]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/core/filter.c
Merge branch 'parisc-4.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[karo-tx-linux.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/if_packet.h>
33 #include <linux/if_arp.h>
34 #include <linux/gfp.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <net/sch_generic.h>
51 #include <net/cls_cgroup.h>
52 #include <net/dst_metadata.h>
53 #include <net/dst.h>
54 #include <net/sock_reuseport.h>
55
56 /**
57  *      sk_filter_trim_cap - run a packet through a socket filter
58  *      @sk: sock associated with &sk_buff
59  *      @skb: buffer to filter
60  *      @cap: limit on how short the eBPF program may trim the packet
61  *
62  * Run the eBPF program and then cut skb->data to correct size returned by
63  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
64  * than pkt_len we keep whole skb->data. This is the socket level
65  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
66  * be accepted or -EPERM if the packet should be tossed.
67  *
68  */
69 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
70 {
71         int err;
72         struct sk_filter *filter;
73
74         /*
75          * If the skb was allocated from pfmemalloc reserves, only
76          * allow SOCK_MEMALLOC sockets to use it as this socket is
77          * helping free memory
78          */
79         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
80                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
81                 return -ENOMEM;
82         }
83         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
84         if (err)
85                 return err;
86
87         err = security_sock_rcv_skb(sk, skb);
88         if (err)
89                 return err;
90
91         rcu_read_lock();
92         filter = rcu_dereference(sk->sk_filter);
93         if (filter) {
94                 unsigned int pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
95                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
96         }
97         rcu_read_unlock();
98
99         return err;
100 }
101 EXPORT_SYMBOL(sk_filter_trim_cap);
102
103 BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
104 {
105         return skb_get_poff(skb);
106 }
107
108 BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
109 {
110         struct nlattr *nla;
111
112         if (skb_is_nonlinear(skb))
113                 return 0;
114
115         if (skb->len < sizeof(struct nlattr))
116                 return 0;
117
118         if (a > skb->len - sizeof(struct nlattr))
119                 return 0;
120
121         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
122         if (nla)
123                 return (void *) nla - (void *) skb->data;
124
125         return 0;
126 }
127
128 BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
129 {
130         struct nlattr *nla;
131
132         if (skb_is_nonlinear(skb))
133                 return 0;
134
135         if (skb->len < sizeof(struct nlattr))
136                 return 0;
137
138         if (a > skb->len - sizeof(struct nlattr))
139                 return 0;
140
141         nla = (struct nlattr *) &skb->data[a];
142         if (nla->nla_len > skb->len - a)
143                 return 0;
144
145         nla = nla_find_nested(nla, x);
146         if (nla)
147                 return (void *) nla - (void *) skb->data;
148
149         return 0;
150 }
151
152 BPF_CALL_0(__get_raw_cpu_id)
153 {
154         return raw_smp_processor_id();
155 }
156
157 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
158         .func           = __get_raw_cpu_id,
159         .gpl_only       = false,
160         .ret_type       = RET_INTEGER,
161 };
162
163 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
164                               struct bpf_insn *insn_buf)
165 {
166         struct bpf_insn *insn = insn_buf;
167
168         switch (skb_field) {
169         case SKF_AD_MARK:
170                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
171
172                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
173                                       offsetof(struct sk_buff, mark));
174                 break;
175
176         case SKF_AD_PKTTYPE:
177                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
178                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
179 #ifdef __BIG_ENDIAN_BITFIELD
180                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
181 #endif
182                 break;
183
184         case SKF_AD_QUEUE:
185                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
186
187                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
188                                       offsetof(struct sk_buff, queue_mapping));
189                 break;
190
191         case SKF_AD_VLAN_TAG:
192         case SKF_AD_VLAN_TAG_PRESENT:
193                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
194                 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
195
196                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
197                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
198                                       offsetof(struct sk_buff, vlan_tci));
199                 if (skb_field == SKF_AD_VLAN_TAG) {
200                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
201                                                 ~VLAN_TAG_PRESENT);
202                 } else {
203                         /* dst_reg >>= 12 */
204                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
205                         /* dst_reg &= 1 */
206                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
207                 }
208                 break;
209         }
210
211         return insn - insn_buf;
212 }
213
214 static bool convert_bpf_extensions(struct sock_filter *fp,
215                                    struct bpf_insn **insnp)
216 {
217         struct bpf_insn *insn = *insnp;
218         u32 cnt;
219
220         switch (fp->k) {
221         case SKF_AD_OFF + SKF_AD_PROTOCOL:
222                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
223
224                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
225                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
226                                       offsetof(struct sk_buff, protocol));
227                 /* A = ntohs(A) [emitting a nop or swap16] */
228                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
229                 break;
230
231         case SKF_AD_OFF + SKF_AD_PKTTYPE:
232                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
233                 insn += cnt - 1;
234                 break;
235
236         case SKF_AD_OFF + SKF_AD_IFINDEX:
237         case SKF_AD_OFF + SKF_AD_HATYPE:
238                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
239                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
240
241                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
242                                       BPF_REG_TMP, BPF_REG_CTX,
243                                       offsetof(struct sk_buff, dev));
244                 /* if (tmp != 0) goto pc + 1 */
245                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
246                 *insn++ = BPF_EXIT_INSN();
247                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
248                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
249                                             offsetof(struct net_device, ifindex));
250                 else
251                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
252                                             offsetof(struct net_device, type));
253                 break;
254
255         case SKF_AD_OFF + SKF_AD_MARK:
256                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
257                 insn += cnt - 1;
258                 break;
259
260         case SKF_AD_OFF + SKF_AD_RXHASH:
261                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
