]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/core/dev.c
net: don't call strlen on non-terminated string in dev_set_alias()
[karo-tx-linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145
146 #include "net-sysfs.h"
147
148 /* Instead of increasing this, you should create a hash table. */
149 #define MAX_GRO_SKBS 8
150
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;       /* Taps */
158 static struct list_head offload_base __read_mostly;
159
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162                                          struct net_device *dev,
163                                          struct netdev_notifier_info *info);
164
165 /*
166  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
167  * semaphore.
168  *
169  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
170  *
171  * Writers must hold the rtnl semaphore while they loop through the
172  * dev_base_head list, and hold dev_base_lock for writing when they do the
173  * actual updates.  This allows pure readers to access the list even
174  * while a writer is preparing to update it.
175  *
176  * To put it another way, dev_base_lock is held for writing only to
177  * protect against pure readers; the rtnl semaphore provides the
178  * protection against other writers.
179  *
180  * See, for example usages, register_netdevice() and
181  * unregister_netdevice(), which must be called with the rtnl
182  * semaphore held.
183  */
184 DEFINE_RWLOCK(dev_base_lock);
185 EXPORT_SYMBOL(dev_base_lock);
186
187 /* protects napi_hash addition/deletion and napi_gen_id */
188 static DEFINE_SPINLOCK(napi_hash_lock);
189
190 static unsigned int napi_gen_id = NR_CPUS;
191 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
192
193 static seqcount_t devnet_rename_seq;
194
195 static inline void dev_base_seq_inc(struct net *net)
196 {
197         while (++net->dev_base_seq == 0)
198                 ;
199 }
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
204
205         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216         spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223         spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 /* Device list insertion */
228 static void list_netdevice(struct net_device *dev)
229 {
230         struct net *net = dev_net(dev);
231
232         ASSERT_RTNL();
233
234         write_lock_bh(&dev_base_lock);
235         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237         hlist_add_head_rcu(&dev->index_hlist,
238                            dev_index_hash(net, dev->ifindex));
239         write_unlock_bh(&dev_base_lock);
240
241         dev_base_seq_inc(net);
242 }
243
244 /* Device list removal
245  * caller must respect a RCU grace period before freeing/reusing dev
246  */
247 static void unlist_netdevice(struct net_device *dev)
248 {
249         ASSERT_RTNL();
250
251         /* Unlink dev from the device chain */
252         write_lock_bh(&dev_base_lock);
253         list_del_rcu(&dev->dev_list);
254         hlist_del_rcu(&dev->name_hlist);
255         hlist_del_rcu(&dev->index_hlist);
256         write_unlock_bh(&dev_base_lock);
257
258         dev_base_seq_inc(dev_net(dev));
259 }
260
261 /*
262  *      Our notifier list
263  */
264
265 static RAW_NOTIFIER_HEAD(netdev_chain);
266
267 /*
268  *      Device drivers call our routines to queue packets here. We empty the
269  *      queue in the local softnet handler.
270  */
271
272 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
273 EXPORT_PER_CPU_SYMBOL(softnet_data);
274
275 #ifdef CONFIG_LOCKDEP
276 /*
277  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
278  * according to dev->type
279  */
280 static const unsigned short netdev_lock_type[] = {
281          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
282          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
283          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
284          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
285          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
286          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
287          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
288          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
289          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
290          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
291          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
292          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
293          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
294          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
295          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
296
297 static const char *const netdev_lock_name[] = {
298         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
299         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
300         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
301         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
302         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
303         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
304         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
305         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
306         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
307         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
308         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
309         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
310         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
311         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
312         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
313
314 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
315 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
316
317 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
318 {
319         int i;
320
321         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
322                 if (netdev_lock_type[i] == dev_type)
323                         return i;
324         /* the last key is used by default */
325         return ARRAY_SIZE(netdev_lock_type) - 1;
326 }
327
328 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
329                                                  unsigned short dev_type)
330 {
331         int i;
332
333         i = netdev_lock_pos(dev_type);
334         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
335                                    netdev_lock_name[i]);
336 }
337
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340         int i;
341
342         i = netdev_lock_pos(dev->type);
343         lockdep_set_class_and_name(&dev->addr_list_lock,
344                                    &netdev_addr_lock_key[i],
345                                    netdev_lock_name[i]);
346 }
347 #else
348 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
349                                                  unsigned short dev_type)
350 {
351 }
352 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353 {
354 }
355 #endif
356
357 /*******************************************************************************
358  *
359  *              Protocol management and registration routines
360  *
361  *******************************************************************************/
362
363
364 /*
365  *      Add a protocol ID to the list. Now that the input handler is
366  *      smarter we can dispense with all the messy stuff that used to be
367  *      here.
368  *
369  *      BEWARE!!! Protocol handlers, mangling input packets,
370  *      MUST BE last in hash buckets and checking protocol handlers
371  *      MUST start from promiscuous ptype_all chain in net_bh.
372  *      It is true now, do not change it.
373  *      Explanation follows: if protocol handler, mangling packet, will
374  *      be the first on list, it is not able to sense, that packet
375  *      is cloned and should be copied-on-write, so that it will
376  *      change it and subsequent readers will get broken packet.
377  *                                                      --ANK (980803)
378  */
379
380 static inline struct list_head *ptype_head(const struct packet_type *pt)
381 {
382         if (pt->type == htons(ETH_P_ALL))
383                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
384         else
385                 return pt->dev ? &pt->dev->ptype_specific :
386                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
387 }
388
389 /**
390  *      dev_add_pack - add packet handler
391  *      @pt: packet type declaration
392  *
393  *      Add a protocol handler to the networking stack. The passed &packet_type
394  *      is linked into kernel lists and may not be freed until it has been
395  *      removed from the kernel lists.
396  *
397  *      This call does not sleep therefore it can not
398  *      guarantee all CPU's that are in middle of receiving packets
399  *      will see the new packet type (until the next received packet).
400  */
401
402 void dev_add_pack(struct packet_type *pt)
403 {
404         struct list_head *head = ptype_head(pt);
405
406         spin_lock(&ptype_lock);
407         list_add_rcu(&pt->list, head);
408         spin_unlock(&ptype_lock);
409 }
410 EXPORT_SYMBOL(dev_add_pack);
411
412 /**
413  *      __dev_remove_pack        - remove packet handler
414  *      @pt: packet type declaration
415  *
416  *      Remove a protocol handler that was previously added to the kernel
417  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
418  *      from the kernel lists and can be freed or reused once this function
419  *      returns.
420  *
421  *      The packet type might still be in use by receivers
422  *      and must not be freed until after all the CPU's have gone
423  *      through a quiescent state.
424  */
425 void __dev_remove_pack(struct packet_type *pt)
426 {
427         struct list_head *head = ptype_head(pt);
428         struct packet_type *pt1;
429
430         spin_lock(&ptype_lock);
431
432         list_for_each_entry(pt1, head, list) {
433                 if (pt == pt1) {
434                         list_del_rcu(&pt->list);
435                         goto out;
436                 }
437         }
438
439         pr_warn("dev_remove_pack: %p not found\n", pt);
440 out:
441         spin_unlock(&ptype_lock);
442 }
443 EXPORT_SYMBOL(__dev_remove_pack);
444
445 /**
446  *      dev_remove_pack  - remove packet handler
447  *      @pt: packet type declaration
448  *
449  *      Remove a protocol handler that was previously added to the kernel
450  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
451  *      from the kernel lists and can be freed or reused once this function
452  *      returns.
453  *
454  *      This call sleeps to guarantee that no CPU is looking at the packet
455  *      type after return.
456  */
457 void dev_remove_pack(struct packet_type *pt)
458 {
459         __dev_remove_pack(pt);
460
461         synchronize_net();
462 }
463 EXPORT_SYMBOL(dev_remove_pack);
464
465
466 /**
467  *      dev_add_offload - register offload handlers
468  *      @po: protocol offload declaration
469  *
470  *      Add protocol offload handlers to the networking stack. The passed
471  *      &proto_offload is linked into kernel lists and may not be freed until
472  *      it has been removed from the kernel lists.
473  *
474  *      This call does not sleep therefore it can not
475  *      guarantee all CPU's that are in middle of receiving packets
476  *      will see the new offload handlers (until the next received packet).
477  */
478 void dev_add_offload(struct packet_offload *po)
479 {
480         struct packet_offload *elem;
481
482         spin_lock(&offload_lock);
483         list_for_each_entry(elem, &offload_base, list) {
484                 if (po->priority < elem->priority)
485                         break;
486         }
487         list_add_rcu(&po->list, elem->list.prev);
488         spin_unlock(&offload_lock);
489 }
490 EXPORT_SYMBOL(dev_add_offload);
491
492 /**
493  *      __dev_remove_offload     - remove offload handler
494  *      @po: packet offload declaration
495  *
496  *      Remove a protocol offload handler that was previously added to the
497  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
498  *      is removed from the kernel lists and can be freed or reused once this
499  *      function returns.
500  *
501  *      The packet type might still be in use by receivers
502  *      and must not be freed until after all the CPU's have gone
503  *      through a quiescent state.
504  */
505 static void __dev_remove_offload(struct packet_offload *po)
506 {
507         struct list_head *head = &offload_base;
508         struct packet_offload *po1;
509
510         spin_lock(&offload_lock);
511
512         list_for_each_entry(po1, head, list) {
513                 if (po == po1) {
514                         list_del_rcu(&po->list);
515                         goto out;
516                 }
517         }
518
519         pr_warn("dev_remove_offload: %p not found\n", po);
520 out:
521         spin_unlock(&offload_lock);
522 }
523
524 /**
525  *      dev_remove_offload       - remove packet offload handler
526  *      @po: packet offload declaration
527  *
528  *      Remove a packet offload handler that was previously added to the kernel
529  *      offload handlers by dev_add_offload(). The passed &offload_type is
530  *      removed from the kernel lists and can be freed or reused once this
531  *      function returns.
532  *
533  *      This call sleeps to guarantee that no CPU is looking at the packet
534  *      type after return.
535  */
536 void dev_remove_offload(struct packet_offload *po)
537 {
538         __dev_remove_offload(po);
539
540         synchronize_net();
541 }
542 EXPORT_SYMBOL(dev_remove_offload);
543
544 /******************************************************************************
545  *
546  *                    Device Boot-time Settings Routines
547  *
548  ******************************************************************************/
549
550 /* Boot time configuration table */
551 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
552
553 /**
554  *      netdev_boot_setup_add   - add new setup entry
555  *      @name: name of the device
556  *      @map: configured settings for the device
557  *
558  *      Adds new setup entry to the dev_boot_setup list.  The function
559  *      returns 0 on error and 1 on success.  This is a generic routine to
560  *      all netdevices.
561  */
562 static int netdev_boot_setup_add(char *name, struct ifmap *map)
563 {
564         struct netdev_boot_setup *s;
565         int i;
566
567         s = dev_boot_setup;
568         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
569                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
570                         memset(s[i].name, 0, sizeof(s[i].name));
571                         strlcpy(s[i].name, name, IFNAMSIZ);
572                         memcpy(&s[i].map, map, sizeof(s[i].map));
573                         break;
574                 }
575         }
576
577         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
578 }
579
580 /**
581  * netdev_boot_setup_check      - check boot time settings
582  * @dev: the netdevice
583  *
584  * Check boot time settings for the device.
585  * The found settings are set for the device to be used
586  * later in the device probing.
587  * Returns 0 if no settings found, 1 if they are.
588  */
589 int netdev_boot_setup_check(struct net_device *dev)
590 {
591         struct netdev_boot_setup *s = dev_boot_setup;
592         int i;
593
594         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
595                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
596                     !strcmp(dev->name, s[i].name)) {
597                         dev->irq = s[i].map.irq;
598                         dev->base_addr = s[i].map.base_addr;
599                         dev->mem_start = s[i].map.mem_start;
600                         dev->mem_end = s[i].map.mem_end;
601                         return 1;
602                 }
603         }
604         return 0;
605 }
606 EXPORT_SYMBOL(netdev_boot_setup_check);
607
608
609 /**
610  * netdev_boot_base     - get address from boot time settings
611  * @prefix: prefix for network device
612  * @unit: id for network device
613  *
614  * Check boot time settings for the base address of device.
615  * The found settings are set for the device to be used
616  * later in the device probing.
617  * Returns 0 if no settings found.
618  */
619 unsigned long netdev_boot_base(const char *prefix, int unit)
620 {
621         const struct netdev_boot_setup *s = dev_boot_setup;
622         char name[IFNAMSIZ];
623         int i;
624
625         sprintf(name, "%s%d", prefix, unit);
626
627         /*
628          * If device already registered then return base of 1
629          * to indicate not to probe for this interface
630          */
631         if (__dev_get_by_name(&init_net, name))
632                 return 1;
633
634         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
635                 if (!strcmp(name, s[i].name))
636                         return s[i].map.base_addr;
637         return 0;
638 }
639
640 /*
641  * Saves at boot time configured settings for any netdevice.
642  */
643 int __init netdev_boot_setup(char *str)
644 {
645         int ints[5];
646         struct ifmap map;
647
648         str = get_options(str, ARRAY_SIZE(ints), ints);
649         if (!str || !*str)
650                 return 0;
651
652         /* Save settings */
653         memset(&map, 0, sizeof(map));
654         if (ints[0] > 0)
655                 map.irq = ints[1];
656         if (ints[0] > 1)
657                 map.base_addr = ints[2];
658         if (ints[0] > 2)
659                 map.mem_start = ints[3];
660         if (ints[0] > 3)
661                 map.mem_end = ints[4];
662
663         /* Add new entry to the list */
664         return netdev_boot_setup_add(str, &map);
665 }
666
667 __setup("netdev=", netdev_boot_setup);
668
669 /*******************************************************************************
670  *
671  *                          Device Interface Subroutines
672  *
673  *******************************************************************************/
674
675 /**
676  *      dev_get_iflink  - get 'iflink' value of a interface
677  *      @dev: targeted interface
678  *
679  *      Indicates the ifindex the interface is linked to.
680  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
681  */
682
683 int dev_get_iflink(const struct net_device *dev)
684 {
685         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
686                 return dev->netdev_ops->ndo_get_iflink(dev);
687
688         return dev->ifindex;
689 }
690 EXPORT_SYMBOL(dev_get_iflink);
691
692 /**
693  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
694  *      @dev: targeted interface
695  *      @skb: The packet.
696  *
697  *      For better visibility of tunnel traffic OVS needs to retrieve
698  *      egress tunnel information for a packet. Following API allows
699  *      user to get this info.
700  */
701 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
702 {
703         struct ip_tunnel_info *info;
704
705         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
706                 return -EINVAL;
707
708         info = skb_tunnel_info_unclone(skb);
709         if (!info)
710                 return -ENOMEM;
711         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
712                 return -EINVAL;
713
714         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
715 }
716 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
717
718 /**
719  *      __dev_get_by_name       - find a device by its name
720  *      @net: the applicable net namespace
721  *      @name: name to find
722  *
723  *      Find an interface by name. Must be called under RTNL semaphore
724  *      or @dev_base_lock. If the name is found a pointer to the device
725  *      is returned. If the name is not found then %NULL is returned. The
726  *      reference counters are not incremented so the caller must be
727  *      careful with locks.
728  */
729
730 struct net_device *__dev_get_by_name(struct net *net, const char *name)
731 {
732         struct net_device *dev;
733         struct hlist_head *head = dev_name_hash(net, name);
734
735         hlist_for_each_entry(dev, head, name_hlist)
736                 if (!strncmp(dev->name, name, IFNAMSIZ))
737                         return dev;
738
739         return NULL;
740 }
741 EXPORT_SYMBOL(__dev_get_by_name);
742
743 /**
744  * dev_get_by_name_rcu  - find a device by its name
745  * @net: the applicable net namespace
746  * @name: name to find
747  *
748  * Find an interface by name.
749  * If the name is found a pointer to the device is returned.
750  * If the name is not found then %NULL is returned.
751  * The reference counters are not incremented so the caller must be
752  * careful with locks. The caller must hold RCU lock.
753  */
754
755 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
756 {
757         struct net_device *dev;
758         struct hlist_head *head = dev_name_hash(net, name);
759
760         hlist_for_each_entry_rcu(dev, head, name_hlist)
761                 if (!strncmp(dev->name, name, IFNAMSIZ))
762                         return dev;
763
764         return NULL;
765 }
766 EXPORT_SYMBOL(dev_get_by_name_rcu);
767
768 /**
769  *      dev_get_by_name         - find a device by its name
770  *      @net: the applicable net namespace
771  *      @name: name to find
772  *
773  *      Find an interface by name. This can be called from any
774  *      context and does its own locking. The returned handle has
775  *      the usage count incremented and the caller must use dev_put() to
776  *      release it when it is no longer needed. %NULL is returned if no
777  *      matching device is found.
778  */
779
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782         struct net_device *dev;
783
784         rcu_read_lock();
785         dev = dev_get_by_name_rcu(net, name);
786         if (dev)
787                 dev_hold(dev);
788         rcu_read_unlock();
789         return dev;
790 }
791 EXPORT_SYMBOL(dev_get_by_name);
792
793 /**
794  *      __dev_get_by_index - find a device by its ifindex
795  *      @net: the applicable net namespace
796  *      @ifindex: index of device
797  *
798  *      Search for an interface by index. Returns %NULL if the device
799  *      is not found or a pointer to the device. The device has not
800  *      had its reference counter increased so the caller must be careful
801  *      about locking. The caller must hold either the RTNL semaphore
802  *      or @dev_base_lock.
803  */
804
805 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
806 {
807         struct net_device *dev;
808         struct hlist_head *head = dev_index_hash(net, ifindex);
809
810         hlist_for_each_entry(dev, head, index_hlist)
811                 if (dev->ifindex == ifindex)
812                         return dev;
813
814         return NULL;
815 }
816 EXPORT_SYMBOL(__dev_get_by_index);
817
818 /**
819  *      dev_get_by_index_rcu - find a device by its ifindex
820  *      @net: the applicable net namespace
821  *      @ifindex: index of device
822  *
823  *      Search for an interface by index. Returns %NULL if the device
824  *      is not found or a pointer to the device. The device has not
825  *      had its reference counter increased so the caller must be careful
826  *      about locking. The caller must hold RCU lock.
827  */
828
829 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
830 {
831         struct net_device *dev;
832         struct hlist_head *head = dev_index_hash(net, ifindex);
833
834         hlist_for_each_entry_rcu(dev, head, index_hlist)
835                 if (dev->ifindex == ifindex)
836                         return dev;
837
838         return NULL;
839 }
840 EXPORT_SYMBOL(dev_get_by_index_rcu);
841
842
843 /**
844  *      dev_get_by_index - find a device by its ifindex
845  *      @net: the applicable net namespace
846  *      @ifindex: index of device
847  *
848  *      Search for an interface by index. Returns NULL if the device
849  *      is not found or a pointer to the device. The device returned has
850  *      had a reference added and the pointer is safe until the user calls
851  *      dev_put to indicate they have finished with it.
852  */
853
854 struct net_device *dev_get_by_index(struct net *net, int ifindex)
855 {
856         struct net_device *dev;
857
858         rcu_read_lock();
859         dev = dev_get_by_index_rcu(net, ifindex);
860         if (dev)
861                 dev_hold(dev);
862         rcu_read_unlock();
863         return dev;
864 }
865 EXPORT_SYMBOL(dev_get_by_index);
866
867 /**
868  *      netdev_get_name - get a netdevice name, knowing its ifindex.
869  *      @net: network namespace
870  *      @name: a pointer to the buffer where the name will be stored.
871  *      @ifindex: the ifindex of the interface to get the name from.
872  *
873  *      The use of raw_seqcount_begin() and cond_resched() before
874  *      retrying is required as we want to give the writers a chance
875  *      to complete when CONFIG_PREEMPT is not set.
876  */
877 int netdev_get_name(struct net *net, char *name, int ifindex)
878 {
879         struct net_device *dev;
880         unsigned int seq;
881
882 retry:
883         seq = raw_seqcount_begin(&devnet_rename_seq);
884         rcu_read_lock();
885         dev = dev_get_by_index_rcu(net, ifindex);
886         if (!dev) {
887                 rcu_read_unlock();
888                 return -ENODEV;
889         }
890
891         strcpy(name, dev->name);
892         rcu_read_unlock();
893         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
894                 cond_resched();
895                 goto retry;
896         }
897
898         return 0;
899 }
900
901 /**
902  *      dev_getbyhwaddr_rcu - find a device by its hardware address
903  *      @net: the applicable net namespace
904  *      @type: media type of device
905  *      @ha: hardware address
906  *
907  *      Search for an interface by MAC address. Returns NULL if the device
908  *      is not found or a pointer to the device.
909  *      The caller must hold RCU or RTNL.
910  *      The returned device has not had its ref count increased
911  *      and the caller must therefore be careful about locking
912  *
913  */
914
915 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
916                                        const char *ha)
917 {
918         struct net_device *dev;
919
920         for_each_netdev_rcu(net, dev)
921                 if (dev->type == type &&
922                     !memcmp(dev->dev_addr, ha, dev->addr_len))
923                         return dev;
924
925         return NULL;
926 }
927 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
928
929 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
930 {
931         struct net_device *dev;
932
933         ASSERT_RTNL();
934         for_each_netdev(net, dev)
935                 if (dev->type == type)
936                         return dev;
937
938         return NULL;
939 }
940 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
941
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973
974         ASSERT_RTNL();
975
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      to allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strlen(name) >= IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035
1036         p = strnchr(name, IFNAMSIZ-1, '%');
1037         if (p) {
1038                 /*
1039                  * Verify the string as this thing may have come from
1040                  * the user.  There must be either one "%d" and no other "%"
1041                  * characters.
1042                  */
1043                 if (p[1] != 'd' || strchr(p + 2, '%'))
1044                         return -EINVAL;
1045
1046                 /* Use one page as a bit array of possible slots */
1047                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1048                 if (!inuse)
1049                         return -ENOMEM;
1050
1051                 for_each_netdev(net, d) {
1052                         if (!sscanf(d->name, name, &i))
1053                                 continue;
1054                         if (i < 0 || i >= max_netdevices)
1055                                 continue;
1056
1057                         /*  avoid cases where sscanf is not exact inverse of printf */
1058                         snprintf(buf, IFNAMSIZ, name, i);
1059                         if (!strncmp(buf, d->name, IFNAMSIZ))
1060                                 set_bit(i, inuse);
1061                 }
1062
1063                 i = find_first_zero_bit(inuse, max_netdevices);
1064                 free_page((unsigned long) inuse);
1065         }
1066
1067         if (buf != name)
1068                 snprintf(buf, IFNAMSIZ, name, i);
1069         if (!__dev_get_by_name(net, buf))
1070                 return i;
1071
1072         /* It is possible to run out of possible slots
1073          * when the name is long and there isn't enough space left
1074          * for the digits, or if all bits are used.
1075          */
1076         return -ENFILE;
1077 }
1078
1079 /**
1080  *      dev_alloc_name - allocate a name for a device
1081  *      @dev: device
1082  *      @name: name format string
1083  *
1084  *      Passed a format string - eg "lt%d" it will try and find a suitable
1085  *      id. It scans list of devices to build up a free map, then chooses
1086  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1087  *      while allocating the name and adding the device in order to avoid
1088  *      duplicates.
1089  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1090  *      Returns the number of the unit assigned or a negative errno code.
1091  */
1092
1093 int dev_alloc_name(struct net_device *dev, const char *name)
1094 {
1095         char buf[IFNAMSIZ];
1096         struct net *net;
1097         int ret;
1098
1099         BUG_ON(!dev_net(dev));
1100         net = dev_net(dev);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strlcpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106 EXPORT_SYMBOL(dev_alloc_name);
1107
1108 static int dev_alloc_name_ns(struct net *net,
1109                              struct net_device *dev,
1110                              const char *name)
1111 {
1112         char buf[IFNAMSIZ];
1113         int ret;
1114
1115         ret = __dev_alloc_name(net, name, buf);
1116         if (ret >= 0)
1117                 strlcpy(dev->name, buf, IFNAMSIZ);
1118         return ret;
1119 }
1120
1121 static int dev_get_valid_name(struct net *net,
1122                               struct net_device *dev,
1123                               const char *name)
1124 {
1125         BUG_ON(!net);
1126
1127         if (!dev_valid_name(name))
1128                 return -EINVAL;
1129
1130         if (strchr(name, '%'))
1131                 return dev_alloc_name_ns(net, dev, name);
1132         else if (__dev_get_by_name(net, name))
1133                 return -EEXIST;
1134         else if (dev->name != name)
1135                 strlcpy(dev->name, name, IFNAMSIZ);
1136
1137         return 0;
1138 }
1139
1140 /**
1141  *      dev_change_name - change name of a device
1142  *      @dev: device
1143  *      @newname: name (or format string) must be at least IFNAMSIZ
1144  *
1145  *      Change name of a device, can pass format strings "eth%d".
1146  *      for wildcarding.
1147  */
1148 int dev_change_name(struct net_device *dev, const char *newname)
1149 {
1150         unsigned char old_assign_type;
1151         char oldname[IFNAMSIZ];
1152         int err = 0;
1153         int ret;
1154         struct net *net;
1155
1156         ASSERT_RTNL();
1157         BUG_ON(!dev_net(dev));
1158
1159         net = dev_net(dev);
1160         if (dev->flags & IFF_UP)
1161                 return -EBUSY;
1162
1163         write_seqcount_begin(&devnet_rename_seq);
1164
1165         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1166                 write_seqcount_end(&devnet_rename_seq);
1167                 return 0;
1168         }
1169
1170         memcpy(oldname, dev->name, IFNAMSIZ);
1171
1172         err = dev_get_valid_name(net, dev, newname);
1173         if (err < 0) {
1174                 write_seqcount_end(&devnet_rename_seq);
1175                 return err;
1176         }
1177
1178         if (oldname[0] && !strchr(oldname, '%'))
1179                 netdev_info(dev, "renamed from %s\n", oldname);
1180
1181         old_assign_type = dev->name_assign_type;
1182         dev->name_assign_type = NET_NAME_RENAMED;
1183
1184 rollback:
1185         ret = device_rename(&dev->dev, dev->name);
1186         if (ret) {
1187                 memcpy(dev->name, oldname, IFNAMSIZ);
1188                 dev->name_assign_type = old_assign_type;
1189                 write_seqcount_end(&devnet_rename_seq);
1190                 return ret;
1191         }
1192
1193         write_seqcount_end(&devnet_rename_seq);
1194
1195         netdev_adjacent_rename_links(dev, oldname);
1196
1197         write_lock_bh(&dev_base_lock);
1198         hlist_del_rcu(&dev->name_hlist);
1199         write_unlock_bh(&dev_base_lock);
1200
1201         synchronize_rcu();
1202
1203         write_lock_bh(&dev_base_lock);
1204         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1205         write_unlock_bh(&dev_base_lock);
1206
1207         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1208         ret = notifier_to_errno(ret);
1209
1210         if (ret) {
1211                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1212                 if (err >= 0) {
1213                         err = ret;
1214                         write_seqcount_begin(&devnet_rename_seq);
1215                         memcpy(dev->name, oldname, IFNAMSIZ);
1216                         memcpy(oldname, newname, IFNAMSIZ);
1217                         dev->name_assign_type = old_assign_type;
1218                         old_assign_type = NET_NAME_RENAMED;
1219                         goto rollback;
1220                 } else {
1221                         pr_err("%s: name change rollback failed: %d\n",
1222                                dev->name, ret);
1223                 }
1224         }
1225
1226         return err;
1227 }
1228
1229 /**
1230  *      dev_set_alias - change ifalias of a device
1231  *      @dev: device
1232  *      @alias: name up to IFALIASZ
1233  *      @len: limit of bytes to copy from info
1234  *
1235  *      Set ifalias for a device,
1236  */
1237 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1238 {
1239         char *new_ifalias;
1240
1241         ASSERT_RTNL();
1242
1243         if (len >= IFALIASZ)
1244                 return -EINVAL;
1245
1246         if (!len) {
1247                 kfree(dev->ifalias);
1248                 dev->ifalias = NULL;
1249                 return 0;
1250         }
1251
1252         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1253         if (!new_ifalias)
1254                 return -ENOMEM;
1255         dev->ifalias = new_ifalias;
1256         memcpy(dev->ifalias, alias, len);
1257         dev->ifalias[len] = 0;
1258
1259         return len;
1260 }
1261
1262
1263 /**
1264  *      netdev_features_change - device changes features
1265  *      @dev: device to cause notification
1266  *
1267  *      Called to indicate a device has changed features.
1268  */
1269 void netdev_features_change(struct net_device *dev)
1270 {
1271         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1272 }
1273 EXPORT_SYMBOL(netdev_features_change);
1274
1275 /**
1276  *      netdev_state_change - device changes state
1277  *      @dev: device to cause notification
1278  *
1279  *      Called to indicate a device has changed state. This function calls
1280  *      the notifier chains for netdev_chain and sends a NEWLINK message
1281  *      to the routing socket.
1282  */
1283 void netdev_state_change(struct net_device *dev)
1284 {
1285         if (dev->flags & IFF_UP) {
1286                 struct netdev_notifier_change_info change_info;
1287
1288                 change_info.flags_changed = 0;
1289                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1290                                               &change_info.info);
1291                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1292         }
1293 }
1294 EXPORT_SYMBOL(netdev_state_change);
1295
1296 /**
1297  * netdev_notify_peers - notify network peers about existence of @dev
1298  * @dev: network device
1299  *
1300  * Generate traffic such that interested network peers are aware of
1301  * @dev, such as by generating a gratuitous ARP. This may be used when
1302  * a device wants to inform the rest of the network about some sort of
1303  * reconfiguration such as a failover event or virtual machine
1304  * migration.
1305  */
1306 void netdev_notify_peers(struct net_device *dev)
1307 {
1308         rtnl_lock();
1309         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1310         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1311         rtnl_unlock();
1312 }
1313 EXPORT_SYMBOL(netdev_notify_peers);
1314
1315 static int __dev_open(struct net_device *dev)
1316 {
1317         const struct net_device_ops *ops = dev->netdev_ops;
1318         int ret;
1319
1320         ASSERT_RTNL();
1321
1322         if (!netif_device_present(dev))
1323                 return -ENODEV;
1324
1325         /* Block netpoll from trying to do any rx path servicing.
