx_queues = txq;
2206         return 0;
2207 }
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2209
2210 #ifdef CONFIG_SYSFS
2211 /**
2212  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2213  *      @dev: Network device
2214  *      @rxq: Actual number of RX queues
2215  *
2216  *      This must be called either with the rtnl_lock held or before
2217  *      registration of the net device.  Returns 0 on success, or a
2218  *      negative error code.  If called before registration, it always
2219  *      succeeds.
2220  */
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222 {
2223         int rc;
2224
2225         if (rxq < 1 || rxq > dev->num_rx_queues)
2226                 return -EINVAL;
2227
2228         if (dev->reg_state == NETREG_REGISTERED) {
2229                 ASSERT_RTNL();
2230
2231                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232                                                   rxq);
2233                 if (rc)
2234                         return rc;
2235         }
2236
2237         dev->real_num_rx_queues = rxq;
2238         return 0;
2239 }
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241 #endif
2242
2243 /**
2244  * netif_get_num_default_rss_queues - default number of RSS queues
2245  *
2246  * This routine should set an upper limit on the number of RSS queues
2247  * used by default by multiqueue devices.
2248  */
2249 int netif_get_num_default_rss_queues(void)
2250 {
2251         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252 }
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
2255 static inline void __netif_reschedule(struct Qdisc *q)
2256 {
2257         struct softnet_data *sd;
2258         unsigned long flags;
2259
2260         local_irq_save(flags);
2261         sd = this_cpu_ptr(&softnet_data);
2262         q->next_sched = NULL;
2263         *sd->output_queue_tailp = q;
2264         sd->output_queue_tailp = &q->next_sched;
2265         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266         local_irq_restore(flags);
2267 }
2268
2269 void __netif_schedule(struct Qdisc *q)
2270 {
2271         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272                 __netif_reschedule(q);
2273 }
2274 EXPORT_SYMBOL(__netif_schedule);
2275
2276 struct dev_kfree_skb_cb {
2277         enum skb_free_reason reason;
2278 };
2279
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2281 {
2282         return (struct dev_kfree_skb_cb *)skb->cb;
2283 }
2284
2285 void netif_schedule_queue(struct netdev_queue *txq)
2286 {
2287         rcu_read_lock();
2288         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291                 __netif_schedule(q);
2292         }
2293         rcu_read_unlock();
2294 }
2295 EXPORT_SYMBOL(netif_schedule_queue);
2296
2297 /**
2298  *      netif_wake_subqueue - allow sending packets on subqueue
2299  *      @dev: network device
2300  *      @queue_index: sub queue index
2301  *
2302  * Resume individual transmit queue of a device with multiple transmit queues.
2303  */
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305 {
2306         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309                 struct Qdisc *q;
2310
2311                 rcu_read_lock();
2312                 q = rcu_dereference(txq->qdisc);
2313                 __netif_schedule(q);
2314                 rcu_read_unlock();
2315         }
2316 }
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320 {
2321         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322                 struct Qdisc *q;
2323
2324                 rcu_read_lock();
2325                 q = rcu_dereference(dev_queue->qdisc);
2326                 __netif_schedule(q);
2327                 rcu_read_unlock();
2328         }
2329 }
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2331
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2333 {
2334         unsigned long flags;
2335
2336         if (likely(atomic_read(&skb->users) == 1)) {
2337                 smp_rmb();
2338                 atomic_set(&skb->users, 0);
2339         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340                 return;
2341         }
2342         get_kfree_skb_cb(skb)->reason = reason;
2343         local_irq_save(flags);
2344         skb->next = __this_cpu_read(softnet_data.completion_queue);
2345         __this_cpu_write(softnet_data.completion_queue, skb);
2346         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347         local_irq_restore(flags);
2348 }
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2350
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2352 {
2353         if (in_irq() || irqs_disabled())
2354                 __dev_kfree_skb_irq(skb, reason);
2355         else
2356                 dev_kfree_skb(skb);
2357 }
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2359
2360
2361 /**
2362  * netif_device_detach - mark device as removed
2363  * @dev: network device
2364  *
2365  * Mark device as removed from system and therefore no longer available.
2366  */
2367 void netif_device_detach(struct net_device *dev)
2368 {
2369         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370             netif_running(dev)) {
2371                 netif_tx_stop_all_queues(dev);
2372         }
2373 }
2374 EXPORT_SYMBOL(netif_device_detach);
2375
2376 /**
2377  * netif_device_attach - mark device as attached
2378  * @dev: network device
2379  *
2380  * Mark device as attached from system and restart if needed.
2381  */
2382 void netif_device_attach(struct net_device *dev)
2383 {
2384         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385             netif_running(dev)) {
2386                 netif_tx_wake_all_queues(dev);
2387                 __netdev_watchdog_up(dev);
2388         }
2389 }
2390 EXPORT_SYMBOL(netif_device_attach);
2391
2392 /*
2393  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394  * to be used as a distribution range.
2395  */
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397                   unsigned int num_tx_queues)
2398 {
2399         u32 hash;
2400         u16 qoffset = 0;
2401         u16 qcount = num_tx_queues;
2402
2403         if (skb_rx_queue_recorded(skb)) {
2404                 hash = skb_get_rx_queue(skb);
2405                 while (unlikely(hash >= num_tx_queues))
2406                         hash -= num_tx_queues;
2407                 return hash;
2408         }
2409
2410         if (dev->num_tc) {
2411                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412                 qoffset = dev->tc_to_txq[tc].offset;
2413                 qcount = dev->tc_to_txq[tc].count;
2414         }
2415
2416         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417 }
2418 EXPORT_SYMBOL(__skb_tx_hash);
2419
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2421 {
2422         static const netdev_features_t null_features = 0;
2423         struct net_device *dev = skb->dev;
2424         const char *name = "";
2425
2426         if (!net_ratelimit())
2427                 return;
2428
2429         if (dev) {
2430                 if (dev->dev.parent)
2431                         name = dev_driver_string(dev->dev.parent);
2432                 else
2433                         name = netdev_name(dev);
2434         }
2435         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436              "gso_type=%d ip_summed=%d\n",
2437              name, dev ? &dev->features : &null_features,
2438              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440              skb_shinfo(skb)->gso_type, skb->ip_summed);
2441 }
2442
2443 /*
2444  * Invalidate hardware checksum when packet is to be mangled, and
2445  * complete checksum manually on outgoing path.
2446  */
2447 int skb_checksum_help(struct sk_buff *skb)
2448 {
2449         __wsum csum;
2450         int ret = 0, offset;
2451
2452         if (skb->ip_summed == CHECKSUM_COMPLETE)
2453                 goto out_set_summed;
2454
2455         if (unlikely(skb_shinfo(skb)->gso_size)) {
2456                 skb_warn_bad_offload(skb);
2457                 return -EINVAL;
2458         }
2459
2460         /* Before computing a checksum, we should make sure no frag could
2461          * be modified by an external entity : checksum could be wrong.
2462          */
2463         if (skb_has_shared_frag(skb)) {
2464                 ret = __skb_linearize(skb);
2465                 if (ret)
2466                         goto out;
2467         }
2468
2469         offset = skb_checksum_start_offset(skb);
2470         BUG_ON(offset >= skb_headlen(skb));
2471         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473         offset += skb->csum_offset;
2474         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476         if (skb_cloned(skb) &&
2477             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479                 if (ret)
2480                         goto out;
2481         }
2482
2483         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484 out_set_summed:
2485         skb->ip_summed = CHECKSUM_NONE;
2486 out:
2487         return ret;
2488 }
2489 EXPORT_SYMBOL(skb_checksum_help);
2490
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492  * with limited checksum offload capabilities is able to offload the checksum
2493  * for a given packet.
2494  *
2495  * Arguments:
2496  *   skb - sk_buff for the packet in question
2497  *   spec - contains the description of what device can offload
2498  *   csum_encapped - returns true if the checksum being offloaded is
2499  *            encpasulated. That is it is checksum for the transport header
2500  *            in the inner headers.
2501  *   checksum_help - when set indicates that helper function should
2502  *            call skb_checksum_help if offload checks fail
2503  *
2504  * Returns:
2505  *   true: Packet has passed the checksum checks and should be offloadable to
2506  *         the device (a driver may still need to check for additional
2507  *         restrictions of its device)
2508  *   false: Checksum is not offloadable. If checksum_help was set then
2509  *         skb_checksum_help was called to resolve checksum for non-GSO
2510  *         packets and when IP protocol is not SCTP
2511  */
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513                             const struct skb_csum_offl_spec *spec,
2514                             bool *csum_encapped,
2515                             bool csum_help)
2516 {
2517         struct iphdr *iph;
2518         struct ipv6hdr *ipv6;
2519         void *nhdr;
2520         int protocol;
2521         u8 ip_proto;
2522
2523         if (skb->protocol == htons(ETH_P_8021Q) ||
2524             skb->protocol == htons(ETH_P_8021AD)) {
2525                 if (!spec->vlan_okay)
2526                         goto need_help;
2527         }
2528
2529         /* We check whether the checksum refers to a transport layer checksum in
2530          * the outermost header or an encapsulated transport layer checksum that
2531          * corresponds to the inner headers of the skb. If the checksum is for
2532          * something else in the packet we need help.
2533          */
2534         if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535                 /* Non-encapsulated checksum */
2536                 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537                 nhdr = skb_network_header(skb);
2538                 *csum_encapped = false;
2539                 if (spec->no_not_encapped)
2540                         goto need_help;
2541         } else if (skb->encapsulation && spec->encap_okay &&
2542                    skb_checksum_start_offset(skb) ==
2543                    skb_inner_transport_offset(skb)) {
2544                 /* Encapsulated checksum */
2545                 *csum_encapped = true;
2546                 switch (skb->inner_protocol_type) {
2547                 case ENCAP_TYPE_ETHER:
2548                         protocol = eproto_to_ipproto(skb->inner_protocol);
2549                         break;
2550                 case ENCAP_TYPE_IPPROTO:
2551                         protocol = skb->inner_protocol;
2552                         break;
2553                 }
2554                 nhdr = skb_inner_network_header(skb);
2555         } else {
2556                 goto need_help;
2557         }
2558
2559         switch (protocol) {
2560         case IPPROTO_IP:
2561                 if (!spec->ipv4_okay)
2562                         goto need_help;
2563                 iph = nhdr;
2564                 ip_proto = iph->protocol;
2565                 if (iph->ihl != 5 && !spec->ip_options_okay)
2566                         goto need_help;
2567                 break;
2568         case IPPROTO_IPV6:
2569                 if (!spec->ipv6_okay)
2570                         goto need_help;
2571                 if (spec->no_encapped_ipv6 && *csum_encapped)
2572                         goto need_help;
2573                 ipv6 = nhdr;
2574                 nhdr += sizeof(*ipv6);
2575                 ip_proto = ipv6->nexthdr;
2576                 break;
2577         default:
2578                 goto need_help;
2579         }
2580
2581 ip_proto_again:
2582         switch (ip_proto) {
2583         case IPPROTO_TCP:
2584                 if (!spec->tcp_okay ||
2585                     skb->csum_offset != offsetof(struct tcphdr, check))
2586                         goto need_help;
2587                 break;
2588         case IPPROTO_UDP:
2589                 if (!spec->udp_okay ||
2590                     skb->csum_offset != offsetof(struct udphdr, check))
2591                         goto need_help;
2592                 break;
2593         case IPPROTO_SCTP:
2594                 if (!spec->sctp_okay ||
2595                     skb->csum_offset != offsetof(struct sctphdr, checksum))
2596                         goto cant_help;
2597                 break;
2598         case NEXTHDR_HOP:
2599         case NEXTHDR_ROUTING:
2600         case NEXTHDR_DEST: {
2601                 u8 *opthdr = nhdr;
2602
2603                 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604                         goto need_help;
2605
2606                 ip_proto = opthdr[0];
2607                 nhdr += (opthdr[1] + 1) << 3;
2608
2609                 goto ip_proto_again;
2610         }
2611         default:
2612                 goto need_help;
2613         }
2614
2615         /* Passed the tests for offloading checksum */
2616         return true;
2617
2618 need_help:
2619         if (csum_help && !skb_shinfo(skb)->gso_size)
2620                 skb_checksum_help(skb);
2621 cant_help:
2622         return false;
2623 }
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2627 {
2628         __be16 type = skb->protocol;
2629
2630         /* Tunnel gso handlers can set protocol to ethernet. */
2631         if (type == htons(ETH_P_TEB)) {
2632                 struct ethhdr *eth;
2633
2634                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635                         return 0;
2636
2637                 eth = (struct ethhdr *)skb_mac_header(skb);
2638                 type = eth->h_proto;
2639         }
2640
2641         return __vlan_get_protocol(skb, type, depth);
2642 }
2643
2644 /**
2645  *      skb_mac_gso_segment - mac layer segmentation handler.
2646  *      @skb: buffer to segment
2647  *      @features: features for the output path (see dev->features)
2648  */
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650                                     netdev_features_t features)
2651 {
2652         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653         struct packet_offload *ptype;
2654         int vlan_depth = skb->mac_len;
2655         __be16 type = skb_network_protocol(skb, &vlan_depth);
2656
2657         if (unlikely(!type))
2658                 return ERR_PTR(-EINVAL);
2659
2660         __skb_pull(skb, vlan_depth);
2661
2662         rcu_read_lock();
2663         list_for_each_entry_rcu(ptype, &offload_base, list) {
2664                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2665                         segs = ptype->callbacks.gso_segment(skb, features);
2666                         break;
2667                 }
2668         }
2669         rcu_read_unlock();
2670
2671         __skb_push(skb, skb->data - skb_mac_header(skb));
2672
2673         return segs;
2674 }
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678 /* openvswitch calls this on rx path, so we need a different check.
2679  */
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681 {
2682         if (tx_path)
2683                 return skb->ip_summed != CHECKSUM_PARTIAL;
2684         else
2685                 return skb->ip_summed == CHECKSUM_NONE;
2686 }
2687
2688 /**
2689  *      __skb_gso_segment - Perform segmentation on skb.
2690  *      @skb: buffer to segment
2691  *      @features: features for the output path (see dev->features)
2692  *      @tx_path: whether it is called in TX path
2693  *
2694  *      This function segments the given skb and returns a list of segments.
2695  *
2696  *      It may return NULL if the skb requires no segmentation.  This is
2697  *      only possible when GSO is used for verifying header integrity.
2698  *
2699  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2700  */
2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702                                   netdev_features_t features, bool tx_path)
2703 {
2704         if (unlikely(skb_needs_check(skb, tx_path))) {
2705                 int err;
2706
2707                 skb_warn_bad_offload(skb);
2708
2709                 err = skb_cow_head(skb, 0);
2710                 if (err < 0)
2711                         return ERR_PTR(err);
2712         }
2713
2714         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2715                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2716
2717         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2718         SKB_GSO_CB(skb)->encap_level = 0;
2719
2720         skb_reset_mac_header(skb);
2721         skb_reset_mac_len(skb);
2722
2723         return skb_mac_gso_segment(skb, features);
2724 }
2725 EXPORT_SYMBOL(__skb_gso_segment);
2726
2727 /* Take action when hardware reception checksum errors are detected. */
2728 #ifdef CONFIG_BUG
2729 void netdev_rx_csum_fault(struct net_device *dev)
2730 {
2731         if (net_ratelimit()) {
2732                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2733                 dump_stack();
2734         }
2735 }
2736 EXPORT_SYMBOL(netdev_rx_csum_fault);
2737 #endif
2738
2739 /* Actually, we should eliminate this check as soon as we know, that:
2740  * 1. IOMMU is present and allows to map all the memory.
2741  * 2. No high memory really exists on this machine.
2742  */
2743
2744 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2745 {
2746 #ifdef CONFIG_HIGHMEM
2747         int i;
2748         if (!(dev->features & NETIF_F_HIGHDMA)) {
2749                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2751                         if (PageHighMem(skb_frag_page(frag)))
2752                                 return 1;
2753                 }
2754         }
2755
2756         if (PCI_DMA_BUS_IS_PHYS) {
2757                 struct device *pdev = dev->dev.parent;
2758
2759                 if (!pdev)
2760                         return 0;
2761                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2764                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2765                                 return 1;
2766                 }
2767         }
2768 #endif
2769         return 0;
2770 }
2771
2772 /* If MPLS offload request, verify we are testing hardware MPLS features
2773  * instead of standard features for the netdev.
2774  */
2775 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2776 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2777                                            netdev_features_t features,
2778                                            __be16 type)
2779 {
2780         if (eth_p_mpls(type))
2781                 features &= skb->dev->mpls_features;
2782
2783         return features;
2784 }
2785 #else
2786 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2787                                            netdev_features_t features,
2788                                            __be16 type)
2789 {
2790         return features;
2791 }
2792 #endif
2793
2794 static netdev_features_t harmonize_features(struct sk_buff *skb,
2795         netdev_features_t features)
2796 {
2797         int tmp;
2798         __be16 type;
2799
2800         type = skb_network_protocol(skb, &tmp);
2801         features = net_mpls_features(skb, features, type);
2802
2803         if (skb->ip_summed != CHECKSUM_NONE &&
2804             !can_checksum_protocol(features, type)) {
2805                 features &= ~NETIF_F_CSUM_MASK;
2806         } else if (illegal_highdma(skb->dev, skb)) {
2807                 features &= ~NETIF_F_SG;
2808         }
2809
2810         return features;
2811 }
2812
2813 netdev_features_t passthru_features_check(struct sk_buff *skb,
2814                                           struct net_device *dev,
2815                                           netdev_features_t features)
2816 {
2817         return features;
2818 }
2819 EXPORT_SYMBOL(passthru_features_check);
2820
2821 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2822                                              struct net_device *dev,
2823                                              netdev_features_t features)
2824 {
2825         return vlan_features_check(skb, features);
2826 }
2827
2828 netdev_features_t netif_skb_features(struct sk_buff *skb)
2829 {
2830         struct net_device *dev = skb->dev;
2831         netdev_features_t features = dev->features;
2832         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2833
2834         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2835                 features &= ~NETIF_F_GSO_MASK;
2836
2837         /* If encapsulation offload request, verify we are testing
2838          * hardware encapsulation features instead of standard
2839          * features for the netdev
2840          */
2841         if (skb->encapsulation)
2842                 features &= dev->hw_enc_features;
2843
2844         if (skb_vlan_tagged(skb))
2845                 features = netdev_intersect_features(features,
2846                                                      dev->vlan_features |
2847                                                      NETIF_F_HW_VLAN_CTAG_TX |
2848                                                      NETIF_F_HW_VLAN_STAG_TX);
2849
2850         if (dev->netdev_ops->ndo_features_check)
2851                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2852                                                                 features);
2853         else
2854                 features &= dflt_features_check(skb, dev, features);
2855
2856         return harmonize_features(skb, features);
2857 }
2858 EXPORT_SYMBOL(netif_skb_features);
2859
2860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2861                     struct netdev_queue *txq, bool more)
2862 {
2863         unsigned int len;
2864         int rc;
2865
2866         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2867                 dev_queue_xmit_nit(skb, dev);
2868
2869         len = skb->len;
2870         trace_net_dev_start_xmit(skb, dev);
2871         rc = netdev_start_xmit(skb, dev, txq, more);
2872         trace_net_dev_xmit(skb, rc, dev, len);
2873
2874         return rc;
2875 }
2876
2877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2878                                     struct netdev_queue *txq, int *ret)
2879 {
2880         struct sk_buff *skb = first;
2881         int rc = NETDEV_TX_OK;
2882
2883         while (skb) {
2884                 struct sk_buff *next = skb->next;
2885
2886                 skb->next = NULL;
2887                 rc = xmit_one(skb, dev, txq, next != NULL);
2888                 if (unlikely(!dev_xmit_complete(rc))) {
2889                         skb->next = next;
2890                         goto out;
2891                 }
2892
2893                 skb = next;
2894                 if (netif_xmit_stopped(txq) && skb) {
2895                         rc = NETDEV_TX_BUSY;
2896                         break;
2897                 }
2898         }
2899
2900 out:
2901         *ret = rc;
2902         return skb;
2903 }
2904
2905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2906                                           netdev_features_t features)
2907 {
2908         if (skb_vlan_tag_present(skb) &&
2909             !vlan_hw_offload_capable(features, skb->vlan_proto))
2910                 skb = __vlan_hwaccel_push_inside(skb);
2911         return skb;
2912 }
2913
2914 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2915 {
2916         netdev_features_t features;
2917
2918         if (skb->next)
2919                 return skb;
2920
2921         features = netif_skb_features(skb);
2922         skb = validate_xmit_vlan(skb, features);
2923         if (unlikely(!skb))
2924                 goto out_null;
2925
2926         if (netif_needs_gso(skb, features)) {
2927                 struct sk_buff *segs;
2928
2929                 segs = skb_gso_segment(skb, features);
2930                 if (IS_ERR(segs)) {
2931                         goto out_kfree_skb;
2932                 } else if (segs) {
2933                         consume_skb(skb);
2934                         skb = segs;
2935                 }
2936         } else {
2937                 if (skb_needs_linearize(skb, features) &&
2938                     __skb_linearize(skb))
2939                         goto out_kfree_skb;
2940
2941                 /* If packet is not checksummed and device does not
2942                  * support checksumming for this protocol, complete
2943                  * checksumming here.
2944                  */
2945                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2946                         if (skb->encapsulation)
2947                                 skb_set_inner_transport_header(skb,
2948                                                                skb_checksum_start_offset(skb));
2949                         else
2950                                 skb_set_transport_header(skb,
2951                                                          skb_checksum_start_offset(skb));
2952                         if (!(features & NETIF_F_CSUM_MASK) &&
2953                             skb_checksum_help(skb))
2954                                 goto out_kfree_skb;
2955                 }
2956         }
2957
2958         return skb;
2959
2960 out_kfree_skb:
2961         kfree_skb(skb);
2962 out_null:
2963         return NULL;
2964 }
2965
2966 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2967 {
2968         struct sk_buff *next, *head = NULL, *tail;
2969
2970         for (; skb != NULL; skb = next) {
2971                 next = skb->next;
2972                 skb->next = NULL;
2973
2974                 /* in case skb wont be segmented, point to itself */
2975                 skb->prev = skb;
2976
2977                 skb = validate_xmit_skb(skb, dev);
2978                 if (!skb)
2979                         continue;
2980
2981                 if (!head)
2982                         head = skb;
2983                 else
2984                         tail->next = skb;
2985                 /* If skb was segmented, skb->prev points to
2986                  * the last segment. If not, it still contains skb.