262
263                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
264                                     offsetof(struct sk_buff, hash));
265                 break;
266
267         case SKF_AD_OFF + SKF_AD_QUEUE:
268                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
269                 insn += cnt - 1;
270                 break;
271
272         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
273                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
274                                          BPF_REG_A, BPF_REG_CTX, insn);
275                 insn += cnt - 1;
276                 break;
277
278         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
279                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
280                                          BPF_REG_A, BPF_REG_CTX, insn);
281                 insn += cnt - 1;
282                 break;
283
284         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
285                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
286
287                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
288                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
289                                       offsetof(struct sk_buff, vlan_proto));
290                 /* A = ntohs(A) [emitting a nop or swap16] */
291                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
292                 break;
293
294         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
295         case SKF_AD_OFF + SKF_AD_NLATTR:
296         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
297         case SKF_AD_OFF + SKF_AD_CPU:
298         case SKF_AD_OFF + SKF_AD_RANDOM:
299                 /* arg1 = CTX */
300                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
301                 /* arg2 = A */
302                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
303                 /* arg3 = X */
304                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
305                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
306                 switch (fp->k) {
307                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
308                         *insn = BPF_EMIT_CALL(__skb_get_pay_offset);
309                         break;
310                 case SKF_AD_OFF + SKF_AD_NLATTR:
311                         *insn = BPF_EMIT_CALL(__skb_get_nlattr);
312                         break;
313                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
314                         *insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
315                         break;
316                 case SKF_AD_OFF + SKF_AD_CPU:
317                         *insn = BPF_EMIT_CALL(__get_raw_cpu_id);
318                         break;
319                 case SKF_AD_OFF + SKF_AD_RANDOM:
320                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
321                         bpf_user_rnd_init_once();
322                         break;
323                 }
324                 break;
325
326         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
327                 /* A ^= X */
328                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
329                 break;
330
331         default:
332                 /* This is just a dummy call to avoid letting the compiler
333                  * evict __bpf_call_base() as an optimization. Placed here
334                  * where no-one bothers.
335                  */
336                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
337                 return false;
338         }
339
340         *insnp = insn;
341         return true;
342 }
343
344 /**
345  *      bpf_convert_filter - convert filter program
346  *      @prog: the user passed filter program
347  *      @len: the length of the user passed filter program
348  *      @new_prog: buffer where converted program will be stored
349  *      @new_len: pointer to store length of converted program
350  *
351  * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
352  * Conversion workflow:
353  *
354  * 1) First pass for calculating the new program length:
355  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
356  *
357  * 2) 2nd pass to remap in two passes: 1st pass finds new
358  *    jump offsets, 2nd pass remapping:
359  *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
360  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
361  */
362 static int bpf_convert_filter(struct sock_filter *prog, int len,
363                               struct bpf_insn *new_prog, int *new_len)
364 {
365         int new_flen = 0, pass = 0, target, i;
366         struct bpf_insn *new_insn;
367         struct sock_filter *fp;
368         int *addrs = NULL;
369         u8 bpf_src;
370
371         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
372         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
373
374         if (len <= 0 || len > BPF_MAXINSNS)
375                 return -EINVAL;
376
377         if (new_prog) {
378                 addrs = kcalloc(len, sizeof(*addrs),
379                                 GFP_KERNEL | __GFP_NOWARN);
380                 if (!addrs)
381                         return -ENOMEM;
382         }
383
384 do_pass:
385         new_insn = new_prog;
386         fp = prog;
387
388         /* Classic BPF related prologue emission. */
389         if (new_insn) {
390                 /* Classic BPF expects A and X to be reset first. These need
391                  * to be guaranteed to be the first two instructions.
392                  */
393                 *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
394                 *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
395
396                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
397                  * In eBPF case it's done by the compiler, here we need to
398                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
399                  */
400                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
401         } else {
402                 new_insn += 3;
403         }
404
405         for (i = 0; i < len; fp++, i++) {
406                 struct bpf_insn tmp_insns[6] = { };
407                 struct bpf_insn *insn = tmp_insns;
408
409                 if (addrs)
410                         addrs[i] = new_insn - new_prog;
411
412                 switch (fp->code) {
413                 /* All arithmetic insns and skb loads map as-is. */
414                 case BPF_ALU | BPF_ADD | BPF_X:
415                 case BPF_ALU | BPF_ADD | BPF_K:
416                 case BPF_ALU | BPF_SUB | BPF_X:
417                 case BPF_ALU | BPF_SUB | BPF_K:
418                 case BPF_ALU | BPF_AND | BPF_X:
419                 case BPF_ALU | BPF_AND | BPF_K:
420                 case BPF_ALU | BPF_OR | BPF_X:
421                 case BPF_ALU | BPF_OR | BPF_K:
422                 case BPF_ALU | BPF_LSH | BPF_X:
423                 case BPF_ALU | BPF_LSH | BPF_K:
424                 case BPF_ALU | BPF_RSH | BPF_X:
425                 case BPF_ALU | BPF_RSH | BPF_K:
426                 case BPF_ALU | BPF_XOR | BPF_X:
427                 case BPF_ALU | BPF_XOR | BPF_K:
428                 case BPF_ALU | BPF_MUL | BPF_X:
429                 case BPF_ALU | BPF_MUL | BPF_K:
430                 case BPF_ALU | BPF_DIV | BPF_X:
431                 case BPF_ALU | BPF_DIV | BPF_K:
432                 case BPF_ALU | BPF_MOD | BPF_X:
433                 case BPF_ALU | BPF_MOD | BPF_K:
434                 case BPF_ALU | BPF_NEG:
435                 case BPF_LD | BPF_ABS | BPF_W:
436                 case BPF_LD | BPF_ABS | BPF_H:
437                 case BPF_LD | BPF_ABS | BPF_B:
438                 case BPF_LD | BPF_IND | BPF_W:
439                 case BPF_LD | BPF_IND | BPF_H:
440                 case BPF_LD | BPF_IND | BPF_B:
441                         /* Check for overloaded BPF extension and
442                          * directly convert it if found, otherwise
443                          * just move on with mapping.