1326          * If we don't do this there is a chance ndo_poll_controller
1327          * or ndo_poll may be running while we open the device
1328          */
1329         netpoll_poll_disable(dev);
1330
1331         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1332         ret = notifier_to_errno(ret);
1333         if (ret)
1334                 return ret;
1335
1336         set_bit(__LINK_STATE_START, &dev->state);
1337
1338         if (ops->ndo_validate_addr)
1339                 ret = ops->ndo_validate_addr(dev);
1340
1341         if (!ret && ops->ndo_open)
1342                 ret = ops->ndo_open(dev);
1343
1344         netpoll_poll_enable(dev);
1345
1346         if (ret)
1347                 clear_bit(__LINK_STATE_START, &dev->state);
1348         else {
1349                 dev->flags |= IFF_UP;
1350                 dev_set_rx_mode(dev);
1351                 dev_activate(dev);
1352                 add_device_randomness(dev->dev_addr, dev->addr_len);
1353         }
1354
1355         return ret;
1356 }
1357
1358 /**
1359  *      dev_open        - prepare an interface for use.
1360  *      @dev:   device to open
1361  *
1362  *      Takes a device from down to up state. The device's private open
1363  *      function is invoked and then the multicast lists are loaded. Finally
1364  *      the device is moved into the up state and a %NETDEV_UP message is
1365  *      sent to the netdev notifier chain.
1366  *
1367  *      Calling this function on an active interface is a nop. On a failure
1368  *      a negative errno code is returned.
1369  */
1370 int dev_open(struct net_device *dev)
1371 {
1372         int ret;
1373
1374         if (dev->flags & IFF_UP)
1375                 return 0;
1376
1377         ret = __dev_open(dev);
1378         if (ret < 0)
1379                 return ret;
1380
1381         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1382         call_netdevice_notifiers(NETDEV_UP, dev);
1383
1384         return ret;
1385 }
1386 EXPORT_SYMBOL(dev_open);
1387
1388 static int __dev_close_many(struct list_head *head)
1389 {
1390         struct net_device *dev;
1391
1392         ASSERT_RTNL();
1393         might_sleep();
1394
1395         list_for_each_entry(dev, head, close_list) {
1396                 /* Temporarily disable netpoll until the interface is down */
1397                 netpoll_poll_disable(dev);
1398
1399                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1400
1401                 clear_bit(__LINK_STATE_START, &dev->state);
1402
1403                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1404                  * can be even on different cpu. So just clear netif_running().
1405                  *
1406                  * dev->stop() will invoke napi_disable() on all of it's
1407                  * napi_struct instances on this device.
1408                  */
1409                 smp_mb__after_atomic(); /* Commit netif_running(). */
1410         }
1411
1412         dev_deactivate_many(head);
1413
1414         list_for_each_entry(dev, head, close_list) {
1415                 const struct net_device_ops *ops = dev->netdev_ops;
1416
1417                 /*
1418                  *      Call the device specific close. This cannot fail.
1419                  *      Only if device is UP
1420                  *
1421                  *      We allow it to be called even after a DETACH hot-plug
1422                  *      event.
1423                  */
1424                 if (ops->ndo_stop)
1425                         ops->ndo_stop(dev);
1426
1427                 dev->flags &= ~IFF_UP;
1428                 netpoll_poll_enable(dev);
1429         }
1430
1431         return 0;
1432 }
1433
1434 static int __dev_close(struct net_device *dev)
1435 {
1436         int retval;
1437         LIST_HEAD(single);
1438
1439         list_add(&dev->close_list, &single);
1440         retval = __dev_close_many(&single);
1441         list_del(&single);
1442
1443         return retval;
1444 }
1445
1446 int dev_close_many(struct list_head *head, bool unlink)
1447 {
1448         struct net_device *dev, *tmp;
1449
1450         /* Remove the devices that don't need to be closed */
1451         list_for_each_entry_safe(dev, tmp, head, close_list)
1452                 if (!(dev->flags & IFF_UP))
1453                         list_del_init(&dev->close_list);
1454
1455         __dev_close_many(head);
1456
1457         list_for_each_entry_safe(dev, tmp, head, close_list) {
1458                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1459                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1460                 if (unlink)
1461                         list_del_init(&dev->close_list);
1462         }
1463
1464         return 0;
1465 }
1466 EXPORT_SYMBOL(dev_close_many);
1467
1468 /**
1469  *      dev_close - shutdown an interface.
1470  *      @dev: device to shutdown
1471  *
1472  *      This function moves an active device into down state. A
1473  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1474  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1475  *      chain.
1476  */
1477 int dev_close(struct net_device *dev)
1478 {
1479         if (dev->flags & IFF_UP) {
1480                 LIST_HEAD(single);
1481
1482                 list_add(&dev->close_list, &single);
1483                 dev_close_many(&single, true);
1484                 list_del(&single);
1485         }
1486         return 0;
1487 }
1488 EXPORT_SYMBOL(dev_close);
1489
1490
1491 /**
1492  *      dev_disable_lro - disable Large Receive Offload on a device
1493  *      @dev: device
1494  *
1495  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1496  *      called under RTNL.  This is needed if received packets may be
1497  *      forwarded to another interface.
1498  */
1499 void dev_disable_lro(struct net_device *dev)
1500 {
1501         struct net_device *lower_dev;
1502         struct list_head *iter;
1503
1504         dev->wanted_features &= ~NETIF_F_LRO;
1505         netdev_update_features(dev);
1506
1507         if (unlikely(dev->features & NETIF_F_LRO))
1508                 netdev_WARN(dev, "failed to disable LRO!\n");
1509
1510         netdev_for_each_lower_dev(dev, lower_dev, iter)
1511                 dev_disable_lro(lower_dev);
1512 }
1513 EXPORT_SYMBOL(dev_disable_lro);
1514
1515 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1516                                    struct net_device *dev)
1517 {
1518         struct netdev_notifier_info info;
1519
1520         netdev_notifier_info_init(&info, dev);
1521         return nb->notifier_call(nb, val, &info);
1522 }
1523
1524 static int dev_boot_phase = 1;
1525
1526 /**
1527  * register_netdevice_notifier - register a network notifier block
1528  * @nb: notifier
1529  *
1530  * Register a notifier to be called when network device events occur.
1531  * The notifier passed is linked into the kernel structures and must
1532  * not be reused until it has been unregistered. A negative errno code
1533  * is returned on a failure.
1534  *
1535  * When registered all registration and up events are replayed
1536  * to the new notifier to allow device to have a race free
1537  * view of the network device list.
1538  */
1539
1540 int register_netdevice_notifier(struct notifier_block *nb)
1541 {
1542         struct net_device *dev;
1543         struct net_device *last;
1544         struct net *net;
1545         int err;
1546
1547         rtnl_lock();
1548         err = raw_notifier_chain_register(&netdev_chain, nb);
1549         if (err)
1550                 goto unlock;
1551         if (dev_boot_phase)
1552                 goto unlock;
1553         for_each_net(net) {
1554                 for_each_netdev(net, dev) {
1555                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1556                         err = notifier_to_errno(err);
1557                         if (err)
1558                                 goto rollback;
1559
1560                         if (!(dev->flags & IFF_UP))
1561                                 continue;
1562
1563                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1564                 }
1565         }
1566
1567 unlock:
1568         rtnl_unlock();
1569         return err;
1570
1571 rollback:
1572         last = dev;
1573         for_each_net(net) {
1574                 for_each_netdev(net, dev) {
1575                         if (dev == last)
1576                                 goto outroll;
1577
1578                         if (dev->flags & IFF_UP) {
1579                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1580                                                         dev);
1581                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1582                         }
1583                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1584                 }
1585         }
1586
1587 outroll:
1588         raw_notifier_chain_unregister(&netdev_chain, nb);
1589         goto unlock;
1590 }
1591 EXPORT_SYMBOL(register_netdevice_notifier);
1592
1593 /**
1594  * unregister_netdevice_notifier - unregister a network notifier block
1595  * @nb: notifier
1596  *
1597  * Unregister a notifier previously registered by
1598  * register_netdevice_notifier(). The notifier is unlinked into the
1599  * kernel structures and may then be reused. A negative errno code
1600  * is returned on a failure.
1601  *
1602  * After unregistering unregister and down device events are synthesized
1603  * for all devices on the device list to the removed notifier to remove
1604  * the need for special case cleanup code.
1605  */
1606
1607 int unregister_netdevice_notifier(struct notifier_block *nb)
1608 {
1609         struct net_device *dev;
1610         struct net *net;
1611         int err;
1612
1613         rtnl_lock();
1614         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1615         if (err)
1616                 goto unlock;
1617
1618         for_each_net(net) {
1619                 for_each_netdev(net, dev) {
1620                         if (dev->flags & IFF_UP) {
1621                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1622                                                         dev);
1623                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1624                         }
1625                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1626                 }
1627         }
1628 unlock:
1629         rtnl_unlock();
1630         return err;
1631 }
1632 EXPORT_SYMBOL(unregister_netdevice_notifier);
1633
1634 /**
1635  *      call_netdevice_notifiers_info - call all network notifier blocks
1636  *      @val: value passed unmodified to notifier function
1637  *      @dev: net_device pointer passed unmodified to notifier function
1638  *      @info: notifier information data
1639  *
1640  *      Call all network notifier blocks.  Parameters and return value
1641  *      are as for raw_notifier_call_chain().
1642  */
1643
1644 static int call_netdevice_notifiers_info(unsigned long val,
1645                                          struct net_device *dev,
1646                                          struct netdev_notifier_info *info)
1647 {
1648         ASSERT_RTNL();
1649         netdev_notifier_info_init(info, dev);
1650         return raw_notifier_call_chain(&netdev_chain, val, info);
1651 }
1652
1653 /**
1654  *      call_netdevice_notifiers - call all network notifier blocks
1655  *      @val: value passed unmodified to notifier function
1656  *      @dev: net_device pointer passed unmodified to notifier function
1657  *
1658  *      Call all network notifier blocks.  Parameters and return value
1659  *      are as for raw_notifier_call_chain().
1660  */
1661
1662 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1663 {
1664         struct netdev_notifier_info info;
1665
1666         return call_netdevice_notifiers_info(val, dev, &info);
1667 }
1668 EXPORT_SYMBOL(call_netdevice_notifiers);
1669
1670 #ifdef CONFIG_NET_INGRESS
1671 static struct static_key ingress_needed __read_mostly;
1672
1673 void net_inc_ingress_queue(void)
1674 {
1675         static_key_slow_inc(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1678
1679 void net_dec_ingress_queue(void)
1680 {
1681         static_key_slow_dec(&ingress_needed);
1682 }
1683 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1684 #endif
1685
1686 #ifdef CONFIG_NET_EGRESS
1687 static struct static_key egress_needed __read_mostly;
1688
1689 void net_inc_egress_queue(void)
1690 {
1691         static_key_slow_inc(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1694
1695 void net_dec_egress_queue(void)
1696 {
1697         static_key_slow_dec(&egress_needed);
1698 }
1699 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1700 #endif
1701
1702 static struct static_key netstamp_needed __read_mostly;
1703 #ifdef HAVE_JUMP_LABEL
1704 static atomic_t netstamp_needed_deferred;
1705 static atomic_t netstamp_wanted;
1706 static void netstamp_clear(struct work_struct *work)
1707 {
1708         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709         int wanted;
1710
1711         wanted = atomic_add_return(deferred, &netstamp_wanted);
1712         if (wanted > 0)
1713                 static_key_enable(&netstamp_needed);
1714         else
1715                 static_key_disable(&netstamp_needed);
1716 }
1717 static DECLARE_WORK(netstamp_work, netstamp_clear);
1718 #endif
1719
1720 void net_enable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723         int wanted;
1724
1725         while (1) {
1726                 wanted = atomic_read(&netstamp_wanted);
1727                 if (wanted <= 0)
1728                         break;
1729                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1730                         return;
1731         }
1732         atomic_inc(&netstamp_needed_deferred);
1733         schedule_work(&netstamp_work);
1734 #else
1735         static_key_slow_inc(&netstamp_needed);
1736 #endif
1737 }
1738 EXPORT_SYMBOL(net_enable_timestamp);
1739
1740 void net_disable_timestamp(void)
1741 {
1742 #ifdef HAVE_JUMP_LABEL
1743         int wanted;
1744
1745         while (1) {
1746                 wanted = atomic_read(&netstamp_wanted);
1747                 if (wanted <= 1)
1748                         break;
1749                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1750                         return;
1751         }
1752         atomic_dec(&netstamp_needed_deferred);
1753         schedule_work(&netstamp_work);
1754 #else
1755         static_key_slow_dec(&netstamp_needed);
1756 #endif
1757 }
1758 EXPORT_SYMBOL(net_disable_timestamp);
1759
1760 static inline void net_timestamp_set(struct sk_buff *skb)
1761 {
1762         skb->tstamp = 0;
1763         if (static_key_false(&netstamp_needed))
1764                 __net_timestamp(skb);
1765 }
1766
1767 #define net_timestamp_check(COND, SKB)                  \
1768         if (static_key_false(&netstamp_needed)) {               \
1769                 if ((COND) && !(SKB)->tstamp)   \
1770                         __net_timestamp(SKB);           \
1771         }                                               \
1772
1773 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1774 {
1775         unsigned int len;
1776
1777         if (!(dev->flags & IFF_UP))
1778                 return false;
1779
1780         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1781         if (skb->len <= len)
1782                 return true;
1783
1784         /* if TSO is enabled, we don't care about the length as the packet
1785          * could be forwarded without being segmented before
1786          */
1787         if (skb_is_gso(skb))
1788                 return true;
1789
1790         return false;
1791 }
1792 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1793
1794 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1795 {
1796         int ret = ____dev_forward_skb(dev, skb);
1797
1798         if (likely(!ret)) {
1799                 skb->protocol = eth_type_trans(skb, dev);
1800                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1801         }
1802
1803         return ret;
1804 }
1805 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1806
1807 /**
1808  * dev_forward_skb - loopback an skb to another netif
1809  *
1810  * @dev: destination network device
1811  * @skb: buffer to forward
1812  *
1813  * return values:
1814  *      NET_RX_SUCCESS  (no congestion)
1815  *      NET_RX_DROP     (packet was dropped, but freed)
1816  *
1817  * dev_forward_skb can be used for injecting an skb from the
1818  * start_xmit function of one device into the receive queue
1819  * of another device.
1820  *
1821  * The receiving device may be in another namespace, so
1822  * we have to clear all information in the skb that could
1823  * impact namespace isolation.
1824  */
1825 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1826 {
1827         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1828 }
1829 EXPORT_SYMBOL_GPL(dev_forward_skb);
1830
1831 static inline int deliver_skb(struct sk_buff *skb,
1832                               struct packet_type *pt_prev,
1833                               struct net_device *orig_dev)
1834 {
1835         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1836                 return -ENOMEM;
1837         atomic_inc(&skb->users);
1838         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1839 }
1840
1841 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1842                                           struct packet_type **pt,
1843                                           struct net_device *orig_dev,
1844                                           __be16 type,
1845                                           struct list_head *ptype_list)
1846 {
1847         struct packet_type *ptype, *pt_prev = *pt;
1848
1849         list_for_each_entry_rcu(ptype, ptype_list, list) {
1850                 if (ptype->type != type)
1851                         continue;
1852                 if (pt_prev)
1853                         deliver_skb(skb, pt_prev, orig_dev);
1854                 pt_prev = ptype;
1855         }
1856         *pt = pt_prev;
1857 }
1858
1859 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1860 {
1861         if (!ptype->af_packet_priv || !skb->sk)
1862                 return false;
1863
1864         if (ptype->id_match)
1865                 return ptype->id_match(ptype, skb->sk);
1866         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1867                 return true;
1868
1869         return false;
1870 }
1871
1872 /*
1873  *      Support routine. Sends outgoing frames to any network
1874  *      taps currently in use.
1875  */
1876
1877 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1878 {
1879         struct packet_type *ptype;
1880         struct sk_buff *skb2 = NULL;
1881         struct packet_type *pt_prev = NULL;
1882         struct list_head *ptype_list = &ptype_all;
1883
1884         rcu_read_lock();
1885 again:
1886         list_for_each_entry_rcu(ptype, ptype_list, list) {
1887                 /* Never send packets back to the socket
1888                  * they originated from - MvS (miquels@drinkel.ow.org)
1889                  */
1890                 if (skb_loop_sk(ptype, skb))
1891                         continue;
1892
1893                 if (pt_prev) {
1894                         deliver_skb(skb2, pt_prev, skb->dev);
1895                         pt_prev = ptype;
1896                         continue;
1897                 }
1898
1899                 /* need to clone skb, done only once */
1900                 skb2 = skb_clone(skb, GFP_ATOMIC);
1901                 if (!skb2)
1902                         goto out_unlock;
1903
1904                 net_timestamp_set(skb2);
1905
1906                 /* skb->nh should be correctly
1907                  * set by sender, so that the second statement is
1908                  * just protection against buggy protocols.
1909                  */
1910                 skb_reset_mac_header(skb2);
1911
1912                 if (skb_network_header(skb2) < skb2->data ||
1913                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1914                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1915                                              ntohs(skb2->protocol),
1916                                              dev->name);
1917                         skb_reset_network_header(skb2);
1918                 }
1919
1920                 skb2->transport_header = skb2->network_header;
1921                 skb2->pkt_type = PACKET_OUTGOING;
1922                 pt_prev = ptype;
1923         }
1924
1925         if (ptype_list == &ptype_all) {
1926                 ptype_list = &dev->ptype_all;
1927                 goto again;
1928         }
1929 out_unlock:
1930         if (pt_prev)
1931                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1932         rcu_read_unlock();
1933 }
1934 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1935
1936 /**
1937  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1938  * @dev: Network device
1939  * @txq: number of queues available
1940  *
1941  * If real_num_tx_queues is changed the tc mappings may no longer be
1942  * valid. To resolve this verify the tc mapping remains valid and if
1943  * not NULL the mapping. With no priorities mapping to this
1944  * offset/count pair it will no longer be used. In the worst case TC0
1945  * is invalid nothing can be done so disable priority mappings. If is
1946  * expected that drivers will fix this mapping if they can before
1947  * calling netif_set_real_num_tx_queues.
1948  */
1949 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1950 {
1951         int i;
1952         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1953
1954         /* If TC0 is invalidated disable TC mapping */
1955         if (tc->offset + tc->count > txq) {
1956                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1957                 dev->num_tc = 0;
1958                 return;
1959         }
1960
1961         /* Invalidated prio to tc mappings set to TC0 */
1962         for (i = 1; i < TC_BITMASK + 1; i++) {
1963                 int q = netdev_get_prio_tc_map(dev, i);
1964
1965                 tc = &dev->tc_to_txq[q];
1966                 if (tc->offset + tc->count > txq) {
1967                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1968                                 i, q);
1969                         netdev_set_prio_tc_map(dev, i, 0);
1970                 }
1971         }
1972 }
1973
1974 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1975 {
1976         if (dev->num_tc) {
1977                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1978                 int i;
1979
1980                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1981                         if ((txq - tc->offset) < tc->count)
1982                                 return i;
1983                 }
1984
1985                 return -1;
1986         }
1987
1988         return 0;
1989 }
1990
1991 #ifdef CONFIG_XPS
1992 static DEFINE_MUTEX(xps_map_mutex);
1993 #define xmap_dereference(P)             \
1994         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1995
1996 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1997                              int tci, u16 index)
1998 {
1999         struct xps_map *map = NULL;
2000         int pos;
2001
2002         if (dev_maps)
2003                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2004         if (!map)
2005                 return false;
2006
2007         for (pos = map->len; pos--;) {
2008                 if (map->queues[pos] != index)
2009                         continue;
2010
2011                 if (map->len > 1) {
2012                         map->queues[pos] = map->queues[--map->len];
2013                         break;
2014                 }
2015
2016                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2017                 kfree_rcu(map, rcu);
2018                 return false;
2019         }
2020
2021         return true;
2022 }
2023
2024 static bool remove_xps_queue_cpu(struct net_device *dev,
2025                                  struct xps_dev_maps *dev_maps,
2026                                  int cpu, u16 offset, u16 count)
2027 {
2028         int num_tc = dev->num_tc ? : 1;
2029         bool active = false;
2030         int tci;
2031
2032         for (tci = cpu * num_tc; num_tc--; tci++) {
2033                 int i, j;
2034
2035                 for (i = count, j = offset; i--; j++) {
2036                         if (!remove_xps_queue(dev_maps, cpu, j))
2037                                 break;
2038                 }
2039
2040                 active |= i < 0;
2041         }
2042
2043         return active;
2044 }
2045
2046 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2047                                    u16 count)
2048 {
2049         struct xps_dev_maps *dev_maps;
2050         int cpu, i;
2051         bool active = false;
2052
2053         mutex_lock(&xps_map_mutex);
2054         dev_maps = xmap_dereference(dev->xps_maps);
2055
2056         if (!dev_maps)
2057                 goto out_no_maps;
2058
2059         for_each_possible_cpu(cpu)
2060                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2061                                                offset, count);
2062
2063         if (!active) {
2064                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2065                 kfree_rcu(dev_maps, rcu);
2066         }
2067
2068         for (i = offset + (count - 1); count--; i--)
2069                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2070                                              NUMA_NO_NODE);
2071
2072 out_no_maps:
2073         mutex_unlock(&xps_map_mutex);
2074 }
2075
2076 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2077 {
2078         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2079 }
2080
2081 static struct xps_map *expand_xps_map(struct xps_map *map,
2082                                       int cpu, u16 index)
2083 {
2084         struct xps_map *new_map;
2085         int alloc_len = XPS_MIN_MAP_ALLOC;
2086         int i, pos;
2087
2088         for (pos = 0; map && pos < map->len; pos++) {
2089                 if (map->queues[pos] != index)
2090                         continue;
2091                 return map;
2092         }
2093
2094         /* Need to add queue to this CPU's existing map */
2095         if (map) {
2096                 if (pos < map->alloc_len)
2097                         return map;
2098
2099                 alloc_len = map->alloc_len * 2;
2100         }
2101
2102         /* Need to allocate new map to store queue on this CPU's map */
2103         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2104                                cpu_to_node(cpu));
2105         if (!new_map)
2106                 return NULL;
2107
2108         for (i = 0; i < pos; i++)
2109                 new_map->queues[i] = map->queues[i];
2110         new_map->alloc_len = alloc_len;
2111         new_map->len = pos;
2112
2113         return new_map;
2114 }
2115
2116 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2117                         u16 index)
2118 {
2119         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2120         int i, cpu, tci, numa_node_id = -2;
2121         int maps_sz, num_tc = 1, tc = 0;
2122         struct xps_map *map, *new_map;
2123         bool active = false;
2124
2125         if (dev->num_tc) {
2126                 num_tc = dev->num_tc;
2127                 tc = netdev_txq_to_tc(dev, index);
2128                 if (tc < 0)
2129                         return -EINVAL;
2130         }
2131
2132         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2133         if (maps_sz < L1_CACHE_BYTES)
2134                 maps_sz = L1_CACHE_BYTES;
2135
2136         mutex_lock(&xps_map_mutex);
2137
2138         dev_maps = xmap_dereference(dev->xps_maps);
2139
2140         /* allocate memory for queue storage */
2141         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2142                 if (!new_dev_maps)
2143                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2144                 if (!new_dev_maps) {
2145                         mutex_unlock(&xps_map_mutex);
2146                         return -ENOMEM;
2147                 }
2148
2149                 tci = cpu * num_tc + tc;
2150                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2151                                  NULL;
2152
2153                 map = expand_xps_map(map, cpu, index);
2154                 if (!map)
2155                         goto error;
2156
2157                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2158         }
2159
2160         if (!new_dev_maps)
2161                 goto out_no_new_maps;
2162
2163         for_each_possible_cpu(cpu) {
2164                 /* copy maps belonging to foreign traffic classes */
2165                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2166                         /* fill in the new device map from the old device map */
2167                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2168                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2169                 }
2170
2171                 /* We need to explicitly update tci as prevous loop
2172                  * could break out early if dev_maps is NULL.
2173                  */
2174                 tci = cpu * num_tc + tc;
2175
2176                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2177                         /* add queue to CPU maps */
2178                         int pos = 0;
2179
2180                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2181                         while ((pos < map->len) && (map->queues[pos] != index))
2182                                 pos++;
2183
2184                         if (pos == map->len)
2185                                 map->queues[map->len++] = index;
2186 #ifdef CONFIG_NUMA
2187                         if (numa_node_id == -2)
2188                                 numa_node_id = cpu_to_node(cpu);
2189                         else if (numa_node_id != cpu_to_node(cpu))
2190                                 numa_node_id = -1;
2191 #endif
2192                 } else if (dev_maps) {
2193                         /* fill in the new device map from the old device map */
2194                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2195                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2196                 }
2197
2198                 /* copy maps belonging to foreign traffic classes */
2199                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2200                         /* fill in the new device map from the old device map */
2201                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2202                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2203                 }
2204         }
2205
2206         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2207
2208         /* Cleanup old maps */
2209         if (!dev_maps)
2210                 goto out_no_old_maps;
2211
2212         for_each_possible_cpu(cpu) {
2213                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2214                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2215                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2216                         if (map && map != new_map)
2217                                 kfree_rcu(map, rcu);
2218                 }
2219         }
2220
2221         kfree_rcu(dev_maps, rcu);
2222
2223 out_no_old_maps:
2224         dev_maps = new_dev_maps;
2225         active = true;
2226
2227 out_no_new_maps:
2228         /* update Tx queue numa node */
2229         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2230                                      (numa_node_id >= 0) ? numa_node_id :
2231                                      NUMA_NO_NODE);
2232
2233         if (!dev_maps)
2234                 goto out_no_maps;
2235
2236         /* removes queue from unused CPUs */
2237         for_each_possible_cpu(cpu) {
2238                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2239                         active |= remove_xps_queue(dev_maps, tci, index);
2240                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2241                         active |= remove_xps_queue(dev_maps, tci, index);
2242                 for (i = num_tc - tc, tci++; --i; tci++)
2243                         active |= remove_xps_queue(dev_maps, tci, index);
2244         }
2245
2246         /* free map if not active */
2247         if (!active) {
2248                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2249                 kfree_rcu(dev_maps, rcu);
2250         }
2251
2252 out_no_maps:
2253         mutex_unlock(&xps_map_mutex);
2254
2255         return 0;
2256 error:
2257         /* remove any maps that we added */
2258         for_each_possible_cpu(cpu) {
2259                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2260                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2261                         map = dev_maps ?
2262                               xmap_dereference(dev_maps->cpu_map[tci]) :
2263                               NULL;
2264                         if (new_map && new_map != map)
2265                                 kfree(new_map);
2266                 }
2267         }
2268
2269         mutex_unlock(&xps_map_mutex);
2270
2271         kfree(new_dev_maps);
2272         return -ENOMEM;
2273 }
2274 EXPORT_SYMBOL(netif_set_xps_queue);
2275
2276 #endif
2277 void netdev_reset_tc(struct net_device *dev)
2278 {
2279 #ifdef CONFIG_XPS
2280         netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282         dev->num_tc = 0;
2283         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2284         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2285 }
2286 EXPORT_SYMBOL(netdev_reset_tc);
2287
2288 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2289 {
2290         if (tc >= dev->num_tc)
2291                 return -EINVAL;
2292
2293 #ifdef CONFIG_XPS
2294         netif_reset_xps_queues(dev, offset, count);
2295 #endif
2296         dev->tc_to_txq[tc].count = count;
2297         dev->tc_to_txq[tc].offset = offset;
2298         return 0;
2299 }
2300 EXPORT_SYMBOL(netdev_set_tc_queue);
2301
2302 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2303 {
2304         if (num_tc > TC_MAX_QUEUE)
2305                 return -EINVAL;
2306
2307 #ifdef CONFIG_XPS
2308         netif_reset_xps_queues_gt(dev, 0);
2309 #endif
2310         dev->num_tc = num_tc;
2311         return 0;
2312 }
2313 EXPORT_SYMBOL(netdev_set_num_tc);
2314
2315 /*
2316  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2317  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2318  */
2319 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2320 {
2321         int rc;
2322
2323         if (txq < 1 || txq > dev->num_tx_queues)
2324                 return -EINVAL;
2325
2326         if (dev->reg_state == NETREG_REGISTERED ||
2327             dev->reg_state == NETREG_UNREGISTERING) {
2328                 ASSERT_RTNL();
2329
2330                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2331                                                   txq);
2332                 if (rc)
2333                         return rc;
2334
2335                 if (dev->num_tc)
2336                         netif_setup_tc(dev, txq);
2337
2338                 if (txq < dev->real_num_tx_queues) {
2339                         qdisc_reset_all_tx_gt(dev, txq);
2340 #ifdef CONFIG_XPS
2341                         netif_reset_xps_queues_gt(dev, txq);
2342 #endif
2343                 }
2344         }
2345
2346         dev->real_num_tx_queues = txq;
2347         return 0;
2348 }
2349 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2350
2351 #ifdef CONFIG_SYSFS
2352 /**
2353  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2354  *      @dev: Network device
2355  *      @rxq: Actual number of RX queues
2356  *
2357  *      This must be called either with the rtnl_lock held or before
2358  *      registration of the net device.  Returns 0 on success, or a
2359  *      negative error code.  If called before registration, it always
2360  *      succeeds.
2361  */
2362 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2363 {
2364         int rc;
2365
2366         if (rxq < 1 || rxq > dev->num_rx_queues)
2367                 return -EINVAL;
2368
2369         if (dev->reg_state == NETREG_REGISTERED) {
2370                 ASSERT_RTNL();
2371
2372                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2373                                                   rxq);
2374                 if (rc)
2375                         return rc;
2376         }
2377
2378         dev->real_num_rx_queues = rxq;
2379         return 0;
2380 }
2381 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2382 #endif
2383
2384 /**
2385  * netif_get_num_default_rss_queues - default number of RSS queues
2386  *
2387  * This routine should set an upper limit on the number of RSS queues
2388  * used by default by multiqueue devices.
2389  */
2390 int netif_get_num_default_rss_queues(void)
2391 {
2392         return is_kdump_kernel() ?