2987                  */
2988                 tail = skb->prev;
2989         }
2990         return head;
2991 }
2992
2993 static void qdisc_pkt_len_init(struct sk_buff *skb)
2994 {
2995         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2996
2997         qdisc_skb_cb(skb)->pkt_len = skb->len;
2998
2999         /* To get more precise estimation of bytes sent on wire,
3000          * we add to pkt_len the headers size of all segments
3001          */
3002         if (shinfo->gso_size)  {
3003                 unsigned int hdr_len;
3004                 u16 gso_segs = shinfo->gso_segs;
3005
3006                 /* mac layer + network layer */
3007                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3008
3009                 /* + transport layer */
3010                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011                         hdr_len += tcp_hdrlen(skb);
3012                 else
3013                         hdr_len += sizeof(struct udphdr);
3014
3015                 if (shinfo->gso_type & SKB_GSO_DODGY)
3016                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3017                                                 shinfo->gso_size);
3018
3019                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3020         }
3021 }
3022
3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024                                  struct net_device *dev,
3025                                  struct netdev_queue *txq)
3026 {
3027         spinlock_t *root_lock = qdisc_lock(q);
3028         bool contended;
3029         int rc;
3030
3031         qdisc_calculate_pkt_len(skb, q);
3032         /*
3033          * Heuristic to force contended enqueues to serialize on a
3034          * separate lock before trying to get qdisc main lock.
3035          * This permits __QDISC___STATE_RUNNING owner to get the lock more
3036          * often and dequeue packets faster.
3037          */
3038         contended = qdisc_is_running(q);
3039         if (unlikely(contended))
3040                 spin_lock(&q->busylock);
3041
3042         spin_lock(root_lock);
3043         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3044                 kfree_skb(skb);
3045                 rc = NET_XMIT_DROP;
3046         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3047                    qdisc_run_begin(q)) {
3048                 /*
3049                  * This is a work-conserving queue; there are no old skbs
3050                  * waiting to be sent out; and the qdisc is not running -
3051                  * xmit the skb directly.
3052                  */
3053
3054                 qdisc_bstats_update(q, skb);
3055
3056                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3057                         if (unlikely(contended)) {
3058                                 spin_unlock(&q->busylock);
3059                                 contended = false;
3060                         }
3061                         __qdisc_run(q);
3062                 } else
3063                         qdisc_run_end(q);
3064
3065                 rc = NET_XMIT_SUCCESS;
3066         } else {
3067                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3068                 if (qdisc_run_begin(q)) {
3069                         if (unlikely(contended)) {
3070                                 spin_unlock(&q->busylock);
3071                                 contended = false;
3072                         }
3073                         __qdisc_run(q);
3074                 }
3075         }
3076         spin_unlock(root_lock);
3077         if (unlikely(contended))
3078                 spin_unlock(&q->busylock);
3079         return rc;
3080 }
3081
3082 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3083 static void skb_update_prio(struct sk_buff *skb)
3084 {
3085         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3086
3087         if (!skb->priority && skb->sk && map) {
3088                 unsigned int prioidx =
3089                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3090
3091                 if (prioidx < map->priomap_len)
3092                         skb->priority = map->priomap[prioidx];
3093         }
3094 }
3095 #else
3096 #define skb_update_prio(skb)
3097 #endif
3098
3099 DEFINE_PER_CPU(int, xmit_recursion);
3100 EXPORT_SYMBOL(xmit_recursion);
3101
3102 #define RECURSION_LIMIT 10
3103
3104 /**
3105  *      dev_loopback_xmit - loop back @skb
3106  *      @net: network namespace this loopback is happening in
3107  *      @sk:  sk needed to be a netfilter okfn
3108  *      @skb: buffer to transmit
3109  */
3110 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3111 {
3112         skb_reset_mac_header(skb);
3113         __skb_pull(skb, skb_network_offset(skb));
3114         skb->pkt_type = PACKET_LOOPBACK;
3115         skb->ip_summed = CHECKSUM_UNNECESSARY;
3116         WARN_ON(!skb_dst(skb));
3117         skb_dst_force(skb);
3118         netif_rx_ni(skb);
3119         return 0;
3120 }
3121 EXPORT_SYMBOL(dev_loopback_xmit);
3122
3123 #ifdef CONFIG_NET_EGRESS
3124 static struct sk_buff *
3125 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3126 {
3127         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3128         struct tcf_result cl_res;
3129
3130         if (!cl)
3131                 return skb;
3132
3133         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3134          * earlier by the caller.
3135          */
3136         qdisc_bstats_cpu_update(cl->q, skb);
3137
3138         switch (tc_classify(skb, cl, &cl_res, false)) {
3139         case TC_ACT_OK:
3140         case TC_ACT_RECLASSIFY:
3141                 skb->tc_index = TC_H_MIN(cl_res.classid);
3142                 break;
3143         case TC_ACT_SHOT:
3144                 qdisc_qstats_cpu_drop(cl->q);
3145                 *ret = NET_XMIT_DROP;
3146                 goto drop;
3147         case TC_ACT_STOLEN:
3148         case TC_ACT_QUEUED:
3149                 *ret = NET_XMIT_SUCCESS;
3150 drop:
3151                 kfree_skb(skb);
3152                 return NULL;
3153         case TC_ACT_REDIRECT:
3154                 /* No need to push/pop skb's mac_header here on egress! */
3155                 skb_do_redirect(skb);
3156                 *ret = NET_XMIT_SUCCESS;
3157                 return NULL;
3158         default:
3159                 break;
3160         }
3161
3162         return skb;
3163 }
3164 #endif /* CONFIG_NET_EGRESS */
3165
3166 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3167 {
3168 #ifdef CONFIG_XPS
3169         struct xps_dev_maps *dev_maps;
3170         struct xps_map *map;
3171         int queue_index = -1;
3172
3173         rcu_read_lock();
3174         dev_maps = rcu_dereference(dev->xps_maps);
3175         if (dev_maps) {
3176                 map = rcu_dereference(
3177                     dev_maps->cpu_map[skb->sender_cpu - 1]);
3178                 if (map) {
3179                         if (map->len == 1)
3180                                 queue_index = map->queues[0];
3181                         else
3182                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3183                                                                            map->len)];
3184                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3185                                 queue_index = -1;
3186                 }
3187         }
3188         rcu_read_unlock();
3189
3190         return queue_index;
3191 #else
3192         return -1;
3193 #endif
3194 }
3195
3196 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3197 {
3198         struct sock *sk = skb->sk;
3199         int queue_index = sk_tx_queue_get(sk);
3200
3201         if (queue_index < 0 || skb->ooo_okay ||
3202             queue_index >= dev->real_num_tx_queues) {
3203                 int new_index = get_xps_queue(dev, skb);
3204                 if (new_index < 0)
3205                         new_index = skb_tx_hash(dev, skb);
3206
3207                 if (queue_index != new_index && sk &&
3208                     sk_fullsock(sk) &&
3209                     rcu_access_pointer(sk->sk_dst_cache))
3210                         sk_tx_queue_set(sk, new_index);
3211
3212                 queue_index = new_index;
3213         }
3214
3215         return queue_index;
3216 }
3217
3218 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3219                                     struct sk_buff *skb,
3220                                     void *accel_priv)
3221 {
3222         int queue_index = 0;
3223
3224 #ifdef CONFIG_XPS
3225         u32 sender_cpu = skb->sender_cpu - 1;
3226
3227         if (sender_cpu >= (u32)NR_CPUS)
3228                 skb->sender_cpu = raw_smp_processor_id() + 1;
3229 #endif
3230
3231         if (dev->real_num_tx_queues != 1) {
3232                 const struct net_device_ops *ops = dev->netdev_ops;
3233                 if (ops->ndo_select_queue)
3234                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3235                                                             __netdev_pick_tx);
3236                 else
3237                         queue_index = __netdev_pick_tx(dev, skb);
3238
3239                 if (!accel_priv)
3240                         queue_index = netdev_cap_txqueue(dev, queue_index);
3241         }
3242
3243         skb_set_queue_mapping(skb, queue_index);
3244         return netdev_get_tx_queue(dev, queue_index);
3245 }
3246
3247 /**
3248  *      __dev_queue_xmit - transmit a buffer
3249  *      @skb: buffer to transmit
3250  *      @accel_priv: private data used for L2 forwarding offload
3251  *
3252  *      Queue a buffer for transmission to a network device. The caller must
3253  *      have set the device and priority and built the buffer before calling
3254  *      this function. The function can be called from an interrupt.
3255  *
3256  *      A negative errno code is returned on a failure. A success does not
3257  *      guarantee the frame will be transmitted as it may be dropped due
3258  *      to congestion or traffic shaping.
3259  *
3260  * -----------------------------------------------------------------------------------
3261  *      I notice this method can also return errors from the queue disciplines,
3262  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3263  *      be positive.
3264  *
3265  *      Regardless of the return value, the skb is consumed, so it is currently
3266  *      difficult to retry a send to this method.  (You can bump the ref count
3267  *      before sending to hold a reference for retry if you are careful.)
3268  *
3269  *      When calling this method, interrupts MUST be enabled.  This is because
3270  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3271  *          --BLG
3272  */
3273 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3274 {
3275         struct net_device *dev = skb->dev;
3276         struct netdev_queue *txq;
3277         struct Qdisc *q;
3278         int rc = -ENOMEM;
3279
3280         skb_reset_mac_header(skb);
3281
3282         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3283                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3284
3285         /* Disable soft irqs for various locks below. Also
3286          * stops preemption for RCU.
3287          */
3288         rcu_read_lock_bh();
3289
3290         skb_update_prio(skb);
3291
3292         qdisc_pkt_len_init(skb);
3293 #ifdef CONFIG_NET_CLS_ACT
3294         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3295 # ifdef CONFIG_NET_EGRESS
3296         if (static_key_false(&egress_needed)) {
3297                 skb = sch_handle_egress(skb, &rc, dev);
3298                 if (!skb)
3299                         goto out;
3300         }
3301 # endif
3302 #endif
3303         /* If device/qdisc don't need skb->dst, release it right now while
3304          * its hot in this cpu cache.
3305          */
3306         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3307                 skb_dst_drop(skb);
3308         else
3309                 skb_dst_force(skb);
3310
3311 #ifdef CONFIG_NET_SWITCHDEV
3312         /* Don't forward if offload device already forwarded */
3313         if (skb->offload_fwd_mark &&
3314             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3315                 consume_skb(skb);
3316                 rc = NET_XMIT_SUCCESS;
3317                 goto out;
3318         }
3319 #endif
3320
3321         txq = netdev_pick_tx(dev, skb, accel_priv);
3322         q = rcu_dereference_bh(txq->qdisc);
3323
3324         trace_net_dev_queue(skb);
3325         if (q->enqueue) {
3326                 rc = __dev_xmit_skb(skb, q, dev, txq);
3327                 goto out;
3328         }
3329
3330         /* The device has no queue. Common case for software devices:
3331            loopback, all the sorts of tunnels...
3332
3333            Really, it is unlikely that netif_tx_lock protection is necessary
3334            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3335            counters.)
3336            However, it is possible, that they rely on protection
3337            made by us here.
3338
3339            Check this and shot the lock. It is not prone from deadlocks.
3340            Either shot noqueue qdisc, it is even simpler 8)
3341          */
3342         if (dev->flags & IFF_UP) {
3343                 int cpu = smp_processor_id(); /* ok because BHs are off */
3344
3345                 if (txq->xmit_lock_owner != cpu) {
3346
3347                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3348                                 goto recursion_alert;
3349
3350                         skb = validate_xmit_skb(skb, dev);
3351                         if (!skb)
3352                                 goto drop;
3353
3354                         HARD_TX_LOCK(dev, txq, cpu);
3355
3356                         if (!netif_xmit_stopped(txq)) {
3357                                 __this_cpu_inc(xmit_recursion);
3358                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3359                                 __this_cpu_dec(xmit_recursion);
3360                                 if (dev_xmit_complete(rc)) {
3361                                         HARD_TX_UNLOCK(dev, txq);
3362                                         goto out;
3363                                 }
3364                         }
3365                         HARD_TX_UNLOCK(dev, txq);
3366                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3367                                              dev->name);
3368                 } else {
3369                         /* Recursion is detected! It is possible,
3370                          * unfortunately
3371                          */
3372 recursion_alert:
3373                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3374                                              dev->name);
3375                 }
3376         }
3377
3378         rc = -ENETDOWN;
3379 drop:
3380         rcu_read_unlock_bh();
3381
3382         atomic_long_inc(&dev->tx_dropped);
3383         kfree_skb_list(skb);
3384         return rc;
3385 out:
3386         rcu_read_unlock_bh();
3387         return rc;
3388 }
3389
3390 int dev_queue_xmit(struct sk_buff *skb)
3391 {
3392         return __dev_queue_xmit(skb, NULL);
3393 }
3394 EXPORT_SYMBOL(dev_queue_xmit);
3395
3396 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3397 {
3398         return __dev_queue_xmit(skb, accel_priv);
3399 }
3400 EXPORT_SYMBOL(dev_queue_xmit_accel);
3401
3402
3403 /*=======================================================================
3404                         Receiver routines
3405   =======================================================================*/
3406
3407 int netdev_max_backlog __read_mostly = 1000;
3408 EXPORT_SYMBOL(netdev_max_backlog);
3409
3410 int netdev_tstamp_prequeue __read_mostly = 1;
3411 int netdev_budget __read_mostly = 300;
3412 int weight_p __read_mostly = 64;            /* old backlog weight */
3413
3414 /* Called with irq disabled */
3415 static inline void ____napi_schedule(struct softnet_data *sd,
3416                                      struct napi_struct *napi)
3417 {
3418         list_add_tail(&napi->poll_list, &sd->poll_list);
3419         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3420 }
3421
3422 #ifdef CONFIG_RPS
3423
3424 /* One global table that all flow-based protocols share. */
3425 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3426 EXPORT_SYMBOL(rps_sock_flow_table);
3427 u32 rps_cpu_mask __read_mostly;
3428 EXPORT_SYMBOL(rps_cpu_mask);
3429
3430 struct static_key rps_needed __read_mostly;
3431
3432 static struct rps_dev_flow *
3433 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3434             struct rps_dev_flow *rflow, u16 next_cpu)
3435 {
3436         if (next_cpu < nr_cpu_ids) {
3437 #ifdef CONFIG_RFS_ACCEL
3438                 struct netdev_rx_queue *rxqueue;
3439                 struct rps_dev_flow_table *flow_table;
3440                 struct rps_dev_flow *old_rflow;
3441                 u32 flow_id;
3442                 u16 rxq_index;
3443                 int rc;
3444
3445                 /* Should we steer this flow to a different hardware queue? */
3446                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3447                     !(dev->features & NETIF_F_NTUPLE))
3448                         goto out;
3449                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3450                 if (rxq_index == skb_get_rx_queue(skb))
3451                         goto out;
3452
3453                 rxqueue = dev->_rx + rxq_index;
3454                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3455                 if (!flow_table)
3456                         goto out;
3457                 flow_id = skb_get_hash(skb) & flow_table->mask;
3458                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3459                                                         rxq_index, flow_id);
3460                 if (rc < 0)
3461                         goto out;
3462                 old_rflow = rflow;
3463                 rflow = &flow_table->flows[flow_id];
3464                 rflow->filter = rc;
3465                 if (old_rflow->filter == rflow->filter)
3466                         old_rflow->filter = RPS_NO_FILTER;
3467         out:
3468 #endif
3469                 rflow->last_qtail =
3470                         per_cpu(softnet_data, next_cpu).input_queue_head;
3471         }
3472
3473         rflow->cpu = next_cpu;
3474         return rflow;
3475 }
3476
3477 /*
3478  * get_rps_cpu is called from netif_receive_skb and returns the target
3479  * CPU from the RPS map of the receiving queue for a given skb.
3480  * rcu_read_lock must be held on entry.
3481  */
3482 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483                        struct rps_dev_flow **rflowp)
3484 {
3485         const struct rps_sock_flow_table *sock_flow_table;
3486         struct netdev_rx_queue *rxqueue = dev->_rx;
3487         struct rps_dev_flow_table *flow_table;
3488         struct rps_map *map;
3489         int cpu = -1;
3490         u32 tcpu;
3491         u32 hash;
3492
3493         if (skb_rx_queue_recorded(skb)) {
3494                 u16 index = skb_get_rx_queue(skb);
3495
3496                 if (unlikely(index >= dev->real_num_rx_queues)) {
3497                         WARN_ONCE(dev->real_num_rx_queues > 1,
3498                                   "%s received packet on queue %u, but number "
3499                                   "of RX queues is %u\n",
3500                                   dev->name, index, dev->real_num_rx_queues);
3501                         goto done;
3502                 }
3503                 rxqueue += index;
3504         }
3505
3506         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3507
3508         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3509         map = rcu_dereference(rxqueue->rps_map);
3510         if (!flow_table && !map)
3511                 goto done;
3512
3513         skb_reset_network_header(skb);
3514         hash = skb_get_hash(skb);
3515         if (!hash)
3516                 goto done;
3517
3518         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3519         if (flow_table && sock_flow_table) {
3520                 struct rps_dev_flow *rflow;
3521                 u32 next_cpu;
3522                 u32 ident;
3523
3524                 /* First check into global flow table if there is a match */
3525                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3526                 if ((ident ^ hash) & ~rps_cpu_mask)
3527                         goto try_rps;
3528
3529                 next_cpu = ident & rps_cpu_mask;
3530
3531                 /* OK, now we know there is a match,
3532                  * we can look at the local (per receive queue) flow table
3533                  */
3534                 rflow = &flow_table->flows[hash & flow_table->mask];
3535                 tcpu = rflow->cpu;
3536
3537                 /*
3538                  * If the desired CPU (where last recvmsg was done) is
3539                  * different from current CPU (one in the rx-queue flow
3540                  * table entry), switch if one of the following holds:
3541                  *   - Current CPU is unset (>= nr_cpu_ids).
3542                  *   - Current CPU is offline.
3543                  *   - The current CPU's queue tail has advanced beyond the
3544                  *     last packet that was enqueued using this table entry.
3545                  *     This guarantees that all previous packets for the flow
3546                  *     have been dequeued, thus preserving in order delivery.
3547                  */
3548                 if (unlikely(tcpu != next_cpu) &&
3549                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3550                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3551                       rflow->last_qtail)) >= 0)) {
3552                         tcpu = next_cpu;
3553                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3554                 }
3555
3556                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3557                         *rflowp = rflow;
3558                         cpu = tcpu;
3559                         goto done;
3560                 }
3561         }
3562
3563 try_rps:
3564
3565         if (map) {
3566                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3567                 if (cpu_online(tcpu)) {
3568                         cpu = tcpu;
3569                         goto done;
3570                 }
3571         }
3572
3573 done:
3574         return cpu;
3575 }
3576
3577 #ifdef CONFIG_RFS_ACCEL
3578
3579 /**
3580  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3581  * @dev: Device on which the filter was set
3582  * @rxq_index: RX queue index
3583  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3584  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3585  *
3586  * Drivers that implement ndo_rx_flow_steer() should periodically call
3587  * this function for each installed filter and remove the filters for
3588  * which it returns %true.
3589  */
3590 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3591                          u32 flow_id, u16 filter_id)
3592 {
3593         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3594         struct rps_dev_flow_table *flow_table;
3595         struct rps_dev_flow *rflow;
3596         bool expire = true;
3597         unsigned int cpu;
3598
3599         rcu_read_lock();
3600         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3601         if (flow_table && flow_id <= flow_table->mask) {
3602                 rflow = &flow_table->flows[flow_id];
3603                 cpu = ACCESS_ONCE(rflow->cpu);
3604                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3605                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3606                            rflow->last_qtail) <
3607                      (int)(10 * flow_table->mask)))
3608                         expire = false;
3609         }
3610         rcu_read_unlock();
3611         return expire;
3612 }
3613 EXPORT_SYMBOL(rps_may_expire_flow);
3614
3615 #endif /* CONFIG_RFS_ACCEL */
3616
3617 /* Called from hardirq (IPI) context */
3618 static void rps_trigger_softirq(void *data)
3619 {
3620         struct softnet_data *sd = data;
3621
3622         ____napi_schedule(sd, &sd->backlog);
3623         sd->received_rps++;
3624 }
3625
3626 #endif /* CONFIG_RPS */
3627
3628 /*
3629  * Check if this softnet_data structure is another cpu one
3630  * If yes, queue it to our IPI list and return 1
3631  * If no, return 0
3632  */
3633 static int rps_ipi_queued(struct softnet_data *sd)
3634 {
3635 #ifdef CONFIG_RPS
3636         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3637
3638         if (sd != mysd) {
3639                 sd->rps_ipi_next = mysd->rps_ipi_list;
3640                 mysd->rps_ipi_list = sd;
3641
3642                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3643                 return 1;
3644         }
3645 #endif /* CONFIG_RPS */
3646         return 0;
3647 }
3648
3649 #ifdef CONFIG_NET_FLOW_LIMIT
3650 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3651 #endif
3652
3653 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3654 {
3655 #ifdef CONFIG_NET_FLOW_LIMIT
3656         struct sd_flow_limit *fl;
3657         struct softnet_data *sd;
3658         unsigned int old_flow, new_flow;
3659
3660         if (qlen < (netdev_max_backlog >> 1))
3661                 return false;
3662
3663         sd = this_cpu_ptr(&softnet_data);
3664
3665         rcu_read_lock();
3666         fl = rcu_dereference(sd->flow_limit);
3667         if (fl) {
3668                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3669                 old_flow = fl->history[fl->history_head];
3670                 fl->history[fl->history_head] = new_flow;
3671
3672                 fl->history_head++;
3673                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3674
3675                 if (likely(fl->buckets[old_flow]))
3676                         fl->buckets[old_flow]--;
3677
3678                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3679                         fl->count++;
3680                         rcu_read_unlock();
3681                         return true;
3682                 }
3683         }
3684         rcu_read_unlock();
3685 #endif
3686         return false;
3687 }
3688
3689 /*
3690  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3691  * queue (may be a remote CPU queue).
