]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/core/dev.c
net: solve a NAPI race
[karo-tx-linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;       /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160                                          struct net_device *dev,
161                                          struct netdev_notifier_info *info);
162
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195         while (++net->dev_base_seq == 0)
196                 ;
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214         spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228         struct net *net = dev_net(dev);
229
230         ASSERT_RTNL();
231
232         write_lock_bh(&dev_base_lock);
233         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235         hlist_add_head_rcu(&dev->index_hlist,
236                            dev_index_hash(net, dev->ifindex));
237         write_unlock_bh(&dev_base_lock);
238
239         dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247         ASSERT_RTNL();
248
249         /* Unlink dev from the device chain */
250         write_lock_bh(&dev_base_lock);
251         list_del_rcu(&dev->dev_list);
252         hlist_del_rcu(&dev->name_hlist);
253         hlist_del_rcu(&dev->index_hlist);
254         write_unlock_bh(&dev_base_lock);
255
256         dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260  *      Our notifier list
261  */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266  *      Device drivers call our routines to queue packets here. We empty the
267  *      queue in the local softnet handler.
268  */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] = {
279          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] = {
296         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317         int i;
318
319         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320                 if (netdev_lock_type[i] == dev_type)
321                         return i;
322         /* the last key is used by default */
323         return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327                                                  unsigned short dev_type)
328 {
329         int i;
330
331         i = netdev_lock_pos(dev_type);
332         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333                                    netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338         int i;
339
340         i = netdev_lock_pos(dev->type);
341         lockdep_set_class_and_name(&dev->addr_list_lock,
342                                    &netdev_addr_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347                                                  unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356  *
357  *              Protocol management and registration routines
358  *
359  *******************************************************************************/
360
361
362 /*
363  *      Add a protocol ID to the list. Now that the input handler is
364  *      smarter we can dispense with all the messy stuff that used to be
365  *      here.
366  *
367  *      BEWARE!!! Protocol handlers, mangling input packets,
368  *      MUST BE last in hash buckets and checking protocol handlers
369  *      MUST start from promiscuous ptype_all chain in net_bh.
370  *      It is true now, do not change it.
371  *      Explanation follows: if protocol handler, mangling packet, will
372  *      be the first on list, it is not able to sense, that packet
373  *      is cloned and should be copied-on-write, so that it will
374  *      change it and subsequent readers will get broken packet.
375  *                                                      --ANK (980803)
376  */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380         if (pt->type == htons(ETH_P_ALL))
381                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
382         else
383                 return pt->dev ? &pt->dev->ptype_specific :
384                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
385 }
386
387 /**
388  *      dev_add_pack - add packet handler
389  *      @pt: packet type declaration
390  *
391  *      Add a protocol handler to the networking stack. The passed &packet_type
392  *      is linked into kernel lists and may not be freed until it has been
393  *      removed from the kernel lists.
394  *
395  *      This call does not sleep therefore it can not
396  *      guarantee all CPU's that are in middle of receiving packets
397  *      will see the new packet type (until the next received packet).
398  */
399
400 void dev_add_pack(struct packet_type *pt)
401 {
402         struct list_head *head = ptype_head(pt);
403
404         spin_lock(&ptype_lock);
405         list_add_rcu(&pt->list, head);
406         spin_unlock(&ptype_lock);
407 }
408 EXPORT_SYMBOL(dev_add_pack);
409
410 /**
411  *      __dev_remove_pack        - remove packet handler
412  *      @pt: packet type declaration
413  *
414  *      Remove a protocol handler that was previously added to the kernel
415  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
416  *      from the kernel lists and can be freed or reused once this function
417  *      returns.
418  *
419  *      The packet type might still be in use by receivers
420  *      and must not be freed until after all the CPU's have gone
421  *      through a quiescent state.
422  */
423 void __dev_remove_pack(struct packet_type *pt)
424 {
425         struct list_head *head = ptype_head(pt);
426         struct packet_type *pt1;
427
428         spin_lock(&ptype_lock);
429
430         list_for_each_entry(pt1, head, list) {
431                 if (pt == pt1) {
432                         list_del_rcu(&pt->list);
433                         goto out;
434                 }
435         }
436
437         pr_warn("dev_remove_pack: %p not found\n", pt);
438 out:
439         spin_unlock(&ptype_lock);
440 }
441 EXPORT_SYMBOL(__dev_remove_pack);
442
443 /**
444  *      dev_remove_pack  - remove packet handler
445  *      @pt: packet type declaration
446  *
447  *      Remove a protocol handler that was previously added to the kernel
448  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
449  *      from the kernel lists and can be freed or reused once this function
450  *      returns.
451  *
452  *      This call sleeps to guarantee that no CPU is looking at the packet
453  *      type after return.
454  */
455 void dev_remove_pack(struct packet_type *pt)
456 {
457         __dev_remove_pack(pt);
458
459         synchronize_net();
460 }
461 EXPORT_SYMBOL(dev_remove_pack);
462
463
464 /**
465  *      dev_add_offload - register offload handlers
466  *      @po: protocol offload declaration
467  *
468  *      Add protocol offload handlers to the networking stack. The passed
469  *      &proto_offload is linked into kernel lists and may not be freed until
470  *      it has been removed from the kernel lists.
471  *
472  *      This call does not sleep therefore it can not
473  *      guarantee all CPU's that are in middle of receiving packets
474  *      will see the new offload handlers (until the next received packet).
475  */
476 void dev_add_offload(struct packet_offload *po)
477 {
478         struct packet_offload *elem;
479
480         spin_lock(&offload_lock);
481         list_for_each_entry(elem, &offload_base, list) {
482                 if (po->priority < elem->priority)
483                         break;
484         }
485         list_add_rcu(&po->list, elem->list.prev);
486         spin_unlock(&offload_lock);
487 }
488 EXPORT_SYMBOL(dev_add_offload);
489
490 /**
491  *      __dev_remove_offload     - remove offload handler
492  *      @po: packet offload declaration
493  *
494  *      Remove a protocol offload handler that was previously added to the
495  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
496  *      is removed from the kernel lists and can be freed or reused once this
497  *      function returns.
498  *
499  *      The packet type might still be in use by receivers
500  *      and must not be freed until after all the CPU's have gone
501  *      through a quiescent state.
502  */
503 static void __dev_remove_offload(struct packet_offload *po)
504 {
505         struct list_head *head = &offload_base;
506         struct packet_offload *po1;
507
508         spin_lock(&offload_lock);
509
510         list_for_each_entry(po1, head, list) {
511                 if (po == po1) {
512                         list_del_rcu(&po->list);
513                         goto out;
514                 }
515         }
516
517         pr_warn("dev_remove_offload: %p not found\n", po);
518 out:
519         spin_unlock(&offload_lock);
520 }
521
522 /**
523  *      dev_remove_offload       - remove packet offload handler
524  *      @po: packet offload declaration
525  *
526  *      Remove a packet offload handler that was previously added to the kernel
527  *      offload handlers by dev_add_offload(). The passed &offload_type is
528  *      removed from the kernel lists and can be freed or reused once this
529  *      function returns.
530  *
531  *      This call sleeps to guarantee that no CPU is looking at the packet
532  *      type after return.
533  */
534 void dev_remove_offload(struct packet_offload *po)
535 {
536         __dev_remove_offload(po);
537
538         synchronize_net();
539 }
540 EXPORT_SYMBOL(dev_remove_offload);
541
542 /******************************************************************************
543  *
544  *                    Device Boot-time Settings Routines
545  *
546  ******************************************************************************/
547
548 /* Boot time configuration table */
549 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550
551 /**
552  *      netdev_boot_setup_add   - add new setup entry
553  *      @name: name of the device
554  *      @map: configured settings for the device
555  *
556  *      Adds new setup entry to the dev_boot_setup list.  The function
557  *      returns 0 on error and 1 on success.  This is a generic routine to
558  *      all netdevices.
559  */
560 static int netdev_boot_setup_add(char *name, struct ifmap *map)
561 {
562         struct netdev_boot_setup *s;
563         int i;
564
565         s = dev_boot_setup;
566         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
568                         memset(s[i].name, 0, sizeof(s[i].name));
569                         strlcpy(s[i].name, name, IFNAMSIZ);
570                         memcpy(&s[i].map, map, sizeof(s[i].map));
571                         break;
572                 }
573         }
574
575         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
576 }
577
578 /**
579  * netdev_boot_setup_check      - check boot time settings
580  * @dev: the netdevice
581  *
582  * Check boot time settings for the device.
583  * The found settings are set for the device to be used
584  * later in the device probing.
585  * Returns 0 if no settings found, 1 if they are.
586  */
587 int netdev_boot_setup_check(struct net_device *dev)
588 {
589         struct netdev_boot_setup *s = dev_boot_setup;
590         int i;
591
592         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
593                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
594                     !strcmp(dev->name, s[i].name)) {
595                         dev->irq = s[i].map.irq;
596                         dev->base_addr = s[i].map.base_addr;
597                         dev->mem_start = s[i].map.mem_start;
598                         dev->mem_end = s[i].map.mem_end;
599                         return 1;
600                 }
601         }
602         return 0;
603 }
604 EXPORT_SYMBOL(netdev_boot_setup_check);
605
606
607 /**
608  * netdev_boot_base     - get address from boot time settings
609  * @prefix: prefix for network device
610  * @unit: id for network device
611  *
612  * Check boot time settings for the base address of device.
613  * The found settings are set for the device to be used
614  * later in the device probing.
615  * Returns 0 if no settings found.
616  */
617 unsigned long netdev_boot_base(const char *prefix, int unit)
618 {
619         const struct netdev_boot_setup *s = dev_boot_setup;
620         char name[IFNAMSIZ];
621         int i;
622
623         sprintf(name, "%s%d", prefix, unit);
624
625         /*
626          * If device already registered then return base of 1
627          * to indicate not to probe for this interface
628          */
629         if (__dev_get_by_name(&init_net, name))
630                 return 1;
631
632         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
633                 if (!strcmp(name, s[i].name))
634                         return s[i].map.base_addr;
635         return 0;
636 }
637
638 /*
639  * Saves at boot time configured settings for any netdevice.
640  */
641 int __init netdev_boot_setup(char *str)
642 {
643         int ints[5];
644         struct ifmap map;
645
646         str = get_options(str, ARRAY_SIZE(ints), ints);
647         if (!str || !*str)
648                 return 0;
649
650         /* Save settings */
651         memset(&map, 0, sizeof(map));
652         if (ints[0] > 0)
653                 map.irq = ints[1];
654         if (ints[0] > 1)
655                 map.base_addr = ints[2];
656         if (ints[0] > 2)
657                 map.mem_start = ints[3];
658         if (ints[0] > 3)
659                 map.mem_end = ints[4];
660
661         /* Add new entry to the list */
662         return netdev_boot_setup_add(str, &map);
663 }
664
665 __setup("netdev=", netdev_boot_setup);
666
667 /*******************************************************************************
668  *
669  *                          Device Interface Subroutines
670  *
671  *******************************************************************************/
672
673 /**
674  *      dev_get_iflink  - get 'iflink' value of a interface
675  *      @dev: targeted interface
676  *
677  *      Indicates the ifindex the interface is linked to.
678  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
679  */
680
681 int dev_get_iflink(const struct net_device *dev)
682 {
683         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
684                 return dev->netdev_ops->ndo_get_iflink(dev);
685
686         return dev->ifindex;
687 }
688 EXPORT_SYMBOL(dev_get_iflink);
689
690 /**
691  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
692  *      @dev: targeted interface
693  *      @skb: The packet.
694  *
695  *      For better visibility of tunnel traffic OVS needs to retrieve
696  *      egress tunnel information for a packet. Following API allows
697  *      user to get this info.
698  */
699 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
700 {
701         struct ip_tunnel_info *info;
702
703         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
704                 return -EINVAL;
705
706         info = skb_tunnel_info_unclone(skb);
707         if (!info)
708                 return -ENOMEM;
709         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
710                 return -EINVAL;
711
712         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
713 }
714 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715
716 /**
717  *      __dev_get_by_name       - find a device by its name
718  *      @net: the applicable net namespace
719  *      @name: name to find
720  *
721  *      Find an interface by name. Must be called under RTNL semaphore
722  *      or @dev_base_lock. If the name is found a pointer to the device
723  *      is returned. If the name is not found then %NULL is returned. The
724  *      reference counters are not incremented so the caller must be
725  *      careful with locks.
726  */
727
728 struct net_device *__dev_get_by_name(struct net *net, const char *name)
729 {
730         struct net_device *dev;
731         struct hlist_head *head = dev_name_hash(net, name);
732
733         hlist_for_each_entry(dev, head, name_hlist)
734                 if (!strncmp(dev->name, name, IFNAMSIZ))
735                         return dev;
736
737         return NULL;
738 }
739 EXPORT_SYMBOL(__dev_get_by_name);
740
741 /**
742  * dev_get_by_name_rcu  - find a device by its name
743  * @net: the applicable net namespace
744  * @name: name to find
745  *
746  * Find an interface by name.
747  * If the name is found a pointer to the device is returned.
748  * If the name is not found then %NULL is returned.
749  * The reference counters are not incremented so the caller must be
750  * careful with locks. The caller must hold RCU lock.
751  */
752
753 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
754 {
755         struct net_device *dev;
756         struct hlist_head *head = dev_name_hash(net, name);
757
758         hlist_for_each_entry_rcu(dev, head, name_hlist)
759                 if (!strncmp(dev->name, name, IFNAMSIZ))
760                         return dev;
761
762         return NULL;
763 }
764 EXPORT_SYMBOL(dev_get_by_name_rcu);
765
766 /**
767  *      dev_get_by_name         - find a device by its name
768  *      @net: the applicable net namespace
769  *      @name: name to find
770  *
771  *      Find an interface by name. This can be called from any
772  *      context and does its own locking. The returned handle has
773  *      the usage count incremented and the caller must use dev_put() to
774  *      release it when it is no longer needed. %NULL is returned if no
775  *      matching device is found.
776  */
777
778 struct net_device *dev_get_by_name(struct net *net, const char *name)
779 {
780         struct net_device *dev;
781
782         rcu_read_lock();
783         dev = dev_get_by_name_rcu(net, name);
784         if (dev)
785                 dev_hold(dev);
786         rcu_read_unlock();
787         return dev;
788 }
789 EXPORT_SYMBOL(dev_get_by_name);
790
791 /**
792  *      __dev_get_by_index - find a device by its ifindex
793  *      @net: the applicable net namespace
794  *      @ifindex: index of device
795  *
796  *      Search for an interface by index. Returns %NULL if the device
797  *      is not found or a pointer to the device. The device has not
798  *      had its reference counter increased so the caller must be careful
799  *      about locking. The caller must hold either the RTNL semaphore
800  *      or @dev_base_lock.
801  */
802
803 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
804 {
805         struct net_device *dev;
806         struct hlist_head *head = dev_index_hash(net, ifindex);
807
808         hlist_for_each_entry(dev, head, index_hlist)
809                 if (dev->ifindex == ifindex)
810                         return dev;
811
812         return NULL;
813 }
814 EXPORT_SYMBOL(__dev_get_by_index);
815
816 /**
817  *      dev_get_by_index_rcu - find a device by its ifindex
818  *      @net: the applicable net namespace
819  *      @ifindex: index of device
820  *
821  *      Search for an interface by index. Returns %NULL if the device
822  *      is not found or a pointer to the device. The device has not
823  *      had its reference counter increased so the caller must be careful
824  *      about locking. The caller must hold RCU lock.
825  */
826
827 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
828 {
829         struct net_device *dev;
830         struct hlist_head *head = dev_index_hash(net, ifindex);
831
832         hlist_for_each_entry_rcu(dev, head, index_hlist)
833                 if (dev->ifindex == ifindex)
834                         return dev;
835
836         return NULL;
837 }
838 EXPORT_SYMBOL(dev_get_by_index_rcu);
839
840
841 /**
842  *      dev_get_by_index - find a device by its ifindex
843  *      @net: the applicable net namespace
844  *      @ifindex: index of device
845  *
846  *      Search for an interface by index. Returns NULL if the device
847  *      is not found or a pointer to the device. The device returned has
848  *      had a reference added and the pointer is safe until the user calls
849  *      dev_put to indicate they have finished with it.
850  */
851
852 struct net_device *dev_get_by_index(struct net *net, int ifindex)
853 {
854         struct net_device *dev;
855
856         rcu_read_lock();
857         dev = dev_get_by_index_rcu(net, ifindex);
858         if (dev)
859                 dev_hold(dev);
860         rcu_read_unlock();
861         return dev;
862 }
863 EXPORT_SYMBOL(dev_get_by_index);
864
865 /**
866  *      netdev_get_name - get a netdevice name, knowing its ifindex.
867  *      @net: network namespace
868  *      @name: a pointer to the buffer where the name will be stored.
869  *      @ifindex: the ifindex of the interface to get the name from.
870  *
871  *      The use of raw_seqcount_begin() and cond_resched() before
872  *      retrying is required as we want to give the writers a chance
873  *      to complete when CONFIG_PREEMPT is not set.
874  */
875 int netdev_get_name(struct net *net, char *name, int ifindex)
876 {
877         struct net_device *dev;
878         unsigned int seq;
879
880 retry:
881         seq = raw_seqcount_begin(&devnet_rename_seq);
882         rcu_read_lock();
883         dev = dev_get_by_index_rcu(net, ifindex);
884         if (!dev) {
885                 rcu_read_unlock();
886                 return -ENODEV;
887         }
888
889         strcpy(name, dev->name);
890         rcu_read_unlock();
891         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
892                 cond_resched();
893                 goto retry;
894         }
895
896         return 0;
897 }
898
899 /**
900  *      dev_getbyhwaddr_rcu - find a device by its hardware address
901  *      @net: the applicable net namespace
902  *      @type: media type of device
903  *      @ha: hardware address
904  *
905  *      Search for an interface by MAC address. Returns NULL if the device
906  *      is not found or a pointer to the device.
907  *      The caller must hold RCU or RTNL.
908  *      The returned device has not had its ref count increased
909  *      and the caller must therefore be careful about locking
910  *
911  */
912
913 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
914                                        const char *ha)
915 {
916         struct net_device *dev;
917
918         for_each_netdev_rcu(net, dev)
919                 if (dev->type == type &&
920                     !memcmp(dev->dev_addr, ha, dev->addr_len))
921                         return dev;
922
923         return NULL;
924 }
925 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
926
927 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
928 {
929         struct net_device *dev;
930
931         ASSERT_RTNL();
932         for_each_netdev(net, dev)
933                 if (dev->type == type)
934                         return dev;
935
936         return NULL;
937 }
938 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
939
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941 {
942         struct net_device *dev, *ret = NULL;
943
944         rcu_read_lock();
945         for_each_netdev_rcu(net, dev)
946                 if (dev->type == type) {
947                         dev_hold(dev);
948                         ret = dev;
949                         break;
950                 }
951         rcu_read_unlock();
952         return ret;
953 }
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955
956 /**
957  *      __dev_get_by_flags - find any device with given flags
958  *      @net: the applicable net namespace
959  *      @if_flags: IFF_* values
960  *      @mask: bitmask of bits in if_flags to check
961  *
962  *      Search for any interface with the given flags. Returns NULL if a device
963  *      is not found or a pointer to the device. Must be called inside
964  *      rtnl_lock(), and result refcount is unchanged.
965  */
966
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968                                       unsigned short mask)
969 {
970         struct net_device *dev, *ret;
971
972         ASSERT_RTNL();
973
974         ret = NULL;
975         for_each_netdev(net, dev) {
976                 if (((dev->flags ^ if_flags) & mask) == 0) {
977                         ret = dev;
978                         break;
979                 }
980         }
981         return ret;
982 }
983 EXPORT_SYMBOL(__dev_get_by_flags);
984
985 /**
986  *      dev_valid_name - check if name is okay for network device
987  *      @name: name string
988  *
989  *      Network device names need to be valid file names to
990  *      to allow sysfs to work.  We also disallow any kind of
991  *      whitespace.
992  */
993 bool dev_valid_name(const char *name)
994 {
995         if (*name == '\0')
996                 return false;
997         if (strlen(name) >= IFNAMSIZ)
998                 return false;
999         if (!strcmp(name, ".") || !strcmp(name, ".."))
1000                 return false;
1001
1002         while (*name) {
1003                 if (*name == '/' || *name == ':' || isspace(*name))
1004                         return false;
1005                 name++;
1006         }
1007         return true;
1008 }
1009 EXPORT_SYMBOL(dev_valid_name);
1010
1011 /**
1012  *      __dev_alloc_name - allocate a name for a device
1013  *      @net: network namespace to allocate the device name in
1014  *      @name: name format string
1015  *      @buf:  scratch buffer and result name string
1016  *
1017  *      Passed a format string - eg "lt%d" it will try and find a suitable
1018  *      id. It scans list of devices to build up a free map, then chooses
1019  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1020  *      while allocating the name and adding the device in order to avoid
1021  *      duplicates.
1022  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023  *      Returns the number of the unit assigned or a negative errno code.
1024  */
1025
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027 {
1028         int i = 0;
1029         const char *p;
1030         const int max_netdevices = 8*PAGE_SIZE;
1031         unsigned long *inuse;
1032         struct net_device *d;
1033
1034         p = strnchr(name, IFNAMSIZ-1, '%');
1035         if (p) {
1036                 /*
1037                  * Verify the string as this thing may have come from
1038                  * the user.  There must be either one "%d" and no other "%"
1039                  * characters.
1040                  */
1041                 if (p[1] != 'd' || strchr(p + 2, '%'))
1042                         return -EINVAL;
1043
1044                 /* Use one page as a bit array of possible slots */
1045                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046                 if (!inuse)
1047                         return -ENOMEM;
1048
1049                 for_each_netdev(net, d) {
1050                         if (!sscanf(d->name, name, &i))
1051                                 continue;
1052                         if (i < 0 || i >= max_netdevices)
1053                                 continue;
1054
1055                         /*  avoid cases where sscanf is not exact inverse of printf */
1056                         snprintf(buf, IFNAMSIZ, name, i);
1057                         if (!strncmp(buf, d->name, IFNAMSIZ))
1058                                 set_bit(i, inuse);
1059                 }
1060
1061                 i = find_first_zero_bit(inuse, max_netdevices);
1062                 free_page((unsigned long) inuse);
1063         }
1064
1065         if (buf != name)
1066                 snprintf(buf, IFNAMSIZ, name, i);
1067         if (!__dev_get_by_name(net, buf))
1068                 return i;
1069
1070         /* It is possible to run out of possible slots
1071          * when the name is long and there isn't enough space left
1072          * for the digits, or if all bits are used.
1073          */
1074         return -ENFILE;
1075 }
1076
1077 /**
1078  *      dev_alloc_name - allocate a name for a device
1079  *      @dev: device
1080  *      @name: name format string
1081  *
1082  *      Passed a format string - eg "lt%d" it will try and find a suitable
1083  *      id. It scans list of devices to build up a free map, then chooses
1084  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1085  *      while allocating the name and adding the device in order to avoid
1086  *      duplicates.
1087  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1088  *      Returns the number of the unit assigned or a negative errno code.
1089  */
1090
1091 int dev_alloc_name(struct net_device *dev, const char *name)
1092 {
1093         char buf[IFNAMSIZ];
1094         struct net *net;
1095         int ret;
1096
1097         BUG_ON(!dev_net(dev));
1098         net = dev_net(dev);
1099         ret = __dev_alloc_name(net, name, buf);
1100         if (ret >= 0)
1101                 strlcpy(dev->name, buf, IFNAMSIZ);
1102         return ret;
1103 }
1104 EXPORT_SYMBOL(dev_alloc_name);
1105
1106 static int dev_alloc_name_ns(struct net *net,
1107                              struct net_device *dev,
1108                              const char *name)
1109 {
1110         char buf[IFNAMSIZ];
1111         int ret;
1112
1113         ret = __dev_alloc_name(net, name, buf);
1114         if (ret >= 0)
1115                 strlcpy(dev->name, buf, IFNAMSIZ);
1116         return ret;
1117 }
1118
1119 static int dev_get_valid_name(struct net *net,
1120                               struct net_device *dev,
1121                               const char *name)
1122 {
1123         BUG_ON(!net);
1124
1125         if (!dev_valid_name(name))
1126                 return -EINVAL;
1127
1128         if (strchr(name, '%'))
1129                 return dev_alloc_name_ns(net, dev, name);
1130         else if (__dev_get_by_name(net, name))
1131                 return -EEXIST;
1132         else if (dev->name != name)
1133                 strlcpy(dev->name, name, IFNAMSIZ);
1134
1135         return 0;
1136 }
1137
1138 /**
1139  *      dev_change_name - change name of a device
1140  *      @dev: device
1141  *      @newname: name (or format string) must be at least IFNAMSIZ
1142  *
1143  *      Change name of a device, can pass format strings "eth%d".
1144  *      for wildcarding.
1145  */
1146 int dev_change_name(struct net_device *dev, const char *newname)
1147 {
1148         unsigned char old_assign_type;
1149         char oldname[IFNAMSIZ];
1150         int err = 0;
1151         int ret;
1152         struct net *net;
1153
1154         ASSERT_RTNL();
1155         BUG_ON(!dev_net(dev));
1156
1157         net = dev_net(dev);
1158         if (dev->flags & IFF_UP)
1159                 return -EBUSY;
1160
1161         write_seqcount_begin(&devnet_rename_seq);
1162
1163         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1164                 write_seqcount_end(&devnet_rename_seq);
1165                 return 0;
1166         }
1167
1168         memcpy(oldname, dev->name, IFNAMSIZ);
1169
1170         err = dev_get_valid_name(net, dev, newname);
1171         if (err < 0) {
1172                 write_seqcount_end(&devnet_rename_seq);
1173                 return err;
1174         }
1175
1176         if (oldname[0] && !strchr(oldname, '%'))
1177                 netdev_info(dev, "renamed from %s\n", oldname);
1178
1179         old_assign_type = dev->name_assign_type;
1180         dev->name_assign_type = NET_NAME_RENAMED;
1181
1182 rollback:
1183         ret = device_rename(&dev->dev, dev->name);
1184         if (ret) {
1185                 memcpy(dev->name, oldname, IFNAMSIZ);
1186                 dev->name_assign_type = old_assign_type;
1187                 write_seqcount_end(&devnet_rename_seq);
1188                 return ret;
1189         }
1190
1191         write_seqcount_end(&devnet_rename_seq);
1192
1193         netdev_adjacent_rename_links(dev, oldname);
1194
1195         write_lock_bh(&dev_base_lock);
1196         hlist_del_rcu(&dev->name_hlist);
1197         write_unlock_bh(&dev_base_lock);
1198
1199         synchronize_rcu();
1200
1201         write_lock_bh(&dev_base_lock);
1202         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1203         write_unlock_bh(&dev_base_lock);
1204
1205         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1206         ret = notifier_to_errno(ret);
1207
1208         if (ret) {
1209                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1210                 if (err >= 0) {
1211                         err = ret;
1212                         write_seqcount_begin(&devnet_rename_seq);
1213                         memcpy(dev->name, oldname, IFNAMSIZ);
1214                         memcpy(oldname, newname, IFNAMSIZ);
1215                         dev->name_assign_type = old_assign_type;
1216                         old_assign_type = NET_NAME_RENAMED;
1217                         goto rollback;
1218                 } else {
1219                         pr_err("%s: name change rollback failed: %d\n",
1220                                dev->name, ret);
1221                 }
1222         }
1223
1224         return err;
1225 }
1226
1227 /**
1228  *      dev_set_alias - change ifalias of a device
1229  *      @dev: device
1230  *      @alias: name up to IFALIASZ
1231  *      @len: limit of bytes to copy from info
1232  *
1233  *      Set ifalias for a device,
1234  */
1235 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1236 {
1237         char *new_ifalias;
1238
1239         ASSERT_RTNL();
1240
1241         if (len >= IFALIASZ)
1242                 return -EINVAL;
1243
1244         if (!len) {
1245                 kfree(dev->ifalias);
1246                 dev->ifalias = NULL;
1247                 return 0;
1248         }
1249
1250         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1251         if (!new_ifalias)
1252                 return -ENOMEM;
1253         dev->ifalias = new_ifalias;
1254
1255         strlcpy(dev->ifalias, alias, len+1);
1256         return len;
1257 }
1258
1259
1260 /**
1261  *      netdev_features_change - device changes features
1262  *      @dev: device to cause notification
1263  *
1264  *      Called to indicate a device has changed features.
1265  */
1266 void netdev_features_change(struct net_device *dev)
1267 {
1268         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1269 }
1270 EXPORT_SYMBOL(netdev_features_change);
1271
1272 /**
1273  *      netdev_state_change - device changes state
1274  *      @dev: device to cause notification
1275  *
1276  *      Called to indicate a device has changed state. This function calls
1277  *      the notifier chains for netdev_chain and sends a NEWLINK message
1278  *      to the routing socket.
1279  */
1280 void netdev_state_change(struct net_device *dev)
1281 {
1282         if (dev->flags & IFF_UP) {
1283                 struct netdev_notifier_change_info change_info;
1284
1285                 change_info.flags_changed = 0;
1286                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1287                                               &change_info.info);
1288                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1289         }
1290 }
1291 EXPORT_SYMBOL(netdev_state_change);
1292
1293 /**
1294  * netdev_notify_peers - notify network peers about existence of @dev
1295  * @dev: network device
1296  *
1297  * Generate traffic such that interested network peers are aware of
1298  * @dev, such as by generating a gratuitous ARP. This may be used when
1299  * a device wants to inform the rest of the network about some sort of
1300  * reconfiguration such as a failover event or virtual machine
1301  * migration.
1302  */
1303 void netdev_notify_peers(struct net_device *dev)
1304 {
1305         rtnl_lock();
1306         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1307         rtnl_unlock();
1308 }
1309 EXPORT_SYMBOL(netdev_notify_peers);
1310
1311 static int __dev_open(struct net_device *dev)
1312 {
1313         const struct net_device_ops *ops = dev->netdev_ops;
1314         int ret;
1315
1316         ASSERT_RTNL();
1317
1318         if (!netif_device_present(dev))
1319                 return -ENODEV;
1320
1321         /* Block netpoll from trying to do any rx path servicing.