444                          */
445                         if (BPF_CLASS(fp->code) == BPF_LD &&
446                             BPF_MODE(fp->code) == BPF_ABS &&
447                             convert_bpf_extensions(fp, &insn))
448                                 break;
449
450                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
451                         break;
452
453                 /* Jump transformation cannot use BPF block macros
454                  * everywhere as offset calculation and target updates
455                  * require a bit more work than the rest, i.e. jump
456                  * opcodes map as-is, but offsets need adjustment.
457                  */
458
459 #define BPF_EMIT_JMP                                                    \
460         do {                                                            \
461                 if (target >= len || target < 0)                        \
462                         goto err;                                       \
463                 insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;   \
464                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
465                 insn->off -= insn - tmp_insns;                          \
466         } while (0)
467
468                 case BPF_JMP | BPF_JA:
469                         target = i + fp->k + 1;
470                         insn->code = fp->code;
471                         BPF_EMIT_JMP;
472                         break;
473
474                 case BPF_JMP | BPF_JEQ | BPF_K:
475                 case BPF_JMP | BPF_JEQ | BPF_X:
476                 case BPF_JMP | BPF_JSET | BPF_K:
477                 case BPF_JMP | BPF_JSET | BPF_X:
478                 case BPF_JMP | BPF_JGT | BPF_K:
479                 case BPF_JMP | BPF_JGT | BPF_X:
480                 case BPF_JMP | BPF_JGE | BPF_K:
481                 case BPF_JMP | BPF_JGE | BPF_X:
482                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
483                                 /* BPF immediates are signed, zero extend
484                                  * immediate into tmp register and use it
485                                  * in compare insn.
486                                  */
487                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
488
489                                 insn->dst_reg = BPF_REG_A;
490                                 insn->src_reg = BPF_REG_TMP;
491                                 bpf_src = BPF_X;
492                         } else {
493                                 insn->dst_reg = BPF_REG_A;
494                                 insn->imm = fp->k;
495                                 bpf_src = BPF_SRC(fp->code);
496                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
497                         }
498
499                         /* Common case where 'jump_false' is next insn. */
500                         if (fp->jf == 0) {
501                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
502                                 target = i + fp->jt + 1;
503                                 BPF_EMIT_JMP;
504                                 break;
505                         }
506
507                         /* Convert JEQ into JNE when 'jump_true' is next insn. */
508                         if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
509                                 insn->code = BPF_JMP | BPF_JNE | bpf_src;
510                                 target = i + fp->jf + 1;
511                                 BPF_EMIT_JMP;
512                                 break;
513                         }
514
515                         /* Other jumps are mapped into two insns: Jxx and JA. */
516                         target = i + fp->jt + 1;
517                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
518                         BPF_EMIT_JMP;
519                         insn++;
520
521                         insn->code = BPF_JMP | BPF_JA;
522                         target = i + fp->jf + 1;
523                         BPF_EMIT_JMP;
524                         break;
525
526                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
527                 case BPF_LDX | BPF_MSH | BPF_B:
528                         /* tmp = A */
529                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
530                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
531                         *insn++ = BPF_LD_ABS(BPF_B, fp->k);
532                         /* A &= 0xf */
533                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
534                         /* A <<= 2 */
535                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
536                         /* X = A */
537                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
538                         /* A = tmp */
539                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
540                         break;
541
542                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
543                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
544                  */
545                 case BPF_RET | BPF_A:
546                 case BPF_RET | BPF_K:
547                         if (BPF_RVAL(fp->code) == BPF_K)
548                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
549                                                         0, fp->k);
550                         *insn = BPF_EXIT_INSN();
551                         break;
552
553                 /* Store to stack. */
554                 case BPF_ST:
555                 case BPF_STX:
556                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
557                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
558                                             -(BPF_MEMWORDS - fp->k) * 4);
559                         break;
560
561                 /* Load from stack. */
562                 case BPF_LD | BPF_MEM:
563                 case BPF_LDX | BPF_MEM:
564                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
565                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
566                                             -(BPF_MEMWORDS - fp->k) * 4);
567                         break;
568
569                 /* A = K or X = K */
570                 case BPF_LD | BPF_IMM:
571                 case BPF_LDX | BPF_IMM:
572                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
573                                               BPF_REG_A : BPF_REG_X, fp->k);
574                         break;
575
576                 /* X = A */
577                 case BPF_MISC | BPF_TAX:
578                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
579                         break;
580
581                 /* A = X */
582                 case BPF_MISC | BPF_TXA:
583                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
584                         break;
585
586                 /* A = skb->len or X = skb->len */
587                 case BPF_LD | BPF_W | BPF_LEN:
588                 case BPF_LDX | BPF_W | BPF_LEN:
589                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
590                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
591                                             offsetof(struct sk_buff, len));
592                         break;
593
594                 /* Access seccomp_data fields. */
595                 case BPF_LDX | BPF_ABS | BPF_W:
596                         /* A = *(u32 *) (ctx + K) */
597                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
598                         break;
599
600                 /* Unknown instruction. */
601                 default:
602                         goto err;
603                 }
604
605                 insn++;
606                 if (new_prog)
607                         memcpy(new_insn, tmp_insns,
608                                sizeof(*insn) * (insn - tmp_insns));
609                 new_insn += insn - tmp_insns;
610         }
611
612         if (!new_prog) {
613                 /* Only calculating new length. */
614                 *new_len = new_insn - new_prog;
615                 return 0;
616         }
617
618         pass++;
619         if (new_flen != new_insn - new_prog) {
620                 new_flen = new_insn - new_prog;
621                 if (pass > 2)
622                         goto err;
623                 goto do_pass;
624         }
625
626         kfree(addrs);
627         BUG_ON(*new_len != new_flen);
628         return 0;
629 err:
630         kfree(addrs);
631         return -EINVAL;
632 }
633
634 /* Security:
635  *
636  * As we dont want to clear mem[] array for each packet going through
637  * __bpf_prog_run(), we check that filter loaded by user never try to read
638  * a cell if not previously written, and we check all branches to be sure
639  * a malicious user doesn't try to abuse us.