3692  */
3693 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3694                               unsigned int *qtail)
3695 {
3696         struct softnet_data *sd;
3697         unsigned long flags;
3698         unsigned int qlen;
3699
3700         sd = &per_cpu(softnet_data, cpu);
3701
3702         local_irq_save(flags);
3703
3704         rps_lock(sd);
3705         if (!netif_running(skb->dev))
3706                 goto drop;
3707         qlen = skb_queue_len(&sd->input_pkt_queue);
3708         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3709                 if (qlen) {
3710 enqueue:
3711                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3712                         input_queue_tail_incr_save(sd, qtail);
3713                         rps_unlock(sd);
3714                         local_irq_restore(flags);
3715                         return NET_RX_SUCCESS;
3716                 }
3717
3718                 /* Schedule NAPI for backlog device
3719                  * We can use non atomic operation since we own the queue lock
3720                  */
3721                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3722                         if (!rps_ipi_queued(sd))
3723                                 ____napi_schedule(sd, &sd->backlog);
3724                 }
3725                 goto enqueue;
3726         }
3727
3728 drop:
3729         sd->dropped++;
3730         rps_unlock(sd);
3731
3732         local_irq_restore(flags);
3733
3734         atomic_long_inc(&skb->dev->rx_dropped);
3735         kfree_skb(skb);
3736         return NET_RX_DROP;
3737 }
3738
3739 static int netif_rx_internal(struct sk_buff *skb)
3740 {
3741         int ret;
3742
3743         net_timestamp_check(netdev_tstamp_prequeue, skb);
3744
3745         trace_netif_rx(skb);
3746 #ifdef CONFIG_RPS
3747         if (static_key_false(&rps_needed)) {
3748                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3749                 int cpu;
3750
3751                 preempt_disable();
3752                 rcu_read_lock();
3753
3754                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3755                 if (cpu < 0)
3756                         cpu = smp_processor_id();
3757
3758                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3759
3760                 rcu_read_unlock();
3761                 preempt_enable();
3762         } else
3763 #endif
3764         {
3765                 unsigned int qtail;
3766                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3767                 put_cpu();
3768         }
3769         return ret;
3770 }
3771
3772 /**
3773  *      netif_rx        -       post buffer to the network code
3774  *      @skb: buffer to post
3775  *
3776  *      This function receives a packet from a device driver and queues it for
3777  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3778  *      may be dropped during processing for congestion control or by the
3779  *      protocol layers.
3780  *
3781  *      return values:
3782  *      NET_RX_SUCCESS  (no congestion)
3783  *      NET_RX_DROP     (packet was dropped)
3784  *
3785  */
3786
3787 int netif_rx(struct sk_buff *skb)
3788 {
3789         trace_netif_rx_entry(skb);
3790
3791         return netif_rx_internal(skb);
3792 }
3793 EXPORT_SYMBOL(netif_rx);
3794
3795 int netif_rx_ni(struct sk_buff *skb)
3796 {
3797         int err;
3798
3799         trace_netif_rx_ni_entry(skb);
3800
3801         preempt_disable();
3802         err = netif_rx_internal(skb);
3803         if (local_softirq_pending())
3804                 do_softirq();
3805         preempt_enable();
3806
3807         return err;
3808 }
3809 EXPORT_SYMBOL(netif_rx_ni);
3810
3811 static void net_tx_action(struct softirq_action *h)
3812 {
3813         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3814
3815         if (sd->completion_queue) {
3816                 struct sk_buff *clist;
3817
3818                 local_irq_disable();
3819                 clist = sd->completion_queue;
3820                 sd->completion_queue = NULL;
3821                 local_irq_enable();
3822
3823                 while (clist) {
3824                         struct sk_buff *skb = clist;
3825                         clist = clist->next;
3826
3827                         WARN_ON(atomic_read(&skb->users));
3828                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3829                                 trace_consume_skb(skb);
3830                         else
3831                                 trace_kfree_skb(skb, net_tx_action);
3832                         __kfree_skb(skb);
3833                 }
3834         }
3835
3836         if (sd->output_queue) {
3837                 struct Qdisc *head;
3838
3839                 local_irq_disable();
3840                 head = sd->output_queue;
3841                 sd->output_queue = NULL;
3842                 sd->output_queue_tailp = &sd->output_queue;
3843                 local_irq_enable();
3844
3845                 while (head) {
3846                         struct Qdisc *q = head;
3847                         spinlock_t *root_lock;
3848
3849                         head = head->next_sched;
3850
3851                         root_lock = qdisc_lock(q);
3852                         if (spin_trylock(root_lock)) {
3853                                 smp_mb__before_atomic();
3854                                 clear_bit(__QDISC_STATE_SCHED,
3855                                           &q->state);
3856                                 qdisc_run(q);
3857                                 spin_unlock(root_lock);
3858                         } else {
3859                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3860                                               &q->state)) {
3861                                         __netif_reschedule(q);
3862                                 } else {
3863                                         smp_mb__before_atomic();
3864                                         clear_bit(__QDISC_STATE_SCHED,
3865                                                   &q->state);
3866                                 }
3867                         }
3868                 }
3869         }
3870 }
3871
3872 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3873     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3874 /* This hook is defined here for ATM LANE */
3875 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3876                              unsigned char *addr) __read_mostly;
3877 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3878 #endif
3879
3880 static inline struct sk_buff *
3881 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3882                    struct net_device *orig_dev)
3883 {
3884 #ifdef CONFIG_NET_CLS_ACT
3885         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3886         struct tcf_result cl_res;
3887
3888         /* If there's at least one ingress present somewhere (so
3889          * we get here via enabled static key), remaining devices
3890          * that are not configured with an ingress qdisc will bail
3891          * out here.
3892          */
3893         if (!cl)
3894                 return skb;
3895         if (*pt_prev) {
3896                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3897                 *pt_prev = NULL;
3898         }
3899
3900         qdisc_skb_cb(skb)->pkt_len = skb->len;
3901         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3902         qdisc_bstats_cpu_update(cl->q, skb);
3903
3904         switch (tc_classify(skb, cl, &cl_res, false)) {
3905         case TC_ACT_OK:
3906         case TC_ACT_RECLASSIFY:
3907                 skb->tc_index = TC_H_MIN(cl_res.classid);
3908                 break;
3909         case TC_ACT_SHOT:
3910                 qdisc_qstats_cpu_drop(cl->q);
3911         case TC_ACT_STOLEN:
3912         case TC_ACT_QUEUED:
3913                 kfree_skb(skb);
3914                 return NULL;
3915         case TC_ACT_REDIRECT:
3916                 /* skb_mac_header check was done by cls/act_bpf, so
3917                  * we can safely push the L2 header back before
3918                  * redirecting to another netdev
3919                  */
3920                 __skb_push(skb, skb->mac_len);
3921                 skb_do_redirect(skb);
3922                 return NULL;
3923         default:
3924                 break;
3925         }
3926 #endif /* CONFIG_NET_CLS_ACT */
3927         return skb;
3928 }
3929
3930 /**
3931  *      netdev_rx_handler_register - register receive handler
3932  *      @dev: device to register a handler for
3933  *      @rx_handler: receive handler to register
3934  *      @rx_handler_data: data pointer that is used by rx handler
3935  *
3936  *      Register a receive handler for a device. This handler will then be
3937  *      called from __netif_receive_skb. A negative errno code is returned
3938  *      on a failure.
3939  *
3940  *      The caller must hold the rtnl_mutex.
3941  *
3942  *      For a general description of rx_handler, see enum rx_handler_result.
3943  */
3944 int netdev_rx_handler_register(struct net_device *dev,
3945                                rx_handler_func_t *rx_handler,
3946                                void *rx_handler_data)
3947 {
3948         ASSERT_RTNL();
3949
3950         if (dev->rx_handler)
3951                 return -EBUSY;
3952
3953         /* Note: rx_handler_data must be set before rx_handler */
3954         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3955         rcu_assign_pointer(dev->rx_handler, rx_handler);
3956
3957         return 0;
3958 }
3959 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3960
3961 /**
3962  *      netdev_rx_handler_unregister - unregister receive handler
3963  *      @dev: device to unregister a handler from
3964  *
3965  *      Unregister a receive handler from a device.
3966  *
3967  *      The caller must hold the rtnl_mutex.
3968  */
3969 void netdev_rx_handler_unregister(struct net_device *dev)
3970 {
3971
3972         ASSERT_RTNL();
3973         RCU_INIT_POINTER(dev->rx_handler, NULL);
3974         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3975          * section has a guarantee to see a non NULL rx_handler_data
3976          * as well.
3977          */
3978         synchronize_net();
3979         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3980 }
3981 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3982
3983 /*
3984  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3985  * the special handling of PFMEMALLOC skbs.
3986  */
3987 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3988 {
3989         switch (skb->protocol) {
3990         case htons(ETH_P_ARP):
3991         case htons(ETH_P_IP):
3992         case htons(ETH_P_IPV6):
3993         case htons(ETH_P_8021Q):
3994         case htons(ETH_P_8021AD):
3995                 return true;
3996         default:
3997                 return false;
3998         }
3999 }
4000
4001 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4002                              int *ret, struct net_device *orig_dev)
4003 {
4004 #ifdef CONFIG_NETFILTER_INGRESS
4005         if (nf_hook_ingress_active(skb)) {
4006                 if (*pt_prev) {
4007                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4008                         *pt_prev = NULL;
4009                 }
4010
4011                 return nf_hook_ingress(skb);
4012         }
4013 #endif /* CONFIG_NETFILTER_INGRESS */
4014         return 0;
4015 }
4016
4017 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4018 {
4019         struct packet_type *ptype, *pt_prev;
4020         rx_handler_func_t *rx_handler;
4021         struct net_device *orig_dev;
4022         bool deliver_exact = false;
4023         int ret = NET_RX_DROP;
4024         __be16 type;
4025
4026         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4027
4028         trace_netif_receive_skb(skb);
4029
4030         orig_dev = skb->dev;
4031
4032         skb_reset_network_header(skb);
4033         if (!skb_transport_header_was_set(skb))
4034                 skb_reset_transport_header(skb);
4035         skb_reset_mac_len(skb);
4036
4037         pt_prev = NULL;
4038
4039 another_round:
4040         skb->skb_iif = skb->dev->ifindex;
4041
4042         __this_cpu_inc(softnet_data.processed);
4043
4044         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4045             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4046                 skb = skb_vlan_untag(skb);
4047                 if (unlikely(!skb))
4048                         goto out;
4049         }
4050
4051 #ifdef CONFIG_NET_CLS_ACT
4052         if (skb->tc_verd & TC_NCLS) {
4053                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4054                 goto ncls;
4055         }
4056 #endif
4057
4058         if (pfmemalloc)
4059                 goto skip_taps;
4060
4061         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4062                 if (pt_prev)
4063                         ret = deliver_skb(skb, pt_prev, orig_dev);
4064                 pt_prev = ptype;
4065         }
4066
4067         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4068                 if (pt_prev)
4069                         ret = deliver_skb(skb, pt_prev, orig_dev);
4070                 pt_prev = ptype;
4071         }
4072
4073 skip_taps:
4074 #ifdef CONFIG_NET_INGRESS
4075         if (static_key_false(&ingress_needed)) {
4076                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4077                 if (!skb)
4078                         goto out;
4079
4080                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4081                         goto out;
4082         }
4083 #endif
4084 #ifdef CONFIG_NET_CLS_ACT
4085         skb->tc_verd = 0;
4086 ncls:
4087 #endif
4088         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4089                 goto drop;
4090
4091         if (skb_vlan_tag_present(skb)) {
4092                 if (pt_prev) {
4093                         ret = deliver_skb(skb, pt_prev, orig_dev);
4094                         pt_prev = NULL;
4095                 }
4096                 if (vlan_do_receive(&skb))
4097                         goto another_round;
4098                 else if (unlikely(!skb))
4099                         goto out;
4100         }
4101
4102         rx_handler = rcu_dereference(skb->dev->rx_handler);
4103         if (rx_handler) {
4104                 if (pt_prev) {
4105                         ret = deliver_skb(skb, pt_prev, orig_dev);
4106                         pt_prev = NULL;
4107                 }
4108                 switch (rx_handler(&skb)) {
4109                 case RX_HANDLER_CONSUMED:
4110                         ret = NET_RX_SUCCESS;
4111                         goto out;
4112                 case RX_HANDLER_ANOTHER:
4113                         goto another_round;
4114                 case RX_HANDLER_EXACT:
4115                         deliver_exact = true;
4116                 case RX_HANDLER_PASS:
4117                         break;
4118                 default:
4119                         BUG();
4120                 }
4121         }
4122
4123         if (unlikely(skb_vlan_tag_present(skb))) {
4124                 if (skb_vlan_tag_get_id(skb))
4125                         skb->pkt_type = PACKET_OTHERHOST;
4126                 /* Note: we might in the future use prio bits
4127                  * and set skb->priority like in vlan_do_receive()
4128                  * For the time being, just ignore Priority Code Point
4129                  */
4130                 skb->vlan_tci = 0;
4131         }
4132
4133         type = skb->protocol;
4134
4135         /* deliver only exact match when indicated */
4136         if (likely(!deliver_exact)) {
4137                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4138                                        &ptype_base[ntohs(type) &
4139                                                    PTYPE_HASH_MASK]);
4140         }
4141
4142         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4143                                &orig_dev->ptype_specific);
4144
4145         if (unlikely(skb->dev != orig_dev)) {
4146                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4147                                        &skb->dev->ptype_specific);
4148         }
4149
4150         if (pt_prev) {
4151                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4152                         goto drop;
4153                 else
4154                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4155         } else {
4156 drop:
4157                 if (!deliver_exact)
4158                         atomic_long_inc(&skb->dev->rx_dropped);
4159                 else
4160                         atomic_long_inc(&skb->dev->rx_nohandler);
4161                 kfree_skb(skb);
4162                 /* Jamal, now you will not able to escape explaining
4163                  * me how you were going to use this. :-)
4164                  */
4165                 ret = NET_RX_DROP;
4166         }
4167
4168 out:
4169         return ret;
4170 }
4171
4172 static int __netif_receive_skb(struct sk_buff *skb)
4173 {
4174         int ret;
4175
4176         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4177                 unsigned long pflags = current->flags;
4178
4179                 /*
4180                  * PFMEMALLOC skbs are special, they should
4181                  * - be delivered to SOCK_MEMALLOC sockets only
4182                  * - stay away from userspace
4183                  * - have bounded memory usage
4184                  *
4185                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4186                  * context down to all allocation sites.
4187                  */
4188                 current->flags |= PF_MEMALLOC;
4189                 ret = __netif_receive_skb_core(skb, true);
4190                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4191         } else
4192                 ret = __netif_receive_skb_core(skb, false);
4193
4194         return ret;
4195 }
4196
4197 static int netif_receive_skb_internal(struct sk_buff *skb)
4198 {
4199         int ret;
4200
4201         net_timestamp_check(netdev_tstamp_prequeue, skb);
4202
4203         if (skb_defer_rx_timestamp(skb))
4204                 return NET_RX_SUCCESS;
4205
4206         rcu_read_lock();
4207
4208 #ifdef CONFIG_RPS
4209         if (static_key_false(&rps_needed)) {
4210                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4211                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4212
4213                 if (cpu >= 0) {
4214                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4215                         rcu_read_unlock();
4216                         return ret;
4217                 }
4218         }
4219 #endif
4220         ret = __netif_receive_skb(skb);
4221         rcu_read_unlock();
4222         return ret;
4223 }
4224
4225 /**
4226  *      netif_receive_skb - process receive buffer from network
4227  *      @skb: buffer to process
4228  *
4229  *      netif_receive_skb() is the main receive data processing function.
4230  *      It always succeeds. The buffer may be dropped during processing
4231  *      for congestion control or by the protocol layers.
4232  *
4233  *      This function may only be called from softirq context and interrupts
4234  *      should be enabled.
4235  *
4236  *      Return values (usually ignored):
4237  *      NET_RX_SUCCESS: no congestion
4238  *      NET_RX_DROP: packet was dropped
4239  */
4240 int netif_receive_skb(struct sk_buff *skb)
4241 {
4242         trace_netif_receive_skb_entry(skb);
4243
4244         return netif_receive_skb_internal(skb);
4245 }
4246 EXPORT_SYMBOL(netif_receive_skb);
4247
4248 /* Network device is going away, flush any packets still pending
4249  * Called with irqs disabled.
4250  */
4251 static void flush_backlog(void *arg)
4252 {
4253         struct net_device *dev = arg;
4254         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4255         struct sk_buff *skb, *tmp;
4256
4257         rps_lock(sd);
4258         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4259                 if (skb->dev == dev) {
4260                         __skb_unlink(skb, &sd->input_pkt_queue);
4261                         kfree_skb(skb);
4262                         input_queue_head_incr(sd);
4263                 }
4264         }
4265         rps_unlock(sd);
4266
4267         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4268                 if (skb->dev == dev) {
4269                         __skb_unlink(skb, &sd->process_queue);
4270                         kfree_skb(skb);
4271                         input_queue_head_incr(sd);
4272                 }
4273         }
4274 }
4275
4276 static int napi_gro_complete(struct sk_buff *skb)
4277 {
4278         struct packet_offload *ptype;
4279         __be16 type = skb->protocol;
4280         struct list_head *head = &offload_base;
4281         int err = -ENOENT;
4282
4283         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4284
4285         if (NAPI_GRO_CB(skb)->count == 1) {
4286                 skb_shinfo(skb)->gso_size = 0;
4287                 goto out;
4288         }
4289
4290         rcu_read_lock();
4291         list_for_each_entry_rcu(ptype, head, list) {
4292                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4293                         continue;
4294
4295                 err = ptype->callbacks.gro_complete(skb, 0);
4296                 break;
4297         }
4298         rcu_read_unlock();
4299
4300         if (err) {
4301                 WARN_ON(&ptype->list == head);
4302                 kfree_skb(skb);
4303                 return NET_RX_SUCCESS;
4304         }
4305
4306 out:
4307         return netif_receive_skb_internal(skb);
4308 }
4309
4310 /* napi->gro_list contains packets ordered by age.
4311  * youngest packets at the head of it.
4312  * Complete skbs in reverse order to reduce latencies.
