]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/core/dev.c
Merge tag 'xfs-for-linus-3.16-rc1' of git://oss.sgi.com/xfs/xfs
[karo-tx-linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly;       /* Taps */
148 static struct list_head offload_base __read_mostly;
149
150 static int netif_rx_internal(struct sk_buff *skb);
151
152 /*
153  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154  * semaphore.
155  *
156  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157  *
158  * Writers must hold the rtnl semaphore while they loop through the
159  * dev_base_head list, and hold dev_base_lock for writing when they do the
160  * actual updates.  This allows pure readers to access the list even
161  * while a writer is preparing to update it.
162  *
163  * To put it another way, dev_base_lock is held for writing only to
164  * protect against pure readers; the rtnl semaphore provides the
165  * protection against other writers.
166  *
167  * See, for example usages, register_netdevice() and
168  * unregister_netdevice(), which must be called with the rtnl
169  * semaphore held.
170  */
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
173
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
179
180 static seqcount_t devnet_rename_seq;
181
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184         while (++net->dev_base_seq == 0);
185 }
186
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188 {
189         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190
191         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192 }
193
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195 {
196         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197 }
198
199 static inline void rps_lock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202         spin_lock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205
206 static inline void rps_unlock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209         spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
215 {
216         struct net *net = dev_net(dev);
217
218         ASSERT_RTNL();
219
220         write_lock_bh(&dev_base_lock);
221         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223         hlist_add_head_rcu(&dev->index_hlist,
224                            dev_index_hash(net, dev->ifindex));
225         write_unlock_bh(&dev_base_lock);
226
227         dev_base_seq_inc(net);
228 }
229
230 /* Device list removal
231  * caller must respect a RCU grace period before freeing/reusing dev
232  */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235         ASSERT_RTNL();
236
237         /* Unlink dev from the device chain */
238         write_lock_bh(&dev_base_lock);
239         list_del_rcu(&dev->dev_list);
240         hlist_del_rcu(&dev->name_hlist);
241         hlist_del_rcu(&dev->index_hlist);
242         write_unlock_bh(&dev_base_lock);
243
244         dev_base_seq_inc(dev_net(dev));
245 }
246
247 /*
248  *      Our notifier list
249  */
250
251 static RAW_NOTIFIER_HEAD(netdev_chain);
252
253 /*
254  *      Device drivers call our routines to queue packets here. We empty the
255  *      queue in the local softnet handler.
256  */
257
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
260
261 #ifdef CONFIG_LOCKDEP
262 /*
263  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264  * according to dev->type
265  */
266 static const unsigned short netdev_lock_type[] =
267         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282
283 static const char *const netdev_lock_name[] =
284         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305         int i;
306
307         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308                 if (netdev_lock_type[i] == dev_type)
309                         return i;
310         /* the last key is used by default */
311         return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315                                                  unsigned short dev_type)
316 {
317         int i;
318
319         i = netdev_lock_pos(dev_type);
320         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321                                    netdev_lock_name[i]);
322 }
323
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 {
326         int i;
327
328         i = netdev_lock_pos(dev->type);
329         lockdep_set_class_and_name(&dev->addr_list_lock,
330                                    &netdev_addr_lock_key[i],
331                                    netdev_lock_name[i]);
332 }
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335                                                  unsigned short dev_type)
336 {
337 }
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 }
341 #endif
342
343 /*******************************************************************************
344
345                 Protocol management and registration routines
346
347 *******************************************************************************/
348
349 /*
350  *      Add a protocol ID to the list. Now that the input handler is
351  *      smarter we can dispense with all the messy stuff that used to be
352  *      here.
353  *
354  *      BEWARE!!! Protocol handlers, mangling input packets,
355  *      MUST BE last in hash buckets and checking protocol handlers
356  *      MUST start from promiscuous ptype_all chain in net_bh.
357  *      It is true now, do not change it.
358  *      Explanation follows: if protocol handler, mangling packet, will
359  *      be the first on list, it is not able to sense, that packet
360  *      is cloned and should be copied-on-write, so that it will
361  *      change it and subsequent readers will get broken packet.
362  *                                                      --ANK (980803)
363  */
364
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
366 {
367         if (pt->type == htons(ETH_P_ALL))
368                 return &ptype_all;
369         else
370                 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 }
372
373 /**
374  *      dev_add_pack - add packet handler
375  *      @pt: packet type declaration
376  *
377  *      Add a protocol handler to the networking stack. The passed &packet_type
378  *      is linked into kernel lists and may not be freed until it has been
379  *      removed from the kernel lists.
380  *
381  *      This call does not sleep therefore it can not
382  *      guarantee all CPU's that are in middle of receiving packets
383  *      will see the new packet type (until the next received packet).
384  */
385
386 void dev_add_pack(struct packet_type *pt)
387 {
388         struct list_head *head = ptype_head(pt);
389
390         spin_lock(&ptype_lock);
391         list_add_rcu(&pt->list, head);
392         spin_unlock(&ptype_lock);
393 }
394 EXPORT_SYMBOL(dev_add_pack);
395
396 /**
397  *      __dev_remove_pack        - remove packet handler
398  *      @pt: packet type declaration
399  *
400  *      Remove a protocol handler that was previously added to the kernel
401  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
402  *      from the kernel lists and can be freed or reused once this function
403  *      returns.
404  *
405  *      The packet type might still be in use by receivers
406  *      and must not be freed until after all the CPU's have gone
407  *      through a quiescent state.
408  */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411         struct list_head *head = ptype_head(pt);
412         struct packet_type *pt1;
413
414         spin_lock(&ptype_lock);
415
416         list_for_each_entry(pt1, head, list) {
417                 if (pt == pt1) {
418                         list_del_rcu(&pt->list);
419                         goto out;
420                 }
421         }
422
423         pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425         spin_unlock(&ptype_lock);
426 }
427 EXPORT_SYMBOL(__dev_remove_pack);
428
429 /**
430  *      dev_remove_pack  - remove packet handler
431  *      @pt: packet type declaration
432  *
433  *      Remove a protocol handler that was previously added to the kernel
434  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
435  *      from the kernel lists and can be freed or reused once this function
436  *      returns.
437  *
438  *      This call sleeps to guarantee that no CPU is looking at the packet
439  *      type after return.
440  */
441 void dev_remove_pack(struct packet_type *pt)
442 {
443         __dev_remove_pack(pt);
444
445         synchronize_net();
446 }
447 EXPORT_SYMBOL(dev_remove_pack);
448
449
450 /**
451  *      dev_add_offload - register offload handlers
452  *      @po: protocol offload declaration
453  *
454  *      Add protocol offload handlers to the networking stack. The passed
455  *      &proto_offload is linked into kernel lists and may not be freed until
456  *      it has been removed from the kernel lists.
457  *
458  *      This call does not sleep therefore it can not
459  *      guarantee all CPU's that are in middle of receiving packets
460  *      will see the new offload handlers (until the next received packet).
461  */
462 void dev_add_offload(struct packet_offload *po)
463 {
464         struct list_head *head = &offload_base;
465
466         spin_lock(&offload_lock);
467         list_add_rcu(&po->list, head);
468         spin_unlock(&offload_lock);
469 }
470 EXPORT_SYMBOL(dev_add_offload);
471
472 /**
473  *      __dev_remove_offload     - remove offload handler
474  *      @po: packet offload declaration
475  *
476  *      Remove a protocol offload handler that was previously added to the
477  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
478  *      is removed from the kernel lists and can be freed or reused once this
479  *      function returns.
480  *
481  *      The packet type might still be in use by receivers
482  *      and must not be freed until after all the CPU's have gone
483  *      through a quiescent state.
484  */
485 static void __dev_remove_offload(struct packet_offload *po)
486 {
487         struct list_head *head = &offload_base;
488         struct packet_offload *po1;
489
490         spin_lock(&offload_lock);
491
492         list_for_each_entry(po1, head, list) {
493                 if (po == po1) {
494                         list_del_rcu(&po->list);
495                         goto out;
496                 }
497         }
498
499         pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501         spin_unlock(&offload_lock);
502 }
503
504 /**
505  *      dev_remove_offload       - remove packet offload handler
506  *      @po: packet offload declaration
507  *
508  *      Remove a packet offload handler that was previously added to the kernel
509  *      offload handlers by dev_add_offload(). The passed &offload_type is
510  *      removed from the kernel lists and can be freed or reused once this
511  *      function returns.
512  *
513  *      This call sleeps to guarantee that no CPU is looking at the packet
514  *      type after return.
515  */
516 void dev_remove_offload(struct packet_offload *po)
517 {
518         __dev_remove_offload(po);
519
520         synchronize_net();
521 }
522 EXPORT_SYMBOL(dev_remove_offload);
523
524 /******************************************************************************
525
526                       Device Boot-time Settings Routines
527
528 *******************************************************************************/
529
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532
533 /**
534  *      netdev_boot_setup_add   - add new setup entry
535  *      @name: name of the device
536  *      @map: configured settings for the device
537  *
538  *      Adds new setup entry to the dev_boot_setup list.  The function
539  *      returns 0 on error and 1 on success.  This is a generic routine to
540  *      all netdevices.
541  */
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
543 {
544         struct netdev_boot_setup *s;
545         int i;
546
547         s = dev_boot_setup;
548         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550                         memset(s[i].name, 0, sizeof(s[i].name));
551                         strlcpy(s[i].name, name, IFNAMSIZ);
552                         memcpy(&s[i].map, map, sizeof(s[i].map));
553                         break;
554                 }
555         }
556
557         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558 }
559
560 /**
561  *      netdev_boot_setup_check - check boot time settings
562  *      @dev: the netdevice
563  *
564  *      Check boot time settings for the device.
565  *      The found settings are set for the device to be used
566  *      later in the device probing.
567  *      Returns 0 if no settings found, 1 if they are.
568  */
569 int netdev_boot_setup_check(struct net_device *dev)
570 {
571         struct netdev_boot_setup *s = dev_boot_setup;
572         int i;
573
574         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576                     !strcmp(dev->name, s[i].name)) {
577                         dev->irq        = s[i].map.irq;
578                         dev->base_addr  = s[i].map.base_addr;
579                         dev->mem_start  = s[i].map.mem_start;
580                         dev->mem_end    = s[i].map.mem_end;
581                         return 1;
582                 }
583         }
584         return 0;
585 }
586 EXPORT_SYMBOL(netdev_boot_setup_check);
587
588
589 /**
590  *      netdev_boot_base        - get address from boot time settings
591  *      @prefix: prefix for network device
592  *      @unit: id for network device
593  *
594  *      Check boot time settings for the base address of device.
595  *      The found settings are set for the device to be used
596  *      later in the device probing.
597  *      Returns 0 if no settings found.
598  */
599 unsigned long netdev_boot_base(const char *prefix, int unit)
600 {
601         const struct netdev_boot_setup *s = dev_boot_setup;
602         char name[IFNAMSIZ];
603         int i;
604
605         sprintf(name, "%s%d", prefix, unit);
606
607         /*
608          * If device already registered then return base of 1
609          * to indicate not to probe for this interface
610          */
611         if (__dev_get_by_name(&init_net, name))
612                 return 1;
613
614         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615                 if (!strcmp(name, s[i].name))
616                         return s[i].map.base_addr;
617         return 0;
618 }
619
620 /*
621  * Saves at boot time configured settings for any netdevice.
622  */
623 int __init netdev_boot_setup(char *str)
624 {
625         int ints[5];
626         struct ifmap map;
627
628         str = get_options(str, ARRAY_SIZE(ints), ints);
629         if (!str || !*str)
630                 return 0;
631
632         /* Save settings */
633         memset(&map, 0, sizeof(map));
634         if (ints[0] > 0)
635                 map.irq = ints[1];
636         if (ints[0] > 1)
637                 map.base_addr = ints[2];
638         if (ints[0] > 2)
639                 map.mem_start = ints[3];
640         if (ints[0] > 3)
641                 map.mem_end = ints[4];
642
643         /* Add new entry to the list */
644         return netdev_boot_setup_add(str, &map);
645 }
646
647 __setup("netdev=", netdev_boot_setup);
648
649 /*******************************************************************************
650
651                             Device Interface Subroutines
652
653 *******************************************************************************/
654
655 /**
656  *      __dev_get_by_name       - find a device by its name
657  *      @net: the applicable net namespace
658  *      @name: name to find
659  *
660  *      Find an interface by name. Must be called under RTNL semaphore
661  *      or @dev_base_lock. If the name is found a pointer to the device
662  *      is returned. If the name is not found then %NULL is returned. The
663  *      reference counters are not incremented so the caller must be
664  *      careful with locks.
665  */
666
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
668 {
669         struct net_device *dev;
670         struct hlist_head *head = dev_name_hash(net, name);
671
672         hlist_for_each_entry(dev, head, name_hlist)
673                 if (!strncmp(dev->name, name, IFNAMSIZ))
674                         return dev;
675
676         return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_name);
679
680 /**
681  *      dev_get_by_name_rcu     - find a device by its name
682  *      @net: the applicable net namespace
683  *      @name: name to find
684  *
685  *      Find an interface by name.
686  *      If the name is found a pointer to the device is returned.
687  *      If the name is not found then %NULL is returned.
688  *      The reference counters are not incremented so the caller must be
689  *      careful with locks. The caller must hold RCU lock.
690  */
691
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693 {
694         struct net_device *dev;
695         struct hlist_head *head = dev_name_hash(net, name);
696
697         hlist_for_each_entry_rcu(dev, head, name_hlist)
698                 if (!strncmp(dev->name, name, IFNAMSIZ))
699                         return dev;
700
701         return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
704
705 /**
706  *      dev_get_by_name         - find a device by its name
707  *      @net: the applicable net namespace
708  *      @name: name to find
709  *
710  *      Find an interface by name. This can be called from any
711  *      context and does its own locking. The returned handle has
712  *      the usage count incremented and the caller must use dev_put() to
713  *      release it when it is no longer needed. %NULL is returned if no
714  *      matching device is found.
715  */
716
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
718 {
719         struct net_device *dev;
720
721         rcu_read_lock();
722         dev = dev_get_by_name_rcu(net, name);
723         if (dev)
724                 dev_hold(dev);
725         rcu_read_unlock();
726         return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_name);
729
730 /**
731  *      __dev_get_by_index - find a device by its ifindex
732  *      @net: the applicable net namespace
733  *      @ifindex: index of device
734  *
735  *      Search for an interface by index. Returns %NULL if the device
736  *      is not found or a pointer to the device. The device has not
737  *      had its reference counter increased so the caller must be careful
738  *      about locking. The caller must hold either the RTNL semaphore
739  *      or @dev_base_lock.
740  */
741
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743 {
744         struct net_device *dev;
745         struct hlist_head *head = dev_index_hash(net, ifindex);
746
747         hlist_for_each_entry(dev, head, index_hlist)
748                 if (dev->ifindex == ifindex)
749                         return dev;
750
751         return NULL;
752 }
753 EXPORT_SYMBOL(__dev_get_by_index);
754
755 /**
756  *      dev_get_by_index_rcu - find a device by its ifindex
757  *      @net: the applicable net namespace
758  *      @ifindex: index of device
759  *
760  *      Search for an interface by index. Returns %NULL if the device
761  *      is not found or a pointer to the device. The device has not
762  *      had its reference counter increased so the caller must be careful
763  *      about locking. The caller must hold RCU lock.
764  */
765
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767 {
768         struct net_device *dev;
769         struct hlist_head *head = dev_index_hash(net, ifindex);
770
771         hlist_for_each_entry_rcu(dev, head, index_hlist)
772                 if (dev->ifindex == ifindex)
773                         return dev;
774
775         return NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
778
779
780 /**
781  *      dev_get_by_index - find a device by its ifindex
782  *      @net: the applicable net namespace
783  *      @ifindex: index of device
784  *
785  *      Search for an interface by index. Returns NULL if the device
786  *      is not found or a pointer to the device. The device returned has
787  *      had a reference added and the pointer is safe until the user calls
788  *      dev_put to indicate they have finished with it.
789  */
790
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
792 {
793         struct net_device *dev;
794
795         rcu_read_lock();
796         dev = dev_get_by_index_rcu(net, ifindex);
797         if (dev)
798                 dev_hold(dev);
799         rcu_read_unlock();
800         return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_index);
803
804 /**
805  *      netdev_get_name - get a netdevice name, knowing its ifindex.
806  *      @net: network namespace
807  *      @name: a pointer to the buffer where the name will be stored.
808  *      @ifindex: the ifindex of the interface to get the name from.
809  *
810  *      The use of raw_seqcount_begin() and cond_resched() before
811  *      retrying is required as we want to give the writers a chance
812  *      to complete when CONFIG_PREEMPT is not set.
813  */
814 int netdev_get_name(struct net *net, char *name, int ifindex)
815 {
816         struct net_device *dev;
817         unsigned int seq;
818
819 retry:
820         seq = raw_seqcount_begin(&devnet_rename_seq);
821         rcu_read_lock();
822         dev = dev_get_by_index_rcu(net, ifindex);
823         if (!dev) {
824                 rcu_read_unlock();
825                 return -ENODEV;
826         }
827
828         strcpy(name, dev->name);
829         rcu_read_unlock();
830         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831                 cond_resched();
832                 goto retry;
833         }
834
835         return 0;
836 }
837
838 /**
839  *      dev_getbyhwaddr_rcu - find a device by its hardware address
840  *      @net: the applicable net namespace
841  *      @type: media type of device
842  *      @ha: hardware address
843  *
844  *      Search for an interface by MAC address. Returns NULL if the device
845  *      is not found or a pointer to the device.
846  *      The caller must hold RCU or RTNL.
847  *      The returned device has not had its ref count increased
848  *      and the caller must therefore be careful about locking
849  *
850  */
851
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853                                        const char *ha)
854 {
855         struct net_device *dev;
856
857         for_each_netdev_rcu(net, dev)
858                 if (dev->type == type &&
859                     !memcmp(dev->dev_addr, ha, dev->addr_len))
860                         return dev;
861
862         return NULL;
863 }
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867 {
868         struct net_device *dev;
869
870         ASSERT_RTNL();
871         for_each_netdev(net, dev)
872                 if (dev->type == type)
873                         return dev;
874
875         return NULL;
876 }
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881         struct net_device *dev, *ret = NULL;
882
883         rcu_read_lock();
884         for_each_netdev_rcu(net, dev)
885                 if (dev->type == type) {
886                         dev_hold(dev);
887                         ret = dev;
888                         break;
889                 }
890         rcu_read_unlock();
891         return ret;
892 }
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894
895 /**
896  *      dev_get_by_flags_rcu - find any device with given flags
897  *      @net: the applicable net namespace
898  *      @if_flags: IFF_* values
899  *      @mask: bitmask of bits in if_flags to check
900  *
901  *      Search for any interface with the given flags. Returns NULL if a device
902  *      is not found or a pointer to the device. Must be called inside
903  *      rcu_read_lock(), and result refcount is unchanged.
904  */
905
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907                                     unsigned short mask)
908 {
909         struct net_device *dev, *ret;
910
911         ret = NULL;
912         for_each_netdev_rcu(net, dev) {
913                 if (((dev->flags ^ if_flags) & mask) == 0) {
914                         ret = dev;
915                         break;
916                 }
917         }
918         return ret;
919 }
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921
922 /**
923  *      dev_valid_name - check if name is okay for network device
924  *      @name: name string
925  *
926  *      Network device names need to be valid file names to
927  *      to allow sysfs to work.  We also disallow any kind of
928  *      whitespace.
929  */
930 bool dev_valid_name(const char *name)
931 {
932         if (*name == '\0')
933                 return false;
934         if (strlen(name) >= IFNAMSIZ)
935                 return false;
936         if (!strcmp(name, ".") || !strcmp(name, ".."))
937                 return false;
938
939         while (*name) {
940                 if (*name == '/' || isspace(*name))
941                         return false;
942                 name++;
943         }
944         return true;
945 }
946 EXPORT_SYMBOL(dev_valid_name);
947
948 /**
949  *      __dev_alloc_name - allocate a name for a device
950  *      @net: network namespace to allocate the device name in
951  *      @name: name format string
952  *      @buf:  scratch buffer and result name string
953  *
954  *      Passed a format string - eg "lt%d" it will try and find a suitable
955  *      id. It scans list of devices to build up a free map, then chooses
956  *      the first empty slot. The caller must hold the dev_base or rtnl lock
957  *      while allocating the name and adding the device in order to avoid
958  *      duplicates.
959  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960  *      Returns the number of the unit assigned or a negative errno code.
961  */
962
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964 {
965         int i = 0;
966         const char *p;
967         const int max_netdevices = 8*PAGE_SIZE;
968         unsigned long *inuse;
969         struct net_device *d;
970
971         p = strnchr(name, IFNAMSIZ-1, '%');
972         if (p) {
973                 /*
974                  * Verify the string as this thing may have come from
975                  * the user.  There must be either one "%d" and no other "%"
976                  * characters.
977                  */
978                 if (p[1] != 'd' || strchr(p + 2, '%'))
979                         return -EINVAL;
980
981                 /* Use one page as a bit array of possible slots */
982                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983                 if (!inuse)
984                         return -ENOMEM;
985
986                 for_each_netdev(net, d) {
987                         if (!sscanf(d->name, name, &i))
988                                 continue;
989                         if (i < 0 || i >= max_netdevices)
990                                 continue;
991
992                         /*  avoid cases where sscanf is not exact inverse of printf */
993                         snprintf(buf, IFNAMSIZ, name, i);
994                         if (!strncmp(buf, d->name, IFNAMSIZ))
995                                 set_bit(i, inuse);
996                 }
997
998                 i = find_first_zero_bit(inuse, max_netdevices);
999                 free_page((unsigned long) inuse);
1000         }
1001
1002         if (buf != name)
1003                 snprintf(buf, IFNAMSIZ, name, i);
1004         if (!__dev_get_by_name(net, buf))
1005                 return i;
1006
1007         /* It is possible to run out of possible slots
1008          * when the name is long and there isn't enough space left
1009          * for the digits, or if all bits are used.
1010          */
1011         return -ENFILE;
1012 }
1013
1014 /**
1015  *      dev_alloc_name - allocate a name for a device
1016  *      @dev: device
1017  *      @name: name format string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1029 {
1030         char buf[IFNAMSIZ];
1031         struct net *net;
1032         int ret;
1033
1034         BUG_ON(!dev_net(dev));
1035         net = dev_net(dev);
1036         ret = __dev_alloc_name(net, name, buf);
1037         if (ret >= 0)
1038                 strlcpy(dev->name, buf, IFNAMSIZ);
1039         return ret;
1040 }
1041 EXPORT_SYMBOL(dev_alloc_name);
1042
1043 static int dev_alloc_name_ns(struct net *net,
1044                              struct net_device *dev,
1045                              const char *name)
1046 {
1047         char buf[IFNAMSIZ];
1048         int ret;
1049
1050         ret = __dev_alloc_name(net, name, buf);
1051         if (ret >= 0)
1052                 strlcpy(dev->name, buf, IFNAMSIZ);
1053         return ret;
1054 }
1055
1056 static int dev_get_valid_name(struct net *net,
1057                               struct net_device *dev,
1058                               const char *name)
1059 {
1060         BUG_ON(!net);
1061
1062         if (!dev_valid_name(name))
1063                 return -EINVAL;
1064
1065         if (strchr(name, '%'))
1066                 return dev_alloc_name_ns(net, dev, name);
1067         else if (__dev_get_by_name(net, name))
1068                 return -EEXIST;
1069         else if (dev->name != name)
1070                 strlcpy(dev->name, name, IFNAMSIZ);
1071
1072         return 0;
1073 }
1074
1075 /**
1076  *      dev_change_name - change name of a device
1077  *      @dev: device
1078  *      @newname: name (or format string) must be at least IFNAMSIZ
1079  *
1080  *      Change name of a device, can pass format strings "eth%d".
1081  *      for wildcarding.
1082  */
1083 int dev_change_name(struct net_device *dev, const char *newname)
1084 {
1085         char oldname[IFNAMSIZ];
1086         int err = 0;
1087         int ret;
1088         struct net *net;
1089
1090         ASSERT_RTNL();
1091         BUG_ON(!dev_net(dev));
1092
1093         net = dev_net(dev);
1094         if (dev->flags & IFF_UP)
1095                 return -EBUSY;
1096
1097         write_seqcount_begin(&devnet_rename_seq);
1098
1099         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100                 write_seqcount_end(&devnet_rename_seq);
1101                 return 0;
1102         }
1103
1104         memcpy(oldname, dev->name, IFNAMSIZ);
1105
1106         err = dev_get_valid_name(net, dev, newname);
1107         if (err < 0) {
1108                 write_seqcount_end(&devnet_rename_seq);
1109                 return err;
1110         }
1111
1112 rollback:
1113         ret = device_rename(&dev->dev, dev->name);
1114         if (ret) {
1115                 memcpy(dev->name, oldname, IFNAMSIZ);
1116                 write_seqcount_end(&devnet_rename_seq);
1117                 return ret;
1118         }
1119
1120         write_seqcount_end(&devnet_rename_seq);
1121
1122         netdev_adjacent_rename_links(dev, oldname);
1123
1124         write_lock_bh(&dev_base_lock);
1125         hlist_del_rcu(&dev->name_hlist);
1126         write_unlock_bh(&dev_base_lock);
1127
1128         synchronize_rcu();
1129
1130         write_lock_bh(&dev_base_lock);
1131         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132         write_unlock_bh(&dev_base_lock);
1133
1134         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135         ret = notifier_to_errno(ret);
1136
1137         if (ret) {
1138                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1139                 if (err >= 0) {
1140                         err = ret;
1141                         write_seqcount_begin(&devnet_rename_seq);
1142                         memcpy(dev->name, oldname, IFNAMSIZ);
1143                         memcpy(oldname, newname, IFNAMSIZ);
1144                         goto rollback;
1145                 } else {
1146                         pr_err("%s: name change rollback failed: %d\n",
1147                                dev->name, ret);
1148                 }
1149         }
1150
1151         return err;
1152 }
1153
1154 /**
1155  *      dev_set_alias - change ifalias of a device
1156  *      @dev: device
1157  *      @alias: name up to IFALIASZ
1158  *      @len: limit of bytes to copy from info
1159  *
1160  *      Set ifalias for a device,
1161  */
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 {
1164         char *new_ifalias;
1165
1166         ASSERT_RTNL();
1167
1168         if (len >= IFALIASZ)
1169                 return -EINVAL;
1170
1171         if (!len) {
1172                 kfree(dev->ifalias);
1173                 dev->ifalias = NULL;
1174                 return 0;
1175         }
1176
1177         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178         if (!new_ifalias)
1179                 return -ENOMEM;
1180         dev->ifalias = new_ifalias;
1181
1182         strlcpy(dev->ifalias, alias, len+1);
1183         return len;
1184 }
1185
1186
1187 /**
1188  *      netdev_features_change - device changes features
1189  *      @dev: device to cause notification
1190  *
1191  *      Called to indicate a device has changed features.