640  */
641 static int check_load_and_stores(const struct sock_filter *filter, int flen)
642 {
643         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
644         int pc, ret = 0;
645
646         BUILD_BUG_ON(BPF_MEMWORDS > 16);
647
648         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
649         if (!masks)
650                 return -ENOMEM;
651
652         memset(masks, 0xff, flen * sizeof(*masks));
653
654         for (pc = 0; pc < flen; pc++) {
655                 memvalid &= masks[pc];
656
657                 switch (filter[pc].code) {
658                 case BPF_ST:
659                 case BPF_STX:
660                         memvalid |= (1 << filter[pc].k);
661                         break;
662                 case BPF_LD | BPF_MEM:
663                 case BPF_LDX | BPF_MEM:
664                         if (!(memvalid & (1 << filter[pc].k))) {
665                                 ret = -EINVAL;
666                                 goto error;
667                         }
668                         break;
669                 case BPF_JMP | BPF_JA:
670                         /* A jump must set masks on target */
671                         masks[pc + 1 + filter[pc].k] &= memvalid;
672                         memvalid = ~0;
673                         break;
674                 case BPF_JMP | BPF_JEQ | BPF_K:
675                 case BPF_JMP | BPF_JEQ | BPF_X:
676                 case BPF_JMP | BPF_JGE | BPF_K:
677                 case BPF_JMP | BPF_JGE | BPF_X:
678                 case BPF_JMP | BPF_JGT | BPF_K:
679                 case BPF_JMP | BPF_JGT | BPF_X:
680                 case BPF_JMP | BPF_JSET | BPF_K:
681                 case BPF_JMP | BPF_JSET | BPF_X:
682                         /* A jump must set masks on targets */
683                         masks[pc + 1 + filter[pc].jt] &= memvalid;
684                         masks[pc + 1 + filter[pc].jf] &= memvalid;
685                         memvalid = ~0;
686                         break;
687                 }
688         }
689 error:
690         kfree(masks);
691         return ret;
692 }
693
694 static bool chk_code_allowed(u16 code_to_probe)
695 {
696         static const bool codes[] = {
697                 /* 32 bit ALU operations */
698                 [BPF_ALU | BPF_ADD | BPF_K] = true,
699                 [BPF_ALU | BPF_ADD | BPF_X] = true,
700                 [BPF_ALU | BPF_SUB | BPF_K] = true,
701                 [BPF_ALU | BPF_SUB | BPF_X] = true,
702                 [BPF_ALU | BPF_MUL | BPF_K] = true,
703                 [BPF_ALU | BPF_MUL | BPF_X] = true,
704                 [BPF_ALU | BPF_DIV | BPF_K] = true,
705                 [BPF_ALU | BPF_DIV | BPF_X] = true,
706                 [BPF_ALU | BPF_MOD | BPF_K] = true,
707                 [BPF_ALU | BPF_MOD | BPF_X] = true,
708                 [BPF_ALU | BPF_AND | BPF_K] = true,
709                 [BPF_ALU | BPF_AND | BPF_X] = true,
710                 [BPF_ALU | BPF_OR | BPF_K] = true,
711                 [BPF_ALU | BPF_OR | BPF_X] = true,
712                 [BPF_ALU | BPF_XOR | BPF_K] = true,
713                 [BPF_ALU | BPF_XOR | BPF_X] = true,
714                 [BPF_ALU | BPF_LSH | BPF_K] = true,
715                 [BPF_ALU | BPF_LSH | BPF_X] = true,
716                 [BPF_ALU | BPF_RSH | BPF_K] = true,
717                 [BPF_ALU | BPF_RSH | BPF_X] = true,
718                 [BPF_ALU | BPF_NEG] = true,
719                 /* Load instructions */
720                 [BPF_LD | BPF_W | BPF_ABS] = true,
721                 [BPF_LD | BPF_H | BPF_ABS] = true,
722                 [BPF_LD | BPF_B | BPF_ABS] = true,
723                 [BPF_LD | BPF_W | BPF_LEN] = true,
724                 [BPF_LD | BPF_W | BPF_IND] = true,
725                 [BPF_LD | BPF_H | BPF_IND] = true,
726                 [BPF_LD | BPF_B | BPF_IND] = true,
727                 [BPF_LD | BPF_IMM] = true,
728                 [BPF_LD | BPF_MEM] = true,
729                 [BPF_LDX | BPF_W | BPF_LEN] = true,
730                 [BPF_LDX | BPF_B | BPF_MSH] = true,
731                 [BPF_LDX | BPF_IMM] = true,
732                 [BPF_LDX | BPF_MEM] = true,
733                 /* Store instructions */
734                 [BPF_ST] = true,
735                 [BPF_STX] = true,
736                 /* Misc instructions */
737                 [BPF_MISC | BPF_TAX] = true,
738                 [BPF_MISC | BPF_TXA] = true,
739                 /* Return instructions */
740                 [BPF_RET | BPF_K] = true,
741                 [BPF_RET | BPF_A] = true,
742                 /* Jump instructions */
743                 [BPF_JMP | BPF_JA] = true,
744                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
745                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
746                 [BPF_JMP | BPF_JGE | BPF_K] = true,
747                 [BPF_JMP | BPF_JGE | BPF_X] = true,
748                 [BPF_JMP | BPF_JGT | BPF_K] = true,
749                 [BPF_JMP | BPF_JGT | BPF_X] = true,
750                 [BPF_JMP | BPF_JSET | BPF_K] = true,
751                 [BPF_JMP | BPF_JSET | BPF_X] = true,
752         };
753
754         if (code_to_probe >= ARRAY_SIZE(codes))
755                 return false;
756
757         return codes[code_to_probe];
758 }
759
760 static bool bpf_check_basics_ok(const struct sock_filter *filter,
761                                 unsigned int flen)
762 {
763         if (filter == NULL)
764                 return false;
765         if (flen == 0 || flen > BPF_MAXINSNS)
766                 return false;
767
768         return true;
769 }
770
771 /**
772  *      bpf_check_classic - verify socket filter code
773  *      @filter: filter to verify
774  *      @flen: length of filter
775  *
776  * Check the user's filter code. If we let some ugly
777  * filter code slip through kaboom! The filter must contain
778  * no references or jumps that are out of range, no illegal
779  * instructions, and must end with a RET instruction.
