2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
139 #include "net-sysfs.h"
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
204 static inline void dev_base_seq_inc(struct net *net)
206 while (++net->dev_base_seq == 0);
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
211 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
220 static inline void rps_lock(struct softnet_data *sd)
223 spin_lock(&sd->input_pkt_queue.lock);
227 static inline void rps_unlock(struct softnet_data *sd)
230 spin_unlock(&sd->input_pkt_queue.lock);
234 /* Device list insertion */
235 static int list_netdevice(struct net_device *dev)
237 struct net *net = dev_net(dev);
241 write_lock_bh(&dev_base_lock);
242 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
243 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
244 hlist_add_head_rcu(&dev->index_hlist,
245 dev_index_hash(net, dev->ifindex));
246 write_unlock_bh(&dev_base_lock);
248 dev_base_seq_inc(net);
253 /* Device list removal
254 * caller must respect a RCU grace period before freeing/reusing dev
256 static void unlist_netdevice(struct net_device *dev)
260 /* Unlink dev from the device chain */
261 write_lock_bh(&dev_base_lock);
262 list_del_rcu(&dev->dev_list);
263 hlist_del_rcu(&dev->name_hlist);
264 hlist_del_rcu(&dev->index_hlist);
265 write_unlock_bh(&dev_base_lock);
267 dev_base_seq_inc(dev_net(dev));
274 static RAW_NOTIFIER_HEAD(netdev_chain);
277 * Device drivers call our routines to queue packets here. We empty the
278 * queue in the local softnet handler.
281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
282 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 #ifdef CONFIG_LOCKDEP
286 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
287 * according to dev->type
289 static const unsigned short netdev_lock_type[] =
290 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
291 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
302 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
303 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
304 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
305 ARPHRD_VOID, ARPHRD_NONE};
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
321 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
322 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
323 "_xmit_VOID", "_xmit_NONE"};
325 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
328 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
332 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
333 if (netdev_lock_type[i] == dev_type)
335 /* the last key is used by default */
336 return ARRAY_SIZE(netdev_lock_type) - 1;
339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
340 unsigned short dev_type)
344 i = netdev_lock_pos(dev_type);
345 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
346 netdev_lock_name[i]);
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353 i = netdev_lock_pos(dev->type);
354 lockdep_set_class_and_name(&dev->addr_list_lock,
355 &netdev_addr_lock_key[i],
356 netdev_lock_name[i]);
359 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
360 unsigned short dev_type)
363 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
368 /*******************************************************************************
370 Protocol management and registration routines
372 *******************************************************************************/
375 * Add a protocol ID to the list. Now that the input handler is
376 * smarter we can dispense with all the messy stuff that used to be
379 * BEWARE!!! Protocol handlers, mangling input packets,
380 * MUST BE last in hash buckets and checking protocol handlers
381 * MUST start from promiscuous ptype_all chain in net_bh.
382 * It is true now, do not change it.
383 * Explanation follows: if protocol handler, mangling packet, will
384 * be the first on list, it is not able to sense, that packet
385 * is cloned and should be copied-on-write, so that it will
386 * change it and subsequent readers will get broken packet.
390 static inline struct list_head *ptype_head(const struct packet_type *pt)
392 if (pt->type == htons(ETH_P_ALL))
395 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
399 * dev_add_pack - add packet handler
400 * @pt: packet type declaration
402 * Add a protocol handler to the networking stack. The passed &packet_type
403 * is linked into kernel lists and may not be freed until it has been
404 * removed from the kernel lists.
406 * This call does not sleep therefore it can not
407 * guarantee all CPU's that are in middle of receiving packets
408 * will see the new packet type (until the next received packet).
411 void dev_add_pack(struct packet_type *pt)
413 struct list_head *head = ptype_head(pt);
415 spin_lock(&ptype_lock);
416 list_add_rcu(&pt->list, head);
417 spin_unlock(&ptype_lock);
419 EXPORT_SYMBOL(dev_add_pack);
422 * __dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
430 * The packet type might still be in use by receivers
431 * and must not be freed until after all the CPU's have gone
432 * through a quiescent state.
434 void __dev_remove_pack(struct packet_type *pt)
436 struct list_head *head = ptype_head(pt);
437 struct packet_type *pt1;
439 spin_lock(&ptype_lock);
441 list_for_each_entry(pt1, head, list) {
443 list_del_rcu(&pt->list);
448 pr_warn("dev_remove_pack: %p not found\n", pt);
450 spin_unlock(&ptype_lock);
452 EXPORT_SYMBOL(__dev_remove_pack);
455 * dev_remove_pack - remove packet handler
456 * @pt: packet type declaration
458 * Remove a protocol handler that was previously added to the kernel
459 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
460 * from the kernel lists and can be freed or reused once this function
463 * This call sleeps to guarantee that no CPU is looking at the packet
466 void dev_remove_pack(struct packet_type *pt)
468 __dev_remove_pack(pt);
472 EXPORT_SYMBOL(dev_remove_pack);
474 /******************************************************************************
476 Device Boot-time Settings Routines
478 *******************************************************************************/
480 /* Boot time configuration table */
481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
484 * netdev_boot_setup_add - add new setup entry
485 * @name: name of the device
486 * @map: configured settings for the device
488 * Adds new setup entry to the dev_boot_setup list. The function
489 * returns 0 on error and 1 on success. This is a generic routine to
492 static int netdev_boot_setup_add(char *name, struct ifmap *map)
494 struct netdev_boot_setup *s;
498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
499 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
500 memset(s[i].name, 0, sizeof(s[i].name));
501 strlcpy(s[i].name, name, IFNAMSIZ);
502 memcpy(&s[i].map, map, sizeof(s[i].map));
507 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
511 * netdev_boot_setup_check - check boot time settings
512 * @dev: the netdevice
514 * Check boot time settings for the device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found, 1 if they are.
519 int netdev_boot_setup_check(struct net_device *dev)
521 struct netdev_boot_setup *s = dev_boot_setup;
524 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
525 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
526 !strcmp(dev->name, s[i].name)) {
527 dev->irq = s[i].map.irq;
528 dev->base_addr = s[i].map.base_addr;
529 dev->mem_start = s[i].map.mem_start;
530 dev->mem_end = s[i].map.mem_end;
536 EXPORT_SYMBOL(netdev_boot_setup_check);
540 * netdev_boot_base - get address from boot time settings
541 * @prefix: prefix for network device
542 * @unit: id for network device
544 * Check boot time settings for the base address of device.
545 * The found settings are set for the device to be used
546 * later in the device probing.
547 * Returns 0 if no settings found.
549 unsigned long netdev_boot_base(const char *prefix, int unit)
551 const struct netdev_boot_setup *s = dev_boot_setup;
555 sprintf(name, "%s%d", prefix, unit);
558 * If device already registered then return base of 1
559 * to indicate not to probe for this interface
561 if (__dev_get_by_name(&init_net, name))
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
565 if (!strcmp(name, s[i].name))
566 return s[i].map.base_addr;
571 * Saves at boot time configured settings for any netdevice.
573 int __init netdev_boot_setup(char *str)
578 str = get_options(str, ARRAY_SIZE(ints), ints);
583 memset(&map, 0, sizeof(map));
587 map.base_addr = ints[2];
589 map.mem_start = ints[3];
591 map.mem_end = ints[4];
593 /* Add new entry to the list */
594 return netdev_boot_setup_add(str, &map);
597 __setup("netdev=", netdev_boot_setup);
599 /*******************************************************************************
601 Device Interface Subroutines
603 *******************************************************************************/
606 * __dev_get_by_name - find a device by its name
607 * @net: the applicable net namespace
608 * @name: name to find
610 * Find an interface by name. Must be called under RTNL semaphore
611 * or @dev_base_lock. If the name is found a pointer to the device
612 * is returned. If the name is not found then %NULL is returned. The
613 * reference counters are not incremented so the caller must be
614 * careful with locks.
617 struct net_device *__dev_get_by_name(struct net *net, const char *name)
619 struct hlist_node *p;
620 struct net_device *dev;
621 struct hlist_head *head = dev_name_hash(net, name);
623 hlist_for_each_entry(dev, p, head, name_hlist)
624 if (!strncmp(dev->name, name, IFNAMSIZ))
629 EXPORT_SYMBOL(__dev_get_by_name);
632 * dev_get_by_name_rcu - find a device by its name
633 * @net: the applicable net namespace
634 * @name: name to find
636 * Find an interface by name.
637 * If the name is found a pointer to the device is returned.
638 * If the name is not found then %NULL is returned.
639 * The reference counters are not incremented so the caller must be
640 * careful with locks. The caller must hold RCU lock.
643 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
645 struct hlist_node *p;
646 struct net_device *dev;
647 struct hlist_head *head = dev_name_hash(net, name);
649 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
650 if (!strncmp(dev->name, name, IFNAMSIZ))
655 EXPORT_SYMBOL(dev_get_by_name_rcu);
658 * dev_get_by_name - find a device by its name
659 * @net: the applicable net namespace
660 * @name: name to find
662 * Find an interface by name. This can be called from any
663 * context and does its own locking. The returned handle has
664 * the usage count incremented and the caller must use dev_put() to
665 * release it when it is no longer needed. %NULL is returned if no
666 * matching device is found.
669 struct net_device *dev_get_by_name(struct net *net, const char *name)
671 struct net_device *dev;
674 dev = dev_get_by_name_rcu(net, name);
680 EXPORT_SYMBOL(dev_get_by_name);
683 * __dev_get_by_index - find a device by its ifindex
684 * @net: the applicable net namespace
685 * @ifindex: index of device
687 * Search for an interface by index. Returns %NULL if the device
688 * is not found or a pointer to the device. The device has not
689 * had its reference counter increased so the caller must be careful
690 * about locking. The caller must hold either the RTNL semaphore
694 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
696 struct hlist_node *p;
697 struct net_device *dev;
698 struct hlist_head *head = dev_index_hash(net, ifindex);
700 hlist_for_each_entry(dev, p, head, index_hlist)
701 if (dev->ifindex == ifindex)
706 EXPORT_SYMBOL(__dev_get_by_index);
709 * dev_get_by_index_rcu - find a device by its ifindex
710 * @net: the applicable net namespace
711 * @ifindex: index of device
713 * Search for an interface by index. Returns %NULL if the device
714 * is not found or a pointer to the device. The device has not
715 * had its reference counter increased so the caller must be careful
716 * about locking. The caller must hold RCU lock.
719 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
721 struct hlist_node *p;
722 struct net_device *dev;
723 struct hlist_head *head = dev_index_hash(net, ifindex);
725 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
726 if (dev->ifindex == ifindex)
731 EXPORT_SYMBOL(dev_get_by_index_rcu);
735 * dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
739 * Search for an interface by index. Returns NULL if the device
740 * is not found or a pointer to the device. The device returned has
741 * had a reference added and the pointer is safe until the user calls
742 * dev_put to indicate they have finished with it.
745 struct net_device *dev_get_by_index(struct net *net, int ifindex)
747 struct net_device *dev;
750 dev = dev_get_by_index_rcu(net, ifindex);
756 EXPORT_SYMBOL(dev_get_by_index);
759 * dev_getbyhwaddr_rcu - find a device by its hardware address
760 * @net: the applicable net namespace
761 * @type: media type of device
762 * @ha: hardware address
764 * Search for an interface by MAC address. Returns NULL if the device
765 * is not found or a pointer to the device.
766 * The caller must hold RCU or RTNL.
767 * The returned device has not had its ref count increased
768 * and the caller must therefore be careful about locking
772 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
775 struct net_device *dev;
777 for_each_netdev_rcu(net, dev)
778 if (dev->type == type &&
779 !memcmp(dev->dev_addr, ha, dev->addr_len))
784 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
786 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 struct net_device *dev;
791 for_each_netdev(net, dev)
792 if (dev->type == type)
797 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
799 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
801 struct net_device *dev, *ret = NULL;
804 for_each_netdev_rcu(net, dev)
805 if (dev->type == type) {
813 EXPORT_SYMBOL(dev_getfirstbyhwtype);
816 * dev_get_by_flags_rcu - find any device with given flags
817 * @net: the applicable net namespace
818 * @if_flags: IFF_* values
819 * @mask: bitmask of bits in if_flags to check
821 * Search for any interface with the given flags. Returns NULL if a device
822 * is not found or a pointer to the device. Must be called inside
823 * rcu_read_lock(), and result refcount is unchanged.
826 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
829 struct net_device *dev, *ret;
832 for_each_netdev_rcu(net, dev) {
833 if (((dev->flags ^ if_flags) & mask) == 0) {
840 EXPORT_SYMBOL(dev_get_by_flags_rcu);
843 * dev_valid_name - check if name is okay for network device
846 * Network device names need to be valid file names to
847 * to allow sysfs to work. We also disallow any kind of
850 bool dev_valid_name(const char *name)
854 if (strlen(name) >= IFNAMSIZ)
856 if (!strcmp(name, ".") || !strcmp(name, ".."))
860 if (*name == '/' || isspace(*name))
866 EXPORT_SYMBOL(dev_valid_name);
869 * __dev_alloc_name - allocate a name for a device
870 * @net: network namespace to allocate the device name in
871 * @name: name format string
872 * @buf: scratch buffer and result name string
874 * Passed a format string - eg "lt%d" it will try and find a suitable
875 * id. It scans list of devices to build up a free map, then chooses
876 * the first empty slot. The caller must hold the dev_base or rtnl lock
877 * while allocating the name and adding the device in order to avoid
879 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
880 * Returns the number of the unit assigned or a negative errno code.
883 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
887 const int max_netdevices = 8*PAGE_SIZE;
888 unsigned long *inuse;
889 struct net_device *d;
891 p = strnchr(name, IFNAMSIZ-1, '%');
894 * Verify the string as this thing may have come from
895 * the user. There must be either one "%d" and no other "%"
898 if (p[1] != 'd' || strchr(p + 2, '%'))
901 /* Use one page as a bit array of possible slots */
902 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
906 for_each_netdev(net, d) {
907 if (!sscanf(d->name, name, &i))
909 if (i < 0 || i >= max_netdevices)
912 /* avoid cases where sscanf is not exact inverse of printf */
913 snprintf(buf, IFNAMSIZ, name, i);
914 if (!strncmp(buf, d->name, IFNAMSIZ))
918 i = find_first_zero_bit(inuse, max_netdevices);
919 free_page((unsigned long) inuse);
923 snprintf(buf, IFNAMSIZ, name, i);
924 if (!__dev_get_by_name(net, buf))
927 /* It is possible to run out of possible slots
928 * when the name is long and there isn't enough space left
929 * for the digits, or if all bits are used.
935 * dev_alloc_name - allocate a name for a device
937 * @name: name format string
939 * Passed a format string - eg "lt%d" it will try and find a suitable
940 * id. It scans list of devices to build up a free map, then chooses
941 * the first empty slot. The caller must hold the dev_base or rtnl lock
942 * while allocating the name and adding the device in order to avoid
944 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
945 * Returns the number of the unit assigned or a negative errno code.
948 int dev_alloc_name(struct net_device *dev, const char *name)
954 BUG_ON(!dev_net(dev));
956 ret = __dev_alloc_name(net, name, buf);
958 strlcpy(dev->name, buf, IFNAMSIZ);
961 EXPORT_SYMBOL(dev_alloc_name);
963 static int dev_get_valid_name(struct net_device *dev, const char *name)
967 BUG_ON(!dev_net(dev));
970 if (!dev_valid_name(name))
973 if (strchr(name, '%'))
974 return dev_alloc_name(dev, name);
975 else if (__dev_get_by_name(net, name))
977 else if (dev->name != name)
978 strlcpy(dev->name, name, IFNAMSIZ);
984 * dev_change_name - change name of a device
986 * @newname: name (or format string) must be at least IFNAMSIZ
988 * Change name of a device, can pass format strings "eth%d".
991 int dev_change_name(struct net_device *dev, const char *newname)
993 char oldname[IFNAMSIZ];
999 BUG_ON(!dev_net(dev));
1002 if (dev->flags & IFF_UP)
1005 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1008 memcpy(oldname, dev->name, IFNAMSIZ);
1010 err = dev_get_valid_name(dev, newname);
1015 ret = device_rename(&dev->dev, dev->name);
1017 memcpy(dev->name, oldname, IFNAMSIZ);
1021 write_lock_bh(&dev_base_lock);
1022 hlist_del_rcu(&dev->name_hlist);
1023 write_unlock_bh(&dev_base_lock);
1027 write_lock_bh(&dev_base_lock);
1028 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1029 write_unlock_bh(&dev_base_lock);
1031 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1032 ret = notifier_to_errno(ret);
1035 /* err >= 0 after dev_alloc_name() or stores the first errno */
1038 memcpy(dev->name, oldname, IFNAMSIZ);
1041 pr_err("%s: name change rollback failed: %d\n",
1050 * dev_set_alias - change ifalias of a device
1052 * @alias: name up to IFALIASZ
1053 * @len: limit of bytes to copy from info
1055 * Set ifalias for a device,
1057 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1061 if (len >= IFALIASZ)
1066 kfree(dev->ifalias);
1067 dev->ifalias = NULL;
1072 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1076 strlcpy(dev->ifalias, alias, len+1);
1082 * netdev_features_change - device changes features
1083 * @dev: device to cause notification
1085 * Called to indicate a device has changed features.