2393                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2394 }
2395 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2396
2397 static void __netif_reschedule(struct Qdisc *q)
2398 {
2399         struct softnet_data *sd;
2400         unsigned long flags;
2401
2402         local_irq_save(flags);
2403         sd = this_cpu_ptr(&softnet_data);
2404         q->next_sched = NULL;
2405         *sd->output_queue_tailp = q;
2406         sd->output_queue_tailp = &q->next_sched;
2407         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2408         local_irq_restore(flags);
2409 }
2410
2411 void __netif_schedule(struct Qdisc *q)
2412 {
2413         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2414                 __netif_reschedule(q);
2415 }
2416 EXPORT_SYMBOL(__netif_schedule);
2417
2418 struct dev_kfree_skb_cb {
2419         enum skb_free_reason reason;
2420 };
2421
2422 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2423 {
2424         return (struct dev_kfree_skb_cb *)skb->cb;
2425 }
2426
2427 void netif_schedule_queue(struct netdev_queue *txq)
2428 {
2429         rcu_read_lock();
2430         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2431                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2432
2433                 __netif_schedule(q);
2434         }
2435         rcu_read_unlock();
2436 }
2437 EXPORT_SYMBOL(netif_schedule_queue);
2438
2439 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2440 {
2441         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2442                 struct Qdisc *q;
2443
2444                 rcu_read_lock();
2445                 q = rcu_dereference(dev_queue->qdisc);
2446                 __netif_schedule(q);
2447                 rcu_read_unlock();
2448         }
2449 }
2450 EXPORT_SYMBOL(netif_tx_wake_queue);
2451
2452 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2453 {
2454         unsigned long flags;
2455
2456         if (unlikely(!skb))
2457                 return;
2458
2459         if (likely(atomic_read(&skb->users) == 1)) {
2460                 smp_rmb();
2461                 atomic_set(&skb->users, 0);
2462         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2463                 return;
2464         }
2465         get_kfree_skb_cb(skb)->reason = reason;
2466         local_irq_save(flags);
2467         skb->next = __this_cpu_read(softnet_data.completion_queue);
2468         __this_cpu_write(softnet_data.completion_queue, skb);
2469         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2470         local_irq_restore(flags);
2471 }
2472 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2473
2474 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2475 {
2476         if (in_irq() || irqs_disabled())
2477                 __dev_kfree_skb_irq(skb, reason);
2478         else
2479                 dev_kfree_skb(skb);
2480 }
2481 EXPORT_SYMBOL(__dev_kfree_skb_any);
2482
2483
2484 /**
2485  * netif_device_detach - mark device as removed
2486  * @dev: network device
2487  *
2488  * Mark device as removed from system and therefore no longer available.
2489  */
2490 void netif_device_detach(struct net_device *dev)
2491 {
2492         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2493             netif_running(dev)) {
2494                 netif_tx_stop_all_queues(dev);
2495         }
2496 }
2497 EXPORT_SYMBOL(netif_device_detach);
2498
2499 /**
2500  * netif_device_attach - mark device as attached
2501  * @dev: network device
2502  *
2503  * Mark device as attached from system and restart if needed.
2504  */
2505 void netif_device_attach(struct net_device *dev)
2506 {
2507         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2508             netif_running(dev)) {
2509                 netif_tx_wake_all_queues(dev);
2510                 __netdev_watchdog_up(dev);
2511         }
2512 }
2513 EXPORT_SYMBOL(netif_device_attach);
2514
2515 /*
2516  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2517  * to be used as a distribution range.
2518  */
2519 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2520                   unsigned int num_tx_queues)
2521 {
2522         u32 hash;
2523         u16 qoffset = 0;
2524         u16 qcount = num_tx_queues;
2525
2526         if (skb_rx_queue_recorded(skb)) {
2527                 hash = skb_get_rx_queue(skb);
2528                 while (unlikely(hash >= num_tx_queues))
2529                         hash -= num_tx_queues;
2530                 return hash;
2531         }
2532
2533         if (dev->num_tc) {
2534                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2535
2536                 qoffset = dev->tc_to_txq[tc].offset;
2537                 qcount = dev->tc_to_txq[tc].count;
2538         }
2539
2540         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2541 }
2542 EXPORT_SYMBOL(__skb_tx_hash);
2543
2544 static void skb_warn_bad_offload(const struct sk_buff *skb)
2545 {
2546         static const netdev_features_t null_features;
2547         struct net_device *dev = skb->dev;
2548         const char *name = "";
2549
2550         if (!net_ratelimit())
2551                 return;
2552
2553         if (dev) {
2554                 if (dev->dev.parent)
2555                         name = dev_driver_string(dev->dev.parent);
2556                 else
2557                         name = netdev_name(dev);
2558         }
2559         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2560              "gso_type=%d ip_summed=%d\n",
2561              name, dev ? &dev->features : &null_features,
2562              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2563              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2564              skb_shinfo(skb)->gso_type, skb->ip_summed);
2565 }
2566
2567 /*
2568  * Invalidate hardware checksum when packet is to be mangled, and
2569  * complete checksum manually on outgoing path.
2570  */
2571 int skb_checksum_help(struct sk_buff *skb)
2572 {
2573         __wsum csum;
2574         int ret = 0, offset;
2575
2576         if (skb->ip_summed == CHECKSUM_COMPLETE)
2577                 goto out_set_summed;
2578
2579         if (unlikely(skb_shinfo(skb)->gso_size)) {
2580                 skb_warn_bad_offload(skb);
2581                 return -EINVAL;
2582         }
2583
2584         /* Before computing a checksum, we should make sure no frag could
2585          * be modified by an external entity : checksum could be wrong.
2586          */
2587         if (skb_has_shared_frag(skb)) {
2588                 ret = __skb_linearize(skb);
2589                 if (ret)
2590                         goto out;
2591         }
2592
2593         offset = skb_checksum_start_offset(skb);
2594         BUG_ON(offset >= skb_headlen(skb));
2595         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2596
2597         offset += skb->csum_offset;
2598         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2599
2600         if (skb_cloned(skb) &&
2601             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2602                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2603                 if (ret)
2604                         goto out;
2605         }
2606
2607         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2608 out_set_summed:
2609         skb->ip_summed = CHECKSUM_NONE;
2610 out:
2611         return ret;
2612 }
2613 EXPORT_SYMBOL(skb_checksum_help);
2614
2615 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2616 {
2617         __be16 type = skb->protocol;
2618
2619         /* Tunnel gso handlers can set protocol to ethernet. */
2620         if (type == htons(ETH_P_TEB)) {
2621                 struct ethhdr *eth;
2622
2623                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2624                         return 0;
2625
2626                 eth = (struct ethhdr *)skb_mac_header(skb);
2627                 type = eth->h_proto;
2628         }
2629
2630         return __vlan_get_protocol(skb, type, depth);
2631 }
2632
2633 /**
2634  *      skb_mac_gso_segment - mac layer segmentation handler.
2635  *      @skb: buffer to segment
2636  *      @features: features for the output path (see dev->features)
2637  */
2638 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2639                                     netdev_features_t features)
2640 {
2641         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2642         struct packet_offload *ptype;
2643         int vlan_depth = skb->mac_len;
2644         __be16 type = skb_network_protocol(skb, &vlan_depth);
2645
2646         if (unlikely(!type))
2647                 return ERR_PTR(-EINVAL);
2648
2649         __skb_pull(skb, vlan_depth);
2650
2651         rcu_read_lock();
2652         list_for_each_entry_rcu(ptype, &offload_base, list) {
2653                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2654                         segs = ptype->callbacks.gso_segment(skb, features);
2655                         break;
2656                 }
2657         }
2658         rcu_read_unlock();
2659
2660         __skb_push(skb, skb->data - skb_mac_header(skb));
2661
2662         return segs;
2663 }
2664 EXPORT_SYMBOL(skb_mac_gso_segment);
2665
2666
2667 /* openvswitch calls this on rx path, so we need a different check.
2668  */
2669 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2670 {
2671         if (tx_path)
2672                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2673                        skb->ip_summed != CHECKSUM_NONE;
2674
2675         return skb->ip_summed == CHECKSUM_NONE;
2676 }
2677
2678 /**
2679  *      __skb_gso_segment - Perform segmentation on skb.
2680  *      @skb: buffer to segment
2681  *      @features: features for the output path (see dev->features)
2682  *      @tx_path: whether it is called in TX path
2683  *
2684  *      This function segments the given skb and returns a list of segments.
2685  *
2686  *      It may return NULL if the skb requires no segmentation.  This is
2687  *      only possible when GSO is used for verifying header integrity.
2688  *
2689  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2690  */
2691 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2692                                   netdev_features_t features, bool tx_path)
2693 {
2694         struct sk_buff *segs;
2695
2696         if (unlikely(skb_needs_check(skb, tx_path))) {
2697                 int err;
2698
2699                 /* We're going to init ->check field in TCP or UDP header */
2700                 err = skb_cow_head(skb, 0);
2701                 if (err < 0)
2702                         return ERR_PTR(err);
2703         }
2704
2705         /* Only report GSO partial support if it will enable us to
2706          * support segmentation on this frame without needing additional
2707          * work.
2708          */
2709         if (features & NETIF_F_GSO_PARTIAL) {
2710                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2711                 struct net_device *dev = skb->dev;
2712
2713                 partial_features |= dev->features & dev->gso_partial_features;
2714                 if (!skb_gso_ok(skb, features | partial_features))
2715                         features &= ~NETIF_F_GSO_PARTIAL;
2716         }
2717
2718         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2719                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2720
2721         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2722         SKB_GSO_CB(skb)->encap_level = 0;
2723
2724         skb_reset_mac_header(skb);
2725         skb_reset_mac_len(skb);
2726
2727         segs = skb_mac_gso_segment(skb, features);
2728
2729         if (unlikely(skb_needs_check(skb, tx_path)))
2730                 skb_warn_bad_offload(skb);
2731
2732         return segs;
2733 }
2734 EXPORT_SYMBOL(__skb_gso_segment);
2735
2736 /* Take action when hardware reception checksum errors are detected. */
2737 #ifdef CONFIG_BUG
2738 void netdev_rx_csum_fault(struct net_device *dev)
2739 {
2740         if (net_ratelimit()) {
2741                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2742                 dump_stack();
2743         }
2744 }
2745 EXPORT_SYMBOL(netdev_rx_csum_fault);
2746 #endif
2747
2748 /* Actually, we should eliminate this check as soon as we know, that:
2749  * 1. IOMMU is present and allows to map all the memory.
2750  * 2. No high memory really exists on this machine.
2751  */
2752
2753 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2754 {
2755 #ifdef CONFIG_HIGHMEM
2756         int i;
2757
2758         if (!(dev->features & NETIF_F_HIGHDMA)) {
2759                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2760                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2761
2762                         if (PageHighMem(skb_frag_page(frag)))
2763                                 return 1;
2764                 }
2765         }
2766
2767         if (PCI_DMA_BUS_IS_PHYS) {
2768                 struct device *pdev = dev->dev.parent;
2769
2770                 if (!pdev)
2771                         return 0;
2772                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2773                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2774                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2775
2776                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2777                                 return 1;
2778                 }
2779         }
2780 #endif
2781         return 0;
2782 }
2783
2784 /* If MPLS offload request, verify we are testing hardware MPLS features
2785  * instead of standard features for the netdev.
2786  */
2787 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2788 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2789                                            netdev_features_t features,
2790                                            __be16 type)
2791 {
2792         if (eth_p_mpls(type))
2793                 features &= skb->dev->mpls_features;
2794
2795         return features;
2796 }
2797 #else
2798 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2799                                            netdev_features_t features,
2800                                            __be16 type)
2801 {
2802         return features;
2803 }
2804 #endif
2805
2806 static netdev_features_t harmonize_features(struct sk_buff *skb,
2807         netdev_features_t features)
2808 {
2809         int tmp;
2810         __be16 type;
2811
2812         type = skb_network_protocol(skb, &tmp);
2813         features = net_mpls_features(skb, features, type);
2814
2815         if (skb->ip_summed != CHECKSUM_NONE &&
2816             !can_checksum_protocol(features, type)) {
2817                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2818         }
2819         if (illegal_highdma(skb->dev, skb))
2820                 features &= ~NETIF_F_SG;
2821
2822         return features;
2823 }
2824
2825 netdev_features_t passthru_features_check(struct sk_buff *skb,
2826                                           struct net_device *dev,
2827                                           netdev_features_t features)
2828 {
2829         return features;
2830 }
2831 EXPORT_SYMBOL(passthru_features_check);
2832
2833 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2834                                              struct net_device *dev,
2835                                              netdev_features_t features)
2836 {
2837         return vlan_features_check(skb, features);
2838 }
2839
2840 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2841                                             struct net_device *dev,
2842                                             netdev_features_t features)
2843 {
2844         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2845
2846         if (gso_segs > dev->gso_max_segs)
2847                 return features & ~NETIF_F_GSO_MASK;
2848
2849         /* Support for GSO partial features requires software
2850          * intervention before we can actually process the packets
2851          * so we need to strip support for any partial features now
2852          * and we can pull them back in after we have partially
2853          * segmented the frame.
2854          */
2855         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2856                 features &= ~dev->gso_partial_features;
2857
2858         /* Make sure to clear the IPv4 ID mangling feature if the
2859          * IPv4 header has the potential to be fragmented.
2860          */
2861         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2862                 struct iphdr *iph = skb->encapsulation ?
2863                                     inner_ip_hdr(skb) : ip_hdr(skb);
2864
2865                 if (!(iph->frag_off & htons(IP_DF)))
2866                         features &= ~NETIF_F_TSO_MANGLEID;
2867         }
2868
2869         return features;
2870 }
2871
2872 netdev_features_t netif_skb_features(struct sk_buff *skb)
2873 {
2874         struct net_device *dev = skb->dev;
2875         netdev_features_t features = dev->features;
2876
2877         if (skb_is_gso(skb))
2878                 features = gso_features_check(skb, dev, features);
2879
2880         /* If encapsulation offload request, verify we are testing
2881          * hardware encapsulation features instead of standard
2882          * features for the netdev
2883          */
2884         if (skb->encapsulation)
2885                 features &= dev->hw_enc_features;
2886
2887         if (skb_vlan_tagged(skb))
2888                 features = netdev_intersect_features(features,
2889                                                      dev->vlan_features |
2890                                                      NETIF_F_HW_VLAN_CTAG_TX |
2891                                                      NETIF_F_HW_VLAN_STAG_TX);
2892
2893         if (dev->netdev_ops->ndo_features_check)
2894                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2895                                                                 features);
2896         else
2897                 features &= dflt_features_check(skb, dev, features);
2898
2899         return harmonize_features(skb, features);
2900 }
2901 EXPORT_SYMBOL(netif_skb_features);
2902
2903 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2904                     struct netdev_queue *txq, bool more)
2905 {
2906         unsigned int len;
2907         int rc;
2908
2909         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2910                 dev_queue_xmit_nit(skb, dev);
2911
2912         len = skb->len;
2913         trace_net_dev_start_xmit(skb, dev);
2914         rc = netdev_start_xmit(skb, dev, txq, more);
2915         trace_net_dev_xmit(skb, rc, dev, len);
2916
2917         return rc;
2918 }
2919
2920 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2921                                     struct netdev_queue *txq, int *ret)
2922 {
2923         struct sk_buff *skb = first;
2924         int rc = NETDEV_TX_OK;
2925
2926         while (skb) {
2927                 struct sk_buff *next = skb->next;
2928
2929                 skb->next = NULL;
2930                 rc = xmit_one(skb, dev, txq, next != NULL);
2931                 if (unlikely(!dev_xmit_complete(rc))) {
2932                         skb->next = next;
2933                         goto out;
2934                 }
2935
2936                 skb = next;
2937                 if (netif_xmit_stopped(txq) && skb) {
2938                         rc = NETDEV_TX_BUSY;
2939                         break;
2940                 }
2941         }
2942
2943 out:
2944         *ret = rc;
2945         return skb;
2946 }
2947
2948 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2949                                           netdev_features_t features)
2950 {
2951         if (skb_vlan_tag_present(skb) &&
2952             !vlan_hw_offload_capable(features, skb->vlan_proto))
2953                 skb = __vlan_hwaccel_push_inside(skb);
2954         return skb;
2955 }
2956
2957 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2958 {
2959         netdev_features_t features;
2960
2961         features = netif_skb_features(skb);
2962         skb = validate_xmit_vlan(skb, features);
2963         if (unlikely(!skb))
2964                 goto out_null;
2965
2966         if (netif_needs_gso(skb, features)) {
2967                 struct sk_buff *segs;
2968
2969                 segs = skb_gso_segment(skb, features);
2970                 if (IS_ERR(segs)) {
2971                         goto out_kfree_skb;
2972                 } else if (segs) {
2973                         consume_skb(skb);
2974                         skb = segs;
2975                 }
2976         } else {
2977                 if (skb_needs_linearize(skb, features) &&
2978                     __skb_linearize(skb))
2979                         goto out_kfree_skb;
2980
2981                 if (validate_xmit_xfrm(skb, features))
2982                         goto out_kfree_skb;
2983
2984                 /* If packet is not checksummed and device does not
2985                  * support checksumming for this protocol, complete
2986                  * checksumming here.
2987                  */
2988                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2989                         if (skb->encapsulation)
2990                                 skb_set_inner_transport_header(skb,
2991                                                                skb_checksum_start_offset(skb));
2992                         else
2993                                 skb_set_transport_header(skb,
2994                                                          skb_checksum_start_offset(skb));
2995                         if (!(features & NETIF_F_CSUM_MASK) &&
2996                             skb_checksum_help(skb))
2997                                 goto out_kfree_skb;
2998                 }
2999         }
3000
3001         return skb;
3002
3003 out_kfree_skb:
3004         kfree_skb(skb);
3005 out_null:
3006         atomic_long_inc(&dev->tx_dropped);
3007         return NULL;
3008 }
3009
3010 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3011 {
3012         struct sk_buff *next, *head = NULL, *tail;
3013
3014         for (; skb != NULL; skb = next) {
3015                 next = skb->next;
3016                 skb->next = NULL;
3017
3018                 /* in case skb wont be segmented, point to itself */
3019                 skb->prev = skb;
3020
3021                 skb = validate_xmit_skb(skb, dev);
3022                 if (!skb)
3023                         continue;
3024
3025                 if (!head)
3026                         head = skb;
3027                 else
3028                         tail->next = skb;
3029                 /* If skb was segmented, skb->prev points to
3030                  * the last segment. If not, it still contains skb.
3031                  */
3032                 tail = skb->prev;
3033         }
3034         return head;
3035 }
3036 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3037
3038 static void qdisc_pkt_len_init(struct sk_buff *skb)
3039 {
3040         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3041
3042         qdisc_skb_cb(skb)->pkt_len = skb->len;
3043
3044         /* To get more precise estimation of bytes sent on wire,
3045          * we add to pkt_len the headers size of all segments
3046          */
3047         if (shinfo->gso_size)  {
3048                 unsigned int hdr_len;
3049                 u16 gso_segs = shinfo->gso_segs;
3050
3051                 /* mac layer + network layer */
3052                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3053
3054                 /* + transport layer */
3055                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3056                         hdr_len += tcp_hdrlen(skb);
3057                 else
3058                         hdr_len += sizeof(struct udphdr);
3059
3060                 if (shinfo->gso_type & SKB_GSO_DODGY)
3061                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3062                                                 shinfo->gso_size);
3063
3064                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3065         }
3066 }
3067
3068 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3069                                  struct net_device *dev,
3070                                  struct netdev_queue *txq)
3071 {
3072         spinlock_t *root_lock = qdisc_lock(q);
3073         struct sk_buff *to_free = NULL;
3074         bool contended;
3075         int rc;
3076
3077         qdisc_calculate_pkt_len(skb, q);
3078         /*
3079          * Heuristic to force contended enqueues to serialize on a
3080          * separate lock before trying to get qdisc main lock.
3081          * This permits qdisc->running owner to get the lock more
3082          * often and dequeue packets faster.
3083          */
3084         contended = qdisc_is_running(q);
3085         if (unlikely(contended))
3086                 spin_lock(&q->busylock);
3087
3088         spin_lock(root_lock);
3089         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3090                 __qdisc_drop(skb, &to_free);
3091                 rc = NET_XMIT_DROP;
3092         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3093                    qdisc_run_begin(q)) {
3094                 /*
3095                  * This is a work-conserving queue; there are no old skbs
3096                  * waiting to be sent out; and the qdisc is not running -
3097                  * xmit the skb directly.
3098                  */
3099
3100                 qdisc_bstats_update(q, skb);
3101
3102                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3103                         if (unlikely(contended)) {
3104                                 spin_unlock(&q->busylock);
3105                                 contended = false;
3106                         }
3107                         __qdisc_run(q);
3108                 } else
3109                         qdisc_run_end(q);
3110
3111                 rc = NET_XMIT_SUCCESS;
3112         } else {
3113                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3114                 if (qdisc_run_begin(q)) {
3115                         if (unlikely(contended)) {
3116                                 spin_unlock(&q->busylock);
3117                                 contended = false;
3118                         }
3119                         __qdisc_run(q);
3120                 }
3121         }
3122         spin_unlock(root_lock);
3123         if (unlikely(to_free))
3124                 kfree_skb_list(to_free);
3125         if (unlikely(contended))
3126                 spin_unlock(&q->busylock);
3127         return rc;
3128 }
3129
3130 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3131 static void skb_update_prio(struct sk_buff *skb)
3132 {
3133         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3134
3135         if (!skb->priority && skb->sk && map) {
3136                 unsigned int prioidx =
3137                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3138
3139                 if (prioidx < map->priomap_len)
3140                         skb->priority = map->priomap[prioidx];
3141         }
3142 }
3143 #else
3144 #define skb_update_prio(skb)
3145 #endif
3146
3147 DEFINE_PER_CPU(int, xmit_recursion);
3148 EXPORT_SYMBOL(xmit_recursion);
3149
3150 /**
3151  *      dev_loopback_xmit - loop back @skb
3152  *      @net: network namespace this loopback is happening in
3153  *      @sk:  sk needed to be a netfilter okfn
3154  *      @skb: buffer to transmit
3155  */
3156 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3157 {
3158         skb_reset_mac_header(skb);
3159         __skb_pull(skb, skb_network_offset(skb));
3160         skb->pkt_type = PACKET_LOOPBACK;
3161         skb->ip_summed = CHECKSUM_UNNECESSARY;
3162         WARN_ON(!skb_dst(skb));
3163         skb_dst_force(skb);
3164         netif_rx_ni(skb);
3165         return 0;
3166 }
3167 EXPORT_SYMBOL(dev_loopback_xmit);
3168
3169 #ifdef CONFIG_NET_EGRESS
3170 static struct sk_buff *
3171 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3172 {
3173         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3174         struct tcf_result cl_res;
3175
3176         if (!cl)
3177                 return skb;
3178
3179         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3180         qdisc_bstats_cpu_update(cl->q, skb);
3181
3182         switch (tc_classify(skb, cl, &cl_res, false)) {
3183         case TC_ACT_OK:
3184         case TC_ACT_RECLASSIFY:
3185                 skb->tc_index = TC_H_MIN(cl_res.classid);
3186                 break;
3187         case TC_ACT_SHOT:
3188                 qdisc_qstats_cpu_drop(cl->q);
3189                 *ret = NET_XMIT_DROP;
3190                 kfree_skb(skb);
3191                 return NULL;
3192         case TC_ACT_STOLEN:
3193         case TC_ACT_QUEUED:
3194                 *ret = NET_XMIT_SUCCESS;
3195                 consume_skb(skb);
3196                 return NULL;
3197         case TC_ACT_REDIRECT:
3198                 /* No need to push/pop skb's mac_header here on egress! */
3199                 skb_do_redirect(skb);
3200                 *ret = NET_XMIT_SUCCESS;
3201                 return NULL;
3202         default:
3203                 break;
3204         }
3205
3206         return skb;
3207 }
3208 #endif /* CONFIG_NET_EGRESS */
3209
3210 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3211 {
3212 #ifdef CONFIG_XPS
3213         struct xps_dev_maps *dev_maps;
3214         struct xps_map *map;
3215         int queue_index = -1;
3216
3217         rcu_read_lock();
3218         dev_maps = rcu_dereference(dev->xps_maps);
3219         if (dev_maps) {
3220                 unsigned int tci = skb->sender_cpu - 1;
3221
3222                 if (dev->num_tc) {
3223                         tci *= dev->num_tc;
3224                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3225                 }
3226
3227                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3228                 if (map) {
3229                         if (map->len == 1)
3230                                 queue_index = map->queues[0];
3231                         else
3232                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3233                                                                            map->len)];
3234                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3235                                 queue_index = -1;
3236                 }
3237         }
3238         rcu_read_unlock();
3239
3240         return queue_index;
3241 #else
3242         return -1;
3243 #endif
3244 }
3245
3246 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3247 {
3248         struct sock *sk = skb->sk;
3249         int queue_index = sk_tx_queue_get(sk);
3250
3251         if (queue_index < 0 || skb->ooo_okay ||
3252             queue_index >= dev->real_num_tx_queues) {
3253                 int new_index = get_xps_queue(dev, skb);
3254
3255                 if (new_index < 0)
3256                         new_index = skb_tx_hash(dev, skb);
3257
3258                 if (queue_index != new_index && sk &&
3259                     sk_fullsock(sk) &&
3260                     rcu_access_pointer(sk->sk_dst_cache))
3261                         sk_tx_queue_set(sk, new_index);
3262
3263                 queue_index = new_index;
3264         }
3265
3266         return queue_index;
3267 }
3268
3269 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3270                                     struct sk_buff *skb,
3271                                     void *accel_priv)
3272 {
3273         int queue_index = 0;
3274
3275 #ifdef CONFIG_XPS
3276         u32 sender_cpu = skb->sender_cpu - 1;
3277
3278         if (sender_cpu >= (u32)NR_CPUS)
3279                 skb->sender_cpu = raw_smp_processor_id() + 1;
3280 #endif
3281
3282         if (dev->real_num_tx_queues != 1) {
3283                 const struct net_device_ops *ops = dev->netdev_ops;
3284
3285                 if (ops->ndo_select_queue)
3286                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3287                                                             __netdev_pick_tx);
3288                 else
3289                         queue_index = __netdev_pick_tx(dev, skb);
3290
3291                 if (!accel_priv)
3292                         queue_index = netdev_cap_txqueue(dev, queue_index);
3293         }
3294
3295         skb_set_queue_mapping(skb, queue_index);
3296         return netdev_get_tx_queue(dev, queue_index);
3297 }
3298
3299 /**
3300  *      __dev_queue_xmit - transmit a buffer
3301  *      @skb: buffer to transmit
3302  *      @accel_priv: private data used for L2 forwarding offload
3303  *
3304  *      Queue a buffer for transmission to a network device. The caller must
3305  *      have set the device and priority and built the buffer before calling
3306  *      this function. The function can be called from an interrupt.
3307  *
3308  *      A negative errno code is returned on a failure. A success does not
3309  *      guarantee the frame will be transmitted as it may be dropped due
3310  *      to congestion or traffic shaping.
3311  *
3312  * -----------------------------------------------------------------------------------
3313  *      I notice this method can also return errors from the queue disciplines,
3314  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3315  *      be positive.
3316  *
3317  *      Regardless of the return value, the skb is consumed, so it is currently
3318  *      difficult to retry a send to this method.  (You can bump the ref count
3319  *      before sending to hold a reference for retry if you are careful.)
3320  *
3321  *      When calling this method, interrupts MUST be enabled.  This is because
3322  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3323  *          --BLG
3324  */
3325 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3326 {
3327         struct net_device *dev = skb->dev;
3328         struct netdev_queue *txq;
3329         struct Qdisc *q;
3330         int rc = -ENOMEM;
3331
3332         skb_reset_mac_header(skb);
3333
3334         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3335                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3336
3337         /* Disable soft irqs for various locks below. Also
3338          * stops preemption for RCU.
3339          */
3340         rcu_read_lock_bh();
3341
3342         skb_update_prio(skb);
3343
3344         qdisc_pkt_len_init(skb);
3345 #ifdef CONFIG_NET_CLS_ACT
3346         skb->tc_at_ingress = 0;
3347 # ifdef CONFIG_NET_EGRESS
3348         if (static_key_false(&egress_needed)) {
3349                 skb = sch_handle_egress(skb, &rc, dev);
3350                 if (!skb)
3351                         goto out;
3352         }
3353 # endif
3354 #endif
3355         /* If device/qdisc don't need skb->dst, release it right now while
3356          * its hot in this cpu cache.
3357          */
3358         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3359                 skb_dst_drop(skb);
3360         else
3361                 skb_dst_force(skb);
3362
3363         txq = netdev_pick_tx(dev, skb, accel_priv);
3364         q = rcu_dereference_bh(txq->qdisc);
3365
3366         trace_net_dev_queue(skb);
3367         if (q->enqueue) {
3368                 rc = __dev_xmit_skb(skb, q, dev, txq);
3369                 goto out;
3370         }
3371
3372         /* The device has no queue. Common case for software devices:
3373          * loopback, all the sorts of tunnels...
3374
3375          * Really, it is unlikely that netif_tx_lock protection is necessary
3376          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3377          * counters.)
3378          * However, it is possible, that they rely on protection
3379          * made by us here.
3380
3381          * Check this and shot the lock. It is not prone from deadlocks.
