]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/core/dev.c
Merge tag 'ipvs-for-v4.8' of https://git.kernel.org/pub/scm/linux/kernel/git/horms...
[karo-tx-linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;       /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160                                          struct net_device *dev,
161                                          struct netdev_notifier_info *info);
162
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195         while (++net->dev_base_seq == 0);
196 }
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201
202         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213         spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227         struct net *net = dev_net(dev);
228
229         ASSERT_RTNL();
230
231         write_lock_bh(&dev_base_lock);
232         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234         hlist_add_head_rcu(&dev->index_hlist,
235                            dev_index_hash(net, dev->ifindex));
236         write_unlock_bh(&dev_base_lock);
237
238         dev_base_seq_inc(net);
239 }
240
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246         ASSERT_RTNL();
247
248         /* Unlink dev from the device chain */
249         write_lock_bh(&dev_base_lock);
250         list_del_rcu(&dev->dev_list);
251         hlist_del_rcu(&dev->name_hlist);
252         hlist_del_rcu(&dev->index_hlist);
253         write_unlock_bh(&dev_base_lock);
254
255         dev_base_seq_inc(dev_net(dev));
256 }
257
258 /*
259  *      Our notifier list
260  */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265  *      Device drivers call our routines to queue packets here. We empty the
266  *      queue in the local softnet handler.
267  */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316         int i;
317
318         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319                 if (netdev_lock_type[i] == dev_type)
320                         return i;
321         /* the last key is used by default */
322         return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326                                                  unsigned short dev_type)
327 {
328         int i;
329
330         i = netdev_lock_pos(dev_type);
331         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332                                    netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev->type);
340         lockdep_set_class_and_name(&dev->addr_list_lock,
341                                    &netdev_addr_lock_key[i],
342                                    netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346                                                  unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356                 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361  *      Add a protocol ID to the list. Now that the input handler is
362  *      smarter we can dispense with all the messy stuff that used to be
363  *      here.
364  *
365  *      BEWARE!!! Protocol handlers, mangling input packets,
366  *      MUST BE last in hash buckets and checking protocol handlers
367  *      MUST start from promiscuous ptype_all chain in net_bh.
368  *      It is true now, do not change it.
369  *      Explanation follows: if protocol handler, mangling packet, will
370  *      be the first on list, it is not able to sense, that packet
371  *      is cloned and should be copied-on-write, so that it will
372  *      change it and subsequent readers will get broken packet.
373  *                                                      --ANK (980803)
374  */
375
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378         if (pt->type == htons(ETH_P_ALL))
379                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380         else
381                 return pt->dev ? &pt->dev->ptype_specific :
382                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386  *      dev_add_pack - add packet handler
387  *      @pt: packet type declaration
388  *
389  *      Add a protocol handler to the networking stack. The passed &packet_type
390  *      is linked into kernel lists and may not be freed until it has been
391  *      removed from the kernel lists.
392  *
393  *      This call does not sleep therefore it can not
394  *      guarantee all CPU's that are in middle of receiving packets
395  *      will see the new packet type (until the next received packet).
396  */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400         struct list_head *head = ptype_head(pt);
401
402         spin_lock(&ptype_lock);
403         list_add_rcu(&pt->list, head);
404         spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409  *      __dev_remove_pack        - remove packet handler
410  *      @pt: packet type declaration
411  *
412  *      Remove a protocol handler that was previously added to the kernel
413  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *      from the kernel lists and can be freed or reused once this function
415  *      returns.
416  *
417  *      The packet type might still be in use by receivers
418  *      and must not be freed until after all the CPU's have gone
419  *      through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423         struct list_head *head = ptype_head(pt);
424         struct packet_type *pt1;
425
426         spin_lock(&ptype_lock);
427
428         list_for_each_entry(pt1, head, list) {
429                 if (pt == pt1) {
430                         list_del_rcu(&pt->list);
431                         goto out;
432                 }
433         }
434
435         pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437         spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442  *      dev_remove_pack  - remove packet handler
443  *      @pt: packet type declaration
444  *
445  *      Remove a protocol handler that was previously added to the kernel
446  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *      from the kernel lists and can be freed or reused once this function
448  *      returns.
449  *
450  *      This call sleeps to guarantee that no CPU is looking at the packet
451  *      type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455         __dev_remove_pack(pt);
456
457         synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461
462 /**
463  *      dev_add_offload - register offload handlers
464  *      @po: protocol offload declaration
465  *
466  *      Add protocol offload handlers to the networking stack. The passed
467  *      &proto_offload is linked into kernel lists and may not be freed until
468  *      it has been removed from the kernel lists.
469  *
470  *      This call does not sleep therefore it can not
471  *      guarantee all CPU's that are in middle of receiving packets
472  *      will see the new offload handlers (until the next received packet).
473  */
474 void dev_add_offload(struct packet_offload *po)
475 {
476         struct packet_offload *elem;
477
478         spin_lock(&offload_lock);
479         list_for_each_entry(elem, &offload_base, list) {
480                 if (po->priority < elem->priority)
481                         break;
482         }
483         list_add_rcu(&po->list, elem->list.prev);
484         spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487
488 /**
489  *      __dev_remove_offload     - remove offload handler
490  *      @po: packet offload declaration
491  *
492  *      Remove a protocol offload handler that was previously added to the
493  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
494  *      is removed from the kernel lists and can be freed or reused once this
495  *      function returns.
496  *
497  *      The packet type might still be in use by receivers
498  *      and must not be freed until after all the CPU's have gone
499  *      through a quiescent state.
500  */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503         struct list_head *head = &offload_base;
504         struct packet_offload *po1;
505
506         spin_lock(&offload_lock);
507
508         list_for_each_entry(po1, head, list) {
509                 if (po == po1) {
510                         list_del_rcu(&po->list);
511                         goto out;
512                 }
513         }
514
515         pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517         spin_unlock(&offload_lock);
518 }
519
520 /**
521  *      dev_remove_offload       - remove packet offload handler
522  *      @po: packet offload declaration
523  *
524  *      Remove a packet offload handler that was previously added to the kernel
525  *      offload handlers by dev_add_offload(). The passed &offload_type is
526  *      removed from the kernel lists and can be freed or reused once this
527  *      function returns.
528  *
529  *      This call sleeps to guarantee that no CPU is looking at the packet
530  *      type after return.
531  */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534         __dev_remove_offload(po);
535
536         synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539
540 /******************************************************************************
541
542                       Device Boot-time Settings Routines
543
544 *******************************************************************************/
545
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549 /**
550  *      netdev_boot_setup_add   - add new setup entry
551  *      @name: name of the device
552  *      @map: configured settings for the device
553  *
554  *      Adds new setup entry to the dev_boot_setup list.  The function
555  *      returns 0 on error and 1 on success.  This is a generic routine to
556  *      all netdevices.
557  */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560         struct netdev_boot_setup *s;
561         int i;
562
563         s = dev_boot_setup;
564         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566                         memset(s[i].name, 0, sizeof(s[i].name));
567                         strlcpy(s[i].name, name, IFNAMSIZ);
568                         memcpy(&s[i].map, map, sizeof(s[i].map));
569                         break;
570                 }
571         }
572
573         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575
576 /**
577  *      netdev_boot_setup_check - check boot time settings
578  *      @dev: the netdevice
579  *
580  *      Check boot time settings for the device.
581  *      The found settings are set for the device to be used
582  *      later in the device probing.
583  *      Returns 0 if no settings found, 1 if they are.
584  */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587         struct netdev_boot_setup *s = dev_boot_setup;
588         int i;
589
590         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592                     !strcmp(dev->name, s[i].name)) {
593                         dev->irq        = s[i].map.irq;
594                         dev->base_addr  = s[i].map.base_addr;
595                         dev->mem_start  = s[i].map.mem_start;
596                         dev->mem_end    = s[i].map.mem_end;
597                         return 1;
598                 }
599         }
600         return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603
604
605 /**
606  *      netdev_boot_base        - get address from boot time settings
607  *      @prefix: prefix for network device
608  *      @unit: id for network device
609  *
610  *      Check boot time settings for the base address of device.
611  *      The found settings are set for the device to be used
612  *      later in the device probing.
613  *      Returns 0 if no settings found.
614  */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617         const struct netdev_boot_setup *s = dev_boot_setup;
618         char name[IFNAMSIZ];
619         int i;
620
621         sprintf(name, "%s%d", prefix, unit);
622
623         /*
624          * If device already registered then return base of 1
625          * to indicate not to probe for this interface
626          */
627         if (__dev_get_by_name(&init_net, name))
628                 return 1;
629
630         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631                 if (!strcmp(name, s[i].name))
632                         return s[i].map.base_addr;
633         return 0;
634 }
635
636 /*
637  * Saves at boot time configured settings for any netdevice.
638  */
639 int __init netdev_boot_setup(char *str)
640 {
641         int ints[5];
642         struct ifmap map;
643
644         str = get_options(str, ARRAY_SIZE(ints), ints);
645         if (!str || !*str)
646                 return 0;
647
648         /* Save settings */
649         memset(&map, 0, sizeof(map));
650         if (ints[0] > 0)
651                 map.irq = ints[1];
652         if (ints[0] > 1)
653                 map.base_addr = ints[2];
654         if (ints[0] > 2)
655                 map.mem_start = ints[3];
656         if (ints[0] > 3)
657                 map.mem_end = ints[4];
658
659         /* Add new entry to the list */
660         return netdev_boot_setup_add(str, &map);
661 }
662
663 __setup("netdev=", netdev_boot_setup);
664
665 /*******************************************************************************
666
667                             Device Interface Subroutines
668
669 *******************************************************************************/
670
671 /**
672  *      dev_get_iflink  - get 'iflink' value of a interface
673  *      @dev: targeted interface
674  *
675  *      Indicates the ifindex the interface is linked to.
676  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
677  */
678
679 int dev_get_iflink(const struct net_device *dev)
680 {
681         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682                 return dev->netdev_ops->ndo_get_iflink(dev);
683
684         return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687
688 /**
689  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
690  *      @dev: targeted interface
691  *      @skb: The packet.
692  *
693  *      For better visibility of tunnel traffic OVS needs to retrieve
694  *      egress tunnel information for a packet. Following API allows
695  *      user to get this info.
696  */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699         struct ip_tunnel_info *info;
700
701         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
702                 return -EINVAL;
703
704         info = skb_tunnel_info_unclone(skb);
705         if (!info)
706                 return -ENOMEM;
707         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708                 return -EINVAL;
709
710         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
714 /**
715  *      __dev_get_by_name       - find a device by its name
716  *      @net: the applicable net namespace
717  *      @name: name to find
718  *
719  *      Find an interface by name. Must be called under RTNL semaphore
720  *      or @dev_base_lock. If the name is found a pointer to the device
721  *      is returned. If the name is not found then %NULL is returned. The
722  *      reference counters are not incremented so the caller must be
723  *      careful with locks.
724  */
725
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728         struct net_device *dev;
729         struct hlist_head *head = dev_name_hash(net, name);
730
731         hlist_for_each_entry(dev, head, name_hlist)
732                 if (!strncmp(dev->name, name, IFNAMSIZ))
733                         return dev;
734
735         return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738
739 /**
740  *      dev_get_by_name_rcu     - find a device by its name
741  *      @net: the applicable net namespace
742  *      @name: name to find
743  *
744  *      Find an interface by name.
745  *      If the name is found a pointer to the device is returned.
746  *      If the name is not found then %NULL is returned.
747  *      The reference counters are not incremented so the caller must be
748  *      careful with locks. The caller must hold RCU lock.
749  */
750
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753         struct net_device *dev;
754         struct hlist_head *head = dev_name_hash(net, name);
755
756         hlist_for_each_entry_rcu(dev, head, name_hlist)
757                 if (!strncmp(dev->name, name, IFNAMSIZ))
758                         return dev;
759
760         return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763
764 /**
765  *      dev_get_by_name         - find a device by its name
766  *      @net: the applicable net namespace
767  *      @name: name to find
768  *
769  *      Find an interface by name. This can be called from any
770  *      context and does its own locking. The returned handle has
771  *      the usage count incremented and the caller must use dev_put() to
772  *      release it when it is no longer needed. %NULL is returned if no
773  *      matching device is found.
774  */
775
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778         struct net_device *dev;
779
780         rcu_read_lock();
781         dev = dev_get_by_name_rcu(net, name);
782         if (dev)
783                 dev_hold(dev);
784         rcu_read_unlock();
785         return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788
789 /**
790  *      __dev_get_by_index - find a device by its ifindex
791  *      @net: the applicable net namespace
792  *      @ifindex: index of device
793  *
794  *      Search for an interface by index. Returns %NULL if the device
795  *      is not found or a pointer to the device. The device has not
796  *      had its reference counter increased so the caller must be careful
797  *      about locking. The caller must hold either the RTNL semaphore
798  *      or @dev_base_lock.
799  */
800
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803         struct net_device *dev;
804         struct hlist_head *head = dev_index_hash(net, ifindex);
805
806         hlist_for_each_entry(dev, head, index_hlist)
807                 if (dev->ifindex == ifindex)
808                         return dev;
809
810         return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813
814 /**
815  *      dev_get_by_index_rcu - find a device by its ifindex
816  *      @net: the applicable net namespace
817  *      @ifindex: index of device
818  *
819  *      Search for an interface by index. Returns %NULL if the device
820  *      is not found or a pointer to the device. The device has not
821  *      had its reference counter increased so the caller must be careful
822  *      about locking. The caller must hold RCU lock.
823  */
824
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827         struct net_device *dev;
828         struct hlist_head *head = dev_index_hash(net, ifindex);
829
830         hlist_for_each_entry_rcu(dev, head, index_hlist)
831                 if (dev->ifindex == ifindex)
832                         return dev;
833
834         return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837
838
839 /**
840  *      dev_get_by_index - find a device by its ifindex
841  *      @net: the applicable net namespace
842  *      @ifindex: index of device
843  *
844  *      Search for an interface by index. Returns NULL if the device
845  *      is not found or a pointer to the device. The device returned has
846  *      had a reference added and the pointer is safe until the user calls
847  *      dev_put to indicate they have finished with it.
848  */
849
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852         struct net_device *dev;
853
854         rcu_read_lock();
855         dev = dev_get_by_index_rcu(net, ifindex);
856         if (dev)
857                 dev_hold(dev);
858         rcu_read_unlock();
859         return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862
863 /**
864  *      netdev_get_name - get a netdevice name, knowing its ifindex.
865  *      @net: network namespace
866  *      @name: a pointer to the buffer where the name will be stored.
867  *      @ifindex: the ifindex of the interface to get the name from.
868  *
869  *      The use of raw_seqcount_begin() and cond_resched() before
870  *      retrying is required as we want to give the writers a chance
871  *      to complete when CONFIG_PREEMPT is not set.
872  */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875         struct net_device *dev;
876         unsigned int seq;
877
878 retry:
879         seq = raw_seqcount_begin(&devnet_rename_seq);
880         rcu_read_lock();
881         dev = dev_get_by_index_rcu(net, ifindex);
882         if (!dev) {
883                 rcu_read_unlock();
884                 return -ENODEV;
885         }
886
887         strcpy(name, dev->name);
888         rcu_read_unlock();
889         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890                 cond_resched();
891                 goto retry;
892         }
893
894         return 0;
895 }
896
897 /**
898  *      dev_getbyhwaddr_rcu - find a device by its hardware address
899  *      @net: the applicable net namespace
900  *      @type: media type of device
901  *      @ha: hardware address
902  *
903  *      Search for an interface by MAC address. Returns NULL if the device
904  *      is not found or a pointer to the device.
905  *      The caller must hold RCU or RTNL.
906  *      The returned device has not had its ref count increased
907  *      and the caller must therefore be careful about locking
908  *
909  */
910
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912                                        const char *ha)
913 {
914         struct net_device *dev;
915
916         for_each_netdev_rcu(net, dev)
917                 if (dev->type == type &&
918                     !memcmp(dev->dev_addr, ha, dev->addr_len))
919                         return dev;
920
921         return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927         struct net_device *dev;
928
929         ASSERT_RTNL();
930         for_each_netdev(net, dev)
931                 if (dev->type == type)
932                         return dev;
933
934         return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940         struct net_device *dev, *ret = NULL;
941
942         rcu_read_lock();
943         for_each_netdev_rcu(net, dev)
944                 if (dev->type == type) {
945                         dev_hold(dev);
946                         ret = dev;
947                         break;
948                 }
949         rcu_read_unlock();
950         return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954 /**
955  *      __dev_get_by_flags - find any device with given flags
956  *      @net: the applicable net namespace
957  *      @if_flags: IFF_* values
958  *      @mask: bitmask of bits in if_flags to check
959  *
960  *      Search for any interface with the given flags. Returns NULL if a device
961  *      is not found or a pointer to the device. Must be called inside
962  *      rtnl_lock(), and result refcount is unchanged.
963  */
964
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966                                       unsigned short mask)
967 {
968         struct net_device *dev, *ret;
969
970         ASSERT_RTNL();
971
972         ret = NULL;
973         for_each_netdev(net, dev) {
974                 if (((dev->flags ^ if_flags) & mask) == 0) {
975                         ret = dev;
976                         break;
977                 }
978         }
979         return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982
983 /**
984  *      dev_valid_name - check if name is okay for network device
985  *      @name: name string
986  *
987  *      Network device names need to be valid file names to
988  *      to allow sysfs to work.  We also disallow any kind of
989  *      whitespace.
990  */
991 bool dev_valid_name(const char *name)
992 {
993         if (*name == '\0')
994                 return false;
995         if (strlen(name) >= IFNAMSIZ)
996                 return false;
997         if (!strcmp(name, ".") || !strcmp(name, ".."))
998                 return false;
999
1000         while (*name) {
1001                 if (*name == '/' || *name == ':' || isspace(*name))
1002                         return false;
1003                 name++;
1004         }
1005         return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008
1009 /**
1010  *      __dev_alloc_name - allocate a name for a device
1011  *      @net: network namespace to allocate the device name in
1012  *      @name: name format string
1013  *      @buf:  scratch buffer and result name string
1014  *
1015  *      Passed a format string - eg "lt%d" it will try and find a suitable
1016  *      id. It scans list of devices to build up a free map, then chooses
1017  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1018  *      while allocating the name and adding the device in order to avoid
1019  *      duplicates.
1020  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021  *      Returns the number of the unit assigned or a negative errno code.
1022  */
1023
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026         int i = 0;
1027         const char *p;
1028         const int max_netdevices = 8*PAGE_SIZE;
1029         unsigned long *inuse;
1030         struct net_device *d;
1031
1032         p = strnchr(name, IFNAMSIZ-1, '%');
1033         if (p) {
1034                 /*
1035                  * Verify the string as this thing may have come from
1036                  * the user.  There must be either one "%d" and no other "%"
1037                  * characters.
1038                  */
1039                 if (p[1] != 'd' || strchr(p + 2, '%'))
1040                         return -EINVAL;
1041
1042                 /* Use one page as a bit array of possible slots */
1043                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044                 if (!inuse)
1045                         return -ENOMEM;
1046
1047                 for_each_netdev(net, d) {
1048                         if (!sscanf(d->name, name, &i))
1049                                 continue;
1050                         if (i < 0 || i >= max_netdevices)
1051                                 continue;
1052
1053                         /*  avoid cases where sscanf is not exact inverse of printf */
1054                         snprintf(buf, IFNAMSIZ, name, i);
1055                         if (!strncmp(buf, d->name, IFNAMSIZ))
1056                                 set_bit(i, inuse);
1057                 }
1058
1059                 i = find_first_zero_bit(inuse, max_netdevices);
1060                 free_page((unsigned long) inuse);
1061         }
1062
1063         if (buf != name)
1064                 snprintf(buf, IFNAMSIZ, name, i);
1065         if (!__dev_get_by_name(net, buf))
1066                 return i;
1067
1068         /* It is possible to run out of possible slots
1069          * when the name is long and there isn't enough space left
1070          * for the digits, or if all bits are used.
1071          */
1072         return -ENFILE;
1073 }
1074
1075 /**
1076  *      dev_alloc_name - allocate a name for a device
1077  *      @dev: device
1078  *      @name: name format string
1079  *
1080  *      Passed a format string - eg "lt%d" it will try and find a suitable
1081  *      id. It scans list of devices to build up a free map, then chooses
1082  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *      while allocating the name and adding the device in order to avoid
1084  *      duplicates.
1085  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *      Returns the number of the unit assigned or a negative errno code.
1087  */
1088
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091         char buf[IFNAMSIZ];
1092         struct net *net;
1093         int ret;
1094
1095         BUG_ON(!dev_net(dev));
1096         net = dev_net(dev);
1097         ret = __dev_alloc_name(net, name, buf);
1098         if (ret >= 0)
1099                 strlcpy(dev->name, buf, IFNAMSIZ);
1100         return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103
1104 static int dev_alloc_name_ns(struct net *net,
1105                              struct net_device *dev,
1106                              const char *name)
1107 {
1108         char buf[IFNAMSIZ];
1109         int ret;
1110
1111         ret = __dev_alloc_name(net, name, buf);
1112         if (ret >= 0)
1113                 strlcpy(dev->name, buf, IFNAMSIZ);
1114         return ret;
1115 }
1116
1117 static int dev_get_valid_name(struct net *net,
1118                               struct net_device *dev,
1119                               const char *name)
1120 {
1121         BUG_ON(!net);
1122
1123         if (!dev_valid_name(name))
1124                 return -EINVAL;
1125
1126         if (strchr(name, '%'))
1127                 return dev_alloc_name_ns(net, dev, name);
1128         else if (__dev_get_by_name(net, name))
1129                 return -EEXIST;
1130         else if (dev->name != name)
1131                 strlcpy(dev->name, name, IFNAMSIZ);
1132
1133         return 0;
1134 }
1135
1136 /**
1137  *      dev_change_name - change name of a device
1138  *      @dev: device
1139  *      @newname: name (or format string) must be at least IFNAMSIZ
1140  *
1141  *      Change name of a device, can pass format strings "eth%d".
1142  *      for wildcarding.
1143  */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146         unsigned char old_assign_type;
1147         char oldname[IFNAMSIZ];
1148         int err = 0;
1149         int ret;
1150         struct net *net;
1151
1152         ASSERT_RTNL();
1153         BUG_ON(!dev_net(dev));
1154
1155         net = dev_net(dev);
1156         if (dev->flags & IFF_UP)
1157                 return -EBUSY;
1158
1159         write_seqcount_begin(&devnet_rename_seq);
1160
1161         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162                 write_seqcount_end(&devnet_rename_seq);
1163                 return 0;
1164         }
1165
1166         memcpy(oldname, dev->name, IFNAMSIZ);
1167
1168         err = dev_get_valid_name(net, dev, newname);
1169         if (err < 0) {
1170                 write_seqcount_end(&devnet_rename_seq);
1171                 return err;
1172         }
1173
1174         if (oldname[0] && !strchr(oldname, '%'))
1175                 netdev_info(dev, "renamed from %s\n", oldname);
1176
1177         old_assign_type = dev->name_assign_type;
1178         dev->name_assign_type = NET_NAME_RENAMED;
1179
1180 rollback:
1181         ret = device_rename(&dev->dev, dev->name);
1182         if (ret) {
1183                 memcpy(dev->name, oldname, IFNAMSIZ);
1184                 dev->name_assign_type = old_assign_type;
1185                 write_seqcount_end(&devnet_rename_seq);
1186                 return ret;
1187         }
1188
1189         write_seqcount_end(&devnet_rename_seq);
1190
1191         netdev_adjacent_rename_links(dev, oldname);
1192
1193         write_lock_bh(&dev_base_lock);
1194         hlist_del_rcu(&dev->name_hlist);
1195         write_unlock_bh(&dev_base_lock);
1196
1197         synchronize_rcu();
1198
1199         write_lock_bh(&dev_base_lock);
1200         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201         write_unlock_bh(&dev_base_lock);
1202
1203         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204         ret = notifier_to_errno(ret);
1205
1206         if (ret) {
1207                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208                 if (err >= 0) {
1209                         err = ret;
1210                         write_seqcount_begin(&devnet_rename_seq);
1211                         memcpy(dev->name, oldname, IFNAMSIZ);
1212                         memcpy(oldname, newname, IFNAMSIZ);
1213                         dev->name_assign_type = old_assign_type;
1214                         old_assign_type = NET_NAME_RENAMED;
1215                         goto rollback;
1216                 } else {
1217                         pr_err("%s: name change rollback failed: %d\n",
1218                                dev->name, ret);
1219                 }
1220         }
1221
1222         return err;
1223 }
1224
1225 /**
1226  *      dev_set_alias - change ifalias of a device
1227  *      @dev: device
1228  *      @alias: name up to IFALIASZ
1229  *      @len: limit of bytes to copy from info
1230  *
1231  *      Set ifalias for a device,
1232  */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235         char *new_ifalias;
1236
1237         ASSERT_RTNL();
1238
1239         if (len >= IFALIASZ)
1240                 return -EINVAL;
1241
1242         if (!len) {
1243                 kfree(dev->ifalias);
1244                 dev->ifalias = NULL;
1245                 return 0;
1246         }
1247
1248         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249         if (!new_ifalias)
1250                 return -ENOMEM;
1251         dev->ifalias = new_ifalias;
1252
1253         strlcpy(dev->ifalias, alias, len+1);
1254         return len;
1255 }
1256
1257
1258 /**
1259  *      netdev_features_change - device changes features
1260  *      @dev: device to cause notification
1261  *
1262  *      Called to indicate a device has changed features.
1263  */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269
1270 /**
1271  *      netdev_state_change - device changes state
1272  *      @dev: device to cause notification
1273  *
1274  *      Called to indicate a device has changed state. This function calls
1275  *      the notifier chains for netdev_chain and sends a NEWLINK message
1276  *      to the routing socket.
1277  */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280         if (dev->flags & IFF_UP) {
1281                 struct netdev_notifier_change_info change_info;
1282
1283                 change_info.flags_changed = 0;
1284                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285                                               &change_info.info);
1286                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287         }
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290
1291 /**
1292  *      netdev_notify_peers - notify network peers about existence of @dev
1293  *      @dev: network device
1294  *
1295  * Generate traffic such that interested network peers are aware of
1296  * @dev, such as by generating a gratuitous ARP. This may be used when
1297  * a device wants to inform the rest of the network about some sort of
1298  * reconfiguration such as a failover event or virtual machine
1299  * migration.
1300  */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303         rtnl_lock();
1304         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305         rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308
1309 static int __dev_open(struct net_device *dev)
1310 {
1311         const struct net_device_ops *ops = dev->netdev_ops;
1312         int ret;
1313
1314         ASSERT_RTNL();
1315
1316         if (!netif_device_present(dev))
1317                 return -ENODEV;
1318
1319         /* Block netpoll from trying to do any rx path servicing.
1320          * If we don't do this there is a chance ndo_poll_controller
1321          * or ndo_poll may be running while we open the device
1322          */
1323         netpoll_poll_disable(dev);
1324
1325         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326         ret = notifier_to_errno(ret);
1327         if (ret)
1328                 return ret;
1329
1330         set_bit(__LINK_STATE_START, &dev->state);
1331
1332         if (ops->ndo_validate_addr)
1333                 ret = ops->ndo_validate_addr(dev);
1334
1335         if (!ret && ops->ndo_open)
1336                 ret = ops->ndo_open(dev);
1337
1338         netpoll_poll_enable(dev);
1339
1340         if (ret)
1341                 clear_bit(__LINK_STATE_START, &dev->state);
1342         else {
1343                 dev->flags |= IFF_UP;
1344                 dev_set_rx_mode(dev);
1345                 dev_activate(dev);
1346                 add_device_randomness(dev->dev_addr, dev->addr_len);
1347         }
1348
1349         return ret;
1350 }
1351
1352 /**
1353  *      dev_open        - prepare an interface for use.
1354  *      @dev:   device to open
1355  *
1356  *      Takes a device from down to up state. The device's private open
1357  *      function is invoked and then the multicast lists are loaded. Finally
1358  *      the device is moved into the up state and a %NETDEV_UP message is
1359  *      sent to the netdev notifier chain.
1360  *
1361  *      Calling this function on an active interface is a nop. On a failure
1362  *      a negative errno code is returned.
1363  */
1364 int dev_open(struct net_device *dev)
1365 {
1366         int ret;
1367
1368         if (dev->flags & IFF_UP)
1369                 return 0;
1370
1371         ret = __dev_open(dev);
1372         if (ret < 0)
1373                 return ret;
1374
1375         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376         call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378         return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384         struct net_device *dev;
1385
1386         ASSERT_RTNL();
1387         might_sleep();
1388
1389         list_for_each_entry(dev, head, close_list) {
1390                 /* Temporarily disable netpoll until the interface is down */
1391                 netpoll_poll_disable(dev);
1392
1393                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394
1395                 clear_bit(__LINK_STATE_START, &dev->state);
1396
1397                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398                  * can be even on different cpu. So just clear netif_running().