780  *
781  * All jumps are forward as they are not signed.
782  *
783  * Returns 0 if the rule set is legal or -EINVAL if not.
784  */
785 static int bpf_check_classic(const struct sock_filter *filter,
786                              unsigned int flen)
787 {
788         bool anc_found;
789         int pc;
790
791         /* Check the filter code now */
792         for (pc = 0; pc < flen; pc++) {
793                 const struct sock_filter *ftest = &filter[pc];
794
795                 /* May we actually operate on this code? */
796                 if (!chk_code_allowed(ftest->code))
797                         return -EINVAL;
798
799                 /* Some instructions need special checks */
800                 switch (ftest->code) {
801                 case BPF_ALU | BPF_DIV | BPF_K:
802                 case BPF_ALU | BPF_MOD | BPF_K:
803                         /* Check for division by zero */
804                         if (ftest->k == 0)
805                                 return -EINVAL;
806                         break;
807                 case BPF_ALU | BPF_LSH | BPF_K:
808                 case BPF_ALU | BPF_RSH | BPF_K:
809                         if (ftest->k >= 32)
810                                 return -EINVAL;
811                         break;
812                 case BPF_LD | BPF_MEM:
813                 case BPF_LDX | BPF_MEM:
814                 case BPF_ST:
815                 case BPF_STX:
816                         /* Check for invalid memory addresses */
817                         if (ftest->k >= BPF_MEMWORDS)
818                                 return -EINVAL;
819                         break;
820                 case BPF_JMP | BPF_JA:
821                         /* Note, the large ftest->k might cause loops.
822                          * Compare this with conditional jumps below,
823                          * where offsets are limited. --ANK (981016)
824                          */
825                         if (ftest->k >= (unsigned int)(flen - pc - 1))
826                                 return -EINVAL;
827                         break;
828                 case BPF_JMP | BPF_JEQ | BPF_K:
829                 case BPF_JMP | BPF_JEQ | BPF_X:
830                 case BPF_JMP | BPF_JGE | BPF_K:
831                 case BPF_JMP | BPF_JGE | BPF_X:
832                 case BPF_JMP | BPF_JGT | BPF_K:
833                 case BPF_JMP | BPF_JGT | BPF_X:
834                 case BPF_JMP | BPF_JSET | BPF_K:
835                 case BPF_JMP | BPF_JSET | BPF_X:
836                         /* Both conditionals must be safe */
837                         if (pc + ftest->jt + 1 >= flen ||
838                             pc + ftest->jf + 1 >= flen)
839                                 return -EINVAL;
840                         break;
841                 case BPF_LD | BPF_W | BPF_ABS:
842                 case BPF_LD | BPF_H | BPF_ABS:
843                 case BPF_LD | BPF_B | BPF_ABS:
844                         anc_found = false;
845                         if (bpf_anc_helper(ftest) & BPF_ANC)
846                                 anc_found = true;
847                         /* Ancillary operation unknown or unsupported */
848                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
849                                 return -EINVAL;
850                 }
851         }
852
853         /* Last instruction must be a RET code */
854         switch (filter[flen - 1].code) {
855         case BPF_RET | BPF_K:
856         case BPF_RET | BPF_A:
857                 return check_load_and_stores(filter, flen);
858         }
859
860         return -EINVAL;
861 }
862
863 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
864                                       const struct sock_fprog *fprog)
865 {
866         unsigned int fsize = bpf_classic_proglen(fprog);
867         struct sock_fprog_kern *fkprog;
868
869         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
870         if (!fp->orig_prog)
871                 return -ENOMEM;
872
873         fkprog = fp->orig_prog;
874         fkprog->len = fprog->len;
875
876         fkprog->filter = kmemdup(fp->insns, fsize,
877                                  GFP_KERNEL | __GFP_NOWARN);
878         if (!fkprog->filter) {
879                 kfree(fp->orig_prog);
880                 return -ENOMEM;
881         }
882
883         return 0;
884 }
885
886 static void bpf_release_orig_filter(struct bpf_prog *fp)
887 {
888         struct sock_fprog_kern *fprog = fp->orig_prog;
889
890         if (fprog) {
891                 kfree(fprog->filter);
892                 kfree(fprog);
893         }
894 }
895
896 static void __bpf_prog_release(struct bpf_prog *prog)
897 {
898         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
899                 bpf_prog_put(prog);
900         } else {
901                 bpf_release_orig_filter(prog);
902                 bpf_prog_free(prog);
903         }
904 }
905
906 static void __sk_filter_release(struct sk_filter *fp)
907 {
908         __bpf_prog_release(fp->prog);
909         kfree(fp);
910 }
911
912 /**
913  *      sk_filter_release_rcu - Release a socket filter by rcu_head
914  *      @rcu: rcu_head that contains the sk_filter to free
915  */
916 static void sk_filter_release_rcu(struct rcu_head *rcu)
917 {
918         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
919
920         __sk_filter_release(fp);
921 }
922
923 /**
924  *      sk_filter_release - release a socket filter
925  *      @fp: filter to remove
926  *
927  *      Remove a filter from a socket and release its resources.