3382          *Either shot noqueue qdisc, it is even simpler 8)
3383          */
3384         if (dev->flags & IFF_UP) {
3385                 int cpu = smp_processor_id(); /* ok because BHs are off */
3386
3387                 if (txq->xmit_lock_owner != cpu) {
3388                         if (unlikely(__this_cpu_read(xmit_recursion) >
3389                                      XMIT_RECURSION_LIMIT))
3390                                 goto recursion_alert;
3391
3392                         skb = validate_xmit_skb(skb, dev);
3393                         if (!skb)
3394                                 goto out;
3395
3396                         HARD_TX_LOCK(dev, txq, cpu);
3397
3398                         if (!netif_xmit_stopped(txq)) {
3399                                 __this_cpu_inc(xmit_recursion);
3400                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3401                                 __this_cpu_dec(xmit_recursion);
3402                                 if (dev_xmit_complete(rc)) {
3403                                         HARD_TX_UNLOCK(dev, txq);
3404                                         goto out;
3405                                 }
3406                         }
3407                         HARD_TX_UNLOCK(dev, txq);
3408                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3409                                              dev->name);
3410                 } else {
3411                         /* Recursion is detected! It is possible,
3412                          * unfortunately
3413                          */
3414 recursion_alert:
3415                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3416                                              dev->name);
3417                 }
3418         }
3419
3420         rc = -ENETDOWN;
3421         rcu_read_unlock_bh();
3422
3423         atomic_long_inc(&dev->tx_dropped);
3424         kfree_skb_list(skb);
3425         return rc;
3426 out:
3427         rcu_read_unlock_bh();
3428         return rc;
3429 }
3430
3431 int dev_queue_xmit(struct sk_buff *skb)
3432 {
3433         return __dev_queue_xmit(skb, NULL);
3434 }
3435 EXPORT_SYMBOL(dev_queue_xmit);
3436
3437 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3438 {
3439         return __dev_queue_xmit(skb, accel_priv);
3440 }
3441 EXPORT_SYMBOL(dev_queue_xmit_accel);
3442
3443
3444 /*************************************************************************
3445  *                      Receiver routines
3446  *************************************************************************/
3447
3448 int netdev_max_backlog __read_mostly = 1000;
3449 EXPORT_SYMBOL(netdev_max_backlog);
3450
3451 int netdev_tstamp_prequeue __read_mostly = 1;
3452 int netdev_budget __read_mostly = 300;
3453 unsigned int __read_mostly netdev_budget_usecs = 2000;
3454 int weight_p __read_mostly = 64;           /* old backlog weight */
3455 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3456 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3457 int dev_rx_weight __read_mostly = 64;
3458 int dev_tx_weight __read_mostly = 64;
3459
3460 /* Called with irq disabled */
3461 static inline void ____napi_schedule(struct softnet_data *sd,
3462                                      struct napi_struct *napi)
3463 {
3464         list_add_tail(&napi->poll_list, &sd->poll_list);
3465         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3466 }
3467
3468 #ifdef CONFIG_RPS
3469
3470 /* One global table that all flow-based protocols share. */
3471 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3472 EXPORT_SYMBOL(rps_sock_flow_table);
3473 u32 rps_cpu_mask __read_mostly;
3474 EXPORT_SYMBOL(rps_cpu_mask);
3475
3476 struct static_key rps_needed __read_mostly;
3477 EXPORT_SYMBOL(rps_needed);
3478 struct static_key rfs_needed __read_mostly;
3479 EXPORT_SYMBOL(rfs_needed);
3480
3481 static struct rps_dev_flow *
3482 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483             struct rps_dev_flow *rflow, u16 next_cpu)
3484 {
3485         if (next_cpu < nr_cpu_ids) {
3486 #ifdef CONFIG_RFS_ACCEL
3487                 struct netdev_rx_queue *rxqueue;
3488                 struct rps_dev_flow_table *flow_table;
3489                 struct rps_dev_flow *old_rflow;
3490                 u32 flow_id;
3491                 u16 rxq_index;
3492                 int rc;
3493
3494                 /* Should we steer this flow to a different hardware queue? */
3495                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3496                     !(dev->features & NETIF_F_NTUPLE))
3497                         goto out;
3498                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3499                 if (rxq_index == skb_get_rx_queue(skb))
3500                         goto out;
3501
3502                 rxqueue = dev->_rx + rxq_index;
3503                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3504                 if (!flow_table)
3505                         goto out;
3506                 flow_id = skb_get_hash(skb) & flow_table->mask;
3507                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3508                                                         rxq_index, flow_id);
3509                 if (rc < 0)
3510                         goto out;
3511                 old_rflow = rflow;
3512                 rflow = &flow_table->flows[flow_id];
3513                 rflow->filter = rc;
3514                 if (old_rflow->filter == rflow->filter)
3515                         old_rflow->filter = RPS_NO_FILTER;
3516         out:
3517 #endif
3518                 rflow->last_qtail =
3519                         per_cpu(softnet_data, next_cpu).input_queue_head;
3520         }
3521
3522         rflow->cpu = next_cpu;
3523         return rflow;
3524 }
3525
3526 /*
3527  * get_rps_cpu is called from netif_receive_skb and returns the target
3528  * CPU from the RPS map of the receiving queue for a given skb.
3529  * rcu_read_lock must be held on entry.
3530  */
3531 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3532                        struct rps_dev_flow **rflowp)
3533 {
3534         const struct rps_sock_flow_table *sock_flow_table;
3535         struct netdev_rx_queue *rxqueue = dev->_rx;
3536         struct rps_dev_flow_table *flow_table;
3537         struct rps_map *map;
3538         int cpu = -1;
3539         u32 tcpu;
3540         u32 hash;
3541
3542         if (skb_rx_queue_recorded(skb)) {
3543                 u16 index = skb_get_rx_queue(skb);
3544
3545                 if (unlikely(index >= dev->real_num_rx_queues)) {
3546                         WARN_ONCE(dev->real_num_rx_queues > 1,
3547                                   "%s received packet on queue %u, but number "
3548                                   "of RX queues is %u\n",
3549                                   dev->name, index, dev->real_num_rx_queues);
3550                         goto done;
3551                 }
3552                 rxqueue += index;
3553         }
3554
3555         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3556
3557         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3558         map = rcu_dereference(rxqueue->rps_map);
3559         if (!flow_table && !map)
3560                 goto done;
3561
3562         skb_reset_network_header(skb);
3563         hash = skb_get_hash(skb);
3564         if (!hash)
3565                 goto done;
3566
3567         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3568         if (flow_table && sock_flow_table) {
3569                 struct rps_dev_flow *rflow;
3570                 u32 next_cpu;
3571                 u32 ident;
3572
3573                 /* First check into global flow table if there is a match */
3574                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3575                 if ((ident ^ hash) & ~rps_cpu_mask)
3576                         goto try_rps;
3577
3578                 next_cpu = ident & rps_cpu_mask;
3579
3580                 /* OK, now we know there is a match,
3581                  * we can look at the local (per receive queue) flow table
3582                  */
3583                 rflow = &flow_table->flows[hash & flow_table->mask];
3584                 tcpu = rflow->cpu;
3585
3586                 /*
3587                  * If the desired CPU (where last recvmsg was done) is
3588                  * different from current CPU (one in the rx-queue flow
3589                  * table entry), switch if one of the following holds:
3590                  *   - Current CPU is unset (>= nr_cpu_ids).
3591                  *   - Current CPU is offline.
3592                  *   - The current CPU's queue tail has advanced beyond the
3593                  *     last packet that was enqueued using this table entry.
3594                  *     This guarantees that all previous packets for the flow
3595                  *     have been dequeued, thus preserving in order delivery.
3596                  */
3597                 if (unlikely(tcpu != next_cpu) &&
3598                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3599                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3600                       rflow->last_qtail)) >= 0)) {
3601                         tcpu = next_cpu;
3602                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3603                 }
3604
3605                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3606                         *rflowp = rflow;
3607                         cpu = tcpu;
3608                         goto done;
3609                 }
3610         }
3611
3612 try_rps:
3613
3614         if (map) {
3615                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3616                 if (cpu_online(tcpu)) {
3617                         cpu = tcpu;
3618                         goto done;
3619                 }
3620         }
3621
3622 done:
3623         return cpu;
3624 }
3625
3626 #ifdef CONFIG_RFS_ACCEL
3627
3628 /**
3629  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3630  * @dev: Device on which the filter was set
3631  * @rxq_index: RX queue index
3632  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3633  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3634  *
3635  * Drivers that implement ndo_rx_flow_steer() should periodically call
3636  * this function for each installed filter and remove the filters for
3637  * which it returns %true.
3638  */
3639 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3640                          u32 flow_id, u16 filter_id)
3641 {
3642         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3643         struct rps_dev_flow_table *flow_table;
3644         struct rps_dev_flow *rflow;
3645         bool expire = true;
3646         unsigned int cpu;
3647
3648         rcu_read_lock();
3649         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3650         if (flow_table && flow_id <= flow_table->mask) {
3651                 rflow = &flow_table->flows[flow_id];
3652                 cpu = ACCESS_ONCE(rflow->cpu);
3653                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3654                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3655                            rflow->last_qtail) <
3656                      (int)(10 * flow_table->mask)))
3657                         expire = false;
3658         }
3659         rcu_read_unlock();
3660         return expire;
3661 }
3662 EXPORT_SYMBOL(rps_may_expire_flow);
3663
3664 #endif /* CONFIG_RFS_ACCEL */
3665
3666 /* Called from hardirq (IPI) context */
3667 static void rps_trigger_softirq(void *data)
3668 {
3669         struct softnet_data *sd = data;
3670
3671         ____napi_schedule(sd, &sd->backlog);
3672         sd->received_rps++;
3673 }
3674
3675 #endif /* CONFIG_RPS */
3676
3677 /*
3678  * Check if this softnet_data structure is another cpu one
3679  * If yes, queue it to our IPI list and return 1
3680  * If no, return 0
3681  */
3682 static int rps_ipi_queued(struct softnet_data *sd)
3683 {
3684 #ifdef CONFIG_RPS
3685         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3686
3687         if (sd != mysd) {
3688                 sd->rps_ipi_next = mysd->rps_ipi_list;
3689                 mysd->rps_ipi_list = sd;
3690
3691                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3692                 return 1;
3693         }
3694 #endif /* CONFIG_RPS */
3695         return 0;
3696 }
3697
3698 #ifdef CONFIG_NET_FLOW_LIMIT
3699 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3700 #endif
3701
3702 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3703 {
3704 #ifdef CONFIG_NET_FLOW_LIMIT
3705         struct sd_flow_limit *fl;
3706         struct softnet_data *sd;
3707         unsigned int old_flow, new_flow;
3708
3709         if (qlen < (netdev_max_backlog >> 1))
3710                 return false;
3711
3712         sd = this_cpu_ptr(&softnet_data);
3713
3714         rcu_read_lock();
3715         fl = rcu_dereference(sd->flow_limit);
3716         if (fl) {
3717                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3718                 old_flow = fl->history[fl->history_head];
3719                 fl->history[fl->history_head] = new_flow;
3720
3721                 fl->history_head++;
3722                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3723
3724                 if (likely(fl->buckets[old_flow]))
3725                         fl->buckets[old_flow]--;
3726
3727                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3728                         fl->count++;
3729                         rcu_read_unlock();
3730                         return true;
3731                 }
3732         }
3733         rcu_read_unlock();
3734 #endif
3735         return false;
3736 }
3737
3738 /*
3739  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3740  * queue (may be a remote CPU queue).
3741  */
3742 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3743                               unsigned int *qtail)
3744 {
3745         struct softnet_data *sd;
3746         unsigned long flags;
3747         unsigned int qlen;
3748
3749         sd = &per_cpu(softnet_data, cpu);
3750
3751         local_irq_save(flags);
3752
3753         rps_lock(sd);
3754         if (!netif_running(skb->dev))
3755                 goto drop;
3756         qlen = skb_queue_len(&sd->input_pkt_queue);
3757         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3758                 if (qlen) {
3759 enqueue:
3760                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3761                         input_queue_tail_incr_save(sd, qtail);
3762                         rps_unlock(sd);
3763                         local_irq_restore(flags);
3764                         return NET_RX_SUCCESS;
3765                 }
3766
3767                 /* Schedule NAPI for backlog device
3768                  * We can use non atomic operation since we own the queue lock
3769                  */
3770                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3771                         if (!rps_ipi_queued(sd))
3772                                 ____napi_schedule(sd, &sd->backlog);
3773                 }
3774                 goto enqueue;
3775         }
3776
3777 drop:
3778         sd->dropped++;
3779         rps_unlock(sd);
3780
3781         local_irq_restore(flags);
3782
3783         atomic_long_inc(&skb->dev->rx_dropped);
3784         kfree_skb(skb);
3785         return NET_RX_DROP;
3786 }
3787
3788 static int netif_rx_internal(struct sk_buff *skb)
3789 {
3790         int ret;
3791
3792         net_timestamp_check(netdev_tstamp_prequeue, skb);
3793
3794         trace_netif_rx(skb);
3795 #ifdef CONFIG_RPS
3796         if (static_key_false(&rps_needed)) {
3797                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3798                 int cpu;
3799
3800                 preempt_disable();
3801                 rcu_read_lock();
3802
3803                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3804                 if (cpu < 0)
3805                         cpu = smp_processor_id();
3806
3807                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3808
3809                 rcu_read_unlock();
3810                 preempt_enable();
3811         } else
3812 #endif
3813         {
3814                 unsigned int qtail;
3815
3816                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3817                 put_cpu();
3818         }
3819         return ret;
3820 }
3821
3822 /**
3823  *      netif_rx        -       post buffer to the network code
3824  *      @skb: buffer to post
3825  *
3826  *      This function receives a packet from a device driver and queues it for
3827  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3828  *      may be dropped during processing for congestion control or by the
3829  *      protocol layers.
3830  *
3831  *      return values:
3832  *      NET_RX_SUCCESS  (no congestion)
3833  *      NET_RX_DROP     (packet was dropped)
3834  *
3835  */
3836
3837 int netif_rx(struct sk_buff *skb)
3838 {
3839         trace_netif_rx_entry(skb);
3840
3841         return netif_rx_internal(skb);
3842 }
3843 EXPORT_SYMBOL(netif_rx);
3844
3845 int netif_rx_ni(struct sk_buff *skb)
3846 {
3847         int err;
3848
3849         trace_netif_rx_ni_entry(skb);
3850
3851         preempt_disable();
3852         err = netif_rx_internal(skb);
3853         if (local_softirq_pending())
3854                 do_softirq();
3855         preempt_enable();
3856
3857         return err;
3858 }
3859 EXPORT_SYMBOL(netif_rx_ni);
3860
3861 static __latent_entropy void net_tx_action(struct softirq_action *h)
3862 {
3863         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3864
3865         if (sd->completion_queue) {
3866                 struct sk_buff *clist;
3867
3868                 local_irq_disable();
3869                 clist = sd->completion_queue;
3870                 sd->completion_queue = NULL;
3871                 local_irq_enable();
3872
3873                 while (clist) {
3874                         struct sk_buff *skb = clist;
3875
3876                         clist = clist->next;
3877
3878                         WARN_ON(atomic_read(&skb->users));
3879                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3880                                 trace_consume_skb(skb);
3881                         else
3882                                 trace_kfree_skb(skb, net_tx_action);
3883
3884                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3885                                 __kfree_skb(skb);
3886                         else
3887                                 __kfree_skb_defer(skb);
3888                 }
3889
3890                 __kfree_skb_flush();
3891         }
3892
3893         if (sd->output_queue) {
3894                 struct Qdisc *head;
3895
3896                 local_irq_disable();
3897                 head = sd->output_queue;
3898                 sd->output_queue = NULL;
3899                 sd->output_queue_tailp = &sd->output_queue;
3900                 local_irq_enable();
3901
3902                 while (head) {
3903                         struct Qdisc *q = head;
3904                         spinlock_t *root_lock;
3905
3906                         head = head->next_sched;
3907
3908                         root_lock = qdisc_lock(q);
3909                         spin_lock(root_lock);
3910                         /* We need to make sure head->next_sched is read
3911                          * before clearing __QDISC_STATE_SCHED
3912                          */
3913                         smp_mb__before_atomic();
3914                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3915                         qdisc_run(q);
3916                         spin_unlock(root_lock);
3917                 }
3918         }
3919 }
3920
3921 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3922 /* This hook is defined here for ATM LANE */
3923 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3924                              unsigned char *addr) __read_mostly;
3925 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3926 #endif
3927
3928 static inline struct sk_buff *
3929 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3930                    struct net_device *orig_dev)
3931 {
3932 #ifdef CONFIG_NET_CLS_ACT
3933         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3934         struct tcf_result cl_res;
3935
3936         /* If there's at least one ingress present somewhere (so
3937          * we get here via enabled static key), remaining devices
3938          * that are not configured with an ingress qdisc will bail
3939          * out here.
3940          */
3941         if (!cl)
3942                 return skb;
3943         if (*pt_prev) {
3944                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3945                 *pt_prev = NULL;
3946         }
3947
3948         qdisc_skb_cb(skb)->pkt_len = skb->len;
3949         skb->tc_at_ingress = 1;
3950         qdisc_bstats_cpu_update(cl->q, skb);
3951
3952         switch (tc_classify(skb, cl, &cl_res, false)) {
3953         case TC_ACT_OK:
3954         case TC_ACT_RECLASSIFY:
3955                 skb->tc_index = TC_H_MIN(cl_res.classid);
3956                 break;
3957         case TC_ACT_SHOT:
3958                 qdisc_qstats_cpu_drop(cl->q);
3959                 kfree_skb(skb);
3960                 return NULL;
3961         case TC_ACT_STOLEN:
3962         case TC_ACT_QUEUED:
3963                 consume_skb(skb);
3964                 return NULL;
3965         case TC_ACT_REDIRECT:
3966                 /* skb_mac_header check was done by cls/act_bpf, so
3967                  * we can safely push the L2 header back before
3968                  * redirecting to another netdev
3969                  */
3970                 __skb_push(skb, skb->mac_len);
3971                 skb_do_redirect(skb);
3972                 return NULL;
3973         default:
3974                 break;
3975         }
3976 #endif /* CONFIG_NET_CLS_ACT */
3977         return skb;
3978 }
3979
3980 /**
3981  *      netdev_is_rx_handler_busy - check if receive handler is registered
3982  *      @dev: device to check
3983  *
3984  *      Check if a receive handler is already registered for a given device.
3985  *      Return true if there one.
3986  *
3987  *      The caller must hold the rtnl_mutex.
3988  */
3989 bool netdev_is_rx_handler_busy(struct net_device *dev)
3990 {
3991         ASSERT_RTNL();
3992         return dev && rtnl_dereference(dev->rx_handler);
3993 }
3994 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3995
3996 /**
3997  *      netdev_rx_handler_register - register receive handler
3998  *      @dev: device to register a handler for
3999  *      @rx_handler: receive handler to register
4000  *      @rx_handler_data: data pointer that is used by rx handler
4001  *
4002  *      Register a receive handler for a device. This handler will then be
4003  *      called from __netif_receive_skb. A negative errno code is returned
4004  *      on a failure.
4005  *
4006  *      The caller must hold the rtnl_mutex.
4007  *
4008  *      For a general description of rx_handler, see enum rx_handler_result.
4009  */
4010 int netdev_rx_handler_register(struct net_device *dev,
4011                                rx_handler_func_t *rx_handler,
4012                                void *rx_handler_data)
4013 {
4014         if (netdev_is_rx_handler_busy(dev))
4015                 return -EBUSY;
4016
4017         /* Note: rx_handler_data must be set before rx_handler */
4018         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4019         rcu_assign_pointer(dev->rx_handler, rx_handler);
4020
4021         return 0;
4022 }
4023 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4024
4025 /**
4026  *      netdev_rx_handler_unregister - unregister receive handler
4027  *      @dev: device to unregister a handler from
4028  *
4029  *      Unregister a receive handler from a device.
4030  *
4031  *      The caller must hold the rtnl_mutex.
4032  */
4033 void netdev_rx_handler_unregister(struct net_device *dev)
4034 {
4035
4036         ASSERT_RTNL();
4037         RCU_INIT_POINTER(dev->rx_handler, NULL);
4038         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4039          * section has a guarantee to see a non NULL rx_handler_data
4040          * as well.
4041          */
4042         synchronize_net();
4043         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4044 }
4045 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4046
4047 /*
4048  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4049  * the special handling of PFMEMALLOC skbs.
4050  */
4051 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4052 {
4053         switch (skb->protocol) {
4054         case htons(ETH_P_ARP):
4055         case htons(ETH_P_IP):
4056         case htons(ETH_P_IPV6):
4057         case htons(ETH_P_8021Q):
4058         case htons(ETH_P_8021AD):
4059                 return true;
4060         default:
4061                 return false;
4062         }
4063 }
4064
4065 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4066                              int *ret, struct net_device *orig_dev)
4067 {
4068 #ifdef CONFIG_NETFILTER_INGRESS
4069         if (nf_hook_ingress_active(skb)) {
4070                 int ingress_retval;
4071
4072                 if (*pt_prev) {
4073                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4074                         *pt_prev = NULL;
4075                 }
4076
4077                 rcu_read_lock();
4078                 ingress_retval = nf_hook_ingress(skb);
4079                 rcu_read_unlock();
4080                 return ingress_retval;
4081         }
4082 #endif /* CONFIG_NETFILTER_INGRESS */
4083         return 0;
4084 }
4085
4086 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4087 {
4088         struct packet_type *ptype, *pt_prev;
4089         rx_handler_func_t *rx_handler;
4090         struct net_device *orig_dev;
4091         bool deliver_exact = false;
4092         int ret = NET_RX_DROP;
4093         __be16 type;
4094
4095         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4096
4097         trace_netif_receive_skb(skb);
4098
4099         orig_dev = skb->dev;
4100
4101         skb_reset_network_header(skb);
4102         if (!skb_transport_header_was_set(skb))
4103                 skb_reset_transport_header(skb);
4104         skb_reset_mac_len(skb);
4105
4106         pt_prev = NULL;
4107
4108 another_round:
4109         skb->skb_iif = skb->dev->ifindex;
4110
4111         __this_cpu_inc(softnet_data.processed);
4112
4113         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4114             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4115                 skb = skb_vlan_untag(skb);
4116                 if (unlikely(!skb))
4117                         goto out;
4118         }
4119
4120         if (skb_skip_tc_classify(skb))
4121                 goto skip_classify;
4122
4123         if (pfmemalloc)
4124                 goto skip_taps;
4125
4126         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4127                 if (pt_prev)
4128                         ret = deliver_skb(skb, pt_prev, orig_dev);
4129                 pt_prev = ptype;
4130         }
4131
4132         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4133                 if (pt_prev)
4134                         ret = deliver_skb(skb, pt_prev, orig_dev);
4135                 pt_prev = ptype;
4136         }
4137
4138 skip_taps:
4139 #ifdef CONFIG_NET_INGRESS
4140         if (static_key_false(&ingress_needed)) {
4141                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4142                 if (!skb)
4143                         goto out;
4144
4145                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4146                         goto out;
4147         }
4148 #endif
4149         skb_reset_tc(skb);
4150 skip_classify:
4151         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4152                 goto drop;
4153
4154         if (skb_vlan_tag_present(skb)) {
4155                 if (pt_prev) {
4156                         ret = deliver_skb(skb, pt_prev, orig_dev);
4157                         pt_prev = NULL;
4158                 }
4159                 if (vlan_do_receive(&skb))
4160                         goto another_round;
4161                 else if (unlikely(!skb))
4162                         goto out;
4163         }
4164
4165         rx_handler = rcu_dereference(skb->dev->rx_handler);
4166         if (rx_handler) {
4167                 if (pt_prev) {
4168                         ret = deliver_skb(skb, pt_prev, orig_dev);
4169                         pt_prev = NULL;
4170                 }
4171                 switch (rx_handler(&skb)) {
4172                 case RX_HANDLER_CONSUMED:
4173                         ret = NET_RX_SUCCESS;
4174                         goto out;
4175                 case RX_HANDLER_ANOTHER:
4176                         goto another_round;
4177                 case RX_HANDLER_EXACT:
4178                         deliver_exact = true;
4179                 case RX_HANDLER_PASS:
4180                         break;
4181                 default:
4182                         BUG();
4183                 }
4184         }
4185
4186         if (unlikely(skb_vlan_tag_present(skb))) {
4187                 if (skb_vlan_tag_get_id(skb))
4188                         skb->pkt_type = PACKET_OTHERHOST;
4189                 /* Note: we might in the future use prio bits
4190                  * and set skb->priority like in vlan_do_receive()
4191                  * For the time being, just ignore Priority Code Point
4192                  */
4193                 skb->vlan_tci = 0;
4194         }
4195
4196         type = skb->protocol;
4197
4198         /* deliver only exact match when indicated */
4199         if (likely(!deliver_exact)) {
4200                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201                                        &ptype_base[ntohs(type) &
4202                                                    PTYPE_HASH_MASK]);
4203         }
4204
4205         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4206                                &orig_dev->ptype_specific);
4207
4208         if (unlikely(skb->dev != orig_dev)) {
4209                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4210                                        &skb->dev->ptype_specific);
4211         }
4212
4213         if (pt_prev) {
4214                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4215                         goto drop;
4216                 else
4217                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4218         } else {
4219 drop:
4220                 if (!deliver_exact)
4221                         atomic_long_inc(&skb->dev->rx_dropped);
4222                 else
4223                         atomic_long_inc(&skb->dev->rx_nohandler);
4224                 kfree_skb(skb);
4225                 /* Jamal, now you will not able to escape explaining
4226                  * me how you were going to use this. :-)
4227                  */
4228                 ret = NET_RX_DROP;
4229         }
4230
4231 out:
4232         return ret;
4233 }
4234
4235 static int __netif_receive_skb(struct sk_buff *skb)
4236 {
4237         int ret;
4238
4239         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4240                 unsigned int noreclaim_flag;
4241
4242                 /*
4243                  * PFMEMALLOC skbs are special, they should
4244                  * - be delivered to SOCK_MEMALLOC sockets only
4245                  * - stay away from userspace
4246                  * - have bounded memory usage
4247                  *
4248                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4249                  * context down to all allocation sites.
4250                  */
4251                 noreclaim_flag = memalloc_noreclaim_save();
4252                 ret = __netif_receive_skb_core(skb, true);
4253                 memalloc_noreclaim_restore(noreclaim_flag);
4254         } else
4255                 ret = __netif_receive_skb_core(skb, false);
4256
4257         return ret;
4258 }
4259
4260 static struct static_key generic_xdp_needed __read_mostly;
4261
4262 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4263 {
4264         struct bpf_prog *new = xdp->prog;
4265         int ret = 0;
4266
4267         switch (xdp->command) {
4268         case XDP_SETUP_PROG: {
4269                 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4270
4271                 rcu_assign_pointer(dev->xdp_prog, new);
4272                 if (old)
4273                         bpf_prog_put(old);
4274
4275                 if (old && !new) {
4276                         static_key_slow_dec(&generic_xdp_needed);
4277                 } else if (new && !old) {
4278                         static_key_slow_inc(&generic_xdp_needed);
4279                         dev_disable_lro(dev);
4280                 }
4281                 break;
4282         }
4283
4284         case XDP_QUERY_PROG:
4285                 xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog);
4286                 break;
4287
4288         default:
4289                 ret = -EINVAL;
4290                 break;
4291         }
4292
4293         return ret;
4294 }
4295
4296 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4297                                      struct bpf_prog *xdp_prog)
4298 {
4299         struct xdp_buff xdp;
4300         u32 act = XDP_DROP;
4301         void *orig_data;
4302         int hlen, off;
4303         u32 mac_len;
4304
4305         /* Reinjected packets coming from act_mirred or similar should
4306          * not get XDP generic processing.
4307          */
4308         if (skb_cloned(skb))
4309                 return XDP_PASS;
4310
4311         if (skb_linearize(skb))
4312                 goto do_drop;
4313
4314         /* The XDP program wants to see the packet starting at the MAC
4315          * header.
4316          */
4317         mac_len = skb->data - skb_mac_header(skb);
4318         hlen = skb_headlen(skb) + mac_len;
4319         xdp.data = skb->data - mac_len;
4320         xdp.data_end = xdp.data + hlen;
4321         xdp.data_hard_start = skb->data - skb_headroom(skb);
4322         orig_data = xdp.data;
4323
4324         act = bpf_prog_run_xdp(xdp_prog, &xdp);
4325
4326         off = xdp.data - orig_data;
4327         if (off > 0)
4328                 __skb_pull(skb, off);
4329         else if (off < 0)
4330                 __skb_push(skb, -off);
4331
4332         switch (act) {
4333         case XDP_TX:
4334                 __skb_push(skb, mac_len);
4335                 /* fall through */
4336         case XDP_PASS:
4337                 break;
4338
4339         default:
4340                 bpf_warn_invalid_xdp_action(act);
4341                 /* fall through */
4342         case XDP_ABORTED:
4343                 trace_xdp_exception(skb->dev, xdp_prog, act);
4344                 /* fall through */
4345         case XDP_DROP:
4346         do_drop:
4347                 kfree_skb(skb);
4348                 break;
4349         }
4350
4351         return act;
4352 }
4353
4354 /* When doing generic XDP we have to bypass the qdisc layer and the
4355  * network taps in order to match in-driver-XDP behavior.
4356  */
4357 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4358 {
4359         struct net_device *dev = skb->dev;
4360         struct netdev_queue *txq;
4361         bool free_skb = true;
4362         int cpu, rc;
4363
4364         txq = netdev_pick_tx(dev, skb, NULL);
4365         cpu = smp_processor_id();
4366         HARD_TX_LOCK(dev, txq, cpu);
4367         if (!netif_xmit_stopped(txq)) {
4368                 rc = netdev_start_xmit(skb, dev, txq, 0);
4369                 if (dev_xmit_complete(rc))
4370                         free_skb = false;
4371         }
4372         HARD_TX_UNLOCK(dev, txq);
4373         if (free_skb) {
4374                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4375                 kfree_skb(skb);
4376         }
4377 }
4378
4379 static int netif_receive_skb_internal(struct sk_buff *skb)
4380 {
4381         int ret;
4382
4383         net_timestamp_check(netdev_tstamp_prequeue, skb);
4384
4385         if (skb_defer_rx_timestamp(skb))
4386                 return NET_RX_SUCCESS;
4387
4388         rcu_read_lock();
4389
4390         if (static_key_false(&generic_xdp_needed)) {
4391                 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4392
4393                 if (xdp_prog) {
4394                         u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4395
4396                         if (act != XDP_PASS) {
4397                                 rcu_read_unlock();
4398                                 if (act == XDP_TX)
4399                                         generic_xdp_tx(skb, xdp_prog);
4400                                 return NET_RX_DROP;
4401                         }
4402                 }
4403         }
4404
4405 #ifdef CONFIG_RPS
4406         if (static_key_false(&rps_needed)) {
4407                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4408                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4409
4410                 if (cpu >= 0) {
4411                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4412                         rcu_read_unlock();
4413                         return ret;
4414                 }
4415         }
4416 #endif
4417         ret = __netif_receive_skb(skb);
4418         rcu_read_unlock();
4419         return ret;
4420 }
4421
4422 /**
4423  *      netif_receive_skb - process receive buffer from network
4424  *      @skb: buffer to process
4425  *
4426  *      netif_receive_skb() is the main receive data processing function.
4427  *      It always succeeds. The buffer may be dropped during processing
4428  *      for congestion control or by the protocol layers.
4429  *
4430  *      This function may only be called from softirq context and interrupts
4431  *      should be enabled.