1192  */
1193 void netdev_features_change(struct net_device *dev)
1194 {
1195         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196 }
1197 EXPORT_SYMBOL(netdev_features_change);
1198
1199 /**
1200  *      netdev_state_change - device changes state
1201  *      @dev: device to cause notification
1202  *
1203  *      Called to indicate a device has changed state. This function calls
1204  *      the notifier chains for netdev_chain and sends a NEWLINK message
1205  *      to the routing socket.
1206  */
1207 void netdev_state_change(struct net_device *dev)
1208 {
1209         if (dev->flags & IFF_UP) {
1210                 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212         }
1213 }
1214 EXPORT_SYMBOL(netdev_state_change);
1215
1216 /**
1217  *      netdev_notify_peers - notify network peers about existence of @dev
1218  *      @dev: network device
1219  *
1220  * Generate traffic such that interested network peers are aware of
1221  * @dev, such as by generating a gratuitous ARP. This may be used when
1222  * a device wants to inform the rest of the network about some sort of
1223  * reconfiguration such as a failover event or virtual machine
1224  * migration.
1225  */
1226 void netdev_notify_peers(struct net_device *dev)
1227 {
1228         rtnl_lock();
1229         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230         rtnl_unlock();
1231 }
1232 EXPORT_SYMBOL(netdev_notify_peers);
1233
1234 static int __dev_open(struct net_device *dev)
1235 {
1236         const struct net_device_ops *ops = dev->netdev_ops;
1237         int ret;
1238
1239         ASSERT_RTNL();
1240
1241         if (!netif_device_present(dev))
1242                 return -ENODEV;
1243
1244         /* Block netpoll from trying to do any rx path servicing.
1245          * If we don't do this there is a chance ndo_poll_controller
1246          * or ndo_poll may be running while we open the device
1247          */
1248         netpoll_poll_disable(dev);
1249
1250         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251         ret = notifier_to_errno(ret);
1252         if (ret)
1253                 return ret;
1254
1255         set_bit(__LINK_STATE_START, &dev->state);
1256
1257         if (ops->ndo_validate_addr)
1258                 ret = ops->ndo_validate_addr(dev);
1259
1260         if (!ret && ops->ndo_open)
1261                 ret = ops->ndo_open(dev);
1262
1263         netpoll_poll_enable(dev);
1264
1265         if (ret)
1266                 clear_bit(__LINK_STATE_START, &dev->state);
1267         else {
1268                 dev->flags |= IFF_UP;
1269                 net_dmaengine_get();
1270                 dev_set_rx_mode(dev);
1271                 dev_activate(dev);
1272                 add_device_randomness(dev->dev_addr, dev->addr_len);
1273         }
1274
1275         return ret;
1276 }
1277
1278 /**
1279  *      dev_open        - prepare an interface for use.
1280  *      @dev:   device to open
1281  *
1282  *      Takes a device from down to up state. The device's private open
1283  *      function is invoked and then the multicast lists are loaded. Finally
1284  *      the device is moved into the up state and a %NETDEV_UP message is
1285  *      sent to the netdev notifier chain.
1286  *
1287  *      Calling this function on an active interface is a nop. On a failure
1288  *      a negative errno code is returned.
1289  */
1290 int dev_open(struct net_device *dev)
1291 {
1292         int ret;
1293
1294         if (dev->flags & IFF_UP)
1295                 return 0;
1296
1297         ret = __dev_open(dev);
1298         if (ret < 0)
1299                 return ret;
1300
1301         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302         call_netdevice_notifiers(NETDEV_UP, dev);
1303
1304         return ret;
1305 }
1306 EXPORT_SYMBOL(dev_open);
1307
1308 static int __dev_close_many(struct list_head *head)
1309 {
1310         struct net_device *dev;
1311
1312         ASSERT_RTNL();
1313         might_sleep();
1314
1315         list_for_each_entry(dev, head, close_list) {
1316                 /* Temporarily disable netpoll until the interface is down */
1317                 netpoll_poll_disable(dev);
1318
1319                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1320
1321                 clear_bit(__LINK_STATE_START, &dev->state);
1322
1323                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1324                  * can be even on different cpu. So just clear netif_running().
1325                  *
1326                  * dev->stop() will invoke napi_disable() on all of it's
1327                  * napi_struct instances on this device.
1328                  */
1329                 smp_mb__after_atomic(); /* Commit netif_running(). */
1330         }
1331
1332         dev_deactivate_many(head);
1333
1334         list_for_each_entry(dev, head, close_list) {
1335                 const struct net_device_ops *ops = dev->netdev_ops;
1336
1337                 /*
1338                  *      Call the device specific close. This cannot fail.
1339                  *      Only if device is UP
1340                  *
1341                  *      We allow it to be called even after a DETACH hot-plug
1342                  *      event.
1343                  */
1344                 if (ops->ndo_stop)
1345                         ops->ndo_stop(dev);
1346
1347                 dev->flags &= ~IFF_UP;
1348                 net_dmaengine_put();
1349                 netpoll_poll_enable(dev);
1350         }
1351
1352         return 0;
1353 }
1354
1355 static int __dev_close(struct net_device *dev)
1356 {
1357         int retval;
1358         LIST_HEAD(single);
1359
1360         list_add(&dev->close_list, &single);
1361         retval = __dev_close_many(&single);
1362         list_del(&single);
1363
1364         return retval;
1365 }
1366
1367 static int dev_close_many(struct list_head *head)
1368 {
1369         struct net_device *dev, *tmp;
1370
1371         /* Remove the devices that don't need to be closed */
1372         list_for_each_entry_safe(dev, tmp, head, close_list)
1373                 if (!(dev->flags & IFF_UP))
1374                         list_del_init(&dev->close_list);
1375
1376         __dev_close_many(head);
1377
1378         list_for_each_entry_safe(dev, tmp, head, close_list) {
1379                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1381                 list_del_init(&dev->close_list);
1382         }
1383
1384         return 0;
1385 }
1386
1387 /**
1388  *      dev_close - shutdown an interface.
1389  *      @dev: device to shutdown
1390  *
1391  *      This function moves an active device into down state. A
1392  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394  *      chain.
1395  */
1396 int dev_close(struct net_device *dev)
1397 {
1398         if (dev->flags & IFF_UP) {
1399                 LIST_HEAD(single);
1400
1401                 list_add(&dev->close_list, &single);
1402                 dev_close_many(&single);
1403                 list_del(&single);
1404         }
1405         return 0;
1406 }
1407 EXPORT_SYMBOL(dev_close);
1408
1409
1410 /**
1411  *      dev_disable_lro - disable Large Receive Offload on a device
1412  *      @dev: device
1413  *
1414  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1415  *      called under RTNL.  This is needed if received packets may be
1416  *      forwarded to another interface.
1417  */
1418 void dev_disable_lro(struct net_device *dev)
1419 {
1420         /*
1421          * If we're trying to disable lro on a vlan device
1422          * use the underlying physical device instead
1423          */
1424         if (is_vlan_dev(dev))
1425                 dev = vlan_dev_real_dev(dev);
1426
1427         /* the same for macvlan devices */
1428         if (netif_is_macvlan(dev))
1429                 dev = macvlan_dev_real_dev(dev);
1430
1431         dev->wanted_features &= ~NETIF_F_LRO;
1432         netdev_update_features(dev);
1433
1434         if (unlikely(dev->features & NETIF_F_LRO))
1435                 netdev_WARN(dev, "failed to disable LRO!\n");
1436 }
1437 EXPORT_SYMBOL(dev_disable_lro);
1438
1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440                                    struct net_device *dev)
1441 {
1442         struct netdev_notifier_info info;
1443
1444         netdev_notifier_info_init(&info, dev);
1445         return nb->notifier_call(nb, val, &info);
1446 }
1447
1448 static int dev_boot_phase = 1;
1449
1450 /**
1451  *      register_netdevice_notifier - register a network notifier block
1452  *      @nb: notifier
1453  *
1454  *      Register a notifier to be called when network device events occur.
1455  *      The notifier passed is linked into the kernel structures and must
1456  *      not be reused until it has been unregistered. A negative errno code
1457  *      is returned on a failure.
1458  *
1459  *      When registered all registration and up events are replayed
1460  *      to the new notifier to allow device to have a race free
1461  *      view of the network device list.
1462  */
1463
1464 int register_netdevice_notifier(struct notifier_block *nb)
1465 {
1466         struct net_device *dev;
1467         struct net_device *last;
1468         struct net *net;
1469         int err;
1470
1471         rtnl_lock();
1472         err = raw_notifier_chain_register(&netdev_chain, nb);
1473         if (err)
1474                 goto unlock;
1475         if (dev_boot_phase)
1476                 goto unlock;
1477         for_each_net(net) {
1478                 for_each_netdev(net, dev) {
1479                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480                         err = notifier_to_errno(err);
1481                         if (err)
1482                                 goto rollback;
1483
1484                         if (!(dev->flags & IFF_UP))
1485                                 continue;
1486
1487                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1488                 }
1489         }
1490
1491 unlock:
1492         rtnl_unlock();
1493         return err;
1494
1495 rollback:
1496         last = dev;
1497         for_each_net(net) {
1498                 for_each_netdev(net, dev) {
1499                         if (dev == last)
1500                                 goto outroll;
1501
1502                         if (dev->flags & IFF_UP) {
1503                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504                                                         dev);
1505                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506                         }
1507                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508                 }
1509         }
1510
1511 outroll:
1512         raw_notifier_chain_unregister(&netdev_chain, nb);
1513         goto unlock;
1514 }
1515 EXPORT_SYMBOL(register_netdevice_notifier);
1516
1517 /**
1518  *      unregister_netdevice_notifier - unregister a network notifier block
1519  *      @nb: notifier
1520  *
1521  *      Unregister a notifier previously registered by
1522  *      register_netdevice_notifier(). The notifier is unlinked into the
1523  *      kernel structures and may then be reused. A negative errno code
1524  *      is returned on a failure.
1525  *
1526  *      After unregistering unregister and down device events are synthesized
1527  *      for all devices on the device list to the removed notifier to remove
1528  *      the need for special case cleanup code.
1529  */
1530
1531 int unregister_netdevice_notifier(struct notifier_block *nb)
1532 {
1533         struct net_device *dev;
1534         struct net *net;
1535         int err;
1536
1537         rtnl_lock();
1538         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539         if (err)
1540                 goto unlock;
1541
1542         for_each_net(net) {
1543                 for_each_netdev(net, dev) {
1544                         if (dev->flags & IFF_UP) {
1545                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546                                                         dev);
1547                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548                         }
1549                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550                 }
1551         }
1552 unlock:
1553         rtnl_unlock();
1554         return err;
1555 }
1556 EXPORT_SYMBOL(unregister_netdevice_notifier);
1557
1558 /**
1559  *      call_netdevice_notifiers_info - call all network notifier blocks
1560  *      @val: value passed unmodified to notifier function
1561  *      @dev: net_device pointer passed unmodified to notifier function
1562  *      @info: notifier information data
1563  *
1564  *      Call all network notifier blocks.  Parameters and return value
1565  *      are as for raw_notifier_call_chain().
1566  */
1567
1568 static int call_netdevice_notifiers_info(unsigned long val,
1569                                          struct net_device *dev,
1570                                          struct netdev_notifier_info *info)
1571 {
1572         ASSERT_RTNL();
1573         netdev_notifier_info_init(info, dev);
1574         return raw_notifier_call_chain(&netdev_chain, val, info);
1575 }
1576
1577 /**
1578  *      call_netdevice_notifiers - call all network notifier blocks
1579  *      @val: value passed unmodified to notifier function
1580  *      @dev: net_device pointer passed unmodified to notifier function
1581  *
1582  *      Call all network notifier blocks.  Parameters and return value
1583  *      are as for raw_notifier_call_chain().
1584  */
1585
1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587 {
1588         struct netdev_notifier_info info;
1589
1590         return call_netdevice_notifiers_info(val, dev, &info);
1591 }
1592 EXPORT_SYMBOL(call_netdevice_notifiers);
1593
1594 static struct static_key netstamp_needed __read_mostly;
1595 #ifdef HAVE_JUMP_LABEL
1596 /* We are not allowed to call static_key_slow_dec() from irq context
1597  * If net_disable_timestamp() is called from irq context, defer the
1598  * static_key_slow_dec() calls.
1599  */
1600 static atomic_t netstamp_needed_deferred;
1601 #endif
1602
1603 void net_enable_timestamp(void)
1604 {
1605 #ifdef HAVE_JUMP_LABEL
1606         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607
1608         if (deferred) {
1609                 while (--deferred)
1610                         static_key_slow_dec(&netstamp_needed);
1611                 return;
1612         }
1613 #endif
1614         static_key_slow_inc(&netstamp_needed);
1615 }
1616 EXPORT_SYMBOL(net_enable_timestamp);
1617
1618 void net_disable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621         if (in_interrupt()) {
1622                 atomic_inc(&netstamp_needed_deferred);
1623                 return;
1624         }
1625 #endif
1626         static_key_slow_dec(&netstamp_needed);
1627 }
1628 EXPORT_SYMBOL(net_disable_timestamp);
1629
1630 static inline void net_timestamp_set(struct sk_buff *skb)
1631 {
1632         skb->tstamp.tv64 = 0;
1633         if (static_key_false(&netstamp_needed))
1634                 __net_timestamp(skb);
1635 }
1636
1637 #define net_timestamp_check(COND, SKB)                  \
1638         if (static_key_false(&netstamp_needed)) {               \
1639                 if ((COND) && !(SKB)->tstamp.tv64)      \
1640                         __net_timestamp(SKB);           \
1641         }                                               \
1642
1643 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1644 {
1645         unsigned int len;
1646
1647         if (!(dev->flags & IFF_UP))
1648                 return false;
1649
1650         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1651         if (skb->len <= len)
1652                 return true;
1653
1654         /* if TSO is enabled, we don't care about the length as the packet
1655          * could be forwarded without being segmented before
1656          */
1657         if (skb_is_gso(skb))
1658                 return true;
1659
1660         return false;
1661 }
1662 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1663
1664 /**
1665  * dev_forward_skb - loopback an skb to another netif
1666  *
1667  * @dev: destination network device
1668  * @skb: buffer to forward
1669  *
1670  * return values:
1671  *      NET_RX_SUCCESS  (no congestion)
1672  *      NET_RX_DROP     (packet was dropped, but freed)
1673  *
1674  * dev_forward_skb can be used for injecting an skb from the
1675  * start_xmit function of one device into the receive queue
1676  * of another device.
1677  *
1678  * The receiving device may be in another namespace, so
1679  * we have to clear all information in the skb that could
1680  * impact namespace isolation.
1681  */
1682 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684         if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685                 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686                         atomic_long_inc(&dev->rx_dropped);
1687                         kfree_skb(skb);
1688                         return NET_RX_DROP;
1689                 }
1690         }
1691
1692         if (unlikely(!is_skb_forwardable(dev, skb))) {
1693                 atomic_long_inc(&dev->rx_dropped);
1694                 kfree_skb(skb);
1695                 return NET_RX_DROP;
1696         }
1697
1698         skb_scrub_packet(skb, true);
1699         skb->protocol = eth_type_trans(skb, dev);
1700
1701         return netif_rx_internal(skb);
1702 }
1703 EXPORT_SYMBOL_GPL(dev_forward_skb);
1704
1705 static inline int deliver_skb(struct sk_buff *skb,
1706                               struct packet_type *pt_prev,
1707                               struct net_device *orig_dev)
1708 {
1709         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710                 return -ENOMEM;
1711         atomic_inc(&skb->users);
1712         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1713 }
1714
1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1716 {
1717         if (!ptype->af_packet_priv || !skb->sk)
1718                 return false;
1719
1720         if (ptype->id_match)
1721                 return ptype->id_match(ptype, skb->sk);
1722         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723                 return true;
1724
1725         return false;
1726 }
1727
1728 /*
1729  *      Support routine. Sends outgoing frames to any network
1730  *      taps currently in use.
1731  */
1732
1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1734 {
1735         struct packet_type *ptype;
1736         struct sk_buff *skb2 = NULL;
1737         struct packet_type *pt_prev = NULL;
1738
1739         rcu_read_lock();
1740         list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741                 /* Never send packets back to the socket
1742                  * they originated from - MvS (miquels@drinkel.ow.org)
1743                  */
1744                 if ((ptype->dev == dev || !ptype->dev) &&
1745                     (!skb_loop_sk(ptype, skb))) {
1746                         if (pt_prev) {
1747                                 deliver_skb(skb2, pt_prev, skb->dev);
1748                                 pt_prev = ptype;
1749                                 continue;
1750                         }
1751
1752                         skb2 = skb_clone(skb, GFP_ATOMIC);
1753                         if (!skb2)
1754                                 break;
1755
1756                         net_timestamp_set(skb2);
1757
1758                         /* skb->nh should be correctly
1759                            set by sender, so that the second statement is
1760                            just protection against buggy protocols.
1761                          */
1762                         skb_reset_mac_header(skb2);
1763
1764                         if (skb_network_header(skb2) < skb2->data ||
1765                             skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766                                 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767                                                      ntohs(skb2->protocol),
1768                                                      dev->name);
1769                                 skb_reset_network_header(skb2);
1770                         }
1771
1772                         skb2->transport_header = skb2->network_header;
1773                         skb2->pkt_type = PACKET_OUTGOING;
1774                         pt_prev = ptype;
1775                 }
1776         }
1777         if (pt_prev)
1778                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1779         rcu_read_unlock();
1780 }
1781
1782 /**
1783  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784  * @dev: Network device
1785  * @txq: number of queues available
1786  *
1787  * If real_num_tx_queues is changed the tc mappings may no longer be
1788  * valid. To resolve this verify the tc mapping remains valid and if
1789  * not NULL the mapping. With no priorities mapping to this
1790  * offset/count pair it will no longer be used. In the worst case TC0
1791  * is invalid nothing can be done so disable priority mappings. If is
1792  * expected that drivers will fix this mapping if they can before
1793  * calling netif_set_real_num_tx_queues.
1794  */
1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1796 {
1797         int i;
1798         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1799
1800         /* If TC0 is invalidated disable TC mapping */
1801         if (tc->offset + tc->count > txq) {
1802                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1803                 dev->num_tc = 0;
1804                 return;
1805         }
1806
1807         /* Invalidated prio to tc mappings set to TC0 */
1808         for (i = 1; i < TC_BITMASK + 1; i++) {
1809                 int q = netdev_get_prio_tc_map(dev, i);
1810
1811                 tc = &dev->tc_to_txq[q];
1812                 if (tc->offset + tc->count > txq) {
1813                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814                                 i, q);
1815                         netdev_set_prio_tc_map(dev, i, 0);
1816                 }
1817         }
1818 }
1819
1820 #ifdef CONFIG_XPS
1821 static DEFINE_MUTEX(xps_map_mutex);
1822 #define xmap_dereference(P)             \
1823         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1824
1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826                                         int cpu, u16 index)
1827 {
1828         struct xps_map *map = NULL;
1829         int pos;
1830
1831         if (dev_maps)
1832                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1833
1834         for (pos = 0; map && pos < map->len; pos++) {
1835                 if (map->queues[pos] == index) {
1836                         if (map->len > 1) {
1837                                 map->queues[pos] = map->queues[--map->len];
1838                         } else {
1839                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840                                 kfree_rcu(map, rcu);
1841                                 map = NULL;
1842                         }
1843                         break;
1844                 }
1845         }
1846
1847         return map;
1848 }
1849
1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1851 {
1852         struct xps_dev_maps *dev_maps;
1853         int cpu, i;
1854         bool active = false;
1855
1856         mutex_lock(&xps_map_mutex);
1857         dev_maps = xmap_dereference(dev->xps_maps);
1858
1859         if (!dev_maps)
1860                 goto out_no_maps;
1861
1862         for_each_possible_cpu(cpu) {
1863                 for (i = index; i < dev->num_tx_queues; i++) {
1864                         if (!remove_xps_queue(dev_maps, cpu, i))
1865                                 break;
1866                 }
1867                 if (i == dev->num_tx_queues)
1868                         active = true;
1869         }
1870
1871         if (!active) {
1872                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1873                 kfree_rcu(dev_maps, rcu);
1874         }
1875
1876         for (i = index; i < dev->num_tx_queues; i++)
1877                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878                                              NUMA_NO_NODE);
1879
1880 out_no_maps:
1881         mutex_unlock(&xps_map_mutex);
1882 }
1883
1884 static struct xps_map *expand_xps_map(struct xps_map *map,
1885                                       int cpu, u16 index)
1886 {
1887         struct xps_map *new_map;
1888         int alloc_len = XPS_MIN_MAP_ALLOC;
1889         int i, pos;
1890
1891         for (pos = 0; map && pos < map->len; pos++) {
1892                 if (map->queues[pos] != index)
1893                         continue;
1894                 return map;
1895         }
1896
1897         /* Need to add queue to this CPU's existing map */
1898         if (map) {
1899                 if (pos < map->alloc_len)
1900                         return map;
1901
1902                 alloc_len = map->alloc_len * 2;
1903         }
1904
1905         /* Need to allocate new map to store queue on this CPU's map */
1906         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907                                cpu_to_node(cpu));
1908         if (!new_map)
1909                 return NULL;
1910
1911         for (i = 0; i < pos; i++)
1912                 new_map->queues[i] = map->queues[i];
1913         new_map->alloc_len = alloc_len;
1914         new_map->len = pos;
1915
1916         return new_map;
1917 }
1918
1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920                         u16 index)
1921 {
1922         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923         struct xps_map *map, *new_map;
1924         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925         int cpu, numa_node_id = -2;
1926         bool active = false;
1927
1928         mutex_lock(&xps_map_mutex);
1929
1930         dev_maps = xmap_dereference(dev->xps_maps);
1931
1932         /* allocate memory for queue storage */
1933         for_each_online_cpu(cpu) {
1934                 if (!cpumask_test_cpu(cpu, mask))
1935                         continue;
1936
1937                 if (!new_dev_maps)
1938                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939                 if (!new_dev_maps) {
1940                         mutex_unlock(&xps_map_mutex);
1941                         return -ENOMEM;
1942                 }
1943
1944                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945                                  NULL;
1946
1947                 map = expand_xps_map(map, cpu, index);
1948                 if (!map)
1949                         goto error;
1950
1951                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952         }
1953
1954         if (!new_dev_maps)
1955                 goto out_no_new_maps;
1956
1957         for_each_possible_cpu(cpu) {
1958                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959                         /* add queue to CPU maps */
1960                         int pos = 0;
1961
1962                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963                         while ((pos < map->len) && (map->queues[pos] != index))
1964                                 pos++;
1965
1966                         if (pos == map->len)
1967                                 map->queues[map->len++] = index;
1968 #ifdef CONFIG_NUMA
1969                         if (numa_node_id == -2)
1970                                 numa_node_id = cpu_to_node(cpu);
1971                         else if (numa_node_id != cpu_to_node(cpu))
1972                                 numa_node_id = -1;
1973 #endif
1974                 } else if (dev_maps) {
1975                         /* fill in the new device map from the old device map */
1976                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978                 }
1979
1980         }
1981
1982         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983
1984         /* Cleanup old maps */
1985         if (dev_maps) {
1986                 for_each_possible_cpu(cpu) {
1987                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989                         if (map && map != new_map)
1990                                 kfree_rcu(map, rcu);
1991                 }
1992
1993                 kfree_rcu(dev_maps, rcu);
1994         }
1995
1996         dev_maps = new_dev_maps;
1997         active = true;
1998
1999 out_no_new_maps:
2000         /* update Tx queue numa node */
2001         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002                                      (numa_node_id >= 0) ? numa_node_id :
2003                                      NUMA_NO_NODE);
2004
2005         if (!dev_maps)
2006                 goto out_no_maps;
2007
2008         /* removes queue from unused CPUs */
2009         for_each_possible_cpu(cpu) {
2010                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011                         continue;
2012
2013                 if (remove_xps_queue(dev_maps, cpu, index))
2014                         active = true;
2015         }
2016
2017         /* free map if not active */
2018         if (!active) {
2019                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2020                 kfree_rcu(dev_maps, rcu);
2021         }
2022
2023 out_no_maps:
2024         mutex_unlock(&xps_map_mutex);
2025
2026         return 0;
2027 error:
2028         /* remove any maps that we added */
2029         for_each_possible_cpu(cpu) {
2030                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032                                  NULL;
2033                 if (new_map && new_map != map)
2034                         kfree(new_map);
2035         }
2036
2037         mutex_unlock(&xps_map_mutex);
2038
2039         kfree(new_dev_maps);
2040         return -ENOMEM;
2041 }
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2043
2044 #endif
2045 /*
2046  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048  */
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050 {
2051         int rc;
2052
2053         if (txq < 1 || txq > dev->num_tx_queues)
2054                 return -EINVAL;
2055
2056         if (dev->reg_state == NETREG_REGISTERED ||
2057             dev->reg_state == NETREG_UNREGISTERING) {
2058                 ASSERT_RTNL();
2059
2060                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061                                                   txq);
2062                 if (rc)
2063                         return rc;
2064
2065                 if (dev->num_tc)
2066                         netif_setup_tc(dev, txq);
2067
2068                 if (txq < dev->real_num_tx_queues) {
2069                         qdisc_reset_all_tx_gt(dev, txq);
2070 #ifdef CONFIG_XPS
2071                         netif_reset_xps_queues_gt(dev, txq);
2072 #endif
2073                 }
2074         }
2075
2076         dev->real_num_tx_queues = txq;
2077         return 0;
2078 }
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080
2081 #ifdef CONFIG_SYSFS
2082 /**
2083  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2084  *      @dev: Network device
2085  *      @rxq: Actual number of RX queues
2086  *
2087  *      This must be called either with the rtnl_lock held or before
2088  *      registration of the net device.  Returns 0 on success, or a
2089  *      negative error code.  If called before registration, it always
2090  *      succeeds.