1399                  *
1400                  * dev->stop() will invoke napi_disable() on all of it's
1401                  * napi_struct instances on this device.
1402                  */
1403                 smp_mb__after_atomic(); /* Commit netif_running(). */
1404         }
1405
1406         dev_deactivate_many(head);
1407
1408         list_for_each_entry(dev, head, close_list) {
1409                 const struct net_device_ops *ops = dev->netdev_ops;
1410
1411                 /*
1412                  *      Call the device specific close. This cannot fail.
1413                  *      Only if device is UP
1414                  *
1415                  *      We allow it to be called even after a DETACH hot-plug
1416                  *      event.
1417                  */
1418                 if (ops->ndo_stop)
1419                         ops->ndo_stop(dev);
1420
1421                 dev->flags &= ~IFF_UP;
1422                 netpoll_poll_enable(dev);
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int __dev_close(struct net_device *dev)
1429 {
1430         int retval;
1431         LIST_HEAD(single);
1432
1433         list_add(&dev->close_list, &single);
1434         retval = __dev_close_many(&single);
1435         list_del(&single);
1436
1437         return retval;
1438 }
1439
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442         struct net_device *dev, *tmp;
1443
1444         /* Remove the devices that don't need to be closed */
1445         list_for_each_entry_safe(dev, tmp, head, close_list)
1446                 if (!(dev->flags & IFF_UP))
1447                         list_del_init(&dev->close_list);
1448
1449         __dev_close_many(head);
1450
1451         list_for_each_entry_safe(dev, tmp, head, close_list) {
1452                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454                 if (unlink)
1455                         list_del_init(&dev->close_list);
1456         }
1457
1458         return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461
1462 /**
1463  *      dev_close - shutdown an interface.
1464  *      @dev: device to shutdown
1465  *
1466  *      This function moves an active device into down state. A
1467  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469  *      chain.
1470  */
1471 int dev_close(struct net_device *dev)
1472 {
1473         if (dev->flags & IFF_UP) {
1474                 LIST_HEAD(single);
1475
1476                 list_add(&dev->close_list, &single);
1477                 dev_close_many(&single, true);
1478                 list_del(&single);
1479         }
1480         return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483
1484
1485 /**
1486  *      dev_disable_lro - disable Large Receive Offload on a device
1487  *      @dev: device
1488  *
1489  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1490  *      called under RTNL.  This is needed if received packets may be
1491  *      forwarded to another interface.
1492  */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495         struct net_device *lower_dev;
1496         struct list_head *iter;
1497
1498         dev->wanted_features &= ~NETIF_F_LRO;
1499         netdev_update_features(dev);
1500
1501         if (unlikely(dev->features & NETIF_F_LRO))
1502                 netdev_WARN(dev, "failed to disable LRO!\n");
1503
1504         netdev_for_each_lower_dev(dev, lower_dev, iter)
1505                 dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510                                    struct net_device *dev)
1511 {
1512         struct netdev_notifier_info info;
1513
1514         netdev_notifier_info_init(&info, dev);
1515         return nb->notifier_call(nb, val, &info);
1516 }
1517
1518 static int dev_boot_phase = 1;
1519
1520 /**
1521  *      register_netdevice_notifier - register a network notifier block
1522  *      @nb: notifier
1523  *
1524  *      Register a notifier to be called when network device events occur.
1525  *      The notifier passed is linked into the kernel structures and must
1526  *      not be reused until it has been unregistered. A negative errno code
1527  *      is returned on a failure.
1528  *
1529  *      When registered all registration and up events are replayed
1530  *      to the new notifier to allow device to have a race free
1531  *      view of the network device list.
1532  */
1533
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536         struct net_device *dev;
1537         struct net_device *last;
1538         struct net *net;
1539         int err;
1540
1541         rtnl_lock();
1542         err = raw_notifier_chain_register(&netdev_chain, nb);
1543         if (err)
1544                 goto unlock;
1545         if (dev_boot_phase)
1546                 goto unlock;
1547         for_each_net(net) {
1548                 for_each_netdev(net, dev) {
1549                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550                         err = notifier_to_errno(err);
1551                         if (err)
1552                                 goto rollback;
1553
1554                         if (!(dev->flags & IFF_UP))
1555                                 continue;
1556
1557                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1558                 }
1559         }
1560
1561 unlock:
1562         rtnl_unlock();
1563         return err;
1564
1565 rollback:
1566         last = dev;
1567         for_each_net(net) {
1568                 for_each_netdev(net, dev) {
1569                         if (dev == last)
1570                                 goto outroll;
1571
1572                         if (dev->flags & IFF_UP) {
1573                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574                                                         dev);
1575                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576                         }
1577                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578                 }
1579         }
1580
1581 outroll:
1582         raw_notifier_chain_unregister(&netdev_chain, nb);
1583         goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586
1587 /**
1588  *      unregister_netdevice_notifier - unregister a network notifier block
1589  *      @nb: notifier
1590  *
1591  *      Unregister a notifier previously registered by
1592  *      register_netdevice_notifier(). The notifier is unlinked into the
1593  *      kernel structures and may then be reused. A negative errno code
1594  *      is returned on a failure.
1595  *
1596  *      After unregistering unregister and down device events are synthesized
1597  *      for all devices on the device list to the removed notifier to remove
1598  *      the need for special case cleanup code.
1599  */
1600
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603         struct net_device *dev;
1604         struct net *net;
1605         int err;
1606
1607         rtnl_lock();
1608         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609         if (err)
1610                 goto unlock;
1611
1612         for_each_net(net) {
1613                 for_each_netdev(net, dev) {
1614                         if (dev->flags & IFF_UP) {
1615                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616                                                         dev);
1617                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618                         }
1619                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620                 }
1621         }
1622 unlock:
1623         rtnl_unlock();
1624         return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627
1628 /**
1629  *      call_netdevice_notifiers_info - call all network notifier blocks
1630  *      @val: value passed unmodified to notifier function
1631  *      @dev: net_device pointer passed unmodified to notifier function
1632  *      @info: notifier information data
1633  *
1634  *      Call all network notifier blocks.  Parameters and return value
1635  *      are as for raw_notifier_call_chain().
1636  */
1637
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639                                          struct net_device *dev,
1640                                          struct netdev_notifier_info *info)
1641 {
1642         ASSERT_RTNL();
1643         netdev_notifier_info_init(info, dev);
1644         return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646
1647 /**
1648  *      call_netdevice_notifiers - call all network notifier blocks
1649  *      @val: value passed unmodified to notifier function
1650  *      @dev: net_device pointer passed unmodified to notifier function
1651  *
1652  *      Call all network notifier blocks.  Parameters and return value
1653  *      are as for raw_notifier_call_chain().
1654  */
1655
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658         struct netdev_notifier_info info;
1659
1660         return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666
1667 void net_inc_ingress_queue(void)
1668 {
1669         static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673 void net_dec_ingress_queue(void)
1674 {
1675         static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682
1683 void net_inc_egress_queue(void)
1684 {
1685         static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689 void net_dec_egress_queue(void)
1690 {
1691         static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699  * If net_disable_timestamp() is called from irq context, defer the
1700  * static_key_slow_dec() calls.
1701  */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710         if (deferred) {
1711                 while (--deferred)
1712                         static_key_slow_dec(&netstamp_needed);
1713                 return;
1714         }
1715 #endif
1716         static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723         if (in_interrupt()) {
1724                 atomic_inc(&netstamp_needed_deferred);
1725                 return;
1726         }
1727 #endif
1728         static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734         skb->tstamp.tv64 = 0;
1735         if (static_key_false(&netstamp_needed))
1736                 __net_timestamp(skb);
1737 }
1738
1739 #define net_timestamp_check(COND, SKB)                  \
1740         if (static_key_false(&netstamp_needed)) {               \
1741                 if ((COND) && !(SKB)->tstamp.tv64)      \
1742                         __net_timestamp(SKB);           \
1743         }                                               \
1744
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747         unsigned int len;
1748
1749         if (!(dev->flags & IFF_UP))
1750                 return false;
1751
1752         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753         if (skb->len <= len)
1754                 return true;
1755
1756         /* if TSO is enabled, we don't care about the length as the packet
1757          * could be forwarded without being segmented before
1758          */
1759         if (skb_is_gso(skb))
1760                 return true;
1761
1762         return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1769             unlikely(!is_skb_forwardable(dev, skb))) {
1770                 atomic_long_inc(&dev->rx_dropped);
1771                 kfree_skb(skb);
1772                 return NET_RX_DROP;
1773         }
1774
1775         skb_scrub_packet(skb, true);
1776         skb->priority = 0;
1777         skb->protocol = eth_type_trans(skb, dev);
1778         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1779
1780         return 0;
1781 }
1782 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1783
1784 /**
1785  * dev_forward_skb - loopback an skb to another netif
1786  *
1787  * @dev: destination network device
1788  * @skb: buffer to forward
1789  *
1790  * return values:
1791  *      NET_RX_SUCCESS  (no congestion)
1792  *      NET_RX_DROP     (packet was dropped, but freed)
1793  *
1794  * dev_forward_skb can be used for injecting an skb from the
1795  * start_xmit function of one device into the receive queue
1796  * of another device.
1797  *
1798  * The receiving device may be in another namespace, so
1799  * we have to clear all information in the skb that could
1800  * impact namespace isolation.
1801  */
1802 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1803 {
1804         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1805 }
1806 EXPORT_SYMBOL_GPL(dev_forward_skb);
1807
1808 static inline int deliver_skb(struct sk_buff *skb,
1809                               struct packet_type *pt_prev,
1810                               struct net_device *orig_dev)
1811 {
1812         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1813                 return -ENOMEM;
1814         atomic_inc(&skb->users);
1815         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1816 }
1817
1818 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1819                                           struct packet_type **pt,
1820                                           struct net_device *orig_dev,
1821                                           __be16 type,
1822                                           struct list_head *ptype_list)
1823 {
1824         struct packet_type *ptype, *pt_prev = *pt;
1825
1826         list_for_each_entry_rcu(ptype, ptype_list, list) {
1827                 if (ptype->type != type)
1828                         continue;
1829                 if (pt_prev)
1830                         deliver_skb(skb, pt_prev, orig_dev);
1831                 pt_prev = ptype;
1832         }
1833         *pt = pt_prev;
1834 }
1835
1836 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1837 {
1838         if (!ptype->af_packet_priv || !skb->sk)
1839                 return false;
1840
1841         if (ptype->id_match)
1842                 return ptype->id_match(ptype, skb->sk);
1843         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1844                 return true;
1845
1846         return false;
1847 }
1848
1849 /*
1850  *      Support routine. Sends outgoing frames to any network
1851  *      taps currently in use.
1852  */
1853
1854 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1855 {
1856         struct packet_type *ptype;
1857         struct sk_buff *skb2 = NULL;
1858         struct packet_type *pt_prev = NULL;
1859         struct list_head *ptype_list = &ptype_all;
1860
1861         rcu_read_lock();
1862 again:
1863         list_for_each_entry_rcu(ptype, ptype_list, list) {
1864                 /* Never send packets back to the socket
1865                  * they originated from - MvS (miquels@drinkel.ow.org)
1866                  */
1867                 if (skb_loop_sk(ptype, skb))
1868                         continue;
1869
1870                 if (pt_prev) {
1871                         deliver_skb(skb2, pt_prev, skb->dev);
1872                         pt_prev = ptype;
1873                         continue;
1874                 }
1875
1876                 /* need to clone skb, done only once */
1877                 skb2 = skb_clone(skb, GFP_ATOMIC);
1878                 if (!skb2)
1879                         goto out_unlock;
1880
1881                 net_timestamp_set(skb2);
1882
1883                 /* skb->nh should be correctly
1884                  * set by sender, so that the second statement is
1885                  * just protection against buggy protocols.
1886                  */
1887                 skb_reset_mac_header(skb2);
1888
1889                 if (skb_network_header(skb2) < skb2->data ||
1890                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1891                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1892                                              ntohs(skb2->protocol),
1893                                              dev->name);
1894                         skb_reset_network_header(skb2);
1895                 }
1896
1897                 skb2->transport_header = skb2->network_header;
1898                 skb2->pkt_type = PACKET_OUTGOING;
1899                 pt_prev = ptype;
1900         }
1901
1902         if (ptype_list == &ptype_all) {
1903                 ptype_list = &dev->ptype_all;
1904                 goto again;
1905         }
1906 out_unlock:
1907         if (pt_prev)
1908                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1909         rcu_read_unlock();
1910 }
1911 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1912
1913 /**
1914  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1915  * @dev: Network device
1916  * @txq: number of queues available
1917  *
1918  * If real_num_tx_queues is changed the tc mappings may no longer be
1919  * valid. To resolve this verify the tc mapping remains valid and if
1920  * not NULL the mapping. With no priorities mapping to this
1921  * offset/count pair it will no longer be used. In the worst case TC0
1922  * is invalid nothing can be done so disable priority mappings. If is
1923  * expected that drivers will fix this mapping if they can before
1924  * calling netif_set_real_num_tx_queues.
1925  */
1926 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1927 {
1928         int i;
1929         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1930
1931         /* If TC0 is invalidated disable TC mapping */
1932         if (tc->offset + tc->count > txq) {
1933                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1934                 dev->num_tc = 0;
1935                 return;
1936         }
1937
1938         /* Invalidated prio to tc mappings set to TC0 */
1939         for (i = 1; i < TC_BITMASK + 1; i++) {
1940                 int q = netdev_get_prio_tc_map(dev, i);
1941
1942                 tc = &dev->tc_to_txq[q];
1943                 if (tc->offset + tc->count > txq) {
1944                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1945                                 i, q);
1946                         netdev_set_prio_tc_map(dev, i, 0);
1947                 }
1948         }
1949 }
1950
1951 #ifdef CONFIG_XPS
1952 static DEFINE_MUTEX(xps_map_mutex);
1953 #define xmap_dereference(P)             \
1954         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1955
1956 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1957                                         int cpu, u16 index)
1958 {
1959         struct xps_map *map = NULL;
1960         int pos;
1961
1962         if (dev_maps)
1963                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1964
1965         for (pos = 0; map && pos < map->len; pos++) {
1966                 if (map->queues[pos] == index) {
1967                         if (map->len > 1) {
1968                                 map->queues[pos] = map->queues[--map->len];
1969                         } else {
1970                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1971                                 kfree_rcu(map, rcu);
1972                                 map = NULL;
1973                         }
1974                         break;
1975                 }
1976         }
1977
1978         return map;
1979 }
1980
1981 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1982 {
1983         struct xps_dev_maps *dev_maps;
1984         int cpu, i;
1985         bool active = false;
1986
1987         mutex_lock(&xps_map_mutex);
1988         dev_maps = xmap_dereference(dev->xps_maps);
1989
1990         if (!dev_maps)
1991                 goto out_no_maps;
1992
1993         for_each_possible_cpu(cpu) {
1994                 for (i = index; i < dev->num_tx_queues; i++) {
1995                         if (!remove_xps_queue(dev_maps, cpu, i))
1996                                 break;
1997                 }
1998                 if (i == dev->num_tx_queues)
1999                         active = true;
2000         }
2001
2002         if (!active) {
2003                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2004                 kfree_rcu(dev_maps, rcu);
2005         }
2006
2007         for (i = index; i < dev->num_tx_queues; i++)
2008                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2009                                              NUMA_NO_NODE);
2010
2011 out_no_maps:
2012         mutex_unlock(&xps_map_mutex);
2013 }
2014
2015 static struct xps_map *expand_xps_map(struct xps_map *map,
2016                                       int cpu, u16 index)
2017 {
2018         struct xps_map *new_map;
2019         int alloc_len = XPS_MIN_MAP_ALLOC;
2020         int i, pos;
2021
2022         for (pos = 0; map && pos < map->len; pos++) {
2023                 if (map->queues[pos] != index)
2024                         continue;
2025                 return map;
2026         }
2027
2028         /* Need to add queue to this CPU's existing map */
2029         if (map) {
2030                 if (pos < map->alloc_len)
2031                         return map;
2032
2033                 alloc_len = map->alloc_len * 2;
2034         }
2035
2036         /* Need to allocate new map to store queue on this CPU's map */
2037         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2038                                cpu_to_node(cpu));
2039         if (!new_map)
2040                 return NULL;
2041
2042         for (i = 0; i < pos; i++)
2043                 new_map->queues[i] = map->queues[i];
2044         new_map->alloc_len = alloc_len;
2045         new_map->len = pos;
2046
2047         return new_map;
2048 }
2049
2050 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2051                         u16 index)
2052 {
2053         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2054         struct xps_map *map, *new_map;
2055         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2056         int cpu, numa_node_id = -2;
2057         bool active = false;
2058
2059         mutex_lock(&xps_map_mutex);
2060
2061         dev_maps = xmap_dereference(dev->xps_maps);
2062
2063         /* allocate memory for queue storage */
2064         for_each_online_cpu(cpu) {
2065                 if (!cpumask_test_cpu(cpu, mask))
2066                         continue;
2067
2068                 if (!new_dev_maps)
2069                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2070                 if (!new_dev_maps) {
2071                         mutex_unlock(&xps_map_mutex);
2072                         return -ENOMEM;
2073                 }
2074
2075                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2076                                  NULL;
2077
2078                 map = expand_xps_map(map, cpu, index);
2079                 if (!map)
2080                         goto error;
2081
2082                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2083         }
2084
2085         if (!new_dev_maps)
2086                 goto out_no_new_maps;
2087
2088         for_each_possible_cpu(cpu) {
2089                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2090                         /* add queue to CPU maps */
2091                         int pos = 0;
2092
2093                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2094                         while ((pos < map->len) && (map->queues[pos] != index))
2095                                 pos++;
2096
2097                         if (pos == map->len)
2098                                 map->queues[map->len++] = index;
2099 #ifdef CONFIG_NUMA
2100                         if (numa_node_id == -2)
2101                                 numa_node_id = cpu_to_node(cpu);
2102                         else if (numa_node_id != cpu_to_node(cpu))
2103                                 numa_node_id = -1;
2104 #endif
2105                 } else if (dev_maps) {
2106                         /* fill in the new device map from the old device map */
2107                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2108                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2109                 }
2110
2111         }
2112
2113         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2114
2115         /* Cleanup old maps */
2116         if (dev_maps) {
2117                 for_each_possible_cpu(cpu) {
2118                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2119                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2120                         if (map && map != new_map)
2121                                 kfree_rcu(map, rcu);
2122                 }
2123
2124                 kfree_rcu(dev_maps, rcu);
2125         }
2126
2127         dev_maps = new_dev_maps;
2128         active = true;
2129
2130 out_no_new_maps:
2131         /* update Tx queue numa node */
2132         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2133                                      (numa_node_id >= 0) ? numa_node_id :
2134                                      NUMA_NO_NODE);
2135
2136         if (!dev_maps)
2137                 goto out_no_maps;
2138
2139         /* removes queue from unused CPUs */
2140         for_each_possible_cpu(cpu) {
2141                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2142                         continue;
2143
2144                 if (remove_xps_queue(dev_maps, cpu, index))
2145                         active = true;
2146         }
2147
2148         /* free map if not active */
2149         if (!active) {
2150                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2151                 kfree_rcu(dev_maps, rcu);
2152         }
2153
2154 out_no_maps:
2155         mutex_unlock(&xps_map_mutex);
2156
2157         return 0;
2158 error:
2159         /* remove any maps that we added */
2160         for_each_possible_cpu(cpu) {
2161                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2162                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2163                                  NULL;
2164                 if (new_map && new_map != map)
2165                         kfree(new_map);
2166         }
2167
2168         mutex_unlock(&xps_map_mutex);
2169
2170         kfree(new_dev_maps);
2171         return -ENOMEM;
2172 }
2173 EXPORT_SYMBOL(netif_set_xps_queue);
2174
2175 #endif
2176 /*
2177  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2178  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2179  */
2180 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2181 {
2182         int rc;
2183
2184         if (txq < 1 || txq > dev->num_tx_queues)
2185                 return -EINVAL;
2186
2187         if (dev->reg_state == NETREG_REGISTERED ||
2188             dev->reg_state == NETREG_UNREGISTERING) {
2189                 ASSERT_RTNL();
2190
2191                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2192                                                   txq);
2193                 if (rc)
2194                         return rc;
2195
2196                 if (dev->num_tc)
2197                         netif_setup_tc(dev, txq);
2198
2199                 if (txq < dev->real_num_tx_queues) {
2200                         qdisc_reset_all_tx_gt(dev, txq);
2201 #ifdef CONFIG_XPS
2202                         netif_reset_xps_queues_gt(dev, txq);
2203 #endif
2204                 }
2205         }
2206
2207         dev->real_num_tx_queues = txq;
2208         return 0;
2209 }
2210 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2211
2212 #ifdef CONFIG_SYSFS
2213 /**
2214  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2215  *      @dev: Network device
2216  *      @rxq: Actual number of RX queues
2217  *
2218  *      This must be called either with the rtnl_lock held or before
2219  *      registration of the net device.  Returns 0 on success, or a
2220  *      negative error code.  If called before registration, it always
2221  *      succeeds.
2222  */
2223 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2224 {
2225         int rc;
2226
2227         if (rxq < 1 || rxq > dev->num_rx_queues)
2228                 return -EINVAL;
2229
2230         if (dev->reg_state == NETREG_REGISTERED) {
2231                 ASSERT_RTNL();
2232
2233                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2234                                                   rxq);
2235                 if (rc)
2236                         return rc;
2237         }
2238
2239         dev->real_num_rx_queues = rxq;
2240         return 0;
2241 }
2242 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2243 #endif
2244
2245 /**
2246  * netif_get_num_default_rss_queues - default number of RSS queues
2247  *
2248  * This routine should set an upper limit on the number of RSS queues
2249  * used by default by multiqueue devices.
2250  */
2251 int netif_get_num_default_rss_queues(void)
2252 {
2253         return is_kdump_kernel() ?
2254                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2255 }
2256 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2257
2258 static void __netif_reschedule(struct Qdisc *q)
2259 {
2260         struct softnet_data *sd;
2261         unsigned long flags;
2262
2263         local_irq_save(flags);
2264         sd = this_cpu_ptr(&softnet_data);
2265         q->next_sched = NULL;
2266         *sd->output_queue_tailp = q;
2267         sd->output_queue_tailp = &q->next_sched;
2268         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2269         local_irq_restore(flags);
2270 }
2271
2272 void __netif_schedule(struct Qdisc *q)
2273 {
2274         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2275                 __netif_reschedule(q);
2276 }
2277 EXPORT_SYMBOL(__netif_schedule);
2278
2279 struct dev_kfree_skb_cb {
2280         enum skb_free_reason reason;
2281 };
2282
2283 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2284 {
2285         return (struct dev_kfree_skb_cb *)skb->cb;
2286 }
2287
2288 void netif_schedule_queue(struct netdev_queue *txq)
2289 {
2290         rcu_read_lock();
2291         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2292                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2293
2294                 __netif_schedule(q);
2295         }
2296         rcu_read_unlock();
2297 }
2298 EXPORT_SYMBOL(netif_schedule_queue);
2299
2300 /**
2301  *      netif_wake_subqueue - allow sending packets on subqueue
2302  *      @dev: network device
2303  *      @queue_index: sub queue index
2304  *
2305  * Resume individual transmit queue of a device with multiple transmit queues.
2306  */
2307 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2308 {
2309         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2310
2311         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2312                 struct Qdisc *q;
2313
2314                 rcu_read_lock();
2315                 q = rcu_dereference(txq->qdisc);
2316                 __netif_schedule(q);
2317                 rcu_read_unlock();
2318         }
2319 }
2320 EXPORT_SYMBOL(netif_wake_subqueue);
2321
2322 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2323 {
2324         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2325                 struct Qdisc *q;
2326
2327                 rcu_read_lock();
2328                 q = rcu_dereference(dev_queue->qdisc);
2329                 __netif_schedule(q);
2330                 rcu_read_unlock();
2331         }
2332 }
2333 EXPORT_SYMBOL(netif_tx_wake_queue);
2334
2335 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2336 {
2337         unsigned long flags;
2338
2339         if (likely(atomic_read(&skb->users) == 1)) {
2340                 smp_rmb();
2341                 atomic_set(&skb->users, 0);
2342         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2343                 return;
2344         }
2345         get_kfree_skb_cb(skb)->reason = reason;
2346         local_irq_save(flags);
2347         skb->next = __this_cpu_read(softnet_data.completion_queue);
2348         __this_cpu_write(softnet_data.completion_queue, skb);
2349         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2350         local_irq_restore(flags);
2351 }
2352 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2353
2354 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2355 {
2356         if (in_irq() || irqs_disabled())
2357                 __dev_kfree_skb_irq(skb, reason);
2358         else
2359                 dev_kfree_skb(skb);
2360 }
2361 EXPORT_SYMBOL(__dev_kfree_skb_any);
2362
2363
2364 /**
2365  * netif_device_detach - mark device as removed
2366  * @dev: network device
2367  *
2368  * Mark device as removed from system and therefore no longer available.
2369  */
2370 void netif_device_detach(struct net_device *dev)
2371 {
2372         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2373             netif_running(dev)) {
2374                 netif_tx_stop_all_queues(dev);
2375         }
2376 }
2377 EXPORT_SYMBOL(netif_device_detach);
2378
2379 /**
2380  * netif_device_attach - mark device as attached
2381  * @dev: network device
2382  *
2383  * Mark device as attached from system and restart if needed.
2384  */
2385 void netif_device_attach(struct net_device *dev)
2386 {
2387         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2388             netif_running(dev)) {
2389                 netif_tx_wake_all_queues(dev);
2390                 __netdev_watchdog_up(dev);
2391         }
2392 }
2393 EXPORT_SYMBOL(netif_device_attach);
2394
2395 /*
2396  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2397  * to be used as a distribution range.
2398  */
2399 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2400                   unsigned int num_tx_queues)
2401 {
2402         u32 hash;
2403         u16 qoffset = 0;
2404         u16 qcount = num_tx_queues;
2405
2406         if (skb_rx_queue_recorded(skb)) {
2407                 hash = skb_get_rx_queue(skb);
2408                 while (unlikely(hash >= num_tx_queues))
2409                         hash -= num_tx_queues;
2410                 return hash;
2411         }
2412
2413         if (dev->num_tc) {
2414                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2415                 qoffset = dev->tc_to_txq[tc].offset;
2416                 qcount = dev->tc_to_txq[tc].count;
2417         }
2418
2419         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2420 }
2421 EXPORT_SYMBOL(__skb_tx_hash);
2422
2423 static void skb_warn_bad_offload(const struct sk_buff *skb)
2424 {
2425         static const netdev_features_t null_features;
2426         struct net_device *dev = skb->dev;
2427         const char *name = "";
2428
2429         if (!net_ratelimit())
2430                 return;
2431
2432         if (dev) {
2433                 if (dev->dev.parent)
2434                         name = dev_driver_string(dev->dev.parent);
2435                 else
2436                         name = netdev_name(dev);
2437         }
2438         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2439              "gso_type=%d ip_summed=%d\n",
2440              name, dev ? &dev->features : &null_features,
2441              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2442              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2443              skb_shinfo(skb)->gso_type, skb->ip_summed);
2444 }
2445
2446 /*
2447  * Invalidate hardware checksum when packet is to be mangled, and
2448  * complete checksum manually on outgoing path.
2449  */
2450 int skb_checksum_help(struct sk_buff *skb)
2451 {
2452         __wsum csum;
2453         int ret = 0, offset;
2454
2455         if (skb->ip_summed == CHECKSUM_COMPLETE)
2456                 goto out_set_summed;
2457
2458         if (unlikely(skb_shinfo(skb)->gso_size)) {
2459                 skb_warn_bad_offload(skb);
2460                 return -EINVAL;
2461         }
2462
2463         /* Before computing a checksum, we should make sure no frag could
2464          * be modified by an external entity : checksum could be wrong.
2465          */
2466         if (skb_has_shared_frag(skb)) {
2467                 ret = __skb_linearize(skb);
2468                 if (ret)
2469                         goto out;
2470         }
2471
2472         offset = skb_checksum_start_offset(skb);
2473         BUG_ON(offset >= skb_headlen(skb));
2474         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2475
2476         offset += skb->csum_offset;
2477         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2478
2479         if (skb_cloned(skb) &&
2480             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2481                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2482                 if (ret)
2483                         goto out;
2484         }
2485
2486         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2487 out_set_summed:
2488         skb->ip_summed = CHECKSUM_NONE;
2489 out:
2490         return ret;
2491 }
2492 EXPORT_SYMBOL(skb_checksum_help);
2493
2494 /* skb_csum_offload_check - Driver helper function to determine if a device
2495  * with limited checksum offload capabilities is able to offload the checksum
2496  * for a given packet.