4432  *
4433  *      Return values (usually ignored):
4434  *      NET_RX_SUCCESS: no congestion
4435  *      NET_RX_DROP: packet was dropped
4436  */
4437 int netif_receive_skb(struct sk_buff *skb)
4438 {
4439         trace_netif_receive_skb_entry(skb);
4440
4441         return netif_receive_skb_internal(skb);
4442 }
4443 EXPORT_SYMBOL(netif_receive_skb);
4444
4445 DEFINE_PER_CPU(struct work_struct, flush_works);
4446
4447 /* Network device is going away, flush any packets still pending */
4448 static void flush_backlog(struct work_struct *work)
4449 {
4450         struct sk_buff *skb, *tmp;
4451         struct softnet_data *sd;
4452
4453         local_bh_disable();
4454         sd = this_cpu_ptr(&softnet_data);
4455
4456         local_irq_disable();
4457         rps_lock(sd);
4458         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4459                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4460                         __skb_unlink(skb, &sd->input_pkt_queue);
4461                         kfree_skb(skb);
4462                         input_queue_head_incr(sd);
4463                 }
4464         }
4465         rps_unlock(sd);
4466         local_irq_enable();
4467
4468         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4469                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4470                         __skb_unlink(skb, &sd->process_queue);
4471                         kfree_skb(skb);
4472                         input_queue_head_incr(sd);
4473                 }
4474         }
4475         local_bh_enable();
4476 }
4477
4478 static void flush_all_backlogs(void)
4479 {
4480         unsigned int cpu;
4481
4482         get_online_cpus();
4483
4484         for_each_online_cpu(cpu)
4485                 queue_work_on(cpu, system_highpri_wq,
4486                               per_cpu_ptr(&flush_works, cpu));
4487
4488         for_each_online_cpu(cpu)
4489                 flush_work(per_cpu_ptr(&flush_works, cpu));
4490
4491         put_online_cpus();
4492 }
4493
4494 static int napi_gro_complete(struct sk_buff *skb)
4495 {
4496         struct packet_offload *ptype;
4497         __be16 type = skb->protocol;
4498         struct list_head *head = &offload_base;
4499         int err = -ENOENT;
4500
4501         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4502
4503         if (NAPI_GRO_CB(skb)->count == 1) {
4504                 skb_shinfo(skb)->gso_size = 0;
4505                 goto out;
4506         }
4507
4508         rcu_read_lock();
4509         list_for_each_entry_rcu(ptype, head, list) {
4510                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4511                         continue;
4512
4513                 err = ptype->callbacks.gro_complete(skb, 0);
4514                 break;
4515         }
4516         rcu_read_unlock();
4517
4518         if (err) {
4519                 WARN_ON(&ptype->list == head);
4520                 kfree_skb(skb);
4521                 return NET_RX_SUCCESS;
4522         }
4523
4524 out:
4525         return netif_receive_skb_internal(skb);
4526 }
4527
4528 /* napi->gro_list contains packets ordered by age.
4529  * youngest packets at the head of it.
4530  * Complete skbs in reverse order to reduce latencies.
4531  */
4532 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4533 {
4534         struct sk_buff *skb, *prev = NULL;
4535
4536         /* scan list and build reverse chain */
4537         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4538                 skb->prev = prev;
4539                 prev = skb;
4540         }
4541
4542         for (skb = prev; skb; skb = prev) {
4543                 skb->next = NULL;
4544
4545                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4546                         return;
4547
4548                 prev = skb->prev;
4549                 napi_gro_complete(skb);
4550                 napi->gro_count--;
4551         }
4552
4553         napi->gro_list = NULL;
4554 }
4555 EXPORT_SYMBOL(napi_gro_flush);
4556
4557 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4558 {
4559         struct sk_buff *p;
4560         unsigned int maclen = skb->dev->hard_header_len;
4561         u32 hash = skb_get_hash_raw(skb);
4562
4563         for (p = napi->gro_list; p; p = p->next) {
4564                 unsigned long diffs;
4565
4566                 NAPI_GRO_CB(p)->flush = 0;
4567
4568                 if (hash != skb_get_hash_raw(p)) {
4569                         NAPI_GRO_CB(p)->same_flow = 0;
4570                         continue;
4571                 }
4572
4573                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4574                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4575                 diffs |= skb_metadata_dst_cmp(p, skb);
4576                 if (maclen == ETH_HLEN)
4577                         diffs |= compare_ether_header(skb_mac_header(p),
4578                                                       skb_mac_header(skb));
4579                 else if (!diffs)
4580                         diffs = memcmp(skb_mac_header(p),
4581                                        skb_mac_header(skb),
4582                                        maclen);
4583                 NAPI_GRO_CB(p)->same_flow = !diffs;
4584         }
4585 }
4586
4587 static void skb_gro_reset_offset(struct sk_buff *skb)
4588 {
4589         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4590         const skb_frag_t *frag0 = &pinfo->frags[0];
4591
4592         NAPI_GRO_CB(skb)->data_offset = 0;
4593         NAPI_GRO_CB(skb)->frag0 = NULL;
4594         NAPI_GRO_CB(skb)->frag0_len = 0;
4595
4596         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4597             pinfo->nr_frags &&
4598             !PageHighMem(skb_frag_page(frag0))) {
4599                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4600                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4601                                                     skb_frag_size(frag0),
4602                                                     skb->end - skb->tail);
4603         }
4604 }
4605
4606 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4607 {
4608         struct skb_shared_info *pinfo = skb_shinfo(skb);
4609
4610         BUG_ON(skb->end - skb->tail < grow);
4611
4612         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4613
4614         skb->data_len -= grow;
4615         skb->tail += grow;
4616
4617         pinfo->frags[0].page_offset += grow;
4618         skb_frag_size_sub(&pinfo->frags[0], grow);
4619
4620         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4621                 skb_frag_unref(skb, 0);
4622                 memmove(pinfo->frags, pinfo->frags + 1,
4623                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4624         }
4625 }
4626
4627 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4628 {
4629         struct sk_buff **pp = NULL;
4630         struct packet_offload *ptype;
4631         __be16 type = skb->protocol;
4632         struct list_head *head = &offload_base;
4633         int same_flow;
4634         enum gro_result ret;
4635         int grow;
4636
4637         if (netif_elide_gro(skb->dev))
4638                 goto normal;
4639
4640         if (skb->csum_bad)
4641                 goto normal;
4642
4643         gro_list_prepare(napi, skb);
4644
4645         rcu_read_lock();
4646         list_for_each_entry_rcu(ptype, head, list) {
4647                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4648                         continue;
4649
4650                 skb_set_network_header(skb, skb_gro_offset(skb));
4651                 skb_reset_mac_len(skb);
4652                 NAPI_GRO_CB(skb)->same_flow = 0;
4653                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4654                 NAPI_GRO_CB(skb)->free = 0;
4655                 NAPI_GRO_CB(skb)->encap_mark = 0;
4656                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4657                 NAPI_GRO_CB(skb)->is_fou = 0;
4658                 NAPI_GRO_CB(skb)->is_atomic = 1;
4659                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4660
4661                 /* Setup for GRO checksum validation */
4662                 switch (skb->ip_summed) {
4663                 case CHECKSUM_COMPLETE:
4664                         NAPI_GRO_CB(skb)->csum = skb->csum;
4665                         NAPI_GRO_CB(skb)->csum_valid = 1;
4666                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4667                         break;
4668                 case CHECKSUM_UNNECESSARY:
4669                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4670                         NAPI_GRO_CB(skb)->csum_valid = 0;
4671                         break;
4672                 default:
4673                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4674                         NAPI_GRO_CB(skb)->csum_valid = 0;
4675                 }
4676
4677                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4678                 break;
4679         }
4680         rcu_read_unlock();
4681
4682         if (&ptype->list == head)
4683                 goto normal;
4684
4685         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4686                 ret = GRO_CONSUMED;
4687                 goto ok;
4688         }
4689
4690         same_flow = NAPI_GRO_CB(skb)->same_flow;
4691         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4692
4693         if (pp) {
4694                 struct sk_buff *nskb = *pp;
4695
4696                 *pp = nskb->next;
4697                 nskb->next = NULL;
4698                 napi_gro_complete(nskb);
4699                 napi->gro_count--;
4700         }
4701
4702         if (same_flow)
4703                 goto ok;
4704
4705         if (NAPI_GRO_CB(skb)->flush)
4706                 goto normal;
4707
4708         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4709                 struct sk_buff *nskb = napi->gro_list;
4710
4711                 /* locate the end of the list to select the 'oldest' flow */
4712                 while (nskb->next) {
4713                         pp = &nskb->next;
4714                         nskb = *pp;
4715                 }
4716                 *pp = NULL;
4717                 nskb->next = NULL;
4718                 napi_gro_complete(nskb);
4719         } else {
4720                 napi->gro_count++;
4721         }
4722         NAPI_GRO_CB(skb)->count = 1;
4723         NAPI_GRO_CB(skb)->age = jiffies;
4724         NAPI_GRO_CB(skb)->last = skb;
4725         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4726         skb->next = napi->gro_list;
4727         napi->gro_list = skb;
4728         ret = GRO_HELD;
4729
4730 pull:
4731         grow = skb_gro_offset(skb) - skb_headlen(skb);
4732         if (grow > 0)
4733                 gro_pull_from_frag0(skb, grow);
4734 ok:
4735         return ret;
4736
4737 normal:
4738         ret = GRO_NORMAL;
4739         goto pull;
4740 }
4741
4742 struct packet_offload *gro_find_receive_by_type(__be16 type)
4743 {
4744         struct list_head *offload_head = &offload_base;
4745         struct packet_offload *ptype;
4746
4747         list_for_each_entry_rcu(ptype, offload_head, list) {
4748                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4749                         continue;
4750                 return ptype;
4751         }
4752         return NULL;
4753 }
4754 EXPORT_SYMBOL(gro_find_receive_by_type);
4755
4756 struct packet_offload *gro_find_complete_by_type(__be16 type)
4757 {
4758         struct list_head *offload_head = &offload_base;
4759         struct packet_offload *ptype;
4760
4761         list_for_each_entry_rcu(ptype, offload_head, list) {
4762                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4763                         continue;
4764                 return ptype;
4765         }
4766         return NULL;
4767 }
4768 EXPORT_SYMBOL(gro_find_complete_by_type);
4769
4770 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4771 {
4772         switch (ret) {
4773         case GRO_NORMAL:
4774                 if (netif_receive_skb_internal(skb))
4775                         ret = GRO_DROP;
4776                 break;
4777
4778         case GRO_DROP:
4779                 kfree_skb(skb);
4780                 break;
4781
4782         case GRO_MERGED_FREE:
4783                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4784                         skb_dst_drop(skb);
4785                         secpath_reset(skb);
4786                         kmem_cache_free(skbuff_head_cache, skb);
4787                 } else {
4788                         __kfree_skb(skb);
4789                 }
4790                 break;
4791
4792         case GRO_HELD:
4793         case GRO_MERGED:
4794         case GRO_CONSUMED:
4795                 break;
4796         }
4797
4798         return ret;
4799 }
4800
4801 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4802 {
4803         skb_mark_napi_id(skb, napi);
4804         trace_napi_gro_receive_entry(skb);
4805
4806         skb_gro_reset_offset(skb);
4807
4808         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4809 }
4810 EXPORT_SYMBOL(napi_gro_receive);
4811
4812 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4813 {
4814         if (unlikely(skb->pfmemalloc)) {
4815                 consume_skb(skb);
4816                 return;
4817         }
4818         __skb_pull(skb, skb_headlen(skb));
4819         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4820         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4821         skb->vlan_tci = 0;
4822         skb->dev = napi->dev;
4823         skb->skb_iif = 0;
4824         skb->encapsulation = 0;
4825         skb_shinfo(skb)->gso_type = 0;
4826         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4827         secpath_reset(skb);
4828
4829         napi->skb = skb;
4830 }
4831
4832 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4833 {
4834         struct sk_buff *skb = napi->skb;
4835
4836         if (!skb) {
4837                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4838                 if (skb) {
4839                         napi->skb = skb;
4840                         skb_mark_napi_id(skb, napi);
4841                 }
4842         }
4843         return skb;
4844 }
4845 EXPORT_SYMBOL(napi_get_frags);
4846
4847 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4848                                       struct sk_buff *skb,
4849                                       gro_result_t ret)
4850 {
4851         switch (ret) {
4852         case GRO_NORMAL:
4853         case GRO_HELD:
4854                 __skb_push(skb, ETH_HLEN);
4855                 skb->protocol = eth_type_trans(skb, skb->dev);
4856                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4857                         ret = GRO_DROP;
4858                 break;
4859
4860         case GRO_DROP:
4861         case GRO_MERGED_FREE:
4862                 napi_reuse_skb(napi, skb);
4863                 break;
4864
4865         case GRO_MERGED:
4866         case GRO_CONSUMED:
4867                 break;
4868         }
4869
4870         return ret;
4871 }
4872
4873 /* Upper GRO stack assumes network header starts at gro_offset=0
4874  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4875  * We copy ethernet header into skb->data to have a common layout.
4876  */
4877 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4878 {
4879         struct sk_buff *skb = napi->skb;
4880         const struct ethhdr *eth;
4881         unsigned int hlen = sizeof(*eth);
4882
4883         napi->skb = NULL;
4884
4885         skb_reset_mac_header(skb);
4886         skb_gro_reset_offset(skb);
4887
4888         eth = skb_gro_header_fast(skb, 0);
4889         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4890                 eth = skb_gro_header_slow(skb, hlen, 0);
4891                 if (unlikely(!eth)) {
4892                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4893                                              __func__, napi->dev->name);
4894                         napi_reuse_skb(napi, skb);
4895                         return NULL;
4896                 }
4897         } else {
4898                 gro_pull_from_frag0(skb, hlen);
4899                 NAPI_GRO_CB(skb)->frag0 += hlen;
4900                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4901         }
4902         __skb_pull(skb, hlen);
4903
4904         /*
4905          * This works because the only protocols we care about don't require
4906          * special handling.
4907          * We'll fix it up properly in napi_frags_finish()
4908          */
4909         skb->protocol = eth->h_proto;
4910
4911         return skb;
4912 }
4913
4914 gro_result_t napi_gro_frags(struct napi_struct *napi)
4915 {
4916         struct sk_buff *skb = napi_frags_skb(napi);
4917
4918         if (!skb)
4919                 return GRO_DROP;
4920
4921         trace_napi_gro_frags_entry(skb);
4922
4923         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4924 }
4925 EXPORT_SYMBOL(napi_gro_frags);
4926
4927 /* Compute the checksum from gro_offset and return the folded value
4928  * after adding in any pseudo checksum.
4929  */
4930 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4931 {
4932         __wsum wsum;
4933         __sum16 sum;
4934
4935         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4936
4937         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4938         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4939         if (likely(!sum)) {
4940                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4941                     !skb->csum_complete_sw)
4942                         netdev_rx_csum_fault(skb->dev);
4943         }
4944
4945         NAPI_GRO_CB(skb)->csum = wsum;
4946         NAPI_GRO_CB(skb)->csum_valid = 1;
4947
4948         return sum;
4949 }
4950 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4951
4952 /*
4953  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4954  * Note: called with local irq disabled, but exits with local irq enabled.
4955  */
4956 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4957 {
4958 #ifdef CONFIG_RPS
4959         struct softnet_data *remsd = sd->rps_ipi_list;
4960
4961         if (remsd) {
4962                 sd->rps_ipi_list = NULL;
4963
4964                 local_irq_enable();
4965
4966                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4967                 while (remsd) {
4968                         struct softnet_data *next = remsd->rps_ipi_next;
4969
4970                         if (cpu_online(remsd->cpu))
4971                                 smp_call_function_single_async(remsd->cpu,
4972                                                            &remsd->csd);
4973                         remsd = next;
4974                 }
4975         } else
4976 #endif
4977                 local_irq_enable();
4978 }
4979
4980 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4981 {
4982 #ifdef CONFIG_RPS
4983         return sd->rps_ipi_list != NULL;
4984 #else
4985         return false;
4986 #endif
4987 }
4988
4989 static int process_backlog(struct napi_struct *napi, int quota)
4990 {
4991         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4992         bool again = true;
4993         int work = 0;
4994
4995         /* Check if we have pending ipi, its better to send them now,
4996          * not waiting net_rx_action() end.
4997          */
4998         if (sd_has_rps_ipi_waiting(sd)) {
4999                 local_irq_disable();
5000                 net_rps_action_and_irq_enable(sd);
5001         }
5002
5003         napi->weight = dev_rx_weight;
5004         while (again) {
5005                 struct sk_buff *skb;
5006
5007                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5008                         rcu_read_lock();
5009                         __netif_receive_skb(skb);
5010                         rcu_read_unlock();
5011                         input_queue_head_incr(sd);
5012                         if (++work >= quota)
5013                                 return work;
5014
5015                 }
5016
5017                 local_irq_disable();
5018                 rps_lock(sd);
5019                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5020                         /*
5021                          * Inline a custom version of __napi_complete().
5022                          * only current cpu owns and manipulates this napi,
5023                          * and NAPI_STATE_SCHED is the only possible flag set
5024                          * on backlog.
5025                          * We can use a plain write instead of clear_bit(),
5026                          * and we dont need an smp_mb() memory barrier.
5027                          */
5028                         napi->state = 0;
5029                         again = false;
5030                 } else {
5031                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5032                                                    &sd->process_queue);
5033                 }
5034                 rps_unlock(sd);
5035                 local_irq_enable();
5036         }
5037
5038         return work;
5039 }
5040
5041 /**
5042  * __napi_schedule - schedule for receive
5043  * @n: entry to schedule
5044  *
5045  * The entry's receive function will be scheduled to run.
5046  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5047  */
5048 void __napi_schedule(struct napi_struct *n)
5049 {
5050         unsigned long flags;
5051
5052         local_irq_save(flags);
5053         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5054         local_irq_restore(flags);
5055 }
5056 EXPORT_SYMBOL(__napi_schedule);
5057
5058 /**
5059  *      napi_schedule_prep - check if napi can be scheduled
5060  *      @n: napi context
5061  *
5062  * Test if NAPI routine is already running, and if not mark
5063  * it as running.  This is used as a condition variable
5064  * insure only one NAPI poll instance runs.  We also make
5065  * sure there is no pending NAPI disable.
5066  */
5067 bool napi_schedule_prep(struct napi_struct *n)
5068 {
5069         unsigned long val, new;
5070
5071         do {
5072                 val = READ_ONCE(n->state);
5073                 if (unlikely(val & NAPIF_STATE_DISABLE))
5074                         return false;
5075                 new = val | NAPIF_STATE_SCHED;
5076
5077                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5078                  * This was suggested by Alexander Duyck, as compiler
5079                  * emits better code than :
5080                  * if (val & NAPIF_STATE_SCHED)
5081                  *     new |= NAPIF_STATE_MISSED;
5082                  */
5083                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5084                                                    NAPIF_STATE_MISSED;
5085         } while (cmpxchg(&n->state, val, new) != val);
5086
5087         return !(val & NAPIF_STATE_SCHED);
5088 }
5089 EXPORT_SYMBOL(napi_schedule_prep);
5090
5091 /**
5092  * __napi_schedule_irqoff - schedule for receive
5093  * @n: entry to schedule
5094  *
5095  * Variant of __napi_schedule() assuming hard irqs are masked
5096  */
5097 void __napi_schedule_irqoff(struct napi_struct *n)
5098 {
5099         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5100 }
5101 EXPORT_SYMBOL(__napi_schedule_irqoff);
5102
5103 bool napi_complete_done(struct napi_struct *n, int work_done)
5104 {
5105         unsigned long flags, val, new;
5106
5107         /*
5108          * 1) Don't let napi dequeue from the cpu poll list
5109          *    just in case its running on a different cpu.
5110          * 2) If we are busy polling, do nothing here, we have
5111          *    the guarantee we will be called later.
5112          */
5113         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5114                                  NAPIF_STATE_IN_BUSY_POLL)))
5115                 return false;
5116
5117         if (n->gro_list) {
5118                 unsigned long timeout = 0;
5119
5120                 if (work_done)
5121                         timeout = n->dev->gro_flush_timeout;
5122
5123                 if (timeout)
5124                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5125                                       HRTIMER_MODE_REL_PINNED);
5126                 else
5127                         napi_gro_flush(n, false);
5128         }
5129         if (unlikely(!list_empty(&n->poll_list))) {
5130                 /* If n->poll_list is not empty, we need to mask irqs */
5131                 local_irq_save(flags);
5132                 list_del_init(&n->poll_list);
5133                 local_irq_restore(flags);
5134         }
5135
5136         do {
5137                 val = READ_ONCE(n->state);
5138
5139                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5140
5141                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5142
5143                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5144                  * because we will call napi->poll() one more time.
5145                  * This C code was suggested by Alexander Duyck to help gcc.
5146                  */
5147                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5148                                                     NAPIF_STATE_SCHED;
5149         } while (cmpxchg(&n->state, val, new) != val);
5150
5151         if (unlikely(val & NAPIF_STATE_MISSED)) {
5152                 __napi_schedule(n);
5153                 return false;
5154         }
5155
5156         return true;
5157 }
5158 EXPORT_SYMBOL(napi_complete_done);
5159
5160 /* must be called under rcu_read_lock(), as we dont take a reference */
5161 static struct napi_struct *napi_by_id(unsigned int napi_id)
5162 {
5163         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5164         struct napi_struct *napi;
5165
5166         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5167                 if (napi->napi_id == napi_id)
5168                         return napi;
5169
5170         return NULL;
5171 }
5172
5173 #if defined(CONFIG_NET_RX_BUSY_POLL)
5174
5175 #define BUSY_POLL_BUDGET 8
5176
5177 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5178 {
5179         int rc;
5180
5181         /* Busy polling means there is a high chance device driver hard irq
5182          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5183          * set in napi_schedule_prep().
5184          * Since we are about to call napi->poll() once more, we can safely
5185          * clear NAPI_STATE_MISSED.
5186          *
5187          * Note: x86 could use a single "lock and ..." instruction
5188          * to perform these two clear_bit()
5189          */
5190         clear_bit(NAPI_STATE_MISSED, &napi->state);
5191         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5192
5193         local_bh_disable();
5194
5195         /* All we really want here is to re-enable device interrupts.
5196          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5197          */
5198         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5199         netpoll_poll_unlock(have_poll_lock);
5200         if (rc == BUSY_POLL_BUDGET)
5201                 __napi_schedule(napi);
5202         local_bh_enable();
5203         if (local_softirq_pending())
5204                 do_softirq();
5205 }
5206
5207 void napi_busy_loop(unsigned int napi_id,
5208                     bool (*loop_end)(void *, unsigned long),
5209                     void *loop_end_arg)
5210 {
5211         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5212         int (*napi_poll)(struct napi_struct *napi, int budget);
5213         void *have_poll_lock = NULL;
5214         struct napi_struct *napi;
5215
5216 restart:
5217         napi_poll = NULL;
5218
5219         rcu_read_lock();
5220
5221         napi = napi_by_id(napi_id);
5222         if (!napi)
5223                 goto out;
5224
5225         preempt_disable();
5226         for (;;) {
5227                 int work = 0;
5228
5229                 local_bh_disable();
5230                 if (!napi_poll) {
5231                         unsigned long val = READ_ONCE(napi->state);
5232
5233                         /* If multiple threads are competing for this napi,
5234                          * we avoid dirtying napi->state as much as we can.
5235                          */
5236                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5237                                    NAPIF_STATE_IN_BUSY_POLL))
5238                                 goto count;
5239                         if (cmpxchg(&napi->state, val,
5240                                     val | NAPIF_STATE_IN_BUSY_POLL |
5241                                           NAPIF_STATE_SCHED) != val)
5242                                 goto count;
5243                         have_poll_lock = netpoll_poll_lock(napi);
5244                         napi_poll = napi->poll;
5245                 }
5246                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5247                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5248 count:
5249                 if (work > 0)
5250                         __NET_ADD_STATS(dev_net(napi->dev),
5251                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5252                 local_bh_enable();
5253
5254                 if (!loop_end || loop_end(loop_end_arg, start_time))
5255                         break;
5256
5257                 if (unlikely(need_resched())) {
5258                         if (napi_poll)
5259                                 busy_poll_stop(napi, have_poll_lock);
5260                         preempt_enable();
5261                         rcu_read_unlock();
5262                         cond_resched();
5263                         if (loop_end(loop_end_arg, start_time))
5264                                 return;
5265                         goto restart;
5266                 }
5267                 cpu_relax();
5268         }
5269         if (napi_poll)
5270                 busy_poll_stop(napi, have_poll_lock);
5271         preempt_enable();
5272 out:
5273         rcu_read_unlock();
5274 }
5275 EXPORT_SYMBOL(napi_busy_loop);
5276
5277 #endif /* CONFIG_NET_RX_BUSY_POLL */
5278
5279 static void napi_hash_add(struct napi_struct *napi)
5280 {
5281         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5282             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5283                 return;
5284
5285         spin_lock(&napi_hash_lock);
5286
5287         /* 0..NR_CPUS range is reserved for sender_cpu use */
5288         do {
5289                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5290                         napi_gen_id = MIN_NAPI_ID;
5291         } while (napi_by_id(napi_gen_id));
5292         napi->napi_id = napi_gen_id;
5293
5294         hlist_add_head_rcu(&napi->napi_hash_node,
5295                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5296
5297         spin_unlock(&napi_hash_lock);
5298 }
5299
5300 /* Warning : caller is responsible to make sure rcu grace period
5301  * is respected before freeing memory containing @napi
5302  */
5303 bool napi_hash_del(struct napi_struct *napi)
5304 {
5305         bool rcu_sync_needed = false;
5306
5307         spin_lock(&napi_hash_lock);
5308
5309         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5310                 rcu_sync_needed = true;
5311                 hlist_del_rcu(&napi->napi_hash_node);
5312         }
5313         spin_unlock(&napi_hash_lock);
5314         return rcu_sync_needed;
5315 }
5316 EXPORT_SYMBOL_GPL(napi_hash_del);
5317
5318 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5319 {
5320         struct napi_struct *napi;
5321
5322         napi = container_of(timer, struct napi_struct, timer);
5323
5324         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5325          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5326          */
5327         if (napi->gro_list && !napi_disable_pending(napi) &&
5328             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5329                 __napi_schedule_irqoff(napi);
5330
5331         return HRTIMER_NORESTART;
5332 }
5333
5334 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5335                     int (*poll)(struct napi_struct *, int), int weight)
5336 {
5337         INIT_LIST_HEAD(&napi->poll_list);
5338         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5339         napi->timer.function = napi_watchdog;
5340         napi->gro_count = 0;
5341         napi->gro_list = NULL;
5342         napi->skb = NULL;
5343         napi->poll = poll;
5344         if (weight > NAPI_POLL_WEIGHT)
5345                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5346                             weight, dev->name);
5347         napi->weight = weight;
5348         list_add(&napi->dev_list, &dev->napi_list);
5349         napi->dev = dev;
5350 #ifdef CONFIG_NETPOLL
5351         napi->poll_owner = -1;
5352 #endif
5353         set_bit(NAPI_STATE_SCHED, &napi->state);
5354         napi_hash_add(napi);
5355 }
5356 EXPORT_SYMBOL(netif_napi_add);
5357
5358 void napi_disable(struct napi_struct *n)
5359 {
5360         might_sleep();
5361         set_bit(NAPI_STATE_DISABLE, &n->state);
5362
5363         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5364                 msleep(1);
5365         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5366                 msleep(1);
5367
5368         hrtimer_cancel(&n->timer);
5369
5370         clear_bit(NAPI_STATE_DISABLE, &n->state);
5371 }
5372 EXPORT_SYMBOL(napi_disable);
5373
5374 /* Must be called in process context */
5375 void netif_napi_del(struct napi_struct *napi)
5376 {
5377         might_sleep();
5378         if (napi_hash_del(napi))
5379                 synchronize_net();
5380         list_del_init(&napi->dev_list);
5381         napi_free_frags(napi);
5382
5383         kfree_skb_list(napi->gro_list);
5384         napi->gro_list = NULL;
5385         napi->gro_count = 0;
5386 }
5387 EXPORT_SYMBOL(netif_napi_del);
5388
5389 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5390 {
5391         void *have;
5392         int work, weight;
5393
5394         list_del_init(&n->poll_list);
5395
5396         have = netpoll_poll_lock(n);
5397
5398         weight = n->weight;
5399
5400         /* This NAPI_STATE_SCHED test is for avoiding a race
5401          * with netpoll's poll_napi().  Only the entity which
5402          * obtains the lock and sees NAPI_STATE_SCHED set will
5403          * actually make the ->poll() call.  Therefore we avoid
5404          * accidentally calling ->poll() when NAPI is not scheduled.
5405          */
5406         work = 0;
5407         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5408                 work = n->poll(n, weight);
5409                 trace_napi_poll(n, work, weight);
5410         }
5411
5412         WARN_ON_ONCE(work > weight);
5413
5414         if (likely(work < weight))
5415                 goto out_unlock;
5416
5417         /* Drivers must not modify the NAPI state if they
5418          * consume the entire weight.  In such cases this code
5419          * still "owns" the NAPI instance and therefore can
5420          * move the instance around on the list at-will.
5421          */
5422         if (unlikely(napi_disable_pending(n))) {
5423                 napi_complete(n);
5424                 goto out_unlock;
5425         }
5426
5427         if (n->gro_list) {
5428                 /* flush too old packets
5429                  * If HZ < 1000, flush all packets.
5430                  */
5431                 napi_gro_flush(n, HZ >= 1000);
5432         }
5433
5434         /* Some drivers may have called napi_schedule
5435          * prior to exhausting their budget.
5436          */
5437         if (unlikely(!list_empty(&n->poll_list))) {
5438                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5439                              n->dev ? n->dev->name : "backlog");
5440                 goto out_unlock;
5441         }
5442
5443         list_add_tail(&n->poll_list, repoll);
5444
5445 out_unlock:
5446         netpoll_poll_unlock(have);
5447
5448         return work;
5449 }
5450
5451 static __latent_entropy void net_rx_action(struct softirq_action *h)
5452 {
5453         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5454         unsigned long time_limit = jiffies +
5455                 usecs_to_jiffies(netdev_budget_usecs);
5456         int budget = netdev_budget;
5457         LIST_HEAD(list);
5458         LIST_HEAD(repoll);
5459
5460         local_irq_disable();
5461         list_splice_init(&sd->poll_list, &list);
5462         local_irq_enable();
5463
5464         for (;;) {
5465                 struct napi_struct *n;
5466
5467                 if (list_empty(&list)) {
5468                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5469                                 goto out;
5470                         break;
5471                 }
5472
5473                 n = list_first_entry(&list, struct napi_struct, poll_list);
5474                 budget -= napi_poll(n, &repoll);
5475
5476                 /* If softirq window is exhausted then punt.
5477                  * Allow this to run for 2 jiffies since which will allow
5478                  * an average latency of 1.5/HZ.