928  */
929 static void sk_filter_release(struct sk_filter *fp)
930 {
931         if (atomic_dec_and_test(&fp->refcnt))
932                 call_rcu(&fp->rcu, sk_filter_release_rcu);
933 }
934
935 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
936 {
937         u32 filter_size = bpf_prog_size(fp->prog->len);
938
939         atomic_sub(filter_size, &sk->sk_omem_alloc);
940         sk_filter_release(fp);
941 }
942
943 /* try to charge the socket memory if there is space available
944  * return true on success
945  */
946 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
947 {
948         u32 filter_size = bpf_prog_size(fp->prog->len);
949
950         /* same check as in sock_kmalloc() */
951         if (filter_size <= sysctl_optmem_max &&
952             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
953                 atomic_inc(&fp->refcnt);
954                 atomic_add(filter_size, &sk->sk_omem_alloc);
955                 return true;
956         }
957         return false;
958 }
959
960 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
961 {
962         struct sock_filter *old_prog;
963         struct bpf_prog *old_fp;
964         int err, new_len, old_len = fp->len;
965
966         /* We are free to overwrite insns et al right here as it
967          * won't be used at this point in time anymore internally
968          * after the migration to the internal BPF instruction
969          * representation.
970          */
971         BUILD_BUG_ON(sizeof(struct sock_filter) !=
972                      sizeof(struct bpf_insn));
973
974         /* Conversion cannot happen on overlapping memory areas,
975          * so we need to keep the user BPF around until the 2nd
976          * pass. At this time, the user BPF is stored in fp->insns.
977          */
978         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
979                            GFP_KERNEL | __GFP_NOWARN);
980         if (!old_prog) {
981                 err = -ENOMEM;
982                 goto out_err;
983         }
984
985         /* 1st pass: calculate the new program length. */
986         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
987         if (err)
988                 goto out_err_free;
989
990         /* Expand fp for appending the new filter representation. */
991         old_fp = fp;
992         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
993         if (!fp) {
994                 /* The old_fp is still around in case we couldn't
995                  * allocate new memory, so uncharge on that one.
996                  */
997                 fp = old_fp;
998                 err = -ENOMEM;
999                 goto out_err_free;
1000         }
1001
1002         fp->len = new_len;
1003
1004         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1005         err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
1006         if (err)
1007                 /* 2nd bpf_convert_filter() can fail only if it fails
1008                  * to allocate memory, remapping must succeed. Note,
1009                  * that at this time old_fp has already been released
1010                  * by krealloc().
1011                  */
1012                 goto out_err_free;
1013
1014         /* We are guaranteed to never error here with cBPF to eBPF
1015          * transitions, since there's no issue with type compatibility
1016          * checks on program arrays.
1017          */
1018         fp = bpf_prog_select_runtime(fp, &err);
1019
1020         kfree(old_prog);
1021         return fp;
1022
1023 out_err_free:
1024         kfree(old_prog);
1025 out_err:
1026         __bpf_prog_release(fp);
1027         return ERR_PTR(err);
1028 }
1029
1030 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1031                                            bpf_aux_classic_check_t trans)
1032 {
1033         int err;
1034
1035         fp->bpf_func = NULL;
1036         fp->jited = 0;
1037
1038         err = bpf_check_classic(fp->insns, fp->len);
1039         if (err) {
1040                 __bpf_prog_release(fp);
1041                 return ERR_PTR(err);
1042         }
1043
1044         /* There might be additional checks and transformations
1045          * needed on classic filters, f.e. in case of seccomp.
1046          */
1047         if (trans) {
1048                 err = trans(fp->insns, fp->len);
1049                 if (err) {
1050                         __bpf_prog_release(fp);
1051                         return ERR_PTR(err);
1052                 }
1053         }
1054
1055         /* Probe if we can JIT compile the filter and if so, do
1056          * the compilation of the filter.
1057          */
1058         bpf_jit_compile(fp);
1059
1060         /* JIT compiler couldn't process this filter, so do the
1061          * internal BPF translation for the optimized interpreter.
1062          */
1063         if (!fp->jited)
1064                 fp = bpf_migrate_filter(fp);
1065
1066         return fp;
1067 }
1068
1069 /**
1070  *      bpf_prog_create - create an unattached filter
1071  *      @pfp: the unattached filter that is created
1072  *      @fprog: the filter program
1073  *
1074  * Create a filter independent of any socket. We first run some
1075  * sanity checks on it to make sure it does not explode on us later.
1076  * If an error occurs or there is insufficient memory for the filter
1077  * a negative errno code is returned. On success the return is zero.