2091  */
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093 {
2094         int rc;
2095
2096         if (rxq < 1 || rxq > dev->num_rx_queues)
2097                 return -EINVAL;
2098
2099         if (dev->reg_state == NETREG_REGISTERED) {
2100                 ASSERT_RTNL();
2101
2102                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103                                                   rxq);
2104                 if (rc)
2105                         return rc;
2106         }
2107
2108         dev->real_num_rx_queues = rxq;
2109         return 0;
2110 }
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112 #endif
2113
2114 /**
2115  * netif_get_num_default_rss_queues - default number of RSS queues
2116  *
2117  * This routine should set an upper limit on the number of RSS queues
2118  * used by default by multiqueue devices.
2119  */
2120 int netif_get_num_default_rss_queues(void)
2121 {
2122         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123 }
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125
2126 static inline void __netif_reschedule(struct Qdisc *q)
2127 {
2128         struct softnet_data *sd;
2129         unsigned long flags;
2130
2131         local_irq_save(flags);
2132         sd = &__get_cpu_var(softnet_data);
2133         q->next_sched = NULL;
2134         *sd->output_queue_tailp = q;
2135         sd->output_queue_tailp = &q->next_sched;
2136         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137         local_irq_restore(flags);
2138 }
2139
2140 void __netif_schedule(struct Qdisc *q)
2141 {
2142         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143                 __netif_reschedule(q);
2144 }
2145 EXPORT_SYMBOL(__netif_schedule);
2146
2147 struct dev_kfree_skb_cb {
2148         enum skb_free_reason reason;
2149 };
2150
2151 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2152 {
2153         return (struct dev_kfree_skb_cb *)skb->cb;
2154 }
2155
2156 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2157 {
2158         unsigned long flags;
2159
2160         if (likely(atomic_read(&skb->users) == 1)) {
2161                 smp_rmb();
2162                 atomic_set(&skb->users, 0);
2163         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2164                 return;
2165         }
2166         get_kfree_skb_cb(skb)->reason = reason;
2167         local_irq_save(flags);
2168         skb->next = __this_cpu_read(softnet_data.completion_queue);
2169         __this_cpu_write(softnet_data.completion_queue, skb);
2170         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2171         local_irq_restore(flags);
2172 }
2173 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2174
2175 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2176 {
2177         if (in_irq() || irqs_disabled())
2178                 __dev_kfree_skb_irq(skb, reason);
2179         else
2180                 dev_kfree_skb(skb);
2181 }
2182 EXPORT_SYMBOL(__dev_kfree_skb_any);
2183
2184
2185 /**
2186  * netif_device_detach - mark device as removed
2187  * @dev: network device
2188  *
2189  * Mark device as removed from system and therefore no longer available.
2190  */
2191 void netif_device_detach(struct net_device *dev)
2192 {
2193         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2194             netif_running(dev)) {
2195                 netif_tx_stop_all_queues(dev);
2196         }
2197 }
2198 EXPORT_SYMBOL(netif_device_detach);
2199
2200 /**
2201  * netif_device_attach - mark device as attached
2202  * @dev: network device
2203  *
2204  * Mark device as attached from system and restart if needed.
2205  */
2206 void netif_device_attach(struct net_device *dev)
2207 {
2208         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2209             netif_running(dev)) {
2210                 netif_tx_wake_all_queues(dev);
2211                 __netdev_watchdog_up(dev);
2212         }
2213 }
2214 EXPORT_SYMBOL(netif_device_attach);
2215
2216 static void skb_warn_bad_offload(const struct sk_buff *skb)
2217 {
2218         static const netdev_features_t null_features = 0;
2219         struct net_device *dev = skb->dev;
2220         const char *driver = "";
2221
2222         if (!net_ratelimit())
2223                 return;
2224
2225         if (dev && dev->dev.parent)
2226                 driver = dev_driver_string(dev->dev.parent);
2227
2228         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2229              "gso_type=%d ip_summed=%d\n",
2230              driver, dev ? &dev->features : &null_features,
2231              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2232              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2233              skb_shinfo(skb)->gso_type, skb->ip_summed);
2234 }
2235
2236 /*
2237  * Invalidate hardware checksum when packet is to be mangled, and
2238  * complete checksum manually on outgoing path.
2239  */
2240 int skb_checksum_help(struct sk_buff *skb)
2241 {
2242         __wsum csum;
2243         int ret = 0, offset;
2244
2245         if (skb->ip_summed == CHECKSUM_COMPLETE)
2246                 goto out_set_summed;
2247
2248         if (unlikely(skb_shinfo(skb)->gso_size)) {
2249                 skb_warn_bad_offload(skb);
2250                 return -EINVAL;
2251         }
2252
2253         /* Before computing a checksum, we should make sure no frag could
2254          * be modified by an external entity : checksum could be wrong.
2255          */
2256         if (skb_has_shared_frag(skb)) {
2257                 ret = __skb_linearize(skb);
2258                 if (ret)
2259                         goto out;
2260         }
2261
2262         offset = skb_checksum_start_offset(skb);
2263         BUG_ON(offset >= skb_headlen(skb));
2264         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2265
2266         offset += skb->csum_offset;
2267         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2268
2269         if (skb_cloned(skb) &&
2270             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2271                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2272                 if (ret)
2273                         goto out;
2274         }
2275
2276         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2277 out_set_summed:
2278         skb->ip_summed = CHECKSUM_NONE;
2279 out:
2280         return ret;
2281 }
2282 EXPORT_SYMBOL(skb_checksum_help);
2283
2284 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2285 {
2286         unsigned int vlan_depth = skb->mac_len;
2287         __be16 type = skb->protocol;
2288
2289         /* Tunnel gso handlers can set protocol to ethernet. */
2290         if (type == htons(ETH_P_TEB)) {
2291                 struct ethhdr *eth;
2292
2293                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2294                         return 0;
2295
2296                 eth = (struct ethhdr *)skb_mac_header(skb);
2297                 type = eth->h_proto;
2298         }
2299
2300         /* if skb->protocol is 802.1Q/AD then the header should already be
2301          * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2302          * ETH_HLEN otherwise
2303          */
2304         if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2305                 if (vlan_depth) {
2306                         if (unlikely(WARN_ON(vlan_depth < VLAN_HLEN)))
2307                                 return 0;
2308                         vlan_depth -= VLAN_HLEN;
2309                 } else {
2310                         vlan_depth = ETH_HLEN;
2311                 }
2312                 do {
2313                         struct vlan_hdr *vh;
2314
2315                         if (unlikely(!pskb_may_pull(skb,
2316                                                     vlan_depth + VLAN_HLEN)))
2317                                 return 0;
2318
2319                         vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2320                         type = vh->h_vlan_encapsulated_proto;
2321                         vlan_depth += VLAN_HLEN;
2322                 } while (type == htons(ETH_P_8021Q) ||
2323                          type == htons(ETH_P_8021AD));
2324         }
2325
2326         *depth = vlan_depth;
2327
2328         return type;
2329 }
2330
2331 /**
2332  *      skb_mac_gso_segment - mac layer segmentation handler.
2333  *      @skb: buffer to segment
2334  *      @features: features for the output path (see dev->features)
2335  */
2336 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2337                                     netdev_features_t features)
2338 {
2339         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2340         struct packet_offload *ptype;
2341         int vlan_depth = skb->mac_len;
2342         __be16 type = skb_network_protocol(skb, &vlan_depth);
2343
2344         if (unlikely(!type))
2345                 return ERR_PTR(-EINVAL);
2346
2347         __skb_pull(skb, vlan_depth);
2348
2349         rcu_read_lock();
2350         list_for_each_entry_rcu(ptype, &offload_base, list) {
2351                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2352                         if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2353                                 int err;
2354
2355                                 err = ptype->callbacks.gso_send_check(skb);
2356                                 segs = ERR_PTR(err);
2357                                 if (err || skb_gso_ok(skb, features))
2358                                         break;
2359                                 __skb_push(skb, (skb->data -
2360                                                  skb_network_header(skb)));
2361                         }
2362                         segs = ptype->callbacks.gso_segment(skb, features);
2363                         break;
2364                 }
2365         }
2366         rcu_read_unlock();
2367
2368         __skb_push(skb, skb->data - skb_mac_header(skb));
2369
2370         return segs;
2371 }
2372 EXPORT_SYMBOL(skb_mac_gso_segment);
2373
2374
2375 /* openvswitch calls this on rx path, so we need a different check.
2376  */
2377 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2378 {
2379         if (tx_path)
2380                 return skb->ip_summed != CHECKSUM_PARTIAL;
2381         else
2382                 return skb->ip_summed == CHECKSUM_NONE;
2383 }
2384
2385 /**
2386  *      __skb_gso_segment - Perform segmentation on skb.
2387  *      @skb: buffer to segment
2388  *      @features: features for the output path (see dev->features)
2389  *      @tx_path: whether it is called in TX path
2390  *
2391  *      This function segments the given skb and returns a list of segments.
2392  *
2393  *      It may return NULL if the skb requires no segmentation.  This is
2394  *      only possible when GSO is used for verifying header integrity.
2395  */
2396 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2397                                   netdev_features_t features, bool tx_path)
2398 {
2399         if (unlikely(skb_needs_check(skb, tx_path))) {
2400                 int err;
2401
2402                 skb_warn_bad_offload(skb);
2403
2404                 if (skb_header_cloned(skb) &&
2405                     (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2406                         return ERR_PTR(err);
2407         }
2408
2409         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2410         SKB_GSO_CB(skb)->encap_level = 0;
2411
2412         skb_reset_mac_header(skb);
2413         skb_reset_mac_len(skb);
2414
2415         return skb_mac_gso_segment(skb, features);
2416 }
2417 EXPORT_SYMBOL(__skb_gso_segment);
2418
2419 /* Take action when hardware reception checksum errors are detected. */
2420 #ifdef CONFIG_BUG
2421 void netdev_rx_csum_fault(struct net_device *dev)
2422 {
2423         if (net_ratelimit()) {
2424                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2425                 dump_stack();
2426         }
2427 }
2428 EXPORT_SYMBOL(netdev_rx_csum_fault);
2429 #endif
2430
2431 /* Actually, we should eliminate this check as soon as we know, that:
2432  * 1. IOMMU is present and allows to map all the memory.
2433  * 2. No high memory really exists on this machine.
2434  */
2435
2436 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2437 {
2438 #ifdef CONFIG_HIGHMEM
2439         int i;
2440         if (!(dev->features & NETIF_F_HIGHDMA)) {
2441                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2442                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2443                         if (PageHighMem(skb_frag_page(frag)))
2444                                 return 1;
2445                 }
2446         }
2447
2448         if (PCI_DMA_BUS_IS_PHYS) {
2449                 struct device *pdev = dev->dev.parent;
2450
2451                 if (!pdev)
2452                         return 0;
2453                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2454                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2455                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2456                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2457                                 return 1;
2458                 }
2459         }
2460 #endif
2461         return 0;
2462 }
2463
2464 struct dev_gso_cb {
2465         void (*destructor)(struct sk_buff *skb);
2466 };
2467
2468 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2469
2470 static void dev_gso_skb_destructor(struct sk_buff *skb)
2471 {
2472         struct dev_gso_cb *cb;
2473
2474         kfree_skb_list(skb->next);
2475         skb->next = NULL;
2476
2477         cb = DEV_GSO_CB(skb);
2478         if (cb->destructor)
2479                 cb->destructor(skb);
2480 }
2481
2482 /**
2483  *      dev_gso_segment - Perform emulated hardware segmentation on skb.
2484  *      @skb: buffer to segment
2485  *      @features: device features as applicable to this skb
2486  *
2487  *      This function segments the given skb and stores the list of segments
2488  *      in skb->next.
2489  */
2490 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2491 {
2492         struct sk_buff *segs;
2493
2494         segs = skb_gso_segment(skb, features);
2495
2496         /* Verifying header integrity only. */
2497         if (!segs)
2498                 return 0;
2499
2500         if (IS_ERR(segs))
2501                 return PTR_ERR(segs);
2502
2503         skb->next = segs;
2504         DEV_GSO_CB(skb)->destructor = skb->destructor;
2505         skb->destructor = dev_gso_skb_destructor;
2506
2507         return 0;
2508 }
2509
2510 static netdev_features_t harmonize_features(struct sk_buff *skb,
2511         netdev_features_t features)
2512 {
2513         int tmp;
2514
2515         if (skb->ip_summed != CHECKSUM_NONE &&
2516             !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) {
2517                 features &= ~NETIF_F_ALL_CSUM;
2518         } else if (illegal_highdma(skb->dev, skb)) {
2519                 features &= ~NETIF_F_SG;
2520         }
2521
2522         return features;
2523 }
2524
2525 netdev_features_t netif_skb_features(struct sk_buff *skb)
2526 {
2527         __be16 protocol = skb->protocol;
2528         netdev_features_t features = skb->dev->features;
2529
2530         if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2531                 features &= ~NETIF_F_GSO_MASK;
2532
2533         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2534                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2535                 protocol = veh->h_vlan_encapsulated_proto;
2536         } else if (!vlan_tx_tag_present(skb)) {
2537                 return harmonize_features(skb, features);
2538         }
2539
2540         features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2541                                                NETIF_F_HW_VLAN_STAG_TX);
2542
2543         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2544                 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2545                                 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2546                                 NETIF_F_HW_VLAN_STAG_TX;
2547
2548         return harmonize_features(skb, features);
2549 }
2550 EXPORT_SYMBOL(netif_skb_features);
2551
2552 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2553                         struct netdev_queue *txq)
2554 {
2555         const struct net_device_ops *ops = dev->netdev_ops;
2556         int rc = NETDEV_TX_OK;
2557         unsigned int skb_len;
2558
2559         if (likely(!skb->next)) {
2560                 netdev_features_t features;
2561
2562                 /*
2563                  * If device doesn't need skb->dst, release it right now while
2564                  * its hot in this cpu cache
2565                  */
2566                 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2567                         skb_dst_drop(skb);
2568
2569                 features = netif_skb_features(skb);
2570
2571                 if (vlan_tx_tag_present(skb) &&
2572                     !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2573                         skb = __vlan_put_tag(skb, skb->vlan_proto,
2574                                              vlan_tx_tag_get(skb));
2575                         if (unlikely(!skb))
2576                                 goto out;
2577
2578                         skb->vlan_tci = 0;
2579                 }
2580
2581                 /* If encapsulation offload request, verify we are testing
2582                  * hardware encapsulation features instead of standard
2583                  * features for the netdev
2584                  */
2585                 if (skb->encapsulation)
2586                         features &= dev->hw_enc_features;
2587
2588                 if (netif_needs_gso(skb, features)) {
2589                         if (unlikely(dev_gso_segment(skb, features)))
2590                                 goto out_kfree_skb;
2591                         if (skb->next)
2592                                 goto gso;
2593                 } else {
2594                         if (skb_needs_linearize(skb, features) &&
2595                             __skb_linearize(skb))
2596                                 goto out_kfree_skb;
2597
2598                         /* If packet is not checksummed and device does not
2599                          * support checksumming for this protocol, complete
2600                          * checksumming here.
2601                          */
2602                         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2603                                 if (skb->encapsulation)
2604                                         skb_set_inner_transport_header(skb,
2605                                                 skb_checksum_start_offset(skb));
2606                                 else
2607                                         skb_set_transport_header(skb,
2608                                                 skb_checksum_start_offset(skb));
2609                                 if (!(features & NETIF_F_ALL_CSUM) &&
2610                                      skb_checksum_help(skb))
2611                                         goto out_kfree_skb;
2612                         }
2613                 }
2614
2615                 if (!list_empty(&ptype_all))
2616                         dev_queue_xmit_nit(skb, dev);
2617
2618                 skb_len = skb->len;
2619                 trace_net_dev_start_xmit(skb, dev);
2620                 rc = ops->ndo_start_xmit(skb, dev);
2621                 trace_net_dev_xmit(skb, rc, dev, skb_len);
2622                 if (rc == NETDEV_TX_OK)
2623                         txq_trans_update(txq);
2624                 return rc;
2625         }
2626
2627 gso:
2628         do {
2629                 struct sk_buff *nskb = skb->next;
2630
2631                 skb->next = nskb->next;
2632                 nskb->next = NULL;
2633
2634                 if (!list_empty(&ptype_all))
2635                         dev_queue_xmit_nit(nskb, dev);
2636
2637                 skb_len = nskb->len;
2638                 trace_net_dev_start_xmit(nskb, dev);
2639                 rc = ops->ndo_start_xmit(nskb, dev);
2640                 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2641                 if (unlikely(rc != NETDEV_TX_OK)) {
2642                         if (rc & ~NETDEV_TX_MASK)
2643                                 goto out_kfree_gso_skb;
2644                         nskb->next = skb->next;
2645                         skb->next = nskb;
2646                         return rc;
2647                 }
2648                 txq_trans_update(txq);
2649                 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2650                         return NETDEV_TX_BUSY;
2651         } while (skb->next);
2652
2653 out_kfree_gso_skb:
2654         if (likely(skb->next == NULL)) {
2655                 skb->destructor = DEV_GSO_CB(skb)->destructor;
2656                 consume_skb(skb);
2657                 return rc;
2658         }
2659 out_kfree_skb:
2660         kfree_skb(skb);
2661 out:
2662         return rc;
2663 }
2664 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2665
2666 static void qdisc_pkt_len_init(struct sk_buff *skb)
2667 {
2668         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2669
2670         qdisc_skb_cb(skb)->pkt_len = skb->len;
2671
2672         /* To get more precise estimation of bytes sent on wire,
2673          * we add to pkt_len the headers size of all segments
2674          */
2675         if (shinfo->gso_size)  {
2676                 unsigned int hdr_len;
2677                 u16 gso_segs = shinfo->gso_segs;
2678
2679                 /* mac layer + network layer */
2680                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2681
2682                 /* + transport layer */
2683                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2684                         hdr_len += tcp_hdrlen(skb);
2685                 else
2686                         hdr_len += sizeof(struct udphdr);
2687
2688                 if (shinfo->gso_type & SKB_GSO_DODGY)
2689                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2690                                                 shinfo->gso_size);
2691
2692                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2693         }
2694 }
2695
2696 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2697                                  struct net_device *dev,
2698                                  struct netdev_queue *txq)
2699 {
2700         spinlock_t *root_lock = qdisc_lock(q);
2701         bool contended;
2702         int rc;
2703
2704         qdisc_pkt_len_init(skb);
2705         qdisc_calculate_pkt_len(skb, q);
2706         /*
2707          * Heuristic to force contended enqueues to serialize on a
2708          * separate lock before trying to get qdisc main lock.
2709          * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2710          * and dequeue packets faster.
2711          */
2712         contended = qdisc_is_running(q);
2713         if (unlikely(contended))
2714                 spin_lock(&q->busylock);
2715
2716         spin_lock(root_lock);
2717         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2718                 kfree_skb(skb);
2719                 rc = NET_XMIT_DROP;
2720         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2721                    qdisc_run_begin(q)) {
2722                 /*
2723                  * This is a work-conserving queue; there are no old skbs
2724                  * waiting to be sent out; and the qdisc is not running -
2725                  * xmit the skb directly.
2726                  */
2727                 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2728                         skb_dst_force(skb);
2729
2730                 qdisc_bstats_update(q, skb);
2731
2732                 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2733                         if (unlikely(contended)) {
2734                                 spin_unlock(&q->busylock);
2735                                 contended = false;
2736                         }
2737                         __qdisc_run(q);
2738                 } else
2739                         qdisc_run_end(q);
2740
2741                 rc = NET_XMIT_SUCCESS;
2742         } else {
2743                 skb_dst_force(skb);
2744                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2745                 if (qdisc_run_begin(q)) {
2746                         if (unlikely(contended)) {
2747                                 spin_unlock(&q->busylock);
2748                                 contended = false;
2749                         }
2750                         __qdisc_run(q);
2751                 }
2752         }
2753         spin_unlock(root_lock);
2754         if (unlikely(contended))
2755                 spin_unlock(&q->busylock);
2756         return rc;
2757 }
2758
2759 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2760 static void skb_update_prio(struct sk_buff *skb)
2761 {
2762         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2763
2764         if (!skb->priority && skb->sk && map) {
2765                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2766
2767                 if (prioidx < map->priomap_len)
2768                         skb->priority = map->priomap[prioidx];
2769         }
2770 }
2771 #else
2772 #define skb_update_prio(skb)
2773 #endif
2774
2775 static DEFINE_PER_CPU(int, xmit_recursion);
2776 #define RECURSION_LIMIT 10
2777
2778 /**
2779  *      dev_loopback_xmit - loop back @skb
2780  *      @skb: buffer to transmit
2781  */
2782 int dev_loopback_xmit(struct sk_buff *skb)
2783 {
2784         skb_reset_mac_header(skb);
2785         __skb_pull(skb, skb_network_offset(skb));
2786         skb->pkt_type = PACKET_LOOPBACK;
2787         skb->ip_summed = CHECKSUM_UNNECESSARY;
2788         WARN_ON(!skb_dst(skb));
2789         skb_dst_force(skb);
2790         netif_rx_ni(skb);
2791         return 0;
2792 }
2793 EXPORT_SYMBOL(dev_loopback_xmit);
2794
2795 /**
2796  *      __dev_queue_xmit - transmit a buffer
2797  *      @skb: buffer to transmit
2798  *      @accel_priv: private data used for L2 forwarding offload
2799  *
2800  *      Queue a buffer for transmission to a network device. The caller must
2801  *      have set the device and priority and built the buffer before calling
2802  *      this function. The function can be called from an interrupt.
2803  *
2804  *      A negative errno code is returned on a failure. A success does not
2805  *      guarantee the frame will be transmitted as it may be dropped due
2806  *      to congestion or traffic shaping.
2807  *
2808  * -----------------------------------------------------------------------------------
2809  *      I notice this method can also return errors from the queue disciplines,
2810  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2811  *      be positive.
2812  *
2813  *      Regardless of the return value, the skb is consumed, so it is currently
2814  *      difficult to retry a send to this method.  (You can bump the ref count
2815  *      before sending to hold a reference for retry if you are careful.)
2816  *
2817  *      When calling this method, interrupts MUST be enabled.  This is because
2818  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2819  *          --BLG
2820  */
2821 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2822 {
2823         struct net_device *dev = skb->dev;
2824         struct netdev_queue *txq;
2825         struct Qdisc *q;
2826         int rc = -ENOMEM;
2827
2828         skb_reset_mac_header(skb);
2829
2830         /* Disable soft irqs for various locks below. Also
2831          * stops preemption for RCU.
2832          */
2833         rcu_read_lock_bh();
2834
2835         skb_update_prio(skb);
2836
2837         txq = netdev_pick_tx(dev, skb, accel_priv);
2838         q = rcu_dereference_bh(txq->qdisc);
2839
2840 #ifdef CONFIG_NET_CLS_ACT
2841         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2842 #endif
2843         trace_net_dev_queue(skb);
2844         if (q->enqueue) {
2845                 rc = __dev_xmit_skb(skb, q, dev, txq);
2846                 goto out;
2847         }
2848
2849         /* The device has no queue. Common case for software devices:
2850            loopback, all the sorts of tunnels...
2851
2852            Really, it is unlikely that netif_tx_lock protection is necessary
2853            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2854            counters.)
2855            However, it is possible, that they rely on protection
2856            made by us here.