1322          * If we don't do this there is a chance ndo_poll_controller
1323          * or ndo_poll may be running while we open the device
1324          */
1325         netpoll_poll_disable(dev);
1326
1327         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1328         ret = notifier_to_errno(ret);
1329         if (ret)
1330                 return ret;
1331
1332         set_bit(__LINK_STATE_START, &dev->state);
1333
1334         if (ops->ndo_validate_addr)
1335                 ret = ops->ndo_validate_addr(dev);
1336
1337         if (!ret && ops->ndo_open)
1338                 ret = ops->ndo_open(dev);
1339
1340         netpoll_poll_enable(dev);
1341
1342         if (ret)
1343                 clear_bit(__LINK_STATE_START, &dev->state);
1344         else {
1345                 dev->flags |= IFF_UP;
1346                 dev_set_rx_mode(dev);
1347                 dev_activate(dev);
1348                 add_device_randomness(dev->dev_addr, dev->addr_len);
1349         }
1350
1351         return ret;
1352 }
1353
1354 /**
1355  *      dev_open        - prepare an interface for use.
1356  *      @dev:   device to open
1357  *
1358  *      Takes a device from down to up state. The device's private open
1359  *      function is invoked and then the multicast lists are loaded. Finally
1360  *      the device is moved into the up state and a %NETDEV_UP message is
1361  *      sent to the netdev notifier chain.
1362  *
1363  *      Calling this function on an active interface is a nop. On a failure
1364  *      a negative errno code is returned.
1365  */
1366 int dev_open(struct net_device *dev)
1367 {
1368         int ret;
1369
1370         if (dev->flags & IFF_UP)
1371                 return 0;
1372
1373         ret = __dev_open(dev);
1374         if (ret < 0)
1375                 return ret;
1376
1377         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1378         call_netdevice_notifiers(NETDEV_UP, dev);
1379
1380         return ret;
1381 }
1382 EXPORT_SYMBOL(dev_open);
1383
1384 static int __dev_close_many(struct list_head *head)
1385 {
1386         struct net_device *dev;
1387
1388         ASSERT_RTNL();
1389         might_sleep();
1390
1391         list_for_each_entry(dev, head, close_list) {
1392                 /* Temporarily disable netpoll until the interface is down */
1393                 netpoll_poll_disable(dev);
1394
1395                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1396
1397                 clear_bit(__LINK_STATE_START, &dev->state);
1398
1399                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1400                  * can be even on different cpu. So just clear netif_running().
1401                  *
1402                  * dev->stop() will invoke napi_disable() on all of it's
1403                  * napi_struct instances on this device.
1404                  */
1405                 smp_mb__after_atomic(); /* Commit netif_running(). */
1406         }
1407
1408         dev_deactivate_many(head);
1409
1410         list_for_each_entry(dev, head, close_list) {
1411                 const struct net_device_ops *ops = dev->netdev_ops;
1412
1413                 /*
1414                  *      Call the device specific close. This cannot fail.
1415                  *      Only if device is UP
1416                  *
1417                  *      We allow it to be called even after a DETACH hot-plug
1418                  *      event.
1419                  */
1420                 if (ops->ndo_stop)
1421                         ops->ndo_stop(dev);
1422
1423                 dev->flags &= ~IFF_UP;
1424                 netpoll_poll_enable(dev);
1425         }
1426
1427         return 0;
1428 }
1429
1430 static int __dev_close(struct net_device *dev)
1431 {
1432         int retval;
1433         LIST_HEAD(single);
1434
1435         list_add(&dev->close_list, &single);
1436         retval = __dev_close_many(&single);
1437         list_del(&single);
1438
1439         return retval;
1440 }
1441
1442 int dev_close_many(struct list_head *head, bool unlink)
1443 {
1444         struct net_device *dev, *tmp;
1445
1446         /* Remove the devices that don't need to be closed */
1447         list_for_each_entry_safe(dev, tmp, head, close_list)
1448                 if (!(dev->flags & IFF_UP))
1449                         list_del_init(&dev->close_list);
1450
1451         __dev_close_many(head);
1452
1453         list_for_each_entry_safe(dev, tmp, head, close_list) {
1454                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1455                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1456                 if (unlink)
1457                         list_del_init(&dev->close_list);
1458         }
1459
1460         return 0;
1461 }
1462 EXPORT_SYMBOL(dev_close_many);
1463
1464 /**
1465  *      dev_close - shutdown an interface.
1466  *      @dev: device to shutdown
1467  *
1468  *      This function moves an active device into down state. A
1469  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1470  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1471  *      chain.
1472  */
1473 int dev_close(struct net_device *dev)
1474 {
1475         if (dev->flags & IFF_UP) {
1476                 LIST_HEAD(single);
1477
1478                 list_add(&dev->close_list, &single);
1479                 dev_close_many(&single, true);
1480                 list_del(&single);
1481         }
1482         return 0;
1483 }
1484 EXPORT_SYMBOL(dev_close);
1485
1486
1487 /**
1488  *      dev_disable_lro - disable Large Receive Offload on a device
1489  *      @dev: device
1490  *
1491  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1492  *      called under RTNL.  This is needed if received packets may be
1493  *      forwarded to another interface.
1494  */
1495 void dev_disable_lro(struct net_device *dev)
1496 {
1497         struct net_device *lower_dev;
1498         struct list_head *iter;
1499
1500         dev->wanted_features &= ~NETIF_F_LRO;
1501         netdev_update_features(dev);
1502
1503         if (unlikely(dev->features & NETIF_F_LRO))
1504                 netdev_WARN(dev, "failed to disable LRO!\n");
1505
1506         netdev_for_each_lower_dev(dev, lower_dev, iter)
1507                 dev_disable_lro(lower_dev);
1508 }
1509 EXPORT_SYMBOL(dev_disable_lro);
1510
1511 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1512                                    struct net_device *dev)
1513 {
1514         struct netdev_notifier_info info;
1515
1516         netdev_notifier_info_init(&info, dev);
1517         return nb->notifier_call(nb, val, &info);
1518 }
1519
1520 static int dev_boot_phase = 1;
1521
1522 /**
1523  * register_netdevice_notifier - register a network notifier block
1524  * @nb: notifier
1525  *
1526  * Register a notifier to be called when network device events occur.
1527  * The notifier passed is linked into the kernel structures and must
1528  * not be reused until it has been unregistered. A negative errno code
1529  * is returned on a failure.
1530  *
1531  * When registered all registration and up events are replayed
1532  * to the new notifier to allow device to have a race free
1533  * view of the network device list.
1534  */
1535
1536 int register_netdevice_notifier(struct notifier_block *nb)
1537 {
1538         struct net_device *dev;
1539         struct net_device *last;
1540         struct net *net;
1541         int err;
1542
1543         rtnl_lock();
1544         err = raw_notifier_chain_register(&netdev_chain, nb);
1545         if (err)
1546                 goto unlock;
1547         if (dev_boot_phase)
1548                 goto unlock;
1549         for_each_net(net) {
1550                 for_each_netdev(net, dev) {
1551                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1552                         err = notifier_to_errno(err);
1553                         if (err)
1554                                 goto rollback;
1555
1556                         if (!(dev->flags & IFF_UP))
1557                                 continue;
1558
1559                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1560                 }
1561         }
1562
1563 unlock:
1564         rtnl_unlock();
1565         return err;
1566
1567 rollback:
1568         last = dev;
1569         for_each_net(net) {
1570                 for_each_netdev(net, dev) {
1571                         if (dev == last)
1572                                 goto outroll;
1573
1574                         if (dev->flags & IFF_UP) {
1575                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1576                                                         dev);
1577                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1578                         }
1579                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1580                 }
1581         }
1582
1583 outroll:
1584         raw_notifier_chain_unregister(&netdev_chain, nb);
1585         goto unlock;
1586 }
1587 EXPORT_SYMBOL(register_netdevice_notifier);
1588
1589 /**
1590  * unregister_netdevice_notifier - unregister a network notifier block
1591  * @nb: notifier
1592  *
1593  * Unregister a notifier previously registered by
1594  * register_netdevice_notifier(). The notifier is unlinked into the
1595  * kernel structures and may then be reused. A negative errno code
1596  * is returned on a failure.
1597  *
1598  * After unregistering unregister and down device events are synthesized
1599  * for all devices on the device list to the removed notifier to remove
1600  * the need for special case cleanup code.
1601  */
1602
1603 int unregister_netdevice_notifier(struct notifier_block *nb)
1604 {
1605         struct net_device *dev;
1606         struct net *net;
1607         int err;
1608
1609         rtnl_lock();
1610         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1611         if (err)
1612                 goto unlock;
1613
1614         for_each_net(net) {
1615                 for_each_netdev(net, dev) {
1616                         if (dev->flags & IFF_UP) {
1617                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1618                                                         dev);
1619                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1620                         }
1621                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1622                 }
1623         }
1624 unlock:
1625         rtnl_unlock();
1626         return err;
1627 }
1628 EXPORT_SYMBOL(unregister_netdevice_notifier);
1629
1630 /**
1631  *      call_netdevice_notifiers_info - call all network notifier blocks
1632  *      @val: value passed unmodified to notifier function
1633  *      @dev: net_device pointer passed unmodified to notifier function
1634  *      @info: notifier information data
1635  *
1636  *      Call all network notifier blocks.  Parameters and return value
1637  *      are as for raw_notifier_call_chain().
1638  */
1639
1640 static int call_netdevice_notifiers_info(unsigned long val,
1641                                          struct net_device *dev,
1642                                          struct netdev_notifier_info *info)
1643 {
1644         ASSERT_RTNL();
1645         netdev_notifier_info_init(info, dev);
1646         return raw_notifier_call_chain(&netdev_chain, val, info);
1647 }
1648
1649 /**
1650  *      call_netdevice_notifiers - call all network notifier blocks
1651  *      @val: value passed unmodified to notifier function
1652  *      @dev: net_device pointer passed unmodified to notifier function
1653  *
1654  *      Call all network notifier blocks.  Parameters and return value
1655  *      are as for raw_notifier_call_chain().
1656  */
1657
1658 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1659 {
1660         struct netdev_notifier_info info;
1661
1662         return call_netdevice_notifiers_info(val, dev, &info);
1663 }
1664 EXPORT_SYMBOL(call_netdevice_notifiers);
1665
1666 #ifdef CONFIG_NET_INGRESS
1667 static struct static_key ingress_needed __read_mostly;
1668
1669 void net_inc_ingress_queue(void)
1670 {
1671         static_key_slow_inc(&ingress_needed);
1672 }
1673 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1674
1675 void net_dec_ingress_queue(void)
1676 {
1677         static_key_slow_dec(&ingress_needed);
1678 }
1679 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1680 #endif
1681
1682 #ifdef CONFIG_NET_EGRESS
1683 static struct static_key egress_needed __read_mostly;
1684
1685 void net_inc_egress_queue(void)
1686 {
1687         static_key_slow_inc(&egress_needed);
1688 }
1689 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1690
1691 void net_dec_egress_queue(void)
1692 {
1693         static_key_slow_dec(&egress_needed);
1694 }
1695 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1696 #endif
1697
1698 static struct static_key netstamp_needed __read_mostly;
1699 #ifdef HAVE_JUMP_LABEL
1700 static atomic_t netstamp_needed_deferred;
1701 static void netstamp_clear(struct work_struct *work)
1702 {
1703         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1704
1705         while (deferred--)
1706                 static_key_slow_dec(&netstamp_needed);
1707 }
1708 static DECLARE_WORK(netstamp_work, netstamp_clear);
1709 #endif
1710
1711 void net_enable_timestamp(void)
1712 {
1713         static_key_slow_inc(&netstamp_needed);
1714 }
1715 EXPORT_SYMBOL(net_enable_timestamp);
1716
1717 void net_disable_timestamp(void)
1718 {
1719 #ifdef HAVE_JUMP_LABEL
1720         /* net_disable_timestamp() can be called from non process context */
1721         atomic_inc(&netstamp_needed_deferred);
1722         schedule_work(&netstamp_work);
1723 #else
1724         static_key_slow_dec(&netstamp_needed);
1725 #endif
1726 }
1727 EXPORT_SYMBOL(net_disable_timestamp);
1728
1729 static inline void net_timestamp_set(struct sk_buff *skb)
1730 {
1731         skb->tstamp = 0;
1732         if (static_key_false(&netstamp_needed))
1733                 __net_timestamp(skb);
1734 }
1735
1736 #define net_timestamp_check(COND, SKB)                  \
1737         if (static_key_false(&netstamp_needed)) {               \
1738                 if ((COND) && !(SKB)->tstamp)   \
1739                         __net_timestamp(SKB);           \
1740         }                                               \
1741
1742 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1743 {
1744         unsigned int len;
1745
1746         if (!(dev->flags & IFF_UP))
1747                 return false;
1748
1749         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1750         if (skb->len <= len)
1751                 return true;
1752
1753         /* if TSO is enabled, we don't care about the length as the packet
1754          * could be forwarded without being segmented before
1755          */
1756         if (skb_is_gso(skb))
1757                 return true;
1758
1759         return false;
1760 }
1761 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1762
1763 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1764 {
1765         int ret = ____dev_forward_skb(dev, skb);
1766
1767         if (likely(!ret)) {
1768                 skb->protocol = eth_type_trans(skb, dev);
1769                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1770         }
1771
1772         return ret;
1773 }
1774 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1775
1776 /**
1777  * dev_forward_skb - loopback an skb to another netif
1778  *
1779  * @dev: destination network device
1780  * @skb: buffer to forward
1781  *
1782  * return values:
1783  *      NET_RX_SUCCESS  (no congestion)
1784  *      NET_RX_DROP     (packet was dropped, but freed)
1785  *
1786  * dev_forward_skb can be used for injecting an skb from the
1787  * start_xmit function of one device into the receive queue
1788  * of another device.
1789  *
1790  * The receiving device may be in another namespace, so
1791  * we have to clear all information in the skb that could
1792  * impact namespace isolation.
1793  */
1794 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1795 {
1796         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1797 }
1798 EXPORT_SYMBOL_GPL(dev_forward_skb);
1799
1800 static inline int deliver_skb(struct sk_buff *skb,
1801                               struct packet_type *pt_prev,
1802                               struct net_device *orig_dev)
1803 {
1804         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1805                 return -ENOMEM;
1806         atomic_inc(&skb->users);
1807         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1808 }
1809
1810 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1811                                           struct packet_type **pt,
1812                                           struct net_device *orig_dev,
1813                                           __be16 type,
1814                                           struct list_head *ptype_list)
1815 {
1816         struct packet_type *ptype, *pt_prev = *pt;
1817
1818         list_for_each_entry_rcu(ptype, ptype_list, list) {
1819                 if (ptype->type != type)
1820                         continue;
1821                 if (pt_prev)
1822                         deliver_skb(skb, pt_prev, orig_dev);
1823                 pt_prev = ptype;
1824         }
1825         *pt = pt_prev;
1826 }
1827
1828 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1829 {
1830         if (!ptype->af_packet_priv || !skb->sk)
1831                 return false;
1832
1833         if (ptype->id_match)
1834                 return ptype->id_match(ptype, skb->sk);
1835         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1836                 return true;
1837
1838         return false;
1839 }
1840
1841 /*
1842  *      Support routine. Sends outgoing frames to any network
1843  *      taps currently in use.
1844  */
1845
1846 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1847 {
1848         struct packet_type *ptype;
1849         struct sk_buff *skb2 = NULL;
1850         struct packet_type *pt_prev = NULL;
1851         struct list_head *ptype_list = &ptype_all;
1852
1853         rcu_read_lock();
1854 again:
1855         list_for_each_entry_rcu(ptype, ptype_list, list) {
1856                 /* Never send packets back to the socket
1857                  * they originated from - MvS (miquels@drinkel.ow.org)
1858                  */
1859                 if (skb_loop_sk(ptype, skb))
1860                         continue;
1861
1862                 if (pt_prev) {
1863                         deliver_skb(skb2, pt_prev, skb->dev);
1864                         pt_prev = ptype;
1865                         continue;
1866                 }
1867
1868                 /* need to clone skb, done only once */
1869                 skb2 = skb_clone(skb, GFP_ATOMIC);
1870                 if (!skb2)
1871                         goto out_unlock;
1872
1873                 net_timestamp_set(skb2);
1874
1875                 /* skb->nh should be correctly
1876                  * set by sender, so that the second statement is
1877                  * just protection against buggy protocols.
1878                  */
1879                 skb_reset_mac_header(skb2);
1880
1881                 if (skb_network_header(skb2) < skb2->data ||
1882                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1883                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1884                                              ntohs(skb2->protocol),
1885                                              dev->name);
1886                         skb_reset_network_header(skb2);
1887                 }
1888
1889                 skb2->transport_header = skb2->network_header;
1890                 skb2->pkt_type = PACKET_OUTGOING;
1891                 pt_prev = ptype;
1892         }
1893
1894         if (ptype_list == &ptype_all) {
1895                 ptype_list = &dev->ptype_all;
1896                 goto again;
1897         }
1898 out_unlock:
1899         if (pt_prev)
1900                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1901         rcu_read_unlock();
1902 }
1903 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1904
1905 /**
1906  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1907  * @dev: Network device
1908  * @txq: number of queues available
1909  *
1910  * If real_num_tx_queues is changed the tc mappings may no longer be
1911  * valid. To resolve this verify the tc mapping remains valid and if
1912  * not NULL the mapping. With no priorities mapping to this
1913  * offset/count pair it will no longer be used. In the worst case TC0
1914  * is invalid nothing can be done so disable priority mappings. If is
1915  * expected that drivers will fix this mapping if they can before
1916  * calling netif_set_real_num_tx_queues.
1917  */
1918 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1919 {
1920         int i;
1921         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1922
1923         /* If TC0 is invalidated disable TC mapping */
1924         if (tc->offset + tc->count > txq) {
1925                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1926                 dev->num_tc = 0;
1927                 return;
1928         }
1929
1930         /* Invalidated prio to tc mappings set to TC0 */
1931         for (i = 1; i < TC_BITMASK + 1; i++) {
1932                 int q = netdev_get_prio_tc_map(dev, i);
1933
1934                 tc = &dev->tc_to_txq[q];
1935                 if (tc->offset + tc->count > txq) {
1936                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1937                                 i, q);
1938                         netdev_set_prio_tc_map(dev, i, 0);
1939                 }
1940         }
1941 }
1942
1943 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1944 {
1945         if (dev->num_tc) {
1946                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1947                 int i;
1948
1949                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1950                         if ((txq - tc->offset) < tc->count)
1951                                 return i;
1952                 }
1953
1954                 return -1;
1955         }
1956
1957         return 0;
1958 }
1959
1960 #ifdef CONFIG_XPS
1961 static DEFINE_MUTEX(xps_map_mutex);
1962 #define xmap_dereference(P)             \
1963         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1964
1965 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1966                              int tci, u16 index)
1967 {
1968         struct xps_map *map = NULL;
1969         int pos;
1970
1971         if (dev_maps)
1972                 map = xmap_dereference(dev_maps->cpu_map[tci]);
1973         if (!map)
1974                 return false;
1975
1976         for (pos = map->len; pos--;) {
1977                 if (map->queues[pos] != index)
1978                         continue;
1979
1980                 if (map->len > 1) {
1981                         map->queues[pos] = map->queues[--map->len];
1982                         break;
1983                 }
1984
1985                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1986                 kfree_rcu(map, rcu);
1987                 return false;
1988         }
1989
1990         return true;
1991 }
1992
1993 static bool remove_xps_queue_cpu(struct net_device *dev,
1994                                  struct xps_dev_maps *dev_maps,
1995                                  int cpu, u16 offset, u16 count)
1996 {
1997         int num_tc = dev->num_tc ? : 1;
1998         bool active = false;
1999         int tci;
2000
2001         for (tci = cpu * num_tc; num_tc--; tci++) {
2002                 int i, j;
2003
2004                 for (i = count, j = offset; i--; j++) {
2005                         if (!remove_xps_queue(dev_maps, cpu, j))
2006                                 break;
2007                 }
2008
2009                 active |= i < 0;
2010         }
2011
2012         return active;
2013 }
2014
2015 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2016                                    u16 count)
2017 {
2018         struct xps_dev_maps *dev_maps;
2019         int cpu, i;
2020         bool active = false;
2021
2022         mutex_lock(&xps_map_mutex);
2023         dev_maps = xmap_dereference(dev->xps_maps);
2024
2025         if (!dev_maps)
2026                 goto out_no_maps;
2027
2028         for_each_possible_cpu(cpu)
2029                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2030                                                offset, count);
2031
2032         if (!active) {
2033                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2034                 kfree_rcu(dev_maps, rcu);
2035         }
2036
2037         for (i = offset + (count - 1); count--; i--)
2038                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2039                                              NUMA_NO_NODE);
2040
2041 out_no_maps:
2042         mutex_unlock(&xps_map_mutex);
2043 }
2044
2045 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2046 {
2047         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2048 }
2049
2050 static struct xps_map *expand_xps_map(struct xps_map *map,
2051                                       int cpu, u16 index)
2052 {
2053         struct xps_map *new_map;
2054         int alloc_len = XPS_MIN_MAP_ALLOC;
2055         int i, pos;
2056
2057         for (pos = 0; map && pos < map->len; pos++) {
2058                 if (map->queues[pos] != index)
2059                         continue;
2060                 return map;
2061         }
2062
2063         /* Need to add queue to this CPU's existing map */
2064         if (map) {
2065                 if (pos < map->alloc_len)
2066                         return map;
2067
2068                 alloc_len = map->alloc_len * 2;
2069         }
2070
2071         /* Need to allocate new map to store queue on this CPU's map */
2072         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2073                                cpu_to_node(cpu));
2074         if (!new_map)
2075                 return NULL;
2076
2077         for (i = 0; i < pos; i++)
2078                 new_map->queues[i] = map->queues[i];
2079         new_map->alloc_len = alloc_len;
2080         new_map->len = pos;
2081
2082         return new_map;
2083 }
2084
2085 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2086                         u16 index)
2087 {
2088         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2089         int i, cpu, tci, numa_node_id = -2;
2090         int maps_sz, num_tc = 1, tc = 0;
2091         struct xps_map *map, *new_map;
2092         bool active = false;
2093
2094         if (dev->num_tc) {
2095                 num_tc = dev->num_tc;
2096                 tc = netdev_txq_to_tc(dev, index);
2097                 if (tc < 0)
2098                         return -EINVAL;
2099         }
2100
2101         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2102         if (maps_sz < L1_CACHE_BYTES)
2103                 maps_sz = L1_CACHE_BYTES;
2104
2105         mutex_lock(&xps_map_mutex);
2106
2107         dev_maps = xmap_dereference(dev->xps_maps);
2108
2109         /* allocate memory for queue storage */
2110         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2111                 if (!new_dev_maps)
2112                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2113                 if (!new_dev_maps) {
2114                         mutex_unlock(&xps_map_mutex);
2115                         return -ENOMEM;
2116                 }
2117
2118                 tci = cpu * num_tc + tc;
2119                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2120                                  NULL;
2121
2122                 map = expand_xps_map(map, cpu, index);
2123                 if (!map)
2124                         goto error;
2125
2126                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2127         }
2128
2129         if (!new_dev_maps)
2130                 goto out_no_new_maps;
2131
2132         for_each_possible_cpu(cpu) {
2133                 /* copy maps belonging to foreign traffic classes */
2134                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2135                         /* fill in the new device map from the old device map */
2136                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2137                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2138                 }
2139
2140                 /* We need to explicitly update tci as prevous loop
2141                  * could break out early if dev_maps is NULL.
2142                  */
2143                 tci = cpu * num_tc + tc;
2144
2145                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2146                         /* add queue to CPU maps */
2147                         int pos = 0;
2148
2149                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2150                         while ((pos < map->len) && (map->queues[pos] != index))
2151                                 pos++;
2152
2153                         if (pos == map->len)
2154                                 map->queues[map->len++] = index;
2155 #ifdef CONFIG_NUMA
2156                         if (numa_node_id == -2)
2157                                 numa_node_id = cpu_to_node(cpu);
2158                         else if (numa_node_id != cpu_to_node(cpu))
2159                                 numa_node_id = -1;
2160 #endif
2161                 } else if (dev_maps) {
2162                         /* fill in the new device map from the old device map */
2163                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2164                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2165                 }
2166
2167                 /* copy maps belonging to foreign traffic classes */
2168                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2169                         /* fill in the new device map from the old device map */
2170                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2171                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2172                 }
2173         }
2174
2175         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2176
2177         /* Cleanup old maps */
2178         if (!dev_maps)
2179                 goto out_no_old_maps;
2180
2181         for_each_possible_cpu(cpu) {
2182                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2183                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2184                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2185                         if (map && map != new_map)
2186                                 kfree_rcu(map, rcu);
2187                 }
2188         }
2189
2190         kfree_rcu(dev_maps, rcu);
2191
2192 out_no_old_maps:
2193         dev_maps = new_dev_maps;
2194         active = true;
2195
2196 out_no_new_maps:
2197         /* update Tx queue numa node */
2198         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2199                                      (numa_node_id >= 0) ? numa_node_id :
2200                                      NUMA_NO_NODE);
2201
2202         if (!dev_maps)
2203                 goto out_no_maps;
2204
2205         /* removes queue from unused CPUs */
2206         for_each_possible_cpu(cpu) {
2207                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2208                         active |= remove_xps_queue(dev_maps, tci, index);
2209                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2210                         active |= remove_xps_queue(dev_maps, tci, index);
2211                 for (i = num_tc - tc, tci++; --i; tci++)
2212                         active |= remove_xps_queue(dev_maps, tci, index);
2213         }
2214
2215         /* free map if not active */
2216         if (!active) {
2217                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2218                 kfree_rcu(dev_maps, rcu);
2219         }
2220
2221 out_no_maps:
2222         mutex_unlock(&xps_map_mutex);
2223
2224         return 0;
2225 error:
2226         /* remove any maps that we added */
2227         for_each_possible_cpu(cpu) {
2228                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2229                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2230                         map = dev_maps ?
2231                               xmap_dereference(dev_maps->cpu_map[tci]) :
2232                               NULL;
2233                         if (new_map && new_map != map)
2234                                 kfree(new_map);
2235                 }
2236         }
2237
2238         mutex_unlock(&xps_map_mutex);
2239
2240         kfree(new_dev_maps);
2241         return -ENOMEM;
2242 }
2243 EXPORT_SYMBOL(netif_set_xps_queue);
2244
2245 #endif
2246 void netdev_reset_tc(struct net_device *dev)
2247 {
2248 #ifdef CONFIG_XPS
2249         netif_reset_xps_queues_gt(dev, 0);
2250 #endif
2251         dev->num_tc = 0;
2252         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2253         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2254 }
2255 EXPORT_SYMBOL(netdev_reset_tc);
2256
2257 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2258 {
2259         if (tc >= dev->num_tc)
2260                 return -EINVAL;
2261
2262 #ifdef CONFIG_XPS
2263         netif_reset_xps_queues(dev, offset, count);
2264 #endif
2265         dev->tc_to_txq[tc].count = count;
2266         dev->tc_to_txq[tc].offset = offset;
2267         return 0;
2268 }
2269 EXPORT_SYMBOL(netdev_set_tc_queue);
2270
2271 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2272 {
2273         if (num_tc > TC_MAX_QUEUE)
2274                 return -EINVAL;
2275
2276 #ifdef CONFIG_XPS
2277         netif_reset_xps_queues_gt(dev, 0);
2278 #endif
2279         dev->num_tc = num_tc;
2280         return 0;
2281 }
2282 EXPORT_SYMBOL(netdev_set_num_tc);
2283
2284 /*
2285  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2286  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2287  */
2288 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2289 {
2290         int rc;
2291
2292         if (txq < 1 || txq > dev->num_tx_queues)
2293                 return -EINVAL;
2294
2295         if (dev->reg_state == NETREG_REGISTERED ||
2296             dev->reg_state == NETREG_UNREGISTERING) {
2297                 ASSERT_RTNL();
2298
2299                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2300                                                   txq);
2301                 if (rc)
2302                         return rc;
2303
2304                 if (dev->num_tc)
2305                         netif_setup_tc(dev, txq);
2306
2307                 if (txq < dev->real_num_tx_queues) {
2308                         qdisc_reset_all_tx_gt(dev, txq);
2309 #ifdef CONFIG_XPS
2310                         netif_reset_xps_queues_gt(dev, txq);
2311 #endif
2312                 }
2313         }
2314
2315         dev->real_num_tx_queues = txq;
2316         return 0;
2317 }
2318 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2319
2320 #ifdef CONFIG_SYSFS
2321 /**
2322  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2323  *      @dev: Network device
2324  *      @rxq: Actual number of RX queues
2325  *
2326  *      This must be called either with the rtnl_lock held or before
2327  *      registration of the net device.  Returns 0 on success, or a
2328  *      negative error code.  If called before registration, it always
2329  *      succeeds.
2330  */
2331 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2332 {
2333         int rc;
2334
2335         if (rxq < 1 || rxq > dev->num_rx_queues)
2336                 return -EINVAL;
2337
2338         if (dev->reg_state == NETREG_REGISTERED) {
2339                 ASSERT_RTNL();
2340
2341                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2342                                                   rxq);
2343                 if (rc)
2344                         return rc;
2345         }
2346
2347         dev->real_num_rx_queues = rxq;
2348         return 0;
2349 }
2350 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2351 #endif
2352
2353 /**
2354  * netif_get_num_default_rss_queues - default number of RSS queues
2355  *
2356  * This routine should set an upper limit on the number of RSS queues
2357  * used by default by multiqueue devices.
2358  */
2359 int netif_get_num_default_rss_queues(void)
2360 {
2361         return is_kdump_kernel() ?