2497  *
2498  * Arguments:
2499  *   skb - sk_buff for the packet in question
2500  *   spec - contains the description of what device can offload
2501  *   csum_encapped - returns true if the checksum being offloaded is
2502  *            encpasulated. That is it is checksum for the transport header
2503  *            in the inner headers.
2504  *   checksum_help - when set indicates that helper function should
2505  *            call skb_checksum_help if offload checks fail
2506  *
2507  * Returns:
2508  *   true: Packet has passed the checksum checks and should be offloadable to
2509  *         the device (a driver may still need to check for additional
2510  *         restrictions of its device)
2511  *   false: Checksum is not offloadable. If checksum_help was set then
2512  *         skb_checksum_help was called to resolve checksum for non-GSO
2513  *         packets and when IP protocol is not SCTP
2514  */
2515 bool __skb_csum_offload_chk(struct sk_buff *skb,
2516                             const struct skb_csum_offl_spec *spec,
2517                             bool *csum_encapped,
2518                             bool csum_help)
2519 {
2520         struct iphdr *iph;
2521         struct ipv6hdr *ipv6;
2522         void *nhdr;
2523         int protocol;
2524         u8 ip_proto;
2525
2526         if (skb->protocol == htons(ETH_P_8021Q) ||
2527             skb->protocol == htons(ETH_P_8021AD)) {
2528                 if (!spec->vlan_okay)
2529                         goto need_help;
2530         }
2531
2532         /* We check whether the checksum refers to a transport layer checksum in
2533          * the outermost header or an encapsulated transport layer checksum that
2534          * corresponds to the inner headers of the skb. If the checksum is for
2535          * something else in the packet we need help.
2536          */
2537         if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2538                 /* Non-encapsulated checksum */
2539                 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2540                 nhdr = skb_network_header(skb);
2541                 *csum_encapped = false;
2542                 if (spec->no_not_encapped)
2543                         goto need_help;
2544         } else if (skb->encapsulation && spec->encap_okay &&
2545                    skb_checksum_start_offset(skb) ==
2546                    skb_inner_transport_offset(skb)) {
2547                 /* Encapsulated checksum */
2548                 *csum_encapped = true;
2549                 switch (skb->inner_protocol_type) {
2550                 case ENCAP_TYPE_ETHER:
2551                         protocol = eproto_to_ipproto(skb->inner_protocol);
2552                         break;
2553                 case ENCAP_TYPE_IPPROTO:
2554                         protocol = skb->inner_protocol;
2555                         break;
2556                 }
2557                 nhdr = skb_inner_network_header(skb);
2558         } else {
2559                 goto need_help;
2560         }
2561
2562         switch (protocol) {
2563         case IPPROTO_IP:
2564                 if (!spec->ipv4_okay)
2565                         goto need_help;
2566                 iph = nhdr;
2567                 ip_proto = iph->protocol;
2568                 if (iph->ihl != 5 && !spec->ip_options_okay)
2569                         goto need_help;
2570                 break;
2571         case IPPROTO_IPV6:
2572                 if (!spec->ipv6_okay)
2573                         goto need_help;
2574                 if (spec->no_encapped_ipv6 && *csum_encapped)
2575                         goto need_help;
2576                 ipv6 = nhdr;
2577                 nhdr += sizeof(*ipv6);
2578                 ip_proto = ipv6->nexthdr;
2579                 break;
2580         default:
2581                 goto need_help;
2582         }
2583
2584 ip_proto_again:
2585         switch (ip_proto) {
2586         case IPPROTO_TCP:
2587                 if (!spec->tcp_okay ||
2588                     skb->csum_offset != offsetof(struct tcphdr, check))
2589                         goto need_help;
2590                 break;
2591         case IPPROTO_UDP:
2592                 if (!spec->udp_okay ||
2593                     skb->csum_offset != offsetof(struct udphdr, check))
2594                         goto need_help;
2595                 break;
2596         case IPPROTO_SCTP:
2597                 if (!spec->sctp_okay ||
2598                     skb->csum_offset != offsetof(struct sctphdr, checksum))
2599                         goto cant_help;
2600                 break;
2601         case NEXTHDR_HOP:
2602         case NEXTHDR_ROUTING:
2603         case NEXTHDR_DEST: {
2604                 u8 *opthdr = nhdr;
2605
2606                 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2607                         goto need_help;
2608
2609                 ip_proto = opthdr[0];
2610                 nhdr += (opthdr[1] + 1) << 3;
2611
2612                 goto ip_proto_again;
2613         }
2614         default:
2615                 goto need_help;
2616         }
2617
2618         /* Passed the tests for offloading checksum */
2619         return true;
2620
2621 need_help:
2622         if (csum_help && !skb_shinfo(skb)->gso_size)
2623                 skb_checksum_help(skb);
2624 cant_help:
2625         return false;
2626 }
2627 EXPORT_SYMBOL(__skb_csum_offload_chk);
2628
2629 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2630 {
2631         __be16 type = skb->protocol;
2632
2633         /* Tunnel gso handlers can set protocol to ethernet. */
2634         if (type == htons(ETH_P_TEB)) {
2635                 struct ethhdr *eth;
2636
2637                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2638                         return 0;
2639
2640                 eth = (struct ethhdr *)skb_mac_header(skb);
2641                 type = eth->h_proto;
2642         }
2643
2644         return __vlan_get_protocol(skb, type, depth);
2645 }
2646
2647 /**
2648  *      skb_mac_gso_segment - mac layer segmentation handler.
2649  *      @skb: buffer to segment
2650  *      @features: features for the output path (see dev->features)
2651  */
2652 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2653                                     netdev_features_t features)
2654 {
2655         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2656         struct packet_offload *ptype;
2657         int vlan_depth = skb->mac_len;
2658         __be16 type = skb_network_protocol(skb, &vlan_depth);
2659
2660         if (unlikely(!type))
2661                 return ERR_PTR(-EINVAL);
2662
2663         __skb_pull(skb, vlan_depth);
2664
2665         rcu_read_lock();
2666         list_for_each_entry_rcu(ptype, &offload_base, list) {
2667                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2668                         segs = ptype->callbacks.gso_segment(skb, features);
2669                         break;
2670                 }
2671         }
2672         rcu_read_unlock();
2673
2674         __skb_push(skb, skb->data - skb_mac_header(skb));
2675
2676         return segs;
2677 }
2678 EXPORT_SYMBOL(skb_mac_gso_segment);
2679
2680
2681 /* openvswitch calls this on rx path, so we need a different check.
2682  */
2683 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2684 {
2685         if (tx_path)
2686                 return skb->ip_summed != CHECKSUM_PARTIAL;
2687         else
2688                 return skb->ip_summed == CHECKSUM_NONE;
2689 }
2690
2691 /**
2692  *      __skb_gso_segment - Perform segmentation on skb.
2693  *      @skb: buffer to segment
2694  *      @features: features for the output path (see dev->features)
2695  *      @tx_path: whether it is called in TX path
2696  *
2697  *      This function segments the given skb and returns a list of segments.
2698  *
2699  *      It may return NULL if the skb requires no segmentation.  This is
2700  *      only possible when GSO is used for verifying header integrity.
2701  *
2702  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2703  */
2704 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2705                                   netdev_features_t features, bool tx_path)
2706 {
2707         if (unlikely(skb_needs_check(skb, tx_path))) {
2708                 int err;
2709
2710                 skb_warn_bad_offload(skb);
2711
2712                 err = skb_cow_head(skb, 0);
2713                 if (err < 0)
2714                         return ERR_PTR(err);
2715         }
2716
2717         /* Only report GSO partial support if it will enable us to
2718          * support segmentation on this frame without needing additional
2719          * work.
2720          */
2721         if (features & NETIF_F_GSO_PARTIAL) {
2722                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2723                 struct net_device *dev = skb->dev;
2724
2725                 partial_features |= dev->features & dev->gso_partial_features;
2726                 if (!skb_gso_ok(skb, features | partial_features))
2727                         features &= ~NETIF_F_GSO_PARTIAL;
2728         }
2729
2730         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2731                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2732
2733         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2734         SKB_GSO_CB(skb)->encap_level = 0;
2735
2736         skb_reset_mac_header(skb);
2737         skb_reset_mac_len(skb);
2738
2739         return skb_mac_gso_segment(skb, features);
2740 }
2741 EXPORT_SYMBOL(__skb_gso_segment);
2742
2743 /* Take action when hardware reception checksum errors are detected. */
2744 #ifdef CONFIG_BUG
2745 void netdev_rx_csum_fault(struct net_device *dev)
2746 {
2747         if (net_ratelimit()) {
2748                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2749                 dump_stack();
2750         }
2751 }
2752 EXPORT_SYMBOL(netdev_rx_csum_fault);
2753 #endif
2754
2755 /* Actually, we should eliminate this check as soon as we know, that:
2756  * 1. IOMMU is present and allows to map all the memory.
2757  * 2. No high memory really exists on this machine.
2758  */
2759
2760 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2761 {
2762 #ifdef CONFIG_HIGHMEM
2763         int i;
2764         if (!(dev->features & NETIF_F_HIGHDMA)) {
2765                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2766                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2767                         if (PageHighMem(skb_frag_page(frag)))
2768                                 return 1;
2769                 }
2770         }
2771
2772         if (PCI_DMA_BUS_IS_PHYS) {
2773                 struct device *pdev = dev->dev.parent;
2774
2775                 if (!pdev)
2776                         return 0;
2777                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2778                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2779                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2780                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2781                                 return 1;
2782                 }
2783         }
2784 #endif
2785         return 0;
2786 }
2787
2788 /* If MPLS offload request, verify we are testing hardware MPLS features
2789  * instead of standard features for the netdev.
2790  */
2791 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2792 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2793                                            netdev_features_t features,
2794                                            __be16 type)
2795 {
2796         if (eth_p_mpls(type))
2797                 features &= skb->dev->mpls_features;
2798
2799         return features;
2800 }
2801 #else
2802 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2803                                            netdev_features_t features,
2804                                            __be16 type)
2805 {
2806         return features;
2807 }
2808 #endif
2809
2810 static netdev_features_t harmonize_features(struct sk_buff *skb,
2811         netdev_features_t features)
2812 {
2813         int tmp;
2814         __be16 type;
2815
2816         type = skb_network_protocol(skb, &tmp);
2817         features = net_mpls_features(skb, features, type);
2818
2819         if (skb->ip_summed != CHECKSUM_NONE &&
2820             !can_checksum_protocol(features, type)) {
2821                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2822         } else if (illegal_highdma(skb->dev, skb)) {
2823                 features &= ~NETIF_F_SG;
2824         }
2825
2826         return features;
2827 }
2828
2829 netdev_features_t passthru_features_check(struct sk_buff *skb,
2830                                           struct net_device *dev,
2831                                           netdev_features_t features)
2832 {
2833         return features;
2834 }
2835 EXPORT_SYMBOL(passthru_features_check);
2836
2837 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2838                                              struct net_device *dev,
2839                                              netdev_features_t features)
2840 {
2841         return vlan_features_check(skb, features);
2842 }
2843
2844 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2845                                             struct net_device *dev,
2846                                             netdev_features_t features)
2847 {
2848         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2849
2850         if (gso_segs > dev->gso_max_segs)
2851                 return features & ~NETIF_F_GSO_MASK;
2852
2853         /* Support for GSO partial features requires software
2854          * intervention before we can actually process the packets
2855          * so we need to strip support for any partial features now
2856          * and we can pull them back in after we have partially
2857          * segmented the frame.
2858          */
2859         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2860                 features &= ~dev->gso_partial_features;
2861
2862         /* Make sure to clear the IPv4 ID mangling feature if the
2863          * IPv4 header has the potential to be fragmented.
2864          */
2865         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2866                 struct iphdr *iph = skb->encapsulation ?
2867                                     inner_ip_hdr(skb) : ip_hdr(skb);
2868
2869                 if (!(iph->frag_off & htons(IP_DF)))
2870                         features &= ~NETIF_F_TSO_MANGLEID;
2871         }
2872
2873         return features;
2874 }
2875
2876 netdev_features_t netif_skb_features(struct sk_buff *skb)
2877 {
2878         struct net_device *dev = skb->dev;
2879         netdev_features_t features = dev->features;
2880
2881         if (skb_is_gso(skb))
2882                 features = gso_features_check(skb, dev, features);
2883
2884         /* If encapsulation offload request, verify we are testing
2885          * hardware encapsulation features instead of standard
2886          * features for the netdev
2887          */
2888         if (skb->encapsulation)
2889                 features &= dev->hw_enc_features;
2890
2891         if (skb_vlan_tagged(skb))
2892                 features = netdev_intersect_features(features,
2893                                                      dev->vlan_features |
2894                                                      NETIF_F_HW_VLAN_CTAG_TX |
2895                                                      NETIF_F_HW_VLAN_STAG_TX);
2896
2897         if (dev->netdev_ops->ndo_features_check)
2898                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2899                                                                 features);
2900         else
2901                 features &= dflt_features_check(skb, dev, features);
2902
2903         return harmonize_features(skb, features);
2904 }
2905 EXPORT_SYMBOL(netif_skb_features);
2906
2907 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2908                     struct netdev_queue *txq, bool more)
2909 {
2910         unsigned int len;
2911         int rc;
2912
2913         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2914                 dev_queue_xmit_nit(skb, dev);
2915
2916         len = skb->len;
2917         trace_net_dev_start_xmit(skb, dev);
2918         rc = netdev_start_xmit(skb, dev, txq, more);
2919         trace_net_dev_xmit(skb, rc, dev, len);
2920
2921         return rc;
2922 }
2923
2924 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2925                                     struct netdev_queue *txq, int *ret)
2926 {
2927         struct sk_buff *skb = first;
2928         int rc = NETDEV_TX_OK;
2929
2930         while (skb) {
2931                 struct sk_buff *next = skb->next;
2932
2933                 skb->next = NULL;
2934                 rc = xmit_one(skb, dev, txq, next != NULL);
2935                 if (unlikely(!dev_xmit_complete(rc))) {
2936                         skb->next = next;
2937                         goto out;
2938                 }
2939
2940                 skb = next;
2941                 if (netif_xmit_stopped(txq) && skb) {
2942                         rc = NETDEV_TX_BUSY;
2943                         break;
2944                 }
2945         }
2946
2947 out:
2948         *ret = rc;
2949         return skb;
2950 }
2951
2952 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2953                                           netdev_features_t features)
2954 {
2955         if (skb_vlan_tag_present(skb) &&
2956             !vlan_hw_offload_capable(features, skb->vlan_proto))
2957                 skb = __vlan_hwaccel_push_inside(skb);
2958         return skb;
2959 }
2960
2961 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2962 {
2963         netdev_features_t features;
2964
2965         features = netif_skb_features(skb);
2966         skb = validate_xmit_vlan(skb, features);
2967         if (unlikely(!skb))
2968                 goto out_null;
2969
2970         if (netif_needs_gso(skb, features)) {
2971                 struct sk_buff *segs;
2972
2973                 segs = skb_gso_segment(skb, features);
2974                 if (IS_ERR(segs)) {
2975                         goto out_kfree_skb;
2976                 } else if (segs) {
2977                         consume_skb(skb);
2978                         skb = segs;
2979                 }
2980         } else {
2981                 if (skb_needs_linearize(skb, features) &&
2982                     __skb_linearize(skb))
2983                         goto out_kfree_skb;
2984
2985                 /* If packet is not checksummed and device does not
2986                  * support checksumming for this protocol, complete
2987                  * checksumming here.
2988                  */
2989                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2990                         if (skb->encapsulation)
2991                                 skb_set_inner_transport_header(skb,
2992                                                                skb_checksum_start_offset(skb));
2993                         else
2994                                 skb_set_transport_header(skb,
2995                                                          skb_checksum_start_offset(skb));
2996                         if (!(features & NETIF_F_CSUM_MASK) &&
2997                             skb_checksum_help(skb))
2998                                 goto out_kfree_skb;
2999                 }
3000         }
3001
3002         return skb;
3003
3004 out_kfree_skb:
3005         kfree_skb(skb);
3006 out_null:
3007         atomic_long_inc(&dev->tx_dropped);
3008         return NULL;
3009 }
3010
3011 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3012 {
3013         struct sk_buff *next, *head = NULL, *tail;
3014
3015         for (; skb != NULL; skb = next) {
3016                 next = skb->next;
3017                 skb->next = NULL;
3018
3019                 /* in case skb wont be segmented, point to itself */
3020                 skb->prev = skb;
3021
3022                 skb = validate_xmit_skb(skb, dev);
3023                 if (!skb)
3024                         continue;
3025
3026                 if (!head)
3027                         head = skb;
3028                 else
3029                         tail->next = skb;
3030                 /* If skb was segmented, skb->prev points to
3031                  * the last segment. If not, it still contains skb.
3032                  */
3033                 tail = skb->prev;
3034         }
3035         return head;
3036 }
3037
3038 static void qdisc_pkt_len_init(struct sk_buff *skb)
3039 {
3040         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3041
3042         qdisc_skb_cb(skb)->pkt_len = skb->len;
3043
3044         /* To get more precise estimation of bytes sent on wire,
3045          * we add to pkt_len the headers size of all segments
3046          */
3047         if (shinfo->gso_size)  {
3048                 unsigned int hdr_len;
3049                 u16 gso_segs = shinfo->gso_segs;
3050
3051                 /* mac layer + network layer */
3052                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3053
3054                 /* + transport layer */
3055                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3056                         hdr_len += tcp_hdrlen(skb);
3057                 else
3058                         hdr_len += sizeof(struct udphdr);
3059
3060                 if (shinfo->gso_type & SKB_GSO_DODGY)
3061                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3062                                                 shinfo->gso_size);
3063
3064                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3065         }
3066 }
3067
3068 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3069                                  struct net_device *dev,
3070                                  struct netdev_queue *txq)
3071 {
3072         spinlock_t *root_lock = qdisc_lock(q);
3073         struct sk_buff *to_free = NULL;
3074         bool contended;
3075         int rc;
3076
3077         qdisc_calculate_pkt_len(skb, q);
3078         /*
3079          * Heuristic to force contended enqueues to serialize on a
3080          * separate lock before trying to get qdisc main lock.
3081          * This permits qdisc->running owner to get the lock more
3082          * often and dequeue packets faster.
3083          */
3084         contended = qdisc_is_running(q);
3085         if (unlikely(contended))
3086                 spin_lock(&q->busylock);
3087
3088         spin_lock(root_lock);
3089         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3090                 __qdisc_drop(skb, &to_free);
3091                 rc = NET_XMIT_DROP;
3092         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3093                    qdisc_run_begin(q)) {
3094                 /*
3095                  * This is a work-conserving queue; there are no old skbs
3096                  * waiting to be sent out; and the qdisc is not running -
3097                  * xmit the skb directly.
3098                  */
3099
3100                 qdisc_bstats_update(q, skb);
3101
3102                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3103                         if (unlikely(contended)) {
3104                                 spin_unlock(&q->busylock);
3105                                 contended = false;
3106                         }
3107                         __qdisc_run(q);
3108                 } else
3109                         qdisc_run_end(q);
3110
3111                 rc = NET_XMIT_SUCCESS;
3112         } else {
3113                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3114                 if (qdisc_run_begin(q)) {
3115                         if (unlikely(contended)) {
3116                                 spin_unlock(&q->busylock);
3117                                 contended = false;
3118                         }
3119                         __qdisc_run(q);
3120                 }
3121         }
3122         spin_unlock(root_lock);
3123         if (unlikely(to_free))
3124                 kfree_skb_list(to_free);
3125         if (unlikely(contended))
3126                 spin_unlock(&q->busylock);
3127         return rc;
3128 }
3129
3130 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3131 static void skb_update_prio(struct sk_buff *skb)
3132 {
3133         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3134
3135         if (!skb->priority && skb->sk && map) {
3136                 unsigned int prioidx =
3137                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3138
3139                 if (prioidx < map->priomap_len)
3140                         skb->priority = map->priomap[prioidx];
3141         }
3142 }
3143 #else
3144 #define skb_update_prio(skb)
3145 #endif
3146
3147 DEFINE_PER_CPU(int, xmit_recursion);
3148 EXPORT_SYMBOL(xmit_recursion);
3149
3150 /**
3151  *      dev_loopback_xmit - loop back @skb
3152  *      @net: network namespace this loopback is happening in
3153  *      @sk:  sk needed to be a netfilter okfn
3154  *      @skb: buffer to transmit
3155  */
3156 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3157 {
3158         skb_reset_mac_header(skb);
3159         __skb_pull(skb, skb_network_offset(skb));
3160         skb->pkt_type = PACKET_LOOPBACK;
3161         skb->ip_summed = CHECKSUM_UNNECESSARY;
3162         WARN_ON(!skb_dst(skb));
3163         skb_dst_force(skb);
3164         netif_rx_ni(skb);
3165         return 0;
3166 }
3167 EXPORT_SYMBOL(dev_loopback_xmit);
3168
3169 #ifdef CONFIG_NET_EGRESS
3170 static struct sk_buff *
3171 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3172 {
3173         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3174         struct tcf_result cl_res;
3175
3176         if (!cl)
3177                 return skb;
3178
3179         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3180          * earlier by the caller.
3181          */
3182         qdisc_bstats_cpu_update(cl->q, skb);
3183
3184         switch (tc_classify(skb, cl, &cl_res, false)) {
3185         case TC_ACT_OK:
3186         case TC_ACT_RECLASSIFY:
3187                 skb->tc_index = TC_H_MIN(cl_res.classid);
3188                 break;
3189         case TC_ACT_SHOT:
3190                 qdisc_qstats_cpu_drop(cl->q);
3191                 *ret = NET_XMIT_DROP;
3192                 kfree_skb(skb);
3193                 return NULL;
3194         case TC_ACT_STOLEN:
3195         case TC_ACT_QUEUED:
3196                 *ret = NET_XMIT_SUCCESS;
3197                 consume_skb(skb);
3198                 return NULL;
3199         case TC_ACT_REDIRECT:
3200                 /* No need to push/pop skb's mac_header here on egress! */
3201                 skb_do_redirect(skb);
3202                 *ret = NET_XMIT_SUCCESS;
3203                 return NULL;
3204         default:
3205                 break;
3206         }
3207
3208         return skb;
3209 }
3210 #endif /* CONFIG_NET_EGRESS */
3211
3212 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3213 {
3214 #ifdef CONFIG_XPS
3215         struct xps_dev_maps *dev_maps;
3216         struct xps_map *map;
3217         int queue_index = -1;
3218
3219         rcu_read_lock();
3220         dev_maps = rcu_dereference(dev->xps_maps);
3221         if (dev_maps) {
3222                 map = rcu_dereference(
3223                     dev_maps->cpu_map[skb->sender_cpu - 1]);
3224                 if (map) {
3225                         if (map->len == 1)
3226                                 queue_index = map->queues[0];
3227                         else
3228                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3229                                                                            map->len)];
3230                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3231                                 queue_index = -1;
3232                 }
3233         }
3234         rcu_read_unlock();
3235
3236         return queue_index;
3237 #else
3238         return -1;
3239 #endif
3240 }
3241
3242 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3243 {
3244         struct sock *sk = skb->sk;
3245         int queue_index = sk_tx_queue_get(sk);
3246
3247         if (queue_index < 0 || skb->ooo_okay ||
3248             queue_index >= dev->real_num_tx_queues) {
3249                 int new_index = get_xps_queue(dev, skb);
3250                 if (new_index < 0)
3251                         new_index = skb_tx_hash(dev, skb);
3252
3253                 if (queue_index != new_index && sk &&
3254                     sk_fullsock(sk) &&
3255                     rcu_access_pointer(sk->sk_dst_cache))
3256                         sk_tx_queue_set(sk, new_index);
3257
3258                 queue_index = new_index;
3259         }
3260
3261         return queue_index;
3262 }
3263
3264 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3265                                     struct sk_buff *skb,
3266                                     void *accel_priv)
3267 {
3268         int queue_index = 0;
3269
3270 #ifdef CONFIG_XPS
3271         u32 sender_cpu = skb->sender_cpu - 1;
3272
3273         if (sender_cpu >= (u32)NR_CPUS)
3274                 skb->sender_cpu = raw_smp_processor_id() + 1;
3275 #endif
3276
3277         if (dev->real_num_tx_queues != 1) {
3278                 const struct net_device_ops *ops = dev->netdev_ops;
3279                 if (ops->ndo_select_queue)
3280                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3281                                                             __netdev_pick_tx);
3282                 else
3283                         queue_index = __netdev_pick_tx(dev, skb);
3284
3285                 if (!accel_priv)
3286                         queue_index = netdev_cap_txqueue(dev, queue_index);
3287         }
3288
3289         skb_set_queue_mapping(skb, queue_index);
3290         return netdev_get_tx_queue(dev, queue_index);
3291 }
3292
3293 /**
3294  *      __dev_queue_xmit - transmit a buffer
3295  *      @skb: buffer to transmit
3296  *      @accel_priv: private data used for L2 forwarding offload
3297  *
3298  *      Queue a buffer for transmission to a network device. The caller must
3299  *      have set the device and priority and built the buffer before calling
3300  *      this function. The function can be called from an interrupt.
3301  *
3302  *      A negative errno code is returned on a failure. A success does not
3303  *      guarantee the frame will be transmitted as it may be dropped due
3304  *      to congestion or traffic shaping.
3305  *
3306  * -----------------------------------------------------------------------------------
3307  *      I notice this method can also return errors from the queue disciplines,
3308  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3309  *      be positive.
3310  *
3311  *      Regardless of the return value, the skb is consumed, so it is currently
3312  *      difficult to retry a send to this method.  (You can bump the ref count
3313  *      before sending to hold a reference for retry if you are careful.)
3314  *
3315  *      When calling this method, interrupts MUST be enabled.  This is because
3316  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3317  *          --BLG
3318  */
3319 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3320 {
3321         struct net_device *dev = skb->dev;
3322         struct netdev_queue *txq;
3323         struct Qdisc *q;
3324         int rc = -ENOMEM;
3325
3326         skb_reset_mac_header(skb);
3327
3328         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3329                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3330
3331         /* Disable soft irqs for various locks below. Also
3332          * stops preemption for RCU.
3333          */
3334         rcu_read_lock_bh();
3335
3336         skb_update_prio(skb);
3337
3338         qdisc_pkt_len_init(skb);
3339 #ifdef CONFIG_NET_CLS_ACT
3340         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3341 # ifdef CONFIG_NET_EGRESS
3342         if (static_key_false(&egress_needed)) {
3343                 skb = sch_handle_egress(skb, &rc, dev);
3344                 if (!skb)
3345                         goto out;
3346         }
3347 # endif
3348 #endif
3349         /* If device/qdisc don't need skb->dst, release it right now while
3350          * its hot in this cpu cache.
3351          */
3352         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3353                 skb_dst_drop(skb);
3354         else
3355                 skb_dst_force(skb);
3356
3357 #ifdef CONFIG_NET_SWITCHDEV
3358         /* Don't forward if offload device already forwarded */
3359         if (skb->offload_fwd_mark &&
3360             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3361                 consume_skb(skb);
3362                 rc = NET_XMIT_SUCCESS;
3363                 goto out;
3364         }
3365 #endif
3366
3367         txq = netdev_pick_tx(dev, skb, accel_priv);
3368         q = rcu_dereference_bh(txq->qdisc);
3369
3370         trace_net_dev_queue(skb);
3371         if (q->enqueue) {
3372                 rc = __dev_xmit_skb(skb, q, dev, txq);
3373                 goto out;
3374         }
3375
3376         /* The device has no queue. Common case for software devices:
3377            loopback, all the sorts of tunnels...
3378
3379            Really, it is unlikely that netif_tx_lock protection is necessary
3380            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3381            counters.)
3382            However, it is possible, that they rely on protection
3383            made by us here.