2857
2858            Check this and shot the lock. It is not prone from deadlocks.
2859            Either shot noqueue qdisc, it is even simpler 8)
2860          */
2861         if (dev->flags & IFF_UP) {
2862                 int cpu = smp_processor_id(); /* ok because BHs are off */
2863
2864                 if (txq->xmit_lock_owner != cpu) {
2865
2866                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2867                                 goto recursion_alert;
2868
2869                         HARD_TX_LOCK(dev, txq, cpu);
2870
2871                         if (!netif_xmit_stopped(txq)) {
2872                                 __this_cpu_inc(xmit_recursion);
2873                                 rc = dev_hard_start_xmit(skb, dev, txq);
2874                                 __this_cpu_dec(xmit_recursion);
2875                                 if (dev_xmit_complete(rc)) {
2876                                         HARD_TX_UNLOCK(dev, txq);
2877                                         goto out;
2878                                 }
2879                         }
2880                         HARD_TX_UNLOCK(dev, txq);
2881                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2882                                              dev->name);
2883                 } else {
2884                         /* Recursion is detected! It is possible,
2885                          * unfortunately
2886                          */
2887 recursion_alert:
2888                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2889                                              dev->name);
2890                 }
2891         }
2892
2893         rc = -ENETDOWN;
2894         rcu_read_unlock_bh();
2895
2896         atomic_long_inc(&dev->tx_dropped);
2897         kfree_skb(skb);
2898         return rc;
2899 out:
2900         rcu_read_unlock_bh();
2901         return rc;
2902 }
2903
2904 int dev_queue_xmit(struct sk_buff *skb)
2905 {
2906         return __dev_queue_xmit(skb, NULL);
2907 }
2908 EXPORT_SYMBOL(dev_queue_xmit);
2909
2910 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2911 {
2912         return __dev_queue_xmit(skb, accel_priv);
2913 }
2914 EXPORT_SYMBOL(dev_queue_xmit_accel);
2915
2916
2917 /*=======================================================================
2918                         Receiver routines
2919   =======================================================================*/
2920
2921 int netdev_max_backlog __read_mostly = 1000;
2922 EXPORT_SYMBOL(netdev_max_backlog);
2923
2924 int netdev_tstamp_prequeue __read_mostly = 1;
2925 int netdev_budget __read_mostly = 300;
2926 int weight_p __read_mostly = 64;            /* old backlog weight */
2927
2928 /* Called with irq disabled */
2929 static inline void ____napi_schedule(struct softnet_data *sd,
2930                                      struct napi_struct *napi)
2931 {
2932         list_add_tail(&napi->poll_list, &sd->poll_list);
2933         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2934 }
2935
2936 #ifdef CONFIG_RPS
2937
2938 /* One global table that all flow-based protocols share. */
2939 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2940 EXPORT_SYMBOL(rps_sock_flow_table);
2941
2942 struct static_key rps_needed __read_mostly;
2943
2944 static struct rps_dev_flow *
2945 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2946             struct rps_dev_flow *rflow, u16 next_cpu)
2947 {
2948         if (next_cpu != RPS_NO_CPU) {
2949 #ifdef CONFIG_RFS_ACCEL
2950                 struct netdev_rx_queue *rxqueue;
2951                 struct rps_dev_flow_table *flow_table;
2952                 struct rps_dev_flow *old_rflow;
2953                 u32 flow_id;
2954                 u16 rxq_index;
2955                 int rc;
2956
2957                 /* Should we steer this flow to a different hardware queue? */
2958                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2959                     !(dev->features & NETIF_F_NTUPLE))
2960                         goto out;
2961                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2962                 if (rxq_index == skb_get_rx_queue(skb))
2963                         goto out;
2964
2965                 rxqueue = dev->_rx + rxq_index;
2966                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2967                 if (!flow_table)
2968                         goto out;
2969                 flow_id = skb_get_hash(skb) & flow_table->mask;
2970                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2971                                                         rxq_index, flow_id);
2972                 if (rc < 0)
2973                         goto out;
2974                 old_rflow = rflow;
2975                 rflow = &flow_table->flows[flow_id];
2976                 rflow->filter = rc;
2977                 if (old_rflow->filter == rflow->filter)
2978                         old_rflow->filter = RPS_NO_FILTER;
2979         out:
2980 #endif
2981                 rflow->last_qtail =
2982                         per_cpu(softnet_data, next_cpu).input_queue_head;
2983         }
2984
2985         rflow->cpu = next_cpu;
2986         return rflow;
2987 }
2988
2989 /*
2990  * get_rps_cpu is called from netif_receive_skb and returns the target
2991  * CPU from the RPS map of the receiving queue for a given skb.
2992  * rcu_read_lock must be held on entry.
2993  */
2994 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2995                        struct rps_dev_flow **rflowp)
2996 {
2997         struct netdev_rx_queue *rxqueue;
2998         struct rps_map *map;
2999         struct rps_dev_flow_table *flow_table;
3000         struct rps_sock_flow_table *sock_flow_table;
3001         int cpu = -1;
3002         u16 tcpu;
3003         u32 hash;
3004
3005         if (skb_rx_queue_recorded(skb)) {
3006                 u16 index = skb_get_rx_queue(skb);
3007                 if (unlikely(index >= dev->real_num_rx_queues)) {
3008                         WARN_ONCE(dev->real_num_rx_queues > 1,
3009                                   "%s received packet on queue %u, but number "
3010                                   "of RX queues is %u\n",
3011                                   dev->name, index, dev->real_num_rx_queues);
3012                         goto done;
3013                 }
3014                 rxqueue = dev->_rx + index;
3015         } else
3016                 rxqueue = dev->_rx;
3017
3018         map = rcu_dereference(rxqueue->rps_map);
3019         if (map) {
3020                 if (map->len == 1 &&
3021                     !rcu_access_pointer(rxqueue->rps_flow_table)) {
3022                         tcpu = map->cpus[0];
3023                         if (cpu_online(tcpu))
3024                                 cpu = tcpu;
3025                         goto done;
3026                 }
3027         } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3028                 goto done;
3029         }
3030
3031         skb_reset_network_header(skb);
3032         hash = skb_get_hash(skb);
3033         if (!hash)
3034                 goto done;
3035
3036         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3037         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3038         if (flow_table && sock_flow_table) {
3039                 u16 next_cpu;
3040                 struct rps_dev_flow *rflow;
3041
3042                 rflow = &flow_table->flows[hash & flow_table->mask];
3043                 tcpu = rflow->cpu;
3044
3045                 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3046
3047                 /*
3048                  * If the desired CPU (where last recvmsg was done) is
3049                  * different from current CPU (one in the rx-queue flow
3050                  * table entry), switch if one of the following holds:
3051                  *   - Current CPU is unset (equal to RPS_NO_CPU).
3052                  *   - Current CPU is offline.
3053                  *   - The current CPU's queue tail has advanced beyond the
3054                  *     last packet that was enqueued using this table entry.
3055                  *     This guarantees that all previous packets for the flow
3056                  *     have been dequeued, thus preserving in order delivery.
3057                  */
3058                 if (unlikely(tcpu != next_cpu) &&
3059                     (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3060                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3061                       rflow->last_qtail)) >= 0)) {
3062                         tcpu = next_cpu;
3063                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3064                 }
3065
3066                 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3067                         *rflowp = rflow;
3068                         cpu = tcpu;
3069                         goto done;
3070                 }
3071         }
3072
3073         if (map) {
3074                 tcpu = map->cpus[((u64) hash * map->len) >> 32];
3075
3076                 if (cpu_online(tcpu)) {
3077                         cpu = tcpu;
3078                         goto done;
3079                 }
3080         }
3081
3082 done:
3083         return cpu;
3084 }
3085
3086 #ifdef CONFIG_RFS_ACCEL
3087
3088 /**
3089  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3090  * @dev: Device on which the filter was set
3091  * @rxq_index: RX queue index
3092  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3093  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3094  *
3095  * Drivers that implement ndo_rx_flow_steer() should periodically call
3096  * this function for each installed filter and remove the filters for
3097  * which it returns %true.
3098  */
3099 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3100                          u32 flow_id, u16 filter_id)
3101 {
3102         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3103         struct rps_dev_flow_table *flow_table;
3104         struct rps_dev_flow *rflow;
3105         bool expire = true;
3106         int cpu;
3107
3108         rcu_read_lock();
3109         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3110         if (flow_table && flow_id <= flow_table->mask) {
3111                 rflow = &flow_table->flows[flow_id];
3112                 cpu = ACCESS_ONCE(rflow->cpu);
3113                 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3114                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3115                            rflow->last_qtail) <
3116                      (int)(10 * flow_table->mask)))
3117                         expire = false;
3118         }
3119         rcu_read_unlock();
3120         return expire;
3121 }
3122 EXPORT_SYMBOL(rps_may_expire_flow);
3123
3124 #endif /* CONFIG_RFS_ACCEL */
3125
3126 /* Called from hardirq (IPI) context */
3127 static void rps_trigger_softirq(void *data)
3128 {
3129         struct softnet_data *sd = data;
3130
3131         ____napi_schedule(sd, &sd->backlog);
3132         sd->received_rps++;
3133 }
3134
3135 #endif /* CONFIG_RPS */
3136
3137 /*
3138  * Check if this softnet_data structure is another cpu one
3139  * If yes, queue it to our IPI list and return 1
3140  * If no, return 0
3141  */
3142 static int rps_ipi_queued(struct softnet_data *sd)
3143 {
3144 #ifdef CONFIG_RPS
3145         struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3146
3147         if (sd != mysd) {
3148                 sd->rps_ipi_next = mysd->rps_ipi_list;
3149                 mysd->rps_ipi_list = sd;
3150
3151                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3152                 return 1;
3153         }
3154 #endif /* CONFIG_RPS */
3155         return 0;
3156 }
3157
3158 #ifdef CONFIG_NET_FLOW_LIMIT
3159 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3160 #endif
3161
3162 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3163 {
3164 #ifdef CONFIG_NET_FLOW_LIMIT
3165         struct sd_flow_limit *fl;
3166         struct softnet_data *sd;
3167         unsigned int old_flow, new_flow;
3168
3169         if (qlen < (netdev_max_backlog >> 1))
3170                 return false;
3171
3172         sd = &__get_cpu_var(softnet_data);
3173
3174         rcu_read_lock();
3175         fl = rcu_dereference(sd->flow_limit);
3176         if (fl) {
3177                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3178                 old_flow = fl->history[fl->history_head];
3179                 fl->history[fl->history_head] = new_flow;
3180
3181                 fl->history_head++;
3182                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3183
3184                 if (likely(fl->buckets[old_flow]))
3185                         fl->buckets[old_flow]--;
3186
3187                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3188                         fl->count++;
3189                         rcu_read_unlock();
3190                         return true;
3191                 }
3192         }
3193         rcu_read_unlock();
3194 #endif
3195         return false;
3196 }
3197
3198 /*
3199  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3200  * queue (may be a remote CPU queue).
3201  */
3202 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3203                               unsigned int *qtail)
3204 {
3205         struct softnet_data *sd;
3206         unsigned long flags;
3207         unsigned int qlen;
3208
3209         sd = &per_cpu(softnet_data, cpu);
3210
3211         local_irq_save(flags);
3212
3213         rps_lock(sd);
3214         qlen = skb_queue_len(&sd->input_pkt_queue);
3215         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3216                 if (skb_queue_len(&sd->input_pkt_queue)) {
3217 enqueue:
3218                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3219                         input_queue_tail_incr_save(sd, qtail);
3220                         rps_unlock(sd);
3221                         local_irq_restore(flags);
3222                         return NET_RX_SUCCESS;
3223                 }
3224
3225                 /* Schedule NAPI for backlog device
3226                  * We can use non atomic operation since we own the queue lock
3227                  */
3228                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3229                         if (!rps_ipi_queued(sd))
3230                                 ____napi_schedule(sd, &sd->backlog);
3231                 }
3232                 goto enqueue;
3233         }
3234
3235         sd->dropped++;
3236         rps_unlock(sd);
3237
3238         local_irq_restore(flags);
3239
3240         atomic_long_inc(&skb->dev->rx_dropped);
3241         kfree_skb(skb);
3242         return NET_RX_DROP;
3243 }
3244
3245 static int netif_rx_internal(struct sk_buff *skb)
3246 {
3247         int ret;
3248
3249         net_timestamp_check(netdev_tstamp_prequeue, skb);
3250
3251         trace_netif_rx(skb);
3252 #ifdef CONFIG_RPS
3253         if (static_key_false(&rps_needed)) {
3254                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3255                 int cpu;
3256
3257                 preempt_disable();
3258                 rcu_read_lock();
3259
3260                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3261                 if (cpu < 0)
3262                         cpu = smp_processor_id();
3263
3264                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3265
3266                 rcu_read_unlock();
3267                 preempt_enable();
3268         } else
3269 #endif
3270         {
3271                 unsigned int qtail;
3272                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3273                 put_cpu();
3274         }
3275         return ret;
3276 }
3277
3278 /**
3279  *      netif_rx        -       post buffer to the network code
3280  *      @skb: buffer to post
3281  *
3282  *      This function receives a packet from a device driver and queues it for
3283  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3284  *      may be dropped during processing for congestion control or by the
3285  *      protocol layers.
3286  *
3287  *      return values:
3288  *      NET_RX_SUCCESS  (no congestion)
3289  *      NET_RX_DROP     (packet was dropped)
3290  *
3291  */
3292
3293 int netif_rx(struct sk_buff *skb)
3294 {
3295         trace_netif_rx_entry(skb);
3296
3297         return netif_rx_internal(skb);
3298 }
3299 EXPORT_SYMBOL(netif_rx);
3300
3301 int netif_rx_ni(struct sk_buff *skb)
3302 {
3303         int err;
3304
3305         trace_netif_rx_ni_entry(skb);
3306
3307         preempt_disable();
3308         err = netif_rx_internal(skb);
3309         if (local_softirq_pending())
3310                 do_softirq();
3311         preempt_enable();
3312
3313         return err;
3314 }
3315 EXPORT_SYMBOL(netif_rx_ni);
3316
3317 static void net_tx_action(struct softirq_action *h)
3318 {
3319         struct softnet_data *sd = &__get_cpu_var(softnet_data);
3320
3321         if (sd->completion_queue) {
3322                 struct sk_buff *clist;
3323
3324                 local_irq_disable();
3325                 clist = sd->completion_queue;
3326                 sd->completion_queue = NULL;
3327                 local_irq_enable();
3328
3329                 while (clist) {
3330                         struct sk_buff *skb = clist;
3331                         clist = clist->next;
3332
3333                         WARN_ON(atomic_read(&skb->users));
3334                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3335                                 trace_consume_skb(skb);
3336                         else
3337                                 trace_kfree_skb(skb, net_tx_action);
3338                         __kfree_skb(skb);
3339                 }
3340         }
3341
3342         if (sd->output_queue) {
3343                 struct Qdisc *head;
3344
3345                 local_irq_disable();
3346                 head = sd->output_queue;
3347                 sd->output_queue = NULL;
3348                 sd->output_queue_tailp = &sd->output_queue;
3349                 local_irq_enable();
3350
3351                 while (head) {
3352                         struct Qdisc *q = head;
3353                         spinlock_t *root_lock;
3354
3355                         head = head->next_sched;
3356
3357                         root_lock = qdisc_lock(q);
3358                         if (spin_trylock(root_lock)) {
3359                                 smp_mb__before_atomic();
3360                                 clear_bit(__QDISC_STATE_SCHED,
3361                                           &q->state);
3362                                 qdisc_run(q);
3363                                 spin_unlock(root_lock);
3364                         } else {
3365                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3366                                               &q->state)) {
3367                                         __netif_reschedule(q);
3368                                 } else {
3369                                         smp_mb__before_atomic();
3370                                         clear_bit(__QDISC_STATE_SCHED,
3371                                                   &q->state);
3372                                 }
3373                         }
3374                 }
3375         }
3376 }
3377
3378 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3379     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3380 /* This hook is defined here for ATM LANE */
3381 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3382                              unsigned char *addr) __read_mostly;
3383 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3384 #endif
3385
3386 #ifdef CONFIG_NET_CLS_ACT
3387 /* TODO: Maybe we should just force sch_ingress to be compiled in
3388  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3389  * a compare and 2 stores extra right now if we dont have it on
3390  * but have CONFIG_NET_CLS_ACT
3391  * NOTE: This doesn't stop any functionality; if you dont have
3392  * the ingress scheduler, you just can't add policies on ingress.
3393  *
3394  */
3395 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3396 {
3397         struct net_device *dev = skb->dev;
3398         u32 ttl = G_TC_RTTL(skb->tc_verd);
3399         int result = TC_ACT_OK;
3400         struct Qdisc *q;
3401
3402         if (unlikely(MAX_RED_LOOP < ttl++)) {
3403                 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3404                                      skb->skb_iif, dev->ifindex);
3405                 return TC_ACT_SHOT;
3406         }
3407
3408         skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3409         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3410
3411         q = rxq->qdisc;
3412         if (q != &noop_qdisc) {
3413                 spin_lock(qdisc_lock(q));
3414                 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3415                         result = qdisc_enqueue_root(skb, q);
3416                 spin_unlock(qdisc_lock(q));
3417         }
3418
3419         return result;
3420 }
3421
3422 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3423                                          struct packet_type **pt_prev,
3424                                          int *ret, struct net_device *orig_dev)
3425 {
3426         struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3427
3428         if (!rxq || rxq->qdisc == &noop_qdisc)
3429                 goto out;
3430
3431         if (*pt_prev) {
3432                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3433                 *pt_prev = NULL;
3434         }
3435
3436         switch (ing_filter(skb, rxq)) {
3437         case TC_ACT_SHOT:
3438         case TC_ACT_STOLEN:
3439                 kfree_skb(skb);
3440                 return NULL;
3441         }
3442
3443 out:
3444         skb->tc_verd = 0;
3445         return skb;
3446 }
3447 #endif
3448
3449 /**
3450  *      netdev_rx_handler_register - register receive handler
3451  *      @dev: device to register a handler for
3452  *      @rx_handler: receive handler to register
3453  *      @rx_handler_data: data pointer that is used by rx handler
3454  *
3455  *      Register a receive handler for a device. This handler will then be
3456  *      called from __netif_receive_skb. A negative errno code is returned
3457  *      on a failure.
3458  *
3459  *      The caller must hold the rtnl_mutex.
3460  *
3461  *      For a general description of rx_handler, see enum rx_handler_result.
3462  */
3463 int netdev_rx_handler_register(struct net_device *dev,
3464                                rx_handler_func_t *rx_handler,
3465                                void *rx_handler_data)
3466 {
3467         ASSERT_RTNL();
3468
3469         if (dev->rx_handler)
3470                 return -EBUSY;
3471
3472         /* Note: rx_handler_data must be set before rx_handler */
3473         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3474         rcu_assign_pointer(dev->rx_handler, rx_handler);
3475
3476         return 0;
3477 }
3478 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3479
3480 /**
3481  *      netdev_rx_handler_unregister - unregister receive handler
3482  *      @dev: device to unregister a handler from
3483  *
3484  *      Unregister a receive handler from a device.
3485  *
3486  *      The caller must hold the rtnl_mutex.
3487  */
3488 void netdev_rx_handler_unregister(struct net_device *dev)
3489 {
3490
3491         ASSERT_RTNL();
3492         RCU_INIT_POINTER(dev->rx_handler, NULL);
3493         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3494          * section has a guarantee to see a non NULL rx_handler_data
3495          * as well.
3496          */
3497         synchronize_net();
3498         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3499 }
3500 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3501
3502 /*
3503  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3504  * the special handling of PFMEMALLOC skbs.
3505  */
3506 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3507 {
3508         switch (skb->protocol) {
3509         case htons(ETH_P_ARP):
3510         case htons(ETH_P_IP):
3511         case htons(ETH_P_IPV6):
3512         case htons(ETH_P_8021Q):
3513         case htons(ETH_P_8021AD):
3514                 return true;
3515         default:
3516                 return false;
3517         }
3518 }
3519
3520 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3521 {
3522         struct packet_type *ptype, *pt_prev;
3523         rx_handler_func_t *rx_handler;
3524         struct net_device *orig_dev;
3525         struct net_device *null_or_dev;
3526         bool deliver_exact = false;
3527         int ret = NET_RX_DROP;
3528         __be16 type;
3529
3530         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3531
3532         trace_netif_receive_skb(skb);
3533
3534         orig_dev = skb->dev;
3535
3536         skb_reset_network_header(skb);
3537         if (!skb_transport_header_was_set(skb))
3538                 skb_reset_transport_header(skb);
3539         skb_reset_mac_len(skb);
3540
3541         pt_prev = NULL;
3542
3543         rcu_read_lock();
3544
3545 another_round:
3546         skb->skb_iif = skb->dev->ifindex;
3547
3548         __this_cpu_inc(softnet_data.processed);
3549
3550         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3551             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3552                 skb = vlan_untag(skb);
3553                 if (unlikely(!skb))
3554                         goto unlock;
3555         }
3556
3557 #ifdef CONFIG_NET_CLS_ACT
3558         if (skb->tc_verd & TC_NCLS) {
3559                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3560                 goto ncls;
3561         }
3562 #endif
3563
3564         if (pfmemalloc)
3565                 goto skip_taps;
3566
3567         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3568                 if (!ptype->dev || ptype->dev == skb->dev) {
3569                         if (pt_prev)
3570                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3571                         pt_prev = ptype;
3572                 }
3573         }
3574
3575 skip_taps:
3576 #ifdef CONFIG_NET_CLS_ACT
3577         skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3578         if (!skb)
3579                 goto unlock;
3580 ncls:
3581 #endif
3582
3583         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3584                 goto drop;
3585
3586         if (vlan_tx_tag_present(skb)) {
3587                 if (pt_prev) {
3588                         ret = deliver_skb(skb, pt_prev, orig_dev);
3589                         pt_prev = NULL;
3590                 }
3591                 if (vlan_do_receive(&skb))
3592                         goto another_round;
3593                 else if (unlikely(!skb))
3594                         goto unlock;
3595         }
3596
3597         rx_handler = rcu_dereference(skb->dev->rx_handler);
3598         if (rx_handler) {
3599                 if (pt_prev) {
3600                         ret = deliver_skb(skb, pt_prev, orig_dev);
3601                         pt_prev = NULL;
3602                 }
3603                 switch (rx_handler(&skb)) {
3604                 case RX_HANDLER_CONSUMED:
3605                         ret = NET_RX_SUCCESS;
3606                         goto unlock;
3607                 case RX_HANDLER_ANOTHER:
3608                         goto another_round;
3609                 case RX_HANDLER_EXACT:
3610                         deliver_exact = true;
3611                 case RX_HANDLER_PASS:
3612                         break;
3613                 default:
3614                         BUG();
3615                 }
3616         }
3617
3618         if (unlikely(vlan_tx_tag_present(skb))) {
3619                 if (vlan_tx_tag_get_id(skb))
3620                         skb->pkt_type = PACKET_OTHERHOST;
3621                 /* Note: we might in the future use prio bits
3622                  * and set skb->priority like in vlan_do_receive()
3623                  * For the time being, just ignore Priority Code Point
3624                  */
3625                 skb->vlan_tci = 0;
3626         }
3627
3628         /* deliver only exact match when indicated */
3629         null_or_dev = deliver_exact ? skb->dev : NULL;
3630
3631         type = skb->protocol;
3632         list_for_each_entry_rcu(ptype,
3633                         &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3634                 if (ptype->type == type &&
3635                     (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3636                      ptype->dev == orig_dev)) {
3637                         if (pt_prev)
3638                                 ret = deliver_skb(skb, pt_prev, orig_dev);
3639                         pt_prev = ptype;
3640                 }
3641         }
3642
3643         if (pt_prev) {
3644                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3645                         goto drop;
3646                 else
3647                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3648         } else {
3649 drop:
3650                 atomic_long_inc(&skb->dev->rx_dropped);
3651                 kfree_skb(skb);
3652                 /* Jamal, now you will not able to escape explaining
3653                  * me how you were going to use this. :-)
3654                  */
3655                 ret = NET_RX_DROP;
3656         }
3657
3658 unlock:
3659         rcu_read_unlock();
3660         return ret;
3661 }
3662
3663 static int __netif_receive_skb(struct sk_buff *skb)
3664 {
3665         int ret;
3666
3667         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3668                 unsigned long pflags = current->flags;
3669
3670                 /*
3671                  * PFMEMALLOC skbs are special, they should
3672                  * - be delivered to SOCK_MEMALLOC sockets only
3673                  * - stay away from userspace
3674                  * - have bounded memory usage
3675                  *
3676                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3677                  * context down to all allocation sites.
3678                  */
3679                 current->flags |= PF_MEMALLOC;
3680                 ret = __netif_receive_skb_core(skb, true);
3681                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3682         } else
3683                 ret = __netif_receive_skb_core(skb, false);
3684
3685         return ret;
3686 }
3687
3688 static int netif_receive_skb_internal(struct sk_buff *skb)
3689 {
3690         net_timestamp_check(netdev_tstamp_prequeue, skb);
3691
3692         if (skb_defer_rx_timestamp(skb))
3693                 return NET_RX_SUCCESS;
3694
3695 #ifdef CONFIG_RPS
3696         if (static_key_false(&rps_needed)) {
3697                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3698                 int cpu, ret;
3699
3700                 rcu_read_lock();
3701
3702                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3703
3704                 if (cpu >= 0) {
3705                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3706                         rcu_read_unlock();
3707                         return ret;
3708                 }
3709                 rcu_read_unlock();
3710         }
3711 #endif
3712         return __netif_receive_skb(skb);
3713 }
3714
3715 /**
3716  *      netif_receive_skb - process receive buffer from network
3717  *      @skb: buffer to process
3718  *
3719  *      netif_receive_skb() is the main receive data processing function.
3720  *      It always succeeds. The buffer may be dropped during processing
3721  *      for congestion control or by the protocol layers.
3722  *
3723  *      This function may only be called from softirq context and interrupts
3724  *      should be enabled.
3725  *
3726  *      Return values (usually ignored):
3727  *      NET_RX_SUCCESS: no congestion
3728  *      NET_RX_DROP: packet was dropped
3729  */
3730 int netif_receive_skb(struct sk_buff *skb)
3731 {
3732         trace_netif_receive_skb_entry(skb);
3733
3734         return netif_receive_skb_internal(skb);
3735 }
3736 EXPORT_SYMBOL(netif_receive_skb);
3737
3738 /* Network device is going away, flush any packets still pending
3739  * Called with irqs disabled.