4313  */
4314 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4315 {
4316         struct sk_buff *skb, *prev = NULL;
4317
4318         /* scan list and build reverse chain */
4319         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4320                 skb->prev = prev;
4321                 prev = skb;
4322         }
4323
4324         for (skb = prev; skb; skb = prev) {
4325                 skb->next = NULL;
4326
4327                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4328                         return;
4329
4330                 prev = skb->prev;
4331                 napi_gro_complete(skb);
4332                 napi->gro_count--;
4333         }
4334
4335         napi->gro_list = NULL;
4336 }
4337 EXPORT_SYMBOL(napi_gro_flush);
4338
4339 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4340 {
4341         struct sk_buff *p;
4342         unsigned int maclen = skb->dev->hard_header_len;
4343         u32 hash = skb_get_hash_raw(skb);
4344
4345         for (p = napi->gro_list; p; p = p->next) {
4346                 unsigned long diffs;
4347
4348                 NAPI_GRO_CB(p)->flush = 0;
4349
4350                 if (hash != skb_get_hash_raw(p)) {
4351                         NAPI_GRO_CB(p)->same_flow = 0;
4352                         continue;
4353                 }
4354
4355                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4356                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4357                 diffs |= skb_metadata_dst_cmp(p, skb);
4358                 if (maclen == ETH_HLEN)
4359                         diffs |= compare_ether_header(skb_mac_header(p),
4360                                                       skb_mac_header(skb));
4361                 else if (!diffs)
4362                         diffs = memcmp(skb_mac_header(p),
4363                                        skb_mac_header(skb),
4364                                        maclen);
4365                 NAPI_GRO_CB(p)->same_flow = !diffs;
4366         }
4367 }
4368
4369 static void skb_gro_reset_offset(struct sk_buff *skb)
4370 {
4371         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4372         const skb_frag_t *frag0 = &pinfo->frags[0];
4373
4374         NAPI_GRO_CB(skb)->data_offset = 0;
4375         NAPI_GRO_CB(skb)->frag0 = NULL;
4376         NAPI_GRO_CB(skb)->frag0_len = 0;
4377
4378         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4379             pinfo->nr_frags &&
4380             !PageHighMem(skb_frag_page(frag0))) {
4381                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4382                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4383         }
4384 }
4385
4386 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4387 {
4388         struct skb_shared_info *pinfo = skb_shinfo(skb);
4389
4390         BUG_ON(skb->end - skb->tail < grow);
4391
4392         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4393
4394         skb->data_len -= grow;
4395         skb->tail += grow;
4396
4397         pinfo->frags[0].page_offset += grow;
4398         skb_frag_size_sub(&pinfo->frags[0], grow);
4399
4400         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4401                 skb_frag_unref(skb, 0);
4402                 memmove(pinfo->frags, pinfo->frags + 1,
4403                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4404         }
4405 }
4406
4407 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4408 {
4409         struct sk_buff **pp = NULL;
4410         struct packet_offload *ptype;
4411         __be16 type = skb->protocol;
4412         struct list_head *head = &offload_base;
4413         int same_flow;
4414         enum gro_result ret;
4415         int grow;
4416
4417         if (!(skb->dev->features & NETIF_F_GRO))
4418                 goto normal;
4419
4420         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4421                 goto normal;
4422
4423         gro_list_prepare(napi, skb);
4424
4425         rcu_read_lock();
4426         list_for_each_entry_rcu(ptype, head, list) {
4427                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4428                         continue;
4429
4430                 skb_set_network_header(skb, skb_gro_offset(skb));
4431                 skb_reset_mac_len(skb);
4432                 NAPI_GRO_CB(skb)->same_flow = 0;
4433                 NAPI_GRO_CB(skb)->flush = 0;
4434                 NAPI_GRO_CB(skb)->free = 0;
4435                 NAPI_GRO_CB(skb)->udp_mark = 0;
4436                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4437
4438                 /* Setup for GRO checksum validation */
4439                 switch (skb->ip_summed) {
4440                 case CHECKSUM_COMPLETE:
4441                         NAPI_GRO_CB(skb)->csum = skb->csum;
4442                         NAPI_GRO_CB(skb)->csum_valid = 1;
4443                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4444                         break;
4445                 case CHECKSUM_UNNECESSARY:
4446                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4447                         NAPI_GRO_CB(skb)->csum_valid = 0;
4448                         break;
4449                 default:
4450                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4451                         NAPI_GRO_CB(skb)->csum_valid = 0;
4452                 }
4453
4454                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4455                 break;
4456         }
4457         rcu_read_unlock();
4458
4459         if (&ptype->list == head)
4460                 goto normal;
4461
4462         same_flow = NAPI_GRO_CB(skb)->same_flow;
4463         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4464
4465         if (pp) {
4466                 struct sk_buff *nskb = *pp;
4467
4468                 *pp = nskb->next;
4469                 nskb->next = NULL;
4470                 napi_gro_complete(nskb);
4471                 napi->gro_count--;
4472         }
4473
4474         if (same_flow)
4475                 goto ok;
4476
4477         if (NAPI_GRO_CB(skb)->flush)
4478                 goto normal;
4479
4480         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4481                 struct sk_buff *nskb = napi->gro_list;
4482
4483                 /* locate the end of the list to select the 'oldest' flow */
4484                 while (nskb->next) {
4485                         pp = &nskb->next;
4486                         nskb = *pp;
4487                 }
4488                 *pp = NULL;
4489                 nskb->next = NULL;
4490                 napi_gro_complete(nskb);
4491         } else {
4492                 napi->gro_count++;
4493         }
4494         NAPI_GRO_CB(skb)->count = 1;
4495         NAPI_GRO_CB(skb)->age = jiffies;
4496         NAPI_GRO_CB(skb)->last = skb;
4497         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4498         skb->next = napi->gro_list;
4499         napi->gro_list = skb;
4500         ret = GRO_HELD;
4501
4502 pull:
4503         grow = skb_gro_offset(skb) - skb_headlen(skb);
4504         if (grow > 0)
4505                 gro_pull_from_frag0(skb, grow);
4506 ok:
4507         return ret;
4508
4509 normal:
4510         ret = GRO_NORMAL;
4511         goto pull;
4512 }
4513
4514 struct packet_offload *gro_find_receive_by_type(__be16 type)
4515 {
4516         struct list_head *offload_head = &offload_base;
4517         struct packet_offload *ptype;
4518
4519         list_for_each_entry_rcu(ptype, offload_head, list) {
4520                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4521                         continue;
4522                 return ptype;
4523         }
4524         return NULL;
4525 }
4526 EXPORT_SYMBOL(gro_find_receive_by_type);
4527
4528 struct packet_offload *gro_find_complete_by_type(__be16 type)
4529 {
4530         struct list_head *offload_head = &offload_base;
4531         struct packet_offload *ptype;
4532
4533         list_for_each_entry_rcu(ptype, offload_head, list) {
4534                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4535                         continue;
4536                 return ptype;
4537         }
4538         return NULL;
4539 }
4540 EXPORT_SYMBOL(gro_find_complete_by_type);
4541
4542 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4543 {
4544         switch (ret) {
4545         case GRO_NORMAL:
4546                 if (netif_receive_skb_internal(skb))
4547                         ret = GRO_DROP;
4548                 break;
4549
4550         case GRO_DROP:
4551                 kfree_skb(skb);
4552                 break;
4553
4554         case GRO_MERGED_FREE:
4555                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4556                         skb_dst_drop(skb);
4557                         kmem_cache_free(skbuff_head_cache, skb);
4558                 } else {
4559                         __kfree_skb(skb);
4560                 }
4561                 break;
4562
4563         case GRO_HELD:
4564         case GRO_MERGED:
4565                 break;
4566         }
4567
4568         return ret;
4569 }
4570
4571 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4572 {
4573         skb_mark_napi_id(skb, napi);
4574         trace_napi_gro_receive_entry(skb);
4575
4576         skb_gro_reset_offset(skb);
4577
4578         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4579 }
4580 EXPORT_SYMBOL(napi_gro_receive);
4581
4582 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4583 {
4584         if (unlikely(skb->pfmemalloc)) {
4585                 consume_skb(skb);
4586                 return;
4587         }
4588         __skb_pull(skb, skb_headlen(skb));
4589         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4590         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4591         skb->vlan_tci = 0;
4592         skb->dev = napi->dev;
4593         skb->skb_iif = 0;
4594         skb->encapsulation = 0;
4595         skb_shinfo(skb)->gso_type = 0;
4596         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4597
4598         napi->skb = skb;
4599 }
4600
4601 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4602 {
4603         struct sk_buff *skb = napi->skb;
4604
4605         if (!skb) {
4606                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4607                 if (skb) {
4608                         napi->skb = skb;
4609                         skb_mark_napi_id(skb, napi);
4610                 }
4611         }
4612         return skb;
4613 }
4614 EXPORT_SYMBOL(napi_get_frags);
4615
4616 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4617                                       struct sk_buff *skb,
4618                                       gro_result_t ret)
4619 {
4620         switch (ret) {
4621         case GRO_NORMAL:
4622         case GRO_HELD:
4623                 __skb_push(skb, ETH_HLEN);
4624                 skb->protocol = eth_type_trans(skb, skb->dev);
4625                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4626                         ret = GRO_DROP;
4627                 break;
4628
4629         case GRO_DROP:
4630         case GRO_MERGED_FREE:
4631                 napi_reuse_skb(napi, skb);
4632                 break;
4633
4634         case GRO_MERGED:
4635                 break;
4636         }
4637
4638         return ret;
4639 }
4640
4641 /* Upper GRO stack assumes network header starts at gro_offset=0
4642  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4643  * We copy ethernet header into skb->data to have a common layout.
4644  */
4645 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4646 {
4647         struct sk_buff *skb = napi->skb;
4648         const struct ethhdr *eth;
4649         unsigned int hlen = sizeof(*eth);
4650
4651         napi->skb = NULL;
4652
4653         skb_reset_mac_header(skb);
4654         skb_gro_reset_offset(skb);
4655
4656         eth = skb_gro_header_fast(skb, 0);
4657         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4658                 eth = skb_gro_header_slow(skb, hlen, 0);
4659                 if (unlikely(!eth)) {
4660                         napi_reuse_skb(napi, skb);
4661                         return NULL;
4662                 }
4663         } else {
4664                 gro_pull_from_frag0(skb, hlen);
4665                 NAPI_GRO_CB(skb)->frag0 += hlen;
4666                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4667         }
4668         __skb_pull(skb, hlen);
4669
4670         /*
4671          * This works because the only protocols we care about don't require
4672          * special handling.
4673          * We'll fix it up properly in napi_frags_finish()
4674          */
4675         skb->protocol = eth->h_proto;
4676
4677         return skb;
4678 }
4679
4680 gro_result_t napi_gro_frags(struct napi_struct *napi)
4681 {
4682         struct sk_buff *skb = napi_frags_skb(napi);
4683
4684         if (!skb)
4685                 return GRO_DROP;
4686
4687         trace_napi_gro_frags_entry(skb);
4688
4689         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4690 }
4691 EXPORT_SYMBOL(napi_gro_frags);
4692
4693 /* Compute the checksum from gro_offset and return the folded value
4694  * after adding in any pseudo checksum.
4695  */
4696 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4697 {
4698         __wsum wsum;
4699         __sum16 sum;
4700
4701         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4702
4703         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4704         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4705         if (likely(!sum)) {
4706                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4707                     !skb->csum_complete_sw)
4708                         netdev_rx_csum_fault(skb->dev);
4709         }
4710
4711         NAPI_GRO_CB(skb)->csum = wsum;
4712         NAPI_GRO_CB(skb)->csum_valid = 1;
4713
4714         return sum;
4715 }
4716 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4717
4718 /*
4719  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4720  * Note: called with local irq disabled, but exits with local irq enabled.
4721  */
4722 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4723 {
4724 #ifdef CONFIG_RPS
4725         struct softnet_data *remsd = sd->rps_ipi_list;
4726
4727         if (remsd) {
4728                 sd->rps_ipi_list = NULL;
4729
4730                 local_irq_enable();
4731
4732                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4733                 while (remsd) {
4734                         struct softnet_data *next = remsd->rps_ipi_next;
4735
4736                         if (cpu_online(remsd->cpu))
4737                                 smp_call_function_single_async(remsd->cpu,
4738                                                            &remsd->csd);
4739                         remsd = next;
4740                 }
4741         } else
4742 #endif
4743                 local_irq_enable();
4744 }
4745
4746 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4747 {
4748 #ifdef CONFIG_RPS
4749         return sd->rps_ipi_list != NULL;
4750 #else
4751         return false;
4752 #endif
4753 }
4754
4755 static int process_backlog(struct napi_struct *napi, int quota)
4756 {
4757         int work = 0;
4758         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4759
4760         /* Check if we have pending ipi, its better to send them now,
4761          * not waiting net_rx_action() end.
4762          */
4763         if (sd_has_rps_ipi_waiting(sd)) {
4764                 local_irq_disable();
4765                 net_rps_action_and_irq_enable(sd);
4766         }
4767
4768         napi->weight = weight_p;
4769         local_irq_disable();
4770         while (1) {
4771                 struct sk_buff *skb;
4772
4773                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4774                         rcu_read_lock();
4775                         local_irq_enable();
4776                         __netif_receive_skb(skb);
4777                         rcu_read_unlock();
4778                         local_irq_disable();
4779                         input_queue_head_incr(sd);
4780                         if (++work >= quota) {
4781                                 local_irq_enable();
4782                                 return work;
4783                         }
4784                 }
4785
4786                 rps_lock(sd);
4787                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4788                         /*
4789                          * Inline a custom version of __napi_complete().
4790                          * only current cpu owns and manipulates this napi,
4791                          * and NAPI_STATE_SCHED is the only possible flag set
4792                          * on backlog.
4793                          * We can use a plain write instead of clear_bit(),
4794                          * and we dont need an smp_mb() memory barrier.
4795                          */
4796                         napi->state = 0;
4797                         rps_unlock(sd);
4798
4799                         break;
4800                 }
4801
4802                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4803                                            &sd->process_queue);
4804                 rps_unlock(sd);
4805         }
4806         local_irq_enable();
4807
4808         return work;
4809 }
4810
4811 /**
4812  * __napi_schedule - schedule for receive
4813  * @n: entry to schedule
4814  *
4815  * The entry's receive function will be scheduled to run.
4816  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4817  */
4818 void __napi_schedule(struct napi_struct *n)
4819 {
4820         unsigned long flags;
4821
4822         local_irq_save(flags);
4823         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4824         local_irq_restore(flags);
4825 }
4826 EXPORT_SYMBOL(__napi_schedule);
4827
4828 /**
4829  * __napi_schedule_irqoff - schedule for receive
4830  * @n: entry to schedule
4831  *
4832  * Variant of __napi_schedule() assuming hard irqs are masked
4833  */
4834 void __napi_schedule_irqoff(struct napi_struct *n)
4835 {
4836         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4837 }
4838 EXPORT_SYMBOL(__napi_schedule_irqoff);
4839
4840 void __napi_complete(struct napi_struct *n)
4841 {
4842         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4843
4844         list_del_init(&n->poll_list);
4845         smp_mb__before_atomic();
4846         clear_bit(NAPI_STATE_SCHED, &n->state);
4847 }
4848 EXPORT_SYMBOL(__napi_complete);
4849
4850 void napi_complete_done(struct napi_struct *n, int work_done)
4851 {
4852         unsigned long flags;
4853
4854         /*
4855          * don't let napi dequeue from the cpu poll list
4856          * just in case its running on a different cpu
4857          */
4858         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4859                 return;
4860
4861         if (n->gro_list) {
4862                 unsigned long timeout = 0;
4863
4864                 if (work_done)
4865                         timeout = n->dev->gro_flush_timeout;
4866
4867                 if (timeout)
4868                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4869                                       HRTIMER_MODE_REL_PINNED);
4870                 else
4871                         napi_gro_flush(n, false);
4872         }
4873         if (likely(list_empty(&n->poll_list))) {
4874                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4875         } else {
4876                 /* If n->poll_list is not empty, we need to mask irqs */
4877                 local_irq_save(flags);
4878                 __napi_complete(n);
4879                 local_irq_restore(flags);
4880         }
4881 }
4882 EXPORT_SYMBOL(napi_complete_done);
4883
4884 /* must be called under rcu_read_lock(), as we dont take a reference */
4885 static struct napi_struct *napi_by_id(unsigned int napi_id)
4886 {
4887         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4888         struct napi_struct *napi;
4889
4890         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4891                 if (napi->napi_id == napi_id)
4892                         return napi;
4893
4894         return NULL;
4895 }
4896
4897 #if defined(CONFIG_NET_RX_BUSY_POLL)
4898 #define BUSY_POLL_BUDGET 8
4899 bool sk_busy_loop(struct sock *sk, int nonblock)
4900 {
4901         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4902         int (*busy_poll)(struct napi_struct *dev);
4903         struct napi_struct *napi;
4904         int rc = false;
4905
4906         rcu_read_lock();
4907
4908         napi = napi_by_id(sk->sk_napi_id);
4909         if (!napi)
4910                 goto out;
4911
4912         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4913         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4914
4915         do {
4916                 rc = 0;
4917                 local_bh_disable();
4918                 if (busy_poll) {
4919                         rc = busy_poll(napi);
4920                 } else if (napi_schedule_prep(napi)) {
4921                         void *have = netpoll_poll_lock(napi);
4922
4923                         if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4924                                 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4925                                 trace_napi_poll(napi);
4926                                 if (rc == BUSY_POLL_BUDGET) {
4927                                         napi_complete_done(napi, rc);
4928                                         napi_schedule(napi);
4929                                 }
4930                         }
4931                         netpoll_poll_unlock(have);
4932                 }
4933                 if (rc > 0)
4934                         NET_ADD_STATS_BH(sock_net(sk),
4935                                          LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4936                 local_bh_enable();
4937
4938                 if (rc == LL_FLUSH_FAILED)
4939                         break; /* permanent failure */
4940
4941                 cpu_relax();
4942         } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4943                  !need_resched() && !busy_loop_timeout(end_time));
4944
4945         rc = !skb_queue_empty(&sk->sk_receive_queue);
4946 out:
4947         rcu_read_unlock();
4948         return rc;
4949 }
4950 EXPORT_SYMBOL(sk_busy_loop);
4951
4952 #endif /* CONFIG_NET_RX_BUSY_POLL */
4953
4954 void napi_hash_add(struct napi_struct *napi)
4955 {
4956         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4957             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4958                 return;
4959
4960         spin_lock(&napi_hash_lock);
4961
4962         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4963         do {
4964                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4965                         napi_gen_id = NR_CPUS + 1;
4966         } while (napi_by_id(napi_gen_id));
4967         napi->napi_id = napi_gen_id;
4968
4969         hlist_add_head_rcu(&napi->napi_hash_node,
4970                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4971
4972         spin_unlock(&napi_hash_lock);
4973 }
4974 EXPORT_SYMBOL_GPL(napi_hash_add);
4975
4976 /* Warning : caller is responsible to make sure rcu grace period
4977  * is respected before freeing memory containing @napi
4978  */
4979 bool napi_hash_del(struct napi_struct *napi)
4980 {
4981         bool rcu_sync_needed = false;
4982
4983         spin_lock(&napi_hash_lock);
4984
4985         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4986                 rcu_sync_needed = true;
4987                 hlist_del_rcu(&napi->napi_hash_node);
4988         }
4989         spin_unlock(&napi_hash_lock);
4990         return rcu_sync_needed;
4991 }
4992 EXPORT_SYMBOL_GPL(napi_hash_del);
4993
4994 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4995 {
4996         struct napi_struct *napi;
4997
4998         napi = container_of(timer, struct napi_struct, timer);
4999         if (napi->gro_list)
5000                 napi_schedule(napi);
5001
5002         return HRTIMER_NORESTART;
5003 }
5004
5005 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5006                     int (*poll)(struct napi_struct *, int), int weight)
5007 {
5008         INIT_LIST_HEAD(&napi->poll_list);
5009         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5010         napi->timer.function = napi_watchdog;
5011         napi->gro_count = 0;
5012         napi->gro_list = NULL;
5013         napi->skb = NULL;
5014         napi->poll = poll;
5015         if (weight > NAPI_POLL_WEIGHT)
5016                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5017                             weight, dev->name);
5018         napi->weight = weight;
5019         list_add(&napi->dev_list, &dev->napi_list);
5020         napi->dev = dev;
5021 #ifdef CONFIG_NETPOLL
5022         spin_lock_init(&napi->poll_lock);
5023         napi->poll_owner = -1;
5024 #endif
5025         set_bit(NAPI_STATE_SCHED, &napi->state);
5026         napi_hash_add(napi);
5027 }
5028 EXPORT_SYMBOL(netif_napi_add);
5029
5030 void napi_disable(struct napi_struct *n)
5031 {
5032         might_sleep();
5033         set_bit(NAPI_STATE_DISABLE, &n->state);
5034
5035         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5036                 msleep(1);
5037         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5038                 msleep(1);
5039
5040         hrtimer_cancel(&n->timer);
5041
5042         clear_bit(NAPI_STATE_DISABLE, &n->state);
5043 }
5044 EXPORT_SYMBOL(napi_disable);
5045
5046 /* Must be called in process context */
5047 void netif_napi_del(struct napi_struct *napi)
5048 {
5049         might_sleep();
5050         if (napi_hash_del(napi))
5051                 synchronize_net();
5052         list_del_init(&napi->dev_list);
5053         napi_free_frags(napi);
5054
5055         kfree_skb_list(napi->gro_list);
5056         napi->gro_list = NULL;
5057         napi->gro_count = 0;
5058 }
5059 EXPORT_SYMBOL(netif_napi_del);
5060
5061 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5062 {
5063         void *have;
5064         int work, weight;
5065
5066         list_del_init(&n->poll_list);
5067
5068         have = netpoll_poll_lock(n);
5069
5070         weight = n->weight;
5071
5072         /* This NAPI_STATE_SCHED test is for avoiding a race
5073          * with netpoll's poll_napi().  Only the entity which
5074          * obtains the lock and sees NAPI_STATE_SCHED set will
5075          * actually make the ->poll() call.  Therefore we avoid
5076          * accidentally calling ->poll() when NAPI is not scheduled.
5077          */
5078         work = 0;
5079         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5080                 work = n->poll(n, weight);
5081                 trace_napi_poll(n);
5082         }
5083
5084         WARN_ON_ONCE(work > weight);
5085
5086         if (likely(work < weight))
5087                 goto out_unlock;
5088
5089         /* Drivers must not modify the NAPI state if they
5090          * consume the entire weight.  In such cases this code
5091          * still "owns" the NAPI instance and therefore can
5092          * move the instance around on the list at-will.
5093          */
5094         if (unlikely(napi_disable_pending(n))) {
5095                 napi_complete(n);
5096                 goto out_unlock;
5097         }
5098
5099         if (n->gro_list) {
5100                 /* flush too old packets
5101                  * If HZ < 1000, flush all packets.
5102                  */
5103                 napi_gro_flush(n, HZ >= 1000);
5104         }
5105
5106         /* Some drivers may have called napi_schedule
5107          * prior to exhausting their budget.
5108          */
5109         if (unlikely(!list_empty(&n->poll_list))) {
5110                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5111                              n->dev ? n->dev->name : "backlog");
5112                 goto out_unlock;
5113         }
5114
5115         list_add_tail(&n->poll_list, repoll);
5116
5117 out_unlock:
5118         netpoll_poll_unlock(have);
5119
5120         return work;
5121 }
5122
5123 static void net_rx_action(struct softirq_action *h)
5124 {
5125         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5126         unsigned long time_limit = jiffies + 2;
5127         int budget = netdev_budget;
5128         LIST_HEAD(list);
5129         LIST_HEAD(repoll);
5130
5131         local_irq_disable();
5132         list_splice_init(&sd->poll_list, &list);
5133         local_irq_enable();
5134
5135         for (;;) {
5136                 struct napi_struct *n;
5137
5138                 if (list_empty(&list)) {
5139                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5140                                 return;
5141                         break;
5142                 }
5143
5144                 n = list_first_entry(&list, struct napi_struct, poll_list);
5145                 budget -= napi_poll(n, &repoll);
5146
5147                 /* If softirq window is exhausted then punt.
5148                  * Allow this to run for 2 jiffies since which will allow
5149                  * an average latency of 1.5/HZ.