3384
3385            Check this and shot the lock. It is not prone from deadlocks.
3386            Either shot noqueue qdisc, it is even simpler 8)
3387          */
3388         if (dev->flags & IFF_UP) {
3389                 int cpu = smp_processor_id(); /* ok because BHs are off */
3390
3391                 if (txq->xmit_lock_owner != cpu) {
3392                         if (unlikely(__this_cpu_read(xmit_recursion) >
3393                                      XMIT_RECURSION_LIMIT))
3394                                 goto recursion_alert;
3395
3396                         skb = validate_xmit_skb(skb, dev);
3397                         if (!skb)
3398                                 goto out;
3399
3400                         HARD_TX_LOCK(dev, txq, cpu);
3401
3402                         if (!netif_xmit_stopped(txq)) {
3403                                 __this_cpu_inc(xmit_recursion);
3404                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3405                                 __this_cpu_dec(xmit_recursion);
3406                                 if (dev_xmit_complete(rc)) {
3407                                         HARD_TX_UNLOCK(dev, txq);
3408                                         goto out;
3409                                 }
3410                         }
3411                         HARD_TX_UNLOCK(dev, txq);
3412                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3413                                              dev->name);
3414                 } else {
3415                         /* Recursion is detected! It is possible,
3416                          * unfortunately
3417                          */
3418 recursion_alert:
3419                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3420                                              dev->name);
3421                 }
3422         }
3423
3424         rc = -ENETDOWN;
3425         rcu_read_unlock_bh();
3426
3427         atomic_long_inc(&dev->tx_dropped);
3428         kfree_skb_list(skb);
3429         return rc;
3430 out:
3431         rcu_read_unlock_bh();
3432         return rc;
3433 }
3434
3435 int dev_queue_xmit(struct sk_buff *skb)
3436 {
3437         return __dev_queue_xmit(skb, NULL);
3438 }
3439 EXPORT_SYMBOL(dev_queue_xmit);
3440
3441 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3442 {
3443         return __dev_queue_xmit(skb, accel_priv);
3444 }
3445 EXPORT_SYMBOL(dev_queue_xmit_accel);
3446
3447
3448 /*=======================================================================
3449                         Receiver routines
3450   =======================================================================*/
3451
3452 int netdev_max_backlog __read_mostly = 1000;
3453 EXPORT_SYMBOL(netdev_max_backlog);
3454
3455 int netdev_tstamp_prequeue __read_mostly = 1;
3456 int netdev_budget __read_mostly = 300;
3457 int weight_p __read_mostly = 64;            /* old backlog weight */
3458
3459 /* Called with irq disabled */
3460 static inline void ____napi_schedule(struct softnet_data *sd,
3461                                      struct napi_struct *napi)
3462 {
3463         list_add_tail(&napi->poll_list, &sd->poll_list);
3464         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3465 }
3466
3467 #ifdef CONFIG_RPS
3468
3469 /* One global table that all flow-based protocols share. */
3470 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3471 EXPORT_SYMBOL(rps_sock_flow_table);
3472 u32 rps_cpu_mask __read_mostly;
3473 EXPORT_SYMBOL(rps_cpu_mask);
3474
3475 struct static_key rps_needed __read_mostly;
3476 EXPORT_SYMBOL(rps_needed);
3477
3478 static struct rps_dev_flow *
3479 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3480             struct rps_dev_flow *rflow, u16 next_cpu)
3481 {
3482         if (next_cpu < nr_cpu_ids) {
3483 #ifdef CONFIG_RFS_ACCEL
3484                 struct netdev_rx_queue *rxqueue;
3485                 struct rps_dev_flow_table *flow_table;
3486                 struct rps_dev_flow *old_rflow;
3487                 u32 flow_id;
3488                 u16 rxq_index;
3489                 int rc;
3490
3491                 /* Should we steer this flow to a different hardware queue? */
3492                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3493                     !(dev->features & NETIF_F_NTUPLE))
3494                         goto out;
3495                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3496                 if (rxq_index == skb_get_rx_queue(skb))
3497                         goto out;
3498
3499                 rxqueue = dev->_rx + rxq_index;
3500                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3501                 if (!flow_table)
3502                         goto out;
3503                 flow_id = skb_get_hash(skb) & flow_table->mask;
3504                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3505                                                         rxq_index, flow_id);
3506                 if (rc < 0)
3507                         goto out;
3508                 old_rflow = rflow;
3509                 rflow = &flow_table->flows[flow_id];
3510                 rflow->filter = rc;
3511                 if (old_rflow->filter == rflow->filter)
3512                         old_rflow->filter = RPS_NO_FILTER;
3513         out:
3514 #endif
3515                 rflow->last_qtail =
3516                         per_cpu(softnet_data, next_cpu).input_queue_head;
3517         }
3518
3519         rflow->cpu = next_cpu;
3520         return rflow;
3521 }
3522
3523 /*
3524  * get_rps_cpu is called from netif_receive_skb and returns the target
3525  * CPU from the RPS map of the receiving queue for a given skb.
3526  * rcu_read_lock must be held on entry.
3527  */
3528 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3529                        struct rps_dev_flow **rflowp)
3530 {
3531         const struct rps_sock_flow_table *sock_flow_table;
3532         struct netdev_rx_queue *rxqueue = dev->_rx;
3533         struct rps_dev_flow_table *flow_table;
3534         struct rps_map *map;
3535         int cpu = -1;
3536         u32 tcpu;
3537         u32 hash;
3538
3539         if (skb_rx_queue_recorded(skb)) {
3540                 u16 index = skb_get_rx_queue(skb);
3541
3542                 if (unlikely(index >= dev->real_num_rx_queues)) {
3543                         WARN_ONCE(dev->real_num_rx_queues > 1,
3544                                   "%s received packet on queue %u, but number "
3545                                   "of RX queues is %u\n",
3546                                   dev->name, index, dev->real_num_rx_queues);
3547                         goto done;
3548                 }
3549                 rxqueue += index;
3550         }
3551
3552         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3553
3554         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3555         map = rcu_dereference(rxqueue->rps_map);
3556         if (!flow_table && !map)
3557                 goto done;
3558
3559         skb_reset_network_header(skb);
3560         hash = skb_get_hash(skb);
3561         if (!hash)
3562                 goto done;
3563
3564         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3565         if (flow_table && sock_flow_table) {
3566                 struct rps_dev_flow *rflow;
3567                 u32 next_cpu;
3568                 u32 ident;
3569
3570                 /* First check into global flow table if there is a match */
3571                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3572                 if ((ident ^ hash) & ~rps_cpu_mask)
3573                         goto try_rps;
3574
3575                 next_cpu = ident & rps_cpu_mask;
3576
3577                 /* OK, now we know there is a match,
3578                  * we can look at the local (per receive queue) flow table
3579                  */
3580                 rflow = &flow_table->flows[hash & flow_table->mask];
3581                 tcpu = rflow->cpu;
3582
3583                 /*
3584                  * If the desired CPU (where last recvmsg was done) is
3585                  * different from current CPU (one in the rx-queue flow
3586                  * table entry), switch if one of the following holds:
3587                  *   - Current CPU is unset (>= nr_cpu_ids).
3588                  *   - Current CPU is offline.
3589                  *   - The current CPU's queue tail has advanced beyond the
3590                  *     last packet that was enqueued using this table entry.
3591                  *     This guarantees that all previous packets for the flow
3592                  *     have been dequeued, thus preserving in order delivery.
3593                  */
3594                 if (unlikely(tcpu != next_cpu) &&
3595                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3596                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3597                       rflow->last_qtail)) >= 0)) {
3598                         tcpu = next_cpu;
3599                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3600                 }
3601
3602                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3603                         *rflowp = rflow;
3604                         cpu = tcpu;
3605                         goto done;
3606                 }
3607         }
3608
3609 try_rps:
3610
3611         if (map) {
3612                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3613                 if (cpu_online(tcpu)) {
3614                         cpu = tcpu;
3615                         goto done;
3616                 }
3617         }
3618
3619 done:
3620         return cpu;
3621 }
3622
3623 #ifdef CONFIG_RFS_ACCEL
3624
3625 /**
3626  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3627  * @dev: Device on which the filter was set
3628  * @rxq_index: RX queue index
3629  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3630  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3631  *
3632  * Drivers that implement ndo_rx_flow_steer() should periodically call
3633  * this function for each installed filter and remove the filters for
3634  * which it returns %true.
3635  */
3636 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3637                          u32 flow_id, u16 filter_id)
3638 {
3639         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3640         struct rps_dev_flow_table *flow_table;
3641         struct rps_dev_flow *rflow;
3642         bool expire = true;
3643         unsigned int cpu;
3644
3645         rcu_read_lock();
3646         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3647         if (flow_table && flow_id <= flow_table->mask) {
3648                 rflow = &flow_table->flows[flow_id];
3649                 cpu = ACCESS_ONCE(rflow->cpu);
3650                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3651                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3652                            rflow->last_qtail) <
3653                      (int)(10 * flow_table->mask)))
3654                         expire = false;
3655         }
3656         rcu_read_unlock();
3657         return expire;
3658 }
3659 EXPORT_SYMBOL(rps_may_expire_flow);
3660
3661 #endif /* CONFIG_RFS_ACCEL */
3662
3663 /* Called from hardirq (IPI) context */
3664 static void rps_trigger_softirq(void *data)
3665 {
3666         struct softnet_data *sd = data;
3667
3668         ____napi_schedule(sd, &sd->backlog);
3669         sd->received_rps++;
3670 }
3671
3672 #endif /* CONFIG_RPS */
3673
3674 /*
3675  * Check if this softnet_data structure is another cpu one
3676  * If yes, queue it to our IPI list and return 1
3677  * If no, return 0
3678  */
3679 static int rps_ipi_queued(struct softnet_data *sd)
3680 {
3681 #ifdef CONFIG_RPS
3682         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3683
3684         if (sd != mysd) {
3685                 sd->rps_ipi_next = mysd->rps_ipi_list;
3686                 mysd->rps_ipi_list = sd;
3687
3688                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3689                 return 1;
3690         }
3691 #endif /* CONFIG_RPS */
3692         return 0;
3693 }
3694
3695 #ifdef CONFIG_NET_FLOW_LIMIT
3696 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3697 #endif
3698
3699 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3700 {
3701 #ifdef CONFIG_NET_FLOW_LIMIT
3702         struct sd_flow_limit *fl;
3703         struct softnet_data *sd;
3704         unsigned int old_flow, new_flow;
3705
3706         if (qlen < (netdev_max_backlog >> 1))
3707                 return false;
3708
3709         sd = this_cpu_ptr(&softnet_data);
3710
3711         rcu_read_lock();
3712         fl = rcu_dereference(sd->flow_limit);
3713         if (fl) {
3714                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3715                 old_flow = fl->history[fl->history_head];
3716                 fl->history[fl->history_head] = new_flow;
3717
3718                 fl->history_head++;
3719                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3720
3721                 if (likely(fl->buckets[old_flow]))
3722                         fl->buckets[old_flow]--;
3723
3724                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3725                         fl->count++;
3726                         rcu_read_unlock();
3727                         return true;
3728                 }
3729         }
3730         rcu_read_unlock();
3731 #endif
3732         return false;
3733 }
3734
3735 /*
3736  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3737  * queue (may be a remote CPU queue).
3738  */
3739 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3740                               unsigned int *qtail)
3741 {
3742         struct softnet_data *sd;
3743         unsigned long flags;
3744         unsigned int qlen;
3745
3746         sd = &per_cpu(softnet_data, cpu);
3747
3748         local_irq_save(flags);
3749
3750         rps_lock(sd);
3751         if (!netif_running(skb->dev))
3752                 goto drop;
3753         qlen = skb_queue_len(&sd->input_pkt_queue);
3754         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3755                 if (qlen) {
3756 enqueue:
3757                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3758                         input_queue_tail_incr_save(sd, qtail);
3759                         rps_unlock(sd);
3760                         local_irq_restore(flags);
3761                         return NET_RX_SUCCESS;
3762                 }
3763
3764                 /* Schedule NAPI for backlog device
3765                  * We can use non atomic operation since we own the queue lock
3766                  */
3767                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3768                         if (!rps_ipi_queued(sd))
3769                                 ____napi_schedule(sd, &sd->backlog);
3770                 }
3771                 goto enqueue;
3772         }
3773
3774 drop:
3775         sd->dropped++;
3776         rps_unlock(sd);
3777
3778         local_irq_restore(flags);
3779
3780         atomic_long_inc(&skb->dev->rx_dropped);
3781         kfree_skb(skb);
3782         return NET_RX_DROP;
3783 }
3784
3785 static int netif_rx_internal(struct sk_buff *skb)
3786 {
3787         int ret;
3788
3789         net_timestamp_check(netdev_tstamp_prequeue, skb);
3790
3791         trace_netif_rx(skb);
3792 #ifdef CONFIG_RPS
3793         if (static_key_false(&rps_needed)) {
3794                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3795                 int cpu;
3796
3797                 preempt_disable();
3798                 rcu_read_lock();
3799
3800                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3801                 if (cpu < 0)
3802                         cpu = smp_processor_id();
3803
3804                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3805
3806                 rcu_read_unlock();
3807                 preempt_enable();
3808         } else
3809 #endif
3810         {
3811                 unsigned int qtail;
3812                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3813                 put_cpu();
3814         }
3815         return ret;
3816 }
3817
3818 /**
3819  *      netif_rx        -       post buffer to the network code
3820  *      @skb: buffer to post
3821  *
3822  *      This function receives a packet from a device driver and queues it for
3823  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3824  *      may be dropped during processing for congestion control or by the
3825  *      protocol layers.
3826  *
3827  *      return values:
3828  *      NET_RX_SUCCESS  (no congestion)
3829  *      NET_RX_DROP     (packet was dropped)
3830  *
3831  */
3832
3833 int netif_rx(struct sk_buff *skb)
3834 {
3835         trace_netif_rx_entry(skb);
3836
3837         return netif_rx_internal(skb);
3838 }
3839 EXPORT_SYMBOL(netif_rx);
3840
3841 int netif_rx_ni(struct sk_buff *skb)
3842 {
3843         int err;
3844
3845         trace_netif_rx_ni_entry(skb);
3846
3847         preempt_disable();
3848         err = netif_rx_internal(skb);
3849         if (local_softirq_pending())
3850                 do_softirq();
3851         preempt_enable();
3852
3853         return err;
3854 }
3855 EXPORT_SYMBOL(netif_rx_ni);
3856
3857 static void net_tx_action(struct softirq_action *h)
3858 {
3859         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3860
3861         if (sd->completion_queue) {
3862                 struct sk_buff *clist;
3863
3864                 local_irq_disable();
3865                 clist = sd->completion_queue;
3866                 sd->completion_queue = NULL;
3867                 local_irq_enable();
3868
3869                 while (clist) {
3870                         struct sk_buff *skb = clist;
3871                         clist = clist->next;
3872
3873                         WARN_ON(atomic_read(&skb->users));
3874                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3875                                 trace_consume_skb(skb);
3876                         else
3877                                 trace_kfree_skb(skb, net_tx_action);
3878
3879                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3880                                 __kfree_skb(skb);
3881                         else
3882                                 __kfree_skb_defer(skb);
3883                 }
3884
3885                 __kfree_skb_flush();
3886         }
3887
3888         if (sd->output_queue) {
3889                 struct Qdisc *head;
3890
3891                 local_irq_disable();
3892                 head = sd->output_queue;
3893                 sd->output_queue = NULL;
3894                 sd->output_queue_tailp = &sd->output_queue;
3895                 local_irq_enable();
3896
3897                 while (head) {
3898                         struct Qdisc *q = head;
3899                         spinlock_t *root_lock;
3900
3901                         head = head->next_sched;
3902
3903                         root_lock = qdisc_lock(q);
3904                         spin_lock(root_lock);
3905                         /* We need to make sure head->next_sched is read
3906                          * before clearing __QDISC_STATE_SCHED
3907                          */
3908                         smp_mb__before_atomic();
3909                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3910                         qdisc_run(q);
3911                         spin_unlock(root_lock);
3912                 }
3913         }
3914 }
3915
3916 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3917     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3918 /* This hook is defined here for ATM LANE */
3919 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3920                              unsigned char *addr) __read_mostly;
3921 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3922 #endif
3923
3924 static inline struct sk_buff *
3925 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3926                    struct net_device *orig_dev)
3927 {
3928 #ifdef CONFIG_NET_CLS_ACT
3929         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3930         struct tcf_result cl_res;
3931
3932         /* If there's at least one ingress present somewhere (so
3933          * we get here via enabled static key), remaining devices
3934          * that are not configured with an ingress qdisc will bail
3935          * out here.
3936          */
3937         if (!cl)
3938                 return skb;
3939         if (*pt_prev) {
3940                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3941                 *pt_prev = NULL;
3942         }
3943
3944         qdisc_skb_cb(skb)->pkt_len = skb->len;
3945         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3946         qdisc_bstats_cpu_update(cl->q, skb);
3947
3948         switch (tc_classify(skb, cl, &cl_res, false)) {
3949         case TC_ACT_OK:
3950         case TC_ACT_RECLASSIFY:
3951                 skb->tc_index = TC_H_MIN(cl_res.classid);
3952                 break;
3953         case TC_ACT_SHOT:
3954                 qdisc_qstats_cpu_drop(cl->q);
3955                 kfree_skb(skb);
3956                 return NULL;
3957         case TC_ACT_STOLEN:
3958         case TC_ACT_QUEUED:
3959                 consume_skb(skb);
3960                 return NULL;
3961         case TC_ACT_REDIRECT:
3962                 /* skb_mac_header check was done by cls/act_bpf, so
3963                  * we can safely push the L2 header back before
3964                  * redirecting to another netdev
3965                  */
3966                 __skb_push(skb, skb->mac_len);
3967                 skb_do_redirect(skb);
3968                 return NULL;
3969         default:
3970                 break;
3971         }
3972 #endif /* CONFIG_NET_CLS_ACT */
3973         return skb;
3974 }
3975
3976 /**
3977  *      netdev_rx_handler_register - register receive handler
3978  *      @dev: device to register a handler for
3979  *      @rx_handler: receive handler to register
3980  *      @rx_handler_data: data pointer that is used by rx handler
3981  *
3982  *      Register a receive handler for a device. This handler will then be
3983  *      called from __netif_receive_skb. A negative errno code is returned
3984  *      on a failure.
3985  *
3986  *      The caller must hold the rtnl_mutex.
3987  *
3988  *      For a general description of rx_handler, see enum rx_handler_result.
3989  */
3990 int netdev_rx_handler_register(struct net_device *dev,
3991                                rx_handler_func_t *rx_handler,
3992                                void *rx_handler_data)
3993 {
3994         ASSERT_RTNL();
3995
3996         if (dev->rx_handler)
3997                 return -EBUSY;
3998
3999         /* Note: rx_handler_data must be set before rx_handler */
4000         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4001         rcu_assign_pointer(dev->rx_handler, rx_handler);
4002
4003         return 0;
4004 }
4005 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4006
4007 /**
4008  *      netdev_rx_handler_unregister - unregister receive handler
4009  *      @dev: device to unregister a handler from
4010  *
4011  *      Unregister a receive handler from a device.
4012  *
4013  *      The caller must hold the rtnl_mutex.
4014  */
4015 void netdev_rx_handler_unregister(struct net_device *dev)
4016 {
4017
4018         ASSERT_RTNL();
4019         RCU_INIT_POINTER(dev->rx_handler, NULL);
4020         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4021          * section has a guarantee to see a non NULL rx_handler_data
4022          * as well.
4023          */
4024         synchronize_net();
4025         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4026 }
4027 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4028
4029 /*
4030  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4031  * the special handling of PFMEMALLOC skbs.
4032  */
4033 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4034 {
4035         switch (skb->protocol) {
4036         case htons(ETH_P_ARP):
4037         case htons(ETH_P_IP):
4038         case htons(ETH_P_IPV6):
4039         case htons(ETH_P_8021Q):
4040         case htons(ETH_P_8021AD):
4041                 return true;
4042         default:
4043                 return false;
4044         }
4045 }
4046
4047 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4048                              int *ret, struct net_device *orig_dev)
4049 {
4050 #ifdef CONFIG_NETFILTER_INGRESS
4051         if (nf_hook_ingress_active(skb)) {
4052                 if (*pt_prev) {
4053                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4054                         *pt_prev = NULL;
4055                 }
4056
4057                 return nf_hook_ingress(skb);
4058         }
4059 #endif /* CONFIG_NETFILTER_INGRESS */
4060         return 0;
4061 }
4062
4063 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4064 {
4065         struct packet_type *ptype, *pt_prev;
4066         rx_handler_func_t *rx_handler;
4067         struct net_device *orig_dev;
4068         bool deliver_exact = false;
4069         int ret = NET_RX_DROP;
4070         __be16 type;
4071
4072         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4073
4074         trace_netif_receive_skb(skb);
4075
4076         orig_dev = skb->dev;
4077
4078         skb_reset_network_header(skb);
4079         if (!skb_transport_header_was_set(skb))
4080                 skb_reset_transport_header(skb);
4081         skb_reset_mac_len(skb);
4082
4083         pt_prev = NULL;
4084
4085 another_round:
4086         skb->skb_iif = skb->dev->ifindex;
4087
4088         __this_cpu_inc(softnet_data.processed);
4089
4090         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4091             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4092                 skb = skb_vlan_untag(skb);
4093                 if (unlikely(!skb))
4094                         goto out;
4095         }
4096
4097 #ifdef CONFIG_NET_CLS_ACT
4098         if (skb->tc_verd & TC_NCLS) {
4099                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4100                 goto ncls;
4101         }
4102 #endif
4103
4104         if (pfmemalloc)
4105                 goto skip_taps;
4106
4107         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4108                 if (pt_prev)
4109                         ret = deliver_skb(skb, pt_prev, orig_dev);
4110                 pt_prev = ptype;
4111         }
4112
4113         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4114                 if (pt_prev)
4115                         ret = deliver_skb(skb, pt_prev, orig_dev);
4116                 pt_prev = ptype;
4117         }
4118
4119 skip_taps:
4120 #ifdef CONFIG_NET_INGRESS
4121         if (static_key_false(&ingress_needed)) {
4122                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4123                 if (!skb)
4124                         goto out;
4125
4126                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4127                         goto out;
4128         }
4129 #endif
4130 #ifdef CONFIG_NET_CLS_ACT
4131         skb->tc_verd = 0;
4132 ncls:
4133 #endif
4134         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4135                 goto drop;
4136
4137         if (skb_vlan_tag_present(skb)) {
4138                 if (pt_prev) {
4139                         ret = deliver_skb(skb, pt_prev, orig_dev);
4140                         pt_prev = NULL;
4141                 }
4142                 if (vlan_do_receive(&skb))
4143                         goto another_round;
4144                 else if (unlikely(!skb))
4145                         goto out;
4146         }
4147
4148         rx_handler = rcu_dereference(skb->dev->rx_handler);
4149         if (rx_handler) {
4150                 if (pt_prev) {
4151                         ret = deliver_skb(skb, pt_prev, orig_dev);
4152                         pt_prev = NULL;
4153                 }
4154                 switch (rx_handler(&skb)) {
4155                 case RX_HANDLER_CONSUMED:
4156                         ret = NET_RX_SUCCESS;
4157                         goto out;
4158                 case RX_HANDLER_ANOTHER:
4159                         goto another_round;
4160                 case RX_HANDLER_EXACT:
4161                         deliver_exact = true;
4162                 case RX_HANDLER_PASS:
4163                         break;
4164                 default:
4165                         BUG();
4166                 }
4167         }
4168
4169         if (unlikely(skb_vlan_tag_present(skb))) {
4170                 if (skb_vlan_tag_get_id(skb))
4171                         skb->pkt_type = PACKET_OTHERHOST;
4172                 /* Note: we might in the future use prio bits
4173                  * and set skb->priority like in vlan_do_receive()
4174                  * For the time being, just ignore Priority Code Point
4175                  */
4176                 skb->vlan_tci = 0;
4177         }
4178
4179         type = skb->protocol;
4180
4181         /* deliver only exact match when indicated */
4182         if (likely(!deliver_exact)) {
4183                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4184                                        &ptype_base[ntohs(type) &
4185                                                    PTYPE_HASH_MASK]);
4186         }
4187
4188         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4189                                &orig_dev->ptype_specific);
4190
4191         if (unlikely(skb->dev != orig_dev)) {
4192                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4193                                        &skb->dev->ptype_specific);
4194         }
4195
4196         if (pt_prev) {
4197                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4198                         goto drop;
4199                 else
4200                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4201         } else {
4202 drop:
4203                 if (!deliver_exact)
4204                         atomic_long_inc(&skb->dev->rx_dropped);
4205                 else
4206                         atomic_long_inc(&skb->dev->rx_nohandler);
4207                 kfree_skb(skb);
4208                 /* Jamal, now you will not able to escape explaining
4209                  * me how you were going to use this. :-)
4210                  */
4211                 ret = NET_RX_DROP;
4212         }
4213
4214 out:
4215         return ret;
4216 }
4217
4218 static int __netif_receive_skb(struct sk_buff *skb)
4219 {
4220         int ret;
4221
4222         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4223                 unsigned long pflags = current->flags;
4224
4225                 /*
4226                  * PFMEMALLOC skbs are special, they should
4227                  * - be delivered to SOCK_MEMALLOC sockets only
4228                  * - stay away from userspace
4229                  * - have bounded memory usage
4230                  *
4231                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4232                  * context down to all allocation sites.
4233                  */
4234                 current->flags |= PF_MEMALLOC;
4235                 ret = __netif_receive_skb_core(skb, true);
4236                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4237         } else
4238                 ret = __netif_receive_skb_core(skb, false);
4239
4240         return ret;
4241 }
4242
4243 static int netif_receive_skb_internal(struct sk_buff *skb)
4244 {
4245         int ret;
4246
4247         net_timestamp_check(netdev_tstamp_prequeue, skb);
4248
4249         if (skb_defer_rx_timestamp(skb))
4250                 return NET_RX_SUCCESS;
4251
4252         rcu_read_lock();
4253
4254 #ifdef CONFIG_RPS
4255         if (static_key_false(&rps_needed)) {
4256                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4257                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4258
4259                 if (cpu >= 0) {
4260                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4261                         rcu_read_unlock();
4262                         return ret;
4263                 }
4264         }
4265 #endif
4266         ret = __netif_receive_skb(skb);
4267         rcu_read_unlock();
4268         return ret;
4269 }
4270
4271 /**
4272  *      netif_receive_skb - process receive buffer from network
4273  *      @skb: buffer to process
4274  *
4275  *      netif_receive_skb() is the main receive data processing function.
4276  *      It always succeeds. The buffer may be dropped during processing
4277  *      for congestion control or by the protocol layers.
4278  *
4279  *      This function may only be called from softirq context and interrupts
4280  *      should be enabled.
4281  *
4282  *      Return values (usually ignored):
4283  *      NET_RX_SUCCESS: no congestion
4284  *      NET_RX_DROP: packet was dropped
4285  */
4286 int netif_receive_skb(struct sk_buff *skb)
4287 {
4288         trace_netif_receive_skb_entry(skb);
4289
4290         return netif_receive_skb_internal(skb);
4291 }
4292 EXPORT_SYMBOL(netif_receive_skb);
4293
4294 /* Network device is going away, flush any packets still pending
4295  * Called with irqs disabled.
4296  */
4297 static void flush_backlog(void *arg)
4298 {
4299         struct net_device *dev = arg;
4300         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4301         struct sk_buff *skb, *tmp;
4302
4303         rps_lock(sd);
4304         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4305                 if (skb->dev == dev) {
4306                         __skb_unlink(skb, &sd->input_pkt_queue);
4307                         kfree_skb(skb);
4308                         input_queue_head_incr(sd);
4309                 }
4310         }
4311         rps_unlock(sd);
4312
4313         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4314                 if (skb->dev == dev) {
4315                         __skb_unlink(skb, &sd->process_queue);
4316                         kfree_skb(skb);
4317                         input_queue_head_incr(sd);
4318                 }
4319         }
4320 }
4321
4322 static int napi_gro_complete(struct sk_buff *skb)
4323 {
4324         struct packet_offload *ptype;
4325         __be16 type = skb->protocol;
4326         struct list_head *head = &offload_base;
4327         int err = -ENOENT;
4328
4329         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4330
4331         if (NAPI_GRO_CB(skb)->count == 1) {
4332                 skb_shinfo(skb)->gso_size = 0;
4333                 goto out;
4334         }
4335
4336         rcu_read_lock();
4337         list_for_each_entry_rcu(ptype, head, list) {
4338                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4339                         continue;
4340
4341                 err = ptype->callbacks.gro_complete(skb, 0);
4342                 break;
4343         }
4344         rcu_read_unlock();
4345
4346         if (err) {
4347                 WARN_ON(&ptype->list == head);
4348                 kfree_skb(skb);
4349                 return NET_RX_SUCCESS;
4350         }
4351
4352 out:
4353         return netif_receive_skb_internal(skb);
4354 }
4355
4356 /* napi->gro_list contains packets ordered by age.
4357  * youngest packets at the head of it.
4358  * Complete skbs in reverse order to reduce latencies.