3740  */
3741 static void flush_backlog(void *arg)
3742 {
3743         struct net_device *dev = arg;
3744         struct softnet_data *sd = &__get_cpu_var(softnet_data);
3745         struct sk_buff *skb, *tmp;
3746
3747         rps_lock(sd);
3748         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3749                 if (skb->dev == dev) {
3750                         __skb_unlink(skb, &sd->input_pkt_queue);
3751                         kfree_skb(skb);
3752                         input_queue_head_incr(sd);
3753                 }
3754         }
3755         rps_unlock(sd);
3756
3757         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3758                 if (skb->dev == dev) {
3759                         __skb_unlink(skb, &sd->process_queue);
3760                         kfree_skb(skb);
3761                         input_queue_head_incr(sd);
3762                 }
3763         }
3764 }
3765
3766 static int napi_gro_complete(struct sk_buff *skb)
3767 {
3768         struct packet_offload *ptype;
3769         __be16 type = skb->protocol;
3770         struct list_head *head = &offload_base;
3771         int err = -ENOENT;
3772
3773         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3774
3775         if (NAPI_GRO_CB(skb)->count == 1) {
3776                 skb_shinfo(skb)->gso_size = 0;
3777                 goto out;
3778         }
3779
3780         rcu_read_lock();
3781         list_for_each_entry_rcu(ptype, head, list) {
3782                 if (ptype->type != type || !ptype->callbacks.gro_complete)
3783                         continue;
3784
3785                 err = ptype->callbacks.gro_complete(skb, 0);
3786                 break;
3787         }
3788         rcu_read_unlock();
3789
3790         if (err) {
3791                 WARN_ON(&ptype->list == head);
3792                 kfree_skb(skb);
3793                 return NET_RX_SUCCESS;
3794         }
3795
3796 out:
3797         return netif_receive_skb_internal(skb);
3798 }
3799
3800 /* napi->gro_list contains packets ordered by age.
3801  * youngest packets at the head of it.
3802  * Complete skbs in reverse order to reduce latencies.
3803  */
3804 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3805 {
3806         struct sk_buff *skb, *prev = NULL;
3807
3808         /* scan list and build reverse chain */
3809         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3810                 skb->prev = prev;
3811                 prev = skb;
3812         }
3813
3814         for (skb = prev; skb; skb = prev) {
3815                 skb->next = NULL;
3816
3817                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3818                         return;
3819
3820                 prev = skb->prev;
3821                 napi_gro_complete(skb);
3822                 napi->gro_count--;
3823         }
3824
3825         napi->gro_list = NULL;
3826 }
3827 EXPORT_SYMBOL(napi_gro_flush);
3828
3829 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3830 {
3831         struct sk_buff *p;
3832         unsigned int maclen = skb->dev->hard_header_len;
3833         u32 hash = skb_get_hash_raw(skb);
3834
3835         for (p = napi->gro_list; p; p = p->next) {
3836                 unsigned long diffs;
3837
3838                 NAPI_GRO_CB(p)->flush = 0;
3839
3840                 if (hash != skb_get_hash_raw(p)) {
3841                         NAPI_GRO_CB(p)->same_flow = 0;
3842                         continue;
3843                 }
3844
3845                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3846                 diffs |= p->vlan_tci ^ skb->vlan_tci;
3847                 if (maclen == ETH_HLEN)
3848                         diffs |= compare_ether_header(skb_mac_header(p),
3849                                                       skb_mac_header(skb));
3850                 else if (!diffs)
3851                         diffs = memcmp(skb_mac_header(p),
3852                                        skb_mac_header(skb),
3853                                        maclen);
3854                 NAPI_GRO_CB(p)->same_flow = !diffs;
3855         }
3856 }
3857
3858 static void skb_gro_reset_offset(struct sk_buff *skb)
3859 {
3860         const struct skb_shared_info *pinfo = skb_shinfo(skb);
3861         const skb_frag_t *frag0 = &pinfo->frags[0];
3862
3863         NAPI_GRO_CB(skb)->data_offset = 0;
3864         NAPI_GRO_CB(skb)->frag0 = NULL;
3865         NAPI_GRO_CB(skb)->frag0_len = 0;
3866
3867         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3868             pinfo->nr_frags &&
3869             !PageHighMem(skb_frag_page(frag0))) {
3870                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3871                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3872         }
3873 }
3874
3875 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3876 {
3877         struct skb_shared_info *pinfo = skb_shinfo(skb);
3878
3879         BUG_ON(skb->end - skb->tail < grow);
3880
3881         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3882
3883         skb->data_len -= grow;
3884         skb->tail += grow;
3885
3886         pinfo->frags[0].page_offset += grow;
3887         skb_frag_size_sub(&pinfo->frags[0], grow);
3888
3889         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3890                 skb_frag_unref(skb, 0);
3891                 memmove(pinfo->frags, pinfo->frags + 1,
3892                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3893         }
3894 }
3895
3896 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3897 {
3898         struct sk_buff **pp = NULL;
3899         struct packet_offload *ptype;
3900         __be16 type = skb->protocol;
3901         struct list_head *head = &offload_base;
3902         int same_flow;
3903         enum gro_result ret;
3904         int grow;
3905
3906         if (!(skb->dev->features & NETIF_F_GRO))
3907                 goto normal;
3908
3909         if (skb_is_gso(skb) || skb_has_frag_list(skb))
3910                 goto normal;
3911
3912         gro_list_prepare(napi, skb);
3913         NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3914
3915         rcu_read_lock();
3916         list_for_each_entry_rcu(ptype, head, list) {
3917                 if (ptype->type != type || !ptype->callbacks.gro_receive)
3918                         continue;
3919
3920                 skb_set_network_header(skb, skb_gro_offset(skb));
3921                 skb_reset_mac_len(skb);
3922                 NAPI_GRO_CB(skb)->same_flow = 0;
3923                 NAPI_GRO_CB(skb)->flush = 0;
3924                 NAPI_GRO_CB(skb)->free = 0;
3925                 NAPI_GRO_CB(skb)->udp_mark = 0;
3926
3927                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3928                 break;
3929         }
3930         rcu_read_unlock();
3931
3932         if (&ptype->list == head)
3933                 goto normal;
3934
3935         same_flow = NAPI_GRO_CB(skb)->same_flow;
3936         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3937
3938         if (pp) {
3939                 struct sk_buff *nskb = *pp;
3940
3941                 *pp = nskb->next;
3942                 nskb->next = NULL;
3943                 napi_gro_complete(nskb);
3944                 napi->gro_count--;
3945         }
3946
3947         if (same_flow)
3948                 goto ok;
3949
3950         if (NAPI_GRO_CB(skb)->flush)
3951                 goto normal;
3952
3953         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3954                 struct sk_buff *nskb = napi->gro_list;
3955
3956                 /* locate the end of the list to select the 'oldest' flow */
3957                 while (nskb->next) {
3958                         pp = &nskb->next;
3959                         nskb = *pp;
3960                 }
3961                 *pp = NULL;
3962                 nskb->next = NULL;
3963                 napi_gro_complete(nskb);
3964         } else {
3965                 napi->gro_count++;
3966         }
3967         NAPI_GRO_CB(skb)->count = 1;
3968         NAPI_GRO_CB(skb)->age = jiffies;
3969         NAPI_GRO_CB(skb)->last = skb;
3970         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3971         skb->next = napi->gro_list;
3972         napi->gro_list = skb;
3973         ret = GRO_HELD;
3974
3975 pull:
3976         grow = skb_gro_offset(skb) - skb_headlen(skb);
3977         if (grow > 0)
3978                 gro_pull_from_frag0(skb, grow);
3979 ok:
3980         return ret;
3981
3982 normal:
3983         ret = GRO_NORMAL;
3984         goto pull;
3985 }
3986
3987 struct packet_offload *gro_find_receive_by_type(__be16 type)
3988 {
3989         struct list_head *offload_head = &offload_base;
3990         struct packet_offload *ptype;
3991
3992         list_for_each_entry_rcu(ptype, offload_head, list) {
3993                 if (ptype->type != type || !ptype->callbacks.gro_receive)
3994                         continue;
3995                 return ptype;
3996         }
3997         return NULL;
3998 }
3999 EXPORT_SYMBOL(gro_find_receive_by_type);
4000
4001 struct packet_offload *gro_find_complete_by_type(__be16 type)
4002 {
4003         struct list_head *offload_head = &offload_base;
4004         struct packet_offload *ptype;
4005
4006         list_for_each_entry_rcu(ptype, offload_head, list) {
4007                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4008                         continue;
4009                 return ptype;
4010         }
4011         return NULL;
4012 }
4013 EXPORT_SYMBOL(gro_find_complete_by_type);
4014
4015 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4016 {
4017         switch (ret) {
4018         case GRO_NORMAL:
4019                 if (netif_receive_skb_internal(skb))
4020                         ret = GRO_DROP;
4021                 break;
4022
4023         case GRO_DROP:
4024                 kfree_skb(skb);
4025                 break;
4026
4027         case GRO_MERGED_FREE:
4028                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4029                         kmem_cache_free(skbuff_head_cache, skb);
4030                 else
4031                         __kfree_skb(skb);
4032                 break;
4033
4034         case GRO_HELD:
4035         case GRO_MERGED:
4036                 break;
4037         }
4038
4039         return ret;
4040 }
4041
4042 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4043 {
4044         trace_napi_gro_receive_entry(skb);
4045
4046         skb_gro_reset_offset(skb);
4047
4048         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4049 }
4050 EXPORT_SYMBOL(napi_gro_receive);
4051
4052 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4053 {
4054         __skb_pull(skb, skb_headlen(skb));
4055         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4056         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4057         skb->vlan_tci = 0;
4058         skb->dev = napi->dev;
4059         skb->skb_iif = 0;
4060         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4061
4062         napi->skb = skb;
4063 }
4064
4065 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4066 {
4067         struct sk_buff *skb = napi->skb;
4068
4069         if (!skb) {
4070                 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4071                 napi->skb = skb;
4072         }
4073         return skb;
4074 }
4075 EXPORT_SYMBOL(napi_get_frags);
4076
4077 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4078                                       struct sk_buff *skb,
4079                                       gro_result_t ret)
4080 {
4081         switch (ret) {
4082         case GRO_NORMAL:
4083         case GRO_HELD:
4084                 __skb_push(skb, ETH_HLEN);
4085                 skb->protocol = eth_type_trans(skb, skb->dev);
4086                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4087                         ret = GRO_DROP;
4088                 break;
4089
4090         case GRO_DROP:
4091         case GRO_MERGED_FREE:
4092                 napi_reuse_skb(napi, skb);
4093                 break;
4094
4095         case GRO_MERGED:
4096                 break;
4097         }
4098
4099         return ret;
4100 }
4101
4102 /* Upper GRO stack assumes network header starts at gro_offset=0
4103  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4104  * We copy ethernet header into skb->data to have a common layout.
4105  */
4106 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4107 {
4108         struct sk_buff *skb = napi->skb;
4109         const struct ethhdr *eth;
4110         unsigned int hlen = sizeof(*eth);
4111
4112         napi->skb = NULL;
4113
4114         skb_reset_mac_header(skb);
4115         skb_gro_reset_offset(skb);
4116
4117         eth = skb_gro_header_fast(skb, 0);
4118         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4119                 eth = skb_gro_header_slow(skb, hlen, 0);
4120                 if (unlikely(!eth)) {
4121                         napi_reuse_skb(napi, skb);
4122                         return NULL;
4123                 }
4124         } else {
4125                 gro_pull_from_frag0(skb, hlen);
4126                 NAPI_GRO_CB(skb)->frag0 += hlen;
4127                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4128         }
4129         __skb_pull(skb, hlen);
4130
4131         /*
4132          * This works because the only protocols we care about don't require
4133          * special handling.
4134          * We'll fix it up properly in napi_frags_finish()
4135          */
4136         skb->protocol = eth->h_proto;
4137
4138         return skb;
4139 }
4140
4141 gro_result_t napi_gro_frags(struct napi_struct *napi)
4142 {
4143         struct sk_buff *skb = napi_frags_skb(napi);
4144
4145         if (!skb)
4146                 return GRO_DROP;
4147
4148         trace_napi_gro_frags_entry(skb);
4149
4150         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4151 }
4152 EXPORT_SYMBOL(napi_gro_frags);
4153
4154 /*
4155  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4156  * Note: called with local irq disabled, but exits with local irq enabled.
4157  */
4158 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4159 {
4160 #ifdef CONFIG_RPS
4161         struct softnet_data *remsd = sd->rps_ipi_list;
4162
4163         if (remsd) {
4164                 sd->rps_ipi_list = NULL;
4165
4166                 local_irq_enable();
4167
4168                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4169                 while (remsd) {
4170                         struct softnet_data *next = remsd->rps_ipi_next;
4171
4172                         if (cpu_online(remsd->cpu))
4173                                 smp_call_function_single_async(remsd->cpu,
4174                                                            &remsd->csd);
4175                         remsd = next;
4176                 }
4177         } else
4178 #endif
4179                 local_irq_enable();
4180 }
4181
4182 static int process_backlog(struct napi_struct *napi, int quota)
4183 {
4184         int work = 0;
4185         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4186
4187 #ifdef CONFIG_RPS
4188         /* Check if we have pending ipi, its better to send them now,
4189          * not waiting net_rx_action() end.
4190          */
4191         if (sd->rps_ipi_list) {
4192                 local_irq_disable();
4193                 net_rps_action_and_irq_enable(sd);
4194         }
4195 #endif
4196         napi->weight = weight_p;
4197         local_irq_disable();
4198         while (work < quota) {
4199                 struct sk_buff *skb;
4200                 unsigned int qlen;
4201
4202                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4203                         local_irq_enable();
4204                         __netif_receive_skb(skb);
4205                         local_irq_disable();
4206                         input_queue_head_incr(sd);
4207                         if (++work >= quota) {
4208                                 local_irq_enable();
4209                                 return work;
4210                         }
4211                 }
4212
4213                 rps_lock(sd);
4214                 qlen = skb_queue_len(&sd->input_pkt_queue);
4215                 if (qlen)
4216                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4217                                                    &sd->process_queue);
4218
4219                 if (qlen < quota - work) {
4220                         /*
4221                          * Inline a custom version of __napi_complete().
4222                          * only current cpu owns and manipulates this napi,
4223                          * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4224                          * we can use a plain write instead of clear_bit(),
4225                          * and we dont need an smp_mb() memory barrier.
4226                          */
4227                         list_del(&napi->poll_list);
4228                         napi->state = 0;
4229
4230                         quota = work + qlen;
4231                 }
4232                 rps_unlock(sd);
4233         }
4234         local_irq_enable();
4235
4236         return work;
4237 }
4238
4239 /**
4240  * __napi_schedule - schedule for receive
4241  * @n: entry to schedule
4242  *
4243  * The entry's receive function will be scheduled to run
4244  */
4245 void __napi_schedule(struct napi_struct *n)
4246 {
4247         unsigned long flags;
4248
4249         local_irq_save(flags);
4250         ____napi_schedule(&__get_cpu_var(softnet_data), n);
4251         local_irq_restore(flags);
4252 }
4253 EXPORT_SYMBOL(__napi_schedule);
4254
4255 void __napi_complete(struct napi_struct *n)
4256 {
4257         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4258         BUG_ON(n->gro_list);
4259
4260         list_del(&n->poll_list);
4261         smp_mb__before_atomic();
4262         clear_bit(NAPI_STATE_SCHED, &n->state);
4263 }
4264 EXPORT_SYMBOL(__napi_complete);
4265
4266 void napi_complete(struct napi_struct *n)
4267 {
4268         unsigned long flags;
4269
4270         /*
4271          * don't let napi dequeue from the cpu poll list
4272          * just in case its running on a different cpu
4273          */
4274         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4275                 return;
4276
4277         napi_gro_flush(n, false);
4278         local_irq_save(flags);
4279         __napi_complete(n);
4280         local_irq_restore(flags);
4281 }
4282 EXPORT_SYMBOL(napi_complete);
4283
4284 /* must be called under rcu_read_lock(), as we dont take a reference */
4285 struct napi_struct *napi_by_id(unsigned int napi_id)
4286 {
4287         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4288         struct napi_struct *napi;
4289
4290         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4291                 if (napi->napi_id == napi_id)
4292                         return napi;
4293
4294         return NULL;
4295 }
4296 EXPORT_SYMBOL_GPL(napi_by_id);
4297
4298 void napi_hash_add(struct napi_struct *napi)
4299 {
4300         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4301
4302                 spin_lock(&napi_hash_lock);
4303
4304                 /* 0 is not a valid id, we also skip an id that is taken
4305                  * we expect both events to be extremely rare
4306                  */
4307                 napi->napi_id = 0;
4308                 while (!napi->napi_id) {
4309                         napi->napi_id = ++napi_gen_id;
4310                         if (napi_by_id(napi->napi_id))
4311                                 napi->napi_id = 0;
4312                 }
4313
4314                 hlist_add_head_rcu(&napi->napi_hash_node,
4315                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4316
4317                 spin_unlock(&napi_hash_lock);
4318         }
4319 }
4320 EXPORT_SYMBOL_GPL(napi_hash_add);
4321
4322 /* Warning : caller is responsible to make sure rcu grace period
4323  * is respected before freeing memory containing @napi
4324  */
4325 void napi_hash_del(struct napi_struct *napi)
4326 {
4327         spin_lock(&napi_hash_lock);
4328
4329         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4330                 hlist_del_rcu(&napi->napi_hash_node);
4331
4332         spin_unlock(&napi_hash_lock);
4333 }
4334 EXPORT_SYMBOL_GPL(napi_hash_del);
4335
4336 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4337                     int (*poll)(struct napi_struct *, int), int weight)
4338 {
4339         INIT_LIST_HEAD(&napi->poll_list);
4340         napi->gro_count = 0;
4341         napi->gro_list = NULL;
4342         napi->skb = NULL;
4343         napi->poll = poll;
4344         if (weight > NAPI_POLL_WEIGHT)
4345                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4346                             weight, dev->name);
4347         napi->weight = weight;
4348         list_add(&napi->dev_list, &dev->napi_list);
4349         napi->dev = dev;
4350 #ifdef CONFIG_NETPOLL
4351         spin_lock_init(&napi->poll_lock);
4352         napi->poll_owner = -1;
4353 #endif
4354         set_bit(NAPI_STATE_SCHED, &napi->state);
4355 }
4356 EXPORT_SYMBOL(netif_napi_add);
4357
4358 void netif_napi_del(struct napi_struct *napi)
4359 {
4360         list_del_init(&napi->dev_list);
4361         napi_free_frags(napi);
4362
4363         kfree_skb_list(napi->gro_list);
4364         napi->gro_list = NULL;
4365         napi->gro_count = 0;
4366 }
4367 EXPORT_SYMBOL(netif_napi_del);
4368
4369 static void net_rx_action(struct softirq_action *h)
4370 {
4371         struct softnet_data *sd = &__get_cpu_var(softnet_data);
4372         unsigned long time_limit = jiffies + 2;
4373         int budget = netdev_budget;
4374         void *have;
4375
4376         local_irq_disable();
4377
4378         while (!list_empty(&sd->poll_list)) {
4379                 struct napi_struct *n;
4380                 int work, weight;
4381
4382                 /* If softirq window is exhuasted then punt.
4383                  * Allow this to run for 2 jiffies since which will allow
4384                  * an average latency of 1.5/HZ.
4385                  */
4386                 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4387                         goto softnet_break;
4388
4389                 local_irq_enable();
4390
4391                 /* Even though interrupts have been re-enabled, this
4392                  * access is safe because interrupts can only add new
4393                  * entries to the tail of this list, and only ->poll()
4394                  * calls can remove this head entry from the list.
4395                  */
4396                 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4397
4398                 have = netpoll_poll_lock(n);
4399
4400                 weight = n->weight;
4401
4402                 /* This NAPI_STATE_SCHED test is for avoiding a race
4403                  * with netpoll's poll_napi().  Only the entity which
4404                  * obtains the lock and sees NAPI_STATE_SCHED set will
4405                  * actually make the ->poll() call.  Therefore we avoid
4406                  * accidentally calling ->poll() when NAPI is not scheduled.
4407                  */
4408                 work = 0;
4409                 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4410                         work = n->poll(n, weight);
4411                         trace_napi_poll(n);
4412                 }
4413
4414                 WARN_ON_ONCE(work > weight);
4415
4416                 budget -= work;
4417
4418                 local_irq_disable();
4419
4420                 /* Drivers must not modify the NAPI state if they
4421                  * consume the entire weight.  In such cases this code
4422                  * still "owns" the NAPI instance and therefore can
4423                  * move the instance around on the list at-will.
4424                  */
4425                 if (unlikely(work == weight)) {
4426                         if (unlikely(napi_disable_pending(n))) {
4427                                 local_irq_enable();
4428                                 napi_complete(n);
4429                                 local_irq_disable();
4430                         } else {
4431                                 if (n->gro_list) {
4432                                         /* flush too old packets
4433                                          * If HZ < 1000, flush all packets.
4434                                          */
4435                                         local_irq_enable();
4436                                         napi_gro_flush(n, HZ >= 1000);
4437                                         local_irq_disable();
4438                                 }
4439                                 list_move_tail(&n->poll_list, &sd->poll_list);
4440                         }
4441                 }
4442
4443                 netpoll_poll_unlock(have);
4444         }
4445 out:
4446         net_rps_action_and_irq_enable(sd);
4447
4448 #ifdef CONFIG_NET_DMA
4449         /*
4450          * There may not be any more sk_buffs coming right now, so push
4451          * any pending DMA copies to hardware
4452          */
4453         dma_issue_pending_all();
4454 #endif
4455
4456         return;
4457
4458 softnet_break:
4459         sd->time_squeeze++;
4460         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4461         goto out;
4462 }
4463
4464 struct netdev_adjacent {
4465         struct net_device *dev;
4466
4467         /* upper master flag, there can only be one master device per list */
4468         bool master;
4469
4470         /* counter for the number of times this device was added to us */
4471         u16 ref_nr;
4472
4473         /* private field for the users */
4474         void *private;
4475
4476         struct list_head list;
4477         struct rcu_head rcu;
4478 };
4479
4480 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4481                                                  struct net_device *adj_dev,
4482                                                  struct list_head *adj_list)
4483 {
4484         struct netdev_adjacent *adj;
4485
4486         list_for_each_entry(adj, adj_list, list) {
4487                 if (adj->dev == adj_dev)
4488                         return adj;
4489         }
4490         return NULL;
4491 }
4492
4493 /**
4494  * netdev_has_upper_dev - Check if device is linked to an upper device
4495  * @dev: device
4496  * @upper_dev: upper device to check
4497  *
4498  * Find out if a device is linked to specified upper device and return true
4499  * in case it is. Note that this checks only immediate upper device,
4500  * not through a complete stack of devices. The caller must hold the RTNL lock.
4501  */
4502 bool netdev_has_upper_dev(struct net_device *dev,
4503                           struct net_device *upper_dev)
4504 {
4505         ASSERT_RTNL();
4506
4507         return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4508 }
4509 EXPORT_SYMBOL(netdev_has_upper_dev);
4510
4511 /**
4512  * netdev_has_any_upper_dev - Check if device is linked to some device
4513  * @dev: device
4514  *
4515  * Find out if a device is linked to an upper device and return true in case
4516  * it is. The caller must hold the RTNL lock.
4517  */
4518 static bool netdev_has_any_upper_dev(struct net_device *dev)
4519 {
4520         ASSERT_RTNL();
4521
4522         return !list_empty(&dev->all_adj_list.upper);
4523 }
4524
4525 /**
4526  * netdev_master_upper_dev_get - Get master upper device
4527  * @dev: device
4528  *
4529  * Find a master upper device and return pointer to it or NULL in case
4530  * it's not there. The caller must hold the RTNL lock.
4531  */
4532 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4533 {
4534         struct netdev_adjacent *upper;
4535
4536         ASSERT_RTNL();
4537
4538         if (list_empty(&dev->adj_list.upper))
4539                 return NULL;
4540
4541         upper = list_first_entry(&dev->adj_list.upper,
4542                                  struct netdev_adjacent, list);
4543         if (likely(upper->master))
4544                 return upper->dev;
4545         return NULL;
4546 }
4547 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4548
4549 void *netdev_adjacent_get_private(struct list_head *adj_list)
4550 {
4551         struct netdev_adjacent *adj;
4552
4553         adj = list_entry(adj_list, struct netdev_adjacent, list);
4554
4555         return adj->private;
4556 }
4557 EXPORT_SYMBOL(netdev_adjacent_get_private);
4558
4559 /**
4560  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4561  * @dev: device
4562  * @iter: list_head ** of the current position
4563  *
4564  * Gets the next device from the dev's upper list, starting from iter
4565  * position. The caller must hold RCU read lock.
4566  */
4567 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4568                                                  struct list_head **iter)
4569 {
4570         struct netdev_adjacent *upper;
4571
4572         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4573
4574         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4575
4576         if (&upper->list == &dev->adj_list.upper)
4577                 return NULL;
4578
4579         *iter = &upper->list;
4580
4581         return upper->dev;
4582 }
4583 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4584
4585 /**
4586  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4587  * @dev: device
4588  * @iter: list_head ** of the current position
4589  *
4590  * Gets the next device from the dev's upper list, starting from iter
4591  * position. The caller must hold RCU read lock.