1078  */
1079 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1080 {
1081         unsigned int fsize = bpf_classic_proglen(fprog);
1082         struct bpf_prog *fp;
1083
1084         /* Make sure new filter is there and in the right amounts. */
1085         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1086                 return -EINVAL;
1087
1088         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1089         if (!fp)
1090                 return -ENOMEM;
1091
1092         memcpy(fp->insns, fprog->filter, fsize);
1093
1094         fp->len = fprog->len;
1095         /* Since unattached filters are not copied back to user
1096          * space through sk_get_filter(), we do not need to hold
1097          * a copy here, and can spare us the work.
1098          */
1099         fp->orig_prog = NULL;
1100
1101         /* bpf_prepare_filter() already takes care of freeing
1102          * memory in case something goes wrong.
1103          */
1104         fp = bpf_prepare_filter(fp, NULL);
1105         if (IS_ERR(fp))
1106                 return PTR_ERR(fp);
1107
1108         *pfp = fp;
1109         return 0;
1110 }
1111 EXPORT_SYMBOL_GPL(bpf_prog_create);
1112
1113 /**
1114  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1115  *      @pfp: the unattached filter that is created
1116  *      @fprog: the filter program
1117  *      @trans: post-classic verifier transformation handler
1118  *      @save_orig: save classic BPF program
1119  *
1120  * This function effectively does the same as bpf_prog_create(), only
1121  * that it builds up its insns buffer from user space provided buffer.
1122  * It also allows for passing a bpf_aux_classic_check_t handler.
1123  */
1124 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1125                               bpf_aux_classic_check_t trans, bool save_orig)
1126 {
1127         unsigned int fsize = bpf_classic_proglen(fprog);
1128         struct bpf_prog *fp;
1129         int err;
1130
1131         /* Make sure new filter is there and in the right amounts. */
1132         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1133                 return -EINVAL;
1134
1135         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1136         if (!fp)
1137                 return -ENOMEM;
1138
1139         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1140                 __bpf_prog_free(fp);
1141                 return -EFAULT;
1142         }
1143
1144         fp->len = fprog->len;
1145         fp->orig_prog = NULL;
1146
1147         if (save_orig) {
1148                 err = bpf_prog_store_orig_filter(fp, fprog);
1149                 if (err) {
1150                         __bpf_prog_free(fp);
1151                         return -ENOMEM;
1152                 }
1153         }
1154
1155         /* bpf_prepare_filter() already takes care of freeing
1156          * memory in case something goes wrong.
1157          */
1158         fp = bpf_prepare_filter(fp, trans);
1159         if (IS_ERR(fp))
1160                 return PTR_ERR(fp);
1161
1162         *pfp = fp;
1163         return 0;
1164 }
1165 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1166
1167 void bpf_prog_destroy(struct bpf_prog *fp)
1168 {
1169         __bpf_prog_release(fp);
1170 }
1171 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1172
1173 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1174 {
1175         struct sk_filter *fp, *old_fp;
1176
1177         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1178         if (!fp)
1179                 return -ENOMEM;
1180
1181         fp->prog = prog;
1182         atomic_set(&fp->refcnt, 0);
1183
1184         if (!sk_filter_charge(sk, fp)) {
1185                 kfree(fp);
1186                 return -ENOMEM;
1187         }
1188
1189         old_fp = rcu_dereference_protected(sk->sk_filter,
1190                                            lockdep_sock_is_held(sk));
1191         rcu_assign_pointer(sk->sk_filter, fp);
1192
1193         if (old_fp)
1194                 sk_filter_uncharge(sk, old_fp);
1195
1196         return 0;
1197 }
1198
1199 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1200 {
1201         struct bpf_prog *old_prog;
1202         int err;
1203
1204         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1205                 return -ENOMEM;
1206
1207         if (sk_unhashed(sk) && sk->sk_reuseport) {
1208                 err = reuseport_alloc(sk);
1209                 if (err)
1210                         return err;
1211         } else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1212                 /* The socket wasn't bound with SO_REUSEPORT */
1213                 return -EINVAL;
1214         }
1215
1216         old_prog = reuseport_attach_prog(sk, prog);
1217         if (old_prog)
1218                 bpf_prog_destroy(old_prog);
1219
1220         return 0;
1221 }
1222
1223 static
1224 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1225 {
1226         unsigned int fsize = bpf_classic_proglen(fprog);
1227         struct bpf_prog *prog;
1228         int err;
1229
1230         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1231                 return ERR_PTR(-EPERM);
1232
1233         /* Make sure new filter is there and in the right amounts. */
1234         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1235                 return ERR_PTR(-EINVAL);
1236
1237         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1238         if (!prog)
1239                 return ERR_PTR(-ENOMEM);
1240
1241         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1242                 __bpf_prog_free(prog);
1243                 return ERR_PTR(-EFAULT);
1244         }
1245
1246         prog->len = fprog->len;
1247
1248         err = bpf_prog_store_orig_filter(prog, fprog);
1249         if (err) {
1250                 __bpf_prog_free(prog);
1251                 return ERR_PTR(-ENOMEM);
1252         }
1253
1254         /* bpf_prepare_filter() already takes care of freeing
1255          * memory in case something goes wrong.
1256          */
1257         return bpf_prepare_filter(prog, NULL);
1258 }
1259
1260 /**
1261  *      sk_attach_filter - attach a socket filter
1262  *      @fprog: the filter program
1263  *      @sk: the socket to use
1264  *
1265  * Attach the user's filter code. We first run some sanity checks on
1266  * it to make sure it does not explode on us later. If an error
1267  * occurs or there is insufficient memory for the filter a negative
1268  * errno code is returned. On success the return is zero.