5150                  */
5151                 if (unlikely(budget <= 0 ||
5152                              time_after_eq(jiffies, time_limit))) {
5153                         sd->time_squeeze++;
5154                         break;
5155                 }
5156         }
5157
5158         local_irq_disable();
5159
5160         list_splice_tail_init(&sd->poll_list, &list);
5161         list_splice_tail(&repoll, &list);
5162         list_splice(&list, &sd->poll_list);
5163         if (!list_empty(&sd->poll_list))
5164                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5165
5166         net_rps_action_and_irq_enable(sd);
5167 }
5168
5169 struct netdev_adjacent {
5170         struct net_device *dev;
5171
5172         /* upper master flag, there can only be one master device per list */
5173         bool master;
5174
5175         /* counter for the number of times this device was added to us */
5176         u16 ref_nr;
5177
5178         /* private field for the users */
5179         void *private;
5180
5181         struct list_head list;
5182         struct rcu_head rcu;
5183 };
5184
5185 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5186                                                  struct list_head *adj_list)
5187 {
5188         struct netdev_adjacent *adj;
5189
5190         list_for_each_entry(adj, adj_list, list) {
5191                 if (adj->dev == adj_dev)
5192                         return adj;
5193         }
5194         return NULL;
5195 }
5196
5197 /**
5198  * netdev_has_upper_dev - Check if device is linked to an upper device
5199  * @dev: device
5200  * @upper_dev: upper device to check
5201  *
5202  * Find out if a device is linked to specified upper device and return true
5203  * in case it is. Note that this checks only immediate upper device,
5204  * not through a complete stack of devices. The caller must hold the RTNL lock.
5205  */
5206 bool netdev_has_upper_dev(struct net_device *dev,
5207                           struct net_device *upper_dev)
5208 {
5209         ASSERT_RTNL();
5210
5211         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5212 }
5213 EXPORT_SYMBOL(netdev_has_upper_dev);
5214
5215 /**
5216  * netdev_has_any_upper_dev - Check if device is linked to some device
5217  * @dev: device
5218  *
5219  * Find out if a device is linked to an upper device and return true in case
5220  * it is. The caller must hold the RTNL lock.
5221  */
5222 static bool netdev_has_any_upper_dev(struct net_device *dev)
5223 {
5224         ASSERT_RTNL();
5225
5226         return !list_empty(&dev->all_adj_list.upper);
5227 }
5228
5229 /**
5230  * netdev_master_upper_dev_get - Get master upper device
5231  * @dev: device
5232  *
5233  * Find a master upper device and return pointer to it or NULL in case
5234  * it's not there. The caller must hold the RTNL lock.
5235  */
5236 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5237 {
5238         struct netdev_adjacent *upper;
5239
5240         ASSERT_RTNL();
5241
5242         if (list_empty(&dev->adj_list.upper))
5243                 return NULL;
5244
5245         upper = list_first_entry(&dev->adj_list.upper,
5246                                  struct netdev_adjacent, list);
5247         if (likely(upper->master))
5248                 return upper->dev;
5249         return NULL;
5250 }
5251 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5252
5253 void *netdev_adjacent_get_private(struct list_head *adj_list)
5254 {
5255         struct netdev_adjacent *adj;
5256
5257         adj = list_entry(adj_list, struct netdev_adjacent, list);
5258
5259         return adj->private;
5260 }
5261 EXPORT_SYMBOL(netdev_adjacent_get_private);
5262
5263 /**
5264  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5265  * @dev: device
5266  * @iter: list_head ** of the current position
5267  *
5268  * Gets the next device from the dev's upper list, starting from iter
5269  * position. The caller must hold RCU read lock.
5270  */
5271 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5272                                                  struct list_head **iter)
5273 {
5274         struct netdev_adjacent *upper;
5275
5276         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5277
5278         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5279
5280         if (&upper->list == &dev->adj_list.upper)
5281                 return NULL;
5282
5283         *iter = &upper->list;
5284
5285         return upper->dev;
5286 }
5287 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5288
5289 /**
5290  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5291  * @dev: device
5292  * @iter: list_head ** of the current position
5293  *
5294  * Gets the next device from the dev's upper list, starting from iter
5295  * position. The caller must hold RCU read lock.
5296  */
5297 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5298                                                      struct list_head **iter)
5299 {
5300         struct netdev_adjacent *upper;
5301
5302         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5303
5304         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5305
5306         if (&upper->list == &dev->all_adj_list.upper)
5307                 return NULL;
5308
5309         *iter = &upper->list;
5310
5311         return upper->dev;
5312 }
5313 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5314
5315 /**
5316  * netdev_lower_get_next_private - Get the next ->private from the
5317  *                                 lower neighbour list
5318  * @dev: device
5319  * @iter: list_head ** of the current position
5320  *
5321  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5322  * list, starting from iter position. The caller must hold either hold the
5323  * RTNL lock or its own locking that guarantees that the neighbour lower
5324  * list will remain unchanged.
5325  */
5326 void *netdev_lower_get_next_private(struct net_device *dev,
5327                                     struct list_head **iter)
5328 {
5329         struct netdev_adjacent *lower;
5330
5331         lower = list_entry(*iter, struct netdev_adjacent, list);
5332
5333         if (&lower->list == &dev->adj_list.lower)
5334                 return NULL;
5335
5336         *iter = lower->list.next;
5337
5338         return lower->private;
5339 }
5340 EXPORT_SYMBOL(netdev_lower_get_next_private);
5341
5342 /**
5343  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5344  *                                     lower neighbour list, RCU
5345  *                                     variant
5346  * @dev: device
5347  * @iter: list_head ** of the current position
5348  *
5349  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5350  * list, starting from iter position. The caller must hold RCU read lock.
5351  */
5352 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5353                                         struct list_head **iter)
5354 {
5355         struct netdev_adjacent *lower;
5356
5357         WARN_ON_ONCE(!rcu_read_lock_held());
5358
5359         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5360
5361         if (&lower->list == &dev->adj_list.lower)
5362                 return NULL;
5363
5364         *iter = &lower->list;
5365
5366         return lower->private;
5367 }
5368 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5369
5370 /**
5371  * netdev_lower_get_next - Get the next device from the lower neighbour
5372  *                         list
5373  * @dev: device
5374  * @iter: list_head ** of the current position
5375  *
5376  * Gets the next netdev_adjacent from the dev's lower neighbour
5377  * list, starting from iter position. The caller must hold RTNL lock or
5378  * its own locking that guarantees that the neighbour lower
5379  * list will remain unchanged.
5380  */
5381 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5382 {
5383         struct netdev_adjacent *lower;
5384
5385         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5386
5387         if (&lower->list == &dev->adj_list.lower)
5388                 return NULL;
5389
5390         *iter = &lower->list;
5391
5392         return lower->dev;
5393 }
5394 EXPORT_SYMBOL(netdev_lower_get_next);
5395
5396 /**
5397  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5398  *                                     lower neighbour list, RCU
5399  *                                     variant
5400  * @dev: device
5401  *
5402  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5403  * list. The caller must hold RCU read lock.
5404  */
5405 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5406 {
5407         struct netdev_adjacent *lower;
5408
5409         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5410                         struct netdev_adjacent, list);
5411         if (lower)
5412                 return lower->private;
5413         return NULL;
5414 }
5415 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5416
5417 /**
5418  * netdev_master_upper_dev_get_rcu - Get master upper device
5419  * @dev: device
5420  *
5421  * Find a master upper device and return pointer to it or NULL in case
5422  * it's not there. The caller must hold the RCU read lock.
5423  */
5424 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5425 {
5426         struct netdev_adjacent *upper;
5427
5428         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5429                                        struct netdev_adjacent, list);
5430         if (upper && likely(upper->master))
5431                 return upper->dev;
5432         return NULL;
5433 }
5434 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5435
5436 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5437                               struct net_device *adj_dev,
5438                               struct list_head *dev_list)
5439 {
5440         char linkname[IFNAMSIZ+7];
5441         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5442                 "upper_%s" : "lower_%s", adj_dev->name);
5443         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5444                                  linkname);
5445 }
5446 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5447                                char *name,
5448                                struct list_head *dev_list)
5449 {
5450         char linkname[IFNAMSIZ+7];
5451         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5452                 "upper_%s" : "lower_%s", name);
5453         sysfs_remove_link(&(dev->dev.kobj), linkname);
5454 }
5455
5456 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5457                                                  struct net_device *adj_dev,
5458                                                  struct list_head *dev_list)
5459 {
5460         return (dev_list == &dev->adj_list.upper ||
5461                 dev_list == &dev->adj_list.lower) &&
5462                 net_eq(dev_net(dev), dev_net(adj_dev));
5463 }
5464
5465 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5466                                         struct net_device *adj_dev,
5467                                         struct list_head *dev_list,
5468                                         void *private, bool master)
5469 {
5470         struct netdev_adjacent *adj;
5471         int ret;
5472
5473         adj = __netdev_find_adj(adj_dev, dev_list);
5474
5475         if (adj) {
5476                 adj->ref_nr++;
5477                 return 0;
5478         }
5479
5480         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5481         if (!adj)
5482                 return -ENOMEM;
5483
5484         adj->dev = adj_dev;
5485         adj->master = master;
5486         adj->ref_nr = 1;
5487         adj->private = private;
5488         dev_hold(adj_dev);
5489
5490         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5491                  adj_dev->name, dev->name, adj_dev->name);
5492
5493         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5494                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5495                 if (ret)
5496                         goto free_adj;
5497         }
5498
5499         /* Ensure that master link is always the first item in list. */
5500         if (master) {
5501                 ret = sysfs_create_link(&(dev->dev.kobj),
5502                                         &(adj_dev->dev.kobj), "master");
5503                 if (ret)
5504                         goto remove_symlinks;
5505
5506                 list_add_rcu(&adj->list, dev_list);
5507         } else {
5508                 list_add_tail_rcu(&adj->list, dev_list);
5509         }
5510
5511         return 0;
5512
5513 remove_symlinks:
5514         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5515                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5516 free_adj:
5517         kfree(adj);
5518         dev_put(adj_dev);
5519
5520         return ret;
5521 }
5522
5523 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5524                                          struct net_device *adj_dev,
5525                                          struct list_head *dev_list)
5526 {
5527         struct netdev_adjacent *adj;
5528
5529         adj = __netdev_find_adj(adj_dev, dev_list);
5530
5531         if (!adj) {
5532                 pr_err("tried to remove device %s from %s\n",
5533                        dev->name, adj_dev->name);
5534                 BUG();
5535         }
5536
5537         if (adj->ref_nr > 1) {
5538                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5539                          adj->ref_nr-1);
5540                 adj->ref_nr--;
5541                 return;
5542         }
5543
5544         if (adj->master)
5545                 sysfs_remove_link(&(dev->dev.kobj), "master");
5546
5547         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5548                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5549
5550         list_del_rcu(&adj->list);
5551         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5552                  adj_dev->name, dev->name, adj_dev->name);
5553         dev_put(adj_dev);
5554         kfree_rcu(adj, rcu);
5555 }
5556
5557 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5558                                             struct net_device *upper_dev,
5559                                             struct list_head *up_list,
5560                                             struct list_head *down_list,
5561                                             void *private, bool master)
5562 {
5563         int ret;
5564
5565         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5566                                            master);
5567         if (ret)
5568                 return ret;
5569
5570         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5571                                            false);
5572         if (ret) {
5573                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5574                 return ret;
5575         }
5576
5577         return 0;
5578 }
5579
5580 static int __netdev_adjacent_dev_link(struct net_device *dev,
5581                                       struct net_device *upper_dev)
5582 {
5583         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5584                                                 &dev->all_adj_list.upper,
5585                                                 &upper_dev->all_adj_list.lower,
5586                                                 NULL, false);
5587 }
5588
5589 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5590                                                struct net_device *upper_dev,
5591                                                struct list_head *up_list,
5592                                                struct list_head *down_list)
5593 {
5594         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5595         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5596 }
5597
5598 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5599                                          struct net_device *upper_dev)
5600 {
5601         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5602                                            &dev->all_adj_list.upper,
5603                                            &upper_dev->all_adj_list.lower);
5604 }
5605
5606 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5607                                                 struct net_device *upper_dev,
5608                                                 void *private, bool master)
5609 {
5610         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5611
5612         if (ret)
5613                 return ret;
5614
5615         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5616                                                &dev->adj_list.upper,
5617                                                &upper_dev->adj_list.lower,
5618                                                private, master);
5619         if (ret) {
5620                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5621                 return ret;
5622         }
5623
5624         return 0;
5625 }
5626
5627 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5628                                                    struct net_device *upper_dev)
5629 {
5630         __netdev_adjacent_dev_unlink(dev, upper_dev);
5631         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5632                                            &dev->adj_list.upper,
5633                                            &upper_dev->adj_list.lower);
5634 }
5635
5636 static int __netdev_upper_dev_link(struct net_device *dev,
5637                                    struct net_device *upper_dev, bool master,
5638                                    void *upper_priv, void *upper_info)
5639 {
5640         struct netdev_notifier_changeupper_info changeupper_info;
5641         struct netdev_adjacent *i, *j, *to_i, *to_j;
5642         int ret = 0;
5643
5644         ASSERT_RTNL();
5645
5646         if (dev == upper_dev)
5647                 return -EBUSY;
5648
5649         /* To prevent loops, check if dev is not upper device to upper_dev. */
5650         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5651                 return -EBUSY;
5652
5653         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5654                 return -EEXIST;
5655
5656         if (master && netdev_master_upper_dev_get(dev))
5657                 return -EBUSY;
5658
5659         changeupper_info.upper_dev = upper_dev;
5660         changeupper_info.master = master;
5661         changeupper_info.linking = true;
5662         changeupper_info.upper_info = upper_info;
5663
5664         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5665                                             &changeupper_info.info);
5666         ret = notifier_to_errno(ret);
5667         if (ret)
5668                 return ret;
5669
5670         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5671                                                    master);
5672         if (ret)
5673                 return ret;
5674
5675         /* Now that we linked these devs, make all the upper_dev's
5676          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5677          * versa, and don't forget the devices itself. All of these
5678          * links are non-neighbours.
5679          */
5680         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5681                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5682                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5683                                  i->dev->name, j->dev->name);
5684                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5685                         if (ret)
5686                                 goto rollback_mesh;
5687                 }
5688         }
5689
5690         /* add dev to every upper_dev's upper device */
5691         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5692                 pr_debug("linking %s's upper device %s with %s\n",
5693                          upper_dev->name, i->dev->name, dev->name);
5694                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5695                 if (ret)
5696                         goto rollback_upper_mesh;
5697         }
5698
5699         /* add upper_dev to every dev's lower device */
5700         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5701                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5702                          i->dev->name, upper_dev->name);
5703                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5704                 if (ret)
5705                         goto rollback_lower_mesh;
5706         }
5707
5708         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5709                                             &changeupper_info.info);
5710         ret = notifier_to_errno(ret);
5711         if (ret)
5712                 goto rollback_lower_mesh;
5713
5714         return 0;
5715
5716 rollback_lower_mesh:
5717         to_i = i;
5718         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5719                 if (i == to_i)
5720                         break;
5721                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5722         }
5723
5724         i = NULL;
5725
5726 rollback_upper_mesh:
5727         to_i = i;
5728         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5729                 if (i == to_i)
5730                         break;
5731                 __netdev_adjacent_dev_unlink(dev, i->dev);
5732         }
5733
5734         i = j = NULL;
5735
5736 rollback_mesh:
5737         to_i = i;
5738         to_j = j;
5739         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5740                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5741                         if (i == to_i && j == to_j)
5742                                 break;
5743                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5744                 }
5745                 if (i == to_i)
5746                         break;
5747         }
5748
5749         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5750
5751         return ret;
5752 }
5753
5754 /**
5755  * netdev_upper_dev_link - Add a link to the upper device
5756  * @dev: device
5757  * @upper_dev: new upper device
5758  *
5759  * Adds a link to device which is upper to this one. The caller must hold
5760  * the RTNL lock. On a failure a negative errno code is returned.
5761  * On success the reference counts are adjusted and the function
5762  * returns zero.
5763  */
5764 int netdev_upper_dev_link(struct net_device *dev,
5765                           struct net_device *upper_dev)
5766 {
5767         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5768 }
5769 EXPORT_SYMBOL(netdev_upper_dev_link);
5770
5771 /**
5772  * netdev_master_upper_dev_link - Add a master link to the upper device
5773  * @dev: device
5774  * @upper_dev: new upper device
5775  * @upper_priv: upper device private
5776  * @upper_info: upper info to be passed down via notifier
5777  *
5778  * Adds a link to device which is upper to this one. In this case, only
5779  * one master upper device can be linked, although other non-master devices
5780  * might be linked as well. The caller must hold the RTNL lock.
5781  * On a failure a negative errno code is returned. On success the reference
5782  * counts are adjusted and the function returns zero.
5783  */
5784 int netdev_master_upper_dev_link(struct net_device *dev,
5785                                  struct net_device *upper_dev,
5786                                  void *upper_priv, void *upper_info)
5787 {
5788         return __netdev_upper_dev_link(dev, upper_dev, true,
5789                                        upper_priv, upper_info);
5790 }
5791 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5792
5793 /**
5794  * netdev_upper_dev_unlink - Removes a link to upper device
5795  * @dev: device
5796  * @upper_dev: new upper device
5797  *
5798  * Removes a link to device which is upper to this one. The caller must hold
5799  * the RTNL lock.
5800  */
5801 void netdev_upper_dev_unlink(struct net_device *dev,
5802                              struct net_device *upper_dev)
5803 {
5804         struct netdev_notifier_changeupper_info changeupper_info;
5805         struct netdev_adjacent *i, *j;
5806         ASSERT_RTNL();
5807
5808         changeupper_info.upper_dev = upper_dev;
5809         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5810         changeupper_info.linking = false;
5811
5812         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5813                                       &changeupper_info.info);
5814
5815         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5816
5817         /* Here is the tricky part. We must remove all dev's lower
5818          * devices from all upper_dev's upper devices and vice
5819          * versa, to maintain the graph relationship.
5820          */
5821         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5822                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5823                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5824
5825         /* remove also the devices itself from lower/upper device
5826          * list
5827          */
5828         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5829                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5830
5831         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5832                 __netdev_adjacent_dev_unlink(dev, i->dev);
5833
5834         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5835                                       &changeupper_info.info);
5836 }
5837 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5838
5839 /**
5840  * netdev_bonding_info_change - Dispatch event about slave change
5841  * @dev: device
5842  * @bonding_info: info to dispatch
5843  *
5844  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5845  * The caller must hold the RTNL lock.
5846  */
5847 void netdev_bonding_info_change(struct net_device *dev,
5848                                 struct netdev_bonding_info *bonding_info)
5849 {
5850         struct netdev_notifier_bonding_info     info;
5851
5852         memcpy(&info.bonding_info, bonding_info,
5853                sizeof(struct netdev_bonding_info));
5854         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5855                                       &info.info);
5856 }
5857 EXPORT_SYMBOL(netdev_bonding_info_change);
5858
5859 static void netdev_adjacent_add_links(struct net_device *dev)
5860 {
5861         struct netdev_adjacent *iter;
5862
5863         struct net *net = dev_net(dev);
5864
5865         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5866                 if (!net_eq(net,dev_net(iter->dev)))
5867                         continue;
5868                 netdev_adjacent_sysfs_add(iter->dev, dev,
5869                                           &iter->dev->adj_list.lower);
5870                 netdev_adjacent_sysfs_add(dev, iter->dev,
5871                                           &dev->adj_list.upper);
5872         }
5873
5874         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5875                 if (!net_eq(net,dev_net(iter->dev)))
5876                         continue;
5877                 netdev_adjacent_sysfs_add(iter->dev, dev,
5878                                           &iter->dev->adj_list.upper);
5879                 netdev_adjacent_sysfs_add(dev, iter->dev,
5880                                           &dev->adj_list.lower);
5881         }
5882 }
5883
5884 static void netdev_adjacent_del_links(struct net_device *dev)
5885 {
5886         struct netdev_adjacent *iter;
5887
5888         struct net *net = dev_net(dev);
5889
5890         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5891                 if (!net_eq(net,dev_net(iter->dev)))
5892                         continue;
5893                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5894                                           &iter->dev->adj_list.lower);
5895                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5896                                           &dev->adj_list.upper);
5897         }
5898
5899         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5900                 if (!net_eq(net,dev_net(iter->dev)))
5901                         continue;
5902                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5903                                           &iter->dev->adj_list.upper);
5904                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5905                                           &dev->adj_list.lower);
5906         }
5907 }
5908
5909 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5910 {
5911         struct netdev_adjacent *iter;
5912
5913         struct net *net = dev_net(dev);
5914
5915         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5916                 if (!net_eq(net,dev_net(iter->dev)))
5917                         continue;
5918                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5919                                           &iter->dev->adj_list.lower);
5920                 netdev_adjacent_sysfs_add(iter->dev, dev,
5921                                           &iter->dev->adj_list.lower);
5922         }
5923
5924         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5925                 if (!net_eq(net,dev_net(iter->dev)))
5926                         continue;
5927                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5928                                           &iter->dev->adj_list.upper);
5929                 netdev_adjacent_sysfs_add(iter->dev, dev,
5930                                           &iter->dev->adj_list.upper);
5931         }
5932 }
5933
5934 void *netdev_lower_dev_get_private(struct net_device *dev,
5935                                    struct net_device *lower_dev)
5936 {
5937         struct netdev_adjacent *lower;
5938
5939         if (!lower_dev)
5940                 return NULL;
5941         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5942         if (!lower)
5943                 return NULL;
5944
5945         return lower->private;
5946 }
5947 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5948
5949
5950 int dev_get_nest_level(struct net_device *dev,
5951                        bool (*type_check)(const struct net_device *dev))
5952 {
5953         struct net_device *lower = NULL;
5954         struct list_head *iter;
5955         int max_nest = -1;
5956         int nest;
5957
5958         ASSERT_RTNL();
5959
5960         netdev_for_each_lower_dev(dev, lower, iter) {
5961                 nest = dev_get_nest_level(lower, type_check);
5962                 if (max_nest < nest)
5963                         max_nest = nest;
5964         }
5965
5966         if (type_check(dev))
5967                 max_nest++;
5968
5969         return max_nest;
5970 }
5971 EXPORT_SYMBOL(dev_get_nest_level);
5972
5973 /**
5974  * netdev_lower_change - Dispatch event about lower device state change
5975  * @lower_dev: device
5976  * @lower_state_info: state to dispatch
5977  *
5978  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5979  * The caller must hold the RTNL lock.