4592  */
4593 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4594                                                      struct list_head **iter)
4595 {
4596         struct netdev_adjacent *upper;
4597
4598         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4599
4600         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4601
4602         if (&upper->list == &dev->all_adj_list.upper)
4603                 return NULL;
4604
4605         *iter = &upper->list;
4606
4607         return upper->dev;
4608 }
4609 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4610
4611 /**
4612  * netdev_lower_get_next_private - Get the next ->private from the
4613  *                                 lower neighbour list
4614  * @dev: device
4615  * @iter: list_head ** of the current position
4616  *
4617  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4618  * list, starting from iter position. The caller must hold either hold the
4619  * RTNL lock or its own locking that guarantees that the neighbour lower
4620  * list will remain unchainged.
4621  */
4622 void *netdev_lower_get_next_private(struct net_device *dev,
4623                                     struct list_head **iter)
4624 {
4625         struct netdev_adjacent *lower;
4626
4627         lower = list_entry(*iter, struct netdev_adjacent, list);
4628
4629         if (&lower->list == &dev->adj_list.lower)
4630                 return NULL;
4631
4632         *iter = lower->list.next;
4633
4634         return lower->private;
4635 }
4636 EXPORT_SYMBOL(netdev_lower_get_next_private);
4637
4638 /**
4639  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4640  *                                     lower neighbour list, RCU
4641  *                                     variant
4642  * @dev: device
4643  * @iter: list_head ** of the current position
4644  *
4645  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4646  * list, starting from iter position. The caller must hold RCU read lock.
4647  */
4648 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4649                                         struct list_head **iter)
4650 {
4651         struct netdev_adjacent *lower;
4652
4653         WARN_ON_ONCE(!rcu_read_lock_held());
4654
4655         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4656
4657         if (&lower->list == &dev->adj_list.lower)
4658                 return NULL;
4659
4660         *iter = &lower->list;
4661
4662         return lower->private;
4663 }
4664 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4665
4666 /**
4667  * netdev_lower_get_next - Get the next device from the lower neighbour
4668  *                         list
4669  * @dev: device
4670  * @iter: list_head ** of the current position
4671  *
4672  * Gets the next netdev_adjacent from the dev's lower neighbour
4673  * list, starting from iter position. The caller must hold RTNL lock or
4674  * its own locking that guarantees that the neighbour lower
4675  * list will remain unchainged.
4676  */
4677 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4678 {
4679         struct netdev_adjacent *lower;
4680
4681         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4682
4683         if (&lower->list == &dev->adj_list.lower)
4684                 return NULL;
4685
4686         *iter = &lower->list;
4687
4688         return lower->dev;
4689 }
4690 EXPORT_SYMBOL(netdev_lower_get_next);
4691
4692 /**
4693  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4694  *                                     lower neighbour list, RCU
4695  *                                     variant
4696  * @dev: device
4697  *
4698  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4699  * list. The caller must hold RCU read lock.
4700  */
4701 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4702 {
4703         struct netdev_adjacent *lower;
4704
4705         lower = list_first_or_null_rcu(&dev->adj_list.lower,
4706                         struct netdev_adjacent, list);
4707         if (lower)
4708                 return lower->private;
4709         return NULL;
4710 }
4711 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4712
4713 /**
4714  * netdev_master_upper_dev_get_rcu - Get master upper device
4715  * @dev: device
4716  *
4717  * Find a master upper device and return pointer to it or NULL in case
4718  * it's not there. The caller must hold the RCU read lock.
4719  */
4720 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4721 {
4722         struct netdev_adjacent *upper;
4723
4724         upper = list_first_or_null_rcu(&dev->adj_list.upper,
4725                                        struct netdev_adjacent, list);
4726         if (upper && likely(upper->master))
4727                 return upper->dev;
4728         return NULL;
4729 }
4730 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4731
4732 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4733                               struct net_device *adj_dev,
4734                               struct list_head *dev_list)
4735 {
4736         char linkname[IFNAMSIZ+7];
4737         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4738                 "upper_%s" : "lower_%s", adj_dev->name);
4739         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4740                                  linkname);
4741 }
4742 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4743                                char *name,
4744                                struct list_head *dev_list)
4745 {
4746         char linkname[IFNAMSIZ+7];
4747         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4748                 "upper_%s" : "lower_%s", name);
4749         sysfs_remove_link(&(dev->dev.kobj), linkname);
4750 }
4751
4752 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4753                 (dev_list == &dev->adj_list.upper || \
4754                  dev_list == &dev->adj_list.lower)
4755
4756 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4757                                         struct net_device *adj_dev,
4758                                         struct list_head *dev_list,
4759                                         void *private, bool master)
4760 {
4761         struct netdev_adjacent *adj;
4762         int ret;
4763
4764         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4765
4766         if (adj) {
4767                 adj->ref_nr++;
4768                 return 0;
4769         }
4770
4771         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4772         if (!adj)
4773                 return -ENOMEM;
4774
4775         adj->dev = adj_dev;
4776         adj->master = master;
4777         adj->ref_nr = 1;
4778         adj->private = private;
4779         dev_hold(adj_dev);
4780
4781         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4782                  adj_dev->name, dev->name, adj_dev->name);
4783
4784         if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4785                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4786                 if (ret)
4787                         goto free_adj;
4788         }
4789
4790         /* Ensure that master link is always the first item in list. */
4791         if (master) {
4792                 ret = sysfs_create_link(&(dev->dev.kobj),
4793                                         &(adj_dev->dev.kobj), "master");
4794                 if (ret)
4795                         goto remove_symlinks;
4796
4797                 list_add_rcu(&adj->list, dev_list);
4798         } else {
4799                 list_add_tail_rcu(&adj->list, dev_list);
4800         }
4801
4802         return 0;
4803
4804 remove_symlinks:
4805         if (netdev_adjacent_is_neigh_list(dev, dev_list))
4806                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4807 free_adj:
4808         kfree(adj);
4809         dev_put(adj_dev);
4810
4811         return ret;
4812 }
4813
4814 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4815                                          struct net_device *adj_dev,
4816                                          struct list_head *dev_list)
4817 {
4818         struct netdev_adjacent *adj;
4819
4820         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4821
4822         if (!adj) {
4823                 pr_err("tried to remove device %s from %s\n",
4824                        dev->name, adj_dev->name);
4825                 BUG();
4826         }
4827
4828         if (adj->ref_nr > 1) {
4829                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4830                          adj->ref_nr-1);
4831                 adj->ref_nr--;
4832                 return;
4833         }
4834
4835         if (adj->master)
4836                 sysfs_remove_link(&(dev->dev.kobj), "master");
4837
4838         if (netdev_adjacent_is_neigh_list(dev, dev_list))
4839                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4840
4841         list_del_rcu(&adj->list);
4842         pr_debug("dev_put for %s, because link removed from %s to %s\n",
4843                  adj_dev->name, dev->name, adj_dev->name);
4844         dev_put(adj_dev);
4845         kfree_rcu(adj, rcu);
4846 }
4847
4848 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4849                                             struct net_device *upper_dev,
4850                                             struct list_head *up_list,
4851                                             struct list_head *down_list,
4852                                             void *private, bool master)
4853 {
4854         int ret;
4855
4856         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4857                                            master);
4858         if (ret)
4859                 return ret;
4860
4861         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4862                                            false);
4863         if (ret) {
4864                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4865                 return ret;
4866         }
4867
4868         return 0;
4869 }
4870
4871 static int __netdev_adjacent_dev_link(struct net_device *dev,
4872                                       struct net_device *upper_dev)
4873 {
4874         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4875                                                 &dev->all_adj_list.upper,
4876                                                 &upper_dev->all_adj_list.lower,
4877                                                 NULL, false);
4878 }
4879
4880 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4881                                                struct net_device *upper_dev,
4882                                                struct list_head *up_list,
4883                                                struct list_head *down_list)
4884 {
4885         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4886         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4887 }
4888
4889 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4890                                          struct net_device *upper_dev)
4891 {
4892         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4893                                            &dev->all_adj_list.upper,
4894                                            &upper_dev->all_adj_list.lower);
4895 }
4896
4897 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4898                                                 struct net_device *upper_dev,
4899                                                 void *private, bool master)
4900 {
4901         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4902
4903         if (ret)
4904                 return ret;
4905
4906         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4907                                                &dev->adj_list.upper,
4908                                                &upper_dev->adj_list.lower,
4909                                                private, master);
4910         if (ret) {
4911                 __netdev_adjacent_dev_unlink(dev, upper_dev);
4912                 return ret;
4913         }
4914
4915         return 0;
4916 }
4917
4918 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4919                                                    struct net_device *upper_dev)
4920 {
4921         __netdev_adjacent_dev_unlink(dev, upper_dev);
4922         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4923                                            &dev->adj_list.upper,
4924                                            &upper_dev->adj_list.lower);
4925 }
4926
4927 static int __netdev_upper_dev_link(struct net_device *dev,
4928                                    struct net_device *upper_dev, bool master,
4929                                    void *private)
4930 {
4931         struct netdev_adjacent *i, *j, *to_i, *to_j;
4932         int ret = 0;
4933
4934         ASSERT_RTNL();
4935
4936         if (dev == upper_dev)
4937                 return -EBUSY;
4938
4939         /* To prevent loops, check if dev is not upper device to upper_dev. */
4940         if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4941                 return -EBUSY;
4942
4943         if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4944                 return -EEXIST;
4945
4946         if (master && netdev_master_upper_dev_get(dev))
4947                 return -EBUSY;
4948
4949         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4950                                                    master);
4951         if (ret)
4952                 return ret;
4953
4954         /* Now that we linked these devs, make all the upper_dev's
4955          * all_adj_list.upper visible to every dev's all_adj_list.lower an
4956          * versa, and don't forget the devices itself. All of these
4957          * links are non-neighbours.
4958          */
4959         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4960                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4961                         pr_debug("Interlinking %s with %s, non-neighbour\n",
4962                                  i->dev->name, j->dev->name);
4963                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4964                         if (ret)
4965                                 goto rollback_mesh;
4966                 }
4967         }
4968
4969         /* add dev to every upper_dev's upper device */
4970         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4971                 pr_debug("linking %s's upper device %s with %s\n",
4972                          upper_dev->name, i->dev->name, dev->name);
4973                 ret = __netdev_adjacent_dev_link(dev, i->dev);
4974                 if (ret)
4975                         goto rollback_upper_mesh;
4976         }
4977
4978         /* add upper_dev to every dev's lower device */
4979         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4980                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4981                          i->dev->name, upper_dev->name);
4982                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4983                 if (ret)
4984                         goto rollback_lower_mesh;
4985         }
4986
4987         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4988         return 0;
4989
4990 rollback_lower_mesh:
4991         to_i = i;
4992         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4993                 if (i == to_i)
4994                         break;
4995                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4996         }
4997
4998         i = NULL;
4999
5000 rollback_upper_mesh:
5001         to_i = i;
5002         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5003                 if (i == to_i)
5004                         break;
5005                 __netdev_adjacent_dev_unlink(dev, i->dev);
5006         }
5007
5008         i = j = NULL;
5009
5010 rollback_mesh:
5011         to_i = i;
5012         to_j = j;
5013         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5014                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5015                         if (i == to_i && j == to_j)
5016                                 break;
5017                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5018                 }
5019                 if (i == to_i)
5020                         break;
5021         }
5022
5023         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5024
5025         return ret;
5026 }
5027
5028 /**
5029  * netdev_upper_dev_link - Add a link to the upper device
5030  * @dev: device
5031  * @upper_dev: new upper device
5032  *
5033  * Adds a link to device which is upper to this one. The caller must hold
5034  * the RTNL lock. On a failure a negative errno code is returned.
5035  * On success the reference counts are adjusted and the function
5036  * returns zero.
5037  */
5038 int netdev_upper_dev_link(struct net_device *dev,
5039                           struct net_device *upper_dev)
5040 {
5041         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5042 }
5043 EXPORT_SYMBOL(netdev_upper_dev_link);
5044
5045 /**
5046  * netdev_master_upper_dev_link - Add a master link to the upper device
5047  * @dev: device
5048  * @upper_dev: new upper device
5049  *
5050  * Adds a link to device which is upper to this one. In this case, only
5051  * one master upper device can be linked, although other non-master devices
5052  * might be linked as well. The caller must hold the RTNL lock.
5053  * On a failure a negative errno code is returned. On success the reference
5054  * counts are adjusted and the function returns zero.
5055  */
5056 int netdev_master_upper_dev_link(struct net_device *dev,
5057                                  struct net_device *upper_dev)
5058 {
5059         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5060 }
5061 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5062
5063 int netdev_master_upper_dev_link_private(struct net_device *dev,
5064                                          struct net_device *upper_dev,
5065                                          void *private)
5066 {
5067         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5068 }
5069 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5070
5071 /**
5072  * netdev_upper_dev_unlink - Removes a link to upper device
5073  * @dev: device
5074  * @upper_dev: new upper device
5075  *
5076  * Removes a link to device which is upper to this one. The caller must hold
5077  * the RTNL lock.
5078  */
5079 void netdev_upper_dev_unlink(struct net_device *dev,
5080                              struct net_device *upper_dev)
5081 {
5082         struct netdev_adjacent *i, *j;
5083         ASSERT_RTNL();
5084
5085         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5086
5087         /* Here is the tricky part. We must remove all dev's lower
5088          * devices from all upper_dev's upper devices and vice
5089          * versa, to maintain the graph relationship.
5090          */
5091         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5092                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5093                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5094
5095         /* remove also the devices itself from lower/upper device
5096          * list
5097          */
5098         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5099                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5100
5101         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5102                 __netdev_adjacent_dev_unlink(dev, i->dev);
5103
5104         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5105 }
5106 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5107
5108 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5109 {
5110         struct netdev_adjacent *iter;
5111
5112         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5113                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5114                                           &iter->dev->adj_list.lower);
5115                 netdev_adjacent_sysfs_add(iter->dev, dev,
5116                                           &iter->dev->adj_list.lower);
5117         }
5118
5119         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5120                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5121                                           &iter->dev->adj_list.upper);
5122                 netdev_adjacent_sysfs_add(iter->dev, dev,
5123                                           &iter->dev->adj_list.upper);
5124         }
5125 }
5126
5127 void *netdev_lower_dev_get_private(struct net_device *dev,
5128                                    struct net_device *lower_dev)
5129 {
5130         struct netdev_adjacent *lower;
5131
5132         if (!lower_dev)
5133                 return NULL;
5134         lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5135         if (!lower)
5136                 return NULL;
5137
5138         return lower->private;
5139 }
5140 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5141
5142
5143 int dev_get_nest_level(struct net_device *dev,
5144                        bool (*type_check)(struct net_device *dev))
5145 {
5146         struct net_device *lower = NULL;
5147         struct list_head *iter;
5148         int max_nest = -1;
5149         int nest;
5150
5151         ASSERT_RTNL();
5152
5153         netdev_for_each_lower_dev(dev, lower, iter) {
5154                 nest = dev_get_nest_level(lower, type_check);
5155                 if (max_nest < nest)
5156                         max_nest = nest;
5157         }
5158
5159         if (type_check(dev))
5160                 max_nest++;
5161
5162         return max_nest;
5163 }
5164 EXPORT_SYMBOL(dev_get_nest_level);
5165
5166 static void dev_change_rx_flags(struct net_device *dev, int flags)
5167 {
5168         const struct net_device_ops *ops = dev->netdev_ops;
5169
5170         if (ops->ndo_change_rx_flags)
5171                 ops->ndo_change_rx_flags(dev, flags);
5172 }
5173
5174 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5175 {
5176         unsigned int old_flags = dev->flags;
5177         kuid_t uid;
5178         kgid_t gid;
5179
5180         ASSERT_RTNL();
5181
5182         dev->flags |= IFF_PROMISC;
5183         dev->promiscuity += inc;
5184         if (dev->promiscuity == 0) {
5185                 /*
5186                  * Avoid overflow.
5187                  * If inc causes overflow, untouch promisc and return error.
5188                  */
5189                 if (inc < 0)
5190                         dev->flags &= ~IFF_PROMISC;
5191                 else {
5192                         dev->promiscuity -= inc;
5193                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5194                                 dev->name);
5195                         return -EOVERFLOW;
5196                 }
5197         }
5198         if (dev->flags != old_flags) {
5199                 pr_info("device %s %s promiscuous mode\n",
5200                         dev->name,
5201                         dev->flags & IFF_PROMISC ? "entered" : "left");
5202                 if (audit_enabled) {
5203                         current_uid_gid(&uid, &gid);
5204                         audit_log(current->audit_context, GFP_ATOMIC,
5205                                 AUDIT_ANOM_PROMISCUOUS,
5206                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5207                                 dev->name, (dev->flags & IFF_PROMISC),
5208                                 (old_flags & IFF_PROMISC),
5209                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5210                                 from_kuid(&init_user_ns, uid),
5211                                 from_kgid(&init_user_ns, gid),
5212                                 audit_get_sessionid(current));
5213                 }
5214
5215                 dev_change_rx_flags(dev, IFF_PROMISC);
5216         }
5217         if (notify)
5218                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5219         return 0;
5220 }
5221
5222 /**
5223  *      dev_set_promiscuity     - update promiscuity count on a device
5224  *      @dev: device
5225  *      @inc: modifier
5226  *
5227  *      Add or remove promiscuity from a device. While the count in the device
5228  *      remains above zero the interface remains promiscuous. Once it hits zero
5229  *      the device reverts back to normal filtering operation. A negative inc
5230  *      value is used to drop promiscuity on the device.
5231  *      Return 0 if successful or a negative errno code on error.
5232  */
5233 int dev_set_promiscuity(struct net_device *dev, int inc)
5234 {
5235         unsigned int old_flags = dev->flags;
5236         int err;
5237
5238         err = __dev_set_promiscuity(dev, inc, true);
5239         if (err < 0)
5240                 return err;
5241         if (dev->flags != old_flags)
5242                 dev_set_rx_mode(dev);
5243         return err;
5244 }
5245 EXPORT_SYMBOL(dev_set_promiscuity);
5246
5247 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5248 {
5249         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5250
5251         ASSERT_RTNL();
5252
5253         dev->flags |= IFF_ALLMULTI;
5254         dev->allmulti += inc;
5255         if (dev->allmulti == 0) {
5256                 /*
5257                  * Avoid overflow.
5258                  * If inc causes overflow, untouch allmulti and return error.
5259                  */
5260                 if (inc < 0)
5261                         dev->flags &= ~IFF_ALLMULTI;
5262                 else {
5263                         dev->allmulti -= inc;
5264                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5265                                 dev->name);
5266                         return -EOVERFLOW;
5267                 }
5268         }
5269         if (dev->flags ^ old_flags) {
5270                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5271                 dev_set_rx_mode(dev);
5272                 if (notify)
5273                         __dev_notify_flags(dev, old_flags,
5274                                            dev->gflags ^ old_gflags);
5275         }
5276         return 0;
5277 }
5278
5279 /**
5280  *      dev_set_allmulti        - update allmulti count on a device
5281  *      @dev: device
5282  *      @inc: modifier
5283  *
5284  *      Add or remove reception of all multicast frames to a device. While the
5285  *      count in the device remains above zero the interface remains listening
5286  *      to all interfaces. Once it hits zero the device reverts back to normal
5287  *      filtering operation. A negative @inc value is used to drop the counter
5288  *      when releasing a resource needing all multicasts.
5289  *      Return 0 if successful or a negative errno code on error.
5290  */
5291
5292 int dev_set_allmulti(struct net_device *dev, int inc)
5293 {
5294         return __dev_set_allmulti(dev, inc, true);
5295 }
5296 EXPORT_SYMBOL(dev_set_allmulti);
5297
5298 /*
5299  *      Upload unicast and multicast address lists to device and
5300  *      configure RX filtering. When the device doesn't support unicast
5301  *      filtering it is put in promiscuous mode while unicast addresses
5302  *      are present.
5303  */
5304 void __dev_set_rx_mode(struct net_device *dev)
5305 {
5306         const struct net_device_ops *ops = dev->netdev_ops;
5307
5308         /* dev_open will call this function so the list will stay sane. */
5309         if (!(dev->flags&IFF_UP))
5310                 return;
5311
5312         if (!netif_device_present(dev))
5313                 return;
5314
5315         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5316                 /* Unicast addresses changes may only happen under the rtnl,
5317                  * therefore calling __dev_set_promiscuity here is safe.
5318                  */
5319                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5320                         __dev_set_promiscuity(dev, 1, false);
5321                         dev->uc_promisc = true;
5322                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5323                         __dev_set_promiscuity(dev, -1, false);
5324                         dev->uc_promisc = false;
5325                 }
5326         }
5327
5328         if (ops->ndo_set_rx_mode)
5329                 ops->ndo_set_rx_mode(dev);
5330 }
5331
5332 void dev_set_rx_mode(struct net_device *dev)
5333 {
5334         netif_addr_lock_bh(dev);
5335         __dev_set_rx_mode(dev);
5336         netif_addr_unlock_bh(dev);
5337 }
5338
5339 /**
5340  *      dev_get_flags - get flags reported to userspace
5341  *      @dev: device
5342  *
5343  *      Get the combination of flag bits exported through APIs to userspace.
5344  */
5345 unsigned int dev_get_flags(const struct net_device *dev)
5346 {
5347         unsigned int flags;
5348
5349         flags = (dev->flags & ~(IFF_PROMISC |
5350                                 IFF_ALLMULTI |
5351                                 IFF_RUNNING |
5352                                 IFF_LOWER_UP |
5353                                 IFF_DORMANT)) |
5354                 (dev->gflags & (IFF_PROMISC |
5355                                 IFF_ALLMULTI));
5356
5357         if (netif_running(dev)) {
5358                 if (netif_oper_up(dev))
5359                         flags |= IFF_RUNNING;
5360                 if (netif_carrier_ok(dev))
5361                         flags |= IFF_LOWER_UP;
5362                 if (netif_dormant(dev))
5363                         flags |= IFF_DORMANT;
5364         }
5365
5366         return flags;
5367 }
5368 EXPORT_SYMBOL(dev_get_flags);
5369
5370 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5371 {
5372         unsigned int old_flags = dev->flags;
5373         int ret;
5374
5375         ASSERT_RTNL();
5376
5377         /*
5378          *      Set the flags on our device.
5379          */
5380
5381         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5382                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5383                                IFF_AUTOMEDIA)) |
5384                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5385                                     IFF_ALLMULTI));
5386
5387         /*
5388          *      Load in the correct multicast list now the flags have changed.
5389          */
5390
5391         if ((old_flags ^ flags) & IFF_MULTICAST)
5392                 dev_change_rx_flags(dev, IFF_MULTICAST);
5393
5394         dev_set_rx_mode(dev);
5395
5396         /*
5397          *      Have we downed the interface. We handle IFF_UP ourselves
5398          *      according to user attempts to set it, rather than blindly
5399          *      setting it.
5400          */
5401
5402         ret = 0;
5403         if ((old_flags ^ flags) & IFF_UP) {     /* Bit is different  ? */
5404                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5405
5406                 if (!ret)
5407                         dev_set_rx_mode(dev);
5408         }
5409
5410         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5411                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5412                 unsigned int old_flags = dev->flags;
5413
5414                 dev->gflags ^= IFF_PROMISC;
5415
5416                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5417                         if (dev->flags != old_flags)
5418                                 dev_set_rx_mode(dev);
5419         }
5420
5421         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5422            is important. Some (broken) drivers set IFF_PROMISC, when
5423            IFF_ALLMULTI is requested not asking us and not reporting.
5424          */
5425         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5426                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5427
5428                 dev->gflags ^= IFF_ALLMULTI;
5429                 __dev_set_allmulti(dev, inc, false);
5430         }
5431
5432         return ret;
5433 }
5434
5435 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5436                         unsigned int gchanges)
5437 {
5438         unsigned int changes = dev->flags ^ old_flags;
5439
5440         if (gchanges)
5441                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5442
5443         if (changes & IFF_UP) {
5444                 if (dev->flags & IFF_UP)
5445                         call_netdevice_notifiers(NETDEV_UP, dev);
5446                 else
5447                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5448         }
5449
5450         if (dev->flags & IFF_UP &&
5451             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5452                 struct netdev_notifier_change_info change_info;
5453
5454                 change_info.flags_changed = changes;
5455                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5456                                               &change_info.info);
5457         }
5458 }
5459
5460 /**
5461  *      dev_change_flags - change device settings
5462  *      @dev: device
5463  *      @flags: device state flags
5464  *
5465  *      Change settings on device based state flags. The flags are
5466  *      in the userspace exported format.
5467  */
5468 int dev_change_flags(struct net_device *dev, unsigned int flags)
5469 {
5470         int ret;
5471         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5472
5473         ret = __dev_change_flags(dev, flags);
5474         if (ret < 0)
5475                 return ret;
5476
5477         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5478         __dev_notify_flags(dev, old_flags, changes);
5479         return ret;
5480 }
5481 EXPORT_SYMBOL(dev_change_flags);
5482
5483 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5484 {
5485         const struct net_device_ops *ops = dev->netdev_ops;
5486
5487         if (ops->ndo_change_mtu)
5488                 return ops->ndo_change_mtu(dev, new_mtu);
5489
5490         dev->mtu = new_mtu;
5491         return 0;
5492 }
5493
5494 /**
5495  *      dev_set_mtu - Change maximum transfer unit
5496  *      @dev: device
5497  *      @new_mtu: new transfer unit
5498  *
5499  *      Change the maximum transfer size of the network device.