1087 void netdev_features_change(struct net_device *dev)
1089 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1091 EXPORT_SYMBOL(netdev_features_change);
1094 * netdev_state_change - device changes state
1095 * @dev: device to cause notification
1097 * Called to indicate a device has changed state. This function calls
1098 * the notifier chains for netdev_chain and sends a NEWLINK message
1099 * to the routing socket.
1101 void netdev_state_change(struct net_device *dev)
1103 if (dev->flags & IFF_UP) {
1104 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1105 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1108 EXPORT_SYMBOL(netdev_state_change);
1110 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1112 return call_netdevice_notifiers(event, dev);
1114 EXPORT_SYMBOL(netdev_bonding_change);
1117 * dev_load - load a network module
1118 * @net: the applicable net namespace
1119 * @name: name of interface
1121 * If a network interface is not present and the process has suitable
1122 * privileges this function loads the module. If module loading is not
1123 * available in this kernel then it becomes a nop.
1126 void dev_load(struct net *net, const char *name)
1128 struct net_device *dev;
1132 dev = dev_get_by_name_rcu(net, name);
1136 if (no_module && capable(CAP_NET_ADMIN))
1137 no_module = request_module("netdev-%s", name);
1138 if (no_module && capable(CAP_SYS_MODULE)) {
1139 if (!request_module("%s", name))
1140 pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1144 EXPORT_SYMBOL(dev_load);
1146 static int __dev_open(struct net_device *dev)
1148 const struct net_device_ops *ops = dev->netdev_ops;
1153 if (!netif_device_present(dev))
1156 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1157 ret = notifier_to_errno(ret);
1161 set_bit(__LINK_STATE_START, &dev->state);
1163 if (ops->ndo_validate_addr)
1164 ret = ops->ndo_validate_addr(dev);
1166 if (!ret && ops->ndo_open)
1167 ret = ops->ndo_open(dev);
1170 clear_bit(__LINK_STATE_START, &dev->state);
1172 dev->flags |= IFF_UP;
1173 net_dmaengine_get();
1174 dev_set_rx_mode(dev);
1182 * dev_open - prepare an interface for use.
1183 * @dev: device to open
1185 * Takes a device from down to up state. The device's private open
1186 * function is invoked and then the multicast lists are loaded. Finally
1187 * the device is moved into the up state and a %NETDEV_UP message is
1188 * sent to the netdev notifier chain.
1190 * Calling this function on an active interface is a nop. On a failure
1191 * a negative errno code is returned.
1193 int dev_open(struct net_device *dev)
1197 if (dev->flags & IFF_UP)
1200 ret = __dev_open(dev);
1204 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1205 call_netdevice_notifiers(NETDEV_UP, dev);
1209 EXPORT_SYMBOL(dev_open);
1211 static int __dev_close_many(struct list_head *head)
1213 struct net_device *dev;
1218 list_for_each_entry(dev, head, unreg_list) {
1219 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1221 clear_bit(__LINK_STATE_START, &dev->state);
1223 /* Synchronize to scheduled poll. We cannot touch poll list, it
1224 * can be even on different cpu. So just clear netif_running().
1226 * dev->stop() will invoke napi_disable() on all of it's
1227 * napi_struct instances on this device.
1229 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1232 dev_deactivate_many(head);
1234 list_for_each_entry(dev, head, unreg_list) {
1235 const struct net_device_ops *ops = dev->netdev_ops;
1238 * Call the device specific close. This cannot fail.
1239 * Only if device is UP
1241 * We allow it to be called even after a DETACH hot-plug
1247 dev->flags &= ~IFF_UP;
1248 net_dmaengine_put();
1254 static int __dev_close(struct net_device *dev)
1259 list_add(&dev->unreg_list, &single);
1260 retval = __dev_close_many(&single);
1265 static int dev_close_many(struct list_head *head)
1267 struct net_device *dev, *tmp;
1268 LIST_HEAD(tmp_list);
1270 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1271 if (!(dev->flags & IFF_UP))
1272 list_move(&dev->unreg_list, &tmp_list);
1274 __dev_close_many(head);
1276 list_for_each_entry(dev, head, unreg_list) {
1277 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1278 call_netdevice_notifiers(NETDEV_DOWN, dev);
1281 /* rollback_registered_many needs the complete original list */
1282 list_splice(&tmp_list, head);
1287 * dev_close - shutdown an interface.
1288 * @dev: device to shutdown
1290 * This function moves an active device into down state. A
1291 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1292 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1295 int dev_close(struct net_device *dev)
1297 if (dev->flags & IFF_UP) {
1300 list_add(&dev->unreg_list, &single);
1301 dev_close_many(&single);
1306 EXPORT_SYMBOL(dev_close);
1310 * dev_disable_lro - disable Large Receive Offload on a device
1313 * Disable Large Receive Offload (LRO) on a net device. Must be
1314 * called under RTNL. This is needed if received packets may be
1315 * forwarded to another interface.
1317 void dev_disable_lro(struct net_device *dev)
1320 * If we're trying to disable lro on a vlan device
1321 * use the underlying physical device instead
1323 if (is_vlan_dev(dev))
1324 dev = vlan_dev_real_dev(dev);
1326 dev->wanted_features &= ~NETIF_F_LRO;
1327 netdev_update_features(dev);
1329 if (unlikely(dev->features & NETIF_F_LRO))
1330 netdev_WARN(dev, "failed to disable LRO!\n");
1332 EXPORT_SYMBOL(dev_disable_lro);
1335 static int dev_boot_phase = 1;
1338 * register_netdevice_notifier - register a network notifier block
1341 * Register a notifier to be called when network device events occur.
1342 * The notifier passed is linked into the kernel structures and must
1343 * not be reused until it has been unregistered. A negative errno code
1344 * is returned on a failure.
1346 * When registered all registration and up events are replayed
1347 * to the new notifier to allow device to have a race free
1348 * view of the network device list.
1351 int register_netdevice_notifier(struct notifier_block *nb)
1353 struct net_device *dev;
1354 struct net_device *last;
1359 err = raw_notifier_chain_register(&netdev_chain, nb);
1365 for_each_netdev(net, dev) {
1366 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1367 err = notifier_to_errno(err);
1371 if (!(dev->flags & IFF_UP))
1374 nb->notifier_call(nb, NETDEV_UP, dev);
1385 for_each_netdev(net, dev) {
1389 if (dev->flags & IFF_UP) {
1390 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1391 nb->notifier_call(nb, NETDEV_DOWN, dev);
1393 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1394 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1399 raw_notifier_chain_unregister(&netdev_chain, nb);
1402 EXPORT_SYMBOL(register_netdevice_notifier);
1405 * unregister_netdevice_notifier - unregister a network notifier block
1408 * Unregister a notifier previously registered by
1409 * register_netdevice_notifier(). The notifier is unlinked into the
1410 * kernel structures and may then be reused. A negative errno code
1411 * is returned on a failure.
1413 * After unregistering unregister and down device events are synthesized
1414 * for all devices on the device list to the removed notifier to remove
1415 * the need for special case cleanup code.
1418 int unregister_netdevice_notifier(struct notifier_block *nb)
1420 struct net_device *dev;
1425 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1430 for_each_netdev(net, dev) {
1431 if (dev->flags & IFF_UP) {
1432 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1433 nb->notifier_call(nb, NETDEV_DOWN, dev);
1435 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1436 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1443 EXPORT_SYMBOL(unregister_netdevice_notifier);
1446 * call_netdevice_notifiers - call all network notifier blocks
1447 * @val: value passed unmodified to notifier function
1448 * @dev: net_device pointer passed unmodified to notifier function
1450 * Call all network notifier blocks. Parameters and return value
1451 * are as for raw_notifier_call_chain().
1454 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1457 return raw_notifier_call_chain(&netdev_chain, val, dev);
1459 EXPORT_SYMBOL(call_netdevice_notifiers);
1461 static struct static_key netstamp_needed __read_mostly;
1462 #ifdef HAVE_JUMP_LABEL
1463 /* We are not allowed to call static_key_slow_dec() from irq context
1464 * If net_disable_timestamp() is called from irq context, defer the
1465 * static_key_slow_dec() calls.
1467 static atomic_t netstamp_needed_deferred;
1470 void net_enable_timestamp(void)
1472 #ifdef HAVE_JUMP_LABEL
1473 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1477 static_key_slow_dec(&netstamp_needed);
1481 WARN_ON(in_interrupt());
1482 static_key_slow_inc(&netstamp_needed);
1484 EXPORT_SYMBOL(net_enable_timestamp);
1486 void net_disable_timestamp(void)
1488 #ifdef HAVE_JUMP_LABEL
1489 if (in_interrupt()) {
1490 atomic_inc(&netstamp_needed_deferred);
1494 static_key_slow_dec(&netstamp_needed);
1496 EXPORT_SYMBOL(net_disable_timestamp);
1498 static inline void net_timestamp_set(struct sk_buff *skb)
1500 skb->tstamp.tv64 = 0;
1501 if (static_key_false(&netstamp_needed))
1502 __net_timestamp(skb);
1505 #define net_timestamp_check(COND, SKB) \
1506 if (static_key_false(&netstamp_needed)) { \
1507 if ((COND) && !(SKB)->tstamp.tv64) \
1508 __net_timestamp(SKB); \
1511 static int net_hwtstamp_validate(struct ifreq *ifr)
1513 struct hwtstamp_config cfg;
1514 enum hwtstamp_tx_types tx_type;
1515 enum hwtstamp_rx_filters rx_filter;
1516 int tx_type_valid = 0;
1517 int rx_filter_valid = 0;
1519 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1522 if (cfg.flags) /* reserved for future extensions */
1525 tx_type = cfg.tx_type;
1526 rx_filter = cfg.rx_filter;
1529 case HWTSTAMP_TX_OFF:
1530 case HWTSTAMP_TX_ON:
1531 case HWTSTAMP_TX_ONESTEP_SYNC:
1536 switch (rx_filter) {
1537 case HWTSTAMP_FILTER_NONE:
1538 case HWTSTAMP_FILTER_ALL:
1539 case HWTSTAMP_FILTER_SOME:
1540 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1541 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1542 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1543 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1544 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1545 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1546 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1547 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1548 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1549 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1550 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1551 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1552 rx_filter_valid = 1;
1556 if (!tx_type_valid || !rx_filter_valid)
1562 static inline bool is_skb_forwardable(struct net_device *dev,
1563 struct sk_buff *skb)
1567 if (!(dev->flags & IFF_UP))
1570 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1571 if (skb->len <= len)
1574 /* if TSO is enabled, we don't care about the length as the packet
1575 * could be forwarded without being segmented before
1577 if (skb_is_gso(skb))
1584 * dev_forward_skb - loopback an skb to another netif
1586 * @dev: destination network device
1587 * @skb: buffer to forward
1590 * NET_RX_SUCCESS (no congestion)
1591 * NET_RX_DROP (packet was dropped, but freed)
1593 * dev_forward_skb can be used for injecting an skb from the
1594 * start_xmit function of one device into the receive queue
1595 * of another device.
1597 * The receiving device may be in another namespace, so
1598 * we have to clear all information in the skb that could
1599 * impact namespace isolation.
1601 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1603 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1604 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1605 atomic_long_inc(&dev->rx_dropped);
1614 if (unlikely(!is_skb_forwardable(dev, skb))) {
1615 atomic_long_inc(&dev->rx_dropped);
1620 skb_set_dev(skb, dev);
1621 skb->tstamp.tv64 = 0;
1622 skb->pkt_type = PACKET_HOST;
1623 skb->protocol = eth_type_trans(skb, dev);
1624 return netif_rx(skb);
1626 EXPORT_SYMBOL_GPL(dev_forward_skb);
1628 static inline int deliver_skb(struct sk_buff *skb,
1629 struct packet_type *pt_prev,
1630 struct net_device *orig_dev)
1632 atomic_inc(&skb->users);
1633 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1637 * Support routine. Sends outgoing frames to any network
1638 * taps currently in use.
1641 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1643 struct packet_type *ptype;
1644 struct sk_buff *skb2 = NULL;
1645 struct packet_type *pt_prev = NULL;
1648 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1649 /* Never send packets back to the socket
1650 * they originated from - MvS (miquels@drinkel.ow.org)
1652 if ((ptype->dev == dev || !ptype->dev) &&
1653 (ptype->af_packet_priv == NULL ||
1654 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1656 deliver_skb(skb2, pt_prev, skb->dev);
1661 skb2 = skb_clone(skb, GFP_ATOMIC);
1665 net_timestamp_set(skb2);
1667 /* skb->nh should be correctly
1668 set by sender, so that the second statement is
1669 just protection against buggy protocols.
1671 skb_reset_mac_header(skb2);
1673 if (skb_network_header(skb2) < skb2->data ||
1674 skb2->network_header > skb2->tail) {
1675 if (net_ratelimit())
1676 pr_crit("protocol %04x is buggy, dev %s\n",
1677 ntohs(skb2->protocol),
1679 skb_reset_network_header(skb2);
1682 skb2->transport_header = skb2->network_header;
1683 skb2->pkt_type = PACKET_OUTGOING;
1688 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1692 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1693 * @dev: Network device
1694 * @txq: number of queues available
1696 * If real_num_tx_queues is changed the tc mappings may no longer be
1697 * valid. To resolve this verify the tc mapping remains valid and if
1698 * not NULL the mapping. With no priorities mapping to this
1699 * offset/count pair it will no longer be used. In the worst case TC0
1700 * is invalid nothing can be done so disable priority mappings. If is
1701 * expected that drivers will fix this mapping if they can before
1702 * calling netif_set_real_num_tx_queues.
1704 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1707 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1709 /* If TC0 is invalidated disable TC mapping */
1710 if (tc->offset + tc->count > txq) {
1711 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1716 /* Invalidated prio to tc mappings set to TC0 */
1717 for (i = 1; i < TC_BITMASK + 1; i++) {
1718 int q = netdev_get_prio_tc_map(dev, i);
1720 tc = &dev->tc_to_txq[q];
1721 if (tc->offset + tc->count > txq) {
1722 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1724 netdev_set_prio_tc_map(dev, i, 0);
1730 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1731 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1733 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1737 if (txq < 1 || txq > dev->num_tx_queues)
1740 if (dev->reg_state == NETREG_REGISTERED ||
1741 dev->reg_state == NETREG_UNREGISTERING) {
1744 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1750 netif_setup_tc(dev, txq);
1752 if (txq < dev->real_num_tx_queues)
1753 qdisc_reset_all_tx_gt(dev, txq);
1756 dev->real_num_tx_queues = txq;
1759 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1763 * netif_set_real_num_rx_queues - set actual number of RX queues used
1764 * @dev: Network device
1765 * @rxq: Actual number of RX queues
1767 * This must be called either with the rtnl_lock held or before
1768 * registration of the net device. Returns 0 on success, or a
1769 * negative error code. If called before registration, it always
1772 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1776 if (rxq < 1 || rxq > dev->num_rx_queues)
1779 if (dev->reg_state == NETREG_REGISTERED) {
1782 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1788 dev->real_num_rx_queues = rxq;
1791 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1794 static inline void __netif_reschedule(struct Qdisc *q)
1796 struct softnet_data *sd;
1797 unsigned long flags;
1799 local_irq_save(flags);
1800 sd = &__get_cpu_var(softnet_data);
1801 q->next_sched = NULL;
1802 *sd->output_queue_tailp = q;
1803 sd->output_queue_tailp = &q->next_sched;
1804 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1805 local_irq_restore(flags);
1808 void __netif_schedule(struct Qdisc *q)
1810 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1811 __netif_reschedule(q);
1813 EXPORT_SYMBOL(__netif_schedule);
1815 void dev_kfree_skb_irq(struct sk_buff *skb)
1817 if (atomic_dec_and_test(&skb->users)) {
1818 struct softnet_data *sd;
1819 unsigned long flags;
1821 local_irq_save(flags);
1822 sd = &__get_cpu_var(softnet_data);
1823 skb->next = sd->completion_queue;
1824 sd->completion_queue = skb;
1825 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1826 local_irq_restore(flags);
1829 EXPORT_SYMBOL(dev_kfree_skb_irq);
1831 void dev_kfree_skb_any(struct sk_buff *skb)
1833 if (in_irq() || irqs_disabled())
1834 dev_kfree_skb_irq(skb);
1838 EXPORT_SYMBOL(dev_kfree_skb_any);
1842 * netif_device_detach - mark device as removed
1843 * @dev: network device
1845 * Mark device as removed from system and therefore no longer available.