4359  */
4360 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4361 {
4362         struct sk_buff *skb, *prev = NULL;
4363
4364         /* scan list and build reverse chain */
4365         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4366                 skb->prev = prev;
4367                 prev = skb;
4368         }
4369
4370         for (skb = prev; skb; skb = prev) {
4371                 skb->next = NULL;
4372
4373                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4374                         return;
4375
4376                 prev = skb->prev;
4377                 napi_gro_complete(skb);
4378                 napi->gro_count--;
4379         }
4380
4381         napi->gro_list = NULL;
4382 }
4383 EXPORT_SYMBOL(napi_gro_flush);
4384
4385 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4386 {
4387         struct sk_buff *p;
4388         unsigned int maclen = skb->dev->hard_header_len;
4389         u32 hash = skb_get_hash_raw(skb);
4390
4391         for (p = napi->gro_list; p; p = p->next) {
4392                 unsigned long diffs;
4393
4394                 NAPI_GRO_CB(p)->flush = 0;
4395
4396                 if (hash != skb_get_hash_raw(p)) {
4397                         NAPI_GRO_CB(p)->same_flow = 0;
4398                         continue;
4399                 }
4400
4401                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4402                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4403                 diffs |= skb_metadata_dst_cmp(p, skb);
4404                 if (maclen == ETH_HLEN)
4405                         diffs |= compare_ether_header(skb_mac_header(p),
4406                                                       skb_mac_header(skb));
4407                 else if (!diffs)
4408                         diffs = memcmp(skb_mac_header(p),
4409                                        skb_mac_header(skb),
4410                                        maclen);
4411                 NAPI_GRO_CB(p)->same_flow = !diffs;
4412         }
4413 }
4414
4415 static void skb_gro_reset_offset(struct sk_buff *skb)
4416 {
4417         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4418         const skb_frag_t *frag0 = &pinfo->frags[0];
4419
4420         NAPI_GRO_CB(skb)->data_offset = 0;
4421         NAPI_GRO_CB(skb)->frag0 = NULL;
4422         NAPI_GRO_CB(skb)->frag0_len = 0;
4423
4424         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4425             pinfo->nr_frags &&
4426             !PageHighMem(skb_frag_page(frag0))) {
4427                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4428                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4429         }
4430 }
4431
4432 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4433 {
4434         struct skb_shared_info *pinfo = skb_shinfo(skb);
4435
4436         BUG_ON(skb->end - skb->tail < grow);
4437
4438         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4439
4440         skb->data_len -= grow;
4441         skb->tail += grow;
4442
4443         pinfo->frags[0].page_offset += grow;
4444         skb_frag_size_sub(&pinfo->frags[0], grow);
4445
4446         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4447                 skb_frag_unref(skb, 0);
4448                 memmove(pinfo->frags, pinfo->frags + 1,
4449                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4450         }
4451 }
4452
4453 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4454 {
4455         struct sk_buff **pp = NULL;
4456         struct packet_offload *ptype;
4457         __be16 type = skb->protocol;
4458         struct list_head *head = &offload_base;
4459         int same_flow;
4460         enum gro_result ret;
4461         int grow;
4462
4463         if (!(skb->dev->features & NETIF_F_GRO))
4464                 goto normal;
4465
4466         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4467                 goto normal;
4468
4469         gro_list_prepare(napi, skb);
4470
4471         rcu_read_lock();
4472         list_for_each_entry_rcu(ptype, head, list) {
4473                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4474                         continue;
4475
4476                 skb_set_network_header(skb, skb_gro_offset(skb));
4477                 skb_reset_mac_len(skb);
4478                 NAPI_GRO_CB(skb)->same_flow = 0;
4479                 NAPI_GRO_CB(skb)->flush = 0;
4480                 NAPI_GRO_CB(skb)->free = 0;
4481                 NAPI_GRO_CB(skb)->encap_mark = 0;
4482                 NAPI_GRO_CB(skb)->is_fou = 0;
4483                 NAPI_GRO_CB(skb)->is_atomic = 1;
4484                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4485
4486                 /* Setup for GRO checksum validation */
4487                 switch (skb->ip_summed) {
4488                 case CHECKSUM_COMPLETE:
4489                         NAPI_GRO_CB(skb)->csum = skb->csum;
4490                         NAPI_GRO_CB(skb)->csum_valid = 1;
4491                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4492                         break;
4493                 case CHECKSUM_UNNECESSARY:
4494                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4495                         NAPI_GRO_CB(skb)->csum_valid = 0;
4496                         break;
4497                 default:
4498                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4499                         NAPI_GRO_CB(skb)->csum_valid = 0;
4500                 }
4501
4502                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4503                 break;
4504         }
4505         rcu_read_unlock();
4506
4507         if (&ptype->list == head)
4508                 goto normal;
4509
4510         same_flow = NAPI_GRO_CB(skb)->same_flow;
4511         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4512
4513         if (pp) {
4514                 struct sk_buff *nskb = *pp;
4515
4516                 *pp = nskb->next;
4517                 nskb->next = NULL;
4518                 napi_gro_complete(nskb);
4519                 napi->gro_count--;
4520         }
4521
4522         if (same_flow)
4523                 goto ok;
4524
4525         if (NAPI_GRO_CB(skb)->flush)
4526                 goto normal;
4527
4528         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4529                 struct sk_buff *nskb = napi->gro_list;
4530
4531                 /* locate the end of the list to select the 'oldest' flow */
4532                 while (nskb->next) {
4533                         pp = &nskb->next;
4534                         nskb = *pp;
4535                 }
4536                 *pp = NULL;
4537                 nskb->next = NULL;
4538                 napi_gro_complete(nskb);
4539         } else {
4540                 napi->gro_count++;
4541         }
4542         NAPI_GRO_CB(skb)->count = 1;
4543         NAPI_GRO_CB(skb)->age = jiffies;
4544         NAPI_GRO_CB(skb)->last = skb;
4545         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4546         skb->next = napi->gro_list;
4547         napi->gro_list = skb;
4548         ret = GRO_HELD;
4549
4550 pull:
4551         grow = skb_gro_offset(skb) - skb_headlen(skb);
4552         if (grow > 0)
4553                 gro_pull_from_frag0(skb, grow);
4554 ok:
4555         return ret;
4556
4557 normal:
4558         ret = GRO_NORMAL;
4559         goto pull;
4560 }
4561
4562 struct packet_offload *gro_find_receive_by_type(__be16 type)
4563 {
4564         struct list_head *offload_head = &offload_base;
4565         struct packet_offload *ptype;
4566
4567         list_for_each_entry_rcu(ptype, offload_head, list) {
4568                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4569                         continue;
4570                 return ptype;
4571         }
4572         return NULL;
4573 }
4574 EXPORT_SYMBOL(gro_find_receive_by_type);
4575
4576 struct packet_offload *gro_find_complete_by_type(__be16 type)
4577 {
4578         struct list_head *offload_head = &offload_base;
4579         struct packet_offload *ptype;
4580
4581         list_for_each_entry_rcu(ptype, offload_head, list) {
4582                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4583                         continue;
4584                 return ptype;
4585         }
4586         return NULL;
4587 }
4588 EXPORT_SYMBOL(gro_find_complete_by_type);
4589
4590 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4591 {
4592         switch (ret) {
4593         case GRO_NORMAL:
4594                 if (netif_receive_skb_internal(skb))
4595                         ret = GRO_DROP;
4596                 break;
4597
4598         case GRO_DROP:
4599                 kfree_skb(skb);
4600                 break;
4601
4602         case GRO_MERGED_FREE:
4603                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4604                         skb_dst_drop(skb);
4605                         kmem_cache_free(skbuff_head_cache, skb);
4606                 } else {
4607                         __kfree_skb(skb);
4608                 }
4609                 break;
4610
4611         case GRO_HELD:
4612         case GRO_MERGED:
4613                 break;
4614         }
4615
4616         return ret;
4617 }
4618
4619 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4620 {
4621         skb_mark_napi_id(skb, napi);
4622         trace_napi_gro_receive_entry(skb);
4623
4624         skb_gro_reset_offset(skb);
4625
4626         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4627 }
4628 EXPORT_SYMBOL(napi_gro_receive);
4629
4630 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4631 {
4632         if (unlikely(skb->pfmemalloc)) {
4633                 consume_skb(skb);
4634                 return;
4635         }
4636         __skb_pull(skb, skb_headlen(skb));
4637         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4638         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4639         skb->vlan_tci = 0;
4640         skb->dev = napi->dev;
4641         skb->skb_iif = 0;
4642         skb->encapsulation = 0;
4643         skb_shinfo(skb)->gso_type = 0;
4644         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4645
4646         napi->skb = skb;
4647 }
4648
4649 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4650 {
4651         struct sk_buff *skb = napi->skb;
4652
4653         if (!skb) {
4654                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4655                 if (skb) {
4656                         napi->skb = skb;
4657                         skb_mark_napi_id(skb, napi);
4658                 }
4659         }
4660         return skb;
4661 }
4662 EXPORT_SYMBOL(napi_get_frags);
4663
4664 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4665                                       struct sk_buff *skb,
4666                                       gro_result_t ret)
4667 {
4668         switch (ret) {
4669         case GRO_NORMAL:
4670         case GRO_HELD:
4671                 __skb_push(skb, ETH_HLEN);
4672                 skb->protocol = eth_type_trans(skb, skb->dev);
4673                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4674                         ret = GRO_DROP;
4675                 break;
4676
4677         case GRO_DROP:
4678         case GRO_MERGED_FREE:
4679                 napi_reuse_skb(napi, skb);
4680                 break;
4681
4682         case GRO_MERGED:
4683                 break;
4684         }
4685
4686         return ret;
4687 }
4688
4689 /* Upper GRO stack assumes network header starts at gro_offset=0
4690  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4691  * We copy ethernet header into skb->data to have a common layout.
4692  */
4693 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4694 {
4695         struct sk_buff *skb = napi->skb;
4696         const struct ethhdr *eth;
4697         unsigned int hlen = sizeof(*eth);
4698
4699         napi->skb = NULL;
4700
4701         skb_reset_mac_header(skb);
4702         skb_gro_reset_offset(skb);
4703
4704         eth = skb_gro_header_fast(skb, 0);
4705         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4706                 eth = skb_gro_header_slow(skb, hlen, 0);
4707                 if (unlikely(!eth)) {
4708                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4709                                              __func__, napi->dev->name);
4710                         napi_reuse_skb(napi, skb);
4711                         return NULL;
4712                 }
4713         } else {
4714                 gro_pull_from_frag0(skb, hlen);
4715                 NAPI_GRO_CB(skb)->frag0 += hlen;
4716                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4717         }
4718         __skb_pull(skb, hlen);
4719
4720         /*
4721          * This works because the only protocols we care about don't require
4722          * special handling.
4723          * We'll fix it up properly in napi_frags_finish()
4724          */
4725         skb->protocol = eth->h_proto;
4726
4727         return skb;
4728 }
4729
4730 gro_result_t napi_gro_frags(struct napi_struct *napi)
4731 {
4732         struct sk_buff *skb = napi_frags_skb(napi);
4733
4734         if (!skb)
4735                 return GRO_DROP;
4736
4737         trace_napi_gro_frags_entry(skb);
4738
4739         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4740 }
4741 EXPORT_SYMBOL(napi_gro_frags);
4742
4743 /* Compute the checksum from gro_offset and return the folded value
4744  * after adding in any pseudo checksum.
4745  */
4746 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4747 {
4748         __wsum wsum;
4749         __sum16 sum;
4750
4751         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4752
4753         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4754         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4755         if (likely(!sum)) {
4756                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4757                     !skb->csum_complete_sw)
4758                         netdev_rx_csum_fault(skb->dev);
4759         }
4760
4761         NAPI_GRO_CB(skb)->csum = wsum;
4762         NAPI_GRO_CB(skb)->csum_valid = 1;
4763
4764         return sum;
4765 }
4766 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4767
4768 /*
4769  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4770  * Note: called with local irq disabled, but exits with local irq enabled.
4771  */
4772 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4773 {
4774 #ifdef CONFIG_RPS
4775         struct softnet_data *remsd = sd->rps_ipi_list;
4776
4777         if (remsd) {
4778                 sd->rps_ipi_list = NULL;
4779
4780                 local_irq_enable();
4781
4782                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4783                 while (remsd) {
4784                         struct softnet_data *next = remsd->rps_ipi_next;
4785
4786                         if (cpu_online(remsd->cpu))
4787                                 smp_call_function_single_async(remsd->cpu,
4788                                                            &remsd->csd);
4789                         remsd = next;
4790                 }
4791         } else
4792 #endif
4793                 local_irq_enable();
4794 }
4795
4796 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4797 {
4798 #ifdef CONFIG_RPS
4799         return sd->rps_ipi_list != NULL;
4800 #else
4801         return false;
4802 #endif
4803 }
4804
4805 static int process_backlog(struct napi_struct *napi, int quota)
4806 {
4807         int work = 0;
4808         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4809
4810         /* Check if we have pending ipi, its better to send them now,
4811          * not waiting net_rx_action() end.
4812          */
4813         if (sd_has_rps_ipi_waiting(sd)) {
4814                 local_irq_disable();
4815                 net_rps_action_and_irq_enable(sd);
4816         }
4817
4818         napi->weight = weight_p;
4819         local_irq_disable();
4820         while (1) {
4821                 struct sk_buff *skb;
4822
4823                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4824                         rcu_read_lock();
4825                         local_irq_enable();
4826                         __netif_receive_skb(skb);
4827                         rcu_read_unlock();
4828                         local_irq_disable();
4829                         input_queue_head_incr(sd);
4830                         if (++work >= quota) {
4831                                 local_irq_enable();
4832                                 return work;
4833                         }
4834                 }
4835
4836                 rps_lock(sd);
4837                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4838                         /*
4839                          * Inline a custom version of __napi_complete().
4840                          * only current cpu owns and manipulates this napi,
4841                          * and NAPI_STATE_SCHED is the only possible flag set
4842                          * on backlog.
4843                          * We can use a plain write instead of clear_bit(),
4844                          * and we dont need an smp_mb() memory barrier.
4845                          */
4846                         napi->state = 0;
4847                         rps_unlock(sd);
4848
4849                         break;
4850                 }
4851
4852                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4853                                            &sd->process_queue);
4854                 rps_unlock(sd);
4855         }
4856         local_irq_enable();
4857
4858         return work;
4859 }
4860
4861 /**
4862  * __napi_schedule - schedule for receive
4863  * @n: entry to schedule
4864  *
4865  * The entry's receive function will be scheduled to run.
4866  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4867  */
4868 void __napi_schedule(struct napi_struct *n)
4869 {
4870         unsigned long flags;
4871
4872         local_irq_save(flags);
4873         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4874         local_irq_restore(flags);
4875 }
4876 EXPORT_SYMBOL(__napi_schedule);
4877
4878 /**
4879  * __napi_schedule_irqoff - schedule for receive
4880  * @n: entry to schedule
4881  *
4882  * Variant of __napi_schedule() assuming hard irqs are masked
4883  */
4884 void __napi_schedule_irqoff(struct napi_struct *n)
4885 {
4886         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4887 }
4888 EXPORT_SYMBOL(__napi_schedule_irqoff);
4889
4890 void __napi_complete(struct napi_struct *n)
4891 {
4892         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4893
4894         list_del_init(&n->poll_list);
4895         smp_mb__before_atomic();
4896         clear_bit(NAPI_STATE_SCHED, &n->state);
4897 }
4898 EXPORT_SYMBOL(__napi_complete);
4899
4900 void napi_complete_done(struct napi_struct *n, int work_done)
4901 {
4902         unsigned long flags;
4903
4904         /*
4905          * don't let napi dequeue from the cpu poll list
4906          * just in case its running on a different cpu
4907          */
4908         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4909                 return;
4910
4911         if (n->gro_list) {
4912                 unsigned long timeout = 0;
4913
4914                 if (work_done)
4915                         timeout = n->dev->gro_flush_timeout;
4916
4917                 if (timeout)
4918                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4919                                       HRTIMER_MODE_REL_PINNED);
4920                 else
4921                         napi_gro_flush(n, false);
4922         }
4923         if (likely(list_empty(&n->poll_list))) {
4924                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4925         } else {
4926                 /* If n->poll_list is not empty, we need to mask irqs */
4927                 local_irq_save(flags);
4928                 __napi_complete(n);
4929                 local_irq_restore(flags);
4930         }
4931 }
4932 EXPORT_SYMBOL(napi_complete_done);
4933
4934 /* must be called under rcu_read_lock(), as we dont take a reference */
4935 static struct napi_struct *napi_by_id(unsigned int napi_id)
4936 {
4937         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4938         struct napi_struct *napi;
4939
4940         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4941                 if (napi->napi_id == napi_id)
4942                         return napi;
4943
4944         return NULL;
4945 }
4946
4947 #if defined(CONFIG_NET_RX_BUSY_POLL)
4948 #define BUSY_POLL_BUDGET 8
4949 bool sk_busy_loop(struct sock *sk, int nonblock)
4950 {
4951         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4952         int (*busy_poll)(struct napi_struct *dev);
4953         struct napi_struct *napi;
4954         int rc = false;
4955
4956         rcu_read_lock();
4957
4958         napi = napi_by_id(sk->sk_napi_id);
4959         if (!napi)
4960                 goto out;
4961
4962         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4963         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4964
4965         do {
4966                 rc = 0;
4967                 local_bh_disable();
4968                 if (busy_poll) {
4969                         rc = busy_poll(napi);
4970                 } else if (napi_schedule_prep(napi)) {
4971                         void *have = netpoll_poll_lock(napi);
4972
4973                         if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4974                                 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4975                                 trace_napi_poll(napi);
4976                                 if (rc == BUSY_POLL_BUDGET) {
4977                                         napi_complete_done(napi, rc);
4978                                         napi_schedule(napi);
4979                                 }
4980                         }
4981                         netpoll_poll_unlock(have);
4982                 }
4983                 if (rc > 0)
4984                         __NET_ADD_STATS(sock_net(sk),
4985                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4986                 local_bh_enable();
4987
4988                 if (rc == LL_FLUSH_FAILED)
4989                         break; /* permanent failure */
4990
4991                 cpu_relax();
4992         } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4993                  !need_resched() && !busy_loop_timeout(end_time));
4994
4995         rc = !skb_queue_empty(&sk->sk_receive_queue);
4996 out:
4997         rcu_read_unlock();
4998         return rc;
4999 }
5000 EXPORT_SYMBOL(sk_busy_loop);
5001
5002 #endif /* CONFIG_NET_RX_BUSY_POLL */
5003
5004 void napi_hash_add(struct napi_struct *napi)
5005 {
5006         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5007             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5008                 return;
5009
5010         spin_lock(&napi_hash_lock);
5011
5012         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5013         do {
5014                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5015                         napi_gen_id = NR_CPUS + 1;
5016         } while (napi_by_id(napi_gen_id));
5017         napi->napi_id = napi_gen_id;
5018
5019         hlist_add_head_rcu(&napi->napi_hash_node,
5020                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5021
5022         spin_unlock(&napi_hash_lock);
5023 }
5024 EXPORT_SYMBOL_GPL(napi_hash_add);
5025
5026 /* Warning : caller is responsible to make sure rcu grace period
5027  * is respected before freeing memory containing @napi
5028  */
5029 bool napi_hash_del(struct napi_struct *napi)
5030 {
5031         bool rcu_sync_needed = false;
5032
5033         spin_lock(&napi_hash_lock);
5034
5035         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5036                 rcu_sync_needed = true;
5037                 hlist_del_rcu(&napi->napi_hash_node);
5038         }
5039         spin_unlock(&napi_hash_lock);
5040         return rcu_sync_needed;
5041 }
5042 EXPORT_SYMBOL_GPL(napi_hash_del);
5043
5044 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5045 {
5046         struct napi_struct *napi;
5047
5048         napi = container_of(timer, struct napi_struct, timer);
5049         if (napi->gro_list)
5050                 napi_schedule(napi);
5051
5052         return HRTIMER_NORESTART;
5053 }
5054
5055 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5056                     int (*poll)(struct napi_struct *, int), int weight)
5057 {
5058         INIT_LIST_HEAD(&napi->poll_list);
5059         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5060         napi->timer.function = napi_watchdog;
5061         napi->gro_count = 0;
5062         napi->gro_list = NULL;
5063         napi->skb = NULL;
5064         napi->poll = poll;
5065         if (weight > NAPI_POLL_WEIGHT)
5066                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5067                             weight, dev->name);
5068         napi->weight = weight;
5069         list_add(&napi->dev_list, &dev->napi_list);
5070         napi->dev = dev;
5071 #ifdef CONFIG_NETPOLL
5072         spin_lock_init(&napi->poll_lock);
5073         napi->poll_owner = -1;
5074 #endif
5075         set_bit(NAPI_STATE_SCHED, &napi->state);
5076         napi_hash_add(napi);
5077 }
5078 EXPORT_SYMBOL(netif_napi_add);
5079
5080 void napi_disable(struct napi_struct *n)
5081 {
5082         might_sleep();
5083         set_bit(NAPI_STATE_DISABLE, &n->state);
5084
5085         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5086                 msleep(1);
5087         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5088                 msleep(1);
5089
5090         hrtimer_cancel(&n->timer);
5091
5092         clear_bit(NAPI_STATE_DISABLE, &n->state);
5093 }
5094 EXPORT_SYMBOL(napi_disable);
5095
5096 /* Must be called in process context */
5097 void netif_napi_del(struct napi_struct *napi)
5098 {
5099         might_sleep();
5100         if (napi_hash_del(napi))
5101                 synchronize_net();
5102         list_del_init(&napi->dev_list);
5103         napi_free_frags(napi);
5104
5105         kfree_skb_list(napi->gro_list);
5106         napi->gro_list = NULL;
5107         napi->gro_count = 0;
5108 }
5109 EXPORT_SYMBOL(netif_napi_del);
5110
5111 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5112 {
5113         void *have;
5114         int work, weight;
5115
5116         list_del_init(&n->poll_list);
5117
5118         have = netpoll_poll_lock(n);
5119
5120         weight = n->weight;
5121
5122         /* This NAPI_STATE_SCHED test is for avoiding a race
5123          * with netpoll's poll_napi().  Only the entity which
5124          * obtains the lock and sees NAPI_STATE_SCHED set will
5125          * actually make the ->poll() call.  Therefore we avoid
5126          * accidentally calling ->poll() when NAPI is not scheduled.
5127          */
5128         work = 0;
5129         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5130                 work = n->poll(n, weight);
5131                 trace_napi_poll(n);
5132         }
5133
5134         WARN_ON_ONCE(work > weight);
5135
5136         if (likely(work < weight))
5137                 goto out_unlock;
5138
5139         /* Drivers must not modify the NAPI state if they
5140          * consume the entire weight.  In such cases this code
5141          * still "owns" the NAPI instance and therefore can
5142          * move the instance around on the list at-will.
5143          */
5144         if (unlikely(napi_disable_pending(n))) {
5145                 napi_complete(n);
5146                 goto out_unlock;
5147         }
5148
5149         if (n->gro_list) {
5150                 /* flush too old packets
5151                  * If HZ < 1000, flush all packets.
5152                  */
5153                 napi_gro_flush(n, HZ >= 1000);
5154         }
5155
5156         /* Some drivers may have called napi_schedule
5157          * prior to exhausting their budget.
5158          */
5159         if (unlikely(!list_empty(&n->poll_list))) {
5160                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5161                              n->dev ? n->dev->name : "backlog");
5162                 goto out_unlock;
5163         }
5164
5165         list_add_tail(&n->poll_list, repoll);
5166
5167 out_unlock:
5168         netpoll_poll_unlock(have);
5169
5170         return work;
5171 }
5172
5173 static void net_rx_action(struct softirq_action *h)
5174 {
5175         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5176         unsigned long time_limit = jiffies + 2;
5177         int budget = netdev_budget;
5178         LIST_HEAD(list);
5179         LIST_HEAD(repoll);
5180
5181         local_irq_disable();
5182         list_splice_init(&sd->poll_list, &list);
5183         local_irq_enable();
5184
5185         for (;;) {
5186                 struct napi_struct *n;
5187
5188                 if (list_empty(&list)) {
5189                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5190                                 return;
5191                         break;
5192                 }
5193
5194                 n = list_first_entry(&list, struct napi_struct, poll_list);
5195                 budget -= napi_poll(n, &repoll);
5196
5197                 /* If softirq window is exhausted then punt.
5198                  * Allow this to run for 2 jiffies since which will allow
5199                  * an average latency of 1.5/HZ.
5200                  */
5201                 if (unlikely(budget <= 0 ||
5202                              time_after_eq(jiffies, time_limit))) {
5203                         sd->time_squeeze++;
5204                         break;
5205                 }
5206         }
5207
5208         __kfree_skb_flush();
5209         local_irq_disable();
5210
5211         list_splice_tail_init(&sd->poll_list, &list);
5212         list_splice_tail(&repoll, &list);
5213         list_splice(&list, &sd->poll_list);
5214         if (!list_empty(&sd->poll_list))
5215                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5216
5217         net_rps_action_and_irq_enable(sd);
5218 }
5219
5220 struct netdev_adjacent {
5221         struct net_device *dev;
5222
5223         /* upper master flag, there can only be one master device per list */
5224         bool master;
5225
5226         /* counter for the number of times this device was added to us */
5227         u16 ref_nr;
5228
5229         /* private field for the users */
5230         void *private;
5231
5232         struct list_head list;
5233         struct rcu_head rcu;
5234 };
5235
5236 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5237                                                  struct list_head *adj_list)
5238 {
5239         struct netdev_adjacent *adj;
5240
5241         list_for_each_entry(adj, adj_list, list) {
5242                 if (adj->dev == adj_dev)
5243                         return adj;
5244         }
5245         return NULL;
5246 }
5247
5248 /**
5249  * netdev_has_upper_dev - Check if device is linked to an upper device
5250  * @dev: device
5251  * @upper_dev: upper device to check
5252  *
5253  * Find out if a device is linked to specified upper device and return true
5254  * in case it is. Note that this checks only immediate upper device,
5255  * not through a complete stack of devices. The caller must hold the RTNL lock.
5256  */
5257 bool netdev_has_upper_dev(struct net_device *dev,
5258                           struct net_device *upper_dev)
5259 {
5260         ASSERT_RTNL();
5261
5262         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5263 }
5264 EXPORT_SYMBOL(netdev_has_upper_dev);
5265
5266 /**
5267  * netdev_has_any_upper_dev - Check if device is linked to some device
5268  * @dev: device
5269  *
5270  * Find out if a device is linked to an upper device and return true in case
5271  * it is. The caller must hold the RTNL lock.
5272  */
5273 static bool netdev_has_any_upper_dev(struct net_device *dev)
5274 {
5275         ASSERT_RTNL();
5276
5277         return !list_empty(&dev->all_adj_list.upper);
5278 }
5279
5280 /**
5281  * netdev_master_upper_dev_get - Get master upper device
5282  * @dev: device
5283  *
5284  * Find a master upper device and return pointer to it or NULL in case
5285  * it's not there. The caller must hold the RTNL lock.
5286  */
5287 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5288 {
5289         struct netdev_adjacent *upper;
5290
5291         ASSERT_RTNL();
5292
5293         if (list_empty(&dev->adj_list.upper))
5294                 return NULL;
5295
5296         upper = list_first_entry(&dev->adj_list.upper,
5297                                  struct netdev_adjacent, list);
5298         if (likely(upper->master))
5299                 return upper->dev;
5300         return NULL;
5301 }
5302 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5303
5304 void *netdev_adjacent_get_private(struct list_head *adj_list)
5305 {
5306         struct netdev_adjacent *adj;
5307
5308         adj = list_entry(adj_list, struct netdev_adjacent, list);
5309
5310         return adj->private;
5311 }
5312 EXPORT_SYMBOL(netdev_adjacent_get_private);
5313
5314 /**
5315  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5316  * @dev: device
5317  * @iter: list_head ** of the current position
5318  *
5319  * Gets the next device from the dev's upper list, starting from iter
5320  * position. The caller must hold RCU read lock.
5321  */
5322 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5323                                                  struct list_head **iter)
5324 {
5325         struct netdev_adjacent *upper;
5326
5327         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5328
5329         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5330
5331         if (&upper->list == &dev->adj_list.upper)
5332                 return NULL;
5333
5334         *iter = &upper->list;
5335
5336         return upper->dev;
5337 }
5338 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5339
5340 /**
5341  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5342  * @dev: device
5343  * @iter: list_head ** of the current position
5344  *
5345  * Gets the next device from the dev's upper list, starting from iter
5346  * position. The caller must hold RCU read lock.
5347  */
5348 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5349                                                      struct list_head **iter)
5350 {
5351         struct netdev_adjacent *upper;
5352
5353         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5354
5355         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5356
5357         if (&upper->list == &dev->all_adj_list.upper)
5358                 return NULL;
5359
5360         *iter = &upper->list;
5361
5362         return upper->dev;
5363 }
5364 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5365
5366 /**
5367  * netdev_lower_get_next_private - Get the next ->private from the
5368  *                                 lower neighbour list
5369  * @dev: device
5370  * @iter: list_head ** of the current position
5371  *
5372  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5373  * list, starting from iter position. The caller must hold either hold the
5374  * RTNL lock or its own locking that guarantees that the neighbour lower
5375  * list will remain unchanged.