2362                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2363 }
2364 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2365
2366 static void __netif_reschedule(struct Qdisc *q)
2367 {
2368         struct softnet_data *sd;
2369         unsigned long flags;
2370
2371         local_irq_save(flags);
2372         sd = this_cpu_ptr(&softnet_data);
2373         q->next_sched = NULL;
2374         *sd->output_queue_tailp = q;
2375         sd->output_queue_tailp = &q->next_sched;
2376         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2377         local_irq_restore(flags);
2378 }
2379
2380 void __netif_schedule(struct Qdisc *q)
2381 {
2382         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2383                 __netif_reschedule(q);
2384 }
2385 EXPORT_SYMBOL(__netif_schedule);
2386
2387 struct dev_kfree_skb_cb {
2388         enum skb_free_reason reason;
2389 };
2390
2391 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2392 {
2393         return (struct dev_kfree_skb_cb *)skb->cb;
2394 }
2395
2396 void netif_schedule_queue(struct netdev_queue *txq)
2397 {
2398         rcu_read_lock();
2399         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2400                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2401
2402                 __netif_schedule(q);
2403         }
2404         rcu_read_unlock();
2405 }
2406 EXPORT_SYMBOL(netif_schedule_queue);
2407
2408 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2409 {
2410         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2411                 struct Qdisc *q;
2412
2413                 rcu_read_lock();
2414                 q = rcu_dereference(dev_queue->qdisc);
2415                 __netif_schedule(q);
2416                 rcu_read_unlock();
2417         }
2418 }
2419 EXPORT_SYMBOL(netif_tx_wake_queue);
2420
2421 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2422 {
2423         unsigned long flags;
2424
2425         if (likely(atomic_read(&skb->users) == 1)) {
2426                 smp_rmb();
2427                 atomic_set(&skb->users, 0);
2428         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2429                 return;
2430         }
2431         get_kfree_skb_cb(skb)->reason = reason;
2432         local_irq_save(flags);
2433         skb->next = __this_cpu_read(softnet_data.completion_queue);
2434         __this_cpu_write(softnet_data.completion_queue, skb);
2435         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2436         local_irq_restore(flags);
2437 }
2438 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2439
2440 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2441 {
2442         if (in_irq() || irqs_disabled())
2443                 __dev_kfree_skb_irq(skb, reason);
2444         else
2445                 dev_kfree_skb(skb);
2446 }
2447 EXPORT_SYMBOL(__dev_kfree_skb_any);
2448
2449
2450 /**
2451  * netif_device_detach - mark device as removed
2452  * @dev: network device
2453  *
2454  * Mark device as removed from system and therefore no longer available.
2455  */
2456 void netif_device_detach(struct net_device *dev)
2457 {
2458         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2459             netif_running(dev)) {
2460                 netif_tx_stop_all_queues(dev);
2461         }
2462 }
2463 EXPORT_SYMBOL(netif_device_detach);
2464
2465 /**
2466  * netif_device_attach - mark device as attached
2467  * @dev: network device
2468  *
2469  * Mark device as attached from system and restart if needed.
2470  */
2471 void netif_device_attach(struct net_device *dev)
2472 {
2473         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2474             netif_running(dev)) {
2475                 netif_tx_wake_all_queues(dev);
2476                 __netdev_watchdog_up(dev);
2477         }
2478 }
2479 EXPORT_SYMBOL(netif_device_attach);
2480
2481 /*
2482  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2483  * to be used as a distribution range.
2484  */
2485 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2486                   unsigned int num_tx_queues)
2487 {
2488         u32 hash;
2489         u16 qoffset = 0;
2490         u16 qcount = num_tx_queues;
2491
2492         if (skb_rx_queue_recorded(skb)) {
2493                 hash = skb_get_rx_queue(skb);
2494                 while (unlikely(hash >= num_tx_queues))
2495                         hash -= num_tx_queues;
2496                 return hash;
2497         }
2498
2499         if (dev->num_tc) {
2500                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2501
2502                 qoffset = dev->tc_to_txq[tc].offset;
2503                 qcount = dev->tc_to_txq[tc].count;
2504         }
2505
2506         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2507 }
2508 EXPORT_SYMBOL(__skb_tx_hash);
2509
2510 static void skb_warn_bad_offload(const struct sk_buff *skb)
2511 {
2512         static const netdev_features_t null_features;
2513         struct net_device *dev = skb->dev;
2514         const char *name = "";
2515
2516         if (!net_ratelimit())
2517                 return;
2518
2519         if (dev) {
2520                 if (dev->dev.parent)
2521                         name = dev_driver_string(dev->dev.parent);
2522                 else
2523                         name = netdev_name(dev);
2524         }
2525         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2526              "gso_type=%d ip_summed=%d\n",
2527              name, dev ? &dev->features : &null_features,
2528              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2529              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2530              skb_shinfo(skb)->gso_type, skb->ip_summed);
2531 }
2532
2533 /*
2534  * Invalidate hardware checksum when packet is to be mangled, and
2535  * complete checksum manually on outgoing path.
2536  */
2537 int skb_checksum_help(struct sk_buff *skb)
2538 {
2539         __wsum csum;
2540         int ret = 0, offset;
2541
2542         if (skb->ip_summed == CHECKSUM_COMPLETE)
2543                 goto out_set_summed;
2544
2545         if (unlikely(skb_shinfo(skb)->gso_size)) {
2546                 skb_warn_bad_offload(skb);
2547                 return -EINVAL;
2548         }
2549
2550         /* Before computing a checksum, we should make sure no frag could
2551          * be modified by an external entity : checksum could be wrong.
2552          */
2553         if (skb_has_shared_frag(skb)) {
2554                 ret = __skb_linearize(skb);
2555                 if (ret)
2556                         goto out;
2557         }
2558
2559         offset = skb_checksum_start_offset(skb);
2560         BUG_ON(offset >= skb_headlen(skb));
2561         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2562
2563         offset += skb->csum_offset;
2564         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2565
2566         if (skb_cloned(skb) &&
2567             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2568                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2569                 if (ret)
2570                         goto out;
2571         }
2572
2573         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2574 out_set_summed:
2575         skb->ip_summed = CHECKSUM_NONE;
2576 out:
2577         return ret;
2578 }
2579 EXPORT_SYMBOL(skb_checksum_help);
2580
2581 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2582 {
2583         __be16 type = skb->protocol;
2584
2585         /* Tunnel gso handlers can set protocol to ethernet. */
2586         if (type == htons(ETH_P_TEB)) {
2587                 struct ethhdr *eth;
2588
2589                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2590                         return 0;
2591
2592                 eth = (struct ethhdr *)skb_mac_header(skb);
2593                 type = eth->h_proto;
2594         }
2595
2596         return __vlan_get_protocol(skb, type, depth);
2597 }
2598
2599 /**
2600  *      skb_mac_gso_segment - mac layer segmentation handler.
2601  *      @skb: buffer to segment
2602  *      @features: features for the output path (see dev->features)
2603  */
2604 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2605                                     netdev_features_t features)
2606 {
2607         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2608         struct packet_offload *ptype;
2609         int vlan_depth = skb->mac_len;
2610         __be16 type = skb_network_protocol(skb, &vlan_depth);
2611
2612         if (unlikely(!type))
2613                 return ERR_PTR(-EINVAL);
2614
2615         __skb_pull(skb, vlan_depth);
2616
2617         rcu_read_lock();
2618         list_for_each_entry_rcu(ptype, &offload_base, list) {
2619                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2620                         segs = ptype->callbacks.gso_segment(skb, features);
2621                         break;
2622                 }
2623         }
2624         rcu_read_unlock();
2625
2626         __skb_push(skb, skb->data - skb_mac_header(skb));
2627
2628         return segs;
2629 }
2630 EXPORT_SYMBOL(skb_mac_gso_segment);
2631
2632
2633 /* openvswitch calls this on rx path, so we need a different check.
2634  */
2635 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2636 {
2637         if (tx_path)
2638                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2639                        skb->ip_summed != CHECKSUM_NONE;
2640
2641         return skb->ip_summed == CHECKSUM_NONE;
2642 }
2643
2644 /**
2645  *      __skb_gso_segment - Perform segmentation on skb.
2646  *      @skb: buffer to segment
2647  *      @features: features for the output path (see dev->features)
2648  *      @tx_path: whether it is called in TX path
2649  *
2650  *      This function segments the given skb and returns a list of segments.
2651  *
2652  *      It may return NULL if the skb requires no segmentation.  This is
2653  *      only possible when GSO is used for verifying header integrity.
2654  *
2655  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2656  */
2657 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2658                                   netdev_features_t features, bool tx_path)
2659 {
2660         struct sk_buff *segs;
2661
2662         if (unlikely(skb_needs_check(skb, tx_path))) {
2663                 int err;
2664
2665                 /* We're going to init ->check field in TCP or UDP header */
2666                 err = skb_cow_head(skb, 0);
2667                 if (err < 0)
2668                         return ERR_PTR(err);
2669         }
2670
2671         /* Only report GSO partial support if it will enable us to
2672          * support segmentation on this frame without needing additional
2673          * work.
2674          */
2675         if (features & NETIF_F_GSO_PARTIAL) {
2676                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2677                 struct net_device *dev = skb->dev;
2678
2679                 partial_features |= dev->features & dev->gso_partial_features;
2680                 if (!skb_gso_ok(skb, features | partial_features))
2681                         features &= ~NETIF_F_GSO_PARTIAL;
2682         }
2683
2684         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2685                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2686
2687         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2688         SKB_GSO_CB(skb)->encap_level = 0;
2689
2690         skb_reset_mac_header(skb);
2691         skb_reset_mac_len(skb);
2692
2693         segs = skb_mac_gso_segment(skb, features);
2694
2695         if (unlikely(skb_needs_check(skb, tx_path)))
2696                 skb_warn_bad_offload(skb);
2697
2698         return segs;
2699 }
2700 EXPORT_SYMBOL(__skb_gso_segment);
2701
2702 /* Take action when hardware reception checksum errors are detected. */
2703 #ifdef CONFIG_BUG
2704 void netdev_rx_csum_fault(struct net_device *dev)
2705 {
2706         if (net_ratelimit()) {
2707                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2708                 dump_stack();
2709         }
2710 }
2711 EXPORT_SYMBOL(netdev_rx_csum_fault);
2712 #endif
2713
2714 /* Actually, we should eliminate this check as soon as we know, that:
2715  * 1. IOMMU is present and allows to map all the memory.
2716  * 2. No high memory really exists on this machine.
2717  */
2718
2719 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2720 {
2721 #ifdef CONFIG_HIGHMEM
2722         int i;
2723
2724         if (!(dev->features & NETIF_F_HIGHDMA)) {
2725                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2726                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2727
2728                         if (PageHighMem(skb_frag_page(frag)))
2729                                 return 1;
2730                 }
2731         }
2732
2733         if (PCI_DMA_BUS_IS_PHYS) {
2734                 struct device *pdev = dev->dev.parent;
2735
2736                 if (!pdev)
2737                         return 0;
2738                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2739                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2740                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2741
2742                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2743                                 return 1;
2744                 }
2745         }
2746 #endif
2747         return 0;
2748 }
2749
2750 /* If MPLS offload request, verify we are testing hardware MPLS features
2751  * instead of standard features for the netdev.
2752  */
2753 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2754 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2755                                            netdev_features_t features,
2756                                            __be16 type)
2757 {
2758         if (eth_p_mpls(type))
2759                 features &= skb->dev->mpls_features;
2760
2761         return features;
2762 }
2763 #else
2764 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2765                                            netdev_features_t features,
2766                                            __be16 type)
2767 {
2768         return features;
2769 }
2770 #endif
2771
2772 static netdev_features_t harmonize_features(struct sk_buff *skb,
2773         netdev_features_t features)
2774 {
2775         int tmp;
2776         __be16 type;
2777
2778         type = skb_network_protocol(skb, &tmp);
2779         features = net_mpls_features(skb, features, type);
2780
2781         if (skb->ip_summed != CHECKSUM_NONE &&
2782             !can_checksum_protocol(features, type)) {
2783                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2784         }
2785         if (illegal_highdma(skb->dev, skb))
2786                 features &= ~NETIF_F_SG;
2787
2788         return features;
2789 }
2790
2791 netdev_features_t passthru_features_check(struct sk_buff *skb,
2792                                           struct net_device *dev,
2793                                           netdev_features_t features)
2794 {
2795         return features;
2796 }
2797 EXPORT_SYMBOL(passthru_features_check);
2798
2799 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2800                                              struct net_device *dev,
2801                                              netdev_features_t features)
2802 {
2803         return vlan_features_check(skb, features);
2804 }
2805
2806 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2807                                             struct net_device *dev,
2808                                             netdev_features_t features)
2809 {
2810         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2811
2812         if (gso_segs > dev->gso_max_segs)
2813                 return features & ~NETIF_F_GSO_MASK;
2814
2815         /* Support for GSO partial features requires software
2816          * intervention before we can actually process the packets
2817          * so we need to strip support for any partial features now
2818          * and we can pull them back in after we have partially
2819          * segmented the frame.
2820          */
2821         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2822                 features &= ~dev->gso_partial_features;
2823
2824         /* Make sure to clear the IPv4 ID mangling feature if the
2825          * IPv4 header has the potential to be fragmented.
2826          */
2827         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2828                 struct iphdr *iph = skb->encapsulation ?
2829                                     inner_ip_hdr(skb) : ip_hdr(skb);
2830
2831                 if (!(iph->frag_off & htons(IP_DF)))
2832                         features &= ~NETIF_F_TSO_MANGLEID;
2833         }
2834
2835         return features;
2836 }
2837
2838 netdev_features_t netif_skb_features(struct sk_buff *skb)
2839 {
2840         struct net_device *dev = skb->dev;
2841         netdev_features_t features = dev->features;
2842
2843         if (skb_is_gso(skb))
2844                 features = gso_features_check(skb, dev, features);
2845
2846         /* If encapsulation offload request, verify we are testing
2847          * hardware encapsulation features instead of standard
2848          * features for the netdev
2849          */
2850         if (skb->encapsulation)
2851                 features &= dev->hw_enc_features;
2852
2853         if (skb_vlan_tagged(skb))
2854                 features = netdev_intersect_features(features,
2855                                                      dev->vlan_features |
2856                                                      NETIF_F_HW_VLAN_CTAG_TX |
2857                                                      NETIF_F_HW_VLAN_STAG_TX);
2858
2859         if (dev->netdev_ops->ndo_features_check)
2860                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2861                                                                 features);
2862         else
2863                 features &= dflt_features_check(skb, dev, features);
2864
2865         return harmonize_features(skb, features);
2866 }
2867 EXPORT_SYMBOL(netif_skb_features);
2868
2869 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2870                     struct netdev_queue *txq, bool more)
2871 {
2872         unsigned int len;
2873         int rc;
2874
2875         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2876                 dev_queue_xmit_nit(skb, dev);
2877
2878         len = skb->len;
2879         trace_net_dev_start_xmit(skb, dev);
2880         rc = netdev_start_xmit(skb, dev, txq, more);
2881         trace_net_dev_xmit(skb, rc, dev, len);
2882
2883         return rc;
2884 }
2885
2886 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2887                                     struct netdev_queue *txq, int *ret)
2888 {
2889         struct sk_buff *skb = first;
2890         int rc = NETDEV_TX_OK;
2891
2892         while (skb) {
2893                 struct sk_buff *next = skb->next;
2894
2895                 skb->next = NULL;
2896                 rc = xmit_one(skb, dev, txq, next != NULL);
2897                 if (unlikely(!dev_xmit_complete(rc))) {
2898                         skb->next = next;
2899                         goto out;
2900                 }
2901
2902                 skb = next;
2903                 if (netif_xmit_stopped(txq) && skb) {
2904                         rc = NETDEV_TX_BUSY;
2905                         break;
2906                 }
2907         }
2908
2909 out:
2910         *ret = rc;
2911         return skb;
2912 }
2913
2914 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2915                                           netdev_features_t features)
2916 {
2917         if (skb_vlan_tag_present(skb) &&
2918             !vlan_hw_offload_capable(features, skb->vlan_proto))
2919                 skb = __vlan_hwaccel_push_inside(skb);
2920         return skb;
2921 }
2922
2923 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2924 {
2925         netdev_features_t features;
2926
2927         features = netif_skb_features(skb);
2928         skb = validate_xmit_vlan(skb, features);
2929         if (unlikely(!skb))
2930                 goto out_null;
2931
2932         if (netif_needs_gso(skb, features)) {
2933                 struct sk_buff *segs;
2934
2935                 segs = skb_gso_segment(skb, features);
2936                 if (IS_ERR(segs)) {
2937                         goto out_kfree_skb;
2938                 } else if (segs) {
2939                         consume_skb(skb);
2940                         skb = segs;
2941                 }
2942         } else {
2943                 if (skb_needs_linearize(skb, features) &&
2944                     __skb_linearize(skb))
2945                         goto out_kfree_skb;
2946
2947                 /* If packet is not checksummed and device does not
2948                  * support checksumming for this protocol, complete
2949                  * checksumming here.
2950                  */
2951                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2952                         if (skb->encapsulation)
2953                                 skb_set_inner_transport_header(skb,
2954                                                                skb_checksum_start_offset(skb));
2955                         else
2956                                 skb_set_transport_header(skb,
2957                                                          skb_checksum_start_offset(skb));
2958                         if (!(features & NETIF_F_CSUM_MASK) &&
2959                             skb_checksum_help(skb))
2960                                 goto out_kfree_skb;
2961                 }
2962         }
2963
2964         return skb;
2965
2966 out_kfree_skb:
2967         kfree_skb(skb);
2968 out_null:
2969         atomic_long_inc(&dev->tx_dropped);
2970         return NULL;
2971 }
2972
2973 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2974 {
2975         struct sk_buff *next, *head = NULL, *tail;
2976
2977         for (; skb != NULL; skb = next) {
2978                 next = skb->next;
2979                 skb->next = NULL;
2980
2981                 /* in case skb wont be segmented, point to itself */
2982                 skb->prev = skb;
2983
2984                 skb = validate_xmit_skb(skb, dev);
2985                 if (!skb)
2986                         continue;
2987
2988                 if (!head)
2989                         head = skb;
2990                 else
2991                         tail->next = skb;
2992                 /* If skb was segmented, skb->prev points to
2993                  * the last segment. If not, it still contains skb.
2994                  */
2995                 tail = skb->prev;
2996         }
2997         return head;
2998 }
2999 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3000
3001 static void qdisc_pkt_len_init(struct sk_buff *skb)
3002 {
3003         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3004
3005         qdisc_skb_cb(skb)->pkt_len = skb->len;
3006
3007         /* To get more precise estimation of bytes sent on wire,
3008          * we add to pkt_len the headers size of all segments
3009          */
3010         if (shinfo->gso_size)  {
3011                 unsigned int hdr_len;
3012                 u16 gso_segs = shinfo->gso_segs;
3013
3014                 /* mac layer + network layer */
3015                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3016
3017                 /* + transport layer */
3018                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3019                         hdr_len += tcp_hdrlen(skb);
3020                 else
3021                         hdr_len += sizeof(struct udphdr);
3022
3023                 if (shinfo->gso_type & SKB_GSO_DODGY)
3024                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3025                                                 shinfo->gso_size);
3026
3027                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3028         }
3029 }
3030
3031 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3032                                  struct net_device *dev,
3033                                  struct netdev_queue *txq)
3034 {
3035         spinlock_t *root_lock = qdisc_lock(q);
3036         struct sk_buff *to_free = NULL;
3037         bool contended;
3038         int rc;
3039
3040         qdisc_calculate_pkt_len(skb, q);
3041         /*
3042          * Heuristic to force contended enqueues to serialize on a
3043          * separate lock before trying to get qdisc main lock.
3044          * This permits qdisc->running owner to get the lock more
3045          * often and dequeue packets faster.
3046          */
3047         contended = qdisc_is_running(q);
3048         if (unlikely(contended))
3049                 spin_lock(&q->busylock);
3050
3051         spin_lock(root_lock);
3052         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3053                 __qdisc_drop(skb, &to_free);
3054                 rc = NET_XMIT_DROP;
3055         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3056                    qdisc_run_begin(q)) {
3057                 /*
3058                  * This is a work-conserving queue; there are no old skbs
3059                  * waiting to be sent out; and the qdisc is not running -
3060                  * xmit the skb directly.
3061                  */
3062
3063                 qdisc_bstats_update(q, skb);
3064
3065                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3066                         if (unlikely(contended)) {
3067                                 spin_unlock(&q->busylock);
3068                                 contended = false;
3069                         }
3070                         __qdisc_run(q);
3071                 } else
3072                         qdisc_run_end(q);
3073
3074                 rc = NET_XMIT_SUCCESS;
3075         } else {
3076                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3077                 if (qdisc_run_begin(q)) {
3078                         if (unlikely(contended)) {
3079                                 spin_unlock(&q->busylock);
3080                                 contended = false;
3081                         }
3082                         __qdisc_run(q);
3083                 }
3084         }
3085         spin_unlock(root_lock);
3086         if (unlikely(to_free))
3087                 kfree_skb_list(to_free);
3088         if (unlikely(contended))
3089                 spin_unlock(&q->busylock);
3090         return rc;
3091 }
3092
3093 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3094 static void skb_update_prio(struct sk_buff *skb)
3095 {
3096         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3097
3098         if (!skb->priority && skb->sk && map) {
3099                 unsigned int prioidx =
3100                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3101
3102                 if (prioidx < map->priomap_len)
3103                         skb->priority = map->priomap[prioidx];
3104         }
3105 }
3106 #else
3107 #define skb_update_prio(skb)
3108 #endif
3109
3110 DEFINE_PER_CPU(int, xmit_recursion);
3111 EXPORT_SYMBOL(xmit_recursion);
3112
3113 /**
3114  *      dev_loopback_xmit - loop back @skb
3115  *      @net: network namespace this loopback is happening in
3116  *      @sk:  sk needed to be a netfilter okfn
3117  *      @skb: buffer to transmit
3118  */
3119 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3120 {
3121         skb_reset_mac_header(skb);
3122         __skb_pull(skb, skb_network_offset(skb));
3123         skb->pkt_type = PACKET_LOOPBACK;
3124         skb->ip_summed = CHECKSUM_UNNECESSARY;
3125         WARN_ON(!skb_dst(skb));
3126         skb_dst_force(skb);
3127         netif_rx_ni(skb);
3128         return 0;
3129 }
3130 EXPORT_SYMBOL(dev_loopback_xmit);
3131
3132 #ifdef CONFIG_NET_EGRESS
3133 static struct sk_buff *
3134 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3135 {
3136         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3137         struct tcf_result cl_res;
3138
3139         if (!cl)
3140                 return skb;
3141
3142         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3143         qdisc_bstats_cpu_update(cl->q, skb);
3144
3145         switch (tc_classify(skb, cl, &cl_res, false)) {
3146         case TC_ACT_OK:
3147         case TC_ACT_RECLASSIFY:
3148                 skb->tc_index = TC_H_MIN(cl_res.classid);
3149                 break;
3150         case TC_ACT_SHOT:
3151                 qdisc_qstats_cpu_drop(cl->q);
3152                 *ret = NET_XMIT_DROP;
3153                 kfree_skb(skb);
3154                 return NULL;
3155         case TC_ACT_STOLEN:
3156         case TC_ACT_QUEUED:
3157                 *ret = NET_XMIT_SUCCESS;
3158                 consume_skb(skb);
3159                 return NULL;
3160         case TC_ACT_REDIRECT:
3161                 /* No need to push/pop skb's mac_header here on egress! */
3162                 skb_do_redirect(skb);
3163                 *ret = NET_XMIT_SUCCESS;
3164                 return NULL;
3165         default:
3166                 break;
3167         }
3168
3169         return skb;
3170 }
3171 #endif /* CONFIG_NET_EGRESS */
3172
3173 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3174 {
3175 #ifdef CONFIG_XPS
3176         struct xps_dev_maps *dev_maps;
3177         struct xps_map *map;
3178         int queue_index = -1;
3179
3180         rcu_read_lock();
3181         dev_maps = rcu_dereference(dev->xps_maps);
3182         if (dev_maps) {
3183                 unsigned int tci = skb->sender_cpu - 1;
3184
3185                 if (dev->num_tc) {
3186                         tci *= dev->num_tc;
3187                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3188                 }
3189
3190                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3191                 if (map) {
3192                         if (map->len == 1)
3193                                 queue_index = map->queues[0];
3194                         else
3195                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3196                                                                            map->len)];
3197                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3198                                 queue_index = -1;
3199                 }
3200         }
3201         rcu_read_unlock();
3202
3203         return queue_index;
3204 #else
3205         return -1;
3206 #endif
3207 }
3208
3209 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3210 {
3211         struct sock *sk = skb->sk;
3212         int queue_index = sk_tx_queue_get(sk);
3213
3214         if (queue_index < 0 || skb->ooo_okay ||
3215             queue_index >= dev->real_num_tx_queues) {
3216                 int new_index = get_xps_queue(dev, skb);
3217
3218                 if (new_index < 0)
3219                         new_index = skb_tx_hash(dev, skb);
3220
3221                 if (queue_index != new_index && sk &&
3222                     sk_fullsock(sk) &&
3223                     rcu_access_pointer(sk->sk_dst_cache))
3224                         sk_tx_queue_set(sk, new_index);
3225
3226                 queue_index = new_index;
3227         }
3228
3229         return queue_index;
3230 }
3231
3232 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3233                                     struct sk_buff *skb,
3234                                     void *accel_priv)
3235 {
3236         int queue_index = 0;
3237
3238 #ifdef CONFIG_XPS
3239         u32 sender_cpu = skb->sender_cpu - 1;
3240
3241         if (sender_cpu >= (u32)NR_CPUS)
3242                 skb->sender_cpu = raw_smp_processor_id() + 1;
3243 #endif
3244
3245         if (dev->real_num_tx_queues != 1) {
3246                 const struct net_device_ops *ops = dev->netdev_ops;
3247
3248                 if (ops->ndo_select_queue)
3249                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3250                                                             __netdev_pick_tx);
3251                 else
3252                         queue_index = __netdev_pick_tx(dev, skb);
3253
3254                 if (!accel_priv)
3255                         queue_index = netdev_cap_txqueue(dev, queue_index);
3256         }
3257
3258         skb_set_queue_mapping(skb, queue_index);
3259         return netdev_get_tx_queue(dev, queue_index);
3260 }
3261
3262 /**
3263  *      __dev_queue_xmit - transmit a buffer
3264  *      @skb: buffer to transmit
3265  *      @accel_priv: private data used for L2 forwarding offload
3266  *
3267  *      Queue a buffer for transmission to a network device. The caller must
3268  *      have set the device and priority and built the buffer before calling
3269  *      this function. The function can be called from an interrupt.
3270  *
3271  *      A negative errno code is returned on a failure. A success does not
3272  *      guarantee the frame will be transmitted as it may be dropped due
3273  *      to congestion or traffic shaping.
3274  *
3275  * -----------------------------------------------------------------------------------
3276  *      I notice this method can also return errors from the queue disciplines,
3277  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3278  *      be positive.
3279  *
3280  *      Regardless of the return value, the skb is consumed, so it is currently
3281  *      difficult to retry a send to this method.  (You can bump the ref count
3282  *      before sending to hold a reference for retry if you are careful.)
3283  *
3284  *      When calling this method, interrupts MUST be enabled.  This is because
3285  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3286  *          --BLG
3287  */
3288 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3289 {
3290         struct net_device *dev = skb->dev;
3291         struct netdev_queue *txq;
3292         struct Qdisc *q;
3293         int rc = -ENOMEM;
3294
3295         skb_reset_mac_header(skb);
3296
3297         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3298                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3299
3300         /* Disable soft irqs for various locks below. Also
3301          * stops preemption for RCU.
3302          */
3303         rcu_read_lock_bh();
3304
3305         skb_update_prio(skb);
3306
3307         qdisc_pkt_len_init(skb);
3308 #ifdef CONFIG_NET_CLS_ACT
3309         skb->tc_at_ingress = 0;
3310 # ifdef CONFIG_NET_EGRESS
3311         if (static_key_false(&egress_needed)) {
3312                 skb = sch_handle_egress(skb, &rc, dev);
3313                 if (!skb)
3314                         goto out;
3315         }
3316 # endif
3317 #endif
3318         /* If device/qdisc don't need skb->dst, release it right now while
3319          * its hot in this cpu cache.
3320          */
3321         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3322                 skb_dst_drop(skb);
3323         else
3324                 skb_dst_force(skb);
3325
3326         txq = netdev_pick_tx(dev, skb, accel_priv);
3327         q = rcu_dereference_bh(txq->qdisc);
3328
3329         trace_net_dev_queue(skb);
3330         if (q->enqueue) {
3331                 rc = __dev_xmit_skb(skb, q, dev, txq);
3332                 goto out;
3333         }
3334
3335         /* The device has no queue. Common case for software devices:
3336          * loopback, all the sorts of tunnels...
3337
3338          * Really, it is unlikely that netif_tx_lock protection is necessary
3339          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3340          * counters.)
3341          * However, it is possible, that they rely on protection
3342          * made by us here.
3343
3344          * Check this and shot the lock. It is not prone from deadlocks.