1847 void netif_device_detach(struct net_device *dev)
1849 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1850 netif_running(dev)) {
1851 netif_tx_stop_all_queues(dev);
1854 EXPORT_SYMBOL(netif_device_detach);
1857 * netif_device_attach - mark device as attached
1858 * @dev: network device
1860 * Mark device as attached from system and restart if needed.
1862 void netif_device_attach(struct net_device *dev)
1864 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1865 netif_running(dev)) {
1866 netif_tx_wake_all_queues(dev);
1867 __netdev_watchdog_up(dev);
1870 EXPORT_SYMBOL(netif_device_attach);
1873 * skb_dev_set -- assign a new device to a buffer
1874 * @skb: buffer for the new device
1875 * @dev: network device
1877 * If an skb is owned by a device already, we have to reset
1878 * all data private to the namespace a device belongs to
1879 * before assigning it a new device.
1881 #ifdef CONFIG_NET_NS
1882 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1885 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1888 skb_init_secmark(skb);
1892 skb->ipvs_property = 0;
1893 #ifdef CONFIG_NET_SCHED
1899 EXPORT_SYMBOL(skb_set_dev);
1900 #endif /* CONFIG_NET_NS */
1902 static void skb_warn_bad_offload(const struct sk_buff *skb)
1904 static const netdev_features_t null_features = 0;
1905 struct net_device *dev = skb->dev;
1906 const char *driver = "";
1908 if (dev && dev->dev.parent)
1909 driver = dev_driver_string(dev->dev.parent);
1911 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1912 "gso_type=%d ip_summed=%d\n",
1913 driver, dev ? &dev->features : &null_features,
1914 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1915 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1916 skb_shinfo(skb)->gso_type, skb->ip_summed);
1920 * Invalidate hardware checksum when packet is to be mangled, and
1921 * complete checksum manually on outgoing path.
1923 int skb_checksum_help(struct sk_buff *skb)
1926 int ret = 0, offset;
1928 if (skb->ip_summed == CHECKSUM_COMPLETE)
1929 goto out_set_summed;
1931 if (unlikely(skb_shinfo(skb)->gso_size)) {
1932 skb_warn_bad_offload(skb);
1936 offset = skb_checksum_start_offset(skb);
1937 BUG_ON(offset >= skb_headlen(skb));
1938 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1940 offset += skb->csum_offset;
1941 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1943 if (skb_cloned(skb) &&
1944 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1945 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1950 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1952 skb->ip_summed = CHECKSUM_NONE;
1956 EXPORT_SYMBOL(skb_checksum_help);
1959 * skb_gso_segment - Perform segmentation on skb.
1960 * @skb: buffer to segment
1961 * @features: features for the output path (see dev->features)
1963 * This function segments the given skb and returns a list of segments.
1965 * It may return NULL if the skb requires no segmentation. This is
1966 * only possible when GSO is used for verifying header integrity.
1968 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1969 netdev_features_t features)
1971 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1972 struct packet_type *ptype;
1973 __be16 type = skb->protocol;
1974 int vlan_depth = ETH_HLEN;
1977 while (type == htons(ETH_P_8021Q)) {
1978 struct vlan_hdr *vh;
1980 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1981 return ERR_PTR(-EINVAL);
1983 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1984 type = vh->h_vlan_encapsulated_proto;
1985 vlan_depth += VLAN_HLEN;
1988 skb_reset_mac_header(skb);
1989 skb->mac_len = skb->network_header - skb->mac_header;
1990 __skb_pull(skb, skb->mac_len);
1992 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1993 skb_warn_bad_offload(skb);
1995 if (skb_header_cloned(skb) &&
1996 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1997 return ERR_PTR(err);
2001 list_for_each_entry_rcu(ptype,
2002 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2003 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2004 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2005 err = ptype->gso_send_check(skb);
2006 segs = ERR_PTR(err);
2007 if (err || skb_gso_ok(skb, features))
2009 __skb_push(skb, (skb->data -
2010 skb_network_header(skb)));
2012 segs = ptype->gso_segment(skb, features);
2018 __skb_push(skb, skb->data - skb_mac_header(skb));
2022 EXPORT_SYMBOL(skb_gso_segment);
2024 /* Take action when hardware reception checksum errors are detected. */
2026 void netdev_rx_csum_fault(struct net_device *dev)
2028 if (net_ratelimit()) {
2029 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2033 EXPORT_SYMBOL(netdev_rx_csum_fault);
2036 /* Actually, we should eliminate this check as soon as we know, that:
2037 * 1. IOMMU is present and allows to map all the memory.
2038 * 2. No high memory really exists on this machine.
2041 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2043 #ifdef CONFIG_HIGHMEM
2045 if (!(dev->features & NETIF_F_HIGHDMA)) {
2046 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2047 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2048 if (PageHighMem(skb_frag_page(frag)))
2053 if (PCI_DMA_BUS_IS_PHYS) {
2054 struct device *pdev = dev->dev.parent;
2058 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2059 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2060 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2061 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2070 void (*destructor)(struct sk_buff *skb);
2073 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2075 static void dev_gso_skb_destructor(struct sk_buff *skb)
2077 struct dev_gso_cb *cb;
2080 struct sk_buff *nskb = skb->next;
2082 skb->next = nskb->next;
2085 } while (skb->next);
2087 cb = DEV_GSO_CB(skb);
2089 cb->destructor(skb);
2093 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2094 * @skb: buffer to segment
2095 * @features: device features as applicable to this skb
2097 * This function segments the given skb and stores the list of segments
2100 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2102 struct sk_buff *segs;
2104 segs = skb_gso_segment(skb, features);
2106 /* Verifying header integrity only. */
2111 return PTR_ERR(segs);
2114 DEV_GSO_CB(skb)->destructor = skb->destructor;
2115 skb->destructor = dev_gso_skb_destructor;
2121 * Try to orphan skb early, right before transmission by the device.
2122 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2123 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2125 static inline void skb_orphan_try(struct sk_buff *skb)
2127 struct sock *sk = skb->sk;
2129 if (sk && !skb_shinfo(skb)->tx_flags) {
2130 /* skb_tx_hash() wont be able to get sk.
2131 * We copy sk_hash into skb->rxhash
2134 skb->rxhash = sk->sk_hash;
2139 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2141 return ((features & NETIF_F_GEN_CSUM) ||
2142 ((features & NETIF_F_V4_CSUM) &&
2143 protocol == htons(ETH_P_IP)) ||
2144 ((features & NETIF_F_V6_CSUM) &&
2145 protocol == htons(ETH_P_IPV6)) ||
2146 ((features & NETIF_F_FCOE_CRC) &&
2147 protocol == htons(ETH_P_FCOE)));
2150 static netdev_features_t harmonize_features(struct sk_buff *skb,
2151 __be16 protocol, netdev_features_t features)
2153 if (!can_checksum_protocol(features, protocol)) {
2154 features &= ~NETIF_F_ALL_CSUM;
2155 features &= ~NETIF_F_SG;
2156 } else if (illegal_highdma(skb->dev, skb)) {
2157 features &= ~NETIF_F_SG;
2163 netdev_features_t netif_skb_features(struct sk_buff *skb)
2165 __be16 protocol = skb->protocol;
2166 netdev_features_t features = skb->dev->features;
2168 if (protocol == htons(ETH_P_8021Q)) {
2169 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2170 protocol = veh->h_vlan_encapsulated_proto;
2171 } else if (!vlan_tx_tag_present(skb)) {
2172 return harmonize_features(skb, protocol, features);
2175 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2177 if (protocol != htons(ETH_P_8021Q)) {
2178 return harmonize_features(skb, protocol, features);
2180 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2181 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2182 return harmonize_features(skb, protocol, features);
2185 EXPORT_SYMBOL(netif_skb_features);
2188 * Returns true if either:
2189 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2190 * 2. skb is fragmented and the device does not support SG, or if
2191 * at least one of fragments is in highmem and device does not
2192 * support DMA from it.
2194 static inline int skb_needs_linearize(struct sk_buff *skb,
2197 return skb_is_nonlinear(skb) &&
2198 ((skb_has_frag_list(skb) &&
2199 !(features & NETIF_F_FRAGLIST)) ||
2200 (skb_shinfo(skb)->nr_frags &&
2201 !(features & NETIF_F_SG)));
2204 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2205 struct netdev_queue *txq)
2207 const struct net_device_ops *ops = dev->netdev_ops;
2208 int rc = NETDEV_TX_OK;
2209 unsigned int skb_len;
2211 if (likely(!skb->next)) {
2212 netdev_features_t features;
2215 * If device doesn't need skb->dst, release it right now while
2216 * its hot in this cpu cache
2218 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2221 if (!list_empty(&ptype_all))
2222 dev_queue_xmit_nit(skb, dev);
2224 skb_orphan_try(skb);
2226 features = netif_skb_features(skb);
2228 if (vlan_tx_tag_present(skb) &&
2229 !(features & NETIF_F_HW_VLAN_TX)) {
2230 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2237 if (netif_needs_gso(skb, features)) {
2238 if (unlikely(dev_gso_segment(skb, features)))
2243 if (skb_needs_linearize(skb, features) &&
2244 __skb_linearize(skb))
2247 /* If packet is not checksummed and device does not
2248 * support checksumming for this protocol, complete
2249 * checksumming here.
2251 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2252 skb_set_transport_header(skb,
2253 skb_checksum_start_offset(skb));
2254 if (!(features & NETIF_F_ALL_CSUM) &&
2255 skb_checksum_help(skb))
2261 rc = ops->ndo_start_xmit(skb, dev);
2262 trace_net_dev_xmit(skb, rc, dev, skb_len);
2263 if (rc == NETDEV_TX_OK)
2264 txq_trans_update(txq);
2270 struct sk_buff *nskb = skb->next;
2272 skb->next = nskb->next;
2276 * If device doesn't need nskb->dst, release it right now while
2277 * its hot in this cpu cache
2279 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2282 skb_len = nskb->len;
2283 rc = ops->ndo_start_xmit(nskb, dev);
2284 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2285 if (unlikely(rc != NETDEV_TX_OK)) {
2286 if (rc & ~NETDEV_TX_MASK)
2287 goto out_kfree_gso_skb;
2288 nskb->next = skb->next;
2292 txq_trans_update(txq);
2293 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2294 return NETDEV_TX_BUSY;
2295 } while (skb->next);
2298 if (likely(skb->next == NULL))
2299 skb->destructor = DEV_GSO_CB(skb)->destructor;
2306 static u32 hashrnd __read_mostly;
2309 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2310 * to be used as a distribution range.
2312 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2313 unsigned int num_tx_queues)
2317 u16 qcount = num_tx_queues;
2319 if (skb_rx_queue_recorded(skb)) {
2320 hash = skb_get_rx_queue(skb);
2321 while (unlikely(hash >= num_tx_queues))
2322 hash -= num_tx_queues;
2327 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2328 qoffset = dev->tc_to_txq[tc].offset;
2329 qcount = dev->tc_to_txq[tc].count;
2332 if (skb->sk && skb->sk->sk_hash)
2333 hash = skb->sk->sk_hash;
2335 hash = (__force u16) skb->protocol ^ skb->rxhash;
2336 hash = jhash_1word(hash, hashrnd);
2338 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2340 EXPORT_SYMBOL(__skb_tx_hash);
2342 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2344 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2345 if (net_ratelimit()) {
2346 pr_warn("%s selects TX queue %d, but real number of TX queues is %d\n",
2347 dev->name, queue_index,
2348 dev->real_num_tx_queues);
2355 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2358 struct xps_dev_maps *dev_maps;
2359 struct xps_map *map;
2360 int queue_index = -1;
2363 dev_maps = rcu_dereference(dev->xps_maps);
2365 map = rcu_dereference(
2366 dev_maps->cpu_map[raw_smp_processor_id()]);
2369 queue_index = map->queues[0];
2372 if (skb->sk && skb->sk->sk_hash)
2373 hash = skb->sk->sk_hash;
2375 hash = (__force u16) skb->protocol ^
2377 hash = jhash_1word(hash, hashrnd);
2378 queue_index = map->queues[
2379 ((u64)hash * map->len) >> 32];
2381 if (unlikely(queue_index >= dev->real_num_tx_queues))
2393 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2394 struct sk_buff *skb)
2397 const struct net_device_ops *ops = dev->netdev_ops;
2399 if (dev->real_num_tx_queues == 1)
2401 else if (ops->ndo_select_queue) {
2402 queue_index = ops->ndo_select_queue(dev, skb);
2403 queue_index = dev_cap_txqueue(dev, queue_index);
2405 struct sock *sk = skb->sk;
2406 queue_index = sk_tx_queue_get(sk);
2408 if (queue_index < 0 || skb->ooo_okay ||
2409 queue_index >= dev->real_num_tx_queues) {
2410 int old_index = queue_index;
2412 queue_index = get_xps_queue(dev, skb);
2413 if (queue_index < 0)
2414 queue_index = skb_tx_hash(dev, skb);
2416 if (queue_index != old_index && sk) {
2417 struct dst_entry *dst =
2418 rcu_dereference_check(sk->sk_dst_cache, 1);
2420 if (dst && skb_dst(skb) == dst)
2421 sk_tx_queue_set(sk, queue_index);
2426 skb_set_queue_mapping(skb, queue_index);
2427 return netdev_get_tx_queue(dev, queue_index);
2430 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2431 struct net_device *dev,
2432 struct netdev_queue *txq)
2434 spinlock_t *root_lock = qdisc_lock(q);
2438 qdisc_skb_cb(skb)->pkt_len = skb->len;
2439 qdisc_calculate_pkt_len(skb, q);
2441 * Heuristic to force contended enqueues to serialize on a
2442 * separate lock before trying to get qdisc main lock.
2443 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2444 * and dequeue packets faster.
2446 contended = qdisc_is_running(q);
2447 if (unlikely(contended))
2448 spin_lock(&q->busylock);
2450 spin_lock(root_lock);
2451 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2454 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2455 qdisc_run_begin(q)) {
2457 * This is a work-conserving queue; there are no old skbs
2458 * waiting to be sent out; and the qdisc is not running -
2459 * xmit the skb directly.
2461 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2464 qdisc_bstats_update(q, skb);
2466 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2467 if (unlikely(contended)) {
2468 spin_unlock(&q->busylock);
2475 rc = NET_XMIT_SUCCESS;
2478 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2479 if (qdisc_run_begin(q)) {
2480 if (unlikely(contended)) {
2481 spin_unlock(&q->busylock);
2487 spin_unlock(root_lock);
2488 if (unlikely(contended))
2489 spin_unlock(&q->busylock);
2493 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2494 static void skb_update_prio(struct sk_buff *skb)
2496 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2498 if ((!skb->priority) && (skb->sk) && map)
2499 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2502 #define skb_update_prio(skb)
2505 static DEFINE_PER_CPU(int, xmit_recursion);
2506 #define RECURSION_LIMIT 10
2509 * dev_queue_xmit - transmit a buffer
2510 * @skb: buffer to transmit
2512 * Queue a buffer for transmission to a network device. The caller must
2513 * have set the device and priority and built the buffer before calling
2514 * this function. The function can be called from an interrupt.
2516 * A negative errno code is returned on a failure. A success does not
2517 * guarantee the frame will be transmitted as it may be dropped due
2518 * to congestion or traffic shaping.
2520 * -----------------------------------------------------------------------------------
2521 * I notice this method can also return errors from the queue disciplines,
2522 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2525 * Regardless of the return value, the skb is consumed, so it is currently
2526 * difficult to retry a send to this method. (You can bump the ref count
2527 * before sending to hold a reference for retry if you are careful.)
2529 * When calling this method, interrupts MUST be enabled. This is because
2530 * the BH enable code must have IRQs enabled so that it will not deadlock.
2533 int dev_queue_xmit(struct sk_buff *skb)
2535 struct net_device *dev = skb->dev;
2536 struct netdev_queue *txq;
2540 /* Disable soft irqs for various locks below. Also
2541 * stops preemption for RCU.
2545 skb_update_prio(skb);
2547 txq = dev_pick_tx(dev, skb);
2548 q = rcu_dereference_bh(txq->qdisc);
2550 #ifdef CONFIG_NET_CLS_ACT
2551 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2553 trace_net_dev_queue(skb);
2555 rc = __dev_xmit_skb(skb, q, dev, txq);
2559 /* The device has no queue. Common case for software devices:
2560 loopback, all the sorts of tunnels...