5376  */
5377 void *netdev_lower_get_next_private(struct net_device *dev,
5378                                     struct list_head **iter)
5379 {
5380         struct netdev_adjacent *lower;
5381
5382         lower = list_entry(*iter, struct netdev_adjacent, list);
5383
5384         if (&lower->list == &dev->adj_list.lower)
5385                 return NULL;
5386
5387         *iter = lower->list.next;
5388
5389         return lower->private;
5390 }
5391 EXPORT_SYMBOL(netdev_lower_get_next_private);
5392
5393 /**
5394  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5395  *                                     lower neighbour list, RCU
5396  *                                     variant
5397  * @dev: device
5398  * @iter: list_head ** of the current position
5399  *
5400  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5401  * list, starting from iter position. The caller must hold RCU read lock.
5402  */
5403 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5404                                         struct list_head **iter)
5405 {
5406         struct netdev_adjacent *lower;
5407
5408         WARN_ON_ONCE(!rcu_read_lock_held());
5409
5410         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5411
5412         if (&lower->list == &dev->adj_list.lower)
5413                 return NULL;
5414
5415         *iter = &lower->list;
5416
5417         return lower->private;
5418 }
5419 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5420
5421 /**
5422  * netdev_lower_get_next - Get the next device from the lower neighbour
5423  *                         list
5424  * @dev: device
5425  * @iter: list_head ** of the current position
5426  *
5427  * Gets the next netdev_adjacent from the dev's lower neighbour
5428  * list, starting from iter position. The caller must hold RTNL lock or
5429  * its own locking that guarantees that the neighbour lower
5430  * list will remain unchanged.
5431  */
5432 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5433 {
5434         struct netdev_adjacent *lower;
5435
5436         lower = list_entry(*iter, struct netdev_adjacent, list);
5437
5438         if (&lower->list == &dev->adj_list.lower)
5439                 return NULL;
5440
5441         *iter = lower->list.next;
5442
5443         return lower->dev;
5444 }
5445 EXPORT_SYMBOL(netdev_lower_get_next);
5446
5447 /**
5448  * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5449  * @dev: device
5450  * @iter: list_head ** of the current position
5451  *
5452  * Gets the next netdev_adjacent from the dev's all lower neighbour
5453  * list, starting from iter position. The caller must hold RTNL lock or
5454  * its own locking that guarantees that the neighbour all lower
5455  * list will remain unchanged.
5456  */
5457 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5458 {
5459         struct netdev_adjacent *lower;
5460
5461         lower = list_entry(*iter, struct netdev_adjacent, list);
5462
5463         if (&lower->list == &dev->all_adj_list.lower)
5464                 return NULL;
5465
5466         *iter = lower->list.next;
5467
5468         return lower->dev;
5469 }
5470 EXPORT_SYMBOL(netdev_all_lower_get_next);
5471
5472 /**
5473  * netdev_all_lower_get_next_rcu - Get the next device from all
5474  *                                 lower neighbour list, RCU variant
5475  * @dev: device
5476  * @iter: list_head ** of the current position
5477  *
5478  * Gets the next netdev_adjacent from the dev's all lower neighbour
5479  * list, starting from iter position. The caller must hold RCU read lock.
5480  */
5481 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5482                                                  struct list_head **iter)
5483 {
5484         struct netdev_adjacent *lower;
5485
5486         lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5487                                        struct netdev_adjacent, list);
5488
5489         return lower ? lower->dev : NULL;
5490 }
5491 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5492
5493 /**
5494  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5495  *                                     lower neighbour list, RCU
5496  *                                     variant
5497  * @dev: device
5498  *
5499  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5500  * list. The caller must hold RCU read lock.
5501  */
5502 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5503 {
5504         struct netdev_adjacent *lower;
5505
5506         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5507                         struct netdev_adjacent, list);
5508         if (lower)
5509                 return lower->private;
5510         return NULL;
5511 }
5512 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5513
5514 /**
5515  * netdev_master_upper_dev_get_rcu - Get master upper device
5516  * @dev: device
5517  *
5518  * Find a master upper device and return pointer to it or NULL in case
5519  * it's not there. The caller must hold the RCU read lock.
5520  */
5521 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5522 {
5523         struct netdev_adjacent *upper;
5524
5525         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5526                                        struct netdev_adjacent, list);
5527         if (upper && likely(upper->master))
5528                 return upper->dev;
5529         return NULL;
5530 }
5531 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5532
5533 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5534                               struct net_device *adj_dev,
5535                               struct list_head *dev_list)
5536 {
5537         char linkname[IFNAMSIZ+7];
5538         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5539                 "upper_%s" : "lower_%s", adj_dev->name);
5540         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5541                                  linkname);
5542 }
5543 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5544                                char *name,
5545                                struct list_head *dev_list)
5546 {
5547         char linkname[IFNAMSIZ+7];
5548         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5549                 "upper_%s" : "lower_%s", name);
5550         sysfs_remove_link(&(dev->dev.kobj), linkname);
5551 }
5552
5553 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5554                                                  struct net_device *adj_dev,
5555                                                  struct list_head *dev_list)
5556 {
5557         return (dev_list == &dev->adj_list.upper ||
5558                 dev_list == &dev->adj_list.lower) &&
5559                 net_eq(dev_net(dev), dev_net(adj_dev));
5560 }
5561
5562 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5563                                         struct net_device *adj_dev,
5564                                         struct list_head *dev_list,
5565                                         void *private, bool master)
5566 {
5567         struct netdev_adjacent *adj;
5568         int ret;
5569
5570         adj = __netdev_find_adj(adj_dev, dev_list);
5571
5572         if (adj) {
5573                 adj->ref_nr++;
5574                 return 0;
5575         }
5576
5577         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5578         if (!adj)
5579                 return -ENOMEM;
5580
5581         adj->dev = adj_dev;
5582         adj->master = master;
5583         adj->ref_nr = 1;
5584         adj->private = private;
5585         dev_hold(adj_dev);
5586
5587         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5588                  adj_dev->name, dev->name, adj_dev->name);
5589
5590         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5591                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5592                 if (ret)
5593                         goto free_adj;
5594         }
5595
5596         /* Ensure that master link is always the first item in list. */
5597         if (master) {
5598                 ret = sysfs_create_link(&(dev->dev.kobj),
5599                                         &(adj_dev->dev.kobj), "master");
5600                 if (ret)
5601                         goto remove_symlinks;
5602
5603                 list_add_rcu(&adj->list, dev_list);
5604         } else {
5605                 list_add_tail_rcu(&adj->list, dev_list);
5606         }
5607
5608         return 0;
5609
5610 remove_symlinks:
5611         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5612                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5613 free_adj:
5614         kfree(adj);
5615         dev_put(adj_dev);
5616
5617         return ret;
5618 }
5619
5620 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5621                                          struct net_device *adj_dev,
5622                                          struct list_head *dev_list)
5623 {
5624         struct netdev_adjacent *adj;
5625
5626         adj = __netdev_find_adj(adj_dev, dev_list);
5627
5628         if (!adj) {
5629                 pr_err("tried to remove device %s from %s\n",
5630                        dev->name, adj_dev->name);
5631                 BUG();
5632         }
5633
5634         if (adj->ref_nr > 1) {
5635                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5636                          adj->ref_nr-1);
5637                 adj->ref_nr--;
5638                 return;
5639         }
5640
5641         if (adj->master)
5642                 sysfs_remove_link(&(dev->dev.kobj), "master");
5643
5644         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5645                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5646
5647         list_del_rcu(&adj->list);
5648         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5649                  adj_dev->name, dev->name, adj_dev->name);
5650         dev_put(adj_dev);
5651         kfree_rcu(adj, rcu);
5652 }
5653
5654 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5655                                             struct net_device *upper_dev,
5656                                             struct list_head *up_list,
5657                                             struct list_head *down_list,
5658                                             void *private, bool master)
5659 {
5660         int ret;
5661
5662         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5663                                            master);
5664         if (ret)
5665                 return ret;
5666
5667         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5668                                            false);
5669         if (ret) {
5670                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5671                 return ret;
5672         }
5673
5674         return 0;
5675 }
5676
5677 static int __netdev_adjacent_dev_link(struct net_device *dev,
5678                                       struct net_device *upper_dev)
5679 {
5680         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5681                                                 &dev->all_adj_list.upper,
5682                                                 &upper_dev->all_adj_list.lower,
5683                                                 NULL, false);
5684 }
5685
5686 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5687                                                struct net_device *upper_dev,
5688                                                struct list_head *up_list,
5689                                                struct list_head *down_list)
5690 {
5691         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5692         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5693 }
5694
5695 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5696                                          struct net_device *upper_dev)
5697 {
5698         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5699                                            &dev->all_adj_list.upper,
5700                                            &upper_dev->all_adj_list.lower);
5701 }
5702
5703 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5704                                                 struct net_device *upper_dev,
5705                                                 void *private, bool master)
5706 {
5707         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5708
5709         if (ret)
5710                 return ret;
5711
5712         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5713                                                &dev->adj_list.upper,
5714                                                &upper_dev->adj_list.lower,
5715                                                private, master);
5716         if (ret) {
5717                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5718                 return ret;
5719         }
5720
5721         return 0;
5722 }
5723
5724 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5725                                                    struct net_device *upper_dev)
5726 {
5727         __netdev_adjacent_dev_unlink(dev, upper_dev);
5728         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5729                                            &dev->adj_list.upper,
5730                                            &upper_dev->adj_list.lower);
5731 }
5732
5733 static int __netdev_upper_dev_link(struct net_device *dev,
5734                                    struct net_device *upper_dev, bool master,
5735                                    void *upper_priv, void *upper_info)
5736 {
5737         struct netdev_notifier_changeupper_info changeupper_info;
5738         struct netdev_adjacent *i, *j, *to_i, *to_j;
5739         int ret = 0;
5740
5741         ASSERT_RTNL();
5742
5743         if (dev == upper_dev)
5744                 return -EBUSY;
5745
5746         /* To prevent loops, check if dev is not upper device to upper_dev. */
5747         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5748                 return -EBUSY;
5749
5750         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5751                 return -EEXIST;
5752
5753         if (master && netdev_master_upper_dev_get(dev))
5754                 return -EBUSY;
5755
5756         changeupper_info.upper_dev = upper_dev;
5757         changeupper_info.master = master;
5758         changeupper_info.linking = true;
5759         changeupper_info.upper_info = upper_info;
5760
5761         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5762                                             &changeupper_info.info);
5763         ret = notifier_to_errno(ret);
5764         if (ret)
5765                 return ret;
5766
5767         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5768                                                    master);
5769         if (ret)
5770                 return ret;
5771
5772         /* Now that we linked these devs, make all the upper_dev's
5773          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5774          * versa, and don't forget the devices itself. All of these
5775          * links are non-neighbours.
5776          */
5777         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5778                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5779                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5780                                  i->dev->name, j->dev->name);
5781                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5782                         if (ret)
5783                                 goto rollback_mesh;
5784                 }
5785         }
5786
5787         /* add dev to every upper_dev's upper device */
5788         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5789                 pr_debug("linking %s's upper device %s with %s\n",
5790                          upper_dev->name, i->dev->name, dev->name);
5791                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5792                 if (ret)
5793                         goto rollback_upper_mesh;
5794         }
5795
5796         /* add upper_dev to every dev's lower device */
5797         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5798                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5799                          i->dev->name, upper_dev->name);
5800                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5801                 if (ret)
5802                         goto rollback_lower_mesh;
5803         }
5804
5805         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5806                                             &changeupper_info.info);
5807         ret = notifier_to_errno(ret);
5808         if (ret)
5809                 goto rollback_lower_mesh;
5810
5811         return 0;
5812
5813 rollback_lower_mesh:
5814         to_i = i;
5815         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5816                 if (i == to_i)
5817                         break;
5818                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5819         }
5820
5821         i = NULL;
5822
5823 rollback_upper_mesh:
5824         to_i = i;
5825         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5826                 if (i == to_i)
5827                         break;
5828                 __netdev_adjacent_dev_unlink(dev, i->dev);
5829         }
5830
5831         i = j = NULL;
5832
5833 rollback_mesh:
5834         to_i = i;
5835         to_j = j;
5836         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5837                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5838                         if (i == to_i && j == to_j)
5839                                 break;
5840                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5841                 }
5842                 if (i == to_i)
5843                         break;
5844         }
5845
5846         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5847
5848         return ret;
5849 }
5850
5851 /**
5852  * netdev_upper_dev_link - Add a link to the upper device
5853  * @dev: device
5854  * @upper_dev: new upper device
5855  *
5856  * Adds a link to device which is upper to this one. The caller must hold
5857  * the RTNL lock. On a failure a negative errno code is returned.
5858  * On success the reference counts are adjusted and the function
5859  * returns zero.
5860  */
5861 int netdev_upper_dev_link(struct net_device *dev,
5862                           struct net_device *upper_dev)
5863 {
5864         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5865 }
5866 EXPORT_SYMBOL(netdev_upper_dev_link);
5867
5868 /**
5869  * netdev_master_upper_dev_link - Add a master link to the upper device
5870  * @dev: device
5871  * @upper_dev: new upper device
5872  * @upper_priv: upper device private
5873  * @upper_info: upper info to be passed down via notifier
5874  *
5875  * Adds a link to device which is upper to this one. In this case, only
5876  * one master upper device can be linked, although other non-master devices
5877  * might be linked as well. The caller must hold the RTNL lock.
5878  * On a failure a negative errno code is returned. On success the reference
5879  * counts are adjusted and the function returns zero.
5880  */
5881 int netdev_master_upper_dev_link(struct net_device *dev,
5882                                  struct net_device *upper_dev,
5883                                  void *upper_priv, void *upper_info)
5884 {
5885         return __netdev_upper_dev_link(dev, upper_dev, true,
5886                                        upper_priv, upper_info);
5887 }
5888 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5889
5890 /**
5891  * netdev_upper_dev_unlink - Removes a link to upper device
5892  * @dev: device
5893  * @upper_dev: new upper device
5894  *
5895  * Removes a link to device which is upper to this one. The caller must hold
5896  * the RTNL lock.
5897  */
5898 void netdev_upper_dev_unlink(struct net_device *dev,
5899                              struct net_device *upper_dev)
5900 {
5901         struct netdev_notifier_changeupper_info changeupper_info;
5902         struct netdev_adjacent *i, *j;
5903         ASSERT_RTNL();
5904
5905         changeupper_info.upper_dev = upper_dev;
5906         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5907         changeupper_info.linking = false;
5908
5909         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5910                                       &changeupper_info.info);
5911
5912         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5913
5914         /* Here is the tricky part. We must remove all dev's lower
5915          * devices from all upper_dev's upper devices and vice
5916          * versa, to maintain the graph relationship.
5917          */
5918         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5919                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5920                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5921
5922         /* remove also the devices itself from lower/upper device
5923          * list
5924          */
5925         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5926                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5927
5928         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5929                 __netdev_adjacent_dev_unlink(dev, i->dev);
5930
5931         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5932                                       &changeupper_info.info);
5933 }
5934 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5935
5936 /**
5937  * netdev_bonding_info_change - Dispatch event about slave change
5938  * @dev: device
5939  * @bonding_info: info to dispatch
5940  *
5941  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5942  * The caller must hold the RTNL lock.
5943  */
5944 void netdev_bonding_info_change(struct net_device *dev,
5945                                 struct netdev_bonding_info *bonding_info)
5946 {
5947         struct netdev_notifier_bonding_info     info;
5948
5949         memcpy(&info.bonding_info, bonding_info,
5950                sizeof(struct netdev_bonding_info));
5951         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5952                                       &info.info);
5953 }
5954 EXPORT_SYMBOL(netdev_bonding_info_change);
5955
5956 static void netdev_adjacent_add_links(struct net_device *dev)
5957 {
5958         struct netdev_adjacent *iter;
5959
5960         struct net *net = dev_net(dev);
5961
5962         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5963                 if (!net_eq(net, dev_net(iter->dev)))
5964                         continue;
5965                 netdev_adjacent_sysfs_add(iter->dev, dev,
5966                                           &iter->dev->adj_list.lower);
5967                 netdev_adjacent_sysfs_add(dev, iter->dev,
5968                                           &dev->adj_list.upper);
5969         }
5970
5971         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5972                 if (!net_eq(net, dev_net(iter->dev)))
5973                         continue;
5974                 netdev_adjacent_sysfs_add(iter->dev, dev,
5975                                           &iter->dev->adj_list.upper);
5976                 netdev_adjacent_sysfs_add(dev, iter->dev,
5977                                           &dev->adj_list.lower);
5978         }
5979 }
5980
5981 static void netdev_adjacent_del_links(struct net_device *dev)
5982 {
5983         struct netdev_adjacent *iter;
5984
5985         struct net *net = dev_net(dev);
5986
5987         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5988                 if (!net_eq(net, dev_net(iter->dev)))
5989                         continue;
5990                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5991                                           &iter->dev->adj_list.lower);
5992                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5993                                           &dev->adj_list.upper);
5994         }
5995
5996         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5997                 if (!net_eq(net, dev_net(iter->dev)))
5998                         continue;
5999                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6000                                           &iter->dev->adj_list.upper);
6001                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6002                                           &dev->adj_list.lower);
6003         }
6004 }
6005
6006 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6007 {
6008         struct netdev_adjacent *iter;
6009
6010         struct net *net = dev_net(dev);
6011
6012         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6013                 if (!net_eq(net, dev_net(iter->dev)))
6014                         continue;
6015                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6016                                           &iter->dev->adj_list.lower);
6017                 netdev_adjacent_sysfs_add(iter->dev, dev,
6018                                           &iter->dev->adj_list.lower);
6019         }
6020
6021         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6022                 if (!net_eq(net, dev_net(iter->dev)))
6023                         continue;
6024                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6025                                           &iter->dev->adj_list.upper);
6026                 netdev_adjacent_sysfs_add(iter->dev, dev,
6027                                           &iter->dev->adj_list.upper);
6028         }
6029 }
6030
6031 void *netdev_lower_dev_get_private(struct net_device *dev,
6032                                    struct net_device *lower_dev)
6033 {
6034         struct netdev_adjacent *lower;
6035
6036         if (!lower_dev)
6037                 return NULL;
6038         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6039         if (!lower)
6040                 return NULL;
6041
6042         return lower->private;
6043 }
6044 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6045
6046
6047 int dev_get_nest_level(struct net_device *dev,
6048                        bool (*type_check)(const struct net_device *dev))
6049 {
6050         struct net_device *lower = NULL;
6051         struct list_head *iter;
6052         int max_nest = -1;
6053         int nest;
6054
6055         ASSERT_RTNL();
6056
6057         netdev_for_each_lower_dev(dev, lower, iter) {
6058                 nest = dev_get_nest_level(lower, type_check);
6059                 if (max_nest < nest)
6060                         max_nest = nest;
6061         }
6062
6063         if (type_check(dev))
6064                 max_nest++;
6065
6066         return max_nest;
6067 }
6068 EXPORT_SYMBOL(dev_get_nest_level);
6069
6070 /**
6071  * netdev_lower_change - Dispatch event about lower device state change
6072  * @lower_dev: device
6073  * @lower_state_info: state to dispatch
6074  *
6075  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6076  * The caller must hold the RTNL lock.
6077  */
6078 void netdev_lower_state_changed(struct net_device *lower_dev,
6079                                 void *lower_state_info)
6080 {
6081         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6082
6083         ASSERT_RTNL();
6084         changelowerstate_info.lower_state_info = lower_state_info;
6085         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6086                                       &changelowerstate_info.info);
6087 }
6088 EXPORT_SYMBOL(netdev_lower_state_changed);
6089
6090 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6091                                            struct neighbour *n)
6092 {
6093         struct net_device *lower_dev, *stop_dev;
6094         struct list_head *iter;
6095         int err;
6096
6097         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6098                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6099                         continue;
6100                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6101                 if (err) {
6102                         stop_dev = lower_dev;
6103                         goto rollback;
6104                 }
6105         }
6106         return 0;
6107
6108 rollback:
6109         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6110                 if (lower_dev == stop_dev)
6111                         break;
6112                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6113                         continue;
6114                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6115         }
6116         return err;
6117 }
6118 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6119
6120 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6121                                           struct neighbour *n)
6122 {
6123         struct net_device *lower_dev;
6124         struct list_head *iter;
6125
6126         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6127                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6128                         continue;
6129                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6130         }
6131 }
6132 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6133
6134 static void dev_change_rx_flags(struct net_device *dev, int flags)
6135 {
6136         const struct net_device_ops *ops = dev->netdev_ops;
6137
6138         if (ops->ndo_change_rx_flags)
6139                 ops->ndo_change_rx_flags(dev, flags);
6140 }
6141
6142 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6143 {
6144         unsigned int old_flags = dev->flags;
6145         kuid_t uid;
6146         kgid_t gid;
6147
6148         ASSERT_RTNL();
6149
6150         dev->flags |= IFF_PROMISC;
6151         dev->promiscuity += inc;
6152         if (dev->promiscuity == 0) {
6153                 /*
6154                  * Avoid overflow.
6155                  * If inc causes overflow, untouch promisc and return error.
6156                  */
6157                 if (inc < 0)
6158                         dev->flags &= ~IFF_PROMISC;
6159                 else {
6160                         dev->promiscuity -= inc;
6161                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6162                                 dev->name);
6163                         return -EOVERFLOW;
6164                 }
6165         }
6166         if (dev->flags != old_flags) {
6167                 pr_info("device %s %s promiscuous mode\n",
6168                         dev->name,
6169                         dev->flags & IFF_PROMISC ? "entered" : "left");
6170                 if (audit_enabled) {
6171                         current_uid_gid(&uid, &gid);
6172                         audit_log(current->audit_context, GFP_ATOMIC,
6173                                 AUDIT_ANOM_PROMISCUOUS,
6174                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6175                                 dev->name, (dev->flags & IFF_PROMISC),
6176                                 (old_flags & IFF_PROMISC),
6177                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6178                                 from_kuid(&init_user_ns, uid),
6179                                 from_kgid(&init_user_ns, gid),
6180                                 audit_get_sessionid(current));
6181                 }
6182
6183                 dev_change_rx_flags(dev, IFF_PROMISC);
6184         }
6185         if (notify)
6186                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6187         return 0;
6188 }
6189
6190 /**
6191  *      dev_set_promiscuity     - update promiscuity count on a device
6192  *      @dev: device
6193  *      @inc: modifier
6194  *
6195  *      Add or remove promiscuity from a device. While the count in the device
6196  *      remains above zero the interface remains promiscuous. Once it hits zero
6197  *      the device reverts back to normal filtering operation. A negative inc
6198  *      value is used to drop promiscuity on the device.
6199  *      Return 0 if successful or a negative errno code on error.
6200  */
6201 int dev_set_promiscuity(struct net_device *dev, int inc)
6202 {
6203         unsigned int old_flags = dev->flags;
6204         int err;
6205
6206         err = __dev_set_promiscuity(dev, inc, true);
6207         if (err < 0)
6208                 return err;
6209         if (dev->flags != old_flags)
6210                 dev_set_rx_mode(dev);
6211         return err;
6212 }
6213 EXPORT_SYMBOL(dev_set_promiscuity);
6214
6215 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6216 {
6217         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6218
6219         ASSERT_RTNL();
6220
6221         dev->flags |= IFF_ALLMULTI;
6222         dev->allmulti += inc;
6223         if (dev->allmulti == 0) {
6224                 /*
6225                  * Avoid overflow.
6226                  * If inc causes overflow, untouch allmulti and return error.
6227                  */
6228                 if (inc < 0)
6229                         dev->flags &= ~IFF_ALLMULTI;
6230                 else {
6231                         dev->allmulti -= inc;
6232                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6233                                 dev->name);
6234                         return -EOVERFLOW;
6235                 }
6236         }
6237         if (dev->flags ^ old_flags) {
6238                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6239                 dev_set_rx_mode(dev);
6240                 if (notify)
6241                         __dev_notify_flags(dev, old_flags,
6242                                            dev->gflags ^ old_gflags);
6243         }
6244         return 0;
6245 }
6246
6247 /**
6248  *      dev_set_allmulti        - update allmulti count on a device
6249  *      @dev: device
6250  *      @inc: modifier
6251  *
6252  *      Add or remove reception of all multicast frames to a device. While the
6253  *      count in the device remains above zero the interface remains listening
6254  *      to all interfaces. Once it hits zero the device reverts back to normal
6255  *      filtering operation. A negative @inc value is used to drop the counter
6256  *      when releasing a resource needing all multicasts.
6257  *      Return 0 if successful or a negative errno code on error.
6258  */
6259
6260 int dev_set_allmulti(struct net_device *dev, int inc)
6261 {
6262         return __dev_set_allmulti(dev, inc, true);
6263 }
6264 EXPORT_SYMBOL(dev_set_allmulti);
6265
6266 /*
6267  *      Upload unicast and multicast address lists to device and
6268  *      configure RX filtering. When the device doesn't support unicast
6269  *      filtering it is put in promiscuous mode while unicast addresses
6270  *      are present.
6271  */
6272 void __dev_set_rx_mode(struct net_device *dev)
6273 {
6274         const struct net_device_ops *ops = dev->netdev_ops;
6275
6276         /* dev_open will call this function so the list will stay sane. */
6277         if (!(dev->flags&IFF_UP))
6278                 return;
6279
6280         if (!netif_device_present(dev))
6281                 return;
6282
6283         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6284                 /* Unicast addresses changes may only happen under the rtnl,
6285                  * therefore calling __dev_set_promiscuity here is safe.
6286                  */
6287                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6288                         __dev_set_promiscuity(dev, 1, false);
6289                         dev->uc_promisc = true;
6290                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6291                         __dev_set_promiscuity(dev, -1, false);
6292                         dev->uc_promisc = false;
6293                 }
6294         }
6295
6296         if (ops->ndo_set_rx_mode)
6297                 ops->ndo_set_rx_mode(dev);
6298 }
6299
6300 void dev_set_rx_mode(struct net_device *dev)
6301 {
6302         netif_addr_lock_bh(dev);
6303         __dev_set_rx_mode(dev);
6304         netif_addr_unlock_bh(dev);
6305 }
6306
6307 /**
6308  *      dev_get_flags - get flags reported to userspace
6309  *      @dev: device
6310  *
6311  *      Get the combination of flag bits exported through APIs to userspace.
6312  */
6313 unsigned int dev_get_flags(const struct net_device *dev)
6314 {
6315         unsigned int flags;
6316
6317         flags = (dev->flags & ~(IFF_PROMISC |
6318                                 IFF_ALLMULTI |
6319                                 IFF_RUNNING |
6320                                 IFF_LOWER_UP |
6321                                 IFF_DORMANT)) |
6322                 (dev->gflags & (IFF_PROMISC |
6323                                 IFF_ALLMULTI));
6324
6325         if (netif_running(dev)) {
6326                 if (netif_oper_up(dev))
6327                         flags |= IFF_RUNNING;
6328                 if (netif_carrier_ok(dev))
6329                         flags |= IFF_LOWER_UP;
6330                 if (netif_dormant(dev))
6331                         flags |= IFF_DORMANT;
6332         }
6333
6334         return flags;
6335 }
6336 EXPORT_SYMBOL(dev_get_flags);
6337
6338 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6339 {
6340         unsigned int old_flags = dev->flags;
6341         int ret;
6342
6343         ASSERT_RTNL();
6344
6345         /*
6346          *      Set the flags on our device.
6347          */
6348
6349         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6350                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6351                                IFF_AUTOMEDIA)) |
6352                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6353                                     IFF_ALLMULTI));
6354
6355         /*
6356          *      Load in the correct multicast list now the flags have changed.
6357          */
6358
6359         if ((old_flags ^ flags) & IFF_MULTICAST)
6360                 dev_change_rx_flags(dev, IFF_MULTICAST);
6361
6362         dev_set_rx_mode(dev);
6363
6364         /*
6365          *      Have we downed the interface. We handle IFF_UP ourselves
6366          *      according to user attempts to set it, rather than blindly
6367          *      setting it.
6368          */
6369
6370         ret = 0;
6371         if ((old_flags ^ flags) & IFF_UP)
6372                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6373
6374         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6375                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6376                 unsigned int old_flags = dev->flags;
6377
6378                 dev->gflags ^= IFF_PROMISC;
6379
6380                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6381                         if (dev->flags != old_flags)
6382                                 dev_set_rx_mode(dev);
6383         }
6384
6385         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6386            is important. Some (broken) drivers set IFF_PROMISC, when
6387            IFF_ALLMULTI is requested not asking us and not reporting.
6388          */
6389         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6390                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6391
6392                 dev->gflags ^= IFF_ALLMULTI;
6393                 __dev_set_allmulti(dev, inc, false);
6394         }
6395
6396         return ret;
6397 }
6398
6399 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6400                         unsigned int gchanges)
6401 {
6402         unsigned int changes = dev->flags ^ old_flags;
6403
6404         if (gchanges)
6405                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6406
6407         if (changes & IFF_UP) {
6408                 if (dev->flags & IFF_UP)
6409                         call_netdevice_notifiers(NETDEV_UP, dev);
6410                 else
6411                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6412         }
6413
6414         if (dev->flags & IFF_UP &&
6415             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6416                 struct netdev_notifier_change_info change_info;
6417
6418                 change_info.flags_changed = changes;
6419                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6420                                               &change_info.info);
6421         }
6422 }
6423
6424 /**
6425  *      dev_change_flags - change device settings
6426  *      @dev: device
6427  *      @flags: device state flags
6428  *
6429  *      Change settings on device based state flags. The flags are
6430  *      in the userspace exported format.