5980  */
5981 void netdev_lower_state_changed(struct net_device *lower_dev,
5982                                 void *lower_state_info)
5983 {
5984         struct netdev_notifier_changelowerstate_info changelowerstate_info;
5985
5986         ASSERT_RTNL();
5987         changelowerstate_info.lower_state_info = lower_state_info;
5988         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5989                                       &changelowerstate_info.info);
5990 }
5991 EXPORT_SYMBOL(netdev_lower_state_changed);
5992
5993 static void dev_change_rx_flags(struct net_device *dev, int flags)
5994 {
5995         const struct net_device_ops *ops = dev->netdev_ops;
5996
5997         if (ops->ndo_change_rx_flags)
5998                 ops->ndo_change_rx_flags(dev, flags);
5999 }
6000
6001 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6002 {
6003         unsigned int old_flags = dev->flags;
6004         kuid_t uid;
6005         kgid_t gid;
6006
6007         ASSERT_RTNL();
6008
6009         dev->flags |= IFF_PROMISC;
6010         dev->promiscuity += inc;
6011         if (dev->promiscuity == 0) {
6012                 /*
6013                  * Avoid overflow.
6014                  * If inc causes overflow, untouch promisc and return error.
6015                  */
6016                 if (inc < 0)
6017                         dev->flags &= ~IFF_PROMISC;
6018                 else {
6019                         dev->promiscuity -= inc;
6020                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6021                                 dev->name);
6022                         return -EOVERFLOW;
6023                 }
6024         }
6025         if (dev->flags != old_flags) {
6026                 pr_info("device %s %s promiscuous mode\n",
6027                         dev->name,
6028                         dev->flags & IFF_PROMISC ? "entered" : "left");
6029                 if (audit_enabled) {
6030                         current_uid_gid(&uid, &gid);
6031                         audit_log(current->audit_context, GFP_ATOMIC,
6032                                 AUDIT_ANOM_PROMISCUOUS,
6033                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6034                                 dev->name, (dev->flags & IFF_PROMISC),
6035                                 (old_flags & IFF_PROMISC),
6036                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6037                                 from_kuid(&init_user_ns, uid),
6038                                 from_kgid(&init_user_ns, gid),
6039                                 audit_get_sessionid(current));
6040                 }
6041
6042                 dev_change_rx_flags(dev, IFF_PROMISC);
6043         }
6044         if (notify)
6045                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6046         return 0;
6047 }
6048
6049 /**
6050  *      dev_set_promiscuity     - update promiscuity count on a device
6051  *      @dev: device
6052  *      @inc: modifier
6053  *
6054  *      Add or remove promiscuity from a device. While the count in the device
6055  *      remains above zero the interface remains promiscuous. Once it hits zero
6056  *      the device reverts back to normal filtering operation. A negative inc
6057  *      value is used to drop promiscuity on the device.
6058  *      Return 0 if successful or a negative errno code on error.
6059  */
6060 int dev_set_promiscuity(struct net_device *dev, int inc)
6061 {
6062         unsigned int old_flags = dev->flags;
6063         int err;
6064
6065         err = __dev_set_promiscuity(dev, inc, true);
6066         if (err < 0)
6067                 return err;
6068         if (dev->flags != old_flags)
6069                 dev_set_rx_mode(dev);
6070         return err;
6071 }
6072 EXPORT_SYMBOL(dev_set_promiscuity);
6073
6074 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6075 {
6076         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6077
6078         ASSERT_RTNL();
6079
6080         dev->flags |= IFF_ALLMULTI;
6081         dev->allmulti += inc;
6082         if (dev->allmulti == 0) {
6083                 /*
6084                  * Avoid overflow.
6085                  * If inc causes overflow, untouch allmulti and return error.
6086                  */
6087                 if (inc < 0)
6088                         dev->flags &= ~IFF_ALLMULTI;
6089                 else {
6090                         dev->allmulti -= inc;
6091                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6092                                 dev->name);
6093                         return -EOVERFLOW;
6094                 }
6095         }
6096         if (dev->flags ^ old_flags) {
6097                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6098                 dev_set_rx_mode(dev);
6099                 if (notify)
6100                         __dev_notify_flags(dev, old_flags,
6101                                            dev->gflags ^ old_gflags);
6102         }
6103         return 0;
6104 }
6105
6106 /**
6107  *      dev_set_allmulti        - update allmulti count on a device
6108  *      @dev: device
6109  *      @inc: modifier
6110  *
6111  *      Add or remove reception of all multicast frames to a device. While the
6112  *      count in the device remains above zero the interface remains listening
6113  *      to all interfaces. Once it hits zero the device reverts back to normal
6114  *      filtering operation. A negative @inc value is used to drop the counter
6115  *      when releasing a resource needing all multicasts.
6116  *      Return 0 if successful or a negative errno code on error.
6117  */
6118
6119 int dev_set_allmulti(struct net_device *dev, int inc)
6120 {
6121         return __dev_set_allmulti(dev, inc, true);
6122 }
6123 EXPORT_SYMBOL(dev_set_allmulti);
6124
6125 /*
6126  *      Upload unicast and multicast address lists to device and
6127  *      configure RX filtering. When the device doesn't support unicast
6128  *      filtering it is put in promiscuous mode while unicast addresses
6129  *      are present.
6130  */
6131 void __dev_set_rx_mode(struct net_device *dev)
6132 {
6133         const struct net_device_ops *ops = dev->netdev_ops;
6134
6135         /* dev_open will call this function so the list will stay sane. */
6136         if (!(dev->flags&IFF_UP))
6137                 return;
6138
6139         if (!netif_device_present(dev))
6140                 return;
6141
6142         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6143                 /* Unicast addresses changes may only happen under the rtnl,
6144                  * therefore calling __dev_set_promiscuity here is safe.
6145                  */
6146                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6147                         __dev_set_promiscuity(dev, 1, false);
6148                         dev->uc_promisc = true;
6149                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6150                         __dev_set_promiscuity(dev, -1, false);
6151                         dev->uc_promisc = false;
6152                 }
6153         }
6154
6155         if (ops->ndo_set_rx_mode)
6156                 ops->ndo_set_rx_mode(dev);
6157 }
6158
6159 void dev_set_rx_mode(struct net_device *dev)
6160 {
6161         netif_addr_lock_bh(dev);
6162         __dev_set_rx_mode(dev);
6163         netif_addr_unlock_bh(dev);
6164 }
6165
6166 /**
6167  *      dev_get_flags - get flags reported to userspace
6168  *      @dev: device
6169  *
6170  *      Get the combination of flag bits exported through APIs to userspace.
6171  */
6172 unsigned int dev_get_flags(const struct net_device *dev)
6173 {
6174         unsigned int flags;
6175
6176         flags = (dev->flags & ~(IFF_PROMISC |
6177                                 IFF_ALLMULTI |
6178                                 IFF_RUNNING |
6179                                 IFF_LOWER_UP |
6180                                 IFF_DORMANT)) |
6181                 (dev->gflags & (IFF_PROMISC |
6182                                 IFF_ALLMULTI));
6183
6184         if (netif_running(dev)) {
6185                 if (netif_oper_up(dev))
6186                         flags |= IFF_RUNNING;
6187                 if (netif_carrier_ok(dev))
6188                         flags |= IFF_LOWER_UP;
6189                 if (netif_dormant(dev))
6190                         flags |= IFF_DORMANT;
6191         }
6192
6193         return flags;
6194 }
6195 EXPORT_SYMBOL(dev_get_flags);
6196
6197 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6198 {
6199         unsigned int old_flags = dev->flags;
6200         int ret;
6201
6202         ASSERT_RTNL();
6203
6204         /*
6205          *      Set the flags on our device.
6206          */
6207
6208         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6209                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6210                                IFF_AUTOMEDIA)) |
6211                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6212                                     IFF_ALLMULTI));
6213
6214         /*
6215          *      Load in the correct multicast list now the flags have changed.
6216          */
6217
6218         if ((old_flags ^ flags) & IFF_MULTICAST)
6219                 dev_change_rx_flags(dev, IFF_MULTICAST);
6220
6221         dev_set_rx_mode(dev);
6222
6223         /*
6224          *      Have we downed the interface. We handle IFF_UP ourselves
6225          *      according to user attempts to set it, rather than blindly
6226          *      setting it.
6227          */
6228
6229         ret = 0;
6230         if ((old_flags ^ flags) & IFF_UP)
6231                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6232
6233         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6234                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6235                 unsigned int old_flags = dev->flags;
6236
6237                 dev->gflags ^= IFF_PROMISC;
6238
6239                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6240                         if (dev->flags != old_flags)
6241                                 dev_set_rx_mode(dev);
6242         }
6243
6244         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6245            is important. Some (broken) drivers set IFF_PROMISC, when
6246            IFF_ALLMULTI is requested not asking us and not reporting.
6247          */
6248         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6249                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6250
6251                 dev->gflags ^= IFF_ALLMULTI;
6252                 __dev_set_allmulti(dev, inc, false);
6253         }
6254
6255         return ret;
6256 }
6257
6258 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6259                         unsigned int gchanges)
6260 {
6261         unsigned int changes = dev->flags ^ old_flags;
6262
6263         if (gchanges)
6264                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6265
6266         if (changes & IFF_UP) {
6267                 if (dev->flags & IFF_UP)
6268                         call_netdevice_notifiers(NETDEV_UP, dev);
6269                 else
6270                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6271         }
6272
6273         if (dev->flags & IFF_UP &&
6274             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6275                 struct netdev_notifier_change_info change_info;
6276
6277                 change_info.flags_changed = changes;
6278                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6279                                               &change_info.info);
6280         }
6281 }
6282
6283 /**
6284  *      dev_change_flags - change device settings
6285  *      @dev: device
6286  *      @flags: device state flags
6287  *
6288  *      Change settings on device based state flags. The flags are
6289  *      in the userspace exported format.
6290  */
6291 int dev_change_flags(struct net_device *dev, unsigned int flags)
6292 {
6293         int ret;
6294         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6295
6296         ret = __dev_change_flags(dev, flags);
6297         if (ret < 0)
6298                 return ret;
6299
6300         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6301         __dev_notify_flags(dev, old_flags, changes);
6302         return ret;
6303 }
6304 EXPORT_SYMBOL(dev_change_flags);
6305
6306 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6307 {
6308         const struct net_device_ops *ops = dev->netdev_ops;
6309
6310         if (ops->ndo_change_mtu)
6311                 return ops->ndo_change_mtu(dev, new_mtu);
6312
6313         dev->mtu = new_mtu;
6314         return 0;
6315 }
6316
6317 /**
6318  *      dev_set_mtu - Change maximum transfer unit
6319  *      @dev: device
6320  *      @new_mtu: new transfer unit
6321  *
6322  *      Change the maximum transfer size of the network device.
6323  */
6324 int dev_set_mtu(struct net_device *dev, int new_mtu)
6325 {
6326         int err, orig_mtu;
6327
6328         if (new_mtu == dev->mtu)
6329                 return 0;
6330
6331         /*      MTU must be positive.    */
6332         if (new_mtu < 0)
6333                 return -EINVAL;
6334
6335         if (!netif_device_present(dev))
6336                 return -ENODEV;
6337
6338         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6339         err = notifier_to_errno(err);
6340         if (err)
6341                 return err;
6342
6343         orig_mtu = dev->mtu;
6344         err = __dev_set_mtu(dev, new_mtu);
6345
6346         if (!err) {
6347                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6348                 err = notifier_to_errno(err);
6349                 if (err) {
6350                         /* setting mtu back and notifying everyone again,
6351                          * so that they have a chance to revert changes.
6352                          */
6353                         __dev_set_mtu(dev, orig_mtu);
6354                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6355                 }
6356         }
6357         return err;
6358 }
6359 EXPORT_SYMBOL(dev_set_mtu);
6360
6361 /**
6362  *      dev_set_group - Change group this device belongs to
6363  *      @dev: device
6364  *      @new_group: group this device should belong to
6365  */
6366 void dev_set_group(struct net_device *dev, int new_group)
6367 {
6368         dev->group = new_group;
6369 }
6370 EXPORT_SYMBOL(dev_set_group);
6371
6372 /**
6373  *      dev_set_mac_address - Change Media Access Control Address
6374  *      @dev: device
6375  *      @sa: new address
6376  *
6377  *      Change the hardware (MAC) address of the device
6378  */
6379 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6380 {
6381         const struct net_device_ops *ops = dev->netdev_ops;
6382         int err;
6383
6384         if (!ops->ndo_set_mac_address)
6385                 return -EOPNOTSUPP;
6386         if (sa->sa_family != dev->type)
6387                 return -EINVAL;
6388         if (!netif_device_present(dev))
6389                 return -ENODEV;
6390         err = ops->ndo_set_mac_address(dev, sa);
6391         if (err)
6392                 return err;
6393         dev->addr_assign_type = NET_ADDR_SET;
6394         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6395         add_device_randomness(dev->dev_addr, dev->addr_len);
6396         return 0;
6397 }
6398 EXPORT_SYMBOL(dev_set_mac_address);
6399
6400 /**
6401  *      dev_change_carrier - Change device carrier
6402  *      @dev: device
6403  *      @new_carrier: new value
6404  *
6405  *      Change device carrier
6406  */
6407 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6408 {
6409         const struct net_device_ops *ops = dev->netdev_ops;
6410
6411         if (!ops->ndo_change_carrier)
6412                 return -EOPNOTSUPP;
6413         if (!netif_device_present(dev))
6414                 return -ENODEV;
6415         return ops->ndo_change_carrier(dev, new_carrier);
6416 }
6417 EXPORT_SYMBOL(dev_change_carrier);
6418
6419 /**
6420  *      dev_get_phys_port_id - Get device physical port ID
6421  *      @dev: device
6422  *      @ppid: port ID
6423  *
6424  *      Get device physical port ID
6425  */
6426 int dev_get_phys_port_id(struct net_device *dev,
6427                          struct netdev_phys_item_id *ppid)
6428 {
6429         const struct net_device_ops *ops = dev->netdev_ops;
6430
6431         if (!ops->ndo_get_phys_port_id)
6432                 return -EOPNOTSUPP;
6433         return ops->ndo_get_phys_port_id(dev, ppid);
6434 }
6435 EXPORT_SYMBOL(dev_get_phys_port_id);
6436
6437 /**
6438  *      dev_get_phys_port_name - Get device physical port name
6439  *      @dev: device
6440  *      @name: port name
6441  *
6442  *      Get device physical port name
6443  */
6444 int dev_get_phys_port_name(struct net_device *dev,
6445                            char *name, size_t len)
6446 {
6447         const struct net_device_ops *ops = dev->netdev_ops;
6448
6449         if (!ops->ndo_get_phys_port_name)
6450                 return -EOPNOTSUPP;
6451         return ops->ndo_get_phys_port_name(dev, name, len);
6452 }
6453 EXPORT_SYMBOL(dev_get_phys_port_name);
6454
6455 /**
6456  *      dev_change_proto_down - update protocol port state information
6457  *      @dev: device
6458  *      @proto_down: new value
6459  *
6460  *      This info can be used by switch drivers to set the phys state of the
6461  *      port.
6462  */
6463 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6464 {
6465         const struct net_device_ops *ops = dev->netdev_ops;
6466
6467         if (!ops->ndo_change_proto_down)
6468                 return -EOPNOTSUPP;
6469         if (!netif_device_present(dev))
6470                 return -ENODEV;
6471         return ops->ndo_change_proto_down(dev, proto_down);
6472 }
6473 EXPORT_SYMBOL(dev_change_proto_down);
6474
6475 /**
6476  *      dev_new_index   -       allocate an ifindex
6477  *      @net: the applicable net namespace
6478  *
6479  *      Returns a suitable unique value for a new device interface
6480  *      number.  The caller must hold the rtnl semaphore or the
6481  *      dev_base_lock to be sure it remains unique.
6482  */
6483 static int dev_new_index(struct net *net)
6484 {
6485         int ifindex = net->ifindex;
6486         for (;;) {
6487                 if (++ifindex <= 0)
6488                         ifindex = 1;
6489                 if (!__dev_get_by_index(net, ifindex))
6490                         return net->ifindex = ifindex;
6491         }
6492 }
6493
6494 /* Delayed registration/unregisteration */
6495 static LIST_HEAD(net_todo_list);
6496 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6497
6498 static void net_set_todo(struct net_device *dev)
6499 {
6500         list_add_tail(&dev->todo_list, &net_todo_list);
6501         dev_net(dev)->dev_unreg_count++;
6502 }
6503
6504 static void rollback_registered_many(struct list_head *head)
6505 {
6506         struct net_device *dev, *tmp;
6507         LIST_HEAD(close_head);
6508
6509         BUG_ON(dev_boot_phase);
6510         ASSERT_RTNL();
6511
6512         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6513                 /* Some devices call without registering
6514                  * for initialization unwind. Remove those
6515                  * devices and proceed with the remaining.
6516                  */
6517                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6518                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6519                                  dev->name, dev);
6520
6521                         WARN_ON(1);
6522                         list_del(&dev->unreg_list);
6523                         continue;
6524                 }
6525                 dev->dismantle = true;
6526                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6527         }
6528
6529         /* If device is running, close it first. */
6530         list_for_each_entry(dev, head, unreg_list)
6531                 list_add_tail(&dev->close_list, &close_head);
6532         dev_close_many(&close_head, true);
6533
6534         list_for_each_entry(dev, head, unreg_list) {
6535                 /* And unlink it from device chain. */
6536                 unlist_netdevice(dev);
6537
6538                 dev->reg_state = NETREG_UNREGISTERING;
6539                 on_each_cpu(flush_backlog, dev, 1);
6540         }
6541
6542         synchronize_net();
6543
6544         list_for_each_entry(dev, head, unreg_list) {
6545                 struct sk_buff *skb = NULL;
6546
6547                 /* Shutdown queueing discipline. */
6548                 dev_shutdown(dev);
6549
6550
6551                 /* Notify protocols, that we are about to destroy
6552                    this device. They should clean all the things.
6553                 */
6554                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6555
6556                 if (!dev->rtnl_link_ops ||
6557                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6558                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6559                                                      GFP_KERNEL);
6560
6561                 /*
6562                  *      Flush the unicast and multicast chains
6563                  */
6564                 dev_uc_flush(dev);
6565                 dev_mc_flush(dev);
6566
6567                 if (dev->netdev_ops->ndo_uninit)
6568                         dev->netdev_ops->ndo_uninit(dev);
6569
6570                 if (skb)
6571                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6572
6573                 /* Notifier chain MUST detach us all upper devices. */
6574                 WARN_ON(netdev_has_any_upper_dev(dev));
6575
6576                 /* Remove entries from kobject tree */
6577                 netdev_unregister_kobject(dev);
6578 #ifdef CONFIG_XPS
6579                 /* Remove XPS queueing entries */
6580                 netif_reset_xps_queues_gt(dev, 0);
6581 #endif
6582         }
6583
6584         synchronize_net();
6585
6586         list_for_each_entry(dev, head, unreg_list)
6587                 dev_put(dev);
6588 }
6589
6590 static void rollback_registered(struct net_device *dev)
6591 {
6592         LIST_HEAD(single);
6593
6594         list_add(&dev->unreg_list, &single);
6595         rollback_registered_many(&single);
6596         list_del(&single);
6597 }
6598
6599 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6600         struct net_device *upper, netdev_features_t features)
6601 {
6602         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6603         netdev_features_t feature;
6604         int feature_bit;
6605
6606         for_each_netdev_feature(&upper_disables, feature_bit) {
6607                 feature = __NETIF_F_BIT(feature_bit);
6608                 if (!(upper->wanted_features & feature)
6609                     && (features & feature)) {
6610                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6611                                    &feature, upper->name);
6612                         features &= ~feature;
6613                 }
6614         }
6615
6616         return features;
6617 }
6618
6619 static void netdev_sync_lower_features(struct net_device *upper,
6620         struct net_device *lower, netdev_features_t features)
6621 {
6622         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6623         netdev_features_t feature;
6624         int feature_bit;
6625
6626         for_each_netdev_feature(&upper_disables, feature_bit) {
6627                 feature = __NETIF_F_BIT(feature_bit);
6628                 if (!(features & feature) && (lower->features & feature)) {
6629                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6630                                    &feature, lower->name);
6631                         lower->wanted_features &= ~feature;
6632                         netdev_update_features(lower);
6633
6634                         if (unlikely(lower->features & feature))
6635                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6636                                             &feature, lower->name);
6637                 }
6638         }
6639 }
6640
6641 static netdev_features_t netdev_fix_features(struct net_device *dev,
6642         netdev_features_t features)
6643 {
6644         /* Fix illegal checksum combinations */
6645         if ((features & NETIF_F_HW_CSUM) &&
6646             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6647                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6648                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6649         }
6650
6651         /* TSO requires that SG is present as well. */
6652         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6653                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6654                 features &= ~NETIF_F_ALL_TSO;
6655         }
6656
6657         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6658                                         !(features & NETIF_F_IP_CSUM)) {
6659                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6660                 features &= ~NETIF_F_TSO;
6661                 features &= ~NETIF_F_TSO_ECN;
6662         }
6663
6664         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6665                                          !(features & NETIF_F_IPV6_CSUM)) {
6666                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6667                 features &= ~NETIF_F_TSO6;
6668         }
6669
6670         /* TSO ECN requires that TSO is present as well. */
6671         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6672                 features &= ~NETIF_F_TSO_ECN;
6673
6674         /* Software GSO depends on SG. */
6675         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6676                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6677                 features &= ~NETIF_F_GSO;
6678         }
6679
6680         /* UFO needs SG and checksumming */
6681         if (features & NETIF_F_UFO) {
6682                 /* maybe split UFO into V4 and V6? */
6683                 if (!(features & NETIF_F_HW_CSUM) &&
6684                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6685                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6686                         netdev_dbg(dev,
6687                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6688                         features &= ~NETIF_F_UFO;
6689                 }
6690
6691                 if (!(features & NETIF_F_SG)) {
6692                         netdev_dbg(dev,
6693                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6694                         features &= ~NETIF_F_UFO;
6695                 }
6696         }
6697
6698 #ifdef CONFIG_NET_RX_BUSY_POLL
6699         if (dev->netdev_ops->ndo_busy_poll)
6700                 features |= NETIF_F_BUSY_POLL;
6701         else
6702 #endif
6703                 features &= ~NETIF_F_BUSY_POLL;
6704
6705         return features;
6706 }
6707
6708 int __netdev_update_features(struct net_device *dev)
6709 {
6710         struct net_device *upper, *lower;
6711         netdev_features_t features;
6712         struct list_head *iter;
6713         int err = -1;
6714
6715         ASSERT_RTNL();
6716
6717         features = netdev_get_wanted_features(dev);
6718
6719         if (dev->netdev_ops->ndo_fix_features)
6720                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6721
6722         /* driver might be less strict about feature dependencies */
6723         features = netdev_fix_features(dev, features);
6724
6725         /* some features can't be enabled if they're off an an upper device */
6726         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6727                 features = netdev_sync_upper_features(dev, upper, features);
6728
6729         if (dev->features == features)
6730                 goto sync_lower;
6731
6732         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6733                 &dev->features, &features);
6734
6735         if (dev->netdev_ops->ndo_set_features)
6736                 err = dev->netdev_ops->ndo_set_features(dev, features);
6737         else
6738                 err = 0;
6739
6740         if (unlikely(err < 0)) {
6741                 netdev_err(dev,
6742                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6743                         err, &features, &dev->features);
6744                 /* return non-0 since some features might have changed and
6745                  * it's better to fire a spurious notification than miss it
6746                  */
6747                 return -1;
6748         }
6749
6750 sync_lower:
6751         /* some features must be disabled on lower devices when disabled
6752          * on an upper device (think: bonding master or bridge)
6753          */
6754         netdev_for_each_lower_dev(dev, lower, iter)
6755                 netdev_sync_lower_features(dev, lower, features);
6756
6757         if (!err)
6758                 dev->features = features;
6759
6760         return err < 0 ? 0 : 1;
6761 }
6762
6763 /**
6764  *      netdev_update_features - recalculate device features
6765  *      @dev: the device to check
6766  *
6767  *      Recalculate dev->features set and send notifications if it
6768  *      has changed. Should be called after driver or hardware dependent
6769  *      conditions might have changed that influence the features.