2562 Really, it is unlikely that netif_tx_lock protection is necessary
2563 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2565 However, it is possible, that they rely on protection
2568 Check this and shot the lock. It is not prone from deadlocks.
2569 Either shot noqueue qdisc, it is even simpler 8)
2571 if (dev->flags & IFF_UP) {
2572 int cpu = smp_processor_id(); /* ok because BHs are off */
2574 if (txq->xmit_lock_owner != cpu) {
2576 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2577 goto recursion_alert;
2579 HARD_TX_LOCK(dev, txq, cpu);
2581 if (!netif_xmit_stopped(txq)) {
2582 __this_cpu_inc(xmit_recursion);
2583 rc = dev_hard_start_xmit(skb, dev, txq);
2584 __this_cpu_dec(xmit_recursion);
2585 if (dev_xmit_complete(rc)) {
2586 HARD_TX_UNLOCK(dev, txq);
2590 HARD_TX_UNLOCK(dev, txq);
2591 if (net_ratelimit())
2592 pr_crit("Virtual device %s asks to queue packet!\n",
2595 /* Recursion is detected! It is possible,
2599 if (net_ratelimit())
2600 pr_crit("Dead loop on virtual device %s, fix it urgently!\n",
2606 rcu_read_unlock_bh();
2611 rcu_read_unlock_bh();
2614 EXPORT_SYMBOL(dev_queue_xmit);
2617 /*=======================================================================
2619 =======================================================================*/
2621 int netdev_max_backlog __read_mostly = 1000;
2622 int netdev_tstamp_prequeue __read_mostly = 1;
2623 int netdev_budget __read_mostly = 300;
2624 int weight_p __read_mostly = 64; /* old backlog weight */
2626 /* Called with irq disabled */
2627 static inline void ____napi_schedule(struct softnet_data *sd,
2628 struct napi_struct *napi)
2630 list_add_tail(&napi->poll_list, &sd->poll_list);
2631 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2635 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2636 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2637 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2638 * if hash is a canonical 4-tuple hash over transport ports.
2640 void __skb_get_rxhash(struct sk_buff *skb)
2642 struct flow_keys keys;
2645 if (!skb_flow_dissect(skb, &keys))
2649 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2650 swap(keys.port16[0], keys.port16[1]);
2654 /* get a consistent hash (same value on both flow directions) */
2655 if ((__force u32)keys.dst < (__force u32)keys.src)
2656 swap(keys.dst, keys.src);
2658 hash = jhash_3words((__force u32)keys.dst,
2659 (__force u32)keys.src,
2660 (__force u32)keys.ports, hashrnd);
2666 EXPORT_SYMBOL(__skb_get_rxhash);
2670 /* One global table that all flow-based protocols share. */
2671 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2672 EXPORT_SYMBOL(rps_sock_flow_table);
2674 struct static_key rps_needed __read_mostly;
2676 static struct rps_dev_flow *
2677 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2678 struct rps_dev_flow *rflow, u16 next_cpu)
2680 if (next_cpu != RPS_NO_CPU) {
2681 #ifdef CONFIG_RFS_ACCEL
2682 struct netdev_rx_queue *rxqueue;
2683 struct rps_dev_flow_table *flow_table;
2684 struct rps_dev_flow *old_rflow;
2689 /* Should we steer this flow to a different hardware queue? */
2690 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2691 !(dev->features & NETIF_F_NTUPLE))
2693 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2694 if (rxq_index == skb_get_rx_queue(skb))
2697 rxqueue = dev->_rx + rxq_index;
2698 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2701 flow_id = skb->rxhash & flow_table->mask;
2702 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2703 rxq_index, flow_id);
2707 rflow = &flow_table->flows[flow_id];
2709 if (old_rflow->filter == rflow->filter)
2710 old_rflow->filter = RPS_NO_FILTER;
2714 per_cpu(softnet_data, next_cpu).input_queue_head;
2717 rflow->cpu = next_cpu;
2722 * get_rps_cpu is called from netif_receive_skb and returns the target
2723 * CPU from the RPS map of the receiving queue for a given skb.
2724 * rcu_read_lock must be held on entry.
2726 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2727 struct rps_dev_flow **rflowp)
2729 struct netdev_rx_queue *rxqueue;
2730 struct rps_map *map;
2731 struct rps_dev_flow_table *flow_table;
2732 struct rps_sock_flow_table *sock_flow_table;
2736 if (skb_rx_queue_recorded(skb)) {
2737 u16 index = skb_get_rx_queue(skb);
2738 if (unlikely(index >= dev->real_num_rx_queues)) {
2739 WARN_ONCE(dev->real_num_rx_queues > 1,
2740 "%s received packet on queue %u, but number "
2741 "of RX queues is %u\n",
2742 dev->name, index, dev->real_num_rx_queues);
2745 rxqueue = dev->_rx + index;
2749 map = rcu_dereference(rxqueue->rps_map);
2751 if (map->len == 1 &&
2752 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2753 tcpu = map->cpus[0];
2754 if (cpu_online(tcpu))
2758 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2762 skb_reset_network_header(skb);
2763 if (!skb_get_rxhash(skb))
2766 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2767 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2768 if (flow_table && sock_flow_table) {
2770 struct rps_dev_flow *rflow;
2772 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2775 next_cpu = sock_flow_table->ents[skb->rxhash &
2776 sock_flow_table->mask];
2779 * If the desired CPU (where last recvmsg was done) is
2780 * different from current CPU (one in the rx-queue flow
2781 * table entry), switch if one of the following holds:
2782 * - Current CPU is unset (equal to RPS_NO_CPU).
2783 * - Current CPU is offline.
2784 * - The current CPU's queue tail has advanced beyond the
2785 * last packet that was enqueued using this table entry.
2786 * This guarantees that all previous packets for the flow
2787 * have been dequeued, thus preserving in order delivery.
2789 if (unlikely(tcpu != next_cpu) &&
2790 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2791 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2792 rflow->last_qtail)) >= 0))
2793 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2795 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2803 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2805 if (cpu_online(tcpu)) {
2815 #ifdef CONFIG_RFS_ACCEL
2818 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2819 * @dev: Device on which the filter was set
2820 * @rxq_index: RX queue index
2821 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2822 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2824 * Drivers that implement ndo_rx_flow_steer() should periodically call
2825 * this function for each installed filter and remove the filters for
2826 * which it returns %true.
2828 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2829 u32 flow_id, u16 filter_id)
2831 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2832 struct rps_dev_flow_table *flow_table;
2833 struct rps_dev_flow *rflow;
2838 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2839 if (flow_table && flow_id <= flow_table->mask) {
2840 rflow = &flow_table->flows[flow_id];
2841 cpu = ACCESS_ONCE(rflow->cpu);
2842 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2843 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2844 rflow->last_qtail) <
2845 (int)(10 * flow_table->mask)))
2851 EXPORT_SYMBOL(rps_may_expire_flow);
2853 #endif /* CONFIG_RFS_ACCEL */
2855 /* Called from hardirq (IPI) context */
2856 static void rps_trigger_softirq(void *data)
2858 struct softnet_data *sd = data;
2860 ____napi_schedule(sd, &sd->backlog);
2864 #endif /* CONFIG_RPS */
2867 * Check if this softnet_data structure is another cpu one
2868 * If yes, queue it to our IPI list and return 1
2871 static int rps_ipi_queued(struct softnet_data *sd)
2874 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2877 sd->rps_ipi_next = mysd->rps_ipi_list;
2878 mysd->rps_ipi_list = sd;
2880 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2883 #endif /* CONFIG_RPS */
2888 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2889 * queue (may be a remote CPU queue).
2891 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2892 unsigned int *qtail)
2894 struct softnet_data *sd;
2895 unsigned long flags;
2897 sd = &per_cpu(softnet_data, cpu);
2899 local_irq_save(flags);
2902 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2903 if (skb_queue_len(&sd->input_pkt_queue)) {
2905 __skb_queue_tail(&sd->input_pkt_queue, skb);
2906 input_queue_tail_incr_save(sd, qtail);
2908 local_irq_restore(flags);
2909 return NET_RX_SUCCESS;
2912 /* Schedule NAPI for backlog device
2913 * We can use non atomic operation since we own the queue lock
2915 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2916 if (!rps_ipi_queued(sd))
2917 ____napi_schedule(sd, &sd->backlog);
2925 local_irq_restore(flags);
2927 atomic_long_inc(&skb->dev->rx_dropped);
2933 * netif_rx - post buffer to the network code
2934 * @skb: buffer to post
2936 * This function receives a packet from a device driver and queues it for
2937 * the upper (protocol) levels to process. It always succeeds. The buffer
2938 * may be dropped during processing for congestion control or by the
2942 * NET_RX_SUCCESS (no congestion)
2943 * NET_RX_DROP (packet was dropped)
2947 int netif_rx(struct sk_buff *skb)
2951 /* if netpoll wants it, pretend we never saw it */
2952 if (netpoll_rx(skb))
2955 net_timestamp_check(netdev_tstamp_prequeue, skb);
2957 trace_netif_rx(skb);
2959 if (static_key_false(&rps_needed)) {
2960 struct rps_dev_flow voidflow, *rflow = &voidflow;
2966 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2968 cpu = smp_processor_id();
2970 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2978 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2983 EXPORT_SYMBOL(netif_rx);
2985 int netif_rx_ni(struct sk_buff *skb)
2990 err = netif_rx(skb);
2991 if (local_softirq_pending())
2997 EXPORT_SYMBOL(netif_rx_ni);
2999 static void net_tx_action(struct softirq_action *h)
3001 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3003 if (sd->completion_queue) {
3004 struct sk_buff *clist;
3006 local_irq_disable();
3007 clist = sd->completion_queue;
3008 sd->completion_queue = NULL;
3012 struct sk_buff *skb = clist;
3013 clist = clist->next;
3015 WARN_ON(atomic_read(&skb->users));
3016 trace_kfree_skb(skb, net_tx_action);
3021 if (sd->output_queue) {
3024 local_irq_disable();
3025 head = sd->output_queue;
3026 sd->output_queue = NULL;
3027 sd->output_queue_tailp = &sd->output_queue;
3031 struct Qdisc *q = head;
3032 spinlock_t *root_lock;
3034 head = head->next_sched;
3036 root_lock = qdisc_lock(q);
3037 if (spin_trylock(root_lock)) {
3038 smp_mb__before_clear_bit();
3039 clear_bit(__QDISC_STATE_SCHED,
3042 spin_unlock(root_lock);
3044 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3046 __netif_reschedule(q);
3048 smp_mb__before_clear_bit();
3049 clear_bit(__QDISC_STATE_SCHED,
3057 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3058 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3059 /* This hook is defined here for ATM LANE */
3060 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3061 unsigned char *addr) __read_mostly;
3062 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3065 #ifdef CONFIG_NET_CLS_ACT
3066 /* TODO: Maybe we should just force sch_ingress to be compiled in
3067 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3068 * a compare and 2 stores extra right now if we dont have it on
3069 * but have CONFIG_NET_CLS_ACT
3070 * NOTE: This doesn't stop any functionality; if you dont have
3071 * the ingress scheduler, you just can't add policies on ingress.
3074 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3076 struct net_device *dev = skb->dev;
3077 u32 ttl = G_TC_RTTL(skb->tc_verd);
3078 int result = TC_ACT_OK;
3081 if (unlikely(MAX_RED_LOOP < ttl++)) {
3082 if (net_ratelimit())
3083 pr_warn("Redir loop detected Dropping packet (%d->%d)\n",
3084 skb->skb_iif, dev->ifindex);
3088 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3089 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3092 if (q != &noop_qdisc) {
3093 spin_lock(qdisc_lock(q));
3094 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3095 result = qdisc_enqueue_root(skb, q);
3096 spin_unlock(qdisc_lock(q));
3102 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3103 struct packet_type **pt_prev,
3104 int *ret, struct net_device *orig_dev)
3106 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3108 if (!rxq || rxq->qdisc == &noop_qdisc)
3112 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3116 switch (ing_filter(skb, rxq)) {
3130 * netdev_rx_handler_register - register receive handler
3131 * @dev: device to register a handler for
3132 * @rx_handler: receive handler to register
3133 * @rx_handler_data: data pointer that is used by rx handler
3135 * Register a receive hander for a device. This handler will then be
3136 * called from __netif_receive_skb. A negative errno code is returned
3139 * The caller must hold the rtnl_mutex.
3141 * For a general description of rx_handler, see enum rx_handler_result.
3143 int netdev_rx_handler_register(struct net_device *dev,
3144 rx_handler_func_t *rx_handler,
3145 void *rx_handler_data)
3149 if (dev->rx_handler)
3152 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3153 rcu_assign_pointer(dev->rx_handler, rx_handler);
3157 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3160 * netdev_rx_handler_unregister - unregister receive handler
3161 * @dev: device to unregister a handler from
3163 * Unregister a receive hander from a device.
3165 * The caller must hold the rtnl_mutex.
3167 void netdev_rx_handler_unregister(struct net_device *dev)
3171 RCU_INIT_POINTER(dev->rx_handler, NULL);
3172 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3174 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3176 static int __netif_receive_skb(struct sk_buff *skb)
3178 struct packet_type *ptype, *pt_prev;
3179 rx_handler_func_t *rx_handler;
3180 struct net_device *orig_dev;
3181 struct net_device *null_or_dev;
3182 bool deliver_exact = false;
3183 int ret = NET_RX_DROP;
3186 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3188 trace_netif_receive_skb(skb);
3190 /* if we've gotten here through NAPI, check netpoll */
3191 if (netpoll_receive_skb(skb))
3195 skb->skb_iif = skb->dev->ifindex;
3196 orig_dev = skb->dev;
3198 skb_reset_network_header(skb);
3199 skb_reset_transport_header(skb);
3200 skb_reset_mac_len(skb);
3208 __this_cpu_inc(softnet_data.processed);
3210 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3211 skb = vlan_untag(skb);
3216 #ifdef CONFIG_NET_CLS_ACT
3217 if (skb->tc_verd & TC_NCLS) {
3218 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3223 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3224 if (!ptype->dev || ptype->dev == skb->dev) {
3226 ret = deliver_skb(skb, pt_prev, orig_dev);
3231 #ifdef CONFIG_NET_CLS_ACT
3232 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3238 rx_handler = rcu_dereference(skb->dev->rx_handler);
3239 if (vlan_tx_tag_present(skb)) {
3241 ret = deliver_skb(skb, pt_prev, orig_dev);
3244 if (vlan_do_receive(&skb, !rx_handler))
3246 else if (unlikely(!skb))
3252 ret = deliver_skb(skb, pt_prev, orig_dev);
3255 switch (rx_handler(&skb)) {
3256 case RX_HANDLER_CONSUMED:
3258 case RX_HANDLER_ANOTHER:
3260 case RX_HANDLER_EXACT:
3261 deliver_exact = true;
3262 case RX_HANDLER_PASS:
3269 /* deliver only exact match when indicated */
3270 null_or_dev = deliver_exact ? skb->dev : NULL;
3272 type = skb->protocol;
3273 list_for_each_entry_rcu(ptype,
3274 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3275 if (ptype->type == type &&
3276 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3277 ptype->dev == orig_dev)) {
3279 ret = deliver_skb(skb, pt_prev, orig_dev);
3285 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3287 atomic_long_inc(&skb->dev->rx_dropped);
3289 /* Jamal, now you will not able to escape explaining
3290 * me how you were going to use this. :-)
3301 * netif_receive_skb - process receive buffer from network
3302 * @skb: buffer to process
3304 * netif_receive_skb() is the main receive data processing function.
3305 * It always succeeds. The buffer may be dropped during processing
3306 * for congestion control or by the protocol layers.
3308 * This function may only be called from softirq context and interrupts
3309 * should be enabled.
3311 * Return values (usually ignored):
3312 * NET_RX_SUCCESS: no congestion
3313 * NET_RX_DROP: packet was dropped
3315 int netif_receive_skb(struct sk_buff *skb)
3317 net_timestamp_check(netdev_tstamp_prequeue, skb);
3319 if (skb_defer_rx_timestamp(skb))
3320 return NET_RX_SUCCESS;
3323 if (static_key_false(&rps_needed)) {
3324 struct rps_dev_flow voidflow, *rflow = &voidflow;
3329 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3332 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3339 return __netif_receive_skb(skb);
3341 EXPORT_SYMBOL(netif_receive_skb);
3343 /* Network device is going away, flush any packets still pending
3344 * Called with irqs disabled.