6431  */
6432 int dev_change_flags(struct net_device *dev, unsigned int flags)
6433 {
6434         int ret;
6435         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6436
6437         ret = __dev_change_flags(dev, flags);
6438         if (ret < 0)
6439                 return ret;
6440
6441         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6442         __dev_notify_flags(dev, old_flags, changes);
6443         return ret;
6444 }
6445 EXPORT_SYMBOL(dev_change_flags);
6446
6447 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6448 {
6449         const struct net_device_ops *ops = dev->netdev_ops;
6450
6451         if (ops->ndo_change_mtu)
6452                 return ops->ndo_change_mtu(dev, new_mtu);
6453
6454         dev->mtu = new_mtu;
6455         return 0;
6456 }
6457
6458 /**
6459  *      dev_set_mtu - Change maximum transfer unit
6460  *      @dev: device
6461  *      @new_mtu: new transfer unit
6462  *
6463  *      Change the maximum transfer size of the network device.
6464  */
6465 int dev_set_mtu(struct net_device *dev, int new_mtu)
6466 {
6467         int err, orig_mtu;
6468
6469         if (new_mtu == dev->mtu)
6470                 return 0;
6471
6472         /*      MTU must be positive.    */
6473         if (new_mtu < 0)
6474                 return -EINVAL;
6475
6476         if (!netif_device_present(dev))
6477                 return -ENODEV;
6478
6479         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6480         err = notifier_to_errno(err);
6481         if (err)
6482                 return err;
6483
6484         orig_mtu = dev->mtu;
6485         err = __dev_set_mtu(dev, new_mtu);
6486
6487         if (!err) {
6488                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6489                 err = notifier_to_errno(err);
6490                 if (err) {
6491                         /* setting mtu back and notifying everyone again,
6492                          * so that they have a chance to revert changes.
6493                          */
6494                         __dev_set_mtu(dev, orig_mtu);
6495                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6496                 }
6497         }
6498         return err;
6499 }
6500 EXPORT_SYMBOL(dev_set_mtu);
6501
6502 /**
6503  *      dev_set_group - Change group this device belongs to
6504  *      @dev: device
6505  *      @new_group: group this device should belong to
6506  */
6507 void dev_set_group(struct net_device *dev, int new_group)
6508 {
6509         dev->group = new_group;
6510 }
6511 EXPORT_SYMBOL(dev_set_group);
6512
6513 /**
6514  *      dev_set_mac_address - Change Media Access Control Address
6515  *      @dev: device
6516  *      @sa: new address
6517  *
6518  *      Change the hardware (MAC) address of the device
6519  */
6520 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6521 {
6522         const struct net_device_ops *ops = dev->netdev_ops;
6523         int err;
6524
6525         if (!ops->ndo_set_mac_address)
6526                 return -EOPNOTSUPP;
6527         if (sa->sa_family != dev->type)
6528                 return -EINVAL;
6529         if (!netif_device_present(dev))
6530                 return -ENODEV;
6531         err = ops->ndo_set_mac_address(dev, sa);
6532         if (err)
6533                 return err;
6534         dev->addr_assign_type = NET_ADDR_SET;
6535         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6536         add_device_randomness(dev->dev_addr, dev->addr_len);
6537         return 0;
6538 }
6539 EXPORT_SYMBOL(dev_set_mac_address);
6540
6541 /**
6542  *      dev_change_carrier - Change device carrier
6543  *      @dev: device
6544  *      @new_carrier: new value
6545  *
6546  *      Change device carrier
6547  */
6548 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6549 {
6550         const struct net_device_ops *ops = dev->netdev_ops;
6551
6552         if (!ops->ndo_change_carrier)
6553                 return -EOPNOTSUPP;
6554         if (!netif_device_present(dev))
6555                 return -ENODEV;
6556         return ops->ndo_change_carrier(dev, new_carrier);
6557 }
6558 EXPORT_SYMBOL(dev_change_carrier);
6559
6560 /**
6561  *      dev_get_phys_port_id - Get device physical port ID
6562  *      @dev: device
6563  *      @ppid: port ID
6564  *
6565  *      Get device physical port ID
6566  */
6567 int dev_get_phys_port_id(struct net_device *dev,
6568                          struct netdev_phys_item_id *ppid)
6569 {
6570         const struct net_device_ops *ops = dev->netdev_ops;
6571
6572         if (!ops->ndo_get_phys_port_id)
6573                 return -EOPNOTSUPP;
6574         return ops->ndo_get_phys_port_id(dev, ppid);
6575 }
6576 EXPORT_SYMBOL(dev_get_phys_port_id);
6577
6578 /**
6579  *      dev_get_phys_port_name - Get device physical port name
6580  *      @dev: device
6581  *      @name: port name
6582  *      @len: limit of bytes to copy to name
6583  *
6584  *      Get device physical port name
6585  */
6586 int dev_get_phys_port_name(struct net_device *dev,
6587                            char *name, size_t len)
6588 {
6589         const struct net_device_ops *ops = dev->netdev_ops;
6590
6591         if (!ops->ndo_get_phys_port_name)
6592                 return -EOPNOTSUPP;
6593         return ops->ndo_get_phys_port_name(dev, name, len);
6594 }
6595 EXPORT_SYMBOL(dev_get_phys_port_name);
6596
6597 /**
6598  *      dev_change_proto_down - update protocol port state information
6599  *      @dev: device
6600  *      @proto_down: new value
6601  *
6602  *      This info can be used by switch drivers to set the phys state of the
6603  *      port.
6604  */
6605 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6606 {
6607         const struct net_device_ops *ops = dev->netdev_ops;
6608
6609         if (!ops->ndo_change_proto_down)
6610                 return -EOPNOTSUPP;
6611         if (!netif_device_present(dev))
6612                 return -ENODEV;
6613         return ops->ndo_change_proto_down(dev, proto_down);
6614 }
6615 EXPORT_SYMBOL(dev_change_proto_down);
6616
6617 /**
6618  *      dev_new_index   -       allocate an ifindex
6619  *      @net: the applicable net namespace
6620  *
6621  *      Returns a suitable unique value for a new device interface
6622  *      number.  The caller must hold the rtnl semaphore or the
6623  *      dev_base_lock to be sure it remains unique.
6624  */
6625 static int dev_new_index(struct net *net)
6626 {
6627         int ifindex = net->ifindex;
6628         for (;;) {
6629                 if (++ifindex <= 0)
6630                         ifindex = 1;
6631                 if (!__dev_get_by_index(net, ifindex))
6632                         return net->ifindex = ifindex;
6633         }
6634 }
6635
6636 /* Delayed registration/unregisteration */
6637 static LIST_HEAD(net_todo_list);
6638 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6639
6640 static void net_set_todo(struct net_device *dev)
6641 {
6642         list_add_tail(&dev->todo_list, &net_todo_list);
6643         dev_net(dev)->dev_unreg_count++;
6644 }
6645
6646 static void rollback_registered_many(struct list_head *head)
6647 {
6648         struct net_device *dev, *tmp;
6649         LIST_HEAD(close_head);
6650
6651         BUG_ON(dev_boot_phase);
6652         ASSERT_RTNL();
6653
6654         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6655                 /* Some devices call without registering
6656                  * for initialization unwind. Remove those
6657                  * devices and proceed with the remaining.
6658                  */
6659                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6660                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6661                                  dev->name, dev);
6662
6663                         WARN_ON(1);
6664                         list_del(&dev->unreg_list);
6665                         continue;
6666                 }
6667                 dev->dismantle = true;
6668                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6669         }
6670
6671         /* If device is running, close it first. */
6672         list_for_each_entry(dev, head, unreg_list)
6673                 list_add_tail(&dev->close_list, &close_head);
6674         dev_close_many(&close_head, true);
6675
6676         list_for_each_entry(dev, head, unreg_list) {
6677                 /* And unlink it from device chain. */
6678                 unlist_netdevice(dev);
6679
6680                 dev->reg_state = NETREG_UNREGISTERING;
6681                 on_each_cpu(flush_backlog, dev, 1);
6682         }
6683
6684         synchronize_net();
6685
6686         list_for_each_entry(dev, head, unreg_list) {
6687                 struct sk_buff *skb = NULL;
6688
6689                 /* Shutdown queueing discipline. */
6690                 dev_shutdown(dev);
6691
6692
6693                 /* Notify protocols, that we are about to destroy
6694                    this device. They should clean all the things.
6695                 */
6696                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6697
6698                 if (!dev->rtnl_link_ops ||
6699                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6700                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6701                                                      GFP_KERNEL);
6702
6703                 /*
6704                  *      Flush the unicast and multicast chains
6705                  */
6706                 dev_uc_flush(dev);
6707                 dev_mc_flush(dev);
6708
6709                 if (dev->netdev_ops->ndo_uninit)
6710                         dev->netdev_ops->ndo_uninit(dev);
6711
6712                 if (skb)
6713                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6714
6715                 /* Notifier chain MUST detach us all upper devices. */
6716                 WARN_ON(netdev_has_any_upper_dev(dev));
6717
6718                 /* Remove entries from kobject tree */
6719                 netdev_unregister_kobject(dev);
6720 #ifdef CONFIG_XPS
6721                 /* Remove XPS queueing entries */
6722                 netif_reset_xps_queues_gt(dev, 0);
6723 #endif
6724         }
6725
6726         synchronize_net();
6727
6728         list_for_each_entry(dev, head, unreg_list)
6729                 dev_put(dev);
6730 }
6731
6732 static void rollback_registered(struct net_device *dev)
6733 {
6734         LIST_HEAD(single);
6735
6736         list_add(&dev->unreg_list, &single);
6737         rollback_registered_many(&single);
6738         list_del(&single);
6739 }
6740
6741 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6742         struct net_device *upper, netdev_features_t features)
6743 {
6744         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6745         netdev_features_t feature;
6746         int feature_bit;
6747
6748         for_each_netdev_feature(&upper_disables, feature_bit) {
6749                 feature = __NETIF_F_BIT(feature_bit);
6750                 if (!(upper->wanted_features & feature)
6751                     && (features & feature)) {
6752                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6753                                    &feature, upper->name);
6754                         features &= ~feature;
6755                 }
6756         }
6757
6758         return features;
6759 }
6760
6761 static void netdev_sync_lower_features(struct net_device *upper,
6762         struct net_device *lower, netdev_features_t features)
6763 {
6764         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6765         netdev_features_t feature;
6766         int feature_bit;
6767
6768         for_each_netdev_feature(&upper_disables, feature_bit) {
6769                 feature = __NETIF_F_BIT(feature_bit);
6770                 if (!(features & feature) && (lower->features & feature)) {
6771                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6772                                    &feature, lower->name);
6773                         lower->wanted_features &= ~feature;
6774                         netdev_update_features(lower);
6775
6776                         if (unlikely(lower->features & feature))
6777                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6778                                             &feature, lower->name);
6779                 }
6780         }
6781 }
6782
6783 static netdev_features_t netdev_fix_features(struct net_device *dev,
6784         netdev_features_t features)
6785 {
6786         /* Fix illegal checksum combinations */
6787         if ((features & NETIF_F_HW_CSUM) &&
6788             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6789                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6790                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6791         }
6792
6793         /* TSO requires that SG is present as well. */
6794         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6795                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6796                 features &= ~NETIF_F_ALL_TSO;
6797         }
6798
6799         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6800                                         !(features & NETIF_F_IP_CSUM)) {
6801                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6802                 features &= ~NETIF_F_TSO;
6803                 features &= ~NETIF_F_TSO_ECN;
6804         }
6805
6806         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6807                                          !(features & NETIF_F_IPV6_CSUM)) {
6808                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6809                 features &= ~NETIF_F_TSO6;
6810         }
6811
6812         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6813         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6814                 features &= ~NETIF_F_TSO_MANGLEID;
6815
6816         /* TSO ECN requires that TSO is present as well. */
6817         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6818                 features &= ~NETIF_F_TSO_ECN;
6819
6820         /* Software GSO depends on SG. */
6821         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6822                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6823                 features &= ~NETIF_F_GSO;
6824         }
6825
6826         /* UFO needs SG and checksumming */
6827         if (features & NETIF_F_UFO) {
6828                 /* maybe split UFO into V4 and V6? */
6829                 if (!(features & NETIF_F_HW_CSUM) &&
6830                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6831                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6832                         netdev_dbg(dev,
6833                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6834                         features &= ~NETIF_F_UFO;
6835                 }
6836
6837                 if (!(features & NETIF_F_SG)) {
6838                         netdev_dbg(dev,
6839                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6840                         features &= ~NETIF_F_UFO;
6841                 }
6842         }
6843
6844         /* GSO partial features require GSO partial be set */
6845         if ((features & dev->gso_partial_features) &&
6846             !(features & NETIF_F_GSO_PARTIAL)) {
6847                 netdev_dbg(dev,
6848                            "Dropping partially supported GSO features since no GSO partial.\n");
6849                 features &= ~dev->gso_partial_features;
6850         }
6851
6852 #ifdef CONFIG_NET_RX_BUSY_POLL
6853         if (dev->netdev_ops->ndo_busy_poll)
6854                 features |= NETIF_F_BUSY_POLL;
6855         else
6856 #endif
6857                 features &= ~NETIF_F_BUSY_POLL;
6858
6859         return features;
6860 }
6861
6862 int __netdev_update_features(struct net_device *dev)
6863 {
6864         struct net_device *upper, *lower;
6865         netdev_features_t features;
6866         struct list_head *iter;
6867         int err = -1;
6868
6869         ASSERT_RTNL();
6870
6871         features = netdev_get_wanted_features(dev);
6872
6873         if (dev->netdev_ops->ndo_fix_features)
6874                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6875
6876         /* driver might be less strict about feature dependencies */
6877         features = netdev_fix_features(dev, features);
6878
6879         /* some features can't be enabled if they're off an an upper device */
6880         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6881                 features = netdev_sync_upper_features(dev, upper, features);
6882
6883         if (dev->features == features)
6884                 goto sync_lower;
6885
6886         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6887                 &dev->features, &features);
6888
6889         if (dev->netdev_ops->ndo_set_features)
6890                 err = dev->netdev_ops->ndo_set_features(dev, features);
6891         else
6892                 err = 0;
6893
6894         if (unlikely(err < 0)) {
6895                 netdev_err(dev,
6896                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6897                         err, &features, &dev->features);
6898                 /* return non-0 since some features might have changed and
6899                  * it's better to fire a spurious notification than miss it
6900                  */
6901                 return -1;
6902         }
6903
6904 sync_lower:
6905         /* some features must be disabled on lower devices when disabled
6906          * on an upper device (think: bonding master or bridge)
6907          */
6908         netdev_for_each_lower_dev(dev, lower, iter)
6909                 netdev_sync_lower_features(dev, lower, features);
6910
6911         if (!err)
6912                 dev->features = features;
6913
6914         return err < 0 ? 0 : 1;
6915 }
6916
6917 /**
6918  *      netdev_update_features - recalculate device features
6919  *      @dev: the device to check
6920  *
6921  *      Recalculate dev->features set and send notifications if it
6922  *      has changed. Should be called after driver or hardware dependent
6923  *      conditions might have changed that influence the features.
6924  */
6925 void netdev_update_features(struct net_device *dev)
6926 {
6927         if (__netdev_update_features(dev))
6928                 netdev_features_change(dev);
6929 }
6930 EXPORT_SYMBOL(netdev_update_features);
6931
6932 /**
6933  *      netdev_change_features - recalculate device features
6934  *      @dev: the device to check
6935  *
6936  *      Recalculate dev->features set and send notifications even
6937  *      if they have not changed. Should be called instead of
6938  *      netdev_update_features() if also dev->vlan_features might
6939  *      have changed to allow the changes to be propagated to stacked
6940  *      VLAN devices.
6941  */
6942 void netdev_change_features(struct net_device *dev)
6943 {
6944         __netdev_update_features(dev);
6945         netdev_features_change(dev);
6946 }
6947 EXPORT_SYMBOL(netdev_change_features);
6948
6949 /**
6950  *      netif_stacked_transfer_operstate -      transfer operstate
6951  *      @rootdev: the root or lower level device to transfer state from
6952  *      @dev: the device to transfer operstate to
6953  *
6954  *      Transfer operational state from root to device. This is normally
6955  *      called when a stacking relationship exists between the root
6956  *      device and the device(a leaf device).
6957  */
6958 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6959                                         struct net_device *dev)
6960 {
6961         if (rootdev->operstate == IF_OPER_DORMANT)
6962                 netif_dormant_on(dev);
6963         else
6964                 netif_dormant_off(dev);
6965
6966         if (netif_carrier_ok(rootdev)) {
6967                 if (!netif_carrier_ok(dev))
6968                         netif_carrier_on(dev);
6969         } else {
6970                 if (netif_carrier_ok(dev))
6971                         netif_carrier_off(dev);
6972         }
6973 }
6974 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6975
6976 #ifdef CONFIG_SYSFS
6977 static int netif_alloc_rx_queues(struct net_device *dev)
6978 {
6979         unsigned int i, count = dev->num_rx_queues;
6980         struct netdev_rx_queue *rx;
6981         size_t sz = count * sizeof(*rx);
6982
6983         BUG_ON(count < 1);
6984
6985         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6986         if (!rx) {
6987                 rx = vzalloc(sz);
6988                 if (!rx)
6989                         return -ENOMEM;
6990         }
6991         dev->_rx = rx;
6992
6993         for (i = 0; i < count; i++)
6994                 rx[i].dev = dev;
6995         return 0;
6996 }
6997 #endif
6998
6999 static void netdev_init_one_queue(struct net_device *dev,
7000                                   struct netdev_queue *queue, void *_unused)
7001 {
7002         /* Initialize queue lock */
7003         spin_lock_init(&queue->_xmit_lock);
7004         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7005         queue->xmit_lock_owner = -1;
7006         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7007         queue->dev = dev;
7008 #ifdef CONFIG_BQL
7009         dql_init(&queue->dql, HZ);
7010 #endif
7011 }
7012
7013 static void netif_free_tx_queues(struct net_device *dev)
7014 {
7015         kvfree(dev->_tx);
7016 }
7017
7018 static int netif_alloc_netdev_queues(struct net_device *dev)
7019 {
7020         unsigned int count = dev->num_tx_queues;
7021         struct netdev_queue *tx;
7022         size_t sz = count * sizeof(*tx);
7023
7024         if (count < 1 || count > 0xffff)
7025                 return -EINVAL;
7026
7027         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7028         if (!tx) {
7029                 tx = vzalloc(sz);
7030                 if (!tx)
7031                         return -ENOMEM;
7032         }
7033         dev->_tx = tx;
7034
7035         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7036         spin_lock_init(&dev->tx_global_lock);
7037
7038         return 0;
7039 }
7040
7041 void netif_tx_stop_all_queues(struct net_device *dev)
7042 {
7043         unsigned int i;
7044
7045         for (i = 0; i < dev->num_tx_queues; i++) {
7046                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7047                 netif_tx_stop_queue(txq);
7048         }
7049 }
7050 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7051
7052 /**
7053  *      register_netdevice      - register a network device
7054  *      @dev: device to register
7055  *
7056  *      Take a completed network device structure and add it to the kernel
7057  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7058  *      chain. 0 is returned on success. A negative errno code is returned
7059  *      on a failure to set up the device, or if the name is a duplicate.
7060  *
7061  *      Callers must hold the rtnl semaphore. You may want
7062  *      register_netdev() instead of this.
7063  *
7064  *      BUGS:
7065  *      The locking appears insufficient to guarantee two parallel registers
7066  *      will not get the same name.
7067  */
7068
7069 int register_netdevice(struct net_device *dev)
7070 {
7071         int ret;
7072         struct net *net = dev_net(dev);
7073
7074         BUG_ON(dev_boot_phase);
7075         ASSERT_RTNL();
7076
7077         might_sleep();
7078
7079         /* When net_device's are persistent, this will be fatal. */
7080         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7081         BUG_ON(!net);
7082
7083         spin_lock_init(&dev->addr_list_lock);
7084         netdev_set_addr_lockdep_class(dev);
7085
7086         ret = dev_get_valid_name(net, dev, dev->name);
7087         if (ret < 0)
7088                 goto out;
7089
7090         /* Init, if this function is available */
7091         if (dev->netdev_ops->ndo_init) {
7092                 ret = dev->netdev_ops->ndo_init(dev);
7093                 if (ret) {
7094                         if (ret > 0)
7095                                 ret = -EIO;
7096                         goto out;
7097                 }
7098         }
7099
7100         if (((dev->hw_features | dev->features) &
7101              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7102             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7103              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7104                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7105                 ret = -EINVAL;
7106                 goto err_uninit;
7107         }
7108
7109         ret = -EBUSY;
7110         if (!dev->ifindex)
7111                 dev->ifindex = dev_new_index(net);
7112         else if (__dev_get_by_index(net, dev->ifindex))
7113                 goto err_uninit;
7114
7115         /* Transfer changeable features to wanted_features and enable
7116          * software offloads (GSO and GRO).
7117          */
7118         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7119         dev->features |= NETIF_F_SOFT_FEATURES;
7120         dev->wanted_features = dev->features & dev->hw_features;
7121
7122         if (!(dev->flags & IFF_LOOPBACK))
7123                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7124
7125         /* If IPv4 TCP segmentation offload is supported we should also
7126          * allow the device to enable segmenting the frame with the option
7127          * of ignoring a static IP ID value.  This doesn't enable the
7128          * feature itself but allows the user to enable it later.
7129          */
7130         if (dev->hw_features & NETIF_F_TSO)
7131                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7132         if (dev->vlan_features & NETIF_F_TSO)
7133                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7134         if (dev->mpls_features & NETIF_F_TSO)
7135                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7136         if (dev->hw_enc_features & NETIF_F_TSO)
7137                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7138
7139         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7140          */
7141         dev->vlan_features |= NETIF_F_HIGHDMA;
7142
7143         /* Make NETIF_F_SG inheritable to tunnel devices.
7144          */
7145         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7146
7147         /* Make NETIF_F_SG inheritable to MPLS.
7148          */
7149         dev->mpls_features |= NETIF_F_SG;
7150
7151         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7152         ret = notifier_to_errno(ret);
7153         if (ret)
7154                 goto err_uninit;
7155
7156         ret = netdev_register_kobject(dev);
7157         if (ret)
7158                 goto err_uninit;
7159         dev->reg_state = NETREG_REGISTERED;
7160
7161         __netdev_update_features(dev);
7162
7163         /*
7164          *      Default initial state at registry is that the
7165          *      device is present.
7166          */
7167
7168         set_bit(__LINK_STATE_PRESENT, &dev->state);
7169
7170         linkwatch_init_dev(dev);
7171
7172         dev_init_scheduler(dev);
7173         dev_hold(dev);
7174         list_netdevice(dev);
7175         add_device_randomness(dev->dev_addr, dev->addr_len);
7176
7177         /* If the device has permanent device address, driver should
7178          * set dev_addr and also addr_assign_type should be set to
7179          * NET_ADDR_PERM (default value).
7180          */
7181         if (dev->addr_assign_type == NET_ADDR_PERM)
7182                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7183
7184         /* Notify protocols, that a new device appeared. */
7185         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7186         ret = notifier_to_errno(ret);
7187         if (ret) {
7188                 rollback_registered(dev);
7189                 dev->reg_state = NETREG_UNREGISTERED;
7190         }
7191         /*
7192          *      Prevent userspace races by waiting until the network
7193          *      device is fully setup before sending notifications.
7194          */
7195         if (!dev->rtnl_link_ops ||
7196             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7197                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7198
7199 out:
7200         return ret;
7201
7202 err_uninit:
7203         if (dev->netdev_ops->ndo_uninit)
7204                 dev->netdev_ops->ndo_uninit(dev);
7205         goto out;
7206 }
7207 EXPORT_SYMBOL(register_netdevice);
7208
7209 /**
7210  *      init_dummy_netdev       - init a dummy network device for NAPI
7211  *      @dev: device to init
7212  *
7213  *      This takes a network device structure and initialize the minimum
7214  *      amount of fields so it can be used to schedule NAPI polls without
7215  *      registering a full blown interface. This is to be used by drivers
7216  *      that need to tie several hardware interfaces to a single NAPI
7217  *      poll scheduler due to HW limitations.
7218  */
7219 int init_dummy_netdev(struct net_device *dev)
7220 {
7221         /* Clear everything. Note we don't initialize spinlocks
7222          * are they aren't supposed to be taken by any of the
7223          * NAPI code and this dummy netdev is supposed to be
7224          * only ever used for NAPI polls
7225          */
7226         memset(dev, 0, sizeof(struct net_device));
7227
7228         /* make sure we BUG if trying to hit standard
7229          * register/unregister code path
7230          */
7231         dev->reg_state = NETREG_DUMMY;
7232
7233         /* NAPI wants this */
7234         INIT_LIST_HEAD(&dev->napi_list);
7235
7236         /* a dummy interface is started by default */
7237         set_bit(__LINK_STATE_PRESENT, &dev->state);
7238         set_bit(__LINK_STATE_START, &dev->state);
7239
7240         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7241          * because users of this 'device' dont need to change
7242          * its refcount.
7243          */
7244
7245         return 0;
7246 }
7247 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7248
7249
7250 /**
7251  *      register_netdev - register a network device
7252  *      @dev: device to register
7253  *
7254  *      Take a completed network device structure and add it to the kernel
7255  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7256  *      chain. 0 is returned on success. A negative errno code is returned
7257  *      on a failure to set up the device, or if the name is a duplicate.
7258  *
7259  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7260  *      and expands the device name if you passed a format string to
7261  *      alloc_netdev.
7262  */
7263 int register_netdev(struct net_device *dev)
7264 {
7265         int err;
7266
7267         rtnl_lock();
7268         err = register_netdevice(dev);
7269         rtnl_unlock();
7270         return err;
7271 }
7272 EXPORT_SYMBOL(register_netdev);
7273
7274 int netdev_refcnt_read(const struct net_device *dev)
7275 {
7276         int i, refcnt = 0;
7277
7278         for_each_possible_cpu(i)
7279                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7280         return refcnt;
7281 }
7282 EXPORT_SYMBOL(netdev_refcnt_read);
7283
7284 /**
7285  * netdev_wait_allrefs - wait until all references are gone.
7286  * @dev: target net_device
7287  *
7288  * This is called when unregistering network devices.
7289  *
7290  * Any protocol or device that holds a reference should register
7291  * for netdevice notification, and cleanup and put back the
7292  * reference if they receive an UNREGISTER event.
7293  * We can get stuck here if buggy protocols don't correctly
7294  * call dev_put.
7295  */
7296 static void netdev_wait_allrefs(struct net_device *dev)
7297 {
7298         unsigned long rebroadcast_time, warning_time;
7299         int refcnt;
7300
7301         linkwatch_forget_dev(dev);
7302
7303         rebroadcast_time = warning_time = jiffies;
7304         refcnt = netdev_refcnt_read(dev);
7305
7306         while (refcnt != 0) {
7307                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7308                         rtnl_lock();
7309
7310                         /* Rebroadcast unregister notification */
7311                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7312
7313                         __rtnl_unlock();
7314                         rcu_barrier();
7315                         rtnl_lock();
7316
7317                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7318                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7319                                      &dev->state)) {
7320                                 /* We must not have linkwatch events
7321                                  * pending on unregister. If this
7322                                  * happens, we simply run the queue
7323                                  * unscheduled, resulting in a noop
7324                                  * for this device.
7325                                  */
7326                                 linkwatch_run_queue();
7327                         }
7328
7329                         __rtnl_unlock();
7330
7331                         rebroadcast_time = jiffies;
7332                 }
7333
7334                 msleep(250);
7335
7336                 refcnt = netdev_refcnt_read(dev);
7337
7338                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7339                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7340                                  dev->name, refcnt);
7341                         warning_time = jiffies;
7342                 }
7343         }
7344 }
7345
7346 /* The sequence is:
7347  *
7348  *      rtnl_lock();
7349  *      ...
7350  *      register_netdevice(x1);
7351  *      register_netdevice(x2);
7352  *      ...
7353  *      unregister_netdevice(y1);
7354  *      unregister_netdevice(y2);
7355  *      ...
7356  *      rtnl_unlock();
7357  *      free_netdev(y1);
7358  *      free_netdev(y2);
7359  *
7360  * We are invoked by rtnl_unlock().
7361  * This allows us to deal with problems:
7362  * 1) We can delete sysfs objects which invoke hotplug
7363  *    without deadlocking with linkwatch via keventd.