5500  */
5501 int dev_set_mtu(struct net_device *dev, int new_mtu)
5502 {
5503         int err, orig_mtu;
5504
5505         if (new_mtu == dev->mtu)
5506                 return 0;
5507
5508         /*      MTU must be positive.    */
5509         if (new_mtu < 0)
5510                 return -EINVAL;
5511
5512         if (!netif_device_present(dev))
5513                 return -ENODEV;
5514
5515         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5516         err = notifier_to_errno(err);
5517         if (err)
5518                 return err;
5519
5520         orig_mtu = dev->mtu;
5521         err = __dev_set_mtu(dev, new_mtu);
5522
5523         if (!err) {
5524                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5525                 err = notifier_to_errno(err);
5526                 if (err) {
5527                         /* setting mtu back and notifying everyone again,
5528                          * so that they have a chance to revert changes.
5529                          */
5530                         __dev_set_mtu(dev, orig_mtu);
5531                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5532                 }
5533         }
5534         return err;
5535 }
5536 EXPORT_SYMBOL(dev_set_mtu);
5537
5538 /**
5539  *      dev_set_group - Change group this device belongs to
5540  *      @dev: device
5541  *      @new_group: group this device should belong to
5542  */
5543 void dev_set_group(struct net_device *dev, int new_group)
5544 {
5545         dev->group = new_group;
5546 }
5547 EXPORT_SYMBOL(dev_set_group);
5548
5549 /**
5550  *      dev_set_mac_address - Change Media Access Control Address
5551  *      @dev: device
5552  *      @sa: new address
5553  *
5554  *      Change the hardware (MAC) address of the device
5555  */
5556 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5557 {
5558         const struct net_device_ops *ops = dev->netdev_ops;
5559         int err;
5560
5561         if (!ops->ndo_set_mac_address)
5562                 return -EOPNOTSUPP;
5563         if (sa->sa_family != dev->type)
5564                 return -EINVAL;
5565         if (!netif_device_present(dev))
5566                 return -ENODEV;
5567         err = ops->ndo_set_mac_address(dev, sa);
5568         if (err)
5569                 return err;
5570         dev->addr_assign_type = NET_ADDR_SET;
5571         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5572         add_device_randomness(dev->dev_addr, dev->addr_len);
5573         return 0;
5574 }
5575 EXPORT_SYMBOL(dev_set_mac_address);
5576
5577 /**
5578  *      dev_change_carrier - Change device carrier
5579  *      @dev: device
5580  *      @new_carrier: new value
5581  *
5582  *      Change device carrier
5583  */
5584 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5585 {
5586         const struct net_device_ops *ops = dev->netdev_ops;
5587
5588         if (!ops->ndo_change_carrier)
5589                 return -EOPNOTSUPP;
5590         if (!netif_device_present(dev))
5591                 return -ENODEV;
5592         return ops->ndo_change_carrier(dev, new_carrier);
5593 }
5594 EXPORT_SYMBOL(dev_change_carrier);
5595
5596 /**
5597  *      dev_get_phys_port_id - Get device physical port ID
5598  *      @dev: device
5599  *      @ppid: port ID
5600  *
5601  *      Get device physical port ID
5602  */
5603 int dev_get_phys_port_id(struct net_device *dev,
5604                          struct netdev_phys_port_id *ppid)
5605 {
5606         const struct net_device_ops *ops = dev->netdev_ops;
5607
5608         if (!ops->ndo_get_phys_port_id)
5609                 return -EOPNOTSUPP;
5610         return ops->ndo_get_phys_port_id(dev, ppid);
5611 }
5612 EXPORT_SYMBOL(dev_get_phys_port_id);
5613
5614 /**
5615  *      dev_new_index   -       allocate an ifindex
5616  *      @net: the applicable net namespace
5617  *
5618  *      Returns a suitable unique value for a new device interface
5619  *      number.  The caller must hold the rtnl semaphore or the
5620  *      dev_base_lock to be sure it remains unique.
5621  */
5622 static int dev_new_index(struct net *net)
5623 {
5624         int ifindex = net->ifindex;
5625         for (;;) {
5626                 if (++ifindex <= 0)
5627                         ifindex = 1;
5628                 if (!__dev_get_by_index(net, ifindex))
5629                         return net->ifindex = ifindex;
5630         }
5631 }
5632
5633 /* Delayed registration/unregisteration */
5634 static LIST_HEAD(net_todo_list);
5635 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5636
5637 static void net_set_todo(struct net_device *dev)
5638 {
5639         list_add_tail(&dev->todo_list, &net_todo_list);
5640         dev_net(dev)->dev_unreg_count++;
5641 }
5642
5643 static void rollback_registered_many(struct list_head *head)
5644 {
5645         struct net_device *dev, *tmp;
5646         LIST_HEAD(close_head);
5647
5648         BUG_ON(dev_boot_phase);
5649         ASSERT_RTNL();
5650
5651         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5652                 /* Some devices call without registering
5653                  * for initialization unwind. Remove those
5654                  * devices and proceed with the remaining.
5655                  */
5656                 if (dev->reg_state == NETREG_UNINITIALIZED) {
5657                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5658                                  dev->name, dev);
5659
5660                         WARN_ON(1);
5661                         list_del(&dev->unreg_list);
5662                         continue;
5663                 }
5664                 dev->dismantle = true;
5665                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5666         }
5667
5668         /* If device is running, close it first. */
5669         list_for_each_entry(dev, head, unreg_list)
5670                 list_add_tail(&dev->close_list, &close_head);
5671         dev_close_many(&close_head);
5672
5673         list_for_each_entry(dev, head, unreg_list) {
5674                 /* And unlink it from device chain. */
5675                 unlist_netdevice(dev);
5676
5677                 dev->reg_state = NETREG_UNREGISTERING;
5678         }
5679
5680         synchronize_net();
5681
5682         list_for_each_entry(dev, head, unreg_list) {
5683                 /* Shutdown queueing discipline. */
5684                 dev_shutdown(dev);
5685
5686
5687                 /* Notify protocols, that we are about to destroy
5688                    this device. They should clean all the things.
5689                 */
5690                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5691
5692                 if (!dev->rtnl_link_ops ||
5693                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5694                         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5695
5696                 /*
5697                  *      Flush the unicast and multicast chains
5698                  */
5699                 dev_uc_flush(dev);
5700                 dev_mc_flush(dev);
5701
5702                 if (dev->netdev_ops->ndo_uninit)
5703                         dev->netdev_ops->ndo_uninit(dev);
5704
5705                 /* Notifier chain MUST detach us all upper devices. */
5706                 WARN_ON(netdev_has_any_upper_dev(dev));
5707
5708                 /* Remove entries from kobject tree */
5709                 netdev_unregister_kobject(dev);
5710 #ifdef CONFIG_XPS
5711                 /* Remove XPS queueing entries */
5712                 netif_reset_xps_queues_gt(dev, 0);
5713 #endif
5714         }
5715
5716         synchronize_net();
5717
5718         list_for_each_entry(dev, head, unreg_list)
5719                 dev_put(dev);
5720 }
5721
5722 static void rollback_registered(struct net_device *dev)
5723 {
5724         LIST_HEAD(single);
5725
5726         list_add(&dev->unreg_list, &single);
5727         rollback_registered_many(&single);
5728         list_del(&single);
5729 }
5730
5731 static netdev_features_t netdev_fix_features(struct net_device *dev,
5732         netdev_features_t features)
5733 {
5734         /* Fix illegal checksum combinations */
5735         if ((features & NETIF_F_HW_CSUM) &&
5736             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5737                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5738                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5739         }
5740
5741         /* TSO requires that SG is present as well. */
5742         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5743                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5744                 features &= ~NETIF_F_ALL_TSO;
5745         }
5746
5747         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5748                                         !(features & NETIF_F_IP_CSUM)) {
5749                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5750                 features &= ~NETIF_F_TSO;
5751                 features &= ~NETIF_F_TSO_ECN;
5752         }
5753
5754         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5755                                          !(features & NETIF_F_IPV6_CSUM)) {
5756                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5757                 features &= ~NETIF_F_TSO6;
5758         }
5759
5760         /* TSO ECN requires that TSO is present as well. */
5761         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5762                 features &= ~NETIF_F_TSO_ECN;
5763
5764         /* Software GSO depends on SG. */
5765         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5766                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5767                 features &= ~NETIF_F_GSO;
5768         }
5769
5770         /* UFO needs SG and checksumming */
5771         if (features & NETIF_F_UFO) {
5772                 /* maybe split UFO into V4 and V6? */
5773                 if (!((features & NETIF_F_GEN_CSUM) ||
5774                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5775                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5776                         netdev_dbg(dev,
5777                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5778                         features &= ~NETIF_F_UFO;
5779                 }
5780
5781                 if (!(features & NETIF_F_SG)) {
5782                         netdev_dbg(dev,
5783                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5784                         features &= ~NETIF_F_UFO;
5785                 }
5786         }
5787
5788 #ifdef CONFIG_NET_RX_BUSY_POLL
5789         if (dev->netdev_ops->ndo_busy_poll)
5790                 features |= NETIF_F_BUSY_POLL;
5791         else
5792 #endif
5793                 features &= ~NETIF_F_BUSY_POLL;
5794
5795         return features;
5796 }
5797
5798 int __netdev_update_features(struct net_device *dev)
5799 {
5800         netdev_features_t features;
5801         int err = 0;
5802
5803         ASSERT_RTNL();
5804
5805         features = netdev_get_wanted_features(dev);
5806
5807         if (dev->netdev_ops->ndo_fix_features)
5808                 features = dev->netdev_ops->ndo_fix_features(dev, features);
5809
5810         /* driver might be less strict about feature dependencies */
5811         features = netdev_fix_features(dev, features);
5812
5813         if (dev->features == features)
5814                 return 0;
5815
5816         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5817                 &dev->features, &features);
5818
5819         if (dev->netdev_ops->ndo_set_features)
5820                 err = dev->netdev_ops->ndo_set_features(dev, features);
5821
5822         if (unlikely(err < 0)) {
5823                 netdev_err(dev,
5824                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
5825                         err, &features, &dev->features);
5826                 return -1;
5827         }
5828
5829         if (!err)
5830                 dev->features = features;
5831
5832         return 1;
5833 }
5834
5835 /**
5836  *      netdev_update_features - recalculate device features
5837  *      @dev: the device to check
5838  *
5839  *      Recalculate dev->features set and send notifications if it
5840  *      has changed. Should be called after driver or hardware dependent
5841  *      conditions might have changed that influence the features.
5842  */
5843 void netdev_update_features(struct net_device *dev)
5844 {
5845         if (__netdev_update_features(dev))
5846                 netdev_features_change(dev);
5847 }
5848 EXPORT_SYMBOL(netdev_update_features);
5849
5850 /**
5851  *      netdev_change_features - recalculate device features
5852  *      @dev: the device to check
5853  *
5854  *      Recalculate dev->features set and send notifications even
5855  *      if they have not changed. Should be called instead of
5856  *      netdev_update_features() if also dev->vlan_features might
5857  *      have changed to allow the changes to be propagated to stacked
5858  *      VLAN devices.
5859  */
5860 void netdev_change_features(struct net_device *dev)
5861 {
5862         __netdev_update_features(dev);
5863         netdev_features_change(dev);
5864 }
5865 EXPORT_SYMBOL(netdev_change_features);
5866
5867 /**
5868  *      netif_stacked_transfer_operstate -      transfer operstate
5869  *      @rootdev: the root or lower level device to transfer state from
5870  *      @dev: the device to transfer operstate to
5871  *
5872  *      Transfer operational state from root to device. This is normally
5873  *      called when a stacking relationship exists between the root
5874  *      device and the device(a leaf device).
5875  */
5876 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5877                                         struct net_device *dev)
5878 {
5879         if (rootdev->operstate == IF_OPER_DORMANT)
5880                 netif_dormant_on(dev);
5881         else
5882                 netif_dormant_off(dev);
5883
5884         if (netif_carrier_ok(rootdev)) {
5885                 if (!netif_carrier_ok(dev))
5886                         netif_carrier_on(dev);
5887         } else {
5888                 if (netif_carrier_ok(dev))
5889                         netif_carrier_off(dev);
5890         }
5891 }
5892 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5893
5894 #ifdef CONFIG_SYSFS
5895 static int netif_alloc_rx_queues(struct net_device *dev)
5896 {
5897         unsigned int i, count = dev->num_rx_queues;
5898         struct netdev_rx_queue *rx;
5899
5900         BUG_ON(count < 1);
5901
5902         rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5903         if (!rx)
5904                 return -ENOMEM;
5905
5906         dev->_rx = rx;
5907
5908         for (i = 0; i < count; i++)
5909                 rx[i].dev = dev;
5910         return 0;
5911 }
5912 #endif
5913
5914 static void netdev_init_one_queue(struct net_device *dev,
5915                                   struct netdev_queue *queue, void *_unused)
5916 {
5917         /* Initialize queue lock */
5918         spin_lock_init(&queue->_xmit_lock);
5919         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5920         queue->xmit_lock_owner = -1;
5921         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5922         queue->dev = dev;
5923 #ifdef CONFIG_BQL
5924         dql_init(&queue->dql, HZ);
5925 #endif
5926 }
5927
5928 static void netif_free_tx_queues(struct net_device *dev)
5929 {
5930         if (is_vmalloc_addr(dev->_tx))
5931                 vfree(dev->_tx);
5932         else
5933                 kfree(dev->_tx);
5934 }
5935
5936 static int netif_alloc_netdev_queues(struct net_device *dev)
5937 {
5938         unsigned int count = dev->num_tx_queues;
5939         struct netdev_queue *tx;
5940         size_t sz = count * sizeof(*tx);
5941
5942         BUG_ON(count < 1 || count > 0xffff);
5943
5944         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5945         if (!tx) {
5946                 tx = vzalloc(sz);
5947                 if (!tx)
5948                         return -ENOMEM;
5949         }
5950         dev->_tx = tx;
5951
5952         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5953         spin_lock_init(&dev->tx_global_lock);
5954
5955         return 0;
5956 }
5957
5958 /**
5959  *      register_netdevice      - register a network device
5960  *      @dev: device to register
5961  *
5962  *      Take a completed network device structure and add it to the kernel
5963  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5964  *      chain. 0 is returned on success. A negative errno code is returned
5965  *      on a failure to set up the device, or if the name is a duplicate.
5966  *
5967  *      Callers must hold the rtnl semaphore. You may want
5968  *      register_netdev() instead of this.
5969  *
5970  *      BUGS:
5971  *      The locking appears insufficient to guarantee two parallel registers
5972  *      will not get the same name.
5973  */
5974
5975 int register_netdevice(struct net_device *dev)
5976 {
5977         int ret;
5978         struct net *net = dev_net(dev);
5979
5980         BUG_ON(dev_boot_phase);
5981         ASSERT_RTNL();
5982
5983         might_sleep();
5984
5985         /* When net_device's are persistent, this will be fatal. */
5986         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5987         BUG_ON(!net);
5988
5989         spin_lock_init(&dev->addr_list_lock);
5990         netdev_set_addr_lockdep_class(dev);
5991
5992         dev->iflink = -1;
5993
5994         ret = dev_get_valid_name(net, dev, dev->name);
5995         if (ret < 0)
5996                 goto out;
5997
5998         /* Init, if this function is available */
5999         if (dev->netdev_ops->ndo_init) {
6000                 ret = dev->netdev_ops->ndo_init(dev);
6001                 if (ret) {
6002                         if (ret > 0)
6003                                 ret = -EIO;
6004                         goto out;
6005                 }
6006         }
6007
6008         if (((dev->hw_features | dev->features) &
6009              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6010             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6011              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6012                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6013                 ret = -EINVAL;
6014                 goto err_uninit;
6015         }
6016
6017         ret = -EBUSY;
6018         if (!dev->ifindex)
6019                 dev->ifindex = dev_new_index(net);
6020         else if (__dev_get_by_index(net, dev->ifindex))
6021                 goto err_uninit;
6022
6023         if (dev->iflink == -1)
6024                 dev->iflink = dev->ifindex;
6025
6026         /* Transfer changeable features to wanted_features and enable
6027          * software offloads (GSO and GRO).
6028          */
6029         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6030         dev->features |= NETIF_F_SOFT_FEATURES;
6031         dev->wanted_features = dev->features & dev->hw_features;
6032
6033         if (!(dev->flags & IFF_LOOPBACK)) {
6034                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6035         }
6036
6037         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6038          */
6039         dev->vlan_features |= NETIF_F_HIGHDMA;
6040
6041         /* Make NETIF_F_SG inheritable to tunnel devices.
6042          */
6043         dev->hw_enc_features |= NETIF_F_SG;
6044
6045         /* Make NETIF_F_SG inheritable to MPLS.
6046          */
6047         dev->mpls_features |= NETIF_F_SG;
6048
6049         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6050         ret = notifier_to_errno(ret);
6051         if (ret)
6052                 goto err_uninit;
6053
6054         ret = netdev_register_kobject(dev);
6055         if (ret)
6056                 goto err_uninit;
6057         dev->reg_state = NETREG_REGISTERED;
6058
6059         __netdev_update_features(dev);
6060
6061         /*
6062          *      Default initial state at registry is that the
6063          *      device is present.
6064          */
6065
6066         set_bit(__LINK_STATE_PRESENT, &dev->state);
6067
6068         linkwatch_init_dev(dev);
6069
6070         dev_init_scheduler(dev);
6071         dev_hold(dev);
6072         list_netdevice(dev);
6073         add_device_randomness(dev->dev_addr, dev->addr_len);
6074
6075         /* If the device has permanent device address, driver should
6076          * set dev_addr and also addr_assign_type should be set to
6077          * NET_ADDR_PERM (default value).
6078          */
6079         if (dev->addr_assign_type == NET_ADDR_PERM)
6080                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6081
6082         /* Notify protocols, that a new device appeared. */
6083         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6084         ret = notifier_to_errno(ret);
6085         if (ret) {
6086                 rollback_registered(dev);
6087                 dev->reg_state = NETREG_UNREGISTERED;
6088         }
6089         /*
6090          *      Prevent userspace races by waiting until the network
6091          *      device is fully setup before sending notifications.
6092          */
6093         if (!dev->rtnl_link_ops ||
6094             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6095                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6096
6097 out:
6098         return ret;
6099
6100 err_uninit:
6101         if (dev->netdev_ops->ndo_uninit)
6102                 dev->netdev_ops->ndo_uninit(dev);
6103         goto out;
6104 }
6105 EXPORT_SYMBOL(register_netdevice);
6106
6107 /**
6108  *      init_dummy_netdev       - init a dummy network device for NAPI
6109  *      @dev: device to init
6110  *
6111  *      This takes a network device structure and initialize the minimum
6112  *      amount of fields so it can be used to schedule NAPI polls without
6113  *      registering a full blown interface. This is to be used by drivers
6114  *      that need to tie several hardware interfaces to a single NAPI
6115  *      poll scheduler due to HW limitations.
6116  */
6117 int init_dummy_netdev(struct net_device *dev)
6118 {
6119         /* Clear everything. Note we don't initialize spinlocks
6120          * are they aren't supposed to be taken by any of the
6121          * NAPI code and this dummy netdev is supposed to be
6122          * only ever used for NAPI polls
6123          */
6124         memset(dev, 0, sizeof(struct net_device));
6125
6126         /* make sure we BUG if trying to hit standard
6127          * register/unregister code path
6128          */
6129         dev->reg_state = NETREG_DUMMY;
6130
6131         /* NAPI wants this */
6132         INIT_LIST_HEAD(&dev->napi_list);
6133
6134         /* a dummy interface is started by default */
6135         set_bit(__LINK_STATE_PRESENT, &dev->state);
6136         set_bit(__LINK_STATE_START, &dev->state);
6137
6138         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6139          * because users of this 'device' dont need to change
6140          * its refcount.
6141          */
6142
6143         return 0;
6144 }
6145 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6146
6147
6148 /**
6149  *      register_netdev - register a network device
6150  *      @dev: device to register
6151  *
6152  *      Take a completed network device structure and add it to the kernel
6153  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6154  *      chain. 0 is returned on success. A negative errno code is returned
6155  *      on a failure to set up the device, or if the name is a duplicate.
6156  *
6157  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6158  *      and expands the device name if you passed a format string to
6159  *      alloc_netdev.
6160  */
6161 int register_netdev(struct net_device *dev)
6162 {
6163         int err;
6164
6165         rtnl_lock();
6166         err = register_netdevice(dev);
6167         rtnl_unlock();
6168         return err;
6169 }
6170 EXPORT_SYMBOL(register_netdev);
6171
6172 int netdev_refcnt_read(const struct net_device *dev)
6173 {
6174         int i, refcnt = 0;
6175
6176         for_each_possible_cpu(i)
6177                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6178         return refcnt;
6179 }
6180 EXPORT_SYMBOL(netdev_refcnt_read);
6181
6182 /**
6183  * netdev_wait_allrefs - wait until all references are gone.
6184  * @dev: target net_device
6185  *
6186  * This is called when unregistering network devices.
6187  *
6188  * Any protocol or device that holds a reference should register
6189  * for netdevice notification, and cleanup and put back the
6190  * reference if they receive an UNREGISTER event.
6191  * We can get stuck here if buggy protocols don't correctly
6192  * call dev_put.
6193  */
6194 static void netdev_wait_allrefs(struct net_device *dev)
6195 {
6196         unsigned long rebroadcast_time, warning_time;
6197         int refcnt;
6198
6199         linkwatch_forget_dev(dev);
6200
6201         rebroadcast_time = warning_time = jiffies;
6202         refcnt = netdev_refcnt_read(dev);
6203
6204         while (refcnt != 0) {
6205                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6206                         rtnl_lock();
6207
6208                         /* Rebroadcast unregister notification */
6209                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6210
6211                         __rtnl_unlock();
6212                         rcu_barrier();
6213                         rtnl_lock();
6214
6215                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6216                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6217                                      &dev->state)) {
6218                                 /* We must not have linkwatch events
6219                                  * pending on unregister. If this
6220                                  * happens, we simply run the queue
6221                                  * unscheduled, resulting in a noop
6222                                  * for this device.
6223                                  */
6224                                 linkwatch_run_queue();
6225                         }
6226
6227                         __rtnl_unlock();
6228
6229                         rebroadcast_time = jiffies;
6230                 }
6231
6232                 msleep(250);
6233
6234                 refcnt = netdev_refcnt_read(dev);
6235
6236                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6237                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6238                                  dev->name, refcnt);
6239                         warning_time = jiffies;
6240                 }
6241         }
6242 }
6243
6244 /* The sequence is:
6245  *
6246  *      rtnl_lock();
6247  *      ...
6248  *      register_netdevice(x1);
6249  *      register_netdevice(x2);
6250  *      ...
6251  *      unregister_netdevice(y1);
6252  *      unregister_netdevice(y2);
6253  *      ...
6254  *      rtnl_unlock();
6255  *      free_netdev(y1);
6256  *      free_netdev(y2);
6257  *
6258  * We are invoked by rtnl_unlock().
6259  * This allows us to deal with problems:
6260  * 1) We can delete sysfs objects which invoke hotplug
6261  *    without deadlocking with linkwatch via keventd.
6262  * 2) Since we run with the RTNL semaphore not held, we can sleep
6263  *    safely in order to wait for the netdev refcnt to drop to zero.
6264  *
6265  * We must not return until all unregister events added during
6266  * the interval the lock was held have been completed.
6267  */
6268 void netdev_run_todo(void)
6269 {
6270         struct list_head list;
6271
6272         /* Snapshot list, allow later requests */
6273         list_replace_init(&net_todo_list, &list);
6274
6275         __rtnl_unlock();
6276
6277
6278         /* Wait for rcu callbacks to finish before next phase */
6279         if (!list_empty(&list))
6280                 rcu_barrier();
6281
6282         while (!list_empty(&list)) {
6283                 struct net_device *dev
6284                         = list_first_entry(&list, struct net_device, todo_list);
6285                 list_del(&dev->todo_list);
6286
6287                 rtnl_lock();
6288                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6289                 __rtnl_unlock();
6290
6291                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6292                         pr_err("network todo '%s' but state %d\n",
6293                                dev->name, dev->reg_state);
6294                         dump_stack();
6295                         continue;
6296                 }
6297
6298                 dev->reg_state = NETREG_UNREGISTERED;
6299
6300                 on_each_cpu(flush_backlog, dev, 1);
6301
6302                 netdev_wait_allrefs(dev);
6303
6304                 /* paranoia */
6305                 BUG_ON(netdev_refcnt_read(dev));
6306                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6307                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6308                 WARN_ON(dev->dn_ptr);
6309
6310                 if (dev->destructor)
6311                         dev->destructor(dev);
6312
6313                 /* Report a network device has been unregistered */
6314                 rtnl_lock();
6315                 dev_net(dev)->dev_unreg_count--;
6316                 __rtnl_unlock();
6317                 wake_up(&netdev_unregistering_wq);
6318
6319                 /* Free network device */
6320                 kobject_put(&dev->dev.kobj);
6321         }
6322 }
6323
6324 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6325  * fields in the same order, with only the type differing.
6326  */
6327 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6328                              const struct net_device_stats *netdev_stats)
6329 {
6330 #if BITS_PER_LONG == 64
6331         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6332         memcpy(stats64, netdev_stats, sizeof(*stats64));
6333 #else
6334         size_t i, n = sizeof(*stats64) / sizeof(u64);
6335         const unsigned long *src = (const unsigned long *)netdev_stats;
6336         u64 *dst = (u64 *)stats64;
6337
6338         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6339                      sizeof(*stats64) / sizeof(u64));
6340         for (i = 0; i < n; i++)
6341                 dst[i] = src[i];
6342 #endif
6343 }
6344 EXPORT_SYMBOL(netdev_stats_to_stats64);
6345
6346 /**
6347  *      dev_get_stats   - get network device statistics
6348  *      @dev: device to get statistics from
6349  *      @storage: place to store stats
6350  *
6351  *      Get network statistics from device. Return @storage.