3346 static void flush_backlog(void *arg)
3348 struct net_device *dev = arg;
3349 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3350 struct sk_buff *skb, *tmp;
3353 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3354 if (skb->dev == dev) {
3355 __skb_unlink(skb, &sd->input_pkt_queue);
3357 input_queue_head_incr(sd);
3362 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3363 if (skb->dev == dev) {
3364 __skb_unlink(skb, &sd->process_queue);
3366 input_queue_head_incr(sd);
3371 static int napi_gro_complete(struct sk_buff *skb)
3373 struct packet_type *ptype;
3374 __be16 type = skb->protocol;
3375 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3378 if (NAPI_GRO_CB(skb)->count == 1) {
3379 skb_shinfo(skb)->gso_size = 0;
3384 list_for_each_entry_rcu(ptype, head, list) {
3385 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3388 err = ptype->gro_complete(skb);
3394 WARN_ON(&ptype->list == head);
3396 return NET_RX_SUCCESS;
3400 return netif_receive_skb(skb);
3403 inline void napi_gro_flush(struct napi_struct *napi)
3405 struct sk_buff *skb, *next;
3407 for (skb = napi->gro_list; skb; skb = next) {
3410 napi_gro_complete(skb);
3413 napi->gro_count = 0;
3414 napi->gro_list = NULL;
3416 EXPORT_SYMBOL(napi_gro_flush);
3418 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3420 struct sk_buff **pp = NULL;
3421 struct packet_type *ptype;
3422 __be16 type = skb->protocol;
3423 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3426 enum gro_result ret;
3428 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3431 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3435 list_for_each_entry_rcu(ptype, head, list) {
3436 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3439 skb_set_network_header(skb, skb_gro_offset(skb));
3440 mac_len = skb->network_header - skb->mac_header;
3441 skb->mac_len = mac_len;
3442 NAPI_GRO_CB(skb)->same_flow = 0;
3443 NAPI_GRO_CB(skb)->flush = 0;
3444 NAPI_GRO_CB(skb)->free = 0;
3446 pp = ptype->gro_receive(&napi->gro_list, skb);
3451 if (&ptype->list == head)
3454 same_flow = NAPI_GRO_CB(skb)->same_flow;
3455 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3458 struct sk_buff *nskb = *pp;
3462 napi_gro_complete(nskb);
3469 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3473 NAPI_GRO_CB(skb)->count = 1;
3474 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3475 skb->next = napi->gro_list;
3476 napi->gro_list = skb;
3480 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3481 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3483 BUG_ON(skb->end - skb->tail < grow);
3485 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3488 skb->data_len -= grow;
3490 skb_shinfo(skb)->frags[0].page_offset += grow;
3491 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3493 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3494 skb_frag_unref(skb, 0);
3495 memmove(skb_shinfo(skb)->frags,
3496 skb_shinfo(skb)->frags + 1,
3497 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3508 EXPORT_SYMBOL(dev_gro_receive);
3510 static inline gro_result_t
3511 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3514 unsigned int maclen = skb->dev->hard_header_len;
3516 for (p = napi->gro_list; p; p = p->next) {
3517 unsigned long diffs;
3519 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3520 diffs |= p->vlan_tci ^ skb->vlan_tci;
3521 if (maclen == ETH_HLEN)
3522 diffs |= compare_ether_header(skb_mac_header(p),
3523 skb_gro_mac_header(skb));
3525 diffs = memcmp(skb_mac_header(p),
3526 skb_gro_mac_header(skb),
3528 NAPI_GRO_CB(p)->same_flow = !diffs;
3529 NAPI_GRO_CB(p)->flush = 0;
3532 return dev_gro_receive(napi, skb);
3535 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3539 if (netif_receive_skb(skb))
3544 case GRO_MERGED_FREE:
3555 EXPORT_SYMBOL(napi_skb_finish);
3557 void skb_gro_reset_offset(struct sk_buff *skb)
3559 NAPI_GRO_CB(skb)->data_offset = 0;
3560 NAPI_GRO_CB(skb)->frag0 = NULL;
3561 NAPI_GRO_CB(skb)->frag0_len = 0;
3563 if (skb->mac_header == skb->tail &&
3564 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3565 NAPI_GRO_CB(skb)->frag0 =
3566 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3567 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3570 EXPORT_SYMBOL(skb_gro_reset_offset);
3572 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3574 skb_gro_reset_offset(skb);
3576 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3578 EXPORT_SYMBOL(napi_gro_receive);
3580 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3582 __skb_pull(skb, skb_headlen(skb));
3583 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3584 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3586 skb->dev = napi->dev;
3592 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3594 struct sk_buff *skb = napi->skb;
3597 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3603 EXPORT_SYMBOL(napi_get_frags);
3605 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3611 skb->protocol = eth_type_trans(skb, skb->dev);
3613 if (ret == GRO_HELD)
3614 skb_gro_pull(skb, -ETH_HLEN);
3615 else if (netif_receive_skb(skb))
3620 case GRO_MERGED_FREE:
3621 napi_reuse_skb(napi, skb);
3630 EXPORT_SYMBOL(napi_frags_finish);
3632 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3634 struct sk_buff *skb = napi->skb;
3641 skb_reset_mac_header(skb);
3642 skb_gro_reset_offset(skb);
3644 off = skb_gro_offset(skb);
3645 hlen = off + sizeof(*eth);
3646 eth = skb_gro_header_fast(skb, off);
3647 if (skb_gro_header_hard(skb, hlen)) {
3648 eth = skb_gro_header_slow(skb, hlen, off);
3649 if (unlikely(!eth)) {
3650 napi_reuse_skb(napi, skb);
3656 skb_gro_pull(skb, sizeof(*eth));
3659 * This works because the only protocols we care about don't require
3660 * special handling. We'll fix it up properly at the end.
3662 skb->protocol = eth->h_proto;
3667 EXPORT_SYMBOL(napi_frags_skb);
3669 gro_result_t napi_gro_frags(struct napi_struct *napi)
3671 struct sk_buff *skb = napi_frags_skb(napi);
3676 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3678 EXPORT_SYMBOL(napi_gro_frags);
3681 * net_rps_action sends any pending IPI's for rps.
3682 * Note: called with local irq disabled, but exits with local irq enabled.
3684 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3687 struct softnet_data *remsd = sd->rps_ipi_list;
3690 sd->rps_ipi_list = NULL;
3694 /* Send pending IPI's to kick RPS processing on remote cpus. */
3696 struct softnet_data *next = remsd->rps_ipi_next;
3698 if (cpu_online(remsd->cpu))
3699 __smp_call_function_single(remsd->cpu,
3708 static int process_backlog(struct napi_struct *napi, int quota)
3711 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3714 /* Check if we have pending ipi, its better to send them now,
3715 * not waiting net_rx_action() end.
3717 if (sd->rps_ipi_list) {
3718 local_irq_disable();
3719 net_rps_action_and_irq_enable(sd);
3722 napi->weight = weight_p;
3723 local_irq_disable();
3724 while (work < quota) {
3725 struct sk_buff *skb;
3728 while ((skb = __skb_dequeue(&sd->process_queue))) {
3730 __netif_receive_skb(skb);
3731 local_irq_disable();
3732 input_queue_head_incr(sd);
3733 if (++work >= quota) {
3740 qlen = skb_queue_len(&sd->input_pkt_queue);
3742 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3743 &sd->process_queue);
3745 if (qlen < quota - work) {
3747 * Inline a custom version of __napi_complete().
3748 * only current cpu owns and manipulates this napi,
3749 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3750 * we can use a plain write instead of clear_bit(),
3751 * and we dont need an smp_mb() memory barrier.
3753 list_del(&napi->poll_list);
3756 quota = work + qlen;
3766 * __napi_schedule - schedule for receive
3767 * @n: entry to schedule
3769 * The entry's receive function will be scheduled to run
3771 void __napi_schedule(struct napi_struct *n)
3773 unsigned long flags;
3775 local_irq_save(flags);
3776 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3777 local_irq_restore(flags);
3779 EXPORT_SYMBOL(__napi_schedule);
3781 void __napi_complete(struct napi_struct *n)
3783 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3784 BUG_ON(n->gro_list);
3786 list_del(&n->poll_list);
3787 smp_mb__before_clear_bit();
3788 clear_bit(NAPI_STATE_SCHED, &n->state);
3790 EXPORT_SYMBOL(__napi_complete);
3792 void napi_complete(struct napi_struct *n)
3794 unsigned long flags;
3797 * don't let napi dequeue from the cpu poll list
3798 * just in case its running on a different cpu
3800 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3804 local_irq_save(flags);
3806 local_irq_restore(flags);
3808 EXPORT_SYMBOL(napi_complete);
3810 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3811 int (*poll)(struct napi_struct *, int), int weight)
3813 INIT_LIST_HEAD(&napi->poll_list);
3814 napi->gro_count = 0;
3815 napi->gro_list = NULL;
3818 napi->weight = weight;
3819 list_add(&napi->dev_list, &dev->napi_list);
3821 #ifdef CONFIG_NETPOLL
3822 spin_lock_init(&napi->poll_lock);
3823 napi->poll_owner = -1;
3825 set_bit(NAPI_STATE_SCHED, &napi->state);
3827 EXPORT_SYMBOL(netif_napi_add);
3829 void netif_napi_del(struct napi_struct *napi)
3831 struct sk_buff *skb, *next;
3833 list_del_init(&napi->dev_list);
3834 napi_free_frags(napi);
3836 for (skb = napi->gro_list; skb; skb = next) {
3842 napi->gro_list = NULL;
3843 napi->gro_count = 0;
3845 EXPORT_SYMBOL(netif_napi_del);
3847 static void net_rx_action(struct softirq_action *h)
3849 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3850 unsigned long time_limit = jiffies + 2;
3851 int budget = netdev_budget;
3854 local_irq_disable();
3856 while (!list_empty(&sd->poll_list)) {
3857 struct napi_struct *n;
3860 /* If softirq window is exhuasted then punt.
3861 * Allow this to run for 2 jiffies since which will allow
3862 * an average latency of 1.5/HZ.
3864 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3869 /* Even though interrupts have been re-enabled, this
3870 * access is safe because interrupts can only add new
3871 * entries to the tail of this list, and only ->poll()
3872 * calls can remove this head entry from the list.
3874 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3876 have = netpoll_poll_lock(n);
3880 /* This NAPI_STATE_SCHED test is for avoiding a race
3881 * with netpoll's poll_napi(). Only the entity which
3882 * obtains the lock and sees NAPI_STATE_SCHED set will
3883 * actually make the ->poll() call. Therefore we avoid
3884 * accidentally calling ->poll() when NAPI is not scheduled.
3887 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3888 work = n->poll(n, weight);
3892 WARN_ON_ONCE(work > weight);
3896 local_irq_disable();
3898 /* Drivers must not modify the NAPI state if they
3899 * consume the entire weight. In such cases this code
3900 * still "owns" the NAPI instance and therefore can
3901 * move the instance around on the list at-will.
3903 if (unlikely(work == weight)) {
3904 if (unlikely(napi_disable_pending(n))) {
3907 local_irq_disable();
3909 list_move_tail(&n->poll_list, &sd->poll_list);
3912 netpoll_poll_unlock(have);
3915 net_rps_action_and_irq_enable(sd);
3917 #ifdef CONFIG_NET_DMA
3919 * There may not be any more sk_buffs coming right now, so push
3920 * any pending DMA copies to hardware
3922 dma_issue_pending_all();
3929 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3933 static gifconf_func_t *gifconf_list[NPROTO];
3936 * register_gifconf - register a SIOCGIF handler
3937 * @family: Address family
3938 * @gifconf: Function handler
3940 * Register protocol dependent address dumping routines. The handler
3941 * that is passed must not be freed or reused until it has been replaced
3942 * by another handler.
3944 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3946 if (family >= NPROTO)
3948 gifconf_list[family] = gifconf;
3951 EXPORT_SYMBOL(register_gifconf);
3955 * Map an interface index to its name (SIOCGIFNAME)
3959 * We need this ioctl for efficient implementation of the
3960 * if_indextoname() function required by the IPv6 API. Without
3961 * it, we would have to search all the interfaces to find a
3965 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3967 struct net_device *dev;
3971 * Fetch the caller's info block.
3974 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3978 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3984 strcpy(ifr.ifr_name, dev->name);
3987 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3993 * Perform a SIOCGIFCONF call. This structure will change
3994 * size eventually, and there is nothing I can do about it.
3995 * Thus we will need a 'compatibility mode'.
3998 static int dev_ifconf(struct net *net, char __user *arg)
4001 struct net_device *dev;
4008 * Fetch the caller's info block.
4011 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4018 * Loop over the interfaces, and write an info block for each.
4022 for_each_netdev(net, dev) {
4023 for (i = 0; i < NPROTO; i++) {
4024 if (gifconf_list[i]) {
4027 done = gifconf_list[i](dev, NULL, 0);
4029 done = gifconf_list[i](dev, pos + total,
4039 * All done. Write the updated control block back to the caller.
4041 ifc.ifc_len = total;
4044 * Both BSD and Solaris return 0 here, so we do too.
4046 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4049 #ifdef CONFIG_PROC_FS
4051 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4053 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4054 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4055 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4057 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4059 struct net *net = seq_file_net(seq);
4060 struct net_device *dev;
4061 struct hlist_node *p;
4062 struct hlist_head *h;
4063 unsigned int count = 0, offset = get_offset(*pos);
4065 h = &net->dev_name_head[get_bucket(*pos)];
4066 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4067 if (++count == offset)
4074 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4076 struct net_device *dev;
4077 unsigned int bucket;
4080 dev = dev_from_same_bucket(seq, pos);
4084 bucket = get_bucket(*pos) + 1;
4085 *pos = set_bucket_offset(bucket, 1);
4086 } while (bucket < NETDEV_HASHENTRIES);
4092 * This is invoked by the /proc filesystem handler to display a device
4095 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4100 return SEQ_START_TOKEN;
4102 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4105 return dev_from_bucket(seq, pos);
4108 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4111 return dev_from_bucket(seq, pos);
4114 void dev_seq_stop(struct seq_file *seq, void *v)
4120 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4122 struct rtnl_link_stats64 temp;
4123 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4125 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4126 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4127 dev->name, stats->rx_bytes, stats->rx_packets,
4129 stats->rx_dropped + stats->rx_missed_errors,
4130 stats->rx_fifo_errors,
4131 stats->rx_length_errors + stats->rx_over_errors +
4132 stats->rx_crc_errors + stats->rx_frame_errors,
4133 stats->rx_compressed, stats->multicast,
4134 stats->tx_bytes, stats->tx_packets,
4135 stats->tx_errors, stats->tx_dropped,
4136 stats->tx_fifo_errors, stats->collisions,
4137 stats->tx_carrier_errors +
4138 stats->tx_aborted_errors +
4139 stats->tx_window_errors +
4140 stats->tx_heartbeat_errors,
4141 stats->tx_compressed);
4145 * Called from the PROCfs module. This now uses the new arbitrary sized
4146 * /proc/net interface to create /proc/net/dev
4148 static int dev_seq_show(struct seq_file *seq, void *v)
4150 if (v == SEQ_START_TOKEN)
4151 seq_puts(seq, "Inter-| Receive "
4153 " face |bytes packets errs drop fifo frame "
4154 "compressed multicast|bytes packets errs "
4155 "drop fifo colls carrier compressed\n");
4157 dev_seq_printf_stats(seq, v);
4161 static struct softnet_data *softnet_get_online(loff_t *pos)
4163 struct softnet_data *sd = NULL;
4165 while (*pos < nr_cpu_ids)
4166 if (cpu_online(*pos)) {
4167 sd = &per_cpu(softnet_data, *pos);
4174 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4176 return softnet_get_online(pos);
4179 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4182 return softnet_get_online(pos);
4185 static void softnet_seq_stop(struct seq_file *seq, void *v)
4189 static int softnet_seq_show(struct seq_file *seq, void *v)
4191 struct softnet_data *sd = v;
4193 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4194 sd->processed, sd->dropped, sd->time_squeeze, 0,
4195 0, 0, 0, 0, /* was fastroute */
4196 sd->cpu_collision, sd->received_rps);
4200 static const struct seq_operations dev_seq_ops = {
4201 .start = dev_seq_start,
4202 .next = dev_seq_next,
4203 .stop = dev_seq_stop,
4204 .show = dev_seq_show,
4207 static int dev_seq_open(struct inode *inode, struct file *file)
4209 return seq_open_net(inode, file, &dev_seq_ops,
4210 sizeof(struct seq_net_private));
4213 static const struct file_operations dev_seq_fops = {
4214 .owner = THIS_MODULE,
4215 .open = dev_seq_open,
4217 .llseek = seq_lseek,
4218 .release = seq_release_net,
4221 static const struct seq_operations softnet_seq_ops = {
4222 .start = softnet_seq_start,
4223 .next = softnet_seq_next,
4224 .stop = softnet_seq_stop,
4225 .show = softnet_seq_show,
4228 static int softnet_seq_open(struct inode *inode, struct file *file)
4230 return seq_open(file, &softnet_seq_ops);
4233 static const struct file_operations softnet_seq_fops = {
4234 .owner = THIS_MODULE,
4235 .open = softnet_seq_open,
4237 .llseek = seq_lseek,
4238 .release = seq_release,
4241 static void *ptype_get_idx(loff_t pos)
4243 struct packet_type *pt = NULL;
4247 list_for_each_entry_rcu(pt, &ptype_all, list) {
4253 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4254 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4263 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4267 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4270 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4272 struct packet_type *pt;
4273 struct list_head *nxt;
4277 if (v == SEQ_START_TOKEN)
4278 return ptype_get_idx(0);
4281 nxt = pt->list.next;
4282 if (pt->type == htons(ETH_P_ALL)) {
4283 if (nxt != &ptype_all)
4286 nxt = ptype_base[0].next;
4288 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4290 while (nxt == &ptype_base[hash]) {
4291 if (++hash >= PTYPE_HASH_SIZE)
4293 nxt = ptype_base[hash].next;
4296 return list_entry(nxt, struct packet_type, list);
4299 static void ptype_seq_stop(struct seq_file *seq, void *v)
4305 static int ptype_seq_show(struct seq_file *seq, void *v)
4307 struct packet_type *pt = v;
4309 if (v == SEQ_START_TOKEN)
4310 seq_puts(seq, "Type Device Function\n");
4311 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4312 if (pt->type == htons(ETH_P_ALL))
4313 seq_puts(seq, "ALL ");
4315 seq_printf(seq, "%04x", ntohs(pt->type));
4317 seq_printf(seq, " %-8s %pF\n",
4318 pt->dev ? pt->dev->name : "", pt->func);
4324 static const struct seq_operations ptype_seq_ops = {
4325 .start = ptype_seq_start,
4326 .next = ptype_seq_next,
4327 .stop = ptype_seq_stop,
4328 .show = ptype_seq_show,
4331 static int ptype_seq_open(struct inode *inode, struct file *file)
4333 return seq_open_net(inode, file, &ptype_seq_ops,
4334 sizeof(struct seq_net_private));
4337 static const struct file_operations ptype_seq_fops = {
4338 .owner = THIS_MODULE,
4339 .open = ptype_seq_open,
4341 .llseek = seq_lseek,
4342 .release = seq_release_net,
4346 static int __net_init dev_proc_net_init(struct net *net)
4350 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4352 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4354 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4357 if (wext_proc_init(net))
4363 proc_net_remove(net, "ptype");
4365 proc_net_remove(net, "softnet_stat");
4367 proc_net_remove(net, "dev");
4371 static void __net_exit dev_proc_net_exit(struct net *net)
4373 wext_proc_exit(net);
4375 proc_net_remove(net, "ptype");
4376 proc_net_remove(net, "softnet_stat");
4377 proc_net_remove(net, "dev");
4380 static struct pernet_operations __net_initdata dev_proc_ops = {
4381 .init = dev_proc_net_init,
4382 .exit = dev_proc_net_exit,
4385 static int __init dev_proc_init(void)
4387 return register_pernet_subsys(&dev_proc_ops);
4390 #define dev_proc_init() 0
4391 #endif /* CONFIG_PROC_FS */
4395 * netdev_set_master - set up master pointer
4396 * @slave: slave device
4397 * @master: new master device
4399 * Changes the master device of the slave. Pass %NULL to break the
4400 * bonding. The caller must hold the RTNL semaphore. On a failure
4401 * a negative errno code is returned. On success the reference counts
4402 * are adjusted and the function returns zero.