7364  * 2) Since we run with the RTNL semaphore not held, we can sleep
7365  *    safely in order to wait for the netdev refcnt to drop to zero.
7366  *
7367  * We must not return until all unregister events added during
7368  * the interval the lock was held have been completed.
7369  */
7370 void netdev_run_todo(void)
7371 {
7372         struct list_head list;
7373
7374         /* Snapshot list, allow later requests */
7375         list_replace_init(&net_todo_list, &list);
7376
7377         __rtnl_unlock();
7378
7379
7380         /* Wait for rcu callbacks to finish before next phase */
7381         if (!list_empty(&list))
7382                 rcu_barrier();
7383
7384         while (!list_empty(&list)) {
7385                 struct net_device *dev
7386                         = list_first_entry(&list, struct net_device, todo_list);
7387                 list_del(&dev->todo_list);
7388
7389                 rtnl_lock();
7390                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7391                 __rtnl_unlock();
7392
7393                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7394                         pr_err("network todo '%s' but state %d\n",
7395                                dev->name, dev->reg_state);
7396                         dump_stack();
7397                         continue;
7398                 }
7399
7400                 dev->reg_state = NETREG_UNREGISTERED;
7401
7402                 netdev_wait_allrefs(dev);
7403
7404                 /* paranoia */
7405                 BUG_ON(netdev_refcnt_read(dev));
7406                 BUG_ON(!list_empty(&dev->ptype_all));
7407                 BUG_ON(!list_empty(&dev->ptype_specific));
7408                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7409                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7410                 WARN_ON(dev->dn_ptr);
7411
7412                 if (dev->destructor)
7413                         dev->destructor(dev);
7414
7415                 /* Report a network device has been unregistered */
7416                 rtnl_lock();
7417                 dev_net(dev)->dev_unreg_count--;
7418                 __rtnl_unlock();
7419                 wake_up(&netdev_unregistering_wq);
7420
7421                 /* Free network device */
7422                 kobject_put(&dev->dev.kobj);
7423         }
7424 }
7425
7426 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7427  * all the same fields in the same order as net_device_stats, with only
7428  * the type differing, but rtnl_link_stats64 may have additional fields
7429  * at the end for newer counters.
7430  */
7431 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7432                              const struct net_device_stats *netdev_stats)
7433 {
7434 #if BITS_PER_LONG == 64
7435         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7436         memcpy(stats64, netdev_stats, sizeof(*stats64));
7437         /* zero out counters that only exist in rtnl_link_stats64 */
7438         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7439                sizeof(*stats64) - sizeof(*netdev_stats));
7440 #else
7441         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7442         const unsigned long *src = (const unsigned long *)netdev_stats;
7443         u64 *dst = (u64 *)stats64;
7444
7445         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7446         for (i = 0; i < n; i++)
7447                 dst[i] = src[i];
7448         /* zero out counters that only exist in rtnl_link_stats64 */
7449         memset((char *)stats64 + n * sizeof(u64), 0,
7450                sizeof(*stats64) - n * sizeof(u64));
7451 #endif
7452 }
7453 EXPORT_SYMBOL(netdev_stats_to_stats64);
7454
7455 /**
7456  *      dev_get_stats   - get network device statistics
7457  *      @dev: device to get statistics from
7458  *      @storage: place to store stats
7459  *
7460  *      Get network statistics from device. Return @storage.
7461  *      The device driver may provide its own method by setting
7462  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7463  *      otherwise the internal statistics structure is used.
7464  */
7465 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7466                                         struct rtnl_link_stats64 *storage)
7467 {
7468         const struct net_device_ops *ops = dev->netdev_ops;
7469
7470         if (ops->ndo_get_stats64) {
7471                 memset(storage, 0, sizeof(*storage));
7472                 ops->ndo_get_stats64(dev, storage);
7473         } else if (ops->ndo_get_stats) {
7474                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7475         } else {
7476                 netdev_stats_to_stats64(storage, &dev->stats);
7477         }
7478         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7479         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7480         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7481         return storage;
7482 }
7483 EXPORT_SYMBOL(dev_get_stats);
7484
7485 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7486 {
7487         struct netdev_queue *queue = dev_ingress_queue(dev);
7488
7489 #ifdef CONFIG_NET_CLS_ACT
7490         if (queue)
7491                 return queue;
7492         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7493         if (!queue)
7494                 return NULL;
7495         netdev_init_one_queue(dev, queue, NULL);
7496         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7497         queue->qdisc_sleeping = &noop_qdisc;
7498         rcu_assign_pointer(dev->ingress_queue, queue);
7499 #endif
7500         return queue;
7501 }
7502
7503 static const struct ethtool_ops default_ethtool_ops;
7504
7505 void netdev_set_default_ethtool_ops(struct net_device *dev,
7506                                     const struct ethtool_ops *ops)
7507 {
7508         if (dev->ethtool_ops == &default_ethtool_ops)
7509                 dev->ethtool_ops = ops;
7510 }
7511 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7512
7513 void netdev_freemem(struct net_device *dev)
7514 {
7515         char *addr = (char *)dev - dev->padded;
7516
7517         kvfree(addr);
7518 }
7519
7520 /**
7521  *      alloc_netdev_mqs - allocate network device
7522  *      @sizeof_priv:           size of private data to allocate space for
7523  *      @name:                  device name format string
7524  *      @name_assign_type:      origin of device name
7525  *      @setup:                 callback to initialize device
7526  *      @txqs:                  the number of TX subqueues to allocate
7527  *      @rxqs:                  the number of RX subqueues to allocate
7528  *
7529  *      Allocates a struct net_device with private data area for driver use
7530  *      and performs basic initialization.  Also allocates subqueue structs
7531  *      for each queue on the device.
7532  */
7533 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7534                 unsigned char name_assign_type,
7535                 void (*setup)(struct net_device *),
7536                 unsigned int txqs, unsigned int rxqs)
7537 {
7538         struct net_device *dev;
7539         size_t alloc_size;
7540         struct net_device *p;
7541
7542         BUG_ON(strlen(name) >= sizeof(dev->name));
7543
7544         if (txqs < 1) {
7545                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7546                 return NULL;
7547         }
7548
7549 #ifdef CONFIG_SYSFS
7550         if (rxqs < 1) {
7551                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7552                 return NULL;
7553         }
7554 #endif
7555
7556         alloc_size = sizeof(struct net_device);
7557         if (sizeof_priv) {
7558                 /* ensure 32-byte alignment of private area */
7559                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7560                 alloc_size += sizeof_priv;
7561         }
7562         /* ensure 32-byte alignment of whole construct */
7563         alloc_size += NETDEV_ALIGN - 1;
7564
7565         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7566         if (!p)
7567                 p = vzalloc(alloc_size);
7568         if (!p)
7569                 return NULL;
7570
7571         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7572         dev->padded = (char *)dev - (char *)p;
7573
7574         dev->pcpu_refcnt = alloc_percpu(int);
7575         if (!dev->pcpu_refcnt)
7576                 goto free_dev;
7577
7578         if (dev_addr_init(dev))
7579                 goto free_pcpu;
7580
7581         dev_mc_init(dev);
7582         dev_uc_init(dev);
7583
7584         dev_net_set(dev, &init_net);
7585
7586         dev->gso_max_size = GSO_MAX_SIZE;
7587         dev->gso_max_segs = GSO_MAX_SEGS;
7588
7589         INIT_LIST_HEAD(&dev->napi_list);
7590         INIT_LIST_HEAD(&dev->unreg_list);
7591         INIT_LIST_HEAD(&dev->close_list);
7592         INIT_LIST_HEAD(&dev->link_watch_list);
7593         INIT_LIST_HEAD(&dev->adj_list.upper);
7594         INIT_LIST_HEAD(&dev->adj_list.lower);
7595         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7596         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7597         INIT_LIST_HEAD(&dev->ptype_all);
7598         INIT_LIST_HEAD(&dev->ptype_specific);
7599         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7600         setup(dev);
7601
7602         if (!dev->tx_queue_len) {
7603                 dev->priv_flags |= IFF_NO_QUEUE;
7604                 dev->tx_queue_len = 1;
7605         }
7606
7607         dev->num_tx_queues = txqs;
7608         dev->real_num_tx_queues = txqs;
7609         if (netif_alloc_netdev_queues(dev))
7610                 goto free_all;
7611
7612 #ifdef CONFIG_SYSFS
7613         dev->num_rx_queues = rxqs;
7614         dev->real_num_rx_queues = rxqs;
7615         if (netif_alloc_rx_queues(dev))
7616                 goto free_all;
7617 #endif
7618
7619         strcpy(dev->name, name);
7620         dev->name_assign_type = name_assign_type;
7621         dev->group = INIT_NETDEV_GROUP;
7622         if (!dev->ethtool_ops)
7623                 dev->ethtool_ops = &default_ethtool_ops;
7624
7625         nf_hook_ingress_init(dev);
7626
7627         return dev;
7628
7629 free_all:
7630         free_netdev(dev);
7631         return NULL;
7632
7633 free_pcpu:
7634         free_percpu(dev->pcpu_refcnt);
7635 free_dev:
7636         netdev_freemem(dev);
7637         return NULL;
7638 }
7639 EXPORT_SYMBOL(alloc_netdev_mqs);
7640
7641 /**
7642  *      free_netdev - free network device
7643  *      @dev: device
7644  *
7645  *      This function does the last stage of destroying an allocated device
7646  *      interface. The reference to the device object is released.
7647  *      If this is the last reference then it will be freed.
7648  *      Must be called in process context.
7649  */
7650 void free_netdev(struct net_device *dev)
7651 {
7652         struct napi_struct *p, *n;
7653
7654         might_sleep();
7655         netif_free_tx_queues(dev);
7656 #ifdef CONFIG_SYSFS
7657         kvfree(dev->_rx);
7658 #endif
7659
7660         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7661
7662         /* Flush device addresses */
7663         dev_addr_flush(dev);
7664
7665         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7666                 netif_napi_del(p);
7667
7668         free_percpu(dev->pcpu_refcnt);
7669         dev->pcpu_refcnt = NULL;
7670
7671         /*  Compatibility with error handling in drivers */
7672         if (dev->reg_state == NETREG_UNINITIALIZED) {
7673                 netdev_freemem(dev);
7674                 return;
7675         }
7676
7677         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7678         dev->reg_state = NETREG_RELEASED;
7679
7680         /* will free via device release */
7681         put_device(&dev->dev);
7682 }
7683 EXPORT_SYMBOL(free_netdev);
7684
7685 /**
7686  *      synchronize_net -  Synchronize with packet receive processing
7687  *
7688  *      Wait for packets currently being received to be done.
7689  *      Does not block later packets from starting.
7690  */
7691 void synchronize_net(void)
7692 {
7693         might_sleep();
7694         if (rtnl_is_locked())
7695                 synchronize_rcu_expedited();
7696         else
7697                 synchronize_rcu();
7698 }
7699 EXPORT_SYMBOL(synchronize_net);
7700
7701 /**
7702  *      unregister_netdevice_queue - remove device from the kernel
7703  *      @dev: device
7704  *      @head: list
7705  *
7706  *      This function shuts down a device interface and removes it
7707  *      from the kernel tables.
7708  *      If head not NULL, device is queued to be unregistered later.
7709  *
7710  *      Callers must hold the rtnl semaphore.  You may want
7711  *      unregister_netdev() instead of this.
7712  */
7713
7714 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7715 {
7716         ASSERT_RTNL();
7717
7718         if (head) {
7719                 list_move_tail(&dev->unreg_list, head);
7720         } else {
7721                 rollback_registered(dev);
7722                 /* Finish processing unregister after unlock */
7723                 net_set_todo(dev);
7724         }
7725 }
7726 EXPORT_SYMBOL(unregister_netdevice_queue);
7727
7728 /**
7729  *      unregister_netdevice_many - unregister many devices
7730  *      @head: list of devices
7731  *
7732  *  Note: As most callers use a stack allocated list_head,
7733  *  we force a list_del() to make sure stack wont be corrupted later.
7734  */
7735 void unregister_netdevice_many(struct list_head *head)
7736 {
7737         struct net_device *dev;
7738
7739         if (!list_empty(head)) {
7740                 rollback_registered_many(head);
7741                 list_for_each_entry(dev, head, unreg_list)
7742                         net_set_todo(dev);
7743                 list_del(head);
7744         }
7745 }
7746 EXPORT_SYMBOL(unregister_netdevice_many);
7747
7748 /**
7749  *      unregister_netdev - remove device from the kernel
7750  *      @dev: device
7751  *
7752  *      This function shuts down a device interface and removes it
7753  *      from the kernel tables.
7754  *
7755  *      This is just a wrapper for unregister_netdevice that takes
7756  *      the rtnl semaphore.  In general you want to use this and not
7757  *      unregister_netdevice.
7758  */
7759 void unregister_netdev(struct net_device *dev)
7760 {
7761         rtnl_lock();
7762         unregister_netdevice(dev);
7763         rtnl_unlock();
7764 }
7765 EXPORT_SYMBOL(unregister_netdev);
7766
7767 /**
7768  *      dev_change_net_namespace - move device to different nethost namespace
7769  *      @dev: device
7770  *      @net: network namespace
7771  *      @pat: If not NULL name pattern to try if the current device name
7772  *            is already taken in the destination network namespace.
7773  *
7774  *      This function shuts down a device interface and moves it
7775  *      to a new network namespace. On success 0 is returned, on
7776  *      a failure a netagive errno code is returned.
7777  *
7778  *      Callers must hold the rtnl semaphore.
7779  */
7780
7781 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7782 {
7783         int err;
7784
7785         ASSERT_RTNL();
7786
7787         /* Don't allow namespace local devices to be moved. */
7788         err = -EINVAL;
7789         if (dev->features & NETIF_F_NETNS_LOCAL)
7790                 goto out;
7791
7792         /* Ensure the device has been registrered */
7793         if (dev->reg_state != NETREG_REGISTERED)
7794                 goto out;
7795
7796         /* Get out if there is nothing todo */
7797         err = 0;
7798         if (net_eq(dev_net(dev), net))
7799                 goto out;
7800
7801         /* Pick the destination device name, and ensure
7802          * we can use it in the destination network namespace.
7803          */
7804         err = -EEXIST;
7805         if (__dev_get_by_name(net, dev->name)) {
7806                 /* We get here if we can't use the current device name */
7807                 if (!pat)
7808                         goto out;
7809                 if (dev_get_valid_name(net, dev, pat) < 0)
7810                         goto out;
7811         }
7812
7813         /*
7814          * And now a mini version of register_netdevice unregister_netdevice.
7815          */
7816
7817         /* If device is running close it first. */
7818         dev_close(dev);
7819
7820         /* And unlink it from device chain */
7821         err = -ENODEV;
7822         unlist_netdevice(dev);
7823
7824         synchronize_net();
7825
7826         /* Shutdown queueing discipline. */
7827         dev_shutdown(dev);
7828
7829         /* Notify protocols, that we are about to destroy
7830            this device. They should clean all the things.
7831
7832            Note that dev->reg_state stays at NETREG_REGISTERED.
7833            This is wanted because this way 8021q and macvlan know
7834            the device is just moving and can keep their slaves up.
7835         */
7836         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7837         rcu_barrier();
7838         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7839         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7840
7841         /*
7842          *      Flush the unicast and multicast chains
7843          */
7844         dev_uc_flush(dev);
7845         dev_mc_flush(dev);
7846
7847         /* Send a netdev-removed uevent to the old namespace */
7848         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7849         netdev_adjacent_del_links(dev);
7850
7851         /* Actually switch the network namespace */
7852         dev_net_set(dev, net);
7853
7854         /* If there is an ifindex conflict assign a new one */
7855         if (__dev_get_by_index(net, dev->ifindex))
7856                 dev->ifindex = dev_new_index(net);
7857
7858         /* Send a netdev-add uevent to the new namespace */
7859         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7860         netdev_adjacent_add_links(dev);
7861
7862         /* Fixup kobjects */
7863         err = device_rename(&dev->dev, dev->name);
7864         WARN_ON(err);
7865
7866         /* Add the device back in the hashes */
7867         list_netdevice(dev);
7868
7869         /* Notify protocols, that a new device appeared. */
7870         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7871
7872         /*
7873          *      Prevent userspace races by waiting until the network
7874          *      device is fully setup before sending notifications.
7875          */
7876         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7877
7878         synchronize_net();
7879         err = 0;
7880 out:
7881         return err;
7882 }
7883 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7884
7885 static int dev_cpu_callback(struct notifier_block *nfb,
7886                             unsigned long action,
7887                             void *ocpu)
7888 {
7889         struct sk_buff **list_skb;
7890         struct sk_buff *skb;
7891         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7892         struct softnet_data *sd, *oldsd;
7893
7894         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7895                 return NOTIFY_OK;
7896
7897         local_irq_disable();
7898         cpu = smp_processor_id();
7899         sd = &per_cpu(softnet_data, cpu);
7900         oldsd = &per_cpu(softnet_data, oldcpu);
7901
7902         /* Find end of our completion_queue. */
7903         list_skb = &sd->completion_queue;
7904         while (*list_skb)
7905                 list_skb = &(*list_skb)->next;
7906         /* Append completion queue from offline CPU. */
7907         *list_skb = oldsd->completion_queue;
7908         oldsd->completion_queue = NULL;
7909
7910         /* Append output queue from offline CPU. */
7911         if (oldsd->output_queue) {
7912                 *sd->output_queue_tailp = oldsd->output_queue;
7913                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7914                 oldsd->output_queue = NULL;
7915                 oldsd->output_queue_tailp = &oldsd->output_queue;
7916         }
7917         /* Append NAPI poll list from offline CPU, with one exception :
7918          * process_backlog() must be called by cpu owning percpu backlog.
7919          * We properly handle process_queue & input_pkt_queue later.
7920          */
7921         while (!list_empty(&oldsd->poll_list)) {
7922                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7923                                                             struct napi_struct,
7924                                                             poll_list);
7925
7926                 list_del_init(&napi->poll_list);
7927                 if (napi->poll == process_backlog)
7928                         napi->state = 0;
7929                 else
7930                         ____napi_schedule(sd, napi);
7931         }
7932
7933         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7934         local_irq_enable();
7935
7936         /* Process offline CPU's input_pkt_queue */
7937         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7938                 netif_rx_ni(skb);
7939                 input_queue_head_incr(oldsd);
7940         }
7941         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7942                 netif_rx_ni(skb);
7943                 input_queue_head_incr(oldsd);
7944         }
7945
7946         return NOTIFY_OK;
7947 }
7948
7949
7950 /**
7951  *      netdev_increment_features - increment feature set by one
7952  *      @all: current feature set
7953  *      @one: new feature set
7954  *      @mask: mask feature set
7955  *
7956  *      Computes a new feature set after adding a device with feature set
7957  *      @one to the master device with current feature set @all.  Will not
7958  *      enable anything that is off in @mask. Returns the new feature set.
7959  */
7960 netdev_features_t netdev_increment_features(netdev_features_t all,
7961         netdev_features_t one, netdev_features_t mask)
7962 {
7963         if (mask & NETIF_F_HW_CSUM)
7964                 mask |= NETIF_F_CSUM_MASK;
7965         mask |= NETIF_F_VLAN_CHALLENGED;
7966
7967         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7968         all &= one | ~NETIF_F_ALL_FOR_ALL;
7969
7970         /* If one device supports hw checksumming, set for all. */
7971         if (all & NETIF_F_HW_CSUM)
7972                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7973
7974         return all;
7975 }
7976 EXPORT_SYMBOL(netdev_increment_features);
7977
7978 static struct hlist_head * __net_init netdev_create_hash(void)
7979 {
7980         int i;
7981         struct hlist_head *hash;
7982
7983         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7984         if (hash != NULL)
7985                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7986                         INIT_HLIST_HEAD(&hash[i]);
7987
7988         return hash;
7989 }
7990
7991 /* Initialize per network namespace state */
7992 static int __net_init netdev_init(struct net *net)
7993 {
7994         if (net != &init_net)
7995                 INIT_LIST_HEAD(&net->dev_base_head);
7996
7997         net->dev_name_head = netdev_create_hash();
7998         if (net->dev_name_head == NULL)
7999                 goto err_name;
8000
8001         net->dev_index_head = netdev_create_hash();
8002         if (net->dev_index_head == NULL)
8003                 goto err_idx;
8004
8005         return 0;
8006
8007 err_idx:
8008         kfree(net->dev_name_head);
8009 err_name:
8010         return -ENOMEM;
8011 }
8012
8013 /**
8014  *      netdev_drivername - network driver for the device
8015  *      @dev: network device
8016  *
8017  *      Determine network driver for device.
8018  */
8019 const char *netdev_drivername(const struct net_device *dev)
8020 {
8021         const struct device_driver *driver;
8022         const struct device *parent;
8023         const char *empty = "";
8024
8025         parent = dev->dev.parent;
8026         if (!parent)
8027                 return empty;
8028
8029         driver = parent->driver;
8030         if (driver && driver->name)
8031                 return driver->name;
8032         return empty;
8033 }
8034
8035 static void __netdev_printk(const char *level, const struct net_device *dev,
8036                             struct va_format *vaf)
8037 {
8038         if (dev && dev->dev.parent) {
8039                 dev_printk_emit(level[1] - '0',
8040                                 dev->dev.parent,
8041                                 "%s %s %s%s: %pV",
8042                                 dev_driver_string(dev->dev.parent),
8043                                 dev_name(dev->dev.parent),
8044                                 netdev_name(dev), netdev_reg_state(dev),
8045                                 vaf);
8046         } else if (dev) {
8047                 printk("%s%s%s: %pV",
8048                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8049         } else {
8050                 printk("%s(NULL net_device): %pV", level, vaf);
8051         }
8052 }
8053
8054 void netdev_printk(const char *level, const struct net_device *dev,
8055                    const char *format, ...)
8056 {
8057         struct va_format vaf;
8058         va_list args;
8059
8060         va_start(args, format);
8061
8062         vaf.fmt = format;
8063         vaf.va = &args;
8064
8065         __netdev_printk(level, dev, &vaf);
8066
8067         va_end(args);
8068 }
8069 EXPORT_SYMBOL(netdev_printk);
8070
8071 #define define_netdev_printk_level(func, level)                 \
8072 void func(const struct net_device *dev, const char *fmt, ...)   \
8073 {                                                               \
8074         struct va_format vaf;                                   \
8075         va_list args;                                           \
8076                                                                 \
8077         va_start(args, fmt);                                    \
8078                                                                 \
8079         vaf.fmt = fmt;                                          \
8080         vaf.va = &args;                                         \
8081                                                                 \
8082         __netdev_printk(level, dev, &vaf);                      \
8083                                                                 \
8084         va_end(args);                                           \
8085 }                                                               \
8086 EXPORT_SYMBOL(func);
8087
8088 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8089 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8090 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8091 define_netdev_printk_level(netdev_err, KERN_ERR);
8092 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8093 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8094 define_netdev_printk_level(netdev_info, KERN_INFO);
8095
8096 static void __net_exit netdev_exit(struct net *net)
8097 {
8098         kfree(net->dev_name_head);
8099         kfree(net->dev_index_head);
8100 }
8101
8102 static struct pernet_operations __net_initdata netdev_net_ops = {
8103         .init = netdev_init,
8104         .exit = netdev_exit,
8105 };
8106
8107 static void __net_exit default_device_exit(struct net *net)
8108 {
8109         struct net_device *dev, *aux;
8110         /*
8111          * Push all migratable network devices back to the
8112          * initial network namespace
8113          */
8114         rtnl_lock();
8115         for_each_netdev_safe(net, dev, aux) {
8116                 int err;
8117                 char fb_name[IFNAMSIZ];
8118
8119                 /* Ignore unmoveable devices (i.e. loopback) */
8120                 if (dev->features & NETIF_F_NETNS_LOCAL)
8121                         continue;
8122
8123                 /* Leave virtual devices for the generic cleanup */
8124                 if (dev->rtnl_link_ops)
8125                         continue;
8126
8127                 /* Push remaining network devices to init_net */
8128                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8129                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8130                 if (err) {
8131                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8132                                  __func__, dev->name, err);
8133                         BUG();
8134                 }
8135         }
8136         rtnl_unlock();
8137 }
8138
8139 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8140 {
8141         /* Return with the rtnl_lock held when there are no network
8142          * devices unregistering in any network namespace in net_list.
8143          */
8144         struct net *net;
8145         bool unregistering;
8146         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8147
8148         add_wait_queue(&netdev_unregistering_wq, &wait);
8149         for (;;) {
8150                 unregistering = false;
8151                 rtnl_lock();
8152                 list_for_each_entry(net, net_list, exit_list) {
8153                         if (net->dev_unreg_count > 0) {
8154                                 unregistering = true;
8155                                 break;
8156                         }
8157                 }
8158                 if (!unregistering)
8159                         break;
8160                 __rtnl_unlock();
8161
8162                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8163         }
8164         remove_wait_queue(&netdev_unregistering_wq, &wait);
8165 }
8166
8167 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8168 {
8169         /* At exit all network devices most be removed from a network
8170          * namespace.  Do this in the reverse order of registration.
8171          * Do this across as many network namespaces as possible to
8172          * improve batching efficiency.
8173          */
8174         struct net_device *dev;
8175         struct net *net;
8176         LIST_HEAD(dev_kill_list);
8177
8178         /* To prevent network device cleanup code from dereferencing
8179          * loopback devices or network devices that have been freed
8180          * wait here for all pending unregistrations to complete,
8181          * before unregistring the loopback device and allowing the
8182          * network namespace be freed.
8183          *
8184          * The netdev todo list containing all network devices
8185          * unregistrations that happen in default_device_exit_batch
8186          * will run in the rtnl_unlock() at the end of
8187          * default_device_exit_batch.
8188          */
8189         rtnl_lock_unregistering(net_list);
8190         list_for_each_entry(net, net_list, exit_list) {
8191                 for_each_netdev_reverse(net, dev) {
8192                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8193                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8194                         else
8195                                 unregister_netdevice_queue(dev, &dev_kill_list);
8196                 }
8197         }
8198         unregister_netdevice_many(&dev_kill_list);
8199         rtnl_unlock();
8200 }
8201
8202 static struct pernet_operations __net_initdata default_device_ops = {
8203         .exit = default_device_exit,
8204         .exit_batch = default_device_exit_batch,
8205 };
8206
8207 /*
8208  *      Initialize the DEV module. At boot time this walks the device list and
8209  *      unhooks any devices that fail to initialise (normally hardware not
8210  *      present) and leaves us with a valid list of present and active devices.
8211  *
8212  */
8213
8214 /*
8215  *       This is called single threaded during boot, so no need
8216  *       to take the rtnl semaphore.
8217  */
8218 static int __init net_dev_init(void)
8219 {
8220         int i, rc = -ENOMEM;
8221
8222         BUG_ON(!dev_boot_phase);
8223
8224         if (dev_proc_init())
8225                 goto out;
8226
8227         if (netdev_kobject_init())
8228                 goto out;
8229
8230         INIT_LIST_HEAD(&ptype_all);
8231         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8232                 INIT_LIST_HEAD(&ptype_base[i]);
8233
8234         INIT_LIST_HEAD(&offload_base);
8235
8236         if (register_pernet_subsys(&netdev_net_ops))
8237                 goto out;
8238
8239         /*
8240          *      Initialise the packet receive queues.
8241          */
8242
8243         for_each_possible_cpu(i) {
8244                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8245
8246                 skb_queue_head_init(&sd->input_pkt_queue);
8247                 skb_queue_head_init(&sd->process_queue);
8248                 INIT_LIST_HEAD(&sd->poll_list);
8249                 sd->output_queue_tailp = &sd->output_queue;
8250 #ifdef CONFIG_RPS
8251                 sd->csd.func = rps_trigger_softirq;
8252                 sd->csd.info = sd;
8253                 sd->cpu = i;
8254 #endif
8255
8256                 sd->backlog.poll = process_backlog;
8257                 sd->backlog.weight = weight_p;
8258         }
8259
8260         dev_boot_phase = 0;
8261
8262         /* The loopback device is special if any other network devices
8263          * is present in a network namespace the loopback device must
8264          * be present. Since we now dynamically allocate and free the
8265          * loopback device ensure this invariant is maintained by
8266          * keeping the loopback device as the first device on the
8267          * list of network devices.  Ensuring the loopback devices
8268          * is the first device that appears and the last network device
8269          * that disappears.
8270          */
8271         if (register_pernet_device(&loopback_net_ops))
8272                 goto out;
8273
8274         if (register_pernet_device(&default_device_ops))
8275                 goto out;
8276
8277         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8278         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8279
8280         hotcpu_notifier(dev_cpu_callback, 0);
8281         dst_subsys_init();
8282         rc = 0;
8283 out:
8284         return rc;
8285 }
8286
8287 subsys_initcall(net_dev_init);