6352  *      The device driver may provide its own method by setting
6353  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6354  *      otherwise the internal statistics structure is used.
6355  */
6356 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6357                                         struct rtnl_link_stats64 *storage)
6358 {
6359         const struct net_device_ops *ops = dev->netdev_ops;
6360
6361         if (ops->ndo_get_stats64) {
6362                 memset(storage, 0, sizeof(*storage));
6363                 ops->ndo_get_stats64(dev, storage);
6364         } else if (ops->ndo_get_stats) {
6365                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6366         } else {
6367                 netdev_stats_to_stats64(storage, &dev->stats);
6368         }
6369         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6370         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6371         return storage;
6372 }
6373 EXPORT_SYMBOL(dev_get_stats);
6374
6375 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6376 {
6377         struct netdev_queue *queue = dev_ingress_queue(dev);
6378
6379 #ifdef CONFIG_NET_CLS_ACT
6380         if (queue)
6381                 return queue;
6382         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6383         if (!queue)
6384                 return NULL;
6385         netdev_init_one_queue(dev, queue, NULL);
6386         queue->qdisc = &noop_qdisc;
6387         queue->qdisc_sleeping = &noop_qdisc;
6388         rcu_assign_pointer(dev->ingress_queue, queue);
6389 #endif
6390         return queue;
6391 }
6392
6393 static const struct ethtool_ops default_ethtool_ops;
6394
6395 void netdev_set_default_ethtool_ops(struct net_device *dev,
6396                                     const struct ethtool_ops *ops)
6397 {
6398         if (dev->ethtool_ops == &default_ethtool_ops)
6399                 dev->ethtool_ops = ops;
6400 }
6401 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6402
6403 void netdev_freemem(struct net_device *dev)
6404 {
6405         char *addr = (char *)dev - dev->padded;
6406
6407         if (is_vmalloc_addr(addr))
6408                 vfree(addr);
6409         else
6410                 kfree(addr);
6411 }
6412
6413 /**
6414  *      alloc_netdev_mqs - allocate network device
6415  *      @sizeof_priv:   size of private data to allocate space for
6416  *      @name:          device name format string
6417  *      @setup:         callback to initialize device
6418  *      @txqs:          the number of TX subqueues to allocate
6419  *      @rxqs:          the number of RX subqueues to allocate
6420  *
6421  *      Allocates a struct net_device with private data area for driver use
6422  *      and performs basic initialization.  Also allocates subqueue structs
6423  *      for each queue on the device.
6424  */
6425 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6426                 void (*setup)(struct net_device *),
6427                 unsigned int txqs, unsigned int rxqs)
6428 {
6429         struct net_device *dev;
6430         size_t alloc_size;
6431         struct net_device *p;
6432
6433         BUG_ON(strlen(name) >= sizeof(dev->name));
6434
6435         if (txqs < 1) {
6436                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6437                 return NULL;
6438         }
6439
6440 #ifdef CONFIG_SYSFS
6441         if (rxqs < 1) {
6442                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6443                 return NULL;
6444         }
6445 #endif
6446
6447         alloc_size = sizeof(struct net_device);
6448         if (sizeof_priv) {
6449                 /* ensure 32-byte alignment of private area */
6450                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6451                 alloc_size += sizeof_priv;
6452         }
6453         /* ensure 32-byte alignment of whole construct */
6454         alloc_size += NETDEV_ALIGN - 1;
6455
6456         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6457         if (!p)
6458                 p = vzalloc(alloc_size);
6459         if (!p)
6460                 return NULL;
6461
6462         dev = PTR_ALIGN(p, NETDEV_ALIGN);
6463         dev->padded = (char *)dev - (char *)p;
6464
6465         dev->pcpu_refcnt = alloc_percpu(int);
6466         if (!dev->pcpu_refcnt)
6467                 goto free_dev;
6468
6469         if (dev_addr_init(dev))
6470                 goto free_pcpu;
6471
6472         dev_mc_init(dev);
6473         dev_uc_init(dev);
6474
6475         dev_net_set(dev, &init_net);
6476
6477         dev->gso_max_size = GSO_MAX_SIZE;
6478         dev->gso_max_segs = GSO_MAX_SEGS;
6479
6480         INIT_LIST_HEAD(&dev->napi_list);
6481         INIT_LIST_HEAD(&dev->unreg_list);
6482         INIT_LIST_HEAD(&dev->close_list);
6483         INIT_LIST_HEAD(&dev->link_watch_list);
6484         INIT_LIST_HEAD(&dev->adj_list.upper);
6485         INIT_LIST_HEAD(&dev->adj_list.lower);
6486         INIT_LIST_HEAD(&dev->all_adj_list.upper);
6487         INIT_LIST_HEAD(&dev->all_adj_list.lower);
6488         dev->priv_flags = IFF_XMIT_DST_RELEASE;
6489         setup(dev);
6490
6491         dev->num_tx_queues = txqs;
6492         dev->real_num_tx_queues = txqs;
6493         if (netif_alloc_netdev_queues(dev))
6494                 goto free_all;
6495
6496 #ifdef CONFIG_SYSFS
6497         dev->num_rx_queues = rxqs;
6498         dev->real_num_rx_queues = rxqs;
6499         if (netif_alloc_rx_queues(dev))
6500                 goto free_all;
6501 #endif
6502
6503         strcpy(dev->name, name);
6504         dev->group = INIT_NETDEV_GROUP;
6505         if (!dev->ethtool_ops)
6506                 dev->ethtool_ops = &default_ethtool_ops;
6507         return dev;
6508
6509 free_all:
6510         free_netdev(dev);
6511         return NULL;
6512
6513 free_pcpu:
6514         free_percpu(dev->pcpu_refcnt);
6515         netif_free_tx_queues(dev);
6516 #ifdef CONFIG_SYSFS
6517         kfree(dev->_rx);
6518 #endif
6519
6520 free_dev:
6521         netdev_freemem(dev);
6522         return NULL;
6523 }
6524 EXPORT_SYMBOL(alloc_netdev_mqs);
6525
6526 /**
6527  *      free_netdev - free network device
6528  *      @dev: device
6529  *
6530  *      This function does the last stage of destroying an allocated device
6531  *      interface. The reference to the device object is released.
6532  *      If this is the last reference then it will be freed.
6533  */
6534 void free_netdev(struct net_device *dev)
6535 {
6536         struct napi_struct *p, *n;
6537
6538         release_net(dev_net(dev));
6539
6540         netif_free_tx_queues(dev);
6541 #ifdef CONFIG_SYSFS
6542         kfree(dev->_rx);
6543 #endif
6544
6545         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6546
6547         /* Flush device addresses */
6548         dev_addr_flush(dev);
6549
6550         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6551                 netif_napi_del(p);
6552
6553         free_percpu(dev->pcpu_refcnt);
6554         dev->pcpu_refcnt = NULL;
6555
6556         /*  Compatibility with error handling in drivers */
6557         if (dev->reg_state == NETREG_UNINITIALIZED) {
6558                 netdev_freemem(dev);
6559                 return;
6560         }
6561
6562         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6563         dev->reg_state = NETREG_RELEASED;
6564
6565         /* will free via device release */
6566         put_device(&dev->dev);
6567 }
6568 EXPORT_SYMBOL(free_netdev);
6569
6570 /**
6571  *      synchronize_net -  Synchronize with packet receive processing
6572  *
6573  *      Wait for packets currently being received to be done.
6574  *      Does not block later packets from starting.
6575  */
6576 void synchronize_net(void)
6577 {
6578         might_sleep();
6579         if (rtnl_is_locked())
6580                 synchronize_rcu_expedited();
6581         else
6582                 synchronize_rcu();
6583 }
6584 EXPORT_SYMBOL(synchronize_net);
6585
6586 /**
6587  *      unregister_netdevice_queue - remove device from the kernel
6588  *      @dev: device
6589  *      @head: list
6590  *
6591  *      This function shuts down a device interface and removes it
6592  *      from the kernel tables.
6593  *      If head not NULL, device is queued to be unregistered later.
6594  *
6595  *      Callers must hold the rtnl semaphore.  You may want
6596  *      unregister_netdev() instead of this.
6597  */
6598
6599 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6600 {
6601         ASSERT_RTNL();
6602
6603         if (head) {
6604                 list_move_tail(&dev->unreg_list, head);
6605         } else {
6606                 rollback_registered(dev);
6607                 /* Finish processing unregister after unlock */
6608                 net_set_todo(dev);
6609         }
6610 }
6611 EXPORT_SYMBOL(unregister_netdevice_queue);
6612
6613 /**
6614  *      unregister_netdevice_many - unregister many devices
6615  *      @head: list of devices
6616  */
6617 void unregister_netdevice_many(struct list_head *head)
6618 {
6619         struct net_device *dev;
6620
6621         if (!list_empty(head)) {
6622                 rollback_registered_many(head);
6623                 list_for_each_entry(dev, head, unreg_list)
6624                         net_set_todo(dev);
6625         }
6626 }
6627 EXPORT_SYMBOL(unregister_netdevice_many);
6628
6629 /**
6630  *      unregister_netdev - remove device from the kernel
6631  *      @dev: device
6632  *
6633  *      This function shuts down a device interface and removes it
6634  *      from the kernel tables.
6635  *
6636  *      This is just a wrapper for unregister_netdevice that takes
6637  *      the rtnl semaphore.  In general you want to use this and not
6638  *      unregister_netdevice.
6639  */
6640 void unregister_netdev(struct net_device *dev)
6641 {
6642         rtnl_lock();
6643         unregister_netdevice(dev);
6644         rtnl_unlock();
6645 }
6646 EXPORT_SYMBOL(unregister_netdev);
6647
6648 /**
6649  *      dev_change_net_namespace - move device to different nethost namespace
6650  *      @dev: device
6651  *      @net: network namespace
6652  *      @pat: If not NULL name pattern to try if the current device name
6653  *            is already taken in the destination network namespace.
6654  *
6655  *      This function shuts down a device interface and moves it
6656  *      to a new network namespace. On success 0 is returned, on
6657  *      a failure a netagive errno code is returned.
6658  *
6659  *      Callers must hold the rtnl semaphore.
6660  */
6661
6662 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6663 {
6664         int err;
6665
6666         ASSERT_RTNL();
6667
6668         /* Don't allow namespace local devices to be moved. */
6669         err = -EINVAL;
6670         if (dev->features & NETIF_F_NETNS_LOCAL)
6671                 goto out;
6672
6673         /* Ensure the device has been registrered */
6674         if (dev->reg_state != NETREG_REGISTERED)
6675                 goto out;
6676
6677         /* Get out if there is nothing todo */
6678         err = 0;
6679         if (net_eq(dev_net(dev), net))
6680                 goto out;
6681
6682         /* Pick the destination device name, and ensure
6683          * we can use it in the destination network namespace.
6684          */
6685         err = -EEXIST;
6686         if (__dev_get_by_name(net, dev->name)) {
6687                 /* We get here if we can't use the current device name */
6688                 if (!pat)
6689                         goto out;
6690                 if (dev_get_valid_name(net, dev, pat) < 0)
6691                         goto out;
6692         }
6693
6694         /*
6695          * And now a mini version of register_netdevice unregister_netdevice.
6696          */
6697
6698         /* If device is running close it first. */
6699         dev_close(dev);
6700
6701         /* And unlink it from device chain */
6702         err = -ENODEV;
6703         unlist_netdevice(dev);
6704
6705         synchronize_net();
6706
6707         /* Shutdown queueing discipline. */
6708         dev_shutdown(dev);
6709
6710         /* Notify protocols, that we are about to destroy
6711            this device. They should clean all the things.
6712
6713            Note that dev->reg_state stays at NETREG_REGISTERED.
6714            This is wanted because this way 8021q and macvlan know
6715            the device is just moving and can keep their slaves up.
6716         */
6717         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6718         rcu_barrier();
6719         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6720         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6721
6722         /*
6723          *      Flush the unicast and multicast chains
6724          */
6725         dev_uc_flush(dev);
6726         dev_mc_flush(dev);
6727
6728         /* Send a netdev-removed uevent to the old namespace */
6729         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6730
6731         /* Actually switch the network namespace */
6732         dev_net_set(dev, net);
6733
6734         /* If there is an ifindex conflict assign a new one */
6735         if (__dev_get_by_index(net, dev->ifindex)) {
6736                 int iflink = (dev->iflink == dev->ifindex);
6737                 dev->ifindex = dev_new_index(net);
6738                 if (iflink)
6739                         dev->iflink = dev->ifindex;
6740         }
6741
6742         /* Send a netdev-add uevent to the new namespace */
6743         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6744
6745         /* Fixup kobjects */
6746         err = device_rename(&dev->dev, dev->name);
6747         WARN_ON(err);
6748
6749         /* Add the device back in the hashes */
6750         list_netdevice(dev);
6751
6752         /* Notify protocols, that a new device appeared. */
6753         call_netdevice_notifiers(NETDEV_REGISTER, dev);
6754
6755         /*
6756          *      Prevent userspace races by waiting until the network
6757          *      device is fully setup before sending notifications.
6758          */
6759         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6760
6761         synchronize_net();
6762         err = 0;
6763 out:
6764         return err;
6765 }
6766 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6767
6768 static int dev_cpu_callback(struct notifier_block *nfb,
6769                             unsigned long action,
6770                             void *ocpu)
6771 {
6772         struct sk_buff **list_skb;
6773         struct sk_buff *skb;
6774         unsigned int cpu, oldcpu = (unsigned long)ocpu;
6775         struct softnet_data *sd, *oldsd;
6776
6777         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6778                 return NOTIFY_OK;
6779
6780         local_irq_disable();
6781         cpu = smp_processor_id();
6782         sd = &per_cpu(softnet_data, cpu);
6783         oldsd = &per_cpu(softnet_data, oldcpu);
6784
6785         /* Find end of our completion_queue. */
6786         list_skb = &sd->completion_queue;
6787         while (*list_skb)
6788                 list_skb = &(*list_skb)->next;
6789         /* Append completion queue from offline CPU. */
6790         *list_skb = oldsd->completion_queue;
6791         oldsd->completion_queue = NULL;
6792
6793         /* Append output queue from offline CPU. */
6794         if (oldsd->output_queue) {
6795                 *sd->output_queue_tailp = oldsd->output_queue;
6796                 sd->output_queue_tailp = oldsd->output_queue_tailp;
6797                 oldsd->output_queue = NULL;
6798                 oldsd->output_queue_tailp = &oldsd->output_queue;
6799         }
6800         /* Append NAPI poll list from offline CPU. */
6801         if (!list_empty(&oldsd->poll_list)) {
6802                 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6803                 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6804         }
6805
6806         raise_softirq_irqoff(NET_TX_SOFTIRQ);
6807         local_irq_enable();
6808
6809         /* Process offline CPU's input_pkt_queue */
6810         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6811                 netif_rx_internal(skb);
6812                 input_queue_head_incr(oldsd);
6813         }
6814         while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6815                 netif_rx_internal(skb);
6816                 input_queue_head_incr(oldsd);
6817         }
6818
6819         return NOTIFY_OK;
6820 }
6821
6822
6823 /**
6824  *      netdev_increment_features - increment feature set by one
6825  *      @all: current feature set
6826  *      @one: new feature set
6827  *      @mask: mask feature set
6828  *
6829  *      Computes a new feature set after adding a device with feature set
6830  *      @one to the master device with current feature set @all.  Will not
6831  *      enable anything that is off in @mask. Returns the new feature set.
6832  */
6833 netdev_features_t netdev_increment_features(netdev_features_t all,
6834         netdev_features_t one, netdev_features_t mask)
6835 {
6836         if (mask & NETIF_F_GEN_CSUM)
6837                 mask |= NETIF_F_ALL_CSUM;
6838         mask |= NETIF_F_VLAN_CHALLENGED;
6839
6840         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6841         all &= one | ~NETIF_F_ALL_FOR_ALL;
6842
6843         /* If one device supports hw checksumming, set for all. */
6844         if (all & NETIF_F_GEN_CSUM)
6845                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6846
6847         return all;
6848 }
6849 EXPORT_SYMBOL(netdev_increment_features);
6850
6851 static struct hlist_head * __net_init netdev_create_hash(void)
6852 {
6853         int i;
6854         struct hlist_head *hash;
6855
6856         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6857         if (hash != NULL)
6858                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6859                         INIT_HLIST_HEAD(&hash[i]);
6860
6861         return hash;
6862 }
6863
6864 /* Initialize per network namespace state */
6865 static int __net_init netdev_init(struct net *net)
6866 {
6867         if (net != &init_net)
6868                 INIT_LIST_HEAD(&net->dev_base_head);
6869
6870         net->dev_name_head = netdev_create_hash();
6871         if (net->dev_name_head == NULL)
6872                 goto err_name;
6873
6874         net->dev_index_head = netdev_create_hash();
6875         if (net->dev_index_head == NULL)
6876                 goto err_idx;
6877
6878         return 0;
6879
6880 err_idx:
6881         kfree(net->dev_name_head);
6882 err_name:
6883         return -ENOMEM;
6884 }
6885
6886 /**
6887  *      netdev_drivername - network driver for the device
6888  *      @dev: network device
6889  *
6890  *      Determine network driver for device.
6891  */
6892 const char *netdev_drivername(const struct net_device *dev)
6893 {
6894         const struct device_driver *driver;
6895         const struct device *parent;
6896         const char *empty = "";
6897
6898         parent = dev->dev.parent;
6899         if (!parent)
6900                 return empty;
6901
6902         driver = parent->driver;
6903         if (driver && driver->name)
6904                 return driver->name;
6905         return empty;
6906 }
6907
6908 static int __netdev_printk(const char *level, const struct net_device *dev,
6909                            struct va_format *vaf)
6910 {
6911         int r;
6912
6913         if (dev && dev->dev.parent) {
6914                 r = dev_printk_emit(level[1] - '0',
6915                                     dev->dev.parent,
6916                                     "%s %s %s: %pV",
6917                                     dev_driver_string(dev->dev.parent),
6918                                     dev_name(dev->dev.parent),
6919                                     netdev_name(dev), vaf);
6920         } else if (dev) {
6921                 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6922         } else {
6923                 r = printk("%s(NULL net_device): %pV", level, vaf);
6924         }
6925
6926         return r;
6927 }
6928
6929 int netdev_printk(const char *level, const struct net_device *dev,
6930                   const char *format, ...)
6931 {
6932         struct va_format vaf;
6933         va_list args;
6934         int r;
6935
6936         va_start(args, format);
6937
6938         vaf.fmt = format;
6939         vaf.va = &args;
6940
6941         r = __netdev_printk(level, dev, &vaf);
6942
6943         va_end(args);
6944
6945         return r;
6946 }
6947 EXPORT_SYMBOL(netdev_printk);
6948
6949 #define define_netdev_printk_level(func, level)                 \
6950 int func(const struct net_device *dev, const char *fmt, ...)    \
6951 {                                                               \
6952         int r;                                                  \
6953         struct va_format vaf;                                   \
6954         va_list args;                                           \
6955                                                                 \
6956         va_start(args, fmt);                                    \
6957                                                                 \
6958         vaf.fmt = fmt;                                          \
6959         vaf.va = &args;                                         \
6960                                                                 \
6961         r = __netdev_printk(level, dev, &vaf);                  \
6962                                                                 \
6963         va_end(args);                                           \
6964                                                                 \
6965         return r;                                               \
6966 }                                                               \
6967 EXPORT_SYMBOL(func);
6968
6969 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6970 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6971 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6972 define_netdev_printk_level(netdev_err, KERN_ERR);
6973 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6974 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6975 define_netdev_printk_level(netdev_info, KERN_INFO);
6976
6977 static void __net_exit netdev_exit(struct net *net)
6978 {
6979         kfree(net->dev_name_head);
6980         kfree(net->dev_index_head);
6981 }
6982
6983 static struct pernet_operations __net_initdata netdev_net_ops = {
6984         .init = netdev_init,
6985         .exit = netdev_exit,
6986 };
6987
6988 static void __net_exit default_device_exit(struct net *net)
6989 {
6990         struct net_device *dev, *aux;
6991         /*
6992          * Push all migratable network devices back to the
6993          * initial network namespace
6994          */
6995         rtnl_lock();
6996         for_each_netdev_safe(net, dev, aux) {
6997                 int err;
6998                 char fb_name[IFNAMSIZ];
6999
7000                 /* Ignore unmoveable devices (i.e. loopback) */
7001                 if (dev->features & NETIF_F_NETNS_LOCAL)
7002                         continue;
7003
7004                 /* Leave virtual devices for the generic cleanup */
7005                 if (dev->rtnl_link_ops)
7006                         continue;
7007
7008                 /* Push remaining network devices to init_net */
7009                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7010                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7011                 if (err) {
7012                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7013                                  __func__, dev->name, err);
7014                         BUG();
7015                 }
7016         }
7017         rtnl_unlock();
7018 }
7019
7020 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7021 {
7022         /* Return with the rtnl_lock held when there are no network
7023          * devices unregistering in any network namespace in net_list.
7024          */
7025         struct net *net;
7026         bool unregistering;
7027         DEFINE_WAIT(wait);
7028
7029         for (;;) {
7030                 prepare_to_wait(&netdev_unregistering_wq, &wait,
7031                                 TASK_UNINTERRUPTIBLE);
7032                 unregistering = false;
7033                 rtnl_lock();
7034                 list_for_each_entry(net, net_list, exit_list) {
7035                         if (net->dev_unreg_count > 0) {
7036                                 unregistering = true;
7037                                 break;
7038                         }
7039                 }
7040                 if (!unregistering)
7041                         break;
7042                 __rtnl_unlock();
7043                 schedule();
7044         }
7045         finish_wait(&netdev_unregistering_wq, &wait);
7046 }
7047
7048 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7049 {
7050         /* At exit all network devices most be removed from a network
7051          * namespace.  Do this in the reverse order of registration.
7052          * Do this across as many network namespaces as possible to
7053          * improve batching efficiency.
7054          */
7055         struct net_device *dev;
7056         struct net *net;
7057         LIST_HEAD(dev_kill_list);
7058
7059         /* To prevent network device cleanup code from dereferencing
7060          * loopback devices or network devices that have been freed
7061          * wait here for all pending unregistrations to complete,
7062          * before unregistring the loopback device and allowing the
7063          * network namespace be freed.
7064          *
7065          * The netdev todo list containing all network devices
7066          * unregistrations that happen in default_device_exit_batch
7067          * will run in the rtnl_unlock() at the end of
7068          * default_device_exit_batch.
7069          */
7070         rtnl_lock_unregistering(net_list);
7071         list_for_each_entry(net, net_list, exit_list) {
7072                 for_each_netdev_reverse(net, dev) {
7073                         if (dev->rtnl_link_ops)
7074                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7075                         else
7076                                 unregister_netdevice_queue(dev, &dev_kill_list);
7077                 }
7078         }
7079         unregister_netdevice_many(&dev_kill_list);
7080         list_del(&dev_kill_list);
7081         rtnl_unlock();
7082 }
7083
7084 static struct pernet_operations __net_initdata default_device_ops = {
7085         .exit = default_device_exit,
7086         .exit_batch = default_device_exit_batch,
7087 };
7088
7089 /*
7090  *      Initialize the DEV module. At boot time this walks the device list and
7091  *      unhooks any devices that fail to initialise (normally hardware not
7092  *      present) and leaves us with a valid list of present and active devices.
7093  *
7094  */
7095
7096 /*
7097  *       This is called single threaded during boot, so no need
7098  *       to take the rtnl semaphore.
7099  */
7100 static int __init net_dev_init(void)
7101 {
7102         int i, rc = -ENOMEM;
7103
7104         BUG_ON(!dev_boot_phase);
7105
7106         if (dev_proc_init())
7107                 goto out;
7108
7109         if (netdev_kobject_init())
7110                 goto out;
7111
7112         INIT_LIST_HEAD(&ptype_all);
7113         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7114                 INIT_LIST_HEAD(&ptype_base[i]);
7115
7116         INIT_LIST_HEAD(&offload_base);
7117
7118         if (register_pernet_subsys(&netdev_net_ops))
7119                 goto out;
7120
7121         /*
7122          *      Initialise the packet receive queues.
7123          */
7124
7125         for_each_possible_cpu(i) {
7126                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7127
7128                 skb_queue_head_init(&sd->input_pkt_queue);
7129                 skb_queue_head_init(&sd->process_queue);
7130                 INIT_LIST_HEAD(&sd->poll_list);
7131                 sd->output_queue_tailp = &sd->output_queue;
7132 #ifdef CONFIG_RPS
7133                 sd->csd.func = rps_trigger_softirq;
7134                 sd->csd.info = sd;
7135                 sd->cpu = i;
7136 #endif
7137
7138                 sd->backlog.poll = process_backlog;
7139                 sd->backlog.weight = weight_p;
7140         }
7141
7142         dev_boot_phase = 0;
7143
7144         /* The loopback device is special if any other network devices
7145          * is present in a network namespace the loopback device must
7146          * be present. Since we now dynamically allocate and free the
7147          * loopback device ensure this invariant is maintained by
7148          * keeping the loopback device as the first device on the
7149          * list of network devices.  Ensuring the loopback devices
7150          * is the first device that appears and the last network device
7151          * that disappears.
7152          */
7153         if (register_pernet_device(&loopback_net_ops))
7154                 goto out;
7155
7156         if (register_pernet_device(&default_device_ops))
7157                 goto out;
7158
7159         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7160         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7161
7162         hotcpu_notifier(dev_cpu_callback, 0);
7163         dst_init();
7164         rc = 0;
7165 out:
7166         return rc;
7167 }
7168
7169 subsys_initcall(net_dev_init);