3345          *Either shot noqueue qdisc, it is even simpler 8)
3346          */
3347         if (dev->flags & IFF_UP) {
3348                 int cpu = smp_processor_id(); /* ok because BHs are off */
3349
3350                 if (txq->xmit_lock_owner != cpu) {
3351                         if (unlikely(__this_cpu_read(xmit_recursion) >
3352                                      XMIT_RECURSION_LIMIT))
3353                                 goto recursion_alert;
3354
3355                         skb = validate_xmit_skb(skb, dev);
3356                         if (!skb)
3357                                 goto out;
3358
3359                         HARD_TX_LOCK(dev, txq, cpu);
3360
3361                         if (!netif_xmit_stopped(txq)) {
3362                                 __this_cpu_inc(xmit_recursion);
3363                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3364                                 __this_cpu_dec(xmit_recursion);
3365                                 if (dev_xmit_complete(rc)) {
3366                                         HARD_TX_UNLOCK(dev, txq);
3367                                         goto out;
3368                                 }
3369                         }
3370                         HARD_TX_UNLOCK(dev, txq);
3371                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3372                                              dev->name);
3373                 } else {
3374                         /* Recursion is detected! It is possible,
3375                          * unfortunately
3376                          */
3377 recursion_alert:
3378                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3379                                              dev->name);
3380                 }
3381         }
3382
3383         rc = -ENETDOWN;
3384         rcu_read_unlock_bh();
3385
3386         atomic_long_inc(&dev->tx_dropped);
3387         kfree_skb_list(skb);
3388         return rc;
3389 out:
3390         rcu_read_unlock_bh();
3391         return rc;
3392 }
3393
3394 int dev_queue_xmit(struct sk_buff *skb)
3395 {
3396         return __dev_queue_xmit(skb, NULL);
3397 }
3398 EXPORT_SYMBOL(dev_queue_xmit);
3399
3400 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3401 {
3402         return __dev_queue_xmit(skb, accel_priv);
3403 }
3404 EXPORT_SYMBOL(dev_queue_xmit_accel);
3405
3406
3407 /*************************************************************************
3408  *                      Receiver routines
3409  *************************************************************************/
3410
3411 int netdev_max_backlog __read_mostly = 1000;
3412 EXPORT_SYMBOL(netdev_max_backlog);
3413
3414 int netdev_tstamp_prequeue __read_mostly = 1;
3415 int netdev_budget __read_mostly = 300;
3416 int weight_p __read_mostly = 64;           /* old backlog weight */
3417 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3418 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3419 int dev_rx_weight __read_mostly = 64;
3420 int dev_tx_weight __read_mostly = 64;
3421
3422 /* Called with irq disabled */
3423 static inline void ____napi_schedule(struct softnet_data *sd,
3424                                      struct napi_struct *napi)
3425 {
3426         list_add_tail(&napi->poll_list, &sd->poll_list);
3427         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3428 }
3429
3430 #ifdef CONFIG_RPS
3431
3432 /* One global table that all flow-based protocols share. */
3433 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3434 EXPORT_SYMBOL(rps_sock_flow_table);
3435 u32 rps_cpu_mask __read_mostly;
3436 EXPORT_SYMBOL(rps_cpu_mask);
3437
3438 struct static_key rps_needed __read_mostly;
3439 EXPORT_SYMBOL(rps_needed);
3440 struct static_key rfs_needed __read_mostly;
3441 EXPORT_SYMBOL(rfs_needed);
3442
3443 static struct rps_dev_flow *
3444 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3445             struct rps_dev_flow *rflow, u16 next_cpu)
3446 {
3447         if (next_cpu < nr_cpu_ids) {
3448 #ifdef CONFIG_RFS_ACCEL
3449                 struct netdev_rx_queue *rxqueue;
3450                 struct rps_dev_flow_table *flow_table;
3451                 struct rps_dev_flow *old_rflow;
3452                 u32 flow_id;
3453                 u16 rxq_index;
3454                 int rc;
3455
3456                 /* Should we steer this flow to a different hardware queue? */
3457                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3458                     !(dev->features & NETIF_F_NTUPLE))
3459                         goto out;
3460                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3461                 if (rxq_index == skb_get_rx_queue(skb))
3462                         goto out;
3463
3464                 rxqueue = dev->_rx + rxq_index;
3465                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3466                 if (!flow_table)
3467                         goto out;
3468                 flow_id = skb_get_hash(skb) & flow_table->mask;
3469                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3470                                                         rxq_index, flow_id);
3471                 if (rc < 0)
3472                         goto out;
3473                 old_rflow = rflow;
3474                 rflow = &flow_table->flows[flow_id];
3475                 rflow->filter = rc;
3476                 if (old_rflow->filter == rflow->filter)
3477                         old_rflow->filter = RPS_NO_FILTER;
3478         out:
3479 #endif
3480                 rflow->last_qtail =
3481                         per_cpu(softnet_data, next_cpu).input_queue_head;
3482         }
3483
3484         rflow->cpu = next_cpu;
3485         return rflow;
3486 }
3487
3488 /*
3489  * get_rps_cpu is called from netif_receive_skb and returns the target
3490  * CPU from the RPS map of the receiving queue for a given skb.
3491  * rcu_read_lock must be held on entry.
3492  */
3493 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3494                        struct rps_dev_flow **rflowp)
3495 {
3496         const struct rps_sock_flow_table *sock_flow_table;
3497         struct netdev_rx_queue *rxqueue = dev->_rx;
3498         struct rps_dev_flow_table *flow_table;
3499         struct rps_map *map;
3500         int cpu = -1;
3501         u32 tcpu;
3502         u32 hash;
3503
3504         if (skb_rx_queue_recorded(skb)) {
3505                 u16 index = skb_get_rx_queue(skb);
3506
3507                 if (unlikely(index >= dev->real_num_rx_queues)) {
3508                         WARN_ONCE(dev->real_num_rx_queues > 1,
3509                                   "%s received packet on queue %u, but number "
3510                                   "of RX queues is %u\n",
3511                                   dev->name, index, dev->real_num_rx_queues);
3512                         goto done;
3513                 }
3514                 rxqueue += index;
3515         }
3516
3517         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3518
3519         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3520         map = rcu_dereference(rxqueue->rps_map);
3521         if (!flow_table && !map)
3522                 goto done;
3523
3524         skb_reset_network_header(skb);
3525         hash = skb_get_hash(skb);
3526         if (!hash)
3527                 goto done;
3528
3529         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3530         if (flow_table && sock_flow_table) {
3531                 struct rps_dev_flow *rflow;
3532                 u32 next_cpu;
3533                 u32 ident;
3534
3535                 /* First check into global flow table if there is a match */
3536                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3537                 if ((ident ^ hash) & ~rps_cpu_mask)
3538                         goto try_rps;
3539
3540                 next_cpu = ident & rps_cpu_mask;
3541
3542                 /* OK, now we know there is a match,
3543                  * we can look at the local (per receive queue) flow table
3544                  */
3545                 rflow = &flow_table->flows[hash & flow_table->mask];
3546                 tcpu = rflow->cpu;
3547
3548                 /*
3549                  * If the desired CPU (where last recvmsg was done) is
3550                  * different from current CPU (one in the rx-queue flow
3551                  * table entry), switch if one of the following holds:
3552                  *   - Current CPU is unset (>= nr_cpu_ids).
3553                  *   - Current CPU is offline.
3554                  *   - The current CPU's queue tail has advanced beyond the
3555                  *     last packet that was enqueued using this table entry.
3556                  *     This guarantees that all previous packets for the flow
3557                  *     have been dequeued, thus preserving in order delivery.
3558                  */
3559                 if (unlikely(tcpu != next_cpu) &&
3560                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3561                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3562                       rflow->last_qtail)) >= 0)) {
3563                         tcpu = next_cpu;
3564                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3565                 }
3566
3567                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3568                         *rflowp = rflow;
3569                         cpu = tcpu;
3570                         goto done;
3571                 }
3572         }
3573
3574 try_rps:
3575
3576         if (map) {
3577                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3578                 if (cpu_online(tcpu)) {
3579                         cpu = tcpu;
3580                         goto done;
3581                 }
3582         }
3583
3584 done:
3585         return cpu;
3586 }
3587
3588 #ifdef CONFIG_RFS_ACCEL
3589
3590 /**
3591  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3592  * @dev: Device on which the filter was set
3593  * @rxq_index: RX queue index
3594  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3595  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3596  *
3597  * Drivers that implement ndo_rx_flow_steer() should periodically call
3598  * this function for each installed filter and remove the filters for
3599  * which it returns %true.
3600  */
3601 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3602                          u32 flow_id, u16 filter_id)
3603 {
3604         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3605         struct rps_dev_flow_table *flow_table;
3606         struct rps_dev_flow *rflow;
3607         bool expire = true;
3608         unsigned int cpu;
3609
3610         rcu_read_lock();
3611         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3612         if (flow_table && flow_id <= flow_table->mask) {
3613                 rflow = &flow_table->flows[flow_id];
3614                 cpu = ACCESS_ONCE(rflow->cpu);
3615                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3616                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3617                            rflow->last_qtail) <
3618                      (int)(10 * flow_table->mask)))
3619                         expire = false;
3620         }
3621         rcu_read_unlock();
3622         return expire;
3623 }
3624 EXPORT_SYMBOL(rps_may_expire_flow);
3625
3626 #endif /* CONFIG_RFS_ACCEL */
3627
3628 /* Called from hardirq (IPI) context */
3629 static void rps_trigger_softirq(void *data)
3630 {
3631         struct softnet_data *sd = data;
3632
3633         ____napi_schedule(sd, &sd->backlog);
3634         sd->received_rps++;
3635 }
3636
3637 #endif /* CONFIG_RPS */
3638
3639 /*
3640  * Check if this softnet_data structure is another cpu one
3641  * If yes, queue it to our IPI list and return 1
3642  * If no, return 0
3643  */
3644 static int rps_ipi_queued(struct softnet_data *sd)
3645 {
3646 #ifdef CONFIG_RPS
3647         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3648
3649         if (sd != mysd) {
3650                 sd->rps_ipi_next = mysd->rps_ipi_list;
3651                 mysd->rps_ipi_list = sd;
3652
3653                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3654                 return 1;
3655         }
3656 #endif /* CONFIG_RPS */
3657         return 0;
3658 }
3659
3660 #ifdef CONFIG_NET_FLOW_LIMIT
3661 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3662 #endif
3663
3664 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3665 {
3666 #ifdef CONFIG_NET_FLOW_LIMIT
3667         struct sd_flow_limit *fl;
3668         struct softnet_data *sd;
3669         unsigned int old_flow, new_flow;
3670
3671         if (qlen < (netdev_max_backlog >> 1))
3672                 return false;
3673
3674         sd = this_cpu_ptr(&softnet_data);
3675
3676         rcu_read_lock();
3677         fl = rcu_dereference(sd->flow_limit);
3678         if (fl) {
3679                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3680                 old_flow = fl->history[fl->history_head];
3681                 fl->history[fl->history_head] = new_flow;
3682
3683                 fl->history_head++;
3684                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3685
3686                 if (likely(fl->buckets[old_flow]))
3687                         fl->buckets[old_flow]--;
3688
3689                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3690                         fl->count++;
3691                         rcu_read_unlock();
3692                         return true;
3693                 }
3694         }
3695         rcu_read_unlock();
3696 #endif
3697         return false;
3698 }
3699
3700 /*
3701  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3702  * queue (may be a remote CPU queue).
3703  */
3704 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3705                               unsigned int *qtail)
3706 {
3707         struct softnet_data *sd;
3708         unsigned long flags;
3709         unsigned int qlen;
3710
3711         sd = &per_cpu(softnet_data, cpu);
3712
3713         local_irq_save(flags);
3714
3715         rps_lock(sd);
3716         if (!netif_running(skb->dev))
3717                 goto drop;
3718         qlen = skb_queue_len(&sd->input_pkt_queue);
3719         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3720                 if (qlen) {
3721 enqueue:
3722                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3723                         input_queue_tail_incr_save(sd, qtail);
3724                         rps_unlock(sd);
3725                         local_irq_restore(flags);
3726                         return NET_RX_SUCCESS;
3727                 }
3728
3729                 /* Schedule NAPI for backlog device
3730                  * We can use non atomic operation since we own the queue lock
3731                  */
3732                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3733                         if (!rps_ipi_queued(sd))
3734                                 ____napi_schedule(sd, &sd->backlog);
3735                 }
3736                 goto enqueue;
3737         }
3738
3739 drop:
3740         sd->dropped++;
3741         rps_unlock(sd);
3742
3743         local_irq_restore(flags);
3744
3745         atomic_long_inc(&skb->dev->rx_dropped);
3746         kfree_skb(skb);
3747         return NET_RX_DROP;
3748 }
3749
3750 static int netif_rx_internal(struct sk_buff *skb)
3751 {
3752         int ret;
3753
3754         net_timestamp_check(netdev_tstamp_prequeue, skb);
3755
3756         trace_netif_rx(skb);
3757 #ifdef CONFIG_RPS
3758         if (static_key_false(&rps_needed)) {
3759                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3760                 int cpu;
3761
3762                 preempt_disable();
3763                 rcu_read_lock();
3764
3765                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3766                 if (cpu < 0)
3767                         cpu = smp_processor_id();
3768
3769                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3770
3771                 rcu_read_unlock();
3772                 preempt_enable();
3773         } else
3774 #endif
3775         {
3776                 unsigned int qtail;
3777
3778                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3779                 put_cpu();
3780         }
3781         return ret;
3782 }
3783
3784 /**
3785  *      netif_rx        -       post buffer to the network code
3786  *      @skb: buffer to post
3787  *
3788  *      This function receives a packet from a device driver and queues it for
3789  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3790  *      may be dropped during processing for congestion control or by the
3791  *      protocol layers.
3792  *
3793  *      return values:
3794  *      NET_RX_SUCCESS  (no congestion)
3795  *      NET_RX_DROP     (packet was dropped)
3796  *
3797  */
3798
3799 int netif_rx(struct sk_buff *skb)
3800 {
3801         trace_netif_rx_entry(skb);
3802
3803         return netif_rx_internal(skb);
3804 }
3805 EXPORT_SYMBOL(netif_rx);
3806
3807 int netif_rx_ni(struct sk_buff *skb)
3808 {
3809         int err;
3810
3811         trace_netif_rx_ni_entry(skb);
3812
3813         preempt_disable();
3814         err = netif_rx_internal(skb);
3815         if (local_softirq_pending())
3816                 do_softirq();
3817         preempt_enable();
3818
3819         return err;
3820 }
3821 EXPORT_SYMBOL(netif_rx_ni);
3822
3823 static __latent_entropy void net_tx_action(struct softirq_action *h)
3824 {
3825         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3826
3827         if (sd->completion_queue) {
3828                 struct sk_buff *clist;
3829
3830                 local_irq_disable();
3831                 clist = sd->completion_queue;
3832                 sd->completion_queue = NULL;
3833                 local_irq_enable();
3834
3835                 while (clist) {
3836                         struct sk_buff *skb = clist;
3837
3838                         clist = clist->next;
3839
3840                         WARN_ON(atomic_read(&skb->users));
3841                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3842                                 trace_consume_skb(skb);
3843                         else
3844                                 trace_kfree_skb(skb, net_tx_action);
3845
3846                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3847                                 __kfree_skb(skb);
3848                         else
3849                                 __kfree_skb_defer(skb);
3850                 }
3851
3852                 __kfree_skb_flush();
3853         }
3854
3855         if (sd->output_queue) {
3856                 struct Qdisc *head;
3857
3858                 local_irq_disable();
3859                 head = sd->output_queue;
3860                 sd->output_queue = NULL;
3861                 sd->output_queue_tailp = &sd->output_queue;
3862                 local_irq_enable();
3863
3864                 while (head) {
3865                         struct Qdisc *q = head;
3866                         spinlock_t *root_lock;
3867
3868                         head = head->next_sched;
3869
3870                         root_lock = qdisc_lock(q);
3871                         spin_lock(root_lock);
3872                         /* We need to make sure head->next_sched is read
3873                          * before clearing __QDISC_STATE_SCHED
3874                          */
3875                         smp_mb__before_atomic();
3876                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3877                         qdisc_run(q);
3878                         spin_unlock(root_lock);
3879                 }
3880         }
3881 }
3882
3883 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3884 /* This hook is defined here for ATM LANE */
3885 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3886                              unsigned char *addr) __read_mostly;
3887 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3888 #endif
3889
3890 static inline struct sk_buff *
3891 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3892                    struct net_device *orig_dev)
3893 {
3894 #ifdef CONFIG_NET_CLS_ACT
3895         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3896         struct tcf_result cl_res;
3897
3898         /* If there's at least one ingress present somewhere (so
3899          * we get here via enabled static key), remaining devices
3900          * that are not configured with an ingress qdisc will bail
3901          * out here.
3902          */
3903         if (!cl)
3904                 return skb;
3905         if (*pt_prev) {
3906                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3907                 *pt_prev = NULL;
3908         }
3909
3910         qdisc_skb_cb(skb)->pkt_len = skb->len;
3911         skb->tc_at_ingress = 1;
3912         qdisc_bstats_cpu_update(cl->q, skb);
3913
3914         switch (tc_classify(skb, cl, &cl_res, false)) {
3915         case TC_ACT_OK:
3916         case TC_ACT_RECLASSIFY:
3917                 skb->tc_index = TC_H_MIN(cl_res.classid);
3918                 break;
3919         case TC_ACT_SHOT:
3920                 qdisc_qstats_cpu_drop(cl->q);
3921                 kfree_skb(skb);
3922                 return NULL;
3923         case TC_ACT_STOLEN:
3924         case TC_ACT_QUEUED:
3925                 consume_skb(skb);
3926                 return NULL;
3927         case TC_ACT_REDIRECT:
3928                 /* skb_mac_header check was done by cls/act_bpf, so
3929                  * we can safely push the L2 header back before
3930                  * redirecting to another netdev
3931                  */
3932                 __skb_push(skb, skb->mac_len);
3933                 skb_do_redirect(skb);
3934                 return NULL;
3935         default:
3936                 break;
3937         }
3938 #endif /* CONFIG_NET_CLS_ACT */
3939         return skb;
3940 }
3941
3942 /**
3943  *      netdev_is_rx_handler_busy - check if receive handler is registered
3944  *      @dev: device to check
3945  *
3946  *      Check if a receive handler is already registered for a given device.
3947  *      Return true if there one.
3948  *
3949  *      The caller must hold the rtnl_mutex.
3950  */
3951 bool netdev_is_rx_handler_busy(struct net_device *dev)
3952 {
3953         ASSERT_RTNL();
3954         return dev && rtnl_dereference(dev->rx_handler);
3955 }
3956 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3957
3958 /**
3959  *      netdev_rx_handler_register - register receive handler
3960  *      @dev: device to register a handler for
3961  *      @rx_handler: receive handler to register
3962  *      @rx_handler_data: data pointer that is used by rx handler
3963  *
3964  *      Register a receive handler for a device. This handler will then be
3965  *      called from __netif_receive_skb. A negative errno code is returned
3966  *      on a failure.
3967  *
3968  *      The caller must hold the rtnl_mutex.
3969  *
3970  *      For a general description of rx_handler, see enum rx_handler_result.
3971  */
3972 int netdev_rx_handler_register(struct net_device *dev,
3973                                rx_handler_func_t *rx_handler,
3974                                void *rx_handler_data)
3975 {
3976         if (netdev_is_rx_handler_busy(dev))
3977                 return -EBUSY;
3978
3979         /* Note: rx_handler_data must be set before rx_handler */
3980         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3981         rcu_assign_pointer(dev->rx_handler, rx_handler);
3982
3983         return 0;
3984 }
3985 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3986
3987 /**
3988  *      netdev_rx_handler_unregister - unregister receive handler
3989  *      @dev: device to unregister a handler from
3990  *
3991  *      Unregister a receive handler from a device.
3992  *
3993  *      The caller must hold the rtnl_mutex.
3994  */
3995 void netdev_rx_handler_unregister(struct net_device *dev)
3996 {
3997
3998         ASSERT_RTNL();
3999         RCU_INIT_POINTER(dev->rx_handler, NULL);
4000         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4001          * section has a guarantee to see a non NULL rx_handler_data
4002          * as well.
4003          */
4004         synchronize_net();
4005         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4006 }
4007 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4008
4009 /*
4010  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4011  * the special handling of PFMEMALLOC skbs.
4012  */
4013 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4014 {
4015         switch (skb->protocol) {
4016         case htons(ETH_P_ARP):
4017         case htons(ETH_P_IP):
4018         case htons(ETH_P_IPV6):
4019         case htons(ETH_P_8021Q):
4020         case htons(ETH_P_8021AD):
4021                 return true;
4022         default:
4023                 return false;
4024         }
4025 }
4026
4027 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4028                              int *ret, struct net_device *orig_dev)
4029 {
4030 #ifdef CONFIG_NETFILTER_INGRESS
4031         if (nf_hook_ingress_active(skb)) {
4032                 int ingress_retval;
4033
4034                 if (*pt_prev) {
4035                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4036                         *pt_prev = NULL;
4037                 }
4038
4039                 rcu_read_lock();
4040                 ingress_retval = nf_hook_ingress(skb);
4041                 rcu_read_unlock();
4042                 return ingress_retval;
4043         }
4044 #endif /* CONFIG_NETFILTER_INGRESS */
4045         return 0;
4046 }
4047
4048 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4049 {
4050         struct packet_type *ptype, *pt_prev;
4051         rx_handler_func_t *rx_handler;
4052         struct net_device *orig_dev;
4053         bool deliver_exact = false;
4054         int ret = NET_RX_DROP;
4055         __be16 type;
4056
4057         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4058
4059         trace_netif_receive_skb(skb);
4060
4061         orig_dev = skb->dev;
4062
4063         skb_reset_network_header(skb);
4064         if (!skb_transport_header_was_set(skb))
4065                 skb_reset_transport_header(skb);
4066         skb_reset_mac_len(skb);
4067
4068         pt_prev = NULL;
4069
4070 another_round:
4071         skb->skb_iif = skb->dev->ifindex;
4072
4073         __this_cpu_inc(softnet_data.processed);
4074
4075         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4076             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4077                 skb = skb_vlan_untag(skb);
4078                 if (unlikely(!skb))
4079                         goto out;
4080         }
4081
4082         if (skb_skip_tc_classify(skb))
4083                 goto skip_classify;
4084
4085         if (pfmemalloc)
4086                 goto skip_taps;
4087
4088         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4089                 if (pt_prev)
4090                         ret = deliver_skb(skb, pt_prev, orig_dev);
4091                 pt_prev = ptype;
4092         }
4093
4094         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4095                 if (pt_prev)
4096                         ret = deliver_skb(skb, pt_prev, orig_dev);
4097                 pt_prev = ptype;
4098         }
4099
4100 skip_taps:
4101 #ifdef CONFIG_NET_INGRESS
4102         if (static_key_false(&ingress_needed)) {
4103                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4104                 if (!skb)
4105                         goto out;
4106
4107                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4108                         goto out;
4109         }
4110 #endif
4111         skb_reset_tc(skb);
4112 skip_classify:
4113         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4114                 goto drop;
4115
4116         if (skb_vlan_tag_present(skb)) {
4117                 if (pt_prev) {
4118                         ret = deliver_skb(skb, pt_prev, orig_dev);
4119                         pt_prev = NULL;
4120                 }
4121                 if (vlan_do_receive(&skb))
4122                         goto another_round;
4123                 else if (unlikely(!skb))
4124                         goto out;
4125         }
4126
4127         rx_handler = rcu_dereference(skb->dev->rx_handler);
4128         if (rx_handler) {
4129                 if (pt_prev) {
4130                         ret = deliver_skb(skb, pt_prev, orig_dev);
4131                         pt_prev = NULL;
4132                 }
4133                 switch (rx_handler(&skb)) {
4134                 case RX_HANDLER_CONSUMED:
4135                         ret = NET_RX_SUCCESS;
4136                         goto out;
4137                 case RX_HANDLER_ANOTHER:
4138                         goto another_round;
4139                 case RX_HANDLER_EXACT:
4140                         deliver_exact = true;
4141                 case RX_HANDLER_PASS:
4142                         break;
4143                 default:
4144                         BUG();
4145                 }
4146         }
4147
4148         if (unlikely(skb_vlan_tag_present(skb))) {
4149                 if (skb_vlan_tag_get_id(skb))
4150                         skb->pkt_type = PACKET_OTHERHOST;
4151                 /* Note: we might in the future use prio bits
4152                  * and set skb->priority like in vlan_do_receive()
4153                  * For the time being, just ignore Priority Code Point
4154                  */
4155                 skb->vlan_tci = 0;
4156         }
4157
4158         type = skb->protocol;
4159
4160         /* deliver only exact match when indicated */
4161         if (likely(!deliver_exact)) {
4162                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4163                                        &ptype_base[ntohs(type) &
4164                                                    PTYPE_HASH_MASK]);
4165         }
4166
4167         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4168                                &orig_dev->ptype_specific);
4169
4170         if (unlikely(skb->dev != orig_dev)) {
4171                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4172                                        &skb->dev->ptype_specific);
4173         }
4174
4175         if (pt_prev) {
4176                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4177                         goto drop;
4178                 else
4179                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4180         } else {
4181 drop:
4182                 if (!deliver_exact)
4183                         atomic_long_inc(&skb->dev->rx_dropped);
4184                 else
4185                         atomic_long_inc(&skb->dev->rx_nohandler);
4186                 kfree_skb(skb);
4187                 /* Jamal, now you will not able to escape explaining
4188                  * me how you were going to use this. :-)
4189                  */
4190                 ret = NET_RX_DROP;
4191         }
4192
4193 out:
4194         return ret;
4195 }
4196
4197 static int __netif_receive_skb(struct sk_buff *skb)
4198 {
4199         int ret;
4200
4201         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4202                 unsigned long pflags = current->flags;
4203
4204                 /*
4205                  * PFMEMALLOC skbs are special, they should
4206                  * - be delivered to SOCK_MEMALLOC sockets only
4207                  * - stay away from userspace
4208                  * - have bounded memory usage
4209                  *
4210                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4211                  * context down to all allocation sites.
4212                  */
4213                 current->flags |= PF_MEMALLOC;
4214                 ret = __netif_receive_skb_core(skb, true);
4215                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4216         } else
4217                 ret = __netif_receive_skb_core(skb, false);
4218
4219         return ret;
4220 }
4221
4222 static int netif_receive_skb_internal(struct sk_buff *skb)
4223 {
4224         int ret;
4225
4226         net_timestamp_check(netdev_tstamp_prequeue, skb);
4227
4228         if (skb_defer_rx_timestamp(skb))
4229                 return NET_RX_SUCCESS;
4230
4231         rcu_read_lock();
4232
4233 #ifdef CONFIG_RPS
4234         if (static_key_false(&rps_needed)) {
4235                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4236                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4237
4238                 if (cpu >= 0) {
4239                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4240                         rcu_read_unlock();
4241                         return ret;
4242                 }
4243         }
4244 #endif
4245         ret = __netif_receive_skb(skb);
4246         rcu_read_unlock();
4247         return ret;
4248 }
4249
4250 /**
4251  *      netif_receive_skb - process receive buffer from network
4252  *      @skb: buffer to process
4253  *
4254  *      netif_receive_skb() is the main receive data processing function.
4255  *      It always succeeds. The buffer may be dropped during processing
4256  *      for congestion control or by the protocol layers.
4257  *
4258  *      This function may only be called from softirq context and interrupts
4259  *      should be enabled.
4260  *
4261  *      Return values (usually ignored):
4262  *      NET_RX_SUCCESS: no congestion
4263  *      NET_RX_DROP: packet was dropped
4264  */
4265 int netif_receive_skb(struct sk_buff *skb)
4266 {
4267         trace_netif_receive_skb_entry(skb);
4268
4269         return netif_receive_skb_internal(skb);
4270 }
4271 EXPORT_SYMBOL(netif_receive_skb);
4272
4273 DEFINE_PER_CPU(struct work_struct, flush_works);
4274
4275 /* Network device is going away, flush any packets still pending */
4276 static void flush_backlog(struct work_struct *work)
4277 {
4278         struct sk_buff *skb, *tmp;
4279         struct softnet_data *sd;
4280
4281         local_bh_disable();
4282         sd = this_cpu_ptr(&softnet_data);
4283
4284         local_irq_disable();
4285         rps_lock(sd);
4286         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4287                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4288                         __skb_unlink(skb, &sd->input_pkt_queue);
4289                         kfree_skb(skb);
4290                         input_queue_head_incr(sd);
4291                 }
4292         }
4293         rps_unlock(sd);
4294         local_irq_enable();
4295
4296         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4297                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4298                         __skb_unlink(skb, &sd->process_queue);
4299                         kfree_skb(skb);
4300                         input_queue_head_incr(sd);
4301                 }
4302         }
4303         local_bh_enable();
4304 }
4305
4306 static void flush_all_backlogs(void)
4307 {
4308         unsigned int cpu;
4309
4310         get_online_cpus();
4311
4312         for_each_online_cpu(cpu)
4313                 queue_work_on(cpu, system_highpri_wq,
4314                               per_cpu_ptr(&flush_works, cpu));
4315
4316         for_each_online_cpu(cpu)
4317                 flush_work(per_cpu_ptr(&flush_works, cpu));
4318
4319         put_online_cpus();
4320 }
4321
4322 static int napi_gro_complete(struct sk_buff *skb)
4323 {
4324         struct packet_offload *ptype;
4325         __be16 type = skb->protocol;
4326         struct list_head *head = &offload_base;
4327         int err = -ENOENT;
4328
4329         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4330
4331         if (NAPI_GRO_CB(skb)->count == 1) {
4332                 skb_shinfo(skb)->gso_size = 0;
4333                 goto out;
4334         }
4335
4336         rcu_read_lock();
4337         list_for_each_entry_rcu(ptype, head, list) {
4338                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4339                         continue;
4340
4341                 err = ptype->callbacks.gro_complete(skb, 0);
4342                 break;
4343         }
4344         rcu_read_unlock();
4345
4346         if (err) {
4347                 WARN_ON(&ptype->list == head);
4348                 kfree_skb(skb);
4349                 return NET_RX_SUCCESS;
4350         }
4351
4352 out:
4353         return netif_receive_skb_internal(skb);
4354 }
4355
4356 /* napi->gro_list contains packets ordered by age.
4357  * youngest packets at the head of it.
4358  * Complete skbs in reverse order to reduce latencies.