5479                  */
5480                 if (unlikely(budget <= 0 ||
5481                              time_after_eq(jiffies, time_limit))) {
5482                         sd->time_squeeze++;
5483                         break;
5484                 }
5485         }
5486
5487         local_irq_disable();
5488
5489         list_splice_tail_init(&sd->poll_list, &list);
5490         list_splice_tail(&repoll, &list);
5491         list_splice(&list, &sd->poll_list);
5492         if (!list_empty(&sd->poll_list))
5493                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5494
5495         net_rps_action_and_irq_enable(sd);
5496 out:
5497         __kfree_skb_flush();
5498 }
5499
5500 struct netdev_adjacent {
5501         struct net_device *dev;
5502
5503         /* upper master flag, there can only be one master device per list */
5504         bool master;
5505
5506         /* counter for the number of times this device was added to us */
5507         u16 ref_nr;
5508
5509         /* private field for the users */
5510         void *private;
5511
5512         struct list_head list;
5513         struct rcu_head rcu;
5514 };
5515
5516 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5517                                                  struct list_head *adj_list)
5518 {
5519         struct netdev_adjacent *adj;
5520
5521         list_for_each_entry(adj, adj_list, list) {
5522                 if (adj->dev == adj_dev)
5523                         return adj;
5524         }
5525         return NULL;
5526 }
5527
5528 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5529 {
5530         struct net_device *dev = data;
5531
5532         return upper_dev == dev;
5533 }
5534
5535 /**
5536  * netdev_has_upper_dev - Check if device is linked to an upper device
5537  * @dev: device
5538  * @upper_dev: upper device to check
5539  *
5540  * Find out if a device is linked to specified upper device and return true
5541  * in case it is. Note that this checks only immediate upper device,
5542  * not through a complete stack of devices. The caller must hold the RTNL lock.
5543  */
5544 bool netdev_has_upper_dev(struct net_device *dev,
5545                           struct net_device *upper_dev)
5546 {
5547         ASSERT_RTNL();
5548
5549         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5550                                              upper_dev);
5551 }
5552 EXPORT_SYMBOL(netdev_has_upper_dev);
5553
5554 /**
5555  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5556  * @dev: device
5557  * @upper_dev: upper device to check
5558  *
5559  * Find out if a device is linked to specified upper device and return true
5560  * in case it is. Note that this checks the entire upper device chain.
5561  * The caller must hold rcu lock.
5562  */
5563
5564 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5565                                   struct net_device *upper_dev)
5566 {
5567         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5568                                                upper_dev);
5569 }
5570 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5571
5572 /**
5573  * netdev_has_any_upper_dev - Check if device is linked to some device
5574  * @dev: device
5575  *
5576  * Find out if a device is linked to an upper device and return true in case
5577  * it is. The caller must hold the RTNL lock.
5578  */
5579 static bool netdev_has_any_upper_dev(struct net_device *dev)
5580 {
5581         ASSERT_RTNL();
5582
5583         return !list_empty(&dev->adj_list.upper);
5584 }
5585
5586 /**
5587  * netdev_master_upper_dev_get - Get master upper device
5588  * @dev: device
5589  *
5590  * Find a master upper device and return pointer to it or NULL in case
5591  * it's not there. The caller must hold the RTNL lock.
5592  */
5593 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5594 {
5595         struct netdev_adjacent *upper;
5596
5597         ASSERT_RTNL();
5598
5599         if (list_empty(&dev->adj_list.upper))
5600                 return NULL;
5601
5602         upper = list_first_entry(&dev->adj_list.upper,
5603                                  struct netdev_adjacent, list);
5604         if (likely(upper->master))
5605                 return upper->dev;
5606         return NULL;
5607 }
5608 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5609
5610 /**
5611  * netdev_has_any_lower_dev - Check if device is linked to some device
5612  * @dev: device
5613  *
5614  * Find out if a device is linked to a lower device and return true in case
5615  * it is. The caller must hold the RTNL lock.
5616  */
5617 static bool netdev_has_any_lower_dev(struct net_device *dev)
5618 {
5619         ASSERT_RTNL();
5620
5621         return !list_empty(&dev->adj_list.lower);
5622 }
5623
5624 void *netdev_adjacent_get_private(struct list_head *adj_list)
5625 {
5626         struct netdev_adjacent *adj;
5627
5628         adj = list_entry(adj_list, struct netdev_adjacent, list);
5629
5630         return adj->private;
5631 }
5632 EXPORT_SYMBOL(netdev_adjacent_get_private);
5633
5634 /**
5635  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5636  * @dev: device
5637  * @iter: list_head ** of the current position
5638  *
5639  * Gets the next device from the dev's upper list, starting from iter
5640  * position. The caller must hold RCU read lock.
5641  */
5642 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5643                                                  struct list_head **iter)
5644 {
5645         struct netdev_adjacent *upper;
5646
5647         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5648
5649         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5650
5651         if (&upper->list == &dev->adj_list.upper)
5652                 return NULL;
5653
5654         *iter = &upper->list;
5655
5656         return upper->dev;
5657 }
5658 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5659
5660 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5661                                                     struct list_head **iter)
5662 {
5663         struct netdev_adjacent *upper;
5664
5665         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5666
5667         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5668
5669         if (&upper->list == &dev->adj_list.upper)
5670                 return NULL;
5671
5672         *iter = &upper->list;
5673
5674         return upper->dev;
5675 }
5676
5677 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5678                                   int (*fn)(struct net_device *dev,
5679                                             void *data),
5680                                   void *data)
5681 {
5682         struct net_device *udev;
5683         struct list_head *iter;
5684         int ret;
5685
5686         for (iter = &dev->adj_list.upper,
5687              udev = netdev_next_upper_dev_rcu(dev, &iter);
5688              udev;
5689              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5690                 /* first is the upper device itself */
5691                 ret = fn(udev, data);
5692                 if (ret)
5693                         return ret;
5694
5695                 /* then look at all of its upper devices */
5696                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5697                 if (ret)
5698                         return ret;
5699         }
5700
5701         return 0;
5702 }
5703 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5704
5705 /**
5706  * netdev_lower_get_next_private - Get the next ->private from the
5707  *                                 lower neighbour list
5708  * @dev: device
5709  * @iter: list_head ** of the current position
5710  *
5711  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5712  * list, starting from iter position. The caller must hold either hold the
5713  * RTNL lock or its own locking that guarantees that the neighbour lower
5714  * list will remain unchanged.
5715  */
5716 void *netdev_lower_get_next_private(struct net_device *dev,
5717                                     struct list_head **iter)
5718 {
5719         struct netdev_adjacent *lower;
5720
5721         lower = list_entry(*iter, struct netdev_adjacent, list);
5722
5723         if (&lower->list == &dev->adj_list.lower)
5724                 return NULL;
5725
5726         *iter = lower->list.next;
5727
5728         return lower->private;
5729 }
5730 EXPORT_SYMBOL(netdev_lower_get_next_private);
5731
5732 /**
5733  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5734  *                                     lower neighbour list, RCU
5735  *                                     variant
5736  * @dev: device
5737  * @iter: list_head ** of the current position
5738  *
5739  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5740  * list, starting from iter position. The caller must hold RCU read lock.
5741  */
5742 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5743                                         struct list_head **iter)
5744 {
5745         struct netdev_adjacent *lower;
5746
5747         WARN_ON_ONCE(!rcu_read_lock_held());
5748
5749         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5750
5751         if (&lower->list == &dev->adj_list.lower)
5752                 return NULL;
5753
5754         *iter = &lower->list;
5755
5756         return lower->private;
5757 }
5758 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5759
5760 /**
5761  * netdev_lower_get_next - Get the next device from the lower neighbour
5762  *                         list
5763  * @dev: device
5764  * @iter: list_head ** of the current position
5765  *
5766  * Gets the next netdev_adjacent from the dev's lower neighbour
5767  * list, starting from iter position. The caller must hold RTNL lock or
5768  * its own locking that guarantees that the neighbour lower
5769  * list will remain unchanged.
5770  */
5771 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5772 {
5773         struct netdev_adjacent *lower;
5774
5775         lower = list_entry(*iter, struct netdev_adjacent, list);
5776
5777         if (&lower->list == &dev->adj_list.lower)
5778                 return NULL;
5779
5780         *iter = lower->list.next;
5781
5782         return lower->dev;
5783 }
5784 EXPORT_SYMBOL(netdev_lower_get_next);
5785
5786 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5787                                                 struct list_head **iter)
5788 {
5789         struct netdev_adjacent *lower;
5790
5791         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5792
5793         if (&lower->list == &dev->adj_list.lower)
5794                 return NULL;
5795
5796         *iter = &lower->list;
5797
5798         return lower->dev;
5799 }
5800
5801 int netdev_walk_all_lower_dev(struct net_device *dev,
5802                               int (*fn)(struct net_device *dev,
5803                                         void *data),
5804                               void *data)
5805 {
5806         struct net_device *ldev;
5807         struct list_head *iter;
5808         int ret;
5809
5810         for (iter = &dev->adj_list.lower,
5811              ldev = netdev_next_lower_dev(dev, &iter);
5812              ldev;
5813              ldev = netdev_next_lower_dev(dev, &iter)) {
5814                 /* first is the lower device itself */
5815                 ret = fn(ldev, data);
5816                 if (ret)
5817                         return ret;
5818
5819                 /* then look at all of its lower devices */
5820                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5821                 if (ret)
5822                         return ret;
5823         }
5824
5825         return 0;
5826 }
5827 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5828
5829 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5830                                                     struct list_head **iter)
5831 {
5832         struct netdev_adjacent *lower;
5833
5834         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5835         if (&lower->list == &dev->adj_list.lower)
5836                 return NULL;
5837
5838         *iter = &lower->list;
5839
5840         return lower->dev;
5841 }
5842
5843 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5844                                   int (*fn)(struct net_device *dev,
5845                                             void *data),
5846                                   void *data)
5847 {
5848         struct net_device *ldev;
5849         struct list_head *iter;
5850         int ret;
5851
5852         for (iter = &dev->adj_list.lower,
5853              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5854              ldev;
5855              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5856                 /* first is the lower device itself */
5857                 ret = fn(ldev, data);
5858                 if (ret)
5859                         return ret;
5860
5861                 /* then look at all of its lower devices */
5862                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5863                 if (ret)
5864                         return ret;
5865         }
5866
5867         return 0;
5868 }
5869 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5870
5871 /**
5872  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5873  *                                     lower neighbour list, RCU
5874  *                                     variant
5875  * @dev: device
5876  *
5877  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5878  * list. The caller must hold RCU read lock.
5879  */
5880 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5881 {
5882         struct netdev_adjacent *lower;
5883
5884         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5885                         struct netdev_adjacent, list);
5886         if (lower)
5887                 return lower->private;
5888         return NULL;
5889 }
5890 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5891
5892 /**
5893  * netdev_master_upper_dev_get_rcu - Get master upper device
5894  * @dev: device
5895  *
5896  * Find a master upper device and return pointer to it or NULL in case
5897  * it's not there. The caller must hold the RCU read lock.
5898  */
5899 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5900 {
5901         struct netdev_adjacent *upper;
5902
5903         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5904                                        struct netdev_adjacent, list);
5905         if (upper && likely(upper->master))
5906                 return upper->dev;
5907         return NULL;
5908 }
5909 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5910
5911 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5912                               struct net_device *adj_dev,
5913                               struct list_head *dev_list)
5914 {
5915         char linkname[IFNAMSIZ+7];
5916
5917         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5918                 "upper_%s" : "lower_%s", adj_dev->name);
5919         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5920                                  linkname);
5921 }
5922 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5923                                char *name,
5924                                struct list_head *dev_list)
5925 {
5926         char linkname[IFNAMSIZ+7];
5927
5928         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5929                 "upper_%s" : "lower_%s", name);
5930         sysfs_remove_link(&(dev->dev.kobj), linkname);
5931 }
5932
5933 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5934                                                  struct net_device *adj_dev,
5935                                                  struct list_head *dev_list)
5936 {
5937         return (dev_list == &dev->adj_list.upper ||
5938                 dev_list == &dev->adj_list.lower) &&
5939                 net_eq(dev_net(dev), dev_net(adj_dev));
5940 }
5941
5942 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5943                                         struct net_device *adj_dev,
5944                                         struct list_head *dev_list,
5945                                         void *private, bool master)
5946 {
5947         struct netdev_adjacent *adj;
5948         int ret;
5949
5950         adj = __netdev_find_adj(adj_dev, dev_list);
5951
5952         if (adj) {
5953                 adj->ref_nr += 1;
5954                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5955                          dev->name, adj_dev->name, adj->ref_nr);
5956
5957                 return 0;
5958         }
5959
5960         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5961         if (!adj)
5962                 return -ENOMEM;
5963
5964         adj->dev = adj_dev;
5965         adj->master = master;
5966         adj->ref_nr = 1;
5967         adj->private = private;
5968         dev_hold(adj_dev);
5969
5970         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5971                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5972
5973         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5974                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5975                 if (ret)
5976                         goto free_adj;
5977         }
5978
5979         /* Ensure that master link is always the first item in list. */
5980         if (master) {
5981                 ret = sysfs_create_link(&(dev->dev.kobj),
5982                                         &(adj_dev->dev.kobj), "master");
5983                 if (ret)
5984                         goto remove_symlinks;
5985
5986                 list_add_rcu(&adj->list, dev_list);
5987         } else {
5988                 list_add_tail_rcu(&adj->list, dev_list);
5989         }
5990
5991         return 0;
5992
5993 remove_symlinks:
5994         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5995                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5996 free_adj:
5997         kfree(adj);
5998         dev_put(adj_dev);
5999
6000         return ret;
6001 }
6002
6003 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6004                                          struct net_device *adj_dev,
6005                                          u16 ref_nr,
6006                                          struct list_head *dev_list)
6007 {
6008         struct netdev_adjacent *adj;
6009
6010         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6011                  dev->name, adj_dev->name, ref_nr);
6012
6013         adj = __netdev_find_adj(adj_dev, dev_list);
6014
6015         if (!adj) {
6016                 pr_err("Adjacency does not exist for device %s from %s\n",
6017                        dev->name, adj_dev->name);
6018                 WARN_ON(1);
6019                 return;
6020         }
6021
6022         if (adj->ref_nr > ref_nr) {
6023                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6024                          dev->name, adj_dev->name, ref_nr,
6025                          adj->ref_nr - ref_nr);
6026                 adj->ref_nr -= ref_nr;
6027                 return;
6028         }
6029
6030         if (adj->master)
6031                 sysfs_remove_link(&(dev->dev.kobj), "master");
6032
6033         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6034                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6035
6036         list_del_rcu(&adj->list);
6037         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6038                  adj_dev->name, dev->name, adj_dev->name);
6039         dev_put(adj_dev);
6040         kfree_rcu(adj, rcu);
6041 }
6042
6043 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6044                                             struct net_device *upper_dev,
6045                                             struct list_head *up_list,
6046                                             struct list_head *down_list,
6047                                             void *private, bool master)
6048 {
6049         int ret;
6050
6051         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6052                                            private, master);
6053         if (ret)
6054                 return ret;
6055
6056         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6057                                            private, false);
6058         if (ret) {
6059                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6060                 return ret;
6061         }
6062
6063         return 0;
6064 }
6065
6066 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6067                                                struct net_device *upper_dev,
6068                                                u16 ref_nr,
6069                                                struct list_head *up_list,
6070                                                struct list_head *down_list)
6071 {
6072         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6073         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6074 }
6075
6076 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6077                                                 struct net_device *upper_dev,
6078                                                 void *private, bool master)
6079 {
6080         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6081                                                 &dev->adj_list.upper,
6082                                                 &upper_dev->adj_list.lower,
6083                                                 private, master);
6084 }
6085
6086 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6087                                                    struct net_device *upper_dev)
6088 {
6089         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6090                                            &dev->adj_list.upper,
6091                                            &upper_dev->adj_list.lower);
6092 }
6093
6094 static int __netdev_upper_dev_link(struct net_device *dev,
6095                                    struct net_device *upper_dev, bool master,
6096                                    void *upper_priv, void *upper_info)
6097 {
6098         struct netdev_notifier_changeupper_info changeupper_info;
6099         int ret = 0;
6100
6101         ASSERT_RTNL();
6102
6103         if (dev == upper_dev)
6104                 return -EBUSY;
6105
6106         /* To prevent loops, check if dev is not upper device to upper_dev. */
6107         if (netdev_has_upper_dev(upper_dev, dev))
6108                 return -EBUSY;
6109
6110         if (netdev_has_upper_dev(dev, upper_dev))
6111                 return -EEXIST;
6112
6113         if (master && netdev_master_upper_dev_get(dev))
6114                 return -EBUSY;
6115
6116         changeupper_info.upper_dev = upper_dev;
6117         changeupper_info.master = master;
6118         changeupper_info.linking = true;
6119         changeupper_info.upper_info = upper_info;
6120
6121         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6122                                             &changeupper_info.info);
6123         ret = notifier_to_errno(ret);
6124         if (ret)
6125                 return ret;
6126
6127         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6128                                                    master);
6129         if (ret)
6130                 return ret;
6131
6132         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6133                                             &changeupper_info.info);
6134         ret = notifier_to_errno(ret);
6135         if (ret)
6136                 goto rollback;
6137
6138         return 0;
6139
6140 rollback:
6141         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6142
6143         return ret;
6144 }
6145
6146 /**
6147  * netdev_upper_dev_link - Add a link to the upper device
6148  * @dev: device
6149  * @upper_dev: new upper device
6150  *
6151  * Adds a link to device which is upper to this one. The caller must hold
6152  * the RTNL lock. On a failure a negative errno code is returned.
6153  * On success the reference counts are adjusted and the function
6154  * returns zero.
6155  */
6156 int netdev_upper_dev_link(struct net_device *dev,
6157                           struct net_device *upper_dev)
6158 {
6159         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6160 }
6161 EXPORT_SYMBOL(netdev_upper_dev_link);
6162
6163 /**
6164  * netdev_master_upper_dev_link - Add a master link to the upper device
6165  * @dev: device
6166  * @upper_dev: new upper device
6167  * @upper_priv: upper device private
6168  * @upper_info: upper info to be passed down via notifier
6169  *
6170  * Adds a link to device which is upper to this one. In this case, only
6171  * one master upper device can be linked, although other non-master devices
6172  * might be linked as well. The caller must hold the RTNL lock.
6173  * On a failure a negative errno code is returned. On success the reference
6174  * counts are adjusted and the function returns zero.
6175  */
6176 int netdev_master_upper_dev_link(struct net_device *dev,
6177                                  struct net_device *upper_dev,
6178                                  void *upper_priv, void *upper_info)
6179 {
6180         return __netdev_upper_dev_link(dev, upper_dev, true,
6181                                        upper_priv, upper_info);
6182 }
6183 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6184
6185 /**
6186  * netdev_upper_dev_unlink - Removes a link to upper device
6187  * @dev: device
6188  * @upper_dev: new upper device
6189  *
6190  * Removes a link to device which is upper to this one. The caller must hold
6191  * the RTNL lock.
6192  */
6193 void netdev_upper_dev_unlink(struct net_device *dev,
6194                              struct net_device *upper_dev)
6195 {
6196         struct netdev_notifier_changeupper_info changeupper_info;
6197
6198         ASSERT_RTNL();
6199
6200         changeupper_info.upper_dev = upper_dev;
6201         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6202         changeupper_info.linking = false;
6203
6204         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6205                                       &changeupper_info.info);
6206
6207         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6208
6209         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6210                                       &changeupper_info.info);
6211 }
6212 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6213
6214 /**
6215  * netdev_bonding_info_change - Dispatch event about slave change
6216  * @dev: device
6217  * @bonding_info: info to dispatch
6218  *
6219  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6220  * The caller must hold the RTNL lock.
6221  */
6222 void netdev_bonding_info_change(struct net_device *dev,
6223                                 struct netdev_bonding_info *bonding_info)
6224 {
6225         struct netdev_notifier_bonding_info     info;
6226
6227         memcpy(&info.bonding_info, bonding_info,
6228                sizeof(struct netdev_bonding_info));
6229         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6230                                       &info.info);
6231 }
6232 EXPORT_SYMBOL(netdev_bonding_info_change);
6233
6234 static void netdev_adjacent_add_links(struct net_device *dev)
6235 {
6236         struct netdev_adjacent *iter;
6237
6238         struct net *net = dev_net(dev);
6239
6240         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6241                 if (!net_eq(net, dev_net(iter->dev)))
6242                         continue;
6243                 netdev_adjacent_sysfs_add(iter->dev, dev,
6244                                           &iter->dev->adj_list.lower);
6245                 netdev_adjacent_sysfs_add(dev, iter->dev,
6246                                           &dev->adj_list.upper);
6247         }
6248
6249         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6250                 if (!net_eq(net, dev_net(iter->dev)))
6251                         continue;
6252                 netdev_adjacent_sysfs_add(iter->dev, dev,
6253                                           &iter->dev->adj_list.upper);
6254                 netdev_adjacent_sysfs_add(dev, iter->dev,
6255                                           &dev->adj_list.lower);
6256         }
6257 }
6258
6259 static void netdev_adjacent_del_links(struct net_device *dev)
6260 {
6261         struct netdev_adjacent *iter;
6262
6263         struct net *net = dev_net(dev);
6264
6265         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6266                 if (!net_eq(net, dev_net(iter->dev)))
6267                         continue;
6268                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6269                                           &iter->dev->adj_list.lower);
6270                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6271                                           &dev->adj_list.upper);
6272         }
6273
6274         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6275                 if (!net_eq(net, dev_net(iter->dev)))
6276                         continue;
6277                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6278                                           &iter->dev->adj_list.upper);
6279                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6280                                           &dev->adj_list.lower);
6281         }
6282 }
6283
6284 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6285 {
6286         struct netdev_adjacent *iter;
6287
6288         struct net *net = dev_net(dev);
6289
6290         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6291                 if (!net_eq(net, dev_net(iter->dev)))
6292                         continue;
6293                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6294                                           &iter->dev->adj_list.lower);
6295                 netdev_adjacent_sysfs_add(iter->dev, dev,
6296                                           &iter->dev->adj_list.lower);
6297         }
6298
6299         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6300                 if (!net_eq(net, dev_net(iter->dev)))
6301                         continue;
6302                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6303                                           &iter->dev->adj_list.upper);
6304                 netdev_adjacent_sysfs_add(iter->dev, dev,
6305                                           &iter->dev->adj_list.upper);
6306         }
6307 }
6308
6309 void *netdev_lower_dev_get_private(struct net_device *dev,
6310                                    struct net_device *lower_dev)
6311 {
6312         struct netdev_adjacent *lower;
6313
6314         if (!lower_dev)
6315                 return NULL;
6316         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6317         if (!lower)
6318                 return NULL;
6319
6320         return lower->private;
6321 }
6322 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6323
6324
6325 int dev_get_nest_level(struct net_device *dev)
6326 {
6327         struct net_device *lower = NULL;
6328         struct list_head *iter;
6329         int max_nest = -1;
6330         int nest;
6331
6332         ASSERT_RTNL();
6333
6334         netdev_for_each_lower_dev(dev, lower, iter) {
6335                 nest = dev_get_nest_level(lower);
6336                 if (max_nest < nest)
6337                         max_nest = nest;
6338         }
6339
6340         return max_nest + 1;
6341 }
6342 EXPORT_SYMBOL(dev_get_nest_level);
6343
6344 /**
6345  * netdev_lower_change - Dispatch event about lower device state change
6346  * @lower_dev: device
6347  * @lower_state_info: state to dispatch
6348  *
6349  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6350  * The caller must hold the RTNL lock.
6351  */
6352 void netdev_lower_state_changed(struct net_device *lower_dev,
6353                                 void *lower_state_info)
6354 {
6355         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6356
6357         ASSERT_RTNL();
6358         changelowerstate_info.lower_state_info = lower_state_info;
6359         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6360                                       &changelowerstate_info.info);
6361 }
6362 EXPORT_SYMBOL(netdev_lower_state_changed);
6363
6364 static void dev_change_rx_flags(struct net_device *dev, int flags)
6365 {
6366         const struct net_device_ops *ops = dev->netdev_ops;
6367
6368         if (ops->ndo_change_rx_flags)
6369                 ops->ndo_change_rx_flags(dev, flags);
6370 }
6371
6372 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6373 {
6374         unsigned int old_flags = dev->flags;
6375         kuid_t uid;
6376         kgid_t gid;
6377
6378         ASSERT_RTNL();
6379
6380         dev->flags |= IFF_PROMISC;
6381         dev->promiscuity += inc;
6382         if (dev->promiscuity == 0) {
6383                 /*
6384                  * Avoid overflow.
6385                  * If inc causes overflow, untouch promisc and return error.
6386                  */
6387                 if (inc < 0)
6388                         dev->flags &= ~IFF_PROMISC;
6389                 else {
6390                         dev->promiscuity -= inc;
6391                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6392                                 dev->name);
6393                         return -EOVERFLOW;
6394                 }
6395         }
6396         if (dev->flags != old_flags) {
6397                 pr_info("device %s %s promiscuous mode\n",
6398                         dev->name,
6399                         dev->flags & IFF_PROMISC ? "entered" : "left");
6400                 if (audit_enabled) {
6401                         current_uid_gid(&uid, &gid);
6402                         audit_log(current->audit_context, GFP_ATOMIC,
6403                                 AUDIT_ANOM_PROMISCUOUS,
6404                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6405                                 dev->name, (dev->flags & IFF_PROMISC),
6406                                 (old_flags & IFF_PROMISC),
6407                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6408                                 from_kuid(&init_user_ns, uid),
6409                                 from_kgid(&init_user_ns, gid),
6410                                 audit_get_sessionid(current));
6411                 }
6412
6413                 dev_change_rx_flags(dev, IFF_PROMISC);
6414         }
6415         if (notify)
6416                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6417         return 0;
6418 }
6419
6420 /**
6421  *      dev_set_promiscuity     - update promiscuity count on a device
6422  *      @dev: device
6423  *      @inc: modifier
6424  *
6425  *      Add or remove promiscuity from a device. While the count in the device
6426  *      remains above zero the interface remains promiscuous. Once it hits zero
6427  *      the device reverts back to normal filtering operation. A negative inc
6428  *      value is used to drop promiscuity on the device.
6429  *      Return 0 if successful or a negative errno code on error.
6430  */
6431 int dev_set_promiscuity(struct net_device *dev, int inc)
6432 {
6433         unsigned int old_flags = dev->flags;
6434         int err;
6435
6436         err = __dev_set_promiscuity(dev, inc, true);
6437         if (err < 0)
6438                 return err;
6439         if (dev->flags != old_flags)
6440                 dev_set_rx_mode(dev);
6441         return err;
6442 }
6443 EXPORT_SYMBOL(dev_set_promiscuity);
6444
6445 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6446 {
6447         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6448
6449         ASSERT_RTNL();
6450
6451         dev->flags |= IFF_ALLMULTI;
6452         dev->allmulti += inc;
6453         if (dev->allmulti == 0) {
6454                 /*
6455                  * Avoid overflow.
6456                  * If inc causes overflow, untouch allmulti and return error.
6457                  */
6458                 if (inc < 0)
6459                         dev->flags &= ~IFF_ALLMULTI;
6460                 else {
6461                         dev->allmulti -= inc;
6462                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6463                                 dev->name);
6464                         return -EOVERFLOW;
6465                 }
6466         }
6467         if (dev->flags ^ old_flags) {
6468                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6469                 dev_set_rx_mode(dev);
6470                 if (notify)
6471                         __dev_notify_flags(dev, old_flags,
6472                                            dev->gflags ^ old_gflags);
6473         }
6474         return 0;
6475 }
6476
6477 /**
6478  *      dev_set_allmulti        - update allmulti count on a device
6479  *      @dev: device
6480  *      @inc: modifier
6481  *
6482  *      Add or remove reception of all multicast frames to a device. While the
6483  *      count in the device remains above zero the interface remains listening
6484  *      to all interfaces. Once it hits zero the device reverts back to normal
6485  *      filtering operation. A negative @inc value is used to drop the counter
6486  *      when releasing a resource needing all multicasts.
6487  *      Return 0 if successful or a negative errno code on error.
6488  */
6489
6490 int dev_set_allmulti(struct net_device *dev, int inc)
6491 {
6492         return __dev_set_allmulti(dev, inc, true);
6493 }
6494 EXPORT_SYMBOL(dev_set_allmulti);
6495
6496 /*
6497  *      Upload unicast and multicast address lists to device and
6498  *      configure RX filtering. When the device doesn't support unicast
6499  *      filtering it is put in promiscuous mode while unicast addresses
6500  *      are present.
6501  */
6502 void __dev_set_rx_mode(struct net_device *dev)
6503 {
6504         const struct net_device_ops *ops = dev->netdev_ops;
6505
6506         /* dev_open will call this function so the list will stay sane. */
6507         if (!(dev->flags&IFF_UP))
6508                 return;
6509
6510         if (!netif_device_present(dev))
6511                 return;
6512
6513         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6514                 /* Unicast addresses changes may only happen under the rtnl,
6515                  * therefore calling __dev_set_promiscuity here is safe.
6516                  */
6517                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6518                         __dev_set_promiscuity(dev, 1, false);
6519                         dev->uc_promisc = true;
6520                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6521                         __dev_set_promiscuity(dev, -1, false);
6522                         dev->uc_promisc = false;
6523                 }
6524         }
6525
6526         if (ops->ndo_set_rx_mode)
6527                 ops->ndo_set_rx_mode(dev);
6528 }
6529
6530 void dev_set_rx_mode(struct net_device *dev)
6531 {
6532         netif_addr_lock_bh(dev);
6533         __dev_set_rx_mode(dev);
6534         netif_addr_unlock_bh(dev);
6535 }
6536
6537 /**
6538  *      dev_get_flags - get flags reported to userspace
6539  *      @dev: device
6540  *
6541  *      Get the combination of flag bits exported through APIs to userspace.
6542  */
6543 unsigned int dev_get_flags(const struct net_device *dev)
6544 {
6545         unsigned int flags;
6546
6547         flags = (dev->flags & ~(IFF_PROMISC |
6548                                 IFF_ALLMULTI |
6549                                 IFF_RUNNING |
6550                                 IFF_LOWER_UP |
6551                                 IFF_DORMANT)) |
6552                 (dev->gflags & (IFF_PROMISC |
6553                                 IFF_ALLMULTI));
6554
6555         if (netif_running(dev)) {
6556                 if (netif_oper_up(dev))
6557                         flags |= IFF_RUNNING;
6558                 if (netif_carrier_ok(dev))
6559                         flags |= IFF_LOWER_UP;
6560                 if (netif_dormant(dev))
6561                         flags |= IFF_DORMANT;
6562         }
6563
6564         return flags;
6565 }
6566 EXPORT_SYMBOL(dev_get_flags);
6567
6568 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6569 {
6570         unsigned int old_flags = dev->flags;
6571         int ret;
6572
6573         ASSERT_RTNL();
6574
6575         /*
6576          *      Set the flags on our device.
6577          */
6578
6579         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6580                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6581                                IFF_AUTOMEDIA)) |
6582                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6583                                     IFF_ALLMULTI));
6584
6585         /*
6586          *      Load in the correct multicast list now the flags have changed.