4404 int netdev_set_master(struct net_device *slave, struct net_device *master)
4406 struct net_device *old = slave->master;
4416 slave->master = master;
4422 EXPORT_SYMBOL(netdev_set_master);
4425 * netdev_set_bond_master - set up bonding master/slave pair
4426 * @slave: slave device
4427 * @master: new master device
4429 * Changes the master device of the slave. Pass %NULL to break the
4430 * bonding. The caller must hold the RTNL semaphore. On a failure
4431 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4432 * to the routing socket and the function returns zero.
4434 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4440 err = netdev_set_master(slave, master);
4444 slave->flags |= IFF_SLAVE;
4446 slave->flags &= ~IFF_SLAVE;
4448 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4451 EXPORT_SYMBOL(netdev_set_bond_master);
4453 static void dev_change_rx_flags(struct net_device *dev, int flags)
4455 const struct net_device_ops *ops = dev->netdev_ops;
4457 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4458 ops->ndo_change_rx_flags(dev, flags);
4461 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4463 unsigned int old_flags = dev->flags;
4469 dev->flags |= IFF_PROMISC;
4470 dev->promiscuity += inc;
4471 if (dev->promiscuity == 0) {
4474 * If inc causes overflow, untouch promisc and return error.
4477 dev->flags &= ~IFF_PROMISC;
4479 dev->promiscuity -= inc;
4480 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4485 if (dev->flags != old_flags) {
4486 pr_info("device %s %s promiscuous mode\n",
4488 dev->flags & IFF_PROMISC ? "entered" : "left");
4489 if (audit_enabled) {
4490 current_uid_gid(&uid, &gid);
4491 audit_log(current->audit_context, GFP_ATOMIC,
4492 AUDIT_ANOM_PROMISCUOUS,
4493 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4494 dev->name, (dev->flags & IFF_PROMISC),
4495 (old_flags & IFF_PROMISC),
4496 audit_get_loginuid(current),
4498 audit_get_sessionid(current));
4501 dev_change_rx_flags(dev, IFF_PROMISC);
4507 * dev_set_promiscuity - update promiscuity count on a device
4511 * Add or remove promiscuity from a device. While the count in the device
4512 * remains above zero the interface remains promiscuous. Once it hits zero
4513 * the device reverts back to normal filtering operation. A negative inc
4514 * value is used to drop promiscuity on the device.
4515 * Return 0 if successful or a negative errno code on error.
4517 int dev_set_promiscuity(struct net_device *dev, int inc)
4519 unsigned int old_flags = dev->flags;
4522 err = __dev_set_promiscuity(dev, inc);
4525 if (dev->flags != old_flags)
4526 dev_set_rx_mode(dev);
4529 EXPORT_SYMBOL(dev_set_promiscuity);
4532 * dev_set_allmulti - update allmulti count on a device
4536 * Add or remove reception of all multicast frames to a device. While the
4537 * count in the device remains above zero the interface remains listening
4538 * to all interfaces. Once it hits zero the device reverts back to normal
4539 * filtering operation. A negative @inc value is used to drop the counter
4540 * when releasing a resource needing all multicasts.
4541 * Return 0 if successful or a negative errno code on error.
4544 int dev_set_allmulti(struct net_device *dev, int inc)
4546 unsigned int old_flags = dev->flags;
4550 dev->flags |= IFF_ALLMULTI;
4551 dev->allmulti += inc;
4552 if (dev->allmulti == 0) {
4555 * If inc causes overflow, untouch allmulti and return error.
4558 dev->flags &= ~IFF_ALLMULTI;
4560 dev->allmulti -= inc;
4561 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4566 if (dev->flags ^ old_flags) {
4567 dev_change_rx_flags(dev, IFF_ALLMULTI);
4568 dev_set_rx_mode(dev);
4572 EXPORT_SYMBOL(dev_set_allmulti);
4575 * Upload unicast and multicast address lists to device and
4576 * configure RX filtering. When the device doesn't support unicast
4577 * filtering it is put in promiscuous mode while unicast addresses
4580 void __dev_set_rx_mode(struct net_device *dev)
4582 const struct net_device_ops *ops = dev->netdev_ops;
4584 /* dev_open will call this function so the list will stay sane. */
4585 if (!(dev->flags&IFF_UP))
4588 if (!netif_device_present(dev))
4591 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4592 /* Unicast addresses changes may only happen under the rtnl,
4593 * therefore calling __dev_set_promiscuity here is safe.
4595 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4596 __dev_set_promiscuity(dev, 1);
4597 dev->uc_promisc = true;
4598 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4599 __dev_set_promiscuity(dev, -1);
4600 dev->uc_promisc = false;
4604 if (ops->ndo_set_rx_mode)
4605 ops->ndo_set_rx_mode(dev);
4608 void dev_set_rx_mode(struct net_device *dev)
4610 netif_addr_lock_bh(dev);
4611 __dev_set_rx_mode(dev);
4612 netif_addr_unlock_bh(dev);
4616 * dev_get_flags - get flags reported to userspace
4619 * Get the combination of flag bits exported through APIs to userspace.
4621 unsigned dev_get_flags(const struct net_device *dev)
4625 flags = (dev->flags & ~(IFF_PROMISC |
4630 (dev->gflags & (IFF_PROMISC |
4633 if (netif_running(dev)) {
4634 if (netif_oper_up(dev))
4635 flags |= IFF_RUNNING;
4636 if (netif_carrier_ok(dev))
4637 flags |= IFF_LOWER_UP;
4638 if (netif_dormant(dev))
4639 flags |= IFF_DORMANT;
4644 EXPORT_SYMBOL(dev_get_flags);
4646 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4648 unsigned int old_flags = dev->flags;
4654 * Set the flags on our device.
4657 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4658 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4660 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4664 * Load in the correct multicast list now the flags have changed.
4667 if ((old_flags ^ flags) & IFF_MULTICAST)
4668 dev_change_rx_flags(dev, IFF_MULTICAST);
4670 dev_set_rx_mode(dev);
4673 * Have we downed the interface. We handle IFF_UP ourselves
4674 * according to user attempts to set it, rather than blindly
4679 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4680 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4683 dev_set_rx_mode(dev);
4686 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4687 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4689 dev->gflags ^= IFF_PROMISC;
4690 dev_set_promiscuity(dev, inc);
4693 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4694 is important. Some (broken) drivers set IFF_PROMISC, when
4695 IFF_ALLMULTI is requested not asking us and not reporting.
4697 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4698 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4700 dev->gflags ^= IFF_ALLMULTI;
4701 dev_set_allmulti(dev, inc);
4707 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4709 unsigned int changes = dev->flags ^ old_flags;
4711 if (changes & IFF_UP) {
4712 if (dev->flags & IFF_UP)
4713 call_netdevice_notifiers(NETDEV_UP, dev);
4715 call_netdevice_notifiers(NETDEV_DOWN, dev);
4718 if (dev->flags & IFF_UP &&
4719 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4720 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4724 * dev_change_flags - change device settings
4726 * @flags: device state flags
4728 * Change settings on device based state flags. The flags are
4729 * in the userspace exported format.
4731 int dev_change_flags(struct net_device *dev, unsigned int flags)
4734 unsigned int changes, old_flags = dev->flags;
4736 ret = __dev_change_flags(dev, flags);
4740 changes = old_flags ^ dev->flags;
4742 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4744 __dev_notify_flags(dev, old_flags);
4747 EXPORT_SYMBOL(dev_change_flags);
4750 * dev_set_mtu - Change maximum transfer unit
4752 * @new_mtu: new transfer unit
4754 * Change the maximum transfer size of the network device.
4756 int dev_set_mtu(struct net_device *dev, int new_mtu)
4758 const struct net_device_ops *ops = dev->netdev_ops;
4761 if (new_mtu == dev->mtu)
4764 /* MTU must be positive. */
4768 if (!netif_device_present(dev))
4772 if (ops->ndo_change_mtu)
4773 err = ops->ndo_change_mtu(dev, new_mtu);
4777 if (!err && dev->flags & IFF_UP)
4778 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4781 EXPORT_SYMBOL(dev_set_mtu);
4784 * dev_set_group - Change group this device belongs to
4786 * @new_group: group this device should belong to
4788 void dev_set_group(struct net_device *dev, int new_group)
4790 dev->group = new_group;
4792 EXPORT_SYMBOL(dev_set_group);
4795 * dev_set_mac_address - Change Media Access Control Address
4799 * Change the hardware (MAC) address of the device
4801 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4803 const struct net_device_ops *ops = dev->netdev_ops;
4806 if (!ops->ndo_set_mac_address)
4808 if (sa->sa_family != dev->type)
4810 if (!netif_device_present(dev))
4812 err = ops->ndo_set_mac_address(dev, sa);
4814 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4817 EXPORT_SYMBOL(dev_set_mac_address);
4820 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4822 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4825 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4831 case SIOCGIFFLAGS: /* Get interface flags */
4832 ifr->ifr_flags = (short) dev_get_flags(dev);
4835 case SIOCGIFMETRIC: /* Get the metric on the interface
4836 (currently unused) */
4837 ifr->ifr_metric = 0;
4840 case SIOCGIFMTU: /* Get the MTU of a device */
4841 ifr->ifr_mtu = dev->mtu;
4846 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4848 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4849 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4850 ifr->ifr_hwaddr.sa_family = dev->type;
4858 ifr->ifr_map.mem_start = dev->mem_start;
4859 ifr->ifr_map.mem_end = dev->mem_end;
4860 ifr->ifr_map.base_addr = dev->base_addr;
4861 ifr->ifr_map.irq = dev->irq;
4862 ifr->ifr_map.dma = dev->dma;
4863 ifr->ifr_map.port = dev->if_port;
4867 ifr->ifr_ifindex = dev->ifindex;
4871 ifr->ifr_qlen = dev->tx_queue_len;
4875 /* dev_ioctl() should ensure this case
4887 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4889 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4892 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4893 const struct net_device_ops *ops;
4898 ops = dev->netdev_ops;
4901 case SIOCSIFFLAGS: /* Set interface flags */
4902 return dev_change_flags(dev, ifr->ifr_flags);
4904 case SIOCSIFMETRIC: /* Set the metric on the interface
4905 (currently unused) */
4908 case SIOCSIFMTU: /* Set the MTU of a device */
4909 return dev_set_mtu(dev, ifr->ifr_mtu);
4912 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4914 case SIOCSIFHWBROADCAST:
4915 if (ifr->ifr_hwaddr.sa_family != dev->type)
4917 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4918 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4919 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4923 if (ops->ndo_set_config) {
4924 if (!netif_device_present(dev))
4926 return ops->ndo_set_config(dev, &ifr->ifr_map);
4931 if (!ops->ndo_set_rx_mode ||
4932 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4934 if (!netif_device_present(dev))
4936 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4939 if (!ops->ndo_set_rx_mode ||
4940 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4942 if (!netif_device_present(dev))
4944 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4947 if (ifr->ifr_qlen < 0)
4949 dev->tx_queue_len = ifr->ifr_qlen;
4953 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4954 return dev_change_name(dev, ifr->ifr_newname);
4957 err = net_hwtstamp_validate(ifr);
4963 * Unknown or private ioctl
4966 if ((cmd >= SIOCDEVPRIVATE &&
4967 cmd <= SIOCDEVPRIVATE + 15) ||
4968 cmd == SIOCBONDENSLAVE ||
4969 cmd == SIOCBONDRELEASE ||
4970 cmd == SIOCBONDSETHWADDR ||
4971 cmd == SIOCBONDSLAVEINFOQUERY ||
4972 cmd == SIOCBONDINFOQUERY ||
4973 cmd == SIOCBONDCHANGEACTIVE ||
4974 cmd == SIOCGMIIPHY ||
4975 cmd == SIOCGMIIREG ||
4976 cmd == SIOCSMIIREG ||
4977 cmd == SIOCBRADDIF ||
4978 cmd == SIOCBRDELIF ||
4979 cmd == SIOCSHWTSTAMP ||
4980 cmd == SIOCWANDEV) {
4982 if (ops->ndo_do_ioctl) {
4983 if (netif_device_present(dev))
4984 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4996 * This function handles all "interface"-type I/O control requests. The actual
4997 * 'doing' part of this is dev_ifsioc above.
5001 * dev_ioctl - network device ioctl
5002 * @net: the applicable net namespace
5003 * @cmd: command to issue
5004 * @arg: pointer to a struct ifreq in user space
5006 * Issue ioctl functions to devices. This is normally called by the
5007 * user space syscall interfaces but can sometimes be useful for
5008 * other purposes. The return value is the return from the syscall if
5009 * positive or a negative errno code on error.
5012 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5018 /* One special case: SIOCGIFCONF takes ifconf argument
5019 and requires shared lock, because it sleeps writing
5023 if (cmd == SIOCGIFCONF) {
5025 ret = dev_ifconf(net, (char __user *) arg);
5029 if (cmd == SIOCGIFNAME)
5030 return dev_ifname(net, (struct ifreq __user *)arg);
5032 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5035 ifr.ifr_name[IFNAMSIZ-1] = 0;
5037 colon = strchr(ifr.ifr_name, ':');
5042 * See which interface the caller is talking about.