4359  */
4360 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4361 {
4362         struct sk_buff *skb, *prev = NULL;
4363
4364         /* scan list and build reverse chain */
4365         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4366                 skb->prev = prev;
4367                 prev = skb;
4368         }
4369
4370         for (skb = prev; skb; skb = prev) {
4371                 skb->next = NULL;
4372
4373                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4374                         return;
4375
4376                 prev = skb->prev;
4377                 napi_gro_complete(skb);
4378                 napi->gro_count--;
4379         }
4380
4381         napi->gro_list = NULL;
4382 }
4383 EXPORT_SYMBOL(napi_gro_flush);
4384
4385 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4386 {
4387         struct sk_buff *p;
4388         unsigned int maclen = skb->dev->hard_header_len;
4389         u32 hash = skb_get_hash_raw(skb);
4390
4391         for (p = napi->gro_list; p; p = p->next) {
4392                 unsigned long diffs;
4393
4394                 NAPI_GRO_CB(p)->flush = 0;
4395
4396                 if (hash != skb_get_hash_raw(p)) {
4397                         NAPI_GRO_CB(p)->same_flow = 0;
4398                         continue;
4399                 }
4400
4401                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4402                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4403                 diffs |= skb_metadata_dst_cmp(p, skb);
4404                 if (maclen == ETH_HLEN)
4405                         diffs |= compare_ether_header(skb_mac_header(p),
4406                                                       skb_mac_header(skb));
4407                 else if (!diffs)
4408                         diffs = memcmp(skb_mac_header(p),
4409                                        skb_mac_header(skb),
4410                                        maclen);
4411                 NAPI_GRO_CB(p)->same_flow = !diffs;
4412         }
4413 }
4414
4415 static void skb_gro_reset_offset(struct sk_buff *skb)
4416 {
4417         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4418         const skb_frag_t *frag0 = &pinfo->frags[0];
4419
4420         NAPI_GRO_CB(skb)->data_offset = 0;
4421         NAPI_GRO_CB(skb)->frag0 = NULL;
4422         NAPI_GRO_CB(skb)->frag0_len = 0;
4423
4424         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4425             pinfo->nr_frags &&
4426             !PageHighMem(skb_frag_page(frag0))) {
4427                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4428                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4429                                                     skb_frag_size(frag0),
4430                                                     skb->end - skb->tail);
4431         }
4432 }
4433
4434 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4435 {
4436         struct skb_shared_info *pinfo = skb_shinfo(skb);
4437
4438         BUG_ON(skb->end - skb->tail < grow);
4439
4440         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4441
4442         skb->data_len -= grow;
4443         skb->tail += grow;
4444
4445         pinfo->frags[0].page_offset += grow;
4446         skb_frag_size_sub(&pinfo->frags[0], grow);
4447
4448         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4449                 skb_frag_unref(skb, 0);
4450                 memmove(pinfo->frags, pinfo->frags + 1,
4451                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4452         }
4453 }
4454
4455 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4456 {
4457         struct sk_buff **pp = NULL;
4458         struct packet_offload *ptype;
4459         __be16 type = skb->protocol;
4460         struct list_head *head = &offload_base;
4461         int same_flow;
4462         enum gro_result ret;
4463         int grow;
4464
4465         if (!(skb->dev->features & NETIF_F_GRO))
4466                 goto normal;
4467
4468         if (skb->csum_bad)
4469                 goto normal;
4470
4471         gro_list_prepare(napi, skb);
4472
4473         rcu_read_lock();
4474         list_for_each_entry_rcu(ptype, head, list) {
4475                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4476                         continue;
4477
4478                 skb_set_network_header(skb, skb_gro_offset(skb));
4479                 skb_reset_mac_len(skb);
4480                 NAPI_GRO_CB(skb)->same_flow = 0;
4481                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4482                 NAPI_GRO_CB(skb)->free = 0;
4483                 NAPI_GRO_CB(skb)->encap_mark = 0;
4484                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4485                 NAPI_GRO_CB(skb)->is_fou = 0;
4486                 NAPI_GRO_CB(skb)->is_atomic = 1;
4487                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4488
4489                 /* Setup for GRO checksum validation */
4490                 switch (skb->ip_summed) {
4491                 case CHECKSUM_COMPLETE:
4492                         NAPI_GRO_CB(skb)->csum = skb->csum;
4493                         NAPI_GRO_CB(skb)->csum_valid = 1;
4494                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4495                         break;
4496                 case CHECKSUM_UNNECESSARY:
4497                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4498                         NAPI_GRO_CB(skb)->csum_valid = 0;
4499                         break;
4500                 default:
4501                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4502                         NAPI_GRO_CB(skb)->csum_valid = 0;
4503                 }
4504
4505                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4506                 break;
4507         }
4508         rcu_read_unlock();
4509
4510         if (&ptype->list == head)
4511                 goto normal;
4512
4513         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4514                 ret = GRO_CONSUMED;
4515                 goto ok;
4516         }
4517
4518         same_flow = NAPI_GRO_CB(skb)->same_flow;
4519         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4520
4521         if (pp) {
4522                 struct sk_buff *nskb = *pp;
4523
4524                 *pp = nskb->next;
4525                 nskb->next = NULL;
4526                 napi_gro_complete(nskb);
4527                 napi->gro_count--;
4528         }
4529
4530         if (same_flow)
4531                 goto ok;
4532
4533         if (NAPI_GRO_CB(skb)->flush)
4534                 goto normal;
4535
4536         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4537                 struct sk_buff *nskb = napi->gro_list;
4538
4539                 /* locate the end of the list to select the 'oldest' flow */
4540                 while (nskb->next) {
4541                         pp = &nskb->next;
4542                         nskb = *pp;
4543                 }
4544                 *pp = NULL;
4545                 nskb->next = NULL;
4546                 napi_gro_complete(nskb);
4547         } else {
4548                 napi->gro_count++;
4549         }
4550         NAPI_GRO_CB(skb)->count = 1;
4551         NAPI_GRO_CB(skb)->age = jiffies;
4552         NAPI_GRO_CB(skb)->last = skb;
4553         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4554         skb->next = napi->gro_list;
4555         napi->gro_list = skb;
4556         ret = GRO_HELD;
4557
4558 pull:
4559         grow = skb_gro_offset(skb) - skb_headlen(skb);
4560         if (grow > 0)
4561                 gro_pull_from_frag0(skb, grow);
4562 ok:
4563         return ret;
4564
4565 normal:
4566         ret = GRO_NORMAL;
4567         goto pull;
4568 }
4569
4570 struct packet_offload *gro_find_receive_by_type(__be16 type)
4571 {
4572         struct list_head *offload_head = &offload_base;
4573         struct packet_offload *ptype;
4574
4575         list_for_each_entry_rcu(ptype, offload_head, list) {
4576                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4577                         continue;
4578                 return ptype;
4579         }
4580         return NULL;
4581 }
4582 EXPORT_SYMBOL(gro_find_receive_by_type);
4583
4584 struct packet_offload *gro_find_complete_by_type(__be16 type)
4585 {
4586         struct list_head *offload_head = &offload_base;
4587         struct packet_offload *ptype;
4588
4589         list_for_each_entry_rcu(ptype, offload_head, list) {
4590                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4591                         continue;
4592                 return ptype;
4593         }
4594         return NULL;
4595 }
4596 EXPORT_SYMBOL(gro_find_complete_by_type);
4597
4598 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4599 {
4600         switch (ret) {
4601         case GRO_NORMAL:
4602                 if (netif_receive_skb_internal(skb))
4603                         ret = GRO_DROP;
4604                 break;
4605
4606         case GRO_DROP:
4607                 kfree_skb(skb);
4608                 break;
4609
4610         case GRO_MERGED_FREE:
4611                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4612                         skb_dst_drop(skb);
4613                         secpath_reset(skb);
4614                         kmem_cache_free(skbuff_head_cache, skb);
4615                 } else {
4616                         __kfree_skb(skb);
4617                 }
4618                 break;
4619
4620         case GRO_HELD:
4621         case GRO_MERGED:
4622         case GRO_CONSUMED:
4623                 break;
4624         }
4625
4626         return ret;
4627 }
4628
4629 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4630 {
4631         skb_mark_napi_id(skb, napi);
4632         trace_napi_gro_receive_entry(skb);
4633
4634         skb_gro_reset_offset(skb);
4635
4636         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4637 }
4638 EXPORT_SYMBOL(napi_gro_receive);
4639
4640 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4641 {
4642         if (unlikely(skb->pfmemalloc)) {
4643                 consume_skb(skb);
4644                 return;
4645         }
4646         __skb_pull(skb, skb_headlen(skb));
4647         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4648         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4649         skb->vlan_tci = 0;
4650         skb->dev = napi->dev;
4651         skb->skb_iif = 0;
4652         skb->encapsulation = 0;
4653         skb_shinfo(skb)->gso_type = 0;
4654         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4655         secpath_reset(skb);
4656
4657         napi->skb = skb;
4658 }
4659
4660 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4661 {
4662         struct sk_buff *skb = napi->skb;
4663
4664         if (!skb) {
4665                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4666                 if (skb) {
4667                         napi->skb = skb;
4668                         skb_mark_napi_id(skb, napi);
4669                 }
4670         }
4671         return skb;
4672 }
4673 EXPORT_SYMBOL(napi_get_frags);
4674
4675 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4676                                       struct sk_buff *skb,
4677                                       gro_result_t ret)
4678 {
4679         switch (ret) {
4680         case GRO_NORMAL:
4681         case GRO_HELD:
4682                 __skb_push(skb, ETH_HLEN);
4683                 skb->protocol = eth_type_trans(skb, skb->dev);
4684                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4685                         ret = GRO_DROP;
4686                 break;
4687
4688         case GRO_DROP:
4689         case GRO_MERGED_FREE:
4690                 napi_reuse_skb(napi, skb);
4691                 break;
4692
4693         case GRO_MERGED:
4694         case GRO_CONSUMED:
4695                 break;
4696         }
4697
4698         return ret;
4699 }
4700
4701 /* Upper GRO stack assumes network header starts at gro_offset=0
4702  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4703  * We copy ethernet header into skb->data to have a common layout.
4704  */
4705 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4706 {
4707         struct sk_buff *skb = napi->skb;
4708         const struct ethhdr *eth;
4709         unsigned int hlen = sizeof(*eth);
4710
4711         napi->skb = NULL;
4712
4713         skb_reset_mac_header(skb);
4714         skb_gro_reset_offset(skb);
4715
4716         eth = skb_gro_header_fast(skb, 0);
4717         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4718                 eth = skb_gro_header_slow(skb, hlen, 0);
4719                 if (unlikely(!eth)) {
4720                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4721                                              __func__, napi->dev->name);
4722                         napi_reuse_skb(napi, skb);
4723                         return NULL;
4724                 }
4725         } else {
4726                 gro_pull_from_frag0(skb, hlen);
4727                 NAPI_GRO_CB(skb)->frag0 += hlen;
4728                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4729         }
4730         __skb_pull(skb, hlen);
4731
4732         /*
4733          * This works because the only protocols we care about don't require
4734          * special handling.
4735          * We'll fix it up properly in napi_frags_finish()
4736          */
4737         skb->protocol = eth->h_proto;
4738
4739         return skb;
4740 }
4741
4742 gro_result_t napi_gro_frags(struct napi_struct *napi)
4743 {
4744         struct sk_buff *skb = napi_frags_skb(napi);
4745
4746         if (!skb)
4747                 return GRO_DROP;
4748
4749         trace_napi_gro_frags_entry(skb);
4750
4751         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4752 }
4753 EXPORT_SYMBOL(napi_gro_frags);
4754
4755 /* Compute the checksum from gro_offset and return the folded value
4756  * after adding in any pseudo checksum.
4757  */
4758 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4759 {
4760         __wsum wsum;
4761         __sum16 sum;
4762
4763         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4764
4765         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4766         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4767         if (likely(!sum)) {
4768                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4769                     !skb->csum_complete_sw)
4770                         netdev_rx_csum_fault(skb->dev);
4771         }
4772
4773         NAPI_GRO_CB(skb)->csum = wsum;
4774         NAPI_GRO_CB(skb)->csum_valid = 1;
4775
4776         return sum;
4777 }
4778 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4779
4780 /*
4781  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4782  * Note: called with local irq disabled, but exits with local irq enabled.
4783  */
4784 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4785 {
4786 #ifdef CONFIG_RPS
4787         struct softnet_data *remsd = sd->rps_ipi_list;
4788
4789         if (remsd) {
4790                 sd->rps_ipi_list = NULL;
4791
4792                 local_irq_enable();
4793
4794                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4795                 while (remsd) {
4796                         struct softnet_data *next = remsd->rps_ipi_next;
4797
4798                         if (cpu_online(remsd->cpu))
4799                                 smp_call_function_single_async(remsd->cpu,
4800                                                            &remsd->csd);
4801                         remsd = next;
4802                 }
4803         } else
4804 #endif
4805                 local_irq_enable();
4806 }
4807
4808 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4809 {
4810 #ifdef CONFIG_RPS
4811         return sd->rps_ipi_list != NULL;
4812 #else
4813         return false;
4814 #endif
4815 }
4816
4817 static int process_backlog(struct napi_struct *napi, int quota)
4818 {
4819         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4820         bool again = true;
4821         int work = 0;
4822
4823         /* Check if we have pending ipi, its better to send them now,
4824          * not waiting net_rx_action() end.
4825          */
4826         if (sd_has_rps_ipi_waiting(sd)) {
4827                 local_irq_disable();
4828                 net_rps_action_and_irq_enable(sd);
4829         }
4830
4831         napi->weight = dev_rx_weight;
4832         while (again) {
4833                 struct sk_buff *skb;
4834
4835                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4836                         rcu_read_lock();
4837                         __netif_receive_skb(skb);
4838                         rcu_read_unlock();
4839                         input_queue_head_incr(sd);
4840                         if (++work >= quota)
4841                                 return work;
4842
4843                 }
4844
4845                 local_irq_disable();
4846                 rps_lock(sd);
4847                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4848                         /*
4849                          * Inline a custom version of __napi_complete().
4850                          * only current cpu owns and manipulates this napi,
4851                          * and NAPI_STATE_SCHED is the only possible flag set
4852                          * on backlog.
4853                          * We can use a plain write instead of clear_bit(),
4854                          * and we dont need an smp_mb() memory barrier.
4855                          */
4856                         napi->state = 0;
4857                         again = false;
4858                 } else {
4859                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4860                                                    &sd->process_queue);
4861                 }
4862                 rps_unlock(sd);
4863                 local_irq_enable();
4864         }
4865
4866         return work;
4867 }
4868
4869 /**
4870  * __napi_schedule - schedule for receive
4871  * @n: entry to schedule
4872  *
4873  * The entry's receive function will be scheduled to run.
4874  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4875  */
4876 void __napi_schedule(struct napi_struct *n)
4877 {
4878         unsigned long flags;
4879
4880         local_irq_save(flags);
4881         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4882         local_irq_restore(flags);
4883 }
4884 EXPORT_SYMBOL(__napi_schedule);
4885
4886 /**
4887  *      napi_schedule_prep - check if napi can be scheduled
4888  *      @n: napi context
4889  *
4890  * Test if NAPI routine is already running, and if not mark
4891  * it as running.  This is used as a condition variable
4892  * insure only one NAPI poll instance runs.  We also make
4893  * sure there is no pending NAPI disable.
4894  */
4895 bool napi_schedule_prep(struct napi_struct *n)
4896 {
4897         unsigned long val, new;
4898
4899         do {
4900                 val = READ_ONCE(n->state);
4901                 if (unlikely(val & NAPIF_STATE_DISABLE))
4902                         return false;
4903                 new = val | NAPIF_STATE_SCHED;
4904
4905                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
4906                  * This was suggested by Alexander Duyck, as compiler
4907                  * emits better code than :
4908                  * if (val & NAPIF_STATE_SCHED)
4909                  *     new |= NAPIF_STATE_MISSED;
4910                  */
4911                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
4912                                                    NAPIF_STATE_MISSED;
4913         } while (cmpxchg(&n->state, val, new) != val);
4914
4915         return !(val & NAPIF_STATE_SCHED);
4916 }
4917 EXPORT_SYMBOL(napi_schedule_prep);
4918
4919 /**
4920  * __napi_schedule_irqoff - schedule for receive
4921  * @n: entry to schedule
4922  *
4923  * Variant of __napi_schedule() assuming hard irqs are masked
4924  */
4925 void __napi_schedule_irqoff(struct napi_struct *n)
4926 {
4927         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4928 }
4929 EXPORT_SYMBOL(__napi_schedule_irqoff);
4930
4931 bool napi_complete_done(struct napi_struct *n, int work_done)
4932 {
4933         unsigned long flags, val, new;
4934
4935         /*
4936          * 1) Don't let napi dequeue from the cpu poll list
4937          *    just in case its running on a different cpu.
4938          * 2) If we are busy polling, do nothing here, we have
4939          *    the guarantee we will be called later.
4940          */
4941         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4942                                  NAPIF_STATE_IN_BUSY_POLL)))
4943                 return false;
4944
4945         if (n->gro_list) {
4946                 unsigned long timeout = 0;
4947
4948                 if (work_done)
4949                         timeout = n->dev->gro_flush_timeout;
4950
4951                 if (timeout)
4952                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4953                                       HRTIMER_MODE_REL_PINNED);
4954                 else
4955                         napi_gro_flush(n, false);
4956         }
4957         if (unlikely(!list_empty(&n->poll_list))) {
4958                 /* If n->poll_list is not empty, we need to mask irqs */
4959                 local_irq_save(flags);
4960                 list_del_init(&n->poll_list);
4961                 local_irq_restore(flags);
4962         }
4963
4964         do {
4965                 val = READ_ONCE(n->state);
4966
4967                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
4968
4969                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
4970
4971                 /* If STATE_MISSED was set, leave STATE_SCHED set,
4972                  * because we will call napi->poll() one more time.
4973                  * This C code was suggested by Alexander Duyck to help gcc.
4974                  */
4975                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
4976                                                     NAPIF_STATE_SCHED;
4977         } while (cmpxchg(&n->state, val, new) != val);
4978
4979         if (unlikely(val & NAPIF_STATE_MISSED)) {
4980                 __napi_schedule(n);
4981                 return false;
4982         }
4983
4984         return true;
4985 }
4986 EXPORT_SYMBOL(napi_complete_done);
4987
4988 /* must be called under rcu_read_lock(), as we dont take a reference */
4989 static struct napi_struct *napi_by_id(unsigned int napi_id)
4990 {
4991         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4992         struct napi_struct *napi;
4993
4994         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4995                 if (napi->napi_id == napi_id)
4996                         return napi;
4997
4998         return NULL;
4999 }
5000
5001 #if defined(CONFIG_NET_RX_BUSY_POLL)
5002
5003 #define BUSY_POLL_BUDGET 8
5004
5005 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5006 {
5007         int rc;
5008
5009         /* Busy polling means there is a high chance device driver hard irq
5010          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5011          * set in napi_schedule_prep().
5012          * Since we are about to call napi->poll() once more, we can safely
5013          * clear NAPI_STATE_MISSED.
5014          *
5015          * Note: x86 could use a single "lock and ..." instruction
5016          * to perform these two clear_bit()
5017          */
5018         clear_bit(NAPI_STATE_MISSED, &napi->state);
5019         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5020
5021         local_bh_disable();
5022
5023         /* All we really want here is to re-enable device interrupts.
5024          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5025          */
5026         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5027         netpoll_poll_unlock(have_poll_lock);
5028         if (rc == BUSY_POLL_BUDGET)
5029                 __napi_schedule(napi);
5030         local_bh_enable();
5031         if (local_softirq_pending())
5032                 do_softirq();
5033 }
5034
5035 bool sk_busy_loop(struct sock *sk, int nonblock)
5036 {
5037         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
5038         int (*napi_poll)(struct napi_struct *napi, int budget);
5039         void *have_poll_lock = NULL;
5040         struct napi_struct *napi;
5041         int rc;
5042
5043 restart:
5044         rc = false;
5045         napi_poll = NULL;
5046
5047         rcu_read_lock();
5048
5049         napi = napi_by_id(sk->sk_napi_id);
5050         if (!napi)
5051                 goto out;
5052
5053         preempt_disable();
5054         for (;;) {
5055                 rc = 0;
5056                 local_bh_disable();
5057                 if (!napi_poll) {
5058                         unsigned long val = READ_ONCE(napi->state);
5059
5060                         /* If multiple threads are competing for this napi,
5061                          * we avoid dirtying napi->state as much as we can.
5062                          */
5063                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5064                                    NAPIF_STATE_IN_BUSY_POLL))
5065                                 goto count;
5066                         if (cmpxchg(&napi->state, val,
5067                                     val | NAPIF_STATE_IN_BUSY_POLL |
5068                                           NAPIF_STATE_SCHED) != val)
5069                                 goto count;
5070                         have_poll_lock = netpoll_poll_lock(napi);
5071                         napi_poll = napi->poll;
5072                 }
5073                 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5074                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5075 count:
5076                 if (rc > 0)
5077                         __NET_ADD_STATS(sock_net(sk),
5078                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5079                 local_bh_enable();
5080
5081                 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5082                     busy_loop_timeout(end_time))
5083                         break;
5084
5085                 if (unlikely(need_resched())) {
5086                         if (napi_poll)
5087                                 busy_poll_stop(napi, have_poll_lock);
5088                         preempt_enable();
5089                         rcu_read_unlock();
5090                         cond_resched();
5091                         rc = !skb_queue_empty(&sk->sk_receive_queue);
5092                         if (rc || busy_loop_timeout(end_time))
5093                                 return rc;
5094                         goto restart;
5095                 }
5096                 cpu_relax();
5097         }
5098         if (napi_poll)
5099                 busy_poll_stop(napi, have_poll_lock);
5100         preempt_enable();
5101         rc = !skb_queue_empty(&sk->sk_receive_queue);
5102 out:
5103         rcu_read_unlock();
5104         return rc;
5105 }
5106 EXPORT_SYMBOL(sk_busy_loop);
5107
5108 #endif /* CONFIG_NET_RX_BUSY_POLL */
5109
5110 static void napi_hash_add(struct napi_struct *napi)
5111 {
5112         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5113             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5114                 return;
5115
5116         spin_lock(&napi_hash_lock);
5117
5118         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5119         do {
5120                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5121                         napi_gen_id = NR_CPUS + 1;
5122         } while (napi_by_id(napi_gen_id));
5123         napi->napi_id = napi_gen_id;
5124
5125         hlist_add_head_rcu(&napi->napi_hash_node,
5126                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5127
5128         spin_unlock(&napi_hash_lock);
5129 }
5130
5131 /* Warning : caller is responsible to make sure rcu grace period
5132  * is respected before freeing memory containing @napi
5133  */
5134 bool napi_hash_del(struct napi_struct *napi)
5135 {
5136         bool rcu_sync_needed = false;
5137
5138         spin_lock(&napi_hash_lock);
5139
5140         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5141                 rcu_sync_needed = true;
5142                 hlist_del_rcu(&napi->napi_hash_node);
5143         }
5144         spin_unlock(&napi_hash_lock);
5145         return rcu_sync_needed;
5146 }
5147 EXPORT_SYMBOL_GPL(napi_hash_del);
5148
5149 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5150 {
5151         struct napi_struct *napi;
5152
5153         napi = container_of(timer, struct napi_struct, timer);
5154
5155         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5156          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5157          */
5158         if (napi->gro_list && !napi_disable_pending(napi) &&
5159             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5160                 __napi_schedule_irqoff(napi);
5161
5162         return HRTIMER_NORESTART;
5163 }
5164
5165 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5166                     int (*poll)(struct napi_struct *, int), int weight)
5167 {
5168         INIT_LIST_HEAD(&napi->poll_list);
5169         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5170         napi->timer.function = napi_watchdog;
5171         napi->gro_count = 0;
5172         napi->gro_list = NULL;
5173         napi->skb = NULL;
5174         napi->poll = poll;
5175         if (weight > NAPI_POLL_WEIGHT)
5176                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5177                             weight, dev->name);
5178         napi->weight = weight;
5179         list_add(&napi->dev_list, &dev->napi_list);
5180         napi->dev = dev;
5181 #ifdef CONFIG_NETPOLL
5182         napi->poll_owner = -1;
5183 #endif
5184         set_bit(NAPI_STATE_SCHED, &napi->state);
5185         napi_hash_add(napi);
5186 }
5187 EXPORT_SYMBOL(netif_napi_add);
5188
5189 void napi_disable(struct napi_struct *n)
5190 {
5191         might_sleep();
5192         set_bit(NAPI_STATE_DISABLE, &n->state);
5193
5194         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5195                 msleep(1);
5196         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5197                 msleep(1);
5198
5199         hrtimer_cancel(&n->timer);
5200
5201         clear_bit(NAPI_STATE_DISABLE, &n->state);
5202 }
5203 EXPORT_SYMBOL(napi_disable);
5204
5205 /* Must be called in process context */
5206 void netif_napi_del(struct napi_struct *napi)
5207 {
5208         might_sleep();
5209         if (napi_hash_del(napi))
5210                 synchronize_net();
5211         list_del_init(&napi->dev_list);
5212         napi_free_frags(napi);
5213
5214         kfree_skb_list(napi->gro_list);
5215         napi->gro_list = NULL;
5216         napi->gro_count = 0;
5217 }
5218 EXPORT_SYMBOL(netif_napi_del);
5219
5220 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5221 {
5222         void *have;
5223         int work, weight;
5224
5225         list_del_init(&n->poll_list);
5226
5227         have = netpoll_poll_lock(n);
5228
5229         weight = n->weight;
5230
5231         /* This NAPI_STATE_SCHED test is for avoiding a race
5232          * with netpoll's poll_napi().  Only the entity which
5233          * obtains the lock and sees NAPI_STATE_SCHED set will
5234          * actually make the ->poll() call.  Therefore we avoid
5235          * accidentally calling ->poll() when NAPI is not scheduled.
5236          */
5237         work = 0;
5238         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5239                 work = n->poll(n, weight);
5240                 trace_napi_poll(n, work, weight);
5241         }
5242
5243         WARN_ON_ONCE(work > weight);
5244
5245         if (likely(work < weight))
5246                 goto out_unlock;
5247
5248         /* Drivers must not modify the NAPI state if they
5249          * consume the entire weight.  In such cases this code
5250          * still "owns" the NAPI instance and therefore can
5251          * move the instance around on the list at-will.
5252          */
5253         if (unlikely(napi_disable_pending(n))) {
5254                 napi_complete(n);
5255                 goto out_unlock;
5256         }
5257
5258         if (n->gro_list) {
5259                 /* flush too old packets
5260                  * If HZ < 1000, flush all packets.
5261                  */
5262                 napi_gro_flush(n, HZ >= 1000);
5263         }
5264
5265         /* Some drivers may have called napi_schedule
5266          * prior to exhausting their budget.
5267          */
5268         if (unlikely(!list_empty(&n->poll_list))) {
5269                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5270                              n->dev ? n->dev->name : "backlog");
5271                 goto out_unlock;
5272         }
5273
5274         list_add_tail(&n->poll_list, repoll);
5275
5276 out_unlock:
5277         netpoll_poll_unlock(have);
5278
5279         return work;
5280 }
5281
5282 static __latent_entropy void net_rx_action(struct softirq_action *h)
5283 {
5284         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5285         unsigned long time_limit = jiffies + 2;
5286         int budget = netdev_budget;
5287         LIST_HEAD(list);
5288         LIST_HEAD(repoll);
5289
5290         local_irq_disable();
5291         list_splice_init(&sd->poll_list, &list);
5292         local_irq_enable();
5293
5294         for (;;) {
5295                 struct napi_struct *n;
5296
5297                 if (list_empty(&list)) {
5298                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5299                                 goto out;
5300                         break;
5301                 }
5302
5303                 n = list_first_entry(&list, struct napi_struct, poll_list);
5304                 budget -= napi_poll(n, &repoll);
5305
5306                 /* If softirq window is exhausted then punt.
5307                  * Allow this to run for 2 jiffies since which will allow
5308                  * an average latency of 1.5/HZ.
5309                  */
5310                 if (unlikely(budget <= 0 ||
5311                              time_after_eq(jiffies, time_limit))) {
5312                         sd->time_squeeze++;
5313                         break;
5314                 }
5315         }
5316
5317         local_irq_disable();
5318
5319         list_splice_tail_init(&sd->poll_list, &list);
5320         list_splice_tail(&repoll, &list);
5321         list_splice(&list, &sd->poll_list);
5322         if (!list_empty(&sd->poll_list))
5323                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5324
5325         net_rps_action_and_irq_enable(sd);
5326 out:
5327         __kfree_skb_flush();
5328 }
5329
5330 struct netdev_adjacent {
5331         struct net_device *dev;
5332
5333         /* upper master flag, there can only be one master device per list */
5334         bool master;
5335
5336         /* counter for the number of times this device was added to us */
5337         u16 ref_nr;
5338
5339         /* private field for the users */
5340         void *private;
5341
5342         struct list_head list;
5343         struct rcu_head rcu;
5344 };
5345
5346 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5347                                                  struct list_head *adj_list)
5348 {
5349         struct netdev_adjacent *adj;
5350
5351         list_for_each_entry(adj, adj_list, list) {
5352                 if (adj->dev == adj_dev)
5353                         return adj;
5354         }
5355         return NULL;
5356 }
5357
5358 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5359 {
5360         struct net_device *dev = data;
5361
5362         return upper_dev == dev;
5363 }
5364
5365 /**
5366  * netdev_has_upper_dev - Check if device is linked to an upper device
5367  * @dev: device
5368  * @upper_dev: upper device to check
5369  *
5370  * Find out if a device is linked to specified upper device and return true
5371  * in case it is. Note that this checks only immediate upper device,
5372  * not through a complete stack of devices. The caller must hold the RTNL lock.