6587          */
6588
6589         if ((old_flags ^ flags) & IFF_MULTICAST)
6590                 dev_change_rx_flags(dev, IFF_MULTICAST);
6591
6592         dev_set_rx_mode(dev);
6593
6594         /*
6595          *      Have we downed the interface. We handle IFF_UP ourselves
6596          *      according to user attempts to set it, rather than blindly
6597          *      setting it.
6598          */
6599
6600         ret = 0;
6601         if ((old_flags ^ flags) & IFF_UP)
6602                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6603
6604         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6605                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6606                 unsigned int old_flags = dev->flags;
6607
6608                 dev->gflags ^= IFF_PROMISC;
6609
6610                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6611                         if (dev->flags != old_flags)
6612                                 dev_set_rx_mode(dev);
6613         }
6614
6615         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6616          * is important. Some (broken) drivers set IFF_PROMISC, when
6617          * IFF_ALLMULTI is requested not asking us and not reporting.
6618          */
6619         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6620                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6621
6622                 dev->gflags ^= IFF_ALLMULTI;
6623                 __dev_set_allmulti(dev, inc, false);
6624         }
6625
6626         return ret;
6627 }
6628
6629 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6630                         unsigned int gchanges)
6631 {
6632         unsigned int changes = dev->flags ^ old_flags;
6633
6634         if (gchanges)
6635                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6636
6637         if (changes & IFF_UP) {
6638                 if (dev->flags & IFF_UP)
6639                         call_netdevice_notifiers(NETDEV_UP, dev);
6640                 else
6641                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6642         }
6643
6644         if (dev->flags & IFF_UP &&
6645             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6646                 struct netdev_notifier_change_info change_info;
6647
6648                 change_info.flags_changed = changes;
6649                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6650                                               &change_info.info);
6651         }
6652 }
6653
6654 /**
6655  *      dev_change_flags - change device settings
6656  *      @dev: device
6657  *      @flags: device state flags
6658  *
6659  *      Change settings on device based state flags. The flags are
6660  *      in the userspace exported format.
6661  */
6662 int dev_change_flags(struct net_device *dev, unsigned int flags)
6663 {
6664         int ret;
6665         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6666
6667         ret = __dev_change_flags(dev, flags);
6668         if (ret < 0)
6669                 return ret;
6670
6671         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6672         __dev_notify_flags(dev, old_flags, changes);
6673         return ret;
6674 }
6675 EXPORT_SYMBOL(dev_change_flags);
6676
6677 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6678 {
6679         const struct net_device_ops *ops = dev->netdev_ops;
6680
6681         if (ops->ndo_change_mtu)
6682                 return ops->ndo_change_mtu(dev, new_mtu);
6683
6684         dev->mtu = new_mtu;
6685         return 0;
6686 }
6687
6688 /**
6689  *      dev_set_mtu - Change maximum transfer unit
6690  *      @dev: device
6691  *      @new_mtu: new transfer unit
6692  *
6693  *      Change the maximum transfer size of the network device.
6694  */
6695 int dev_set_mtu(struct net_device *dev, int new_mtu)
6696 {
6697         int err, orig_mtu;
6698
6699         if (new_mtu == dev->mtu)
6700                 return 0;
6701
6702         /* MTU must be positive, and in range */
6703         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6704                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6705                                     dev->name, new_mtu, dev->min_mtu);
6706                 return -EINVAL;
6707         }
6708
6709         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6710                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6711                                     dev->name, new_mtu, dev->max_mtu);
6712                 return -EINVAL;
6713         }
6714
6715         if (!netif_device_present(dev))
6716                 return -ENODEV;
6717
6718         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6719         err = notifier_to_errno(err);
6720         if (err)
6721                 return err;
6722
6723         orig_mtu = dev->mtu;
6724         err = __dev_set_mtu(dev, new_mtu);
6725
6726         if (!err) {
6727                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6728                 err = notifier_to_errno(err);
6729                 if (err) {
6730                         /* setting mtu back and notifying everyone again,
6731                          * so that they have a chance to revert changes.
6732                          */
6733                         __dev_set_mtu(dev, orig_mtu);
6734                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6735                 }
6736         }
6737         return err;
6738 }
6739 EXPORT_SYMBOL(dev_set_mtu);
6740
6741 /**
6742  *      dev_set_group - Change group this device belongs to
6743  *      @dev: device
6744  *      @new_group: group this device should belong to
6745  */
6746 void dev_set_group(struct net_device *dev, int new_group)
6747 {
6748         dev->group = new_group;
6749 }
6750 EXPORT_SYMBOL(dev_set_group);
6751
6752 /**
6753  *      dev_set_mac_address - Change Media Access Control Address
6754  *      @dev: device
6755  *      @sa: new address
6756  *
6757  *      Change the hardware (MAC) address of the device
6758  */
6759 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6760 {
6761         const struct net_device_ops *ops = dev->netdev_ops;
6762         int err;
6763
6764         if (!ops->ndo_set_mac_address)
6765                 return -EOPNOTSUPP;
6766         if (sa->sa_family != dev->type)
6767                 return -EINVAL;
6768         if (!netif_device_present(dev))
6769                 return -ENODEV;
6770         err = ops->ndo_set_mac_address(dev, sa);
6771         if (err)
6772                 return err;
6773         dev->addr_assign_type = NET_ADDR_SET;
6774         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6775         add_device_randomness(dev->dev_addr, dev->addr_len);
6776         return 0;
6777 }
6778 EXPORT_SYMBOL(dev_set_mac_address);
6779
6780 /**
6781  *      dev_change_carrier - Change device carrier
6782  *      @dev: device
6783  *      @new_carrier: new value
6784  *
6785  *      Change device carrier
6786  */
6787 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6788 {
6789         const struct net_device_ops *ops = dev->netdev_ops;
6790
6791         if (!ops->ndo_change_carrier)
6792                 return -EOPNOTSUPP;
6793         if (!netif_device_present(dev))
6794                 return -ENODEV;
6795         return ops->ndo_change_carrier(dev, new_carrier);
6796 }
6797 EXPORT_SYMBOL(dev_change_carrier);
6798
6799 /**
6800  *      dev_get_phys_port_id - Get device physical port ID
6801  *      @dev: device
6802  *      @ppid: port ID
6803  *
6804  *      Get device physical port ID
6805  */
6806 int dev_get_phys_port_id(struct net_device *dev,
6807                          struct netdev_phys_item_id *ppid)
6808 {
6809         const struct net_device_ops *ops = dev->netdev_ops;
6810
6811         if (!ops->ndo_get_phys_port_id)
6812                 return -EOPNOTSUPP;
6813         return ops->ndo_get_phys_port_id(dev, ppid);
6814 }
6815 EXPORT_SYMBOL(dev_get_phys_port_id);
6816
6817 /**
6818  *      dev_get_phys_port_name - Get device physical port name
6819  *      @dev: device
6820  *      @name: port name
6821  *      @len: limit of bytes to copy to name
6822  *
6823  *      Get device physical port name
6824  */
6825 int dev_get_phys_port_name(struct net_device *dev,
6826                            char *name, size_t len)
6827 {
6828         const struct net_device_ops *ops = dev->netdev_ops;
6829
6830         if (!ops->ndo_get_phys_port_name)
6831                 return -EOPNOTSUPP;
6832         return ops->ndo_get_phys_port_name(dev, name, len);
6833 }
6834 EXPORT_SYMBOL(dev_get_phys_port_name);
6835
6836 /**
6837  *      dev_change_proto_down - update protocol port state information
6838  *      @dev: device
6839  *      @proto_down: new value
6840  *
6841  *      This info can be used by switch drivers to set the phys state of the
6842  *      port.
6843  */
6844 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6845 {
6846         const struct net_device_ops *ops = dev->netdev_ops;
6847
6848         if (!ops->ndo_change_proto_down)
6849                 return -EOPNOTSUPP;
6850         if (!netif_device_present(dev))
6851                 return -ENODEV;
6852         return ops->ndo_change_proto_down(dev, proto_down);
6853 }
6854 EXPORT_SYMBOL(dev_change_proto_down);
6855
6856 bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op)
6857 {
6858         struct netdev_xdp xdp;
6859
6860         memset(&xdp, 0, sizeof(xdp));
6861         xdp.command = XDP_QUERY_PROG;
6862
6863         /* Query must always succeed. */
6864         WARN_ON(xdp_op(dev, &xdp) < 0);
6865         return xdp.prog_attached;
6866 }
6867
6868 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6869                            struct netlink_ext_ack *extack,
6870                            struct bpf_prog *prog)
6871 {
6872         struct netdev_xdp xdp;
6873
6874         memset(&xdp, 0, sizeof(xdp));
6875         xdp.command = XDP_SETUP_PROG;
6876         xdp.extack = extack;
6877         xdp.prog = prog;
6878
6879         return xdp_op(dev, &xdp);
6880 }
6881
6882 /**
6883  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6884  *      @dev: device
6885  *      @extack: netlink extended ack
6886  *      @fd: new program fd or negative value to clear
6887  *      @flags: xdp-related flags
6888  *
6889  *      Set or clear a bpf program for a device
6890  */
6891 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6892                       int fd, u32 flags)
6893 {
6894         const struct net_device_ops *ops = dev->netdev_ops;
6895         struct bpf_prog *prog = NULL;
6896         xdp_op_t xdp_op, xdp_chk;
6897         int err;
6898
6899         ASSERT_RTNL();
6900
6901         xdp_op = xdp_chk = ops->ndo_xdp;
6902         if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE))
6903                 return -EOPNOTSUPP;
6904         if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
6905                 xdp_op = generic_xdp_install;
6906         if (xdp_op == xdp_chk)
6907                 xdp_chk = generic_xdp_install;
6908
6909         if (fd >= 0) {
6910                 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk))
6911                         return -EEXIST;
6912                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
6913                     __dev_xdp_attached(dev, xdp_op))
6914                         return -EBUSY;
6915
6916                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6917                 if (IS_ERR(prog))
6918                         return PTR_ERR(prog);
6919         }
6920
6921         err = dev_xdp_install(dev, xdp_op, extack, prog);
6922         if (err < 0 && prog)
6923                 bpf_prog_put(prog);
6924
6925         return err;
6926 }
6927
6928 /**
6929  *      dev_new_index   -       allocate an ifindex
6930  *      @net: the applicable net namespace
6931  *
6932  *      Returns a suitable unique value for a new device interface
6933  *      number.  The caller must hold the rtnl semaphore or the
6934  *      dev_base_lock to be sure it remains unique.
6935  */
6936 static int dev_new_index(struct net *net)
6937 {
6938         int ifindex = net->ifindex;
6939
6940         for (;;) {
6941                 if (++ifindex <= 0)
6942                         ifindex = 1;
6943                 if (!__dev_get_by_index(net, ifindex))
6944                         return net->ifindex = ifindex;
6945         }
6946 }
6947
6948 /* Delayed registration/unregisteration */
6949 static LIST_HEAD(net_todo_list);
6950 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6951
6952 static void net_set_todo(struct net_device *dev)
6953 {
6954         list_add_tail(&dev->todo_list, &net_todo_list);
6955         dev_net(dev)->dev_unreg_count++;
6956 }
6957
6958 static void rollback_registered_many(struct list_head *head)
6959 {
6960         struct net_device *dev, *tmp;
6961         LIST_HEAD(close_head);
6962
6963         BUG_ON(dev_boot_phase);
6964         ASSERT_RTNL();
6965
6966         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6967                 /* Some devices call without registering
6968                  * for initialization unwind. Remove those
6969                  * devices and proceed with the remaining.
6970                  */
6971                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6972                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6973                                  dev->name, dev);
6974
6975                         WARN_ON(1);
6976                         list_del(&dev->unreg_list);
6977                         continue;
6978                 }
6979                 dev->dismantle = true;
6980                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6981         }
6982
6983         /* If device is running, close it first. */
6984         list_for_each_entry(dev, head, unreg_list)
6985                 list_add_tail(&dev->close_list, &close_head);
6986         dev_close_many(&close_head, true);
6987
6988         list_for_each_entry(dev, head, unreg_list) {
6989                 /* And unlink it from device chain. */
6990                 unlist_netdevice(dev);
6991
6992                 dev->reg_state = NETREG_UNREGISTERING;
6993         }
6994         flush_all_backlogs();
6995
6996         synchronize_net();
6997
6998         list_for_each_entry(dev, head, unreg_list) {
6999                 struct sk_buff *skb = NULL;
7000
7001                 /* Shutdown queueing discipline. */
7002                 dev_shutdown(dev);
7003
7004
7005                 /* Notify protocols, that we are about to destroy
7006                  * this device. They should clean all the things.
7007                  */
7008                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7009
7010                 if (!dev->rtnl_link_ops ||
7011                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7012                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
7013                                                      GFP_KERNEL);
7014
7015                 /*
7016                  *      Flush the unicast and multicast chains
7017                  */
7018                 dev_uc_flush(dev);
7019                 dev_mc_flush(dev);
7020
7021                 if (dev->netdev_ops->ndo_uninit)
7022                         dev->netdev_ops->ndo_uninit(dev);
7023
7024                 if (skb)
7025                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7026
7027                 /* Notifier chain MUST detach us all upper devices. */
7028                 WARN_ON(netdev_has_any_upper_dev(dev));
7029                 WARN_ON(netdev_has_any_lower_dev(dev));
7030
7031                 /* Remove entries from kobject tree */
7032                 netdev_unregister_kobject(dev);
7033 #ifdef CONFIG_XPS
7034                 /* Remove XPS queueing entries */
7035                 netif_reset_xps_queues_gt(dev, 0);
7036 #endif
7037         }
7038
7039         synchronize_net();
7040
7041         list_for_each_entry(dev, head, unreg_list)
7042                 dev_put(dev);
7043 }
7044
7045 static void rollback_registered(struct net_device *dev)
7046 {
7047         LIST_HEAD(single);
7048
7049         list_add(&dev->unreg_list, &single);
7050         rollback_registered_many(&single);
7051         list_del(&single);
7052 }
7053
7054 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7055         struct net_device *upper, netdev_features_t features)
7056 {
7057         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7058         netdev_features_t feature;
7059         int feature_bit;
7060
7061         for_each_netdev_feature(&upper_disables, feature_bit) {
7062                 feature = __NETIF_F_BIT(feature_bit);
7063                 if (!(upper->wanted_features & feature)
7064                     && (features & feature)) {
7065                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7066                                    &feature, upper->name);
7067                         features &= ~feature;
7068                 }
7069         }
7070
7071         return features;
7072 }
7073
7074 static void netdev_sync_lower_features(struct net_device *upper,
7075         struct net_device *lower, netdev_features_t features)
7076 {
7077         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7078         netdev_features_t feature;
7079         int feature_bit;
7080
7081         for_each_netdev_feature(&upper_disables, feature_bit) {
7082                 feature = __NETIF_F_BIT(feature_bit);
7083                 if (!(features & feature) && (lower->features & feature)) {
7084                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7085                                    &feature, lower->name);
7086                         lower->wanted_features &= ~feature;
7087                         netdev_update_features(lower);
7088
7089                         if (unlikely(lower->features & feature))
7090                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7091                                             &feature, lower->name);
7092                 }
7093         }
7094 }
7095
7096 static netdev_features_t netdev_fix_features(struct net_device *dev,
7097         netdev_features_t features)
7098 {
7099         /* Fix illegal checksum combinations */
7100         if ((features & NETIF_F_HW_CSUM) &&
7101             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7102                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7103                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7104         }
7105
7106         /* TSO requires that SG is present as well. */
7107         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7108                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7109                 features &= ~NETIF_F_ALL_TSO;
7110         }
7111
7112         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7113                                         !(features & NETIF_F_IP_CSUM)) {
7114                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7115                 features &= ~NETIF_F_TSO;
7116                 features &= ~NETIF_F_TSO_ECN;
7117         }
7118
7119         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7120                                          !(features & NETIF_F_IPV6_CSUM)) {
7121                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7122                 features &= ~NETIF_F_TSO6;
7123         }
7124
7125         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7126         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7127                 features &= ~NETIF_F_TSO_MANGLEID;
7128
7129         /* TSO ECN requires that TSO is present as well. */
7130         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7131                 features &= ~NETIF_F_TSO_ECN;
7132
7133         /* Software GSO depends on SG. */
7134         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7135                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7136                 features &= ~NETIF_F_GSO;
7137         }
7138
7139         /* UFO needs SG and checksumming */
7140         if (features & NETIF_F_UFO) {
7141                 /* maybe split UFO into V4 and V6? */
7142                 if (!(features & NETIF_F_HW_CSUM) &&
7143                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7144                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7145                         netdev_dbg(dev,
7146                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
7147                         features &= ~NETIF_F_UFO;
7148                 }
7149
7150                 if (!(features & NETIF_F_SG)) {
7151                         netdev_dbg(dev,
7152                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7153                         features &= ~NETIF_F_UFO;
7154                 }
7155         }
7156
7157         /* GSO partial features require GSO partial be set */
7158         if ((features & dev->gso_partial_features) &&
7159             !(features & NETIF_F_GSO_PARTIAL)) {
7160                 netdev_dbg(dev,
7161                            "Dropping partially supported GSO features since no GSO partial.\n");
7162                 features &= ~dev->gso_partial_features;
7163         }
7164
7165         return features;
7166 }
7167
7168 int __netdev_update_features(struct net_device *dev)
7169 {
7170         struct net_device *upper, *lower;
7171         netdev_features_t features;
7172         struct list_head *iter;
7173         int err = -1;
7174
7175         ASSERT_RTNL();
7176
7177         features = netdev_get_wanted_features(dev);
7178
7179         if (dev->netdev_ops->ndo_fix_features)
7180                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7181
7182         /* driver might be less strict about feature dependencies */
7183         features = netdev_fix_features(dev, features);
7184
7185         /* some features can't be enabled if they're off an an upper device */
7186         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7187                 features = netdev_sync_upper_features(dev, upper, features);
7188
7189         if (dev->features == features)
7190                 goto sync_lower;
7191
7192         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7193                 &dev->features, &features);
7194
7195         if (dev->netdev_ops->ndo_set_features)
7196                 err = dev->netdev_ops->ndo_set_features(dev, features);
7197         else
7198                 err = 0;
7199
7200         if (unlikely(err < 0)) {
7201                 netdev_err(dev,
7202                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7203                         err, &features, &dev->features);
7204                 /* return non-0 since some features might have changed and
7205                  * it's better to fire a spurious notification than miss it
7206                  */
7207                 return -1;
7208         }
7209
7210 sync_lower:
7211         /* some features must be disabled on lower devices when disabled
7212          * on an upper device (think: bonding master or bridge)
7213          */
7214         netdev_for_each_lower_dev(dev, lower, iter)
7215                 netdev_sync_lower_features(dev, lower, features);
7216
7217         if (!err)
7218                 dev->features = features;
7219
7220         return err < 0 ? 0 : 1;
7221 }
7222
7223 /**
7224  *      netdev_update_features - recalculate device features
7225  *      @dev: the device to check
7226  *
7227  *      Recalculate dev->features set and send notifications if it
7228  *      has changed. Should be called after driver or hardware dependent
7229  *      conditions might have changed that influence the features.
7230  */
7231 void netdev_update_features(struct net_device *dev)
7232 {
7233         if (__netdev_update_features(dev))
7234                 netdev_features_change(dev);
7235 }
7236 EXPORT_SYMBOL(netdev_update_features);
7237
7238 /**
7239  *      netdev_change_features - recalculate device features
7240  *      @dev: the device to check
7241  *
7242  *      Recalculate dev->features set and send notifications even
7243  *      if they have not changed. Should be called instead of
7244  *      netdev_update_features() if also dev->vlan_features might
7245  *      have changed to allow the changes to be propagated to stacked
7246  *      VLAN devices.
7247  */
7248 void netdev_change_features(struct net_device *dev)
7249 {
7250         __netdev_update_features(dev);
7251         netdev_features_change(dev);
7252 }
7253 EXPORT_SYMBOL(netdev_change_features);
7254
7255 /**
7256  *      netif_stacked_transfer_operstate -      transfer operstate
7257  *      @rootdev: the root or lower level device to transfer state from
7258  *      @dev: the device to transfer operstate to
7259  *
7260  *      Transfer operational state from root to device. This is normally
7261  *      called when a stacking relationship exists between the root
7262  *      device and the device(a leaf device).
7263  */
7264 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7265                                         struct net_device *dev)
7266 {
7267         if (rootdev->operstate == IF_OPER_DORMANT)
7268                 netif_dormant_on(dev);
7269         else
7270                 netif_dormant_off(dev);
7271
7272         if (netif_carrier_ok(rootdev))
7273                 netif_carrier_on(dev);
7274         else
7275                 netif_carrier_off(dev);
7276 }
7277 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7278
7279 #ifdef CONFIG_SYSFS
7280 static int netif_alloc_rx_queues(struct net_device *dev)
7281 {
7282         unsigned int i, count = dev->num_rx_queues;
7283         struct netdev_rx_queue *rx;
7284         size_t sz = count * sizeof(*rx);
7285
7286         BUG_ON(count < 1);
7287
7288         rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7289         if (!rx)
7290                 return -ENOMEM;
7291
7292         dev->_rx = rx;
7293
7294         for (i = 0; i < count; i++)
7295                 rx[i].dev = dev;
7296         return 0;
7297 }
7298 #endif
7299
7300 static void netdev_init_one_queue(struct net_device *dev,
7301                                   struct netdev_queue *queue, void *_unused)
7302 {
7303         /* Initialize queue lock */
7304         spin_lock_init(&queue->_xmit_lock);
7305         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7306         queue->xmit_lock_owner = -1;
7307         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7308         queue->dev = dev;
7309 #ifdef CONFIG_BQL
7310         dql_init(&queue->dql, HZ);
7311 #endif
7312 }
7313
7314 static void netif_free_tx_queues(struct net_device *dev)
7315 {
7316         kvfree(dev->_tx);
7317 }
7318
7319 static int netif_alloc_netdev_queues(struct net_device *dev)
7320 {
7321         unsigned int count = dev->num_tx_queues;
7322         struct netdev_queue *tx;
7323         size_t sz = count * sizeof(*tx);
7324
7325         if (count < 1 || count > 0xffff)
7326                 return -EINVAL;
7327
7328         tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7329         if (!tx)
7330                 return -ENOMEM;
7331
7332         dev->_tx = tx;
7333
7334         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7335         spin_lock_init(&dev->tx_global_lock);
7336
7337         return 0;
7338 }
7339
7340 void netif_tx_stop_all_queues(struct net_device *dev)
7341 {
7342         unsigned int i;
7343
7344         for (i = 0; i < dev->num_tx_queues; i++) {
7345                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7346
7347                 netif_tx_stop_queue(txq);
7348         }
7349 }
7350 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7351
7352 /**
7353  *      register_netdevice      - register a network device
7354  *      @dev: device to register
7355  *
7356  *      Take a completed network device structure and add it to the kernel
7357  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7358  *      chain. 0 is returned on success. A negative errno code is returned
7359  *      on a failure to set up the device, or if the name is a duplicate.
7360  *
7361  *      Callers must hold the rtnl semaphore. You may want
7362  *      register_netdev() instead of this.
7363  *
7364  *      BUGS:
7365  *      The locking appears insufficient to guarantee two parallel registers
7366  *      will not get the same name.
7367  */
7368
7369 int register_netdevice(struct net_device *dev)
7370 {
7371         int ret;
7372         struct net *net = dev_net(dev);
7373
7374         BUG_ON(dev_boot_phase);
7375         ASSERT_RTNL();
7376
7377         might_sleep();
7378
7379         /* When net_device's are persistent, this will be fatal. */
7380         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7381         BUG_ON(!net);
7382
7383         spin_lock_init(&dev->addr_list_lock);
7384         netdev_set_addr_lockdep_class(dev);
7385
7386         ret = dev_get_valid_name(net, dev, dev->name);
7387         if (ret < 0)
7388                 goto out;
7389
7390         /* Init, if this function is available */
7391         if (dev->netdev_ops->ndo_init) {
7392                 ret = dev->netdev_ops->ndo_init(dev);
7393                 if (ret) {
7394                         if (ret > 0)
7395                                 ret = -EIO;
7396                         goto out;
7397                 }
7398         }
7399
7400         if (((dev->hw_features | dev->features) &
7401              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7402             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7403              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7404                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7405                 ret = -EINVAL;
7406                 goto err_uninit;
7407         }
7408
7409         ret = -EBUSY;
7410         if (!dev->ifindex)
7411                 dev->ifindex = dev_new_index(net);
7412         else if (__dev_get_by_index(net, dev->ifindex))
7413                 goto err_uninit;
7414
7415         /* Transfer changeable features to wanted_features and enable
7416          * software offloads (GSO and GRO).
7417          */
7418         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7419         dev->features |= NETIF_F_SOFT_FEATURES;
7420         dev->wanted_features = dev->features & dev->hw_features;
7421
7422         if (!(dev->flags & IFF_LOOPBACK))
7423                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7424
7425         /* If IPv4 TCP segmentation offload is supported we should also
7426          * allow the device to enable segmenting the frame with the option
7427          * of ignoring a static IP ID value.  This doesn't enable the
7428          * feature itself but allows the user to enable it later.
7429          */
7430         if (dev->hw_features & NETIF_F_TSO)
7431                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7432         if (dev->vlan_features & NETIF_F_TSO)
7433                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7434         if (dev->mpls_features & NETIF_F_TSO)
7435                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7436         if (dev->hw_enc_features & NETIF_F_TSO)
7437                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7438
7439         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7440          */
7441         dev->vlan_features |= NETIF_F_HIGHDMA;
7442
7443         /* Make NETIF_F_SG inheritable to tunnel devices.
7444          */
7445         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7446
7447         /* Make NETIF_F_SG inheritable to MPLS.
7448          */
7449         dev->mpls_features |= NETIF_F_SG;
7450
7451         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7452         ret = notifier_to_errno(ret);
7453         if (ret)
7454                 goto err_uninit;
7455
7456         ret = netdev_register_kobject(dev);
7457         if (ret)
7458                 goto err_uninit;
7459         dev->reg_state = NETREG_REGISTERED;
7460
7461         __netdev_update_features(dev);
7462
7463         /*
7464          *      Default initial state at registry is that the
7465          *      device is present.
7466          */
7467
7468         set_bit(__LINK_STATE_PRESENT, &dev->state);
7469
7470         linkwatch_init_dev(dev);
7471
7472         dev_init_scheduler(dev);
7473         dev_hold(dev);
7474         list_netdevice(dev);
7475         add_device_randomness(dev->dev_addr, dev->addr_len);
7476
7477         /* If the device has permanent device address, driver should
7478          * set dev_addr and also addr_assign_type should be set to
7479          * NET_ADDR_PERM (default value).
7480          */
7481         if (dev->addr_assign_type == NET_ADDR_PERM)
7482                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7483
7484         /* Notify protocols, that a new device appeared. */
7485         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7486         ret = notifier_to_errno(ret);
7487         if (ret) {
7488                 rollback_registered(dev);
7489                 dev->reg_state = NETREG_UNREGISTERED;
7490         }
7491         /*
7492          *      Prevent userspace races by waiting until the network
7493          *      device is fully setup before sending notifications.
7494          */
7495         if (!dev->rtnl_link_ops ||
7496             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7497                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7498
7499 out:
7500         return ret;
7501
7502 err_uninit:
7503         if (dev->netdev_ops->ndo_uninit)
7504                 dev->netdev_ops->ndo_uninit(dev);
7505         goto out;
7506 }
7507 EXPORT_SYMBOL(register_netdevice);
7508
7509 /**
7510  *      init_dummy_netdev       - init a dummy network device for NAPI
7511  *      @dev: device to init
7512  *
7513  *      This takes a network device structure and initialize the minimum
7514  *      amount of fields so it can be used to schedule NAPI polls without
7515  *      registering a full blown interface. This is to be used by drivers
7516  *      that need to tie several hardware interfaces to a single NAPI
7517  *      poll scheduler due to HW limitations.
7518  */
7519 int init_dummy_netdev(struct net_device *dev)
7520 {
7521         /* Clear everything. Note we don't initialize spinlocks
7522          * are they aren't supposed to be taken by any of the
7523          * NAPI code and this dummy netdev is supposed to be
7524          * only ever used for NAPI polls
7525          */
7526         memset(dev, 0, sizeof(struct net_device));
7527
7528         /* make sure we BUG if trying to hit standard
7529          * register/unregister code path
7530          */
7531         dev->reg_state = NETREG_DUMMY;
7532
7533         /* NAPI wants this */
7534         INIT_LIST_HEAD(&dev->napi_list);
7535
7536         /* a dummy interface is started by default */
7537         set_bit(__LINK_STATE_PRESENT, &dev->state);
7538         set_bit(__LINK_STATE_START, &dev->state);
7539
7540         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7541          * because users of this 'device' dont need to change
7542          * its refcount.
7543          */
7544
7545         return 0;
7546 }
7547 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7548
7549
7550 /**
7551  *      register_netdev - register a network device
7552  *      @dev: device to register
7553  *
7554  *      Take a completed network device structure and add it to the kernel
7555  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7556  *      chain. 0 is returned on success. A negative errno code is returned
7557  *      on a failure to set up the device, or if the name is a duplicate.
7558  *
7559  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7560  *      and expands the device name if you passed a format string to
7561  *      alloc_netdev.
7562  */
7563 int register_netdev(struct net_device *dev)
7564 {
7565         int err;
7566
7567         rtnl_lock();
7568         err = register_netdevice(dev);
7569         rtnl_unlock();
7570         return err;
7571 }
7572 EXPORT_SYMBOL(register_netdev);
7573
7574 int netdev_refcnt_read(const struct net_device *dev)
7575 {
7576         int i, refcnt = 0;
7577
7578         for_each_possible_cpu(i)
7579                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7580         return refcnt;
7581 }
7582 EXPORT_SYMBOL(netdev_refcnt_read);
7583
7584 /**
7585  * netdev_wait_allrefs - wait until all references are gone.
7586  * @dev: target net_device
7587  *
7588  * This is called when unregistering network devices.
7589  *
7590  * Any protocol or device that holds a reference should register
7591  * for netdevice notification, and cleanup and put back the
7592  * reference if they receive an UNREGISTER event.
7593  * We can get stuck here if buggy protocols don't correctly
7594  * call dev_put.