5047 * These ioctl calls:
5048 * - can be done by all.
5049 * - atomic and do not require locking.
5060 dev_load(net, ifr.ifr_name);
5062 ret = dev_ifsioc_locked(net, &ifr, cmd);
5067 if (copy_to_user(arg, &ifr,
5068 sizeof(struct ifreq)))
5074 dev_load(net, ifr.ifr_name);
5076 ret = dev_ethtool(net, &ifr);
5081 if (copy_to_user(arg, &ifr,
5082 sizeof(struct ifreq)))
5088 * These ioctl calls:
5089 * - require superuser power.
5090 * - require strict serialization.
5096 if (!capable(CAP_NET_ADMIN))
5098 dev_load(net, ifr.ifr_name);
5100 ret = dev_ifsioc(net, &ifr, cmd);
5105 if (copy_to_user(arg, &ifr,
5106 sizeof(struct ifreq)))
5112 * These ioctl calls:
5113 * - require superuser power.
5114 * - require strict serialization.
5115 * - do not return a value
5125 case SIOCSIFHWBROADCAST:
5128 case SIOCBONDENSLAVE:
5129 case SIOCBONDRELEASE:
5130 case SIOCBONDSETHWADDR:
5131 case SIOCBONDCHANGEACTIVE:
5135 if (!capable(CAP_NET_ADMIN))
5138 case SIOCBONDSLAVEINFOQUERY:
5139 case SIOCBONDINFOQUERY:
5140 dev_load(net, ifr.ifr_name);
5142 ret = dev_ifsioc(net, &ifr, cmd);
5147 /* Get the per device memory space. We can add this but
5148 * currently do not support it */
5150 /* Set the per device memory buffer space.
5151 * Not applicable in our case */
5156 * Unknown or private ioctl.
5159 if (cmd == SIOCWANDEV ||
5160 (cmd >= SIOCDEVPRIVATE &&
5161 cmd <= SIOCDEVPRIVATE + 15)) {
5162 dev_load(net, ifr.ifr_name);
5164 ret = dev_ifsioc(net, &ifr, cmd);
5166 if (!ret && copy_to_user(arg, &ifr,
5167 sizeof(struct ifreq)))
5171 /* Take care of Wireless Extensions */
5172 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5173 return wext_handle_ioctl(net, &ifr, cmd, arg);
5180 * dev_new_index - allocate an ifindex
5181 * @net: the applicable net namespace
5183 * Returns a suitable unique value for a new device interface
5184 * number. The caller must hold the rtnl semaphore or the
5185 * dev_base_lock to be sure it remains unique.
5187 static int dev_new_index(struct net *net)
5193 if (!__dev_get_by_index(net, ifindex))
5198 /* Delayed registration/unregisteration */
5199 static LIST_HEAD(net_todo_list);
5201 static void net_set_todo(struct net_device *dev)
5203 list_add_tail(&dev->todo_list, &net_todo_list);
5206 static void rollback_registered_many(struct list_head *head)
5208 struct net_device *dev, *tmp;
5210 BUG_ON(dev_boot_phase);
5213 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5214 /* Some devices call without registering
5215 * for initialization unwind. Remove those
5216 * devices and proceed with the remaining.
5218 if (dev->reg_state == NETREG_UNINITIALIZED) {
5219 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5223 list_del(&dev->unreg_list);
5226 dev->dismantle = true;
5227 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5230 /* If device is running, close it first. */
5231 dev_close_many(head);
5233 list_for_each_entry(dev, head, unreg_list) {
5234 /* And unlink it from device chain. */
5235 unlist_netdevice(dev);
5237 dev->reg_state = NETREG_UNREGISTERING;
5242 list_for_each_entry(dev, head, unreg_list) {
5243 /* Shutdown queueing discipline. */
5247 /* Notify protocols, that we are about to destroy
5248 this device. They should clean all the things.
5250 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5252 if (!dev->rtnl_link_ops ||
5253 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5254 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5257 * Flush the unicast and multicast chains
5262 if (dev->netdev_ops->ndo_uninit)
5263 dev->netdev_ops->ndo_uninit(dev);
5265 /* Notifier chain MUST detach us from master device. */
5266 WARN_ON(dev->master);
5268 /* Remove entries from kobject tree */
5269 netdev_unregister_kobject(dev);
5272 /* Process any work delayed until the end of the batch */
5273 dev = list_first_entry(head, struct net_device, unreg_list);
5274 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5278 list_for_each_entry(dev, head, unreg_list)
5282 static void rollback_registered(struct net_device *dev)
5286 list_add(&dev->unreg_list, &single);
5287 rollback_registered_many(&single);
5291 static netdev_features_t netdev_fix_features(struct net_device *dev,
5292 netdev_features_t features)
5294 /* Fix illegal checksum combinations */
5295 if ((features & NETIF_F_HW_CSUM) &&
5296 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5297 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5298 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5301 /* Fix illegal SG+CSUM combinations. */
5302 if ((features & NETIF_F_SG) &&
5303 !(features & NETIF_F_ALL_CSUM)) {
5305 "Dropping NETIF_F_SG since no checksum feature.\n");
5306 features &= ~NETIF_F_SG;
5309 /* TSO requires that SG is present as well. */
5310 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5311 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5312 features &= ~NETIF_F_ALL_TSO;
5315 /* TSO ECN requires that TSO is present as well. */
5316 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5317 features &= ~NETIF_F_TSO_ECN;
5319 /* Software GSO depends on SG. */
5320 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5321 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5322 features &= ~NETIF_F_GSO;
5325 /* UFO needs SG and checksumming */
5326 if (features & NETIF_F_UFO) {
5327 /* maybe split UFO into V4 and V6? */
5328 if (!((features & NETIF_F_GEN_CSUM) ||
5329 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5330 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5332 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5333 features &= ~NETIF_F_UFO;
5336 if (!(features & NETIF_F_SG)) {
5338 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5339 features &= ~NETIF_F_UFO;
5346 int __netdev_update_features(struct net_device *dev)
5348 netdev_features_t features;
5353 features = netdev_get_wanted_features(dev);
5355 if (dev->netdev_ops->ndo_fix_features)
5356 features = dev->netdev_ops->ndo_fix_features(dev, features);
5358 /* driver might be less strict about feature dependencies */
5359 features = netdev_fix_features(dev, features);
5361 if (dev->features == features)
5364 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5365 &dev->features, &features);
5367 if (dev->netdev_ops->ndo_set_features)
5368 err = dev->netdev_ops->ndo_set_features(dev, features);
5370 if (unlikely(err < 0)) {
5372 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5373 err, &features, &dev->features);
5378 dev->features = features;
5384 * netdev_update_features - recalculate device features
5385 * @dev: the device to check
5387 * Recalculate dev->features set and send notifications if it
5388 * has changed. Should be called after driver or hardware dependent
5389 * conditions might have changed that influence the features.
5391 void netdev_update_features(struct net_device *dev)
5393 if (__netdev_update_features(dev))
5394 netdev_features_change(dev);
5396 EXPORT_SYMBOL(netdev_update_features);
5399 * netdev_change_features - recalculate device features
5400 * @dev: the device to check
5402 * Recalculate dev->features set and send notifications even
5403 * if they have not changed. Should be called instead of
5404 * netdev_update_features() if also dev->vlan_features might
5405 * have changed to allow the changes to be propagated to stacked
5408 void netdev_change_features(struct net_device *dev)
5410 __netdev_update_features(dev);
5411 netdev_features_change(dev);
5413 EXPORT_SYMBOL(netdev_change_features);
5416 * netif_stacked_transfer_operstate - transfer operstate
5417 * @rootdev: the root or lower level device to transfer state from
5418 * @dev: the device to transfer operstate to
5420 * Transfer operational state from root to device. This is normally
5421 * called when a stacking relationship exists between the root
5422 * device and the device(a leaf device).
5424 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5425 struct net_device *dev)
5427 if (rootdev->operstate == IF_OPER_DORMANT)
5428 netif_dormant_on(dev);
5430 netif_dormant_off(dev);
5432 if (netif_carrier_ok(rootdev)) {
5433 if (!netif_carrier_ok(dev))
5434 netif_carrier_on(dev);
5436 if (netif_carrier_ok(dev))
5437 netif_carrier_off(dev);
5440 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5443 static int netif_alloc_rx_queues(struct net_device *dev)
5445 unsigned int i, count = dev->num_rx_queues;
5446 struct netdev_rx_queue *rx;
5450 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5452 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5457 for (i = 0; i < count; i++)
5463 static void netdev_init_one_queue(struct net_device *dev,
5464 struct netdev_queue *queue, void *_unused)
5466 /* Initialize queue lock */
5467 spin_lock_init(&queue->_xmit_lock);
5468 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5469 queue->xmit_lock_owner = -1;
5470 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5473 dql_init(&queue->dql, HZ);
5477 static int netif_alloc_netdev_queues(struct net_device *dev)
5479 unsigned int count = dev->num_tx_queues;
5480 struct netdev_queue *tx;
5484 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5486 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5491 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5492 spin_lock_init(&dev->tx_global_lock);
5498 * register_netdevice - register a network device
5499 * @dev: device to register
5501 * Take a completed network device structure and add it to the kernel
5502 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5503 * chain. 0 is returned on success. A negative errno code is returned
5504 * on a failure to set up the device, or if the name is a duplicate.
5506 * Callers must hold the rtnl semaphore. You may want
5507 * register_netdev() instead of this.
5510 * The locking appears insufficient to guarantee two parallel registers
5511 * will not get the same name.
5514 int register_netdevice(struct net_device *dev)
5517 struct net *net = dev_net(dev);
5519 BUG_ON(dev_boot_phase);
5524 /* When net_device's are persistent, this will be fatal. */
5525 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5528 spin_lock_init(&dev->addr_list_lock);
5529 netdev_set_addr_lockdep_class(dev);
5533 ret = dev_get_valid_name(dev, dev->name);
5537 /* Init, if this function is available */
5538 if (dev->netdev_ops->ndo_init) {
5539 ret = dev->netdev_ops->ndo_init(dev);
5547 dev->ifindex = dev_new_index(net);
5548 if (dev->iflink == -1)
5549 dev->iflink = dev->ifindex;
5551 /* Transfer changeable features to wanted_features and enable
5552 * software offloads (GSO and GRO).
5554 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5555 dev->features |= NETIF_F_SOFT_FEATURES;
5556 dev->wanted_features = dev->features & dev->hw_features;
5558 /* Turn on no cache copy if HW is doing checksum */
5559 if (!(dev->flags & IFF_LOOPBACK)) {
5560 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5561 if (dev->features & NETIF_F_ALL_CSUM) {
5562 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5563 dev->features |= NETIF_F_NOCACHE_COPY;
5567 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5569 dev->vlan_features |= NETIF_F_HIGHDMA;
5571 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5572 ret = notifier_to_errno(ret);
5576 ret = netdev_register_kobject(dev);
5579 dev->reg_state = NETREG_REGISTERED;
5581 __netdev_update_features(dev);
5584 * Default initial state at registry is that the
5585 * device is present.
5588 set_bit(__LINK_STATE_PRESENT, &dev->state);
5590 dev_init_scheduler(dev);
5592 list_netdevice(dev);
5594 /* Notify protocols, that a new device appeared. */
5595 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5596 ret = notifier_to_errno(ret);
5598 rollback_registered(dev);
5599 dev->reg_state = NETREG_UNREGISTERED;
5602 * Prevent userspace races by waiting until the network
5603 * device is fully setup before sending notifications.
5605 if (!dev->rtnl_link_ops ||
5606 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5607 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5613 if (dev->netdev_ops->ndo_uninit)
5614 dev->netdev_ops->ndo_uninit(dev);
5617 EXPORT_SYMBOL(register_netdevice);
5620 * init_dummy_netdev - init a dummy network device for NAPI
5621 * @dev: device to init
5623 * This takes a network device structure and initialize the minimum
5624 * amount of fields so it can be used to schedule NAPI polls without
5625 * registering a full blown interface. This is to be used by drivers
5626 * that need to tie several hardware interfaces to a single NAPI
5627 * poll scheduler due to HW limitations.
5629 int init_dummy_netdev(struct net_device *dev)
5631 /* Clear everything. Note we don't initialize spinlocks
5632 * are they aren't supposed to be taken by any of the
5633 * NAPI code and this dummy netdev is supposed to be
5634 * only ever used for NAPI polls
5636 memset(dev, 0, sizeof(struct net_device));
5638 /* make sure we BUG if trying to hit standard
5639 * register/unregister code path
5641 dev->reg_state = NETREG_DUMMY;
5643 /* NAPI wants this */
5644 INIT_LIST_HEAD(&dev->napi_list);
5646 /* a dummy interface is started by default */
5647 set_bit(__LINK_STATE_PRESENT, &dev->state);
5648 set_bit(__LINK_STATE_START, &dev->state);
5650 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5651 * because users of this 'device' dont need to change
5657 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5661 * register_netdev - register a network device
5662 * @dev: device to register
5664 * Take a completed network device structure and add it to the kernel
5665 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5666 * chain. 0 is returned on success. A negative errno code is returned
5667 * on a failure to set up the device, or if the name is a duplicate.
5669 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5670 * and expands the device name if you passed a format string to
5673 int register_netdev(struct net_device *dev)
5678 err = register_netdevice(dev);
5682 EXPORT_SYMBOL(register_netdev);
5684 int netdev_refcnt_read(const struct net_device *dev)
5688 for_each_possible_cpu(i)
5689 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5692 EXPORT_SYMBOL(netdev_refcnt_read);
5695 * netdev_wait_allrefs - wait until all references are gone.
5697 * This is called when unregistering network devices.
5699 * Any protocol or device that holds a reference should register
5700 * for netdevice notification, and cleanup and put back the
5701 * reference if they receive an UNREGISTER event.
5702 * We can get stuck here if buggy protocols don't correctly
5705 static void netdev_wait_allrefs(struct net_device *dev)
5707 unsigned long rebroadcast_time, warning_time;
5710 linkwatch_forget_dev(dev);
5712 rebroadcast_time = warning_time = jiffies;
5713 refcnt = netdev_refcnt_read(dev);
5715 while (refcnt != 0) {
5716 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5719 /* Rebroadcast unregister notification */
5720 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5721 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5722 * should have already handle it the first time */
5724 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5726 /* We must not have linkwatch events
5727 * pending on unregister. If this
5728 * happens, we simply run the queue
5729 * unscheduled, resulting in a noop
5732 linkwatch_run_queue();
5737 rebroadcast_time = jiffies;
5742 refcnt = netdev_refcnt_read(dev);
5744 if (time_after(jiffies, warning_time + 10 * HZ)) {
5745 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5747 warning_time = jiffies;
5756 * register_netdevice(x1);
5757 * register_netdevice(x2);
5759 * unregister_netdevice(y1);
5760 * unregister_netdevice(y2);
5766 * We are invoked by rtnl_unlock().
5767 * This allows us to deal with problems:
5768 * 1) We can delete sysfs objects which invoke hotplug
5769 * without deadlocking with linkwatch via keventd.
5770 * 2) Since we run with the RTNL semaphore not held, we can sleep
5771 * safely in order to wait for the netdev refcnt to drop to zero.
5773 * We must not return until all unregister events added during
5774 * the interval the lock was held have been completed.
5776 void netdev_run_todo(void)
5778 struct list_head list;
5780 /* Snapshot list, allow later requests */
5781 list_replace_init(&net_todo_list, &list);
5785 /* Wait for rcu callbacks to finish before attempting to drain
5786 * the device list. This usually avoids a 250ms wait.
5788 if (!list_empty(&list))
5791 while (!list_empty(&list)) {
5792 struct net_device *dev
5793 = list_first_entry(&list, struct net_device, todo_list);
5794 list_del(&dev->todo_list);
5796 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5797 pr_err("network todo '%s' but state %d\n",
5798 dev->name, dev->reg_state);
5803 dev->reg_state = NETREG_UNREGISTERED;
5805 on_each_cpu(flush_backlog, dev, 1);
5807 netdev_wait_allrefs(dev);
5810 BUG_ON(netdev_refcnt_read(dev));
5811 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5812 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5813 WARN_ON(dev->dn_ptr);
5815 if (dev->destructor)
5816 dev->destructor(dev);
5818 /* Free network device */
5819 kobject_put(&dev->dev.kobj);
5823 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5824 * fields in the same order, with only the type differing.
5826 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5827 const struct net_device_stats *netdev_stats)
5829 #if BITS_PER_LONG == 64
5830 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5831 memcpy(stats64, netdev_stats, sizeof(*stats64));
5833 size_t i, n = sizeof(*stats64) / sizeof(u64);
5834 const unsigned long *src = (const unsigned long *)netdev_stats;
5835 u64 *dst = (u64 *)stats64;
5837 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5838 sizeof(*stats64) / sizeof(u64));
5839 for (i = 0; i < n; i++)
5843 EXPORT_SYMBOL(netdev_stats_to_stats64);
5846 * dev_get_stats - get network device statistics
5847 * @dev: device to get statistics from
5848 * @storage: place to store stats
5850 * Get network statistics from device. Return @storage.