5373  */
5374 bool netdev_has_upper_dev(struct net_device *dev,
5375                           struct net_device *upper_dev)
5376 {
5377         ASSERT_RTNL();
5378
5379         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5380                                              upper_dev);
5381 }
5382 EXPORT_SYMBOL(netdev_has_upper_dev);
5383
5384 /**
5385  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5386  * @dev: device
5387  * @upper_dev: upper device to check
5388  *
5389  * Find out if a device is linked to specified upper device and return true
5390  * in case it is. Note that this checks the entire upper device chain.
5391  * The caller must hold rcu lock.
5392  */
5393
5394 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5395                                   struct net_device *upper_dev)
5396 {
5397         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5398                                                upper_dev);
5399 }
5400 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5401
5402 /**
5403  * netdev_has_any_upper_dev - Check if device is linked to some device
5404  * @dev: device
5405  *
5406  * Find out if a device is linked to an upper device and return true in case
5407  * it is. The caller must hold the RTNL lock.
5408  */
5409 static bool netdev_has_any_upper_dev(struct net_device *dev)
5410 {
5411         ASSERT_RTNL();
5412
5413         return !list_empty(&dev->adj_list.upper);
5414 }
5415
5416 /**
5417  * netdev_master_upper_dev_get - Get master upper device
5418  * @dev: device
5419  *
5420  * Find a master upper device and return pointer to it or NULL in case
5421  * it's not there. The caller must hold the RTNL lock.
5422  */
5423 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5424 {
5425         struct netdev_adjacent *upper;
5426
5427         ASSERT_RTNL();
5428
5429         if (list_empty(&dev->adj_list.upper))
5430                 return NULL;
5431
5432         upper = list_first_entry(&dev->adj_list.upper,
5433                                  struct netdev_adjacent, list);
5434         if (likely(upper->master))
5435                 return upper->dev;
5436         return NULL;
5437 }
5438 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5439
5440 /**
5441  * netdev_has_any_lower_dev - Check if device is linked to some device
5442  * @dev: device
5443  *
5444  * Find out if a device is linked to a lower device and return true in case
5445  * it is. The caller must hold the RTNL lock.
5446  */
5447 static bool netdev_has_any_lower_dev(struct net_device *dev)
5448 {
5449         ASSERT_RTNL();
5450
5451         return !list_empty(&dev->adj_list.lower);
5452 }
5453
5454 void *netdev_adjacent_get_private(struct list_head *adj_list)
5455 {
5456         struct netdev_adjacent *adj;
5457
5458         adj = list_entry(adj_list, struct netdev_adjacent, list);
5459
5460         return adj->private;
5461 }
5462 EXPORT_SYMBOL(netdev_adjacent_get_private);
5463
5464 /**
5465  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5466  * @dev: device
5467  * @iter: list_head ** of the current position
5468  *
5469  * Gets the next device from the dev's upper list, starting from iter
5470  * position. The caller must hold RCU read lock.
5471  */
5472 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5473                                                  struct list_head **iter)
5474 {
5475         struct netdev_adjacent *upper;
5476
5477         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5478
5479         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5480
5481         if (&upper->list == &dev->adj_list.upper)
5482                 return NULL;
5483
5484         *iter = &upper->list;
5485
5486         return upper->dev;
5487 }
5488 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5489
5490 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5491                                                     struct list_head **iter)
5492 {
5493         struct netdev_adjacent *upper;
5494
5495         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5496
5497         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5498
5499         if (&upper->list == &dev->adj_list.upper)
5500                 return NULL;
5501
5502         *iter = &upper->list;
5503
5504         return upper->dev;
5505 }
5506
5507 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5508                                   int (*fn)(struct net_device *dev,
5509                                             void *data),
5510                                   void *data)
5511 {
5512         struct net_device *udev;
5513         struct list_head *iter;
5514         int ret;
5515
5516         for (iter = &dev->adj_list.upper,
5517              udev = netdev_next_upper_dev_rcu(dev, &iter);
5518              udev;
5519              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5520                 /* first is the upper device itself */
5521                 ret = fn(udev, data);
5522                 if (ret)
5523                         return ret;
5524
5525                 /* then look at all of its upper devices */
5526                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5527                 if (ret)
5528                         return ret;
5529         }
5530
5531         return 0;
5532 }
5533 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5534
5535 /**
5536  * netdev_lower_get_next_private - Get the next ->private from the
5537  *                                 lower neighbour list
5538  * @dev: device
5539  * @iter: list_head ** of the current position
5540  *
5541  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5542  * list, starting from iter position. The caller must hold either hold the
5543  * RTNL lock or its own locking that guarantees that the neighbour lower
5544  * list will remain unchanged.
5545  */
5546 void *netdev_lower_get_next_private(struct net_device *dev,
5547                                     struct list_head **iter)
5548 {
5549         struct netdev_adjacent *lower;
5550
5551         lower = list_entry(*iter, struct netdev_adjacent, list);
5552
5553         if (&lower->list == &dev->adj_list.lower)
5554                 return NULL;
5555
5556         *iter = lower->list.next;
5557
5558         return lower->private;
5559 }
5560 EXPORT_SYMBOL(netdev_lower_get_next_private);
5561
5562 /**
5563  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5564  *                                     lower neighbour list, RCU
5565  *                                     variant
5566  * @dev: device
5567  * @iter: list_head ** of the current position
5568  *
5569  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5570  * list, starting from iter position. The caller must hold RCU read lock.
5571  */
5572 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5573                                         struct list_head **iter)
5574 {
5575         struct netdev_adjacent *lower;
5576
5577         WARN_ON_ONCE(!rcu_read_lock_held());
5578
5579         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5580
5581         if (&lower->list == &dev->adj_list.lower)
5582                 return NULL;
5583
5584         *iter = &lower->list;
5585
5586         return lower->private;
5587 }
5588 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5589
5590 /**
5591  * netdev_lower_get_next - Get the next device from the lower neighbour
5592  *                         list
5593  * @dev: device
5594  * @iter: list_head ** of the current position
5595  *
5596  * Gets the next netdev_adjacent from the dev's lower neighbour
5597  * list, starting from iter position. The caller must hold RTNL lock or
5598  * its own locking that guarantees that the neighbour lower
5599  * list will remain unchanged.
5600  */
5601 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5602 {
5603         struct netdev_adjacent *lower;
5604
5605         lower = list_entry(*iter, struct netdev_adjacent, list);
5606
5607         if (&lower->list == &dev->adj_list.lower)
5608                 return NULL;
5609
5610         *iter = lower->list.next;
5611
5612         return lower->dev;
5613 }
5614 EXPORT_SYMBOL(netdev_lower_get_next);
5615
5616 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5617                                                 struct list_head **iter)
5618 {
5619         struct netdev_adjacent *lower;
5620
5621         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5622
5623         if (&lower->list == &dev->adj_list.lower)
5624                 return NULL;
5625
5626         *iter = &lower->list;
5627
5628         return lower->dev;
5629 }
5630
5631 int netdev_walk_all_lower_dev(struct net_device *dev,
5632                               int (*fn)(struct net_device *dev,
5633                                         void *data),
5634                               void *data)
5635 {
5636         struct net_device *ldev;
5637         struct list_head *iter;
5638         int ret;
5639
5640         for (iter = &dev->adj_list.lower,
5641              ldev = netdev_next_lower_dev(dev, &iter);
5642              ldev;
5643              ldev = netdev_next_lower_dev(dev, &iter)) {
5644                 /* first is the lower device itself */
5645                 ret = fn(ldev, data);
5646                 if (ret)
5647                         return ret;
5648
5649                 /* then look at all of its lower devices */
5650                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5651                 if (ret)
5652                         return ret;
5653         }
5654
5655         return 0;
5656 }
5657 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5658
5659 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5660                                                     struct list_head **iter)
5661 {
5662         struct netdev_adjacent *lower;
5663
5664         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5665         if (&lower->list == &dev->adj_list.lower)
5666                 return NULL;
5667
5668         *iter = &lower->list;
5669
5670         return lower->dev;
5671 }
5672
5673 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5674                                   int (*fn)(struct net_device *dev,
5675                                             void *data),
5676                                   void *data)
5677 {
5678         struct net_device *ldev;
5679         struct list_head *iter;
5680         int ret;
5681
5682         for (iter = &dev->adj_list.lower,
5683              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5684              ldev;
5685              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5686                 /* first is the lower device itself */
5687                 ret = fn(ldev, data);
5688                 if (ret)
5689                         return ret;
5690
5691                 /* then look at all of its lower devices */
5692                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5693                 if (ret)
5694                         return ret;
5695         }
5696
5697         return 0;
5698 }
5699 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5700
5701 /**
5702  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5703  *                                     lower neighbour list, RCU
5704  *                                     variant
5705  * @dev: device
5706  *
5707  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5708  * list. The caller must hold RCU read lock.
5709  */
5710 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5711 {
5712         struct netdev_adjacent *lower;
5713
5714         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5715                         struct netdev_adjacent, list);
5716         if (lower)
5717                 return lower->private;
5718         return NULL;
5719 }
5720 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5721
5722 /**
5723  * netdev_master_upper_dev_get_rcu - Get master upper device
5724  * @dev: device
5725  *
5726  * Find a master upper device and return pointer to it or NULL in case
5727  * it's not there. The caller must hold the RCU read lock.
5728  */
5729 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5730 {
5731         struct netdev_adjacent *upper;
5732
5733         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5734                                        struct netdev_adjacent, list);
5735         if (upper && likely(upper->master))
5736                 return upper->dev;
5737         return NULL;
5738 }
5739 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5740
5741 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5742                               struct net_device *adj_dev,
5743                               struct list_head *dev_list)
5744 {
5745         char linkname[IFNAMSIZ+7];
5746
5747         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5748                 "upper_%s" : "lower_%s", adj_dev->name);
5749         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5750                                  linkname);
5751 }
5752 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5753                                char *name,
5754                                struct list_head *dev_list)
5755 {
5756         char linkname[IFNAMSIZ+7];
5757
5758         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5759                 "upper_%s" : "lower_%s", name);
5760         sysfs_remove_link(&(dev->dev.kobj), linkname);
5761 }
5762
5763 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5764                                                  struct net_device *adj_dev,
5765                                                  struct list_head *dev_list)
5766 {
5767         return (dev_list == &dev->adj_list.upper ||
5768                 dev_list == &dev->adj_list.lower) &&
5769                 net_eq(dev_net(dev), dev_net(adj_dev));
5770 }
5771
5772 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5773                                         struct net_device *adj_dev,
5774                                         struct list_head *dev_list,
5775                                         void *private, bool master)
5776 {
5777         struct netdev_adjacent *adj;
5778         int ret;
5779
5780         adj = __netdev_find_adj(adj_dev, dev_list);
5781
5782         if (adj) {
5783                 adj->ref_nr += 1;
5784                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5785                          dev->name, adj_dev->name, adj->ref_nr);
5786
5787                 return 0;
5788         }
5789
5790         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5791         if (!adj)
5792                 return -ENOMEM;
5793
5794         adj->dev = adj_dev;
5795         adj->master = master;
5796         adj->ref_nr = 1;
5797         adj->private = private;
5798         dev_hold(adj_dev);
5799
5800         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5801                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5802
5803         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5804                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5805                 if (ret)
5806                         goto free_adj;
5807         }
5808
5809         /* Ensure that master link is always the first item in list. */
5810         if (master) {
5811                 ret = sysfs_create_link(&(dev->dev.kobj),
5812                                         &(adj_dev->dev.kobj), "master");
5813                 if (ret)
5814                         goto remove_symlinks;
5815
5816                 list_add_rcu(&adj->list, dev_list);
5817         } else {
5818                 list_add_tail_rcu(&adj->list, dev_list);
5819         }
5820
5821         return 0;
5822
5823 remove_symlinks:
5824         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5825                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5826 free_adj:
5827         kfree(adj);
5828         dev_put(adj_dev);
5829
5830         return ret;
5831 }
5832
5833 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5834                                          struct net_device *adj_dev,
5835                                          u16 ref_nr,
5836                                          struct list_head *dev_list)
5837 {
5838         struct netdev_adjacent *adj;
5839
5840         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5841                  dev->name, adj_dev->name, ref_nr);
5842
5843         adj = __netdev_find_adj(adj_dev, dev_list);
5844
5845         if (!adj) {
5846                 pr_err("Adjacency does not exist for device %s from %s\n",
5847                        dev->name, adj_dev->name);
5848                 WARN_ON(1);
5849                 return;
5850         }
5851
5852         if (adj->ref_nr > ref_nr) {
5853                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5854                          dev->name, adj_dev->name, ref_nr,
5855                          adj->ref_nr - ref_nr);
5856                 adj->ref_nr -= ref_nr;
5857                 return;
5858         }
5859
5860         if (adj->master)
5861                 sysfs_remove_link(&(dev->dev.kobj), "master");
5862
5863         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5864                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5865
5866         list_del_rcu(&adj->list);
5867         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5868                  adj_dev->name, dev->name, adj_dev->name);
5869         dev_put(adj_dev);
5870         kfree_rcu(adj, rcu);
5871 }
5872
5873 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5874                                             struct net_device *upper_dev,
5875                                             struct list_head *up_list,
5876                                             struct list_head *down_list,
5877                                             void *private, bool master)
5878 {
5879         int ret;
5880
5881         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5882                                            private, master);
5883         if (ret)
5884                 return ret;
5885
5886         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5887                                            private, false);
5888         if (ret) {
5889                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5890                 return ret;
5891         }
5892
5893         return 0;
5894 }
5895
5896 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5897                                                struct net_device *upper_dev,
5898                                                u16 ref_nr,
5899                                                struct list_head *up_list,
5900                                                struct list_head *down_list)
5901 {
5902         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5903         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5904 }
5905
5906 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5907                                                 struct net_device *upper_dev,
5908                                                 void *private, bool master)
5909 {
5910         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5911                                                 &dev->adj_list.upper,
5912                                                 &upper_dev->adj_list.lower,
5913                                                 private, master);
5914 }
5915
5916 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5917                                                    struct net_device *upper_dev)
5918 {
5919         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5920                                            &dev->adj_list.upper,
5921                                            &upper_dev->adj_list.lower);
5922 }
5923
5924 static int __netdev_upper_dev_link(struct net_device *dev,
5925                                    struct net_device *upper_dev, bool master,
5926                                    void *upper_priv, void *upper_info)
5927 {
5928         struct netdev_notifier_changeupper_info changeupper_info;
5929         int ret = 0;
5930
5931         ASSERT_RTNL();
5932
5933         if (dev == upper_dev)
5934                 return -EBUSY;
5935
5936         /* To prevent loops, check if dev is not upper device to upper_dev. */
5937         if (netdev_has_upper_dev(upper_dev, dev))
5938                 return -EBUSY;
5939
5940         if (netdev_has_upper_dev(dev, upper_dev))
5941                 return -EEXIST;
5942
5943         if (master && netdev_master_upper_dev_get(dev))
5944                 return -EBUSY;
5945
5946         changeupper_info.upper_dev = upper_dev;
5947         changeupper_info.master = master;
5948         changeupper_info.linking = true;
5949         changeupper_info.upper_info = upper_info;
5950
5951         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5952                                             &changeupper_info.info);
5953         ret = notifier_to_errno(ret);
5954         if (ret)
5955                 return ret;
5956
5957         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5958                                                    master);
5959         if (ret)
5960                 return ret;
5961
5962         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5963                                             &changeupper_info.info);
5964         ret = notifier_to_errno(ret);
5965         if (ret)
5966                 goto rollback;
5967
5968         return 0;
5969
5970 rollback:
5971         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5972
5973         return ret;
5974 }
5975
5976 /**
5977  * netdev_upper_dev_link - Add a link to the upper device
5978  * @dev: device
5979  * @upper_dev: new upper device
5980  *
5981  * Adds a link to device which is upper to this one. The caller must hold
5982  * the RTNL lock. On a failure a negative errno code is returned.
5983  * On success the reference counts are adjusted and the function
5984  * returns zero.
5985  */
5986 int netdev_upper_dev_link(struct net_device *dev,
5987                           struct net_device *upper_dev)
5988 {
5989         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5990 }
5991 EXPORT_SYMBOL(netdev_upper_dev_link);
5992
5993 /**
5994  * netdev_master_upper_dev_link - Add a master link to the upper device
5995  * @dev: device
5996  * @upper_dev: new upper device
5997  * @upper_priv: upper device private
5998  * @upper_info: upper info to be passed down via notifier
5999  *
6000  * Adds a link to device which is upper to this one. In this case, only
6001  * one master upper device can be linked, although other non-master devices
6002  * might be linked as well. The caller must hold the RTNL lock.
6003  * On a failure a negative errno code is returned. On success the reference
6004  * counts are adjusted and the function returns zero.
6005  */
6006 int netdev_master_upper_dev_link(struct net_device *dev,
6007                                  struct net_device *upper_dev,
6008                                  void *upper_priv, void *upper_info)
6009 {
6010         return __netdev_upper_dev_link(dev, upper_dev, true,
6011                                        upper_priv, upper_info);
6012 }
6013 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6014
6015 /**
6016  * netdev_upper_dev_unlink - Removes a link to upper device
6017  * @dev: device
6018  * @upper_dev: new upper device
6019  *
6020  * Removes a link to device which is upper to this one. The caller must hold
6021  * the RTNL lock.
6022  */
6023 void netdev_upper_dev_unlink(struct net_device *dev,
6024                              struct net_device *upper_dev)
6025 {
6026         struct netdev_notifier_changeupper_info changeupper_info;
6027
6028         ASSERT_RTNL();
6029
6030         changeupper_info.upper_dev = upper_dev;
6031         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6032         changeupper_info.linking = false;
6033
6034         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6035                                       &changeupper_info.info);
6036
6037         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6038
6039         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6040                                       &changeupper_info.info);
6041 }
6042 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6043
6044 /**
6045  * netdev_bonding_info_change - Dispatch event about slave change
6046  * @dev: device
6047  * @bonding_info: info to dispatch
6048  *
6049  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6050  * The caller must hold the RTNL lock.
6051  */
6052 void netdev_bonding_info_change(struct net_device *dev,
6053                                 struct netdev_bonding_info *bonding_info)
6054 {
6055         struct netdev_notifier_bonding_info     info;
6056
6057         memcpy(&info.bonding_info, bonding_info,
6058                sizeof(struct netdev_bonding_info));
6059         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6060                                       &info.info);
6061 }
6062 EXPORT_SYMBOL(netdev_bonding_info_change);
6063
6064 static void netdev_adjacent_add_links(struct net_device *dev)
6065 {
6066         struct netdev_adjacent *iter;
6067
6068         struct net *net = dev_net(dev);
6069
6070         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6071                 if (!net_eq(net, dev_net(iter->dev)))
6072                         continue;
6073                 netdev_adjacent_sysfs_add(iter->dev, dev,
6074                                           &iter->dev->adj_list.lower);
6075                 netdev_adjacent_sysfs_add(dev, iter->dev,
6076                                           &dev->adj_list.upper);
6077         }
6078
6079         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6080                 if (!net_eq(net, dev_net(iter->dev)))
6081                         continue;
6082                 netdev_adjacent_sysfs_add(iter->dev, dev,
6083                                           &iter->dev->adj_list.upper);
6084                 netdev_adjacent_sysfs_add(dev, iter->dev,
6085                                           &dev->adj_list.lower);
6086         }
6087 }
6088
6089 static void netdev_adjacent_del_links(struct net_device *dev)
6090 {
6091         struct netdev_adjacent *iter;
6092
6093         struct net *net = dev_net(dev);
6094
6095         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6096                 if (!net_eq(net, dev_net(iter->dev)))
6097                         continue;
6098                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6099                                           &iter->dev->adj_list.lower);
6100                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6101                                           &dev->adj_list.upper);
6102         }
6103
6104         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6105                 if (!net_eq(net, dev_net(iter->dev)))
6106                         continue;
6107                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6108                                           &iter->dev->adj_list.upper);
6109                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6110                                           &dev->adj_list.lower);
6111         }
6112 }
6113
6114 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6115 {
6116         struct netdev_adjacent *iter;
6117
6118         struct net *net = dev_net(dev);
6119
6120         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6121                 if (!net_eq(net, dev_net(iter->dev)))
6122                         continue;
6123                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6124                                           &iter->dev->adj_list.lower);
6125                 netdev_adjacent_sysfs_add(iter->dev, dev,
6126                                           &iter->dev->adj_list.lower);
6127         }
6128
6129         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6130                 if (!net_eq(net, dev_net(iter->dev)))
6131                         continue;
6132                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6133                                           &iter->dev->adj_list.upper);
6134                 netdev_adjacent_sysfs_add(iter->dev, dev,
6135                                           &iter->dev->adj_list.upper);
6136         }
6137 }
6138
6139 void *netdev_lower_dev_get_private(struct net_device *dev,
6140                                    struct net_device *lower_dev)
6141 {
6142         struct netdev_adjacent *lower;
6143
6144         if (!lower_dev)
6145                 return NULL;
6146         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6147         if (!lower)
6148                 return NULL;
6149
6150         return lower->private;
6151 }
6152 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6153
6154
6155 int dev_get_nest_level(struct net_device *dev)
6156 {
6157         struct net_device *lower = NULL;
6158         struct list_head *iter;
6159         int max_nest = -1;
6160         int nest;
6161
6162         ASSERT_RTNL();
6163
6164         netdev_for_each_lower_dev(dev, lower, iter) {
6165                 nest = dev_get_nest_level(lower);
6166                 if (max_nest < nest)
6167                         max_nest = nest;
6168         }
6169
6170         return max_nest + 1;
6171 }
6172 EXPORT_SYMBOL(dev_get_nest_level);
6173
6174 /**
6175  * netdev_lower_change - Dispatch event about lower device state change
6176  * @lower_dev: device
6177  * @lower_state_info: state to dispatch
6178  *
6179  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6180  * The caller must hold the RTNL lock.
6181  */
6182 void netdev_lower_state_changed(struct net_device *lower_dev,
6183                                 void *lower_state_info)
6184 {
6185         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6186
6187         ASSERT_RTNL();
6188         changelowerstate_info.lower_state_info = lower_state_info;
6189         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6190                                       &changelowerstate_info.info);
6191 }
6192 EXPORT_SYMBOL(netdev_lower_state_changed);
6193
6194 static void dev_change_rx_flags(struct net_device *dev, int flags)
6195 {
6196         const struct net_device_ops *ops = dev->netdev_ops;
6197
6198         if (ops->ndo_change_rx_flags)
6199                 ops->ndo_change_rx_flags(dev, flags);
6200 }
6201
6202 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6203 {
6204         unsigned int old_flags = dev->flags;
6205         kuid_t uid;
6206         kgid_t gid;
6207
6208         ASSERT_RTNL();
6209
6210         dev->flags |= IFF_PROMISC;
6211         dev->promiscuity += inc;
6212         if (dev->promiscuity == 0) {
6213                 /*
6214                  * Avoid overflow.
6215                  * If inc causes overflow, untouch promisc and return error.
6216                  */
6217                 if (inc < 0)
6218                         dev->flags &= ~IFF_PROMISC;
6219                 else {
6220                         dev->promiscuity -= inc;
6221                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6222                                 dev->name);
6223                         return -EOVERFLOW;
6224                 }
6225         }
6226         if (dev->flags != old_flags) {
6227                 pr_info("device %s %s promiscuous mode\n",
6228                         dev->name,
6229                         dev->flags & IFF_PROMISC ? "entered" : "left");
6230                 if (audit_enabled) {
6231                         current_uid_gid(&uid, &gid);
6232                         audit_log(current->audit_context, GFP_ATOMIC,
6233                                 AUDIT_ANOM_PROMISCUOUS,
6234                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6235                                 dev->name, (dev->flags & IFF_PROMISC),
6236                                 (old_flags & IFF_PROMISC),
6237                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6238                                 from_kuid(&init_user_ns, uid),
6239                                 from_kgid(&init_user_ns, gid),
6240                                 audit_get_sessionid(current));
6241                 }
6242
6243                 dev_change_rx_flags(dev, IFF_PROMISC);
6244         }
6245         if (notify)
6246                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6247         return 0;
6248 }
6249
6250 /**
6251  *      dev_set_promiscuity     - update promiscuity count on a device
6252  *      @dev: device
6253  *      @inc: modifier
6254  *
6255  *      Add or remove promiscuity from a device. While the count in the device
6256  *      remains above zero the interface remains promiscuous. Once it hits zero
6257  *      the device reverts back to normal filtering operation. A negative inc
6258  *      value is used to drop promiscuity on the device.
6259  *      Return 0 if successful or a negative errno code on error.
6260  */
6261 int dev_set_promiscuity(struct net_device *dev, int inc)
6262 {
6263         unsigned int old_flags = dev->flags;
6264         int err;
6265
6266         err = __dev_set_promiscuity(dev, inc, true);
6267         if (err < 0)
6268                 return err;
6269         if (dev->flags != old_flags)
6270                 dev_set_rx_mode(dev);
6271         return err;
6272 }
6273 EXPORT_SYMBOL(dev_set_promiscuity);
6274
6275 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6276 {
6277         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6278
6279         ASSERT_RTNL();
6280
6281         dev->flags |= IFF_ALLMULTI;
6282         dev->allmulti += inc;
6283         if (dev->allmulti == 0) {
6284                 /*
6285                  * Avoid overflow.
6286                  * If inc causes overflow, untouch allmulti and return error.
6287                  */
6288                 if (inc < 0)
6289                         dev->flags &= ~IFF_ALLMULTI;
6290                 else {
6291                         dev->allmulti -= inc;
6292                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6293                                 dev->name);
6294                         return -EOVERFLOW;
6295                 }
6296         }
6297         if (dev->flags ^ old_flags) {
6298                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6299                 dev_set_rx_mode(dev);
6300                 if (notify)
6301                         __dev_notify_flags(dev, old_flags,
6302                                            dev->gflags ^ old_gflags);
6303         }
6304         return 0;
6305 }
6306
6307 /**
6308  *      dev_set_allmulti        - update allmulti count on a device
6309  *      @dev: device
6310  *      @inc: modifier
6311  *
6312  *      Add or remove reception of all multicast frames to a device. While the
6313  *      count in the device remains above zero the interface remains listening
6314  *      to all interfaces. Once it hits zero the device reverts back to normal
6315  *      filtering operation. A negative @inc value is used to drop the counter
6316  *      when releasing a resource needing all multicasts.
6317  *      Return 0 if successful or a negative errno code on error.
6318  */
6319
6320 int dev_set_allmulti(struct net_device *dev, int inc)
6321 {
6322         return __dev_set_allmulti(dev, inc, true);
6323 }
6324 EXPORT_SYMBOL(dev_set_allmulti);
6325
6326 /*
6327  *      Upload unicast and multicast address lists to device and
6328  *      configure RX filtering. When the device doesn't support unicast
6329  *      filtering it is put in promiscuous mode while unicast addresses
6330  *      are present.
6331  */
6332 void __dev_set_rx_mode(struct net_device *dev)
6333 {
6334         const struct net_device_ops *ops = dev->netdev_ops;
6335
6336         /* dev_open will call this function so the list will stay sane. */
6337         if (!(dev->flags&IFF_UP))
6338                 return;
6339
6340         if (!netif_device_present(dev))
6341                 return;
6342
6343         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6344                 /* Unicast addresses changes may only happen under the rtnl,
6345                  * therefore calling __dev_set_promiscuity here is safe.
6346                  */
6347                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6348                         __dev_set_promiscuity(dev, 1, false);
6349                         dev->uc_promisc = true;
6350                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6351                         __dev_set_promiscuity(dev, -1, false);
6352                         dev->uc_promisc = false;
6353                 }
6354         }
6355
6356         if (ops->ndo_set_rx_mode)
6357                 ops->ndo_set_rx_mode(dev);
6358 }
6359
6360 void dev_set_rx_mode(struct net_device *dev)
6361 {
6362         netif_addr_lock_bh(dev);
6363         __dev_set_rx_mode(dev);
6364         netif_addr_unlock_bh(dev);
6365 }
6366
6367 /**
6368  *      dev_get_flags - get flags reported to userspace
6369  *      @dev: device
6370  *
6371  *      Get the combination of flag bits exported through APIs to userspace.
6372  */
6373 unsigned int dev_get_flags(const struct net_device *dev)
6374 {
6375         unsigned int flags;
6376
6377         flags = (dev->flags & ~(IFF_PROMISC |
6378                                 IFF_ALLMULTI |
6379                                 IFF_RUNNING |
6380                                 IFF_LOWER_UP |
6381                                 IFF_DORMANT)) |
6382                 (dev->gflags & (IFF_PROMISC |
6383                                 IFF_ALLMULTI));
6384
6385         if (netif_running(dev)) {
6386                 if (netif_oper_up(dev))
6387                         flags |= IFF_RUNNING;
6388                 if (netif_carrier_ok(dev))
6389                         flags |= IFF_LOWER_UP;
6390                 if (netif_dormant(dev))
6391                         flags |= IFF_DORMANT;
6392         }
6393
6394         return flags;
6395 }
6396 EXPORT_SYMBOL(dev_get_flags);
6397
6398 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6399 {
6400         unsigned int old_flags = dev->flags;
6401         int ret;
6402
6403         ASSERT_RTNL();
6404
6405         /*
6406          *      Set the flags on our device.
6407          */
6408
6409         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6410                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6411                                IFF_AUTOMEDIA)) |
6412                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6413                                     IFF_ALLMULTI));
6414
6415         /*
6416          *      Load in the correct multicast list now the flags have changed.
6417          */
6418
6419         if ((old_flags ^ flags) & IFF_MULTICAST)
6420                 dev_change_rx_flags(dev, IFF_MULTICAST);
6421
6422         dev_set_rx_mode(dev);
6423
6424         /*
6425          *      Have we downed the interface. We handle IFF_UP ourselves
6426          *      according to user attempts to set it, rather than blindly
6427          *      setting it.
6428          */
6429
6430         ret = 0;
6431         if ((old_flags ^ flags) & IFF_UP)
6432                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6433
6434         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6435                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6436                 unsigned int old_flags = dev->flags;
6437
6438                 dev->gflags ^= IFF_PROMISC;
6439
6440                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6441                         if (dev->flags != old_flags)
6442                                 dev_set_rx_mode(dev);
6443         }
6444
6445         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6446          * is important. Some (broken) drivers set IFF_PROMISC, when
6447          * IFF_ALLMULTI is requested not asking us and not reporting.