7595  */
7596 static void netdev_wait_allrefs(struct net_device *dev)
7597 {
7598         unsigned long rebroadcast_time, warning_time;
7599         int refcnt;
7600
7601         linkwatch_forget_dev(dev);
7602
7603         rebroadcast_time = warning_time = jiffies;
7604         refcnt = netdev_refcnt_read(dev);
7605
7606         while (refcnt != 0) {
7607                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7608                         rtnl_lock();
7609
7610                         /* Rebroadcast unregister notification */
7611                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7612
7613                         __rtnl_unlock();
7614                         rcu_barrier();
7615                         rtnl_lock();
7616
7617                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7618                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7619                                      &dev->state)) {
7620                                 /* We must not have linkwatch events
7621                                  * pending on unregister. If this
7622                                  * happens, we simply run the queue
7623                                  * unscheduled, resulting in a noop
7624                                  * for this device.
7625                                  */
7626                                 linkwatch_run_queue();
7627                         }
7628
7629                         __rtnl_unlock();
7630
7631                         rebroadcast_time = jiffies;
7632                 }
7633
7634                 msleep(250);
7635
7636                 refcnt = netdev_refcnt_read(dev);
7637
7638                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7639                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7640                                  dev->name, refcnt);
7641                         warning_time = jiffies;
7642                 }
7643         }
7644 }
7645
7646 /* The sequence is:
7647  *
7648  *      rtnl_lock();
7649  *      ...
7650  *      register_netdevice(x1);
7651  *      register_netdevice(x2);
7652  *      ...
7653  *      unregister_netdevice(y1);
7654  *      unregister_netdevice(y2);
7655  *      ...
7656  *      rtnl_unlock();
7657  *      free_netdev(y1);
7658  *      free_netdev(y2);
7659  *
7660  * We are invoked by rtnl_unlock().
7661  * This allows us to deal with problems:
7662  * 1) We can delete sysfs objects which invoke hotplug
7663  *    without deadlocking with linkwatch via keventd.
7664  * 2) Since we run with the RTNL semaphore not held, we can sleep
7665  *    safely in order to wait for the netdev refcnt to drop to zero.
7666  *
7667  * We must not return until all unregister events added during
7668  * the interval the lock was held have been completed.
7669  */
7670 void netdev_run_todo(void)
7671 {
7672         struct list_head list;
7673
7674         /* Snapshot list, allow later requests */
7675         list_replace_init(&net_todo_list, &list);
7676
7677         __rtnl_unlock();
7678
7679
7680         /* Wait for rcu callbacks to finish before next phase */
7681         if (!list_empty(&list))
7682                 rcu_barrier();
7683
7684         while (!list_empty(&list)) {
7685                 struct net_device *dev
7686                         = list_first_entry(&list, struct net_device, todo_list);
7687                 list_del(&dev->todo_list);
7688
7689                 rtnl_lock();
7690                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7691                 __rtnl_unlock();
7692
7693                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7694                         pr_err("network todo '%s' but state %d\n",
7695                                dev->name, dev->reg_state);
7696                         dump_stack();
7697                         continue;
7698                 }
7699
7700                 dev->reg_state = NETREG_UNREGISTERED;
7701
7702                 netdev_wait_allrefs(dev);
7703
7704                 /* paranoia */
7705                 BUG_ON(netdev_refcnt_read(dev));
7706                 BUG_ON(!list_empty(&dev->ptype_all));
7707                 BUG_ON(!list_empty(&dev->ptype_specific));
7708                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7709                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7710                 WARN_ON(dev->dn_ptr);
7711
7712                 if (dev->destructor)
7713                         dev->destructor(dev);
7714
7715                 /* Report a network device has been unregistered */
7716                 rtnl_lock();
7717                 dev_net(dev)->dev_unreg_count--;
7718                 __rtnl_unlock();
7719                 wake_up(&netdev_unregistering_wq);
7720
7721                 /* Free network device */
7722                 kobject_put(&dev->dev.kobj);
7723         }
7724 }
7725
7726 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7727  * all the same fields in the same order as net_device_stats, with only
7728  * the type differing, but rtnl_link_stats64 may have additional fields
7729  * at the end for newer counters.
7730  */
7731 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7732                              const struct net_device_stats *netdev_stats)
7733 {
7734 #if BITS_PER_LONG == 64
7735         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7736         memcpy(stats64, netdev_stats, sizeof(*stats64));
7737         /* zero out counters that only exist in rtnl_link_stats64 */
7738         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7739                sizeof(*stats64) - sizeof(*netdev_stats));
7740 #else
7741         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7742         const unsigned long *src = (const unsigned long *)netdev_stats;
7743         u64 *dst = (u64 *)stats64;
7744
7745         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7746         for (i = 0; i < n; i++)
7747                 dst[i] = src[i];
7748         /* zero out counters that only exist in rtnl_link_stats64 */
7749         memset((char *)stats64 + n * sizeof(u64), 0,
7750                sizeof(*stats64) - n * sizeof(u64));
7751 #endif
7752 }
7753 EXPORT_SYMBOL(netdev_stats_to_stats64);
7754
7755 /**
7756  *      dev_get_stats   - get network device statistics
7757  *      @dev: device to get statistics from
7758  *      @storage: place to store stats
7759  *
7760  *      Get network statistics from device. Return @storage.
7761  *      The device driver may provide its own method by setting
7762  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7763  *      otherwise the internal statistics structure is used.
7764  */
7765 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7766                                         struct rtnl_link_stats64 *storage)
7767 {
7768         const struct net_device_ops *ops = dev->netdev_ops;
7769
7770         if (ops->ndo_get_stats64) {
7771                 memset(storage, 0, sizeof(*storage));
7772                 ops->ndo_get_stats64(dev, storage);
7773         } else if (ops->ndo_get_stats) {
7774                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7775         } else {
7776                 netdev_stats_to_stats64(storage, &dev->stats);
7777         }
7778         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7779         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7780         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7781         return storage;
7782 }
7783 EXPORT_SYMBOL(dev_get_stats);
7784
7785 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7786 {
7787         struct netdev_queue *queue = dev_ingress_queue(dev);
7788
7789 #ifdef CONFIG_NET_CLS_ACT
7790         if (queue)
7791                 return queue;
7792         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7793         if (!queue)
7794                 return NULL;
7795         netdev_init_one_queue(dev, queue, NULL);
7796         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7797         queue->qdisc_sleeping = &noop_qdisc;
7798         rcu_assign_pointer(dev->ingress_queue, queue);
7799 #endif
7800         return queue;
7801 }
7802
7803 static const struct ethtool_ops default_ethtool_ops;
7804
7805 void netdev_set_default_ethtool_ops(struct net_device *dev,
7806                                     const struct ethtool_ops *ops)
7807 {
7808         if (dev->ethtool_ops == &default_ethtool_ops)
7809                 dev->ethtool_ops = ops;
7810 }
7811 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7812
7813 void netdev_freemem(struct net_device *dev)
7814 {
7815         char *addr = (char *)dev - dev->padded;
7816
7817         kvfree(addr);
7818 }
7819
7820 /**
7821  * alloc_netdev_mqs - allocate network device
7822  * @sizeof_priv: size of private data to allocate space for
7823  * @name: device name format string
7824  * @name_assign_type: origin of device name
7825  * @setup: callback to initialize device
7826  * @txqs: the number of TX subqueues to allocate
7827  * @rxqs: the number of RX subqueues to allocate
7828  *
7829  * Allocates a struct net_device with private data area for driver use
7830  * and performs basic initialization.  Also allocates subqueue structs
7831  * for each queue on the device.
7832  */
7833 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7834                 unsigned char name_assign_type,
7835                 void (*setup)(struct net_device *),
7836                 unsigned int txqs, unsigned int rxqs)
7837 {
7838         struct net_device *dev;
7839         size_t alloc_size;
7840         struct net_device *p;
7841
7842         BUG_ON(strlen(name) >= sizeof(dev->name));
7843
7844         if (txqs < 1) {
7845                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7846                 return NULL;
7847         }
7848
7849 #ifdef CONFIG_SYSFS
7850         if (rxqs < 1) {
7851                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7852                 return NULL;
7853         }
7854 #endif
7855
7856         alloc_size = sizeof(struct net_device);
7857         if (sizeof_priv) {
7858                 /* ensure 32-byte alignment of private area */
7859                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7860                 alloc_size += sizeof_priv;
7861         }
7862         /* ensure 32-byte alignment of whole construct */
7863         alloc_size += NETDEV_ALIGN - 1;
7864
7865         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
7866         if (!p)
7867                 return NULL;
7868
7869         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7870         dev->padded = (char *)dev - (char *)p;
7871
7872         dev->pcpu_refcnt = alloc_percpu(int);
7873         if (!dev->pcpu_refcnt)
7874                 goto free_dev;
7875
7876         if (dev_addr_init(dev))
7877                 goto free_pcpu;
7878
7879         dev_mc_init(dev);
7880         dev_uc_init(dev);
7881
7882         dev_net_set(dev, &init_net);
7883
7884         dev->gso_max_size = GSO_MAX_SIZE;
7885         dev->gso_max_segs = GSO_MAX_SEGS;
7886
7887         INIT_LIST_HEAD(&dev->napi_list);
7888         INIT_LIST_HEAD(&dev->unreg_list);
7889         INIT_LIST_HEAD(&dev->close_list);
7890         INIT_LIST_HEAD(&dev->link_watch_list);
7891         INIT_LIST_HEAD(&dev->adj_list.upper);
7892         INIT_LIST_HEAD(&dev->adj_list.lower);
7893         INIT_LIST_HEAD(&dev->ptype_all);
7894         INIT_LIST_HEAD(&dev->ptype_specific);
7895 #ifdef CONFIG_NET_SCHED
7896         hash_init(dev->qdisc_hash);
7897 #endif
7898         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7899         setup(dev);
7900
7901         if (!dev->tx_queue_len) {
7902                 dev->priv_flags |= IFF_NO_QUEUE;
7903                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7904         }
7905
7906         dev->num_tx_queues = txqs;
7907         dev->real_num_tx_queues = txqs;
7908         if (netif_alloc_netdev_queues(dev))
7909                 goto free_all;
7910
7911 #ifdef CONFIG_SYSFS
7912         dev->num_rx_queues = rxqs;
7913         dev->real_num_rx_queues = rxqs;
7914         if (netif_alloc_rx_queues(dev))
7915                 goto free_all;
7916 #endif
7917
7918         strcpy(dev->name, name);
7919         dev->name_assign_type = name_assign_type;
7920         dev->group = INIT_NETDEV_GROUP;
7921         if (!dev->ethtool_ops)
7922                 dev->ethtool_ops = &default_ethtool_ops;
7923
7924         nf_hook_ingress_init(dev);
7925
7926         return dev;
7927
7928 free_all:
7929         free_netdev(dev);
7930         return NULL;
7931
7932 free_pcpu:
7933         free_percpu(dev->pcpu_refcnt);
7934 free_dev:
7935         netdev_freemem(dev);
7936         return NULL;
7937 }
7938 EXPORT_SYMBOL(alloc_netdev_mqs);
7939
7940 /**
7941  * free_netdev - free network device
7942  * @dev: device
7943  *
7944  * This function does the last stage of destroying an allocated device
7945  * interface. The reference to the device object is released. If this
7946  * is the last reference then it will be freed.Must be called in process
7947  * context.
7948  */
7949 void free_netdev(struct net_device *dev)
7950 {
7951         struct napi_struct *p, *n;
7952         struct bpf_prog *prog;
7953
7954         might_sleep();
7955         netif_free_tx_queues(dev);
7956 #ifdef CONFIG_SYSFS
7957         kvfree(dev->_rx);
7958 #endif
7959
7960         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7961
7962         /* Flush device addresses */
7963         dev_addr_flush(dev);
7964
7965         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7966                 netif_napi_del(p);
7967
7968         free_percpu(dev->pcpu_refcnt);
7969         dev->pcpu_refcnt = NULL;
7970
7971         prog = rcu_dereference_protected(dev->xdp_prog, 1);
7972         if (prog) {
7973                 bpf_prog_put(prog);
7974                 static_key_slow_dec(&generic_xdp_needed);
7975         }
7976
7977         /*  Compatibility with error handling in drivers */
7978         if (dev->reg_state == NETREG_UNINITIALIZED) {
7979                 netdev_freemem(dev);
7980                 return;
7981         }
7982
7983         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7984         dev->reg_state = NETREG_RELEASED;
7985
7986         /* will free via device release */
7987         put_device(&dev->dev);
7988 }
7989 EXPORT_SYMBOL(free_netdev);
7990
7991 /**
7992  *      synchronize_net -  Synchronize with packet receive processing
7993  *
7994  *      Wait for packets currently being received to be done.
7995  *      Does not block later packets from starting.
7996  */
7997 void synchronize_net(void)
7998 {
7999         might_sleep();
8000         if (rtnl_is_locked())
8001                 synchronize_rcu_expedited();
8002         else
8003                 synchronize_rcu();
8004 }
8005 EXPORT_SYMBOL(synchronize_net);
8006
8007 /**
8008  *      unregister_netdevice_queue - remove device from the kernel
8009  *      @dev: device
8010  *      @head: list
8011  *
8012  *      This function shuts down a device interface and removes it
8013  *      from the kernel tables.
8014  *      If head not NULL, device is queued to be unregistered later.
8015  *
8016  *      Callers must hold the rtnl semaphore.  You may want
8017  *      unregister_netdev() instead of this.
8018  */
8019
8020 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8021 {
8022         ASSERT_RTNL();
8023
8024         if (head) {
8025                 list_move_tail(&dev->unreg_list, head);
8026         } else {
8027                 rollback_registered(dev);
8028                 /* Finish processing unregister after unlock */
8029                 net_set_todo(dev);
8030         }
8031 }
8032 EXPORT_SYMBOL(unregister_netdevice_queue);
8033
8034 /**
8035  *      unregister_netdevice_many - unregister many devices
8036  *      @head: list of devices
8037  *
8038  *  Note: As most callers use a stack allocated list_head,
8039  *  we force a list_del() to make sure stack wont be corrupted later.
8040  */
8041 void unregister_netdevice_many(struct list_head *head)
8042 {
8043         struct net_device *dev;
8044
8045         if (!list_empty(head)) {
8046                 rollback_registered_many(head);
8047                 list_for_each_entry(dev, head, unreg_list)
8048                         net_set_todo(dev);
8049                 list_del(head);
8050         }
8051 }
8052 EXPORT_SYMBOL(unregister_netdevice_many);
8053
8054 /**
8055  *      unregister_netdev - remove device from the kernel
8056  *      @dev: device
8057  *
8058  *      This function shuts down a device interface and removes it
8059  *      from the kernel tables.
8060  *
8061  *      This is just a wrapper for unregister_netdevice that takes
8062  *      the rtnl semaphore.  In general you want to use this and not
8063  *      unregister_netdevice.
8064  */
8065 void unregister_netdev(struct net_device *dev)
8066 {
8067         rtnl_lock();
8068         unregister_netdevice(dev);
8069         rtnl_unlock();
8070 }
8071 EXPORT_SYMBOL(unregister_netdev);
8072
8073 /**
8074  *      dev_change_net_namespace - move device to different nethost namespace
8075  *      @dev: device
8076  *      @net: network namespace
8077  *      @pat: If not NULL name pattern to try if the current device name
8078  *            is already taken in the destination network namespace.
8079  *
8080  *      This function shuts down a device interface and moves it
8081  *      to a new network namespace. On success 0 is returned, on
8082  *      a failure a netagive errno code is returned.
8083  *
8084  *      Callers must hold the rtnl semaphore.
8085  */
8086
8087 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8088 {
8089         int err;
8090
8091         ASSERT_RTNL();
8092
8093         /* Don't allow namespace local devices to be moved. */
8094         err = -EINVAL;
8095         if (dev->features & NETIF_F_NETNS_LOCAL)
8096                 goto out;
8097
8098         /* Ensure the device has been registrered */
8099         if (dev->reg_state != NETREG_REGISTERED)
8100                 goto out;
8101
8102         /* Get out if there is nothing todo */
8103         err = 0;
8104         if (net_eq(dev_net(dev), net))
8105                 goto out;
8106
8107         /* Pick the destination device name, and ensure
8108          * we can use it in the destination network namespace.
8109          */
8110         err = -EEXIST;
8111         if (__dev_get_by_name(net, dev->name)) {
8112                 /* We get here if we can't use the current device name */
8113                 if (!pat)
8114                         goto out;
8115                 if (dev_get_valid_name(net, dev, pat) < 0)
8116                         goto out;
8117         }
8118
8119         /*
8120          * And now a mini version of register_netdevice unregister_netdevice.
8121          */
8122
8123         /* If device is running close it first. */
8124         dev_close(dev);
8125
8126         /* And unlink it from device chain */
8127         err = -ENODEV;
8128         unlist_netdevice(dev);
8129
8130         synchronize_net();
8131
8132         /* Shutdown queueing discipline. */
8133         dev_shutdown(dev);
8134
8135         /* Notify protocols, that we are about to destroy
8136          * this device. They should clean all the things.
8137          *
8138          * Note that dev->reg_state stays at NETREG_REGISTERED.
8139          * This is wanted because this way 8021q and macvlan know
8140          * the device is just moving and can keep their slaves up.
8141          */
8142         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8143         rcu_barrier();
8144         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8145         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8146
8147         /*
8148          *      Flush the unicast and multicast chains
8149          */
8150         dev_uc_flush(dev);
8151         dev_mc_flush(dev);
8152
8153         /* Send a netdev-removed uevent to the old namespace */
8154         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8155         netdev_adjacent_del_links(dev);
8156
8157         /* Actually switch the network namespace */
8158         dev_net_set(dev, net);
8159
8160         /* If there is an ifindex conflict assign a new one */
8161         if (__dev_get_by_index(net, dev->ifindex))
8162                 dev->ifindex = dev_new_index(net);
8163
8164         /* Send a netdev-add uevent to the new namespace */
8165         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8166         netdev_adjacent_add_links(dev);
8167
8168         /* Fixup kobjects */
8169         err = device_rename(&dev->dev, dev->name);
8170         WARN_ON(err);
8171
8172         /* Add the device back in the hashes */
8173         list_netdevice(dev);
8174
8175         /* Notify protocols, that a new device appeared. */
8176         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8177
8178         /*
8179          *      Prevent userspace races by waiting until the network
8180          *      device is fully setup before sending notifications.
8181          */
8182         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8183
8184         synchronize_net();
8185         err = 0;
8186 out:
8187         return err;
8188 }
8189 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8190
8191 static int dev_cpu_dead(unsigned int oldcpu)
8192 {
8193         struct sk_buff **list_skb;
8194         struct sk_buff *skb;
8195         unsigned int cpu;
8196         struct softnet_data *sd, *oldsd;
8197
8198         local_irq_disable();
8199         cpu = smp_processor_id();
8200         sd = &per_cpu(softnet_data, cpu);
8201         oldsd = &per_cpu(softnet_data, oldcpu);
8202
8203         /* Find end of our completion_queue. */
8204         list_skb = &sd->completion_queue;
8205         while (*list_skb)
8206                 list_skb = &(*list_skb)->next;
8207         /* Append completion queue from offline CPU. */
8208         *list_skb = oldsd->completion_queue;
8209         oldsd->completion_queue = NULL;
8210
8211         /* Append output queue from offline CPU. */
8212         if (oldsd->output_queue) {
8213                 *sd->output_queue_tailp = oldsd->output_queue;
8214                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8215                 oldsd->output_queue = NULL;
8216                 oldsd->output_queue_tailp = &oldsd->output_queue;
8217         }
8218         /* Append NAPI poll list from offline CPU, with one exception :
8219          * process_backlog() must be called by cpu owning percpu backlog.
8220          * We properly handle process_queue & input_pkt_queue later.
8221          */
8222         while (!list_empty(&oldsd->poll_list)) {
8223                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8224                                                             struct napi_struct,
8225                                                             poll_list);
8226
8227                 list_del_init(&napi->poll_list);
8228                 if (napi->poll == process_backlog)
8229                         napi->state = 0;
8230                 else
8231                         ____napi_schedule(sd, napi);
8232         }
8233
8234         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8235         local_irq_enable();
8236
8237         /* Process offline CPU's input_pkt_queue */
8238         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8239                 netif_rx_ni(skb);
8240                 input_queue_head_incr(oldsd);
8241         }
8242         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8243                 netif_rx_ni(skb);
8244                 input_queue_head_incr(oldsd);
8245         }
8246
8247         return 0;
8248 }
8249
8250 /**
8251  *      netdev_increment_features - increment feature set by one
8252  *      @all: current feature set
8253  *      @one: new feature set
8254  *      @mask: mask feature set
8255  *
8256  *      Computes a new feature set after adding a device with feature set
8257  *      @one to the master device with current feature set @all.  Will not
8258  *      enable anything that is off in @mask. Returns the new feature set.
8259  */
8260 netdev_features_t netdev_increment_features(netdev_features_t all,
8261         netdev_features_t one, netdev_features_t mask)
8262 {
8263         if (mask & NETIF_F_HW_CSUM)
8264                 mask |= NETIF_F_CSUM_MASK;
8265         mask |= NETIF_F_VLAN_CHALLENGED;
8266
8267         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8268         all &= one | ~NETIF_F_ALL_FOR_ALL;
8269
8270         /* If one device supports hw checksumming, set for all. */
8271         if (all & NETIF_F_HW_CSUM)
8272                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8273
8274         return all;
8275 }
8276 EXPORT_SYMBOL(netdev_increment_features);
8277
8278 static struct hlist_head * __net_init netdev_create_hash(void)
8279 {
8280         int i;
8281         struct hlist_head *hash;
8282
8283         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8284         if (hash != NULL)
8285                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8286                         INIT_HLIST_HEAD(&hash[i]);
8287
8288         return hash;
8289 }
8290
8291 /* Initialize per network namespace state */
8292 static int __net_init netdev_init(struct net *net)
8293 {
8294         if (net != &init_net)
8295                 INIT_LIST_HEAD(&net->dev_base_head);
8296
8297         net->dev_name_head = netdev_create_hash();
8298         if (net->dev_name_head == NULL)
8299                 goto err_name;
8300
8301         net->dev_index_head = netdev_create_hash();
8302         if (net->dev_index_head == NULL)
8303                 goto err_idx;
8304
8305         return 0;
8306
8307 err_idx:
8308         kfree(net->dev_name_head);
8309 err_name:
8310         return -ENOMEM;
8311 }
8312
8313 /**
8314  *      netdev_drivername - network driver for the device
8315  *      @dev: network device
8316  *
8317  *      Determine network driver for device.
8318  */
8319 const char *netdev_drivername(const struct net_device *dev)
8320 {
8321         const struct device_driver *driver;
8322         const struct device *parent;
8323         const char *empty = "";
8324
8325         parent = dev->dev.parent;
8326         if (!parent)
8327                 return empty;
8328
8329         driver = parent->driver;
8330         if (driver && driver->name)
8331                 return driver->name;
8332         return empty;
8333 }
8334
8335 static void __netdev_printk(const char *level, const struct net_device *dev,
8336                             struct va_format *vaf)
8337 {
8338         if (dev && dev->dev.parent) {
8339                 dev_printk_emit(level[1] - '0',
8340                                 dev->dev.parent,
8341                                 "%s %s %s%s: %pV",
8342                                 dev_driver_string(dev->dev.parent),
8343                                 dev_name(dev->dev.parent),
8344                                 netdev_name(dev), netdev_reg_state(dev),
8345                                 vaf);
8346         } else if (dev) {
8347                 printk("%s%s%s: %pV",
8348                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8349         } else {
8350                 printk("%s(NULL net_device): %pV", level, vaf);
8351         }
8352 }
8353
8354 void netdev_printk(const char *level, const struct net_device *dev,
8355                    const char *format, ...)
8356 {
8357         struct va_format vaf;
8358         va_list args;
8359
8360         va_start(args, format);
8361
8362         vaf.fmt = format;
8363         vaf.va = &args;
8364
8365         __netdev_printk(level, dev, &vaf);
8366
8367         va_end(args);
8368 }
8369 EXPORT_SYMBOL(netdev_printk);
8370
8371 #define define_netdev_printk_level(func, level)                 \
8372 void func(const struct net_device *dev, const char *fmt, ...)   \
8373 {                                                               \
8374         struct va_format vaf;                                   \
8375         va_list args;                                           \
8376                                                                 \
8377         va_start(args, fmt);                                    \
8378                                                                 \
8379         vaf.fmt = fmt;                                          \
8380         vaf.va = &args;                                         \
8381                                                                 \
8382         __netdev_printk(level, dev, &vaf);                      \
8383                                                                 \
8384         va_end(args);                                           \
8385 }                                                               \
8386 EXPORT_SYMBOL(func);
8387
8388 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8389 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8390 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8391 define_netdev_printk_level(netdev_err, KERN_ERR);
8392 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8393 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8394 define_netdev_printk_level(netdev_info, KERN_INFO);
8395
8396 static void __net_exit netdev_exit(struct net *net)
8397 {
8398         kfree(net->dev_name_head);
8399         kfree(net->dev_index_head);
8400 }
8401
8402 static struct pernet_operations __net_initdata netdev_net_ops = {
8403         .init = netdev_init,
8404         .exit = netdev_exit,
8405 };
8406
8407 static void __net_exit default_device_exit(struct net *net)
8408 {
8409         struct net_device *dev, *aux;
8410         /*
8411          * Push all migratable network devices back to the
8412          * initial network namespace
8413          */
8414         rtnl_lock();
8415         for_each_netdev_safe(net, dev, aux) {
8416                 int err;
8417                 char fb_name[IFNAMSIZ];
8418
8419                 /* Ignore unmoveable devices (i.e. loopback) */
8420                 if (dev->features & NETIF_F_NETNS_LOCAL)
8421                         continue;
8422
8423                 /* Leave virtual devices for the generic cleanup */
8424                 if (dev->rtnl_link_ops)
8425                         continue;
8426
8427                 /* Push remaining network devices to init_net */
8428                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8429                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8430                 if (err) {
8431                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8432                                  __func__, dev->name, err);
8433                         BUG();
8434                 }
8435         }
8436         rtnl_unlock();
8437 }
8438
8439 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8440 {
8441         /* Return with the rtnl_lock held when there are no network
8442          * devices unregistering in any network namespace in net_list.
8443          */
8444         struct net *net;
8445         bool unregistering;
8446         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8447
8448         add_wait_queue(&netdev_unregistering_wq, &wait);
8449         for (;;) {
8450                 unregistering = false;
8451                 rtnl_lock();
8452                 list_for_each_entry(net, net_list, exit_list) {
8453                         if (net->dev_unreg_count > 0) {
8454                                 unregistering = true;
8455                                 break;
8456                         }
8457                 }
8458                 if (!unregistering)
8459                         break;
8460                 __rtnl_unlock();
8461
8462                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8463         }
8464         remove_wait_queue(&netdev_unregistering_wq, &wait);
8465 }
8466
8467 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8468 {
8469         /* At exit all network devices most be removed from a network
8470          * namespace.  Do this in the reverse order of registration.
8471          * Do this across as many network namespaces as possible to
8472          * improve batching efficiency.
8473          */
8474         struct net_device *dev;
8475         struct net *net;
8476         LIST_HEAD(dev_kill_list);
8477
8478         /* To prevent network device cleanup code from dereferencing
8479          * loopback devices or network devices that have been freed
8480          * wait here for all pending unregistrations to complete,
8481          * before unregistring the loopback device and allowing the
8482          * network namespace be freed.
8483          *
8484          * The netdev todo list containing all network devices
8485          * unregistrations that happen in default_device_exit_batch
8486          * will run in the rtnl_unlock() at the end of
8487          * default_device_exit_batch.
8488          */
8489         rtnl_lock_unregistering(net_list);
8490         list_for_each_entry(net, net_list, exit_list) {
8491                 for_each_netdev_reverse(net, dev) {
8492                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8493                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8494                         else
8495                                 unregister_netdevice_queue(dev, &dev_kill_list);
8496                 }
8497         }
8498         unregister_netdevice_many(&dev_kill_list);
8499         rtnl_unlock();
8500 }
8501
8502 static struct pernet_operations __net_initdata default_device_ops = {
8503         .exit = default_device_exit,
8504         .exit_batch = default_device_exit_batch,
8505 };
8506
8507 /*
8508  *      Initialize the DEV module. At boot time this walks the device list and
8509  *      unhooks any devices that fail to initialise (normally hardware not
8510  *      present) and leaves us with a valid list of present and active devices.
8511  *
8512  */
8513
8514 /*
8515  *       This is called single threaded during boot, so no need
8516  *       to take the rtnl semaphore.
8517  */
8518 static int __init net_dev_init(void)
8519 {
8520         int i, rc = -ENOMEM;
8521
8522         BUG_ON(!dev_boot_phase);
8523
8524         if (dev_proc_init())
8525                 goto out;
8526
8527         if (netdev_kobject_init())
8528                 goto out;
8529
8530         INIT_LIST_HEAD(&ptype_all);
8531         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8532                 INIT_LIST_HEAD(&ptype_base[i]);
8533
8534         INIT_LIST_HEAD(&offload_base);
8535
8536         if (register_pernet_subsys(&netdev_net_ops))
8537                 goto out;
8538
8539         /*
8540          *      Initialise the packet receive queues.
8541          */
8542
8543         for_each_possible_cpu(i) {
8544                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8545                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8546
8547                 INIT_WORK(flush, flush_backlog);
8548
8549                 skb_queue_head_init(&sd->input_pkt_queue);
8550                 skb_queue_head_init(&sd->process_queue);
8551                 INIT_LIST_HEAD(&sd->poll_list);
8552                 sd->output_queue_tailp = &sd->output_queue;
8553 #ifdef CONFIG_RPS
8554                 sd->csd.func = rps_trigger_softirq;
8555                 sd->csd.info = sd;
8556                 sd->cpu = i;
8557 #endif
8558
8559                 sd->backlog.poll = process_backlog;
8560                 sd->backlog.weight = weight_p;
8561         }
8562
8563         dev_boot_phase = 0;
8564
8565         /* The loopback device is special if any other network devices
8566          * is present in a network namespace the loopback device must
8567          * be present. Since we now dynamically allocate and free the
8568          * loopback device ensure this invariant is maintained by
8569          * keeping the loopback device as the first device on the
8570          * list of network devices.  Ensuring the loopback devices
8571          * is the first device that appears and the last network device
8572          * that disappears.
8573          */
8574         if (register_pernet_device(&loopback_net_ops))
8575                 goto out;
8576
8577         if (register_pernet_device(&default_device_ops))
8578                 goto out;
8579
8580         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8581         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8582
8583         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8584                                        NULL, dev_cpu_dead);
8585         WARN_ON(rc < 0);
8586         dst_subsys_init();
8587         rc = 0;
8588 out:
8589         return rc;
8590 }
8591
8592 subsys_initcall(net_dev_init);