5851 * The device driver may provide its own method by setting
5852 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5853 * otherwise the internal statistics structure is used.
5855 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5856 struct rtnl_link_stats64 *storage)
5858 const struct net_device_ops *ops = dev->netdev_ops;
5860 if (ops->ndo_get_stats64) {
5861 memset(storage, 0, sizeof(*storage));
5862 ops->ndo_get_stats64(dev, storage);
5863 } else if (ops->ndo_get_stats) {
5864 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5866 netdev_stats_to_stats64(storage, &dev->stats);
5868 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5871 EXPORT_SYMBOL(dev_get_stats);
5873 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5875 struct netdev_queue *queue = dev_ingress_queue(dev);
5877 #ifdef CONFIG_NET_CLS_ACT
5880 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5883 netdev_init_one_queue(dev, queue, NULL);
5884 queue->qdisc = &noop_qdisc;
5885 queue->qdisc_sleeping = &noop_qdisc;
5886 rcu_assign_pointer(dev->ingress_queue, queue);
5892 * alloc_netdev_mqs - allocate network device
5893 * @sizeof_priv: size of private data to allocate space for
5894 * @name: device name format string
5895 * @setup: callback to initialize device
5896 * @txqs: the number of TX subqueues to allocate
5897 * @rxqs: the number of RX subqueues to allocate
5899 * Allocates a struct net_device with private data area for driver use
5900 * and performs basic initialization. Also allocates subquue structs
5901 * for each queue on the device.
5903 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5904 void (*setup)(struct net_device *),
5905 unsigned int txqs, unsigned int rxqs)
5907 struct net_device *dev;
5909 struct net_device *p;
5911 BUG_ON(strlen(name) >= sizeof(dev->name));
5914 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5920 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5925 alloc_size = sizeof(struct net_device);
5927 /* ensure 32-byte alignment of private area */
5928 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5929 alloc_size += sizeof_priv;
5931 /* ensure 32-byte alignment of whole construct */
5932 alloc_size += NETDEV_ALIGN - 1;
5934 p = kzalloc(alloc_size, GFP_KERNEL);
5936 pr_err("alloc_netdev: Unable to allocate device\n");
5940 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5941 dev->padded = (char *)dev - (char *)p;
5943 dev->pcpu_refcnt = alloc_percpu(int);
5944 if (!dev->pcpu_refcnt)
5947 if (dev_addr_init(dev))
5953 dev_net_set(dev, &init_net);
5955 dev->gso_max_size = GSO_MAX_SIZE;
5957 INIT_LIST_HEAD(&dev->napi_list);
5958 INIT_LIST_HEAD(&dev->unreg_list);
5959 INIT_LIST_HEAD(&dev->link_watch_list);
5960 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5963 dev->num_tx_queues = txqs;
5964 dev->real_num_tx_queues = txqs;
5965 if (netif_alloc_netdev_queues(dev))
5969 dev->num_rx_queues = rxqs;
5970 dev->real_num_rx_queues = rxqs;
5971 if (netif_alloc_rx_queues(dev))
5975 strcpy(dev->name, name);
5976 dev->group = INIT_NETDEV_GROUP;
5984 free_percpu(dev->pcpu_refcnt);
5994 EXPORT_SYMBOL(alloc_netdev_mqs);
5997 * free_netdev - free network device
6000 * This function does the last stage of destroying an allocated device
6001 * interface. The reference to the device object is released.
6002 * If this is the last reference then it will be freed.
6004 void free_netdev(struct net_device *dev)
6006 struct napi_struct *p, *n;
6008 release_net(dev_net(dev));
6015 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6017 /* Flush device addresses */
6018 dev_addr_flush(dev);
6020 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6023 free_percpu(dev->pcpu_refcnt);
6024 dev->pcpu_refcnt = NULL;
6026 /* Compatibility with error handling in drivers */
6027 if (dev->reg_state == NETREG_UNINITIALIZED) {
6028 kfree((char *)dev - dev->padded);
6032 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6033 dev->reg_state = NETREG_RELEASED;
6035 /* will free via device release */
6036 put_device(&dev->dev);
6038 EXPORT_SYMBOL(free_netdev);
6041 * synchronize_net - Synchronize with packet receive processing
6043 * Wait for packets currently being received to be done.
6044 * Does not block later packets from starting.
6046 void synchronize_net(void)
6049 if (rtnl_is_locked())
6050 synchronize_rcu_expedited();
6054 EXPORT_SYMBOL(synchronize_net);
6057 * unregister_netdevice_queue - remove device from the kernel
6061 * This function shuts down a device interface and removes it
6062 * from the kernel tables.
6063 * If head not NULL, device is queued to be unregistered later.
6065 * Callers must hold the rtnl semaphore. You may want
6066 * unregister_netdev() instead of this.
6069 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6074 list_move_tail(&dev->unreg_list, head);
6076 rollback_registered(dev);
6077 /* Finish processing unregister after unlock */
6081 EXPORT_SYMBOL(unregister_netdevice_queue);
6084 * unregister_netdevice_many - unregister many devices
6085 * @head: list of devices
6087 void unregister_netdevice_many(struct list_head *head)
6089 struct net_device *dev;
6091 if (!list_empty(head)) {
6092 rollback_registered_many(head);
6093 list_for_each_entry(dev, head, unreg_list)
6097 EXPORT_SYMBOL(unregister_netdevice_many);
6100 * unregister_netdev - remove device from the kernel
6103 * This function shuts down a device interface and removes it
6104 * from the kernel tables.
6106 * This is just a wrapper for unregister_netdevice that takes
6107 * the rtnl semaphore. In general you want to use this and not
6108 * unregister_netdevice.
6110 void unregister_netdev(struct net_device *dev)
6113 unregister_netdevice(dev);
6116 EXPORT_SYMBOL(unregister_netdev);
6119 * dev_change_net_namespace - move device to different nethost namespace
6121 * @net: network namespace
6122 * @pat: If not NULL name pattern to try if the current device name
6123 * is already taken in the destination network namespace.
6125 * This function shuts down a device interface and moves it
6126 * to a new network namespace. On success 0 is returned, on
6127 * a failure a netagive errno code is returned.
6129 * Callers must hold the rtnl semaphore.
6132 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6138 /* Don't allow namespace local devices to be moved. */
6140 if (dev->features & NETIF_F_NETNS_LOCAL)
6143 /* Ensure the device has been registrered */
6145 if (dev->reg_state != NETREG_REGISTERED)
6148 /* Get out if there is nothing todo */
6150 if (net_eq(dev_net(dev), net))
6153 /* Pick the destination device name, and ensure
6154 * we can use it in the destination network namespace.
6157 if (__dev_get_by_name(net, dev->name)) {
6158 /* We get here if we can't use the current device name */
6161 if (dev_get_valid_name(dev, pat) < 0)
6166 * And now a mini version of register_netdevice unregister_netdevice.
6169 /* If device is running close it first. */
6172 /* And unlink it from device chain */
6174 unlist_netdevice(dev);
6178 /* Shutdown queueing discipline. */
6181 /* Notify protocols, that we are about to destroy
6182 this device. They should clean all the things.
6184 Note that dev->reg_state stays at NETREG_REGISTERED.
6185 This is wanted because this way 8021q and macvlan know
6186 the device is just moving and can keep their slaves up.
6188 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6189 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6190 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6193 * Flush the unicast and multicast chains
6198 /* Actually switch the network namespace */
6199 dev_net_set(dev, net);
6201 /* If there is an ifindex conflict assign a new one */
6202 if (__dev_get_by_index(net, dev->ifindex)) {
6203 int iflink = (dev->iflink == dev->ifindex);
6204 dev->ifindex = dev_new_index(net);
6206 dev->iflink = dev->ifindex;
6209 /* Fixup kobjects */
6210 err = device_rename(&dev->dev, dev->name);
6213 /* Add the device back in the hashes */
6214 list_netdevice(dev);
6216 /* Notify protocols, that a new device appeared. */
6217 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6220 * Prevent userspace races by waiting until the network
6221 * device is fully setup before sending notifications.
6223 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6230 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6232 static int dev_cpu_callback(struct notifier_block *nfb,
6233 unsigned long action,
6236 struct sk_buff **list_skb;
6237 struct sk_buff *skb;
6238 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6239 struct softnet_data *sd, *oldsd;
6241 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6244 local_irq_disable();
6245 cpu = smp_processor_id();
6246 sd = &per_cpu(softnet_data, cpu);
6247 oldsd = &per_cpu(softnet_data, oldcpu);
6249 /* Find end of our completion_queue. */
6250 list_skb = &sd->completion_queue;
6252 list_skb = &(*list_skb)->next;
6253 /* Append completion queue from offline CPU. */
6254 *list_skb = oldsd->completion_queue;
6255 oldsd->completion_queue = NULL;
6257 /* Append output queue from offline CPU. */
6258 if (oldsd->output_queue) {
6259 *sd->output_queue_tailp = oldsd->output_queue;
6260 sd->output_queue_tailp = oldsd->output_queue_tailp;
6261 oldsd->output_queue = NULL;
6262 oldsd->output_queue_tailp = &oldsd->output_queue;
6264 /* Append NAPI poll list from offline CPU. */
6265 if (!list_empty(&oldsd->poll_list)) {
6266 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6267 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6270 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6273 /* Process offline CPU's input_pkt_queue */
6274 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6276 input_queue_head_incr(oldsd);
6278 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6280 input_queue_head_incr(oldsd);
6288 * netdev_increment_features - increment feature set by one
6289 * @all: current feature set
6290 * @one: new feature set
6291 * @mask: mask feature set
6293 * Computes a new feature set after adding a device with feature set
6294 * @one to the master device with current feature set @all. Will not
6295 * enable anything that is off in @mask. Returns the new feature set.
6297 netdev_features_t netdev_increment_features(netdev_features_t all,
6298 netdev_features_t one, netdev_features_t mask)
6300 if (mask & NETIF_F_GEN_CSUM)
6301 mask |= NETIF_F_ALL_CSUM;
6302 mask |= NETIF_F_VLAN_CHALLENGED;
6304 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6305 all &= one | ~NETIF_F_ALL_FOR_ALL;
6307 /* If one device supports hw checksumming, set for all. */
6308 if (all & NETIF_F_GEN_CSUM)
6309 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6313 EXPORT_SYMBOL(netdev_increment_features);
6315 static struct hlist_head *netdev_create_hash(void)
6318 struct hlist_head *hash;
6320 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6322 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6323 INIT_HLIST_HEAD(&hash[i]);
6328 /* Initialize per network namespace state */
6329 static int __net_init netdev_init(struct net *net)
6331 INIT_LIST_HEAD(&net->dev_base_head);
6333 net->dev_name_head = netdev_create_hash();
6334 if (net->dev_name_head == NULL)
6337 net->dev_index_head = netdev_create_hash();
6338 if (net->dev_index_head == NULL)
6344 kfree(net->dev_name_head);
6350 * netdev_drivername - network driver for the device
6351 * @dev: network device
6353 * Determine network driver for device.
6355 const char *netdev_drivername(const struct net_device *dev)
6357 const struct device_driver *driver;
6358 const struct device *parent;
6359 const char *empty = "";
6361 parent = dev->dev.parent;
6365 driver = parent->driver;
6366 if (driver && driver->name)
6367 return driver->name;
6371 int __netdev_printk(const char *level, const struct net_device *dev,
6372 struct va_format *vaf)
6376 if (dev && dev->dev.parent)
6377 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6378 netdev_name(dev), vaf);
6380 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6382 r = printk("%s(NULL net_device): %pV", level, vaf);
6386 EXPORT_SYMBOL(__netdev_printk);
6388 int netdev_printk(const char *level, const struct net_device *dev,
6389 const char *format, ...)
6391 struct va_format vaf;
6395 va_start(args, format);
6400 r = __netdev_printk(level, dev, &vaf);
6405 EXPORT_SYMBOL(netdev_printk);
6407 #define define_netdev_printk_level(func, level) \
6408 int func(const struct net_device *dev, const char *fmt, ...) \
6411 struct va_format vaf; \
6414 va_start(args, fmt); \
6419 r = __netdev_printk(level, dev, &vaf); \
6424 EXPORT_SYMBOL(func);
6426 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6427 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6428 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6429 define_netdev_printk_level(netdev_err, KERN_ERR);
6430 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6431 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6432 define_netdev_printk_level(netdev_info, KERN_INFO);
6434 static void __net_exit netdev_exit(struct net *net)
6436 kfree(net->dev_name_head);
6437 kfree(net->dev_index_head);
6440 static struct pernet_operations __net_initdata netdev_net_ops = {
6441 .init = netdev_init,
6442 .exit = netdev_exit,
6445 static void __net_exit default_device_exit(struct net *net)
6447 struct net_device *dev, *aux;
6449 * Push all migratable network devices back to the
6450 * initial network namespace
6453 for_each_netdev_safe(net, dev, aux) {
6455 char fb_name[IFNAMSIZ];
6457 /* Ignore unmoveable devices (i.e. loopback) */
6458 if (dev->features & NETIF_F_NETNS_LOCAL)
6461 /* Leave virtual devices for the generic cleanup */
6462 if (dev->rtnl_link_ops)
6465 /* Push remaining network devices to init_net */
6466 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6467 err = dev_change_net_namespace(dev, &init_net, fb_name);
6469 pr_emerg("%s: failed to move %s to init_net: %d\n",
6470 __func__, dev->name, err);
6477 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6479 /* At exit all network devices most be removed from a network
6480 * namespace. Do this in the reverse order of registration.
6481 * Do this across as many network namespaces as possible to
6482 * improve batching efficiency.
6484 struct net_device *dev;
6486 LIST_HEAD(dev_kill_list);
6489 list_for_each_entry(net, net_list, exit_list) {
6490 for_each_netdev_reverse(net, dev) {
6491 if (dev->rtnl_link_ops)
6492 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6494 unregister_netdevice_queue(dev, &dev_kill_list);
6497 unregister_netdevice_many(&dev_kill_list);
6498 list_del(&dev_kill_list);
6502 static struct pernet_operations __net_initdata default_device_ops = {
6503 .exit = default_device_exit,
6504 .exit_batch = default_device_exit_batch,
6508 * Initialize the DEV module. At boot time this walks the device list and
6509 * unhooks any devices that fail to initialise (normally hardware not
6510 * present) and leaves us with a valid list of present and active devices.
6515 * This is called single threaded during boot, so no need
6516 * to take the rtnl semaphore.
6518 static int __init net_dev_init(void)
6520 int i, rc = -ENOMEM;
6522 BUG_ON(!dev_boot_phase);
6524 if (dev_proc_init())
6527 if (netdev_kobject_init())
6530 INIT_LIST_HEAD(&ptype_all);
6531 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6532 INIT_LIST_HEAD(&ptype_base[i]);
6534 if (register_pernet_subsys(&netdev_net_ops))
6538 * Initialise the packet receive queues.
6541 for_each_possible_cpu(i) {
6542 struct softnet_data *sd = &per_cpu(softnet_data, i);
6544 memset(sd, 0, sizeof(*sd));
6545 skb_queue_head_init(&sd->input_pkt_queue);
6546 skb_queue_head_init(&sd->process_queue);
6547 sd->completion_queue = NULL;
6548 INIT_LIST_HEAD(&sd->poll_list);
6549 sd->output_queue = NULL;
6550 sd->output_queue_tailp = &sd->output_queue;
6552 sd->csd.func = rps_trigger_softirq;
6558 sd->backlog.poll = process_backlog;
6559 sd->backlog.weight = weight_p;
6560 sd->backlog.gro_list = NULL;
6561 sd->backlog.gro_count = 0;
6566 /* The loopback device is special if any other network devices
6567 * is present in a network namespace the loopback device must
6568 * be present. Since we now dynamically allocate and free the
6569 * loopback device ensure this invariant is maintained by
6570 * keeping the loopback device as the first device on the
6571 * list of network devices. Ensuring the loopback devices
6572 * is the first device that appears and the last network device
6575 if (register_pernet_device(&loopback_net_ops))
6578 if (register_pernet_device(&default_device_ops))
6581 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6582 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6584 hotcpu_notifier(dev_cpu_callback, 0);
6592 subsys_initcall(net_dev_init);
6594 static int __init initialize_hashrnd(void)
6596 get_random_bytes(&hashrnd, sizeof(hashrnd));
6600 late_initcall_sync(initialize_hashrnd);