6448          */
6449         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6450                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6451
6452                 dev->gflags ^= IFF_ALLMULTI;
6453                 __dev_set_allmulti(dev, inc, false);
6454         }
6455
6456         return ret;
6457 }
6458
6459 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6460                         unsigned int gchanges)
6461 {
6462         unsigned int changes = dev->flags ^ old_flags;
6463
6464         if (gchanges)
6465                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6466
6467         if (changes & IFF_UP) {
6468                 if (dev->flags & IFF_UP)
6469                         call_netdevice_notifiers(NETDEV_UP, dev);
6470                 else
6471                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6472         }
6473
6474         if (dev->flags & IFF_UP &&
6475             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6476                 struct netdev_notifier_change_info change_info;
6477
6478                 change_info.flags_changed = changes;
6479                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6480                                               &change_info.info);
6481         }
6482 }
6483
6484 /**
6485  *      dev_change_flags - change device settings
6486  *      @dev: device
6487  *      @flags: device state flags
6488  *
6489  *      Change settings on device based state flags. The flags are
6490  *      in the userspace exported format.
6491  */
6492 int dev_change_flags(struct net_device *dev, unsigned int flags)
6493 {
6494         int ret;
6495         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6496
6497         ret = __dev_change_flags(dev, flags);
6498         if (ret < 0)
6499                 return ret;
6500
6501         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6502         __dev_notify_flags(dev, old_flags, changes);
6503         return ret;
6504 }
6505 EXPORT_SYMBOL(dev_change_flags);
6506
6507 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6508 {
6509         const struct net_device_ops *ops = dev->netdev_ops;
6510
6511         if (ops->ndo_change_mtu)
6512                 return ops->ndo_change_mtu(dev, new_mtu);
6513
6514         dev->mtu = new_mtu;
6515         return 0;
6516 }
6517
6518 /**
6519  *      dev_set_mtu - Change maximum transfer unit
6520  *      @dev: device
6521  *      @new_mtu: new transfer unit
6522  *
6523  *      Change the maximum transfer size of the network device.
6524  */
6525 int dev_set_mtu(struct net_device *dev, int new_mtu)
6526 {
6527         int err, orig_mtu;
6528
6529         if (new_mtu == dev->mtu)
6530                 return 0;
6531
6532         /* MTU must be positive, and in range */
6533         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6534                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6535                                     dev->name, new_mtu, dev->min_mtu);
6536                 return -EINVAL;
6537         }
6538
6539         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6540                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6541                                     dev->name, new_mtu, dev->max_mtu);
6542                 return -EINVAL;
6543         }
6544
6545         if (!netif_device_present(dev))
6546                 return -ENODEV;
6547
6548         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6549         err = notifier_to_errno(err);
6550         if (err)
6551                 return err;
6552
6553         orig_mtu = dev->mtu;
6554         err = __dev_set_mtu(dev, new_mtu);
6555
6556         if (!err) {
6557                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6558                 err = notifier_to_errno(err);
6559                 if (err) {
6560                         /* setting mtu back and notifying everyone again,
6561                          * so that they have a chance to revert changes.
6562                          */
6563                         __dev_set_mtu(dev, orig_mtu);
6564                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6565                 }
6566         }
6567         return err;
6568 }
6569 EXPORT_SYMBOL(dev_set_mtu);
6570
6571 /**
6572  *      dev_set_group - Change group this device belongs to
6573  *      @dev: device
6574  *      @new_group: group this device should belong to
6575  */
6576 void dev_set_group(struct net_device *dev, int new_group)
6577 {
6578         dev->group = new_group;
6579 }
6580 EXPORT_SYMBOL(dev_set_group);
6581
6582 /**
6583  *      dev_set_mac_address - Change Media Access Control Address
6584  *      @dev: device
6585  *      @sa: new address
6586  *
6587  *      Change the hardware (MAC) address of the device
6588  */
6589 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6590 {
6591         const struct net_device_ops *ops = dev->netdev_ops;
6592         int err;
6593
6594         if (!ops->ndo_set_mac_address)
6595                 return -EOPNOTSUPP;
6596         if (sa->sa_family != dev->type)
6597                 return -EINVAL;
6598         if (!netif_device_present(dev))
6599                 return -ENODEV;
6600         err = ops->ndo_set_mac_address(dev, sa);
6601         if (err)
6602                 return err;
6603         dev->addr_assign_type = NET_ADDR_SET;
6604         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6605         add_device_randomness(dev->dev_addr, dev->addr_len);
6606         return 0;
6607 }
6608 EXPORT_SYMBOL(dev_set_mac_address);
6609
6610 /**
6611  *      dev_change_carrier - Change device carrier
6612  *      @dev: device
6613  *      @new_carrier: new value
6614  *
6615  *      Change device carrier
6616  */
6617 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6618 {
6619         const struct net_device_ops *ops = dev->netdev_ops;
6620
6621         if (!ops->ndo_change_carrier)
6622                 return -EOPNOTSUPP;
6623         if (!netif_device_present(dev))
6624                 return -ENODEV;
6625         return ops->ndo_change_carrier(dev, new_carrier);
6626 }
6627 EXPORT_SYMBOL(dev_change_carrier);
6628
6629 /**
6630  *      dev_get_phys_port_id - Get device physical port ID
6631  *      @dev: device
6632  *      @ppid: port ID
6633  *
6634  *      Get device physical port ID
6635  */
6636 int dev_get_phys_port_id(struct net_device *dev,
6637                          struct netdev_phys_item_id *ppid)
6638 {
6639         const struct net_device_ops *ops = dev->netdev_ops;
6640
6641         if (!ops->ndo_get_phys_port_id)
6642                 return -EOPNOTSUPP;
6643         return ops->ndo_get_phys_port_id(dev, ppid);
6644 }
6645 EXPORT_SYMBOL(dev_get_phys_port_id);
6646
6647 /**
6648  *      dev_get_phys_port_name - Get device physical port name
6649  *      @dev: device
6650  *      @name: port name
6651  *      @len: limit of bytes to copy to name
6652  *
6653  *      Get device physical port name
6654  */
6655 int dev_get_phys_port_name(struct net_device *dev,
6656                            char *name, size_t len)
6657 {
6658         const struct net_device_ops *ops = dev->netdev_ops;
6659
6660         if (!ops->ndo_get_phys_port_name)
6661                 return -EOPNOTSUPP;
6662         return ops->ndo_get_phys_port_name(dev, name, len);
6663 }
6664 EXPORT_SYMBOL(dev_get_phys_port_name);
6665
6666 /**
6667  *      dev_change_proto_down - update protocol port state information
6668  *      @dev: device
6669  *      @proto_down: new value
6670  *
6671  *      This info can be used by switch drivers to set the phys state of the
6672  *      port.
6673  */
6674 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6675 {
6676         const struct net_device_ops *ops = dev->netdev_ops;
6677
6678         if (!ops->ndo_change_proto_down)
6679                 return -EOPNOTSUPP;
6680         if (!netif_device_present(dev))
6681                 return -ENODEV;
6682         return ops->ndo_change_proto_down(dev, proto_down);
6683 }
6684 EXPORT_SYMBOL(dev_change_proto_down);
6685
6686 /**
6687  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6688  *      @dev: device
6689  *      @fd: new program fd or negative value to clear
6690  *      @flags: xdp-related flags
6691  *
6692  *      Set or clear a bpf program for a device
6693  */
6694 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6695 {
6696         const struct net_device_ops *ops = dev->netdev_ops;
6697         struct bpf_prog *prog = NULL;
6698         struct netdev_xdp xdp;
6699         int err;
6700
6701         ASSERT_RTNL();
6702
6703         if (!ops->ndo_xdp)
6704                 return -EOPNOTSUPP;
6705         if (fd >= 0) {
6706                 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6707                         memset(&xdp, 0, sizeof(xdp));
6708                         xdp.command = XDP_QUERY_PROG;
6709
6710                         err = ops->ndo_xdp(dev, &xdp);
6711                         if (err < 0)
6712                                 return err;
6713                         if (xdp.prog_attached)
6714                                 return -EBUSY;
6715                 }
6716
6717                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6718                 if (IS_ERR(prog))
6719                         return PTR_ERR(prog);
6720         }
6721
6722         memset(&xdp, 0, sizeof(xdp));
6723         xdp.command = XDP_SETUP_PROG;
6724         xdp.prog = prog;
6725
6726         err = ops->ndo_xdp(dev, &xdp);
6727         if (err < 0 && prog)
6728                 bpf_prog_put(prog);
6729
6730         return err;
6731 }
6732 EXPORT_SYMBOL(dev_change_xdp_fd);
6733
6734 /**
6735  *      dev_new_index   -       allocate an ifindex
6736  *      @net: the applicable net namespace
6737  *
6738  *      Returns a suitable unique value for a new device interface
6739  *      number.  The caller must hold the rtnl semaphore or the
6740  *      dev_base_lock to be sure it remains unique.
6741  */
6742 static int dev_new_index(struct net *net)
6743 {
6744         int ifindex = net->ifindex;
6745
6746         for (;;) {
6747                 if (++ifindex <= 0)
6748                         ifindex = 1;
6749                 if (!__dev_get_by_index(net, ifindex))
6750                         return net->ifindex = ifindex;
6751         }
6752 }
6753
6754 /* Delayed registration/unregisteration */
6755 static LIST_HEAD(net_todo_list);
6756 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6757
6758 static void net_set_todo(struct net_device *dev)
6759 {
6760         list_add_tail(&dev->todo_list, &net_todo_list);
6761         dev_net(dev)->dev_unreg_count++;
6762 }
6763
6764 static void rollback_registered_many(struct list_head *head)
6765 {
6766         struct net_device *dev, *tmp;
6767         LIST_HEAD(close_head);
6768
6769         BUG_ON(dev_boot_phase);
6770         ASSERT_RTNL();
6771
6772         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6773                 /* Some devices call without registering
6774                  * for initialization unwind. Remove those
6775                  * devices and proceed with the remaining.
6776                  */
6777                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6778                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6779                                  dev->name, dev);
6780
6781                         WARN_ON(1);
6782                         list_del(&dev->unreg_list);
6783                         continue;
6784                 }
6785                 dev->dismantle = true;
6786                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6787         }
6788
6789         /* If device is running, close it first. */
6790         list_for_each_entry(dev, head, unreg_list)
6791                 list_add_tail(&dev->close_list, &close_head);
6792         dev_close_many(&close_head, true);
6793
6794         list_for_each_entry(dev, head, unreg_list) {
6795                 /* And unlink it from device chain. */
6796                 unlist_netdevice(dev);
6797
6798                 dev->reg_state = NETREG_UNREGISTERING;
6799         }
6800         flush_all_backlogs();
6801
6802         synchronize_net();
6803
6804         list_for_each_entry(dev, head, unreg_list) {
6805                 struct sk_buff *skb = NULL;
6806
6807                 /* Shutdown queueing discipline. */
6808                 dev_shutdown(dev);
6809
6810
6811                 /* Notify protocols, that we are about to destroy
6812                  * this device. They should clean all the things.
6813                  */
6814                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6815
6816                 if (!dev->rtnl_link_ops ||
6817                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6818                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6819                                                      GFP_KERNEL);
6820
6821                 /*
6822                  *      Flush the unicast and multicast chains
6823                  */
6824                 dev_uc_flush(dev);
6825                 dev_mc_flush(dev);
6826
6827                 if (dev->netdev_ops->ndo_uninit)
6828                         dev->netdev_ops->ndo_uninit(dev);
6829
6830                 if (skb)
6831                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6832
6833                 /* Notifier chain MUST detach us all upper devices. */
6834                 WARN_ON(netdev_has_any_upper_dev(dev));
6835                 WARN_ON(netdev_has_any_lower_dev(dev));
6836
6837                 /* Remove entries from kobject tree */
6838                 netdev_unregister_kobject(dev);
6839 #ifdef CONFIG_XPS
6840                 /* Remove XPS queueing entries */
6841                 netif_reset_xps_queues_gt(dev, 0);
6842 #endif
6843         }
6844
6845         synchronize_net();
6846
6847         list_for_each_entry(dev, head, unreg_list)
6848                 dev_put(dev);
6849 }
6850
6851 static void rollback_registered(struct net_device *dev)
6852 {
6853         LIST_HEAD(single);
6854
6855         list_add(&dev->unreg_list, &single);
6856         rollback_registered_many(&single);
6857         list_del(&single);
6858 }
6859
6860 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6861         struct net_device *upper, netdev_features_t features)
6862 {
6863         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6864         netdev_features_t feature;
6865         int feature_bit;
6866
6867         for_each_netdev_feature(&upper_disables, feature_bit) {
6868                 feature = __NETIF_F_BIT(feature_bit);
6869                 if (!(upper->wanted_features & feature)
6870                     && (features & feature)) {
6871                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6872                                    &feature, upper->name);
6873                         features &= ~feature;
6874                 }
6875         }
6876
6877         return features;
6878 }
6879
6880 static void netdev_sync_lower_features(struct net_device *upper,
6881         struct net_device *lower, netdev_features_t features)
6882 {
6883         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6884         netdev_features_t feature;
6885         int feature_bit;
6886
6887         for_each_netdev_feature(&upper_disables, feature_bit) {
6888                 feature = __NETIF_F_BIT(feature_bit);
6889                 if (!(features & feature) && (lower->features & feature)) {
6890                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6891                                    &feature, lower->name);
6892                         lower->wanted_features &= ~feature;
6893                         netdev_update_features(lower);
6894
6895                         if (unlikely(lower->features & feature))
6896                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6897                                             &feature, lower->name);
6898                 }
6899         }
6900 }
6901
6902 static netdev_features_t netdev_fix_features(struct net_device *dev,
6903         netdev_features_t features)
6904 {
6905         /* Fix illegal checksum combinations */
6906         if ((features & NETIF_F_HW_CSUM) &&
6907             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6908                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6909                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6910         }
6911
6912         /* TSO requires that SG is present as well. */
6913         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6914                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6915                 features &= ~NETIF_F_ALL_TSO;
6916         }
6917
6918         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6919                                         !(features & NETIF_F_IP_CSUM)) {
6920                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6921                 features &= ~NETIF_F_TSO;
6922                 features &= ~NETIF_F_TSO_ECN;
6923         }
6924
6925         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6926                                          !(features & NETIF_F_IPV6_CSUM)) {
6927                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6928                 features &= ~NETIF_F_TSO6;
6929         }
6930
6931         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6932         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6933                 features &= ~NETIF_F_TSO_MANGLEID;
6934
6935         /* TSO ECN requires that TSO is present as well. */
6936         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6937                 features &= ~NETIF_F_TSO_ECN;
6938
6939         /* Software GSO depends on SG. */
6940         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6941                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6942                 features &= ~NETIF_F_GSO;
6943         }
6944
6945         /* UFO needs SG and checksumming */
6946         if (features & NETIF_F_UFO) {
6947                 /* maybe split UFO into V4 and V6? */
6948                 if (!(features & NETIF_F_HW_CSUM) &&
6949                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6950                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6951                         netdev_dbg(dev,
6952                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6953                         features &= ~NETIF_F_UFO;
6954                 }
6955
6956                 if (!(features & NETIF_F_SG)) {
6957                         netdev_dbg(dev,
6958                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6959                         features &= ~NETIF_F_UFO;
6960                 }
6961         }
6962
6963         /* GSO partial features require GSO partial be set */
6964         if ((features & dev->gso_partial_features) &&
6965             !(features & NETIF_F_GSO_PARTIAL)) {
6966                 netdev_dbg(dev,
6967                            "Dropping partially supported GSO features since no GSO partial.\n");
6968                 features &= ~dev->gso_partial_features;
6969         }
6970
6971         return features;
6972 }
6973
6974 int __netdev_update_features(struct net_device *dev)
6975 {
6976         struct net_device *upper, *lower;
6977         netdev_features_t features;
6978         struct list_head *iter;
6979         int err = -1;
6980
6981         ASSERT_RTNL();
6982
6983         features = netdev_get_wanted_features(dev);
6984
6985         if (dev->netdev_ops->ndo_fix_features)
6986                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6987
6988         /* driver might be less strict about feature dependencies */
6989         features = netdev_fix_features(dev, features);
6990
6991         /* some features can't be enabled if they're off an an upper device */
6992         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6993                 features = netdev_sync_upper_features(dev, upper, features);
6994
6995         if (dev->features == features)
6996                 goto sync_lower;
6997
6998         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6999                 &dev->features, &features);
7000
7001         if (dev->netdev_ops->ndo_set_features)
7002                 err = dev->netdev_ops->ndo_set_features(dev, features);
7003         else
7004                 err = 0;
7005
7006         if (unlikely(err < 0)) {
7007                 netdev_err(dev,
7008                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7009                         err, &features, &dev->features);
7010                 /* return non-0 since some features might have changed and
7011                  * it's better to fire a spurious notification than miss it
7012                  */
7013                 return -1;
7014         }
7015
7016 sync_lower:
7017         /* some features must be disabled on lower devices when disabled
7018          * on an upper device (think: bonding master or bridge)
7019          */
7020         netdev_for_each_lower_dev(dev, lower, iter)
7021                 netdev_sync_lower_features(dev, lower, features);
7022
7023         if (!err)
7024                 dev->features = features;
7025
7026         return err < 0 ? 0 : 1;
7027 }
7028
7029 /**
7030  *      netdev_update_features - recalculate device features
7031  *      @dev: the device to check
7032  *
7033  *      Recalculate dev->features set and send notifications if it
7034  *      has changed. Should be called after driver or hardware dependent
7035  *      conditions might have changed that influence the features.
7036  */
7037 void netdev_update_features(struct net_device *dev)
7038 {
7039         if (__netdev_update_features(dev))
7040                 netdev_features_change(dev);
7041 }
7042 EXPORT_SYMBOL(netdev_update_features);
7043
7044 /**
7045  *      netdev_change_features - recalculate device features
7046  *      @dev: the device to check
7047  *
7048  *      Recalculate dev->features set and send notifications even
7049  *      if they have not changed. Should be called instead of
7050  *      netdev_update_features() if also dev->vlan_features might
7051  *      have changed to allow the changes to be propagated to stacked
7052  *      VLAN devices.
7053  */
7054 void netdev_change_features(struct net_device *dev)
7055 {
7056         __netdev_update_features(dev);
7057         netdev_features_change(dev);
7058 }
7059 EXPORT_SYMBOL(netdev_change_features);
7060
7061 /**
7062  *      netif_stacked_transfer_operstate -      transfer operstate
7063  *      @rootdev: the root or lower level device to transfer state from
7064  *      @dev: the device to transfer operstate to
7065  *
7066  *      Transfer operational state from root to device. This is normally
7067  *      called when a stacking relationship exists between the root
7068  *      device and the device(a leaf device).
7069  */
7070 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7071                                         struct net_device *dev)
7072 {
7073         if (rootdev->operstate == IF_OPER_DORMANT)
7074                 netif_dormant_on(dev);
7075         else
7076                 netif_dormant_off(dev);
7077
7078         if (netif_carrier_ok(rootdev)) {
7079                 if (!netif_carrier_ok(dev))
7080                         netif_carrier_on(dev);
7081         } else {
7082                 if (netif_carrier_ok(dev))
7083                         netif_carrier_off(dev);
7084         }
7085 }
7086 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7087
7088 #ifdef CONFIG_SYSFS
7089 static int netif_alloc_rx_queues(struct net_device *dev)
7090 {
7091         unsigned int i, count = dev->num_rx_queues;
7092         struct netdev_rx_queue *rx;
7093         size_t sz = count * sizeof(*rx);
7094
7095         BUG_ON(count < 1);
7096
7097         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7098         if (!rx) {
7099                 rx = vzalloc(sz);
7100                 if (!rx)
7101                         return -ENOMEM;
7102         }
7103         dev->_rx = rx;
7104
7105         for (i = 0; i < count; i++)
7106                 rx[i].dev = dev;
7107         return 0;
7108 }
7109 #endif
7110
7111 static void netdev_init_one_queue(struct net_device *dev,
7112                                   struct netdev_queue *queue, void *_unused)
7113 {
7114         /* Initialize queue lock */
7115         spin_lock_init(&queue->_xmit_lock);
7116         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7117         queue->xmit_lock_owner = -1;
7118         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7119         queue->dev = dev;
7120 #ifdef CONFIG_BQL
7121         dql_init(&queue->dql, HZ);
7122 #endif
7123 }
7124
7125 static void netif_free_tx_queues(struct net_device *dev)
7126 {
7127         kvfree(dev->_tx);
7128 }
7129
7130 static int netif_alloc_netdev_queues(struct net_device *dev)
7131 {
7132         unsigned int count = dev->num_tx_queues;
7133         struct netdev_queue *tx;
7134         size_t sz = count * sizeof(*tx);
7135
7136         if (count < 1 || count > 0xffff)
7137                 return -EINVAL;
7138
7139         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7140         if (!tx) {
7141                 tx = vzalloc(sz);
7142                 if (!tx)
7143                         return -ENOMEM;
7144         }
7145         dev->_tx = tx;
7146
7147         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7148         spin_lock_init(&dev->tx_global_lock);
7149
7150         return 0;
7151 }
7152
7153 void netif_tx_stop_all_queues(struct net_device *dev)
7154 {
7155         unsigned int i;
7156
7157         for (i = 0; i < dev->num_tx_queues; i++) {
7158                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7159
7160                 netif_tx_stop_queue(txq);
7161         }
7162 }
7163 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7164
7165 /**
7166  *      register_netdevice      - register a network device
7167  *      @dev: device to register
7168  *
7169  *      Take a completed network device structure and add it to the kernel
7170  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7171  *      chain. 0 is returned on success. A negative errno code is returned
7172  *      on a failure to set up the device, or if the name is a duplicate.
7173  *
7174  *      Callers must hold the rtnl semaphore. You may want
7175  *      register_netdev() instead of this.
7176  *
7177  *      BUGS:
7178  *      The locking appears insufficient to guarantee two parallel registers
7179  *      will not get the same name.
7180  */
7181
7182 int register_netdevice(struct net_device *dev)
7183 {
7184         int ret;
7185         struct net *net = dev_net(dev);
7186
7187         BUG_ON(dev_boot_phase);
7188         ASSERT_RTNL();
7189
7190         might_sleep();
7191
7192         /* When net_device's are persistent, this will be fatal. */
7193         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7194         BUG_ON(!net);
7195
7196         spin_lock_init(&dev->addr_list_lock);
7197         netdev_set_addr_lockdep_class(dev);
7198
7199         ret = dev_get_valid_name(net, dev, dev->name);
7200         if (ret < 0)
7201                 goto out;
7202
7203         /* Init, if this function is available */
7204         if (dev->netdev_ops->ndo_init) {
7205                 ret = dev->netdev_ops->ndo_init(dev);
7206                 if (ret) {
7207                         if (ret > 0)
7208                                 ret = -EIO;
7209                         goto out;
7210                 }
7211         }
7212
7213         if (((dev->hw_features | dev->features) &
7214              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7215             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7216              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7217                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7218                 ret = -EINVAL;
7219                 goto err_uninit;
7220         }
7221
7222         ret = -EBUSY;
7223         if (!dev->ifindex)
7224                 dev->ifindex = dev_new_index(net);
7225         else if (__dev_get_by_index(net, dev->ifindex))
7226                 goto err_uninit;
7227
7228         /* Transfer changeable features to wanted_features and enable
7229          * software offloads (GSO and GRO).
7230          */
7231         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7232         dev->features |= NETIF_F_SOFT_FEATURES;
7233         dev->wanted_features = dev->features & dev->hw_features;
7234
7235         if (!(dev->flags & IFF_LOOPBACK))
7236                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7237
7238         /* If IPv4 TCP segmentation offload is supported we should also
7239          * allow the device to enable segmenting the frame with the option
7240          * of ignoring a static IP ID value.  This doesn't enable the
7241          * feature itself but allows the user to enable it later.
7242          */
7243         if (dev->hw_features & NETIF_F_TSO)
7244                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7245         if (dev->vlan_features & NETIF_F_TSO)
7246                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7247         if (dev->mpls_features & NETIF_F_TSO)
7248                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7249         if (dev->hw_enc_features & NETIF_F_TSO)
7250                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7251
7252         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7253          */
7254         dev->vlan_features |= NETIF_F_HIGHDMA;
7255
7256         /* Make NETIF_F_SG inheritable to tunnel devices.
7257          */
7258         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7259
7260         /* Make NETIF_F_SG inheritable to MPLS.
7261          */
7262         dev->mpls_features |= NETIF_F_SG;
7263
7264         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7265         ret = notifier_to_errno(ret);
7266         if (ret)
7267                 goto err_uninit;
7268
7269         ret = netdev_register_kobject(dev);
7270         if (ret)
7271                 goto err_uninit;
7272         dev->reg_state = NETREG_REGISTERED;
7273
7274         __netdev_update_features(dev);
7275
7276         /*
7277          *      Default initial state at registry is that the
7278          *      device is present.
7279          */
7280
7281         set_bit(__LINK_STATE_PRESENT, &dev->state);
7282
7283         linkwatch_init_dev(dev);
7284
7285         dev_init_scheduler(dev);
7286         dev_hold(dev);
7287         list_netdevice(dev);
7288         add_device_randomness(dev->dev_addr, dev->addr_len);
7289
7290         /* If the device has permanent device address, driver should
7291          * set dev_addr and also addr_assign_type should be set to
7292          * NET_ADDR_PERM (default value).
7293          */
7294         if (dev->addr_assign_type == NET_ADDR_PERM)
7295                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7296
7297         /* Notify protocols, that a new device appeared. */
7298         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7299         ret = notifier_to_errno(ret);
7300         if (ret) {
7301                 rollback_registered(dev);
7302                 dev->reg_state = NETREG_UNREGISTERED;
7303         }
7304         /*
7305          *      Prevent userspace races by waiting until the network
7306          *      device is fully setup before sending notifications.
7307          */
7308         if (!dev->rtnl_link_ops ||
7309             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7310                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7311
7312 out:
7313         return ret;
7314
7315 err_uninit:
7316         if (dev->netdev_ops->ndo_uninit)
7317                 dev->netdev_ops->ndo_uninit(dev);
7318         goto out;
7319 }
7320 EXPORT_SYMBOL(register_netdevice);
7321
7322 /**
7323  *      init_dummy_netdev       - init a dummy network device for NAPI
7324  *      @dev: device to init
7325  *
7326  *      This takes a network device structure and initialize the minimum
7327  *      amount of fields so it can be used to schedule NAPI polls without
7328  *      registering a full blown interface. This is to be used by drivers
7329  *      that need to tie several hardware interfaces to a single NAPI
7330  *      poll scheduler due to HW limitations.
7331  */
7332 int init_dummy_netdev(struct net_device *dev)
7333 {
7334         /* Clear everything. Note we don't initialize spinlocks
7335          * are they aren't supposed to be taken by any of the
7336          * NAPI code and this dummy netdev is supposed to be
7337          * only ever used for NAPI polls
7338          */
7339         memset(dev, 0, sizeof(struct net_device));
7340
7341         /* make sure we BUG if trying to hit standard
7342          * register/unregister code path
7343          */
7344         dev->reg_state = NETREG_DUMMY;
7345
7346         /* NAPI wants this */
7347         INIT_LIST_HEAD(&dev->napi_list);
7348
7349         /* a dummy interface is started by default */
7350         set_bit(__LINK_STATE_PRESENT, &dev->state);
7351         set_bit(__LINK_STATE_START, &dev->state);
7352
7353         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7354          * because users of this 'device' dont need to change
7355          * its refcount.
7356          */
7357
7358         return 0;
7359 }
7360 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7361
7362
7363 /**
7364  *      register_netdev - register a network device
7365  *      @dev: device to register
7366  *
7367  *      Take a completed network device structure and add it to the kernel
7368  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7369  *      chain. 0 is returned on success. A negative errno code is returned
7370  *      on a failure to set up the device, or if the name is a duplicate.
7371  *
7372  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7373  *      and expands the device name if you passed a format string to
7374  *      alloc_netdev.
7375  */
7376 int register_netdev(struct net_device *dev)
7377 {
7378         int err;
7379
7380         rtnl_lock();
7381         err = register_netdevice(dev);
7382         rtnl_unlock();
7383         return err;
7384 }
7385 EXPORT_SYMBOL(register_netdev);
7386
7387 int netdev_refcnt_read(const struct net_device *dev)
7388 {
7389         int i, refcnt = 0;
7390
7391         for_each_possible_cpu(i)
7392                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7393         return refcnt;
7394 }
7395 EXPORT_SYMBOL(netdev_refcnt_read);
7396
7397 /**
7398  * netdev_wait_allrefs - wait until all references are gone.
7399  * @dev: target net_device
7400  *
7401  * This is called when unregistering network devices.
7402  *
7403  * Any protocol or device that holds a reference should register
7404  * for netdevice notification, and cleanup and put back the
7405  * reference if they receive an UNREGISTER event.
7406  * We can get stuck here if buggy protocols don't correctly
7407  * call dev_put.
7408  */
7409 static void netdev_wait_allrefs(struct net_device *dev)
7410 {
7411         unsigned long rebroadcast_time, warning_time;
7412         int refcnt;
7413
7414         linkwatch_forget_dev(dev);
7415
7416         rebroadcast_time = warning_time = jiffies;
7417         refcnt = netdev_refcnt_read(dev);
7418
7419         while (refcnt != 0) {
7420                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7421                         rtnl_lock();
7422
7423                         /* Rebroadcast unregister notification */
7424                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7425
7426                         __rtnl_unlock();
7427                         rcu_barrier();
7428                         rtnl_lock();
7429
7430                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7431                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7432                                      &dev->state)) {
7433                                 /* We must not have linkwatch events
7434                                  * pending on unregister. If this
7435                                  * happens, we simply run the queue
7436                                  * unscheduled, resulting in a noop
7437                                  * for this device.