6770  */
6771 void netdev_update_features(struct net_device *dev)
6772 {
6773         if (__netdev_update_features(dev))
6774                 netdev_features_change(dev);
6775 }
6776 EXPORT_SYMBOL(netdev_update_features);
6777
6778 /**
6779  *      netdev_change_features - recalculate device features
6780  *      @dev: the device to check
6781  *
6782  *      Recalculate dev->features set and send notifications even
6783  *      if they have not changed. Should be called instead of
6784  *      netdev_update_features() if also dev->vlan_features might
6785  *      have changed to allow the changes to be propagated to stacked
6786  *      VLAN devices.
6787  */
6788 void netdev_change_features(struct net_device *dev)
6789 {
6790         __netdev_update_features(dev);
6791         netdev_features_change(dev);
6792 }
6793 EXPORT_SYMBOL(netdev_change_features);
6794
6795 /**
6796  *      netif_stacked_transfer_operstate -      transfer operstate
6797  *      @rootdev: the root or lower level device to transfer state from
6798  *      @dev: the device to transfer operstate to
6799  *
6800  *      Transfer operational state from root to device. This is normally
6801  *      called when a stacking relationship exists between the root
6802  *      device and the device(a leaf device).
6803  */
6804 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6805                                         struct net_device *dev)
6806 {
6807         if (rootdev->operstate == IF_OPER_DORMANT)
6808                 netif_dormant_on(dev);
6809         else
6810                 netif_dormant_off(dev);
6811
6812         if (netif_carrier_ok(rootdev)) {
6813                 if (!netif_carrier_ok(dev))
6814                         netif_carrier_on(dev);
6815         } else {
6816                 if (netif_carrier_ok(dev))
6817                         netif_carrier_off(dev);
6818         }
6819 }
6820 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6821
6822 #ifdef CONFIG_SYSFS
6823 static int netif_alloc_rx_queues(struct net_device *dev)
6824 {
6825         unsigned int i, count = dev->num_rx_queues;
6826         struct netdev_rx_queue *rx;
6827         size_t sz = count * sizeof(*rx);
6828
6829         BUG_ON(count < 1);
6830
6831         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6832         if (!rx) {
6833                 rx = vzalloc(sz);
6834                 if (!rx)
6835                         return -ENOMEM;
6836         }
6837         dev->_rx = rx;
6838
6839         for (i = 0; i < count; i++)
6840                 rx[i].dev = dev;
6841         return 0;
6842 }
6843 #endif
6844
6845 static void netdev_init_one_queue(struct net_device *dev,
6846                                   struct netdev_queue *queue, void *_unused)
6847 {
6848         /* Initialize queue lock */
6849         spin_lock_init(&queue->_xmit_lock);
6850         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6851         queue->xmit_lock_owner = -1;
6852         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6853         queue->dev = dev;
6854 #ifdef CONFIG_BQL
6855         dql_init(&queue->dql, HZ);
6856 #endif
6857 }
6858
6859 static void netif_free_tx_queues(struct net_device *dev)
6860 {
6861         kvfree(dev->_tx);
6862 }
6863
6864 static int netif_alloc_netdev_queues(struct net_device *dev)
6865 {
6866         unsigned int count = dev->num_tx_queues;
6867         struct netdev_queue *tx;
6868         size_t sz = count * sizeof(*tx);
6869
6870         if (count < 1 || count > 0xffff)
6871                 return -EINVAL;
6872
6873         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6874         if (!tx) {
6875                 tx = vzalloc(sz);
6876                 if (!tx)
6877                         return -ENOMEM;
6878         }
6879         dev->_tx = tx;
6880
6881         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6882         spin_lock_init(&dev->tx_global_lock);
6883
6884         return 0;
6885 }
6886
6887 void netif_tx_stop_all_queues(struct net_device *dev)
6888 {
6889         unsigned int i;
6890
6891         for (i = 0; i < dev->num_tx_queues; i++) {
6892                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6893                 netif_tx_stop_queue(txq);
6894         }
6895 }
6896 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6897
6898 /**
6899  *      register_netdevice      - register a network device
6900  *      @dev: device to register
6901  *
6902  *      Take a completed network device structure and add it to the kernel
6903  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6904  *      chain. 0 is returned on success. A negative errno code is returned
6905  *      on a failure to set up the device, or if the name is a duplicate.
6906  *
6907  *      Callers must hold the rtnl semaphore. You may want
6908  *      register_netdev() instead of this.
6909  *
6910  *      BUGS:
6911  *      The locking appears insufficient to guarantee two parallel registers
6912  *      will not get the same name.
6913  */
6914
6915 int register_netdevice(struct net_device *dev)
6916 {
6917         int ret;
6918         struct net *net = dev_net(dev);
6919
6920         BUG_ON(dev_boot_phase);
6921         ASSERT_RTNL();
6922
6923         might_sleep();
6924
6925         /* When net_device's are persistent, this will be fatal. */
6926         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6927         BUG_ON(!net);
6928
6929         spin_lock_init(&dev->addr_list_lock);
6930         netdev_set_addr_lockdep_class(dev);
6931
6932         ret = dev_get_valid_name(net, dev, dev->name);
6933         if (ret < 0)
6934                 goto out;
6935
6936         /* Init, if this function is available */
6937         if (dev->netdev_ops->ndo_init) {
6938                 ret = dev->netdev_ops->ndo_init(dev);
6939                 if (ret) {
6940                         if (ret > 0)
6941                                 ret = -EIO;
6942                         goto out;
6943                 }
6944         }
6945
6946         if (((dev->hw_features | dev->features) &
6947              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6948             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6949              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6950                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6951                 ret = -EINVAL;
6952                 goto err_uninit;
6953         }
6954
6955         ret = -EBUSY;
6956         if (!dev->ifindex)
6957                 dev->ifindex = dev_new_index(net);
6958         else if (__dev_get_by_index(net, dev->ifindex))
6959                 goto err_uninit;
6960
6961         /* Transfer changeable features to wanted_features and enable
6962          * software offloads (GSO and GRO).
6963          */
6964         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6965         dev->features |= NETIF_F_SOFT_FEATURES;
6966         dev->wanted_features = dev->features & dev->hw_features;
6967
6968         if (!(dev->flags & IFF_LOOPBACK)) {
6969                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6970         }
6971
6972         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6973          */
6974         dev->vlan_features |= NETIF_F_HIGHDMA;
6975
6976         /* Make NETIF_F_SG inheritable to tunnel devices.
6977          */
6978         dev->hw_enc_features |= NETIF_F_SG;
6979
6980         /* Make NETIF_F_SG inheritable to MPLS.
6981          */
6982         dev->mpls_features |= NETIF_F_SG;
6983
6984         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6985         ret = notifier_to_errno(ret);
6986         if (ret)
6987                 goto err_uninit;
6988
6989         ret = netdev_register_kobject(dev);
6990         if (ret)
6991                 goto err_uninit;
6992         dev->reg_state = NETREG_REGISTERED;
6993
6994         __netdev_update_features(dev);
6995
6996         /*
6997          *      Default initial state at registry is that the
6998          *      device is present.
6999          */
7000
7001         set_bit(__LINK_STATE_PRESENT, &dev->state);
7002
7003         linkwatch_init_dev(dev);
7004
7005         dev_init_scheduler(dev);
7006         dev_hold(dev);
7007         list_netdevice(dev);
7008         add_device_randomness(dev->dev_addr, dev->addr_len);
7009
7010         /* If the device has permanent device address, driver should
7011          * set dev_addr and also addr_assign_type should be set to
7012          * NET_ADDR_PERM (default value).
7013          */
7014         if (dev->addr_assign_type == NET_ADDR_PERM)
7015                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7016
7017         /* Notify protocols, that a new device appeared. */
7018         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7019         ret = notifier_to_errno(ret);
7020         if (ret) {
7021                 rollback_registered(dev);
7022                 dev->reg_state = NETREG_UNREGISTERED;
7023         }
7024         /*
7025          *      Prevent userspace races by waiting until the network
7026          *      device is fully setup before sending notifications.
7027          */
7028         if (!dev->rtnl_link_ops ||
7029             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7030                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7031
7032 out:
7033         return ret;
7034
7035 err_uninit:
7036         if (dev->netdev_ops->ndo_uninit)
7037                 dev->netdev_ops->ndo_uninit(dev);
7038         goto out;
7039 }
7040 EXPORT_SYMBOL(register_netdevice);
7041
7042 /**
7043  *      init_dummy_netdev       - init a dummy network device for NAPI
7044  *      @dev: device to init
7045  *
7046  *      This takes a network device structure and initialize the minimum
7047  *      amount of fields so it can be used to schedule NAPI polls without
7048  *      registering a full blown interface. This is to be used by drivers
7049  *      that need to tie several hardware interfaces to a single NAPI
7050  *      poll scheduler due to HW limitations.
7051  */
7052 int init_dummy_netdev(struct net_device *dev)
7053 {
7054         /* Clear everything. Note we don't initialize spinlocks
7055          * are they aren't supposed to be taken by any of the
7056          * NAPI code and this dummy netdev is supposed to be
7057          * only ever used for NAPI polls
7058          */
7059         memset(dev, 0, sizeof(struct net_device));
7060
7061         /* make sure we BUG if trying to hit standard
7062          * register/unregister code path
7063          */
7064         dev->reg_state = NETREG_DUMMY;
7065
7066         /* NAPI wants this */
7067         INIT_LIST_HEAD(&dev->napi_list);
7068
7069         /* a dummy interface is started by default */
7070         set_bit(__LINK_STATE_PRESENT, &dev->state);
7071         set_bit(__LINK_STATE_START, &dev->state);
7072
7073         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7074          * because users of this 'device' dont need to change
7075          * its refcount.
7076          */
7077
7078         return 0;
7079 }
7080 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7081
7082
7083 /**
7084  *      register_netdev - register a network device
7085  *      @dev: device to register
7086  *
7087  *      Take a completed network device structure and add it to the kernel
7088  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7089  *      chain. 0 is returned on success. A negative errno code is returned
7090  *      on a failure to set up the device, or if the name is a duplicate.
7091  *
7092  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7093  *      and expands the device name if you passed a format string to
7094  *      alloc_netdev.
7095  */
7096 int register_netdev(struct net_device *dev)
7097 {
7098         int err;
7099
7100         rtnl_lock();
7101         err = register_netdevice(dev);
7102         rtnl_unlock();
7103         return err;
7104 }
7105 EXPORT_SYMBOL(register_netdev);
7106
7107 int netdev_refcnt_read(const struct net_device *dev)
7108 {
7109         int i, refcnt = 0;
7110
7111         for_each_possible_cpu(i)
7112                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7113         return refcnt;
7114 }
7115 EXPORT_SYMBOL(netdev_refcnt_read);
7116
7117 /**
7118  * netdev_wait_allrefs - wait until all references are gone.
7119  * @dev: target net_device
7120  *
7121  * This is called when unregistering network devices.
7122  *
7123  * Any protocol or device that holds a reference should register
7124  * for netdevice notification, and cleanup and put back the
7125  * reference if they receive an UNREGISTER event.
7126  * We can get stuck here if buggy protocols don't correctly
7127  * call dev_put.
7128  */
7129 static void netdev_wait_allrefs(struct net_device *dev)
7130 {
7131         unsigned long rebroadcast_time, warning_time;
7132         int refcnt;
7133
7134         linkwatch_forget_dev(dev);
7135
7136         rebroadcast_time = warning_time = jiffies;
7137         refcnt = netdev_refcnt_read(dev);
7138
7139         while (refcnt != 0) {
7140                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7141                         rtnl_lock();
7142
7143                         /* Rebroadcast unregister notification */
7144                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7145
7146                         __rtnl_unlock();
7147                         rcu_barrier();
7148                         rtnl_lock();
7149
7150                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7151                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7152                                      &dev->state)) {
7153                                 /* We must not have linkwatch events
7154                                  * pending on unregister. If this
7155                                  * happens, we simply run the queue
7156                                  * unscheduled, resulting in a noop
7157                                  * for this device.
7158                                  */
7159                                 linkwatch_run_queue();
7160                         }
7161
7162                         __rtnl_unlock();
7163
7164                         rebroadcast_time = jiffies;
7165                 }
7166
7167                 msleep(250);
7168
7169                 refcnt = netdev_refcnt_read(dev);
7170
7171                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7172                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7173                                  dev->name, refcnt);
7174                         warning_time = jiffies;
7175                 }
7176         }
7177 }
7178
7179 /* The sequence is:
7180  *
7181  *      rtnl_lock();
7182  *      ...
7183  *      register_netdevice(x1);
7184  *      register_netdevice(x2);
7185  *      ...
7186  *      unregister_netdevice(y1);
7187  *      unregister_netdevice(y2);
7188  *      ...
7189  *      rtnl_unlock();
7190  *      free_netdev(y1);
7191  *      free_netdev(y2);
7192  *
7193  * We are invoked by rtnl_unlock().
7194  * This allows us to deal with problems:
7195  * 1) We can delete sysfs objects which invoke hotplug
7196  *    without deadlocking with linkwatch via keventd.
7197  * 2) Since we run with the RTNL semaphore not held, we can sleep
7198  *    safely in order to wait for the netdev refcnt to drop to zero.
7199  *
7200  * We must not return until all unregister events added during
7201  * the interval the lock was held have been completed.
7202  */
7203 void netdev_run_todo(void)
7204 {
7205         struct list_head list;
7206
7207         /* Snapshot list, allow later requests */
7208         list_replace_init(&net_todo_list, &list);
7209
7210         __rtnl_unlock();
7211
7212
7213         /* Wait for rcu callbacks to finish before next phase */
7214         if (!list_empty(&list))
7215                 rcu_barrier();
7216
7217         while (!list_empty(&list)) {
7218                 struct net_device *dev
7219                         = list_first_entry(&list, struct net_device, todo_list);
7220                 list_del(&dev->todo_list);
7221
7222                 rtnl_lock();
7223                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7224                 __rtnl_unlock();
7225
7226                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7227                         pr_err("network todo '%s' but state %d\n",
7228                                dev->name, dev->reg_state);
7229                         dump_stack();
7230                         continue;
7231                 }
7232
7233                 dev->reg_state = NETREG_UNREGISTERED;
7234
7235                 netdev_wait_allrefs(dev);
7236
7237                 /* paranoia */
7238                 BUG_ON(netdev_refcnt_read(dev));
7239                 BUG_ON(!list_empty(&dev->ptype_all));
7240                 BUG_ON(!list_empty(&dev->ptype_specific));
7241                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7242                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7243                 WARN_ON(dev->dn_ptr);
7244
7245                 if (dev->destructor)
7246                         dev->destructor(dev);
7247
7248                 /* Report a network device has been unregistered */
7249                 rtnl_lock();
7250                 dev_net(dev)->dev_unreg_count--;
7251                 __rtnl_unlock();
7252                 wake_up(&netdev_unregistering_wq);
7253
7254                 /* Free network device */
7255                 kobject_put(&dev->dev.kobj);
7256         }
7257 }
7258
7259 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7260  * all the same fields in the same order as net_device_stats, with only
7261  * the type differing, but rtnl_link_stats64 may have additional fields
7262  * at the end for newer counters.
7263  */
7264 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7265                              const struct net_device_stats *netdev_stats)
7266 {
7267 #if BITS_PER_LONG == 64
7268         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7269         memcpy(stats64, netdev_stats, sizeof(*stats64));
7270         /* zero out counters that only exist in rtnl_link_stats64 */
7271         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7272                sizeof(*stats64) - sizeof(*netdev_stats));
7273 #else
7274         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7275         const unsigned long *src = (const unsigned long *)netdev_stats;
7276         u64 *dst = (u64 *)stats64;
7277
7278         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7279         for (i = 0; i < n; i++)
7280                 dst[i] = src[i];
7281         /* zero out counters that only exist in rtnl_link_stats64 */
7282         memset((char *)stats64 + n * sizeof(u64), 0,
7283                sizeof(*stats64) - n * sizeof(u64));
7284 #endif
7285 }
7286 EXPORT_SYMBOL(netdev_stats_to_stats64);
7287
7288 /**
7289  *      dev_get_stats   - get network device statistics
7290  *      @dev: device to get statistics from
7291  *      @storage: place to store stats
7292  *
7293  *      Get network statistics from device. Return @storage.
7294  *      The device driver may provide its own method by setting
7295  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7296  *      otherwise the internal statistics structure is used.
7297  */
7298 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7299                                         struct rtnl_link_stats64 *storage)
7300 {
7301         const struct net_device_ops *ops = dev->netdev_ops;
7302
7303         if (ops->ndo_get_stats64) {
7304                 memset(storage, 0, sizeof(*storage));
7305                 ops->ndo_get_stats64(dev, storage);
7306         } else if (ops->ndo_get_stats) {
7307                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7308         } else {
7309                 netdev_stats_to_stats64(storage, &dev->stats);
7310         }
7311         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7312         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7313         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7314         return storage;
7315 }
7316 EXPORT_SYMBOL(dev_get_stats);
7317
7318 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7319 {
7320         struct netdev_queue *queue = dev_ingress_queue(dev);
7321
7322 #ifdef CONFIG_NET_CLS_ACT
7323         if (queue)
7324                 return queue;
7325         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7326         if (!queue)
7327                 return NULL;
7328         netdev_init_one_queue(dev, queue, NULL);
7329         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7330         queue->qdisc_sleeping = &noop_qdisc;
7331         rcu_assign_pointer(dev->ingress_queue, queue);
7332 #endif
7333         return queue;
7334 }
7335
7336 static const struct ethtool_ops default_ethtool_ops;
7337
7338 void netdev_set_default_ethtool_ops(struct net_device *dev,
7339                                     const struct ethtool_ops *ops)
7340 {
7341         if (dev->ethtool_ops == &default_ethtool_ops)
7342                 dev->ethtool_ops = ops;
7343 }
7344 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7345
7346 void netdev_freemem(struct net_device *dev)
7347 {
7348         char *addr = (char *)dev - dev->padded;
7349
7350         kvfree(addr);
7351 }
7352
7353 /**
7354  *      alloc_netdev_mqs - allocate network device
7355  *      @sizeof_priv:           size of private data to allocate space for
7356  *      @name:                  device name format string
7357  *      @name_assign_type:      origin of device name
7358  *      @setup:                 callback to initialize device
7359  *      @txqs:                  the number of TX subqueues to allocate
7360  *      @rxqs:                  the number of RX subqueues to allocate
7361  *
7362  *      Allocates a struct net_device with private data area for driver use
7363  *      and performs basic initialization.  Also allocates subqueue structs
7364  *      for each queue on the device.
7365  */
7366 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7367                 unsigned char name_assign_type,
7368                 void (*setup)(struct net_device *),
7369                 unsigned int txqs, unsigned int rxqs)
7370 {
7371         struct net_device *dev;
7372         size_t alloc_size;
7373         struct net_device *p;
7374
7375         BUG_ON(strlen(name) >= sizeof(dev->name));
7376
7377         if (txqs < 1) {
7378                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7379                 return NULL;
7380         }
7381
7382 #ifdef CONFIG_SYSFS
7383         if (rxqs < 1) {
7384                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7385                 return NULL;
7386         }
7387 #endif
7388
7389         alloc_size = sizeof(struct net_device);
7390         if (sizeof_priv) {
7391                 /* ensure 32-byte alignment of private area */
7392                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7393                 alloc_size += sizeof_priv;
7394         }
7395         /* ensure 32-byte alignment of whole construct */
7396         alloc_size += NETDEV_ALIGN - 1;
7397
7398         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7399         if (!p)
7400                 p = vzalloc(alloc_size);
7401         if (!p)
7402                 return NULL;
7403
7404         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7405         dev->padded = (char *)dev - (char *)p;
7406
7407         dev->pcpu_refcnt = alloc_percpu(int);
7408         if (!dev->pcpu_refcnt)
7409                 goto free_dev;
7410
7411         if (dev_addr_init(dev))
7412                 goto free_pcpu;
7413
7414         dev_mc_init(dev);
7415         dev_uc_init(dev);
7416
7417         dev_net_set(dev, &init_net);
7418
7419         dev->gso_max_size = GSO_MAX_SIZE;
7420         dev->gso_max_segs = GSO_MAX_SEGS;
7421         dev->gso_min_segs = 0;
7422
7423         INIT_LIST_HEAD(&dev->napi_list);
7424         INIT_LIST_HEAD(&dev->unreg_list);
7425         INIT_LIST_HEAD(&dev->close_list);
7426         INIT_LIST_HEAD(&dev->link_watch_list);
7427         INIT_LIST_HEAD(&dev->adj_list.upper);
7428         INIT_LIST_HEAD(&dev->adj_list.lower);
7429         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7430         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7431         INIT_LIST_HEAD(&dev->ptype_all);
7432         INIT_LIST_HEAD(&dev->ptype_specific);
7433         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7434         setup(dev);
7435
7436         if (!dev->tx_queue_len)
7437                 dev->priv_flags |= IFF_NO_QUEUE;
7438
7439         dev->num_tx_queues = txqs;
7440         dev->real_num_tx_queues = txqs;
7441         if (netif_alloc_netdev_queues(dev))
7442                 goto free_all;
7443
7444 #ifdef CONFIG_SYSFS
7445         dev->num_rx_queues = rxqs;
7446         dev->real_num_rx_queues = rxqs;
7447         if (netif_alloc_rx_queues(dev))
7448                 goto free_all;
7449 #endif
7450
7451         strcpy(dev->name, name);
7452         dev->name_assign_type = name_assign_type;
7453         dev->group = INIT_NETDEV_GROUP;
7454         if (!dev->ethtool_ops)
7455                 dev->ethtool_ops = &default_ethtool_ops;
7456
7457         nf_hook_ingress_init(dev);
7458
7459         return dev;
7460
7461 free_all:
7462         free_netdev(dev);
7463         return NULL;
7464
7465 free_pcpu:
7466         free_percpu(dev->pcpu_refcnt);
7467 free_dev:
7468         netdev_freemem(dev);
7469         return NULL;
7470 }
7471 EXPORT_SYMBOL(alloc_netdev_mqs);
7472
7473 /**
7474  *      free_netdev - free network device
7475  *      @dev: device
7476  *
7477  *      This function does the last stage of destroying an allocated device
7478  *      interface. The reference to the device object is released.
7479  *      If this is the last reference then it will be freed.
7480  *      Must be called in process context.
7481  */
7482 void free_netdev(struct net_device *dev)
7483 {
7484         struct napi_struct *p, *n;
7485
7486         might_sleep();
7487         netif_free_tx_queues(dev);
7488 #ifdef CONFIG_SYSFS
7489         kvfree(dev->_rx);
7490 #endif
7491
7492         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7493
7494         /* Flush device addresses */
7495         dev_addr_flush(dev);
7496
7497         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7498                 netif_napi_del(p);
7499
7500         free_percpu(dev->pcpu_refcnt);
7501         dev->pcpu_refcnt = NULL;
7502
7503         /*  Compatibility with error handling in drivers */
7504         if (dev->reg_state == NETREG_UNINITIALIZED) {
7505                 netdev_freemem(dev);
7506                 return;
7507         }
7508
7509         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7510         dev->reg_state = NETREG_RELEASED;
7511
7512         /* will free via device release */
7513         put_device(&dev->dev);
7514 }
7515 EXPORT_SYMBOL(free_netdev);
7516
7517 /**
7518  *      synchronize_net -  Synchronize with packet receive processing
7519  *
7520  *      Wait for packets currently being received to be done.
7521  *      Does not block later packets from starting.
7522  */
7523 void synchronize_net(void)
7524 {
7525         might_sleep();
7526         if (rtnl_is_locked())
7527                 synchronize_rcu_expedited();
7528         else
7529                 synchronize_rcu();
7530 }
7531 EXPORT_SYMBOL(synchronize_net);
7532
7533 /**
7534  *      unregister_netdevice_queue - remove device from the kernel
7535  *      @dev: device
7536  *      @head: list
7537  *
7538  *      This function shuts down a device interface and removes it
7539  *      from the kernel tables.
7540  *      If head not NULL, device is queued to be unregistered later.
7541  *
7542  *      Callers must hold the rtnl semaphore.  You may want
7543  *      unregister_netdev() instead of this.
7544  */
7545
7546 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7547 {
7548         ASSERT_RTNL();
7549
7550         if (head) {
7551                 list_move_tail(&dev->unreg_list, head);
7552         } else {
7553                 rollback_registered(dev);
7554                 /* Finish processing unregister after unlock */
7555                 net_set_todo(dev);
7556         }
7557 }
7558 EXPORT_SYMBOL(unregister_netdevice_queue);
7559
7560 /**
7561  *      unregister_netdevice_many - unregister many devices
7562  *      @head: list of devices
7563  *
7564  *  Note: As most callers use a stack allocated list_head,
7565  *  we force a list_del() to make sure stack wont be corrupted later.
7566  */
7567 void unregister_netdevice_many(struct list_head *head)
7568 {
7569         struct net_device *dev;
7570
7571         if (!list_empty(head)) {
7572                 rollback_registered_many(head);
7573                 list_for_each_entry(dev, head, unreg_list)
7574                         net_set_todo(dev);
7575                 list_del(head);
7576         }
7577 }
7578 EXPORT_SYMBOL(unregister_netdevice_many);
7579
7580 /**
7581  *      unregister_netdev - remove device from the kernel
7582  *      @dev: device
7583  *
7584  *      This function shuts down a device interface and removes it
7585  *      from the kernel tables.
7586  *
7587  *      This is just a wrapper for unregister_netdevice that takes
7588  *      the rtnl semaphore.  In general you want to use this and not
7589  *      unregister_netdevice.
7590  */
7591 void unregister_netdev(struct net_device *dev)
7592 {
7593         rtnl_lock();
7594         unregister_netdevice(dev);
7595         rtnl_unlock();
7596 }
7597 EXPORT_SYMBOL(unregister_netdev);
7598
7599 /**
7600  *      dev_change_net_namespace - move device to different nethost namespace
7601  *      @dev: device
7602  *      @net: network namespace
7603  *      @pat: If not NULL name pattern to try if the current device name
7604  *            is already taken in the destination network namespace.
7605  *
7606  *      This function shuts down a device interface and moves it
7607  *      to a new network namespace. On success 0 is returned, on
7608  *      a failure a netagive errno code is returned.
7609  *
7610  *      Callers must hold the rtnl semaphore.
7611  */
7612
7613 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7614 {
7615         int err;
7616
7617         ASSERT_RTNL();
7618
7619         /* Don't allow namespace local devices to be moved. */
7620         err = -EINVAL;
7621         if (dev->features & NETIF_F_NETNS_LOCAL)
7622                 goto out;
7623
7624         /* Ensure the device has been registrered */
7625         if (dev->reg_state != NETREG_REGISTERED)
7626                 goto out;
7627
7628         /* Get out if there is nothing todo */
7629         err = 0;
7630         if (net_eq(dev_net(dev), net))
7631                 goto out;
7632
7633         /* Pick the destination device name, and ensure
7634          * we can use it in the destination network namespace.
7635          */
7636         err = -EEXIST;
7637         if (__dev_get_by_name(net, dev->name)) {
7638                 /* We get here if we can't use the current device name */
7639                 if (!pat)
7640                         goto out;
7641                 if (dev_get_valid_name(net, dev, pat) < 0)
7642                         goto out;
7643         }
7644
7645         /*
7646          * And now a mini version of register_netdevice unregister_netdevice.
7647          */
7648
7649         /* If device is running close it first. */
7650         dev_close(dev);
7651
7652         /* And unlink it from device chain */
7653         err = -ENODEV;
7654         unlist_netdevice(dev);
7655
7656         synchronize_net();
7657
7658         /* Shutdown queueing discipline. */
7659         dev_shutdown(dev);
7660
7661         /* Notify protocols, that we are about to destroy
7662            this device. They should clean all the things.
7663
7664            Note that dev->reg_state stays at NETREG_REGISTERED.
7665            This is wanted because this way 8021q and macvlan know
7666            the device is just moving and can keep their slaves up.
7667         */
7668         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7669         rcu_barrier();
7670         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7671         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7672
7673         /*
7674          *      Flush the unicast and multicast chains
7675          */
7676         dev_uc_flush(dev);
7677         dev_mc_flush(dev);
7678
7679         /* Send a netdev-removed uevent to the old namespace */
7680         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7681         netdev_adjacent_del_links(dev);
7682
7683         /* Actually switch the network namespace */
7684         dev_net_set(dev, net);
7685
7686         /* If there is an ifindex conflict assign a new one */
7687         if (__dev_get_by_index(net, dev->ifindex))
7688                 dev->ifindex = dev_new_index(net);
7689
7690         /* Send a netdev-add uevent to the new namespace */
7691         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7692         netdev_adjacent_add_links(dev);
7693
7694         /* Fixup kobjects */
7695         err = device_rename(&dev->dev, dev->name);
7696         WARN_ON(err);
7697
7698         /* Add the device back in the hashes */
7699         list_netdevice(dev);
7700
7701         /* Notify protocols, that a new device appeared. */
7702         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7703
7704         /*
7705          *      Prevent userspace races by waiting until the network
7706          *      device is fully setup before sending notifications.
7707          */
7708         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7709
7710         synchronize_net();
7711         err = 0;
7712 out:
7713         return err;
7714 }
7715 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7716
7717 static int dev_cpu_callback(struct notifier_block *nfb,
7718                             unsigned long action,
7719                             void *ocpu)
7720 {
7721         struct sk_buff **list_skb;
7722         struct sk_buff *skb;
7723         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7724         struct softnet_data *sd, *oldsd;
7725
7726         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7727                 return NOTIFY_OK;
7728
7729         local_irq_disable();
7730         cpu = smp_processor_id();
7731         sd = &per_cpu(softnet_data, cpu);
7732         oldsd = &per_cpu(softnet_data, oldcpu);
7733
7734         /* Find end of our completion_queue. */
7735         list_skb = &sd->completion_queue;
7736         while (*list_skb)
7737                 list_skb = &(*list_skb)->next;
7738         /* Append completion queue from offline CPU. */
7739         *list_skb = oldsd->completion_queue;
7740         oldsd->completion_queue = NULL;
7741
7742         /* Append output queue from offline CPU. */
7743         if (oldsd->output_queue) {
7744                 *sd->output_queue_tailp = oldsd->output_queue;
7745                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7746                 oldsd->output_queue = NULL;
7747                 oldsd->output_queue_tailp = &oldsd->output_queue;
7748         }
7749         /* Append NAPI poll list from offline CPU, with one exception :
7750          * process_backlog() must be called by cpu owning percpu backlog.
7751          * We properly handle process_queue & input_pkt_queue later.
7752          */
7753         while (!list_empty(&oldsd->poll_list)) {
7754                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7755                                                             struct napi_struct,
7756                                                             poll_list);
7757
7758                 list_del_init(&napi->poll_list);
7759                 if (napi->poll == process_backlog)
7760                         napi->state = 0;
7761                 else
7762                         ____napi_schedule(sd, napi);
7763         }
7764
7765         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7766         local_irq_enable();
7767
7768         /* Process offline CPU's input_pkt_queue */
7769         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7770                 netif_rx_ni(skb);
7771                 input_queue_head_incr(oldsd);
7772         }
7773         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7774                 netif_rx_ni(skb);
7775                 input_queue_head_incr(oldsd);
7776         }
7777
7778         return NOTIFY_OK;
7779 }
7780
7781
7782 /**
7783  *      netdev_increment_features - increment feature set by one
7784  *      @all: current feature set
7785  *      @one: new feature set
7786  *      @mask: mask feature set
7787  *
7788  *      Computes a new feature set after adding a device with feature set
7789  *      @one to the master device with current feature set @all.  Will not
7790  *      enable anything that is off in @mask. Returns the new feature set.
7791  */
7792 netdev_features_t netdev_increment_features(netdev_features_t all,
7793         netdev_features_t one, netdev_features_t mask)
7794 {
7795         if (mask & NETIF_F_HW_CSUM)
7796                 mask |= NETIF_F_CSUM_MASK;
7797         mask |= NETIF_F_VLAN_CHALLENGED;
7798
7799         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7800         all &= one | ~NETIF_F_ALL_FOR_ALL;
7801
7802         /* If one device supports hw checksumming, set for all. */
7803         if (all & NETIF_F_HW_CSUM)
7804                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7805
7806         return all;
7807 }
7808 EXPORT_SYMBOL(netdev_increment_features);
7809
7810 static struct hlist_head * __net_init netdev_create_hash(void)
7811 {
7812         int i;
7813         struct hlist_head *hash;
7814
7815         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7816         if (hash != NULL)
7817                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7818                         INIT_HLIST_HEAD(&hash[i]);
7819
7820         return hash;
7821 }
7822
7823 /* Initialize per network namespace state */
7824 static int __net_init netdev_init(struct net *net)
7825 {
7826         if (net != &init_net)
7827                 INIT_LIST_HEAD(&net->dev_base_head);
7828
7829         net->dev_name_head = netdev_create_hash();
7830         if (net->dev_name_head == NULL)
7831                 goto err_name;
7832
7833         net->dev_index_head = netdev_create_hash();
7834         if (net->dev_index_head == NULL)
7835                 goto err_idx;
7836
7837         return 0;
7838
7839 err_idx:
7840         kfree(net->dev_name_head);
7841 err_name:
7842         return -ENOMEM;
7843 }
7844
7845 /**
7846  *      netdev_drivername - network driver for the device
7847  *      @dev: network device
7848  *
7849  *      Determine network driver for device.
7850  */
7851 const char *netdev_drivername(const struct net_device *dev)
7852 {
7853         const struct device_driver *driver;
7854         const struct device *parent;
7855         const char *empty = "";
7856
7857         parent = dev->dev.parent;
7858         if (!parent)
7859                 return empty;
7860
7861         driver = parent->driver;
7862         if (driver && driver->name)
7863                 return driver->name;
7864         return empty;
7865 }
7866
7867 static void __netdev_printk(const char *level, const struct net_device *dev,
7868                             struct va_format *vaf)
7869 {
7870         if (dev && dev->dev.parent) {
7871                 dev_printk_emit(level[1] - '0',
7872                                 dev->dev.parent,
7873                                 "%s %s %s%s: %pV",
7874                                 dev_driver_string(dev->dev.parent),
7875                                 dev_name(dev->dev.parent),
7876                                 netdev_name(dev), netdev_reg_state(dev),
7877                                 vaf);
7878         } else if (dev) {
7879                 printk("%s%s%s: %pV",
7880                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7881         } else {
7882                 printk("%s(NULL net_device): %pV", level, vaf);
7883         }
7884 }
7885
7886 void netdev_printk(const char *level, const struct net_device *dev,
7887                    const char *format, ...)
7888 {
7889         struct va_format vaf;
7890         va_list args;
7891
7892         va_start(args, format);
7893
7894         vaf.fmt = format;
7895         vaf.va = &args;
7896
7897         __netdev_printk(level, dev, &vaf);
7898
7899         va_end(args);
7900 }
7901 EXPORT_SYMBOL(netdev_printk);
7902
7903 #define define_netdev_printk_level(func, level)                 \
7904 void func(const struct net_device *dev, const char *fmt, ...)   \
7905 {                                                               \
7906         struct va_format vaf;                                   \
7907         va_list args;                                           \
7908                                                                 \
7909         va_start(args, fmt);                                    \
7910                                                                 \
7911         vaf.fmt = fmt;                                          \
7912         vaf.va = &args;                                         \
7913                                                                 \
7914         __netdev_printk(level, dev, &vaf);                      \
7915                                                                 \
7916         va_end(args);                                           \
7917 }                                                               \
7918 EXPORT_SYMBOL(func);
7919
7920 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7921 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7922 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7923 define_netdev_printk_level(netdev_err, KERN_ERR);
7924 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7925 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7926 define_netdev_printk_level(netdev_info, KERN_INFO);
7927
7928 static void __net_exit netdev_exit(struct net *net)
7929 {
7930         kfree(net->dev_name_head);
7931         kfree(net->dev_index_head);
7932 }
7933
7934 static struct pernet_operations __net_initdata netdev_net_ops = {
7935         .init = netdev_init,
7936         .exit = netdev_exit,
7937 };
7938
7939 static void __net_exit default_device_exit(struct net *net)
7940 {
7941         struct net_device *dev, *aux;
7942         /*
7943          * Push all migratable network devices back to the
7944          * initial network namespace
7945          */
7946         rtnl_lock();
7947         for_each_netdev_safe(net, dev, aux) {
7948                 int err;
7949                 char fb_name[IFNAMSIZ];
7950
7951                 /* Ignore unmoveable devices (i.e. loopback) */
7952                 if (dev->features & NETIF_F_NETNS_LOCAL)
7953                         continue;
7954
7955                 /* Leave virtual devices for the generic cleanup */
7956                 if (dev->rtnl_link_ops)
7957                         continue;
7958
7959                 /* Push remaining network devices to init_net */
7960                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7961                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7962                 if (err) {
7963                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7964                                  __func__, dev->name, err);
7965                         BUG();
7966                 }
7967         }
7968         rtnl_unlock();
7969 }
7970
7971 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7972 {
7973         /* Return with the rtnl_lock held when there are no network
7974          * devices unregistering in any network namespace in net_list.
7975          */
7976         struct net *net;
7977         bool unregistering;
7978         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7979
7980         add_wait_queue(&netdev_unregistering_wq, &wait);
7981         for (;;) {
7982                 unregistering = false;
7983                 rtnl_lock();
7984                 list_for_each_entry(net, net_list, exit_list) {
7985                         if (net->dev_unreg_count > 0) {
7986                                 unregistering = true;
7987                                 break;
7988                         }
7989                 }
7990                 if (!unregistering)
7991                         break;
7992                 __rtnl_unlock();
7993
7994                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7995         }
7996         remove_wait_queue(&netdev_unregistering_wq, &wait);
7997 }
7998
7999 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8000 {
8001         /* At exit all network devices most be removed from a network
8002          * namespace.  Do this in the reverse order of registration.
8003          * Do this across as many network namespaces as possible to
8004          * improve batching efficiency.
8005          */
8006         struct net_device *dev;
8007         struct net *net;
8008         LIST_HEAD(dev_kill_list);
8009
8010         /* To prevent network device cleanup code from dereferencing
8011          * loopback devices or network devices that have been freed
8012          * wait here for all pending unregistrations to complete,
8013          * before unregistring the loopback device and allowing the
8014          * network namespace be freed.
8015          *
8016          * The netdev todo list containing all network devices
8017          * unregistrations that happen in default_device_exit_batch
8018          * will run in the rtnl_unlock() at the end of
8019          * default_device_exit_batch.
8020          */
8021         rtnl_lock_unregistering(net_list);
8022         list_for_each_entry(net, net_list, exit_list) {
8023                 for_each_netdev_reverse(net, dev) {
8024                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8025                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8026                         else
8027                                 unregister_netdevice_queue(dev, &dev_kill_list);
8028                 }
8029         }
8030         unregister_netdevice_many(&dev_kill_list);
8031         rtnl_unlock();
8032 }
8033
8034 static struct pernet_operations __net_initdata default_device_ops = {
8035         .exit = default_device_exit,
8036         .exit_batch = default_device_exit_batch,
8037 };
8038
8039 /*
8040  *      Initialize the DEV module. At boot time this walks the device list and
8041  *      unhooks any devices that fail to initialise (normally hardware not
8042  *      present) and leaves us with a valid list of present and active devices.
8043  *
8044  */
8045
8046 /*
8047  *       This is called single threaded during boot, so no need
8048  *       to take the rtnl semaphore.
8049  */
8050 static int __init net_dev_init(void)
8051 {
8052         int i, rc = -ENOMEM;
8053
8054         BUG_ON(!dev_boot_phase);
8055
8056         if (dev_proc_init())
8057                 goto out;
8058
8059         if (netdev_kobject_init())
8060                 goto out;
8061
8062         INIT_LIST_HEAD(&ptype_all);
8063         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8064                 INIT_LIST_HEAD(&ptype_base[i]);
8065
8066         INIT_LIST_HEAD(&offload_base);
8067
8068         if (register_pernet_subsys(&netdev_net_ops))
8069                 goto out;
8070
8071         /*
8072          *      Initialise the packet receive queues.
8073          */
8074
8075         for_each_possible_cpu(i) {
8076                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8077
8078                 skb_queue_head_init(&sd->input_pkt_queue);
8079                 skb_queue_head_init(&sd->process_queue);
8080                 INIT_LIST_HEAD(&sd->poll_list);
8081                 sd->output_queue_tailp = &sd->output_queue;
8082 #ifdef CONFIG_RPS
8083                 sd->csd.func = rps_trigger_softirq;
8084                 sd->csd.info = sd;
8085                 sd->cpu = i;
8086 #endif
8087
8088                 sd->backlog.poll = process_backlog;
8089                 sd->backlog.weight = weight_p;
8090         }
8091
8092         dev_boot_phase = 0;
8093
8094         /* The loopback device is special if any other network devices
8095          * is present in a network namespace the loopback device must
8096          * be present. Since we now dynamically allocate and free the
8097          * loopback device ensure this invariant is maintained by
8098          * keeping the loopback device as the first device on the
8099          * list of network devices.  Ensuring the loopback devices
8100          * is the first device that appears and the last network device
8101          * that disappears.
8102          */
8103         if (register_pernet_device(&loopback_net_ops))
8104                 goto out;
8105
8106         if (register_pernet_device(&default_device_ops))
8107                 goto out;
8108
8109         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8110         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8111
8112         hotcpu_notifier(dev_cpu_callback, 0);
8113         dst_subsys_init();
8114         rc = 0;
8115 out:
8116         return rc;
8117 }
8118
8119 subsys_initcall(net_dev_init);