7438                                  */
7439                                 linkwatch_run_queue();
7440                         }
7441
7442                         __rtnl_unlock();
7443
7444                         rebroadcast_time = jiffies;
7445                 }
7446
7447                 msleep(250);
7448
7449                 refcnt = netdev_refcnt_read(dev);
7450
7451                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7452                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7453                                  dev->name, refcnt);
7454                         warning_time = jiffies;
7455                 }
7456         }
7457 }
7458
7459 /* The sequence is:
7460  *
7461  *      rtnl_lock();
7462  *      ...
7463  *      register_netdevice(x1);
7464  *      register_netdevice(x2);
7465  *      ...
7466  *      unregister_netdevice(y1);
7467  *      unregister_netdevice(y2);
7468  *      ...
7469  *      rtnl_unlock();
7470  *      free_netdev(y1);
7471  *      free_netdev(y2);
7472  *
7473  * We are invoked by rtnl_unlock().
7474  * This allows us to deal with problems:
7475  * 1) We can delete sysfs objects which invoke hotplug
7476  *    without deadlocking with linkwatch via keventd.
7477  * 2) Since we run with the RTNL semaphore not held, we can sleep
7478  *    safely in order to wait for the netdev refcnt to drop to zero.
7479  *
7480  * We must not return until all unregister events added during
7481  * the interval the lock was held have been completed.
7482  */
7483 void netdev_run_todo(void)
7484 {
7485         struct list_head list;
7486
7487         /* Snapshot list, allow later requests */
7488         list_replace_init(&net_todo_list, &list);
7489
7490         __rtnl_unlock();
7491
7492
7493         /* Wait for rcu callbacks to finish before next phase */
7494         if (!list_empty(&list))
7495                 rcu_barrier();
7496
7497         while (!list_empty(&list)) {
7498                 struct net_device *dev
7499                         = list_first_entry(&list, struct net_device, todo_list);
7500                 list_del(&dev->todo_list);
7501
7502                 rtnl_lock();
7503                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7504                 __rtnl_unlock();
7505
7506                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7507                         pr_err("network todo '%s' but state %d\n",
7508                                dev->name, dev->reg_state);
7509                         dump_stack();
7510                         continue;
7511                 }
7512
7513                 dev->reg_state = NETREG_UNREGISTERED;
7514
7515                 netdev_wait_allrefs(dev);
7516
7517                 /* paranoia */
7518                 BUG_ON(netdev_refcnt_read(dev));
7519                 BUG_ON(!list_empty(&dev->ptype_all));
7520                 BUG_ON(!list_empty(&dev->ptype_specific));
7521                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7522                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7523                 WARN_ON(dev->dn_ptr);
7524
7525                 if (dev->destructor)
7526                         dev->destructor(dev);
7527
7528                 /* Report a network device has been unregistered */
7529                 rtnl_lock();
7530                 dev_net(dev)->dev_unreg_count--;
7531                 __rtnl_unlock();
7532                 wake_up(&netdev_unregistering_wq);
7533
7534                 /* Free network device */
7535                 kobject_put(&dev->dev.kobj);
7536         }
7537 }
7538
7539 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7540  * all the same fields in the same order as net_device_stats, with only
7541  * the type differing, but rtnl_link_stats64 may have additional fields
7542  * at the end for newer counters.
7543  */
7544 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7545                              const struct net_device_stats *netdev_stats)
7546 {
7547 #if BITS_PER_LONG == 64
7548         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7549         memcpy(stats64, netdev_stats, sizeof(*stats64));
7550         /* zero out counters that only exist in rtnl_link_stats64 */
7551         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7552                sizeof(*stats64) - sizeof(*netdev_stats));
7553 #else
7554         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7555         const unsigned long *src = (const unsigned long *)netdev_stats;
7556         u64 *dst = (u64 *)stats64;
7557
7558         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7559         for (i = 0; i < n; i++)
7560                 dst[i] = src[i];
7561         /* zero out counters that only exist in rtnl_link_stats64 */
7562         memset((char *)stats64 + n * sizeof(u64), 0,
7563                sizeof(*stats64) - n * sizeof(u64));
7564 #endif
7565 }
7566 EXPORT_SYMBOL(netdev_stats_to_stats64);
7567
7568 /**
7569  *      dev_get_stats   - get network device statistics
7570  *      @dev: device to get statistics from
7571  *      @storage: place to store stats
7572  *
7573  *      Get network statistics from device. Return @storage.
7574  *      The device driver may provide its own method by setting
7575  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7576  *      otherwise the internal statistics structure is used.
7577  */
7578 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7579                                         struct rtnl_link_stats64 *storage)
7580 {
7581         const struct net_device_ops *ops = dev->netdev_ops;
7582
7583         if (ops->ndo_get_stats64) {
7584                 memset(storage, 0, sizeof(*storage));
7585                 ops->ndo_get_stats64(dev, storage);
7586         } else if (ops->ndo_get_stats) {
7587                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7588         } else {
7589                 netdev_stats_to_stats64(storage, &dev->stats);
7590         }
7591         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7592         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7593         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7594         return storage;
7595 }
7596 EXPORT_SYMBOL(dev_get_stats);
7597
7598 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7599 {
7600         struct netdev_queue *queue = dev_ingress_queue(dev);
7601
7602 #ifdef CONFIG_NET_CLS_ACT
7603         if (queue)
7604                 return queue;
7605         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7606         if (!queue)
7607                 return NULL;
7608         netdev_init_one_queue(dev, queue, NULL);
7609         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7610         queue->qdisc_sleeping = &noop_qdisc;
7611         rcu_assign_pointer(dev->ingress_queue, queue);
7612 #endif
7613         return queue;
7614 }
7615
7616 static const struct ethtool_ops default_ethtool_ops;
7617
7618 void netdev_set_default_ethtool_ops(struct net_device *dev,
7619                                     const struct ethtool_ops *ops)
7620 {
7621         if (dev->ethtool_ops == &default_ethtool_ops)
7622                 dev->ethtool_ops = ops;
7623 }
7624 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7625
7626 void netdev_freemem(struct net_device *dev)
7627 {
7628         char *addr = (char *)dev - dev->padded;
7629
7630         kvfree(addr);
7631 }
7632
7633 /**
7634  * alloc_netdev_mqs - allocate network device
7635  * @sizeof_priv: size of private data to allocate space for
7636  * @name: device name format string
7637  * @name_assign_type: origin of device name
7638  * @setup: callback to initialize device
7639  * @txqs: the number of TX subqueues to allocate
7640  * @rxqs: the number of RX subqueues to allocate
7641  *
7642  * Allocates a struct net_device with private data area for driver use
7643  * and performs basic initialization.  Also allocates subqueue structs
7644  * for each queue on the device.
7645  */
7646 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7647                 unsigned char name_assign_type,
7648                 void (*setup)(struct net_device *),
7649                 unsigned int txqs, unsigned int rxqs)
7650 {
7651         struct net_device *dev;
7652         size_t alloc_size;
7653         struct net_device *p;
7654
7655         BUG_ON(strlen(name) >= sizeof(dev->name));
7656
7657         if (txqs < 1) {
7658                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7659                 return NULL;
7660         }
7661
7662 #ifdef CONFIG_SYSFS
7663         if (rxqs < 1) {
7664                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7665                 return NULL;
7666         }
7667 #endif
7668
7669         alloc_size = sizeof(struct net_device);
7670         if (sizeof_priv) {
7671                 /* ensure 32-byte alignment of private area */
7672                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7673                 alloc_size += sizeof_priv;
7674         }
7675         /* ensure 32-byte alignment of whole construct */
7676         alloc_size += NETDEV_ALIGN - 1;
7677
7678         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7679         if (!p)
7680                 p = vzalloc(alloc_size);
7681         if (!p)
7682                 return NULL;
7683
7684         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7685         dev->padded = (char *)dev - (char *)p;
7686
7687         dev->pcpu_refcnt = alloc_percpu(int);
7688         if (!dev->pcpu_refcnt)
7689                 goto free_dev;
7690
7691         if (dev_addr_init(dev))
7692                 goto free_pcpu;
7693
7694         dev_mc_init(dev);
7695         dev_uc_init(dev);
7696
7697         dev_net_set(dev, &init_net);
7698
7699         dev->gso_max_size = GSO_MAX_SIZE;
7700         dev->gso_max_segs = GSO_MAX_SEGS;
7701
7702         INIT_LIST_HEAD(&dev->napi_list);
7703         INIT_LIST_HEAD(&dev->unreg_list);
7704         INIT_LIST_HEAD(&dev->close_list);
7705         INIT_LIST_HEAD(&dev->link_watch_list);
7706         INIT_LIST_HEAD(&dev->adj_list.upper);
7707         INIT_LIST_HEAD(&dev->adj_list.lower);
7708         INIT_LIST_HEAD(&dev->ptype_all);
7709         INIT_LIST_HEAD(&dev->ptype_specific);
7710 #ifdef CONFIG_NET_SCHED
7711         hash_init(dev->qdisc_hash);
7712 #endif
7713         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7714         setup(dev);
7715
7716         if (!dev->tx_queue_len) {
7717                 dev->priv_flags |= IFF_NO_QUEUE;
7718                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7719         }
7720
7721         dev->num_tx_queues = txqs;
7722         dev->real_num_tx_queues = txqs;
7723         if (netif_alloc_netdev_queues(dev))
7724                 goto free_all;
7725
7726 #ifdef CONFIG_SYSFS
7727         dev->num_rx_queues = rxqs;
7728         dev->real_num_rx_queues = rxqs;
7729         if (netif_alloc_rx_queues(dev))
7730                 goto free_all;
7731 #endif
7732
7733         strcpy(dev->name, name);
7734         dev->name_assign_type = name_assign_type;
7735         dev->group = INIT_NETDEV_GROUP;
7736         if (!dev->ethtool_ops)
7737                 dev->ethtool_ops = &default_ethtool_ops;
7738
7739         nf_hook_ingress_init(dev);
7740
7741         return dev;
7742
7743 free_all:
7744         free_netdev(dev);
7745         return NULL;
7746
7747 free_pcpu:
7748         free_percpu(dev->pcpu_refcnt);
7749 free_dev:
7750         netdev_freemem(dev);
7751         return NULL;
7752 }
7753 EXPORT_SYMBOL(alloc_netdev_mqs);
7754
7755 /**
7756  * free_netdev - free network device
7757  * @dev: device
7758  *
7759  * This function does the last stage of destroying an allocated device
7760  * interface. The reference to the device object is released. If this
7761  * is the last reference then it will be freed.Must be called in process
7762  * context.
7763  */
7764 void free_netdev(struct net_device *dev)
7765 {
7766         struct napi_struct *p, *n;
7767
7768         might_sleep();
7769         netif_free_tx_queues(dev);
7770 #ifdef CONFIG_SYSFS
7771         kvfree(dev->_rx);
7772 #endif
7773
7774         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7775
7776         /* Flush device addresses */
7777         dev_addr_flush(dev);
7778
7779         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7780                 netif_napi_del(p);
7781
7782         free_percpu(dev->pcpu_refcnt);
7783         dev->pcpu_refcnt = NULL;
7784
7785         /*  Compatibility with error handling in drivers */
7786         if (dev->reg_state == NETREG_UNINITIALIZED) {
7787                 netdev_freemem(dev);
7788                 return;
7789         }
7790
7791         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7792         dev->reg_state = NETREG_RELEASED;
7793
7794         /* will free via device release */
7795         put_device(&dev->dev);
7796 }
7797 EXPORT_SYMBOL(free_netdev);
7798
7799 /**
7800  *      synchronize_net -  Synchronize with packet receive processing
7801  *
7802  *      Wait for packets currently being received to be done.
7803  *      Does not block later packets from starting.
7804  */
7805 void synchronize_net(void)
7806 {
7807         might_sleep();
7808         if (rtnl_is_locked())
7809                 synchronize_rcu_expedited();
7810         else
7811                 synchronize_rcu();
7812 }
7813 EXPORT_SYMBOL(synchronize_net);
7814
7815 /**
7816  *      unregister_netdevice_queue - remove device from the kernel
7817  *      @dev: device
7818  *      @head: list
7819  *
7820  *      This function shuts down a device interface and removes it
7821  *      from the kernel tables.
7822  *      If head not NULL, device is queued to be unregistered later.
7823  *
7824  *      Callers must hold the rtnl semaphore.  You may want
7825  *      unregister_netdev() instead of this.
7826  */
7827
7828 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7829 {
7830         ASSERT_RTNL();
7831
7832         if (head) {
7833                 list_move_tail(&dev->unreg_list, head);
7834         } else {
7835                 rollback_registered(dev);
7836                 /* Finish processing unregister after unlock */
7837                 net_set_todo(dev);
7838         }
7839 }
7840 EXPORT_SYMBOL(unregister_netdevice_queue);
7841
7842 /**
7843  *      unregister_netdevice_many - unregister many devices
7844  *      @head: list of devices
7845  *
7846  *  Note: As most callers use a stack allocated list_head,
7847  *  we force a list_del() to make sure stack wont be corrupted later.
7848  */
7849 void unregister_netdevice_many(struct list_head *head)
7850 {
7851         struct net_device *dev;
7852
7853         if (!list_empty(head)) {
7854                 rollback_registered_many(head);
7855                 list_for_each_entry(dev, head, unreg_list)
7856                         net_set_todo(dev);
7857                 list_del(head);
7858         }
7859 }
7860 EXPORT_SYMBOL(unregister_netdevice_many);
7861
7862 /**
7863  *      unregister_netdev - remove device from the kernel
7864  *      @dev: device
7865  *
7866  *      This function shuts down a device interface and removes it
7867  *      from the kernel tables.
7868  *
7869  *      This is just a wrapper for unregister_netdevice that takes
7870  *      the rtnl semaphore.  In general you want to use this and not
7871  *      unregister_netdevice.
7872  */
7873 void unregister_netdev(struct net_device *dev)
7874 {
7875         rtnl_lock();
7876         unregister_netdevice(dev);
7877         rtnl_unlock();
7878 }
7879 EXPORT_SYMBOL(unregister_netdev);
7880
7881 /**
7882  *      dev_change_net_namespace - move device to different nethost namespace
7883  *      @dev: device
7884  *      @net: network namespace
7885  *      @pat: If not NULL name pattern to try if the current device name
7886  *            is already taken in the destination network namespace.
7887  *
7888  *      This function shuts down a device interface and moves it
7889  *      to a new network namespace. On success 0 is returned, on
7890  *      a failure a netagive errno code is returned.
7891  *
7892  *      Callers must hold the rtnl semaphore.
7893  */
7894
7895 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7896 {
7897         int err;
7898
7899         ASSERT_RTNL();
7900
7901         /* Don't allow namespace local devices to be moved. */
7902         err = -EINVAL;
7903         if (dev->features & NETIF_F_NETNS_LOCAL)
7904                 goto out;
7905
7906         /* Ensure the device has been registrered */
7907         if (dev->reg_state != NETREG_REGISTERED)
7908                 goto out;
7909
7910         /* Get out if there is nothing todo */
7911         err = 0;
7912         if (net_eq(dev_net(dev), net))
7913                 goto out;
7914
7915         /* Pick the destination device name, and ensure
7916          * we can use it in the destination network namespace.
7917          */
7918         err = -EEXIST;
7919         if (__dev_get_by_name(net, dev->name)) {
7920                 /* We get here if we can't use the current device name */
7921                 if (!pat)
7922                         goto out;
7923                 if (dev_get_valid_name(net, dev, pat) < 0)
7924                         goto out;
7925         }
7926
7927         /*
7928          * And now a mini version of register_netdevice unregister_netdevice.
7929          */
7930
7931         /* If device is running close it first. */
7932         dev_close(dev);
7933
7934         /* And unlink it from device chain */
7935         err = -ENODEV;
7936         unlist_netdevice(dev);
7937
7938         synchronize_net();
7939
7940         /* Shutdown queueing discipline. */
7941         dev_shutdown(dev);
7942
7943         /* Notify protocols, that we are about to destroy
7944          * this device. They should clean all the things.
7945          *
7946          * Note that dev->reg_state stays at NETREG_REGISTERED.
7947          * This is wanted because this way 8021q and macvlan know
7948          * the device is just moving and can keep their slaves up.
7949          */
7950         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7951         rcu_barrier();
7952         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7953         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7954
7955         /*
7956          *      Flush the unicast and multicast chains
7957          */
7958         dev_uc_flush(dev);
7959         dev_mc_flush(dev);
7960
7961         /* Send a netdev-removed uevent to the old namespace */
7962         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7963         netdev_adjacent_del_links(dev);
7964
7965         /* Actually switch the network namespace */
7966         dev_net_set(dev, net);
7967
7968         /* If there is an ifindex conflict assign a new one */
7969         if (__dev_get_by_index(net, dev->ifindex))
7970                 dev->ifindex = dev_new_index(net);
7971
7972         /* Send a netdev-add uevent to the new namespace */
7973         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7974         netdev_adjacent_add_links(dev);
7975
7976         /* Fixup kobjects */
7977         err = device_rename(&dev->dev, dev->name);
7978         WARN_ON(err);
7979
7980         /* Add the device back in the hashes */
7981         list_netdevice(dev);
7982
7983         /* Notify protocols, that a new device appeared. */
7984         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7985
7986         /*
7987          *      Prevent userspace races by waiting until the network
7988          *      device is fully setup before sending notifications.
7989          */
7990         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7991
7992         synchronize_net();
7993         err = 0;
7994 out:
7995         return err;
7996 }
7997 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7998
7999 static int dev_cpu_dead(unsigned int oldcpu)
8000 {
8001         struct sk_buff **list_skb;
8002         struct sk_buff *skb;
8003         unsigned int cpu;
8004         struct softnet_data *sd, *oldsd;
8005
8006         local_irq_disable();
8007         cpu = smp_processor_id();
8008         sd = &per_cpu(softnet_data, cpu);
8009         oldsd = &per_cpu(softnet_data, oldcpu);
8010
8011         /* Find end of our completion_queue. */
8012         list_skb = &sd->completion_queue;
8013         while (*list_skb)
8014                 list_skb = &(*list_skb)->next;
8015         /* Append completion queue from offline CPU. */
8016         *list_skb = oldsd->completion_queue;
8017         oldsd->completion_queue = NULL;
8018
8019         /* Append output queue from offline CPU. */
8020         if (oldsd->output_queue) {
8021                 *sd->output_queue_tailp = oldsd->output_queue;
8022                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8023                 oldsd->output_queue = NULL;
8024                 oldsd->output_queue_tailp = &oldsd->output_queue;
8025         }
8026         /* Append NAPI poll list from offline CPU, with one exception :
8027          * process_backlog() must be called by cpu owning percpu backlog.
8028          * We properly handle process_queue & input_pkt_queue later.
8029          */
8030         while (!list_empty(&oldsd->poll_list)) {
8031                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8032                                                             struct napi_struct,
8033                                                             poll_list);
8034
8035                 list_del_init(&napi->poll_list);
8036                 if (napi->poll == process_backlog)
8037                         napi->state = 0;
8038                 else
8039                         ____napi_schedule(sd, napi);
8040         }
8041
8042         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8043         local_irq_enable();
8044
8045         /* Process offline CPU's input_pkt_queue */
8046         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8047                 netif_rx_ni(skb);
8048                 input_queue_head_incr(oldsd);
8049         }
8050         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8051                 netif_rx_ni(skb);
8052                 input_queue_head_incr(oldsd);
8053         }
8054
8055         return 0;
8056 }
8057
8058 /**
8059  *      netdev_increment_features - increment feature set by one
8060  *      @all: current feature set
8061  *      @one: new feature set
8062  *      @mask: mask feature set
8063  *
8064  *      Computes a new feature set after adding a device with feature set
8065  *      @one to the master device with current feature set @all.  Will not
8066  *      enable anything that is off in @mask. Returns the new feature set.
8067  */
8068 netdev_features_t netdev_increment_features(netdev_features_t all,
8069         netdev_features_t one, netdev_features_t mask)
8070 {
8071         if (mask & NETIF_F_HW_CSUM)
8072                 mask |= NETIF_F_CSUM_MASK;
8073         mask |= NETIF_F_VLAN_CHALLENGED;
8074
8075         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8076         all &= one | ~NETIF_F_ALL_FOR_ALL;
8077
8078         /* If one device supports hw checksumming, set for all. */
8079         if (all & NETIF_F_HW_CSUM)
8080                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8081
8082         return all;
8083 }
8084 EXPORT_SYMBOL(netdev_increment_features);
8085
8086 static struct hlist_head * __net_init netdev_create_hash(void)
8087 {
8088         int i;
8089         struct hlist_head *hash;
8090
8091         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8092         if (hash != NULL)
8093                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8094                         INIT_HLIST_HEAD(&hash[i]);
8095
8096         return hash;
8097 }
8098
8099 /* Initialize per network namespace state */
8100 static int __net_init netdev_init(struct net *net)
8101 {
8102         if (net != &init_net)
8103                 INIT_LIST_HEAD(&net->dev_base_head);
8104
8105         net->dev_name_head = netdev_create_hash();
8106         if (net->dev_name_head == NULL)
8107                 goto err_name;
8108
8109         net->dev_index_head = netdev_create_hash();
8110         if (net->dev_index_head == NULL)
8111                 goto err_idx;
8112
8113         return 0;
8114
8115 err_idx:
8116         kfree(net->dev_name_head);
8117 err_name:
8118         return -ENOMEM;
8119 }
8120
8121 /**
8122  *      netdev_drivername - network driver for the device
8123  *      @dev: network device
8124  *
8125  *      Determine network driver for device.
8126  */
8127 const char *netdev_drivername(const struct net_device *dev)
8128 {
8129         const struct device_driver *driver;
8130         const struct device *parent;
8131         const char *empty = "";
8132
8133         parent = dev->dev.parent;
8134         if (!parent)
8135                 return empty;
8136
8137         driver = parent->driver;
8138         if (driver && driver->name)
8139                 return driver->name;
8140         return empty;
8141 }
8142
8143 static void __netdev_printk(const char *level, const struct net_device *dev,
8144                             struct va_format *vaf)
8145 {
8146         if (dev && dev->dev.parent) {
8147                 dev_printk_emit(level[1] - '0',
8148                                 dev->dev.parent,
8149                                 "%s %s %s%s: %pV",
8150                                 dev_driver_string(dev->dev.parent),
8151                                 dev_name(dev->dev.parent),
8152                                 netdev_name(dev), netdev_reg_state(dev),
8153                                 vaf);
8154         } else if (dev) {
8155                 printk("%s%s%s: %pV",
8156                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8157         } else {
8158                 printk("%s(NULL net_device): %pV", level, vaf);
8159         }
8160 }
8161
8162 void netdev_printk(const char *level, const struct net_device *dev,
8163                    const char *format, ...)
8164 {
8165         struct va_format vaf;
8166         va_list args;
8167
8168         va_start(args, format);
8169
8170         vaf.fmt = format;
8171         vaf.va = &args;
8172
8173         __netdev_printk(level, dev, &vaf);
8174
8175         va_end(args);
8176 }
8177 EXPORT_SYMBOL(netdev_printk);
8178
8179 #define define_netdev_printk_level(func, level)                 \
8180 void func(const struct net_device *dev, const char *fmt, ...)   \
8181 {                                                               \
8182         struct va_format vaf;                                   \
8183         va_list args;                                           \
8184                                                                 \
8185         va_start(args, fmt);                                    \
8186                                                                 \
8187         vaf.fmt = fmt;                                          \
8188         vaf.va = &args;                                         \
8189                                                                 \
8190         __netdev_printk(level, dev, &vaf);                      \
8191                                                                 \
8192         va_end(args);                                           \
8193 }                                                               \
8194 EXPORT_SYMBOL(func);
8195
8196 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8197 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8198 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8199 define_netdev_printk_level(netdev_err, KERN_ERR);
8200 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8201 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8202 define_netdev_printk_level(netdev_info, KERN_INFO);
8203
8204 static void __net_exit netdev_exit(struct net *net)
8205 {
8206         kfree(net->dev_name_head);
8207         kfree(net->dev_index_head);
8208 }
8209
8210 static struct pernet_operations __net_initdata netdev_net_ops = {
8211         .init = netdev_init,
8212         .exit = netdev_exit,
8213 };
8214
8215 static void __net_exit default_device_exit(struct net *net)
8216 {
8217         struct net_device *dev, *aux;
8218         /*
8219          * Push all migratable network devices back to the
8220          * initial network namespace
8221          */
8222         rtnl_lock();
8223         for_each_netdev_safe(net, dev, aux) {
8224                 int err;
8225                 char fb_name[IFNAMSIZ];
8226
8227                 /* Ignore unmoveable devices (i.e. loopback) */
8228                 if (dev->features & NETIF_F_NETNS_LOCAL)
8229                         continue;
8230
8231                 /* Leave virtual devices for the generic cleanup */
8232                 if (dev->rtnl_link_ops)
8233                         continue;
8234
8235                 /* Push remaining network devices to init_net */
8236                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8237                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8238                 if (err) {
8239                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8240                                  __func__, dev->name, err);
8241                         BUG();
8242                 }
8243         }
8244         rtnl_unlock();
8245 }
8246
8247 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8248 {
8249         /* Return with the rtnl_lock held when there are no network
8250          * devices unregistering in any network namespace in net_list.
8251          */
8252         struct net *net;
8253         bool unregistering;
8254         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8255
8256         add_wait_queue(&netdev_unregistering_wq, &wait);
8257         for (;;) {
8258                 unregistering = false;
8259                 rtnl_lock();
8260                 list_for_each_entry(net, net_list, exit_list) {
8261                         if (net->dev_unreg_count > 0) {
8262                                 unregistering = true;
8263                                 break;
8264                         }
8265                 }
8266                 if (!unregistering)
8267                         break;
8268                 __rtnl_unlock();
8269
8270                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8271         }
8272         remove_wait_queue(&netdev_unregistering_wq, &wait);
8273 }
8274
8275 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8276 {
8277         /* At exit all network devices most be removed from a network
8278          * namespace.  Do this in the reverse order of registration.
8279          * Do this across as many network namespaces as possible to
8280          * improve batching efficiency.
8281          */
8282         struct net_device *dev;
8283         struct net *net;
8284         LIST_HEAD(dev_kill_list);
8285
8286         /* To prevent network device cleanup code from dereferencing
8287          * loopback devices or network devices that have been freed
8288          * wait here for all pending unregistrations to complete,
8289          * before unregistring the loopback device and allowing the
8290          * network namespace be freed.
8291          *
8292          * The netdev todo list containing all network devices
8293          * unregistrations that happen in default_device_exit_batch
8294          * will run in the rtnl_unlock() at the end of
8295          * default_device_exit_batch.
8296          */
8297         rtnl_lock_unregistering(net_list);
8298         list_for_each_entry(net, net_list, exit_list) {
8299                 for_each_netdev_reverse(net, dev) {
8300                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8301                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8302                         else
8303                                 unregister_netdevice_queue(dev, &dev_kill_list);
8304                 }
8305         }
8306         unregister_netdevice_many(&dev_kill_list);
8307         rtnl_unlock();
8308 }
8309
8310 static struct pernet_operations __net_initdata default_device_ops = {
8311         .exit = default_device_exit,
8312         .exit_batch = default_device_exit_batch,
8313 };
8314
8315 /*
8316  *      Initialize the DEV module. At boot time this walks the device list and
8317  *      unhooks any devices that fail to initialise (normally hardware not
8318  *      present) and leaves us with a valid list of present and active devices.
8319  *
8320  */
8321
8322 /*
8323  *       This is called single threaded during boot, so no need
8324  *       to take the rtnl semaphore.
8325  */
8326 static int __init net_dev_init(void)
8327 {
8328         int i, rc = -ENOMEM;
8329
8330         BUG_ON(!dev_boot_phase);
8331
8332         if (dev_proc_init())
8333                 goto out;
8334
8335         if (netdev_kobject_init())
8336                 goto out;
8337
8338         INIT_LIST_HEAD(&ptype_all);
8339         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8340                 INIT_LIST_HEAD(&ptype_base[i]);
8341
8342         INIT_LIST_HEAD(&offload_base);
8343
8344         if (register_pernet_subsys(&netdev_net_ops))
8345                 goto out;
8346
8347         /*
8348          *      Initialise the packet receive queues.
8349          */
8350
8351         for_each_possible_cpu(i) {
8352                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8353                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8354
8355                 INIT_WORK(flush, flush_backlog);
8356
8357                 skb_queue_head_init(&sd->input_pkt_queue);
8358                 skb_queue_head_init(&sd->process_queue);
8359                 INIT_LIST_HEAD(&sd->poll_list);
8360                 sd->output_queue_tailp = &sd->output_queue;
8361 #ifdef CONFIG_RPS
8362                 sd->csd.func = rps_trigger_softirq;
8363                 sd->csd.info = sd;
8364                 sd->cpu = i;
8365 #endif
8366
8367                 sd->backlog.poll = process_backlog;
8368                 sd->backlog.weight = weight_p;
8369         }
8370
8371         dev_boot_phase = 0;
8372
8373         /* The loopback device is special if any other network devices
8374          * is present in a network namespace the loopback device must
8375          * be present. Since we now dynamically allocate and free the
8376          * loopback device ensure this invariant is maintained by
8377          * keeping the loopback device as the first device on the
8378          * list of network devices.  Ensuring the loopback devices
8379          * is the first device that appears and the last network device
8380          * that disappears.
8381          */
8382         if (register_pernet_device(&loopback_net_ops))
8383                 goto out;
8384
8385         if (register_pernet_device(&default_device_ops))
8386                 goto out;
8387
8388         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8389         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8390
8391         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8392                                        NULL, dev_cpu_dead);
8393         WARN_ON(rc < 0);
8394         dst_subsys_init();
8395         rc = 0;
8396 out:
8397         return rc;
8398 }
8399
8400 subsys_initcall(net_dev_init);