1269  */
1270 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1271 {
1272         struct bpf_prog *prog = __get_filter(fprog, sk);
1273         int err;
1274
1275         if (IS_ERR(prog))
1276                 return PTR_ERR(prog);
1277
1278         err = __sk_attach_prog(prog, sk);
1279         if (err < 0) {
1280                 __bpf_prog_release(prog);
1281                 return err;
1282         }
1283
1284         return 0;
1285 }
1286 EXPORT_SYMBOL_GPL(sk_attach_filter);
1287
1288 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1289 {
1290         struct bpf_prog *prog = __get_filter(fprog, sk);
1291         int err;
1292
1293         if (IS_ERR(prog))
1294                 return PTR_ERR(prog);
1295
1296         err = __reuseport_attach_prog(prog, sk);
1297         if (err < 0) {
1298                 __bpf_prog_release(prog);
1299                 return err;
1300         }
1301
1302         return 0;
1303 }
1304
1305 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1306 {
1307         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1308                 return ERR_PTR(-EPERM);
1309
1310         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1311 }
1312
1313 int sk_attach_bpf(u32 ufd, struct sock *sk)
1314 {
1315         struct bpf_prog *prog = __get_bpf(ufd, sk);
1316         int err;
1317
1318         if (IS_ERR(prog))
1319                 return PTR_ERR(prog);
1320
1321         err = __sk_attach_prog(prog, sk);
1322         if (err < 0) {
1323                 bpf_prog_put(prog);
1324                 return err;
1325         }
1326
1327         return 0;
1328 }
1329
1330 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1331 {
1332         struct bpf_prog *prog = __get_bpf(ufd, sk);
1333         int err;
1334
1335         if (IS_ERR(prog))
1336                 return PTR_ERR(prog);
1337
1338         err = __reuseport_attach_prog(prog, sk);
1339         if (err < 0) {
1340                 bpf_prog_put(prog);
1341                 return err;
1342         }
1343
1344         return 0;
1345 }
1346
1347 struct bpf_scratchpad {
1348         union {
1349                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1350                 u8     buff[MAX_BPF_STACK];
1351         };
1352 };
1353
1354 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1355
1356 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1357                                           unsigned int write_len)
1358 {
1359         return skb_ensure_writable(skb, write_len);
1360 }
1361
1362 static inline int bpf_try_make_writable(struct sk_buff *skb,
1363                                         unsigned int write_len)
1364 {
1365         int err = __bpf_try_make_writable(skb, write_len);
1366
1367         bpf_compute_data_end(skb);
1368         return err;
1369 }
1370
1371 static int bpf_try_make_head_writable(struct sk_buff *skb)
1372 {
1373         return bpf_try_make_writable(skb, skb_headlen(skb));
1374 }
1375
1376 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1377 {
1378         if (skb_at_tc_ingress(skb))
1379                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1380 }
1381
1382 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1383 {
1384         if (skb_at_tc_ingress(skb))
1385                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1386 }
1387
1388 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1389            const void *, from, u32, len, u64, flags)
1390 {
1391         void *ptr;
1392
1393         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1394                 return -EINVAL;
1395         if (unlikely(offset > 0xffff))
1396                 return -EFAULT;
1397         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1398                 return -EFAULT;
1399
1400         ptr = skb->data + offset;
1401         if (flags & BPF_F_RECOMPUTE_CSUM)
1402                 __skb_postpull_rcsum(skb, ptr, len, offset);
1403
1404         memcpy(ptr, from, len);
1405
1406         if (flags & BPF_F_RECOMPUTE_CSUM)
1407                 __skb_postpush_rcsum(skb, ptr, len, offset);
1408         if (flags & BPF_F_INVALIDATE_HASH)
1409                 skb_clear_hash(skb);
1410
1411         return 0;
1412 }
1413
1414 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1415         .func           = bpf_skb_store_bytes,
1416         .gpl_only       = false,
1417         .ret_type       = RET_INTEGER,
1418         .arg1_type      = ARG_PTR_TO_CTX,
1419         .arg2_type      = ARG_ANYTHING,
1420         .arg3_type      = ARG_PTR_TO_MEM,
1421         .arg4_type      = ARG_CONST_SIZE,
1422         .arg5_type      = ARG_ANYTHING,
1423 };
1424
1425 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1426            void *, to, u32, len)
1427 {
1428         void *ptr;
1429
1430         if (unlikely(offset > 0xffff))
1431                 goto err_clear;
1432
1433         ptr = skb_header_pointer(skb, offset, len, to);
1434         if (unlikely(!ptr))
1435                 goto err_clear;
1436         if (ptr != to)
1437                 memcpy(to, ptr, len);
1438
1439         return 0;
1440 err_clear:
1441         memset(to, 0, len);
1442         return -EFAULT;
1443 }
1444
1445 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1446         .func           = bpf_skb_load_bytes,
1447         .gpl_only       = false,
1448         .ret_type       = RET_INTEGER,
1449         .arg1_type      = ARG_PTR_TO_CTX,
1450         .arg2_type      = ARG_ANYTHING,
1451         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1452         .arg4_type      = ARG_CONST_SIZE,
1453 };
1454
1455 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1456 {
1457         /* Idea is the following: should the needed direct read/write
1458          * test fail during runtime, we can pull in more data and redo
1459          * again, since implicitly, we invalidate previous checks here.
1460          *
1461          * Or, since we know how much we need to make read/writeable,
1462          * this can be done once at the program beginning for direct
1463          * access case. By this we overcome limitations of only current
1464          * headroom being accessible.
1465          */
1466         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1467 }
1468
1469 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1470         .func           = bpf_skb_pull_data,
1471         .gpl_only       = false,
1472         .ret_type       = RET_INTEGER,
1473         .arg1_type      = ARG_PTR_TO_CTX,
1474         .arg2_type      = ARG_ANYTHING,
1475 };
1476
1477 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1478            u64, from, u64, to, u64, flags)
1479 {
1480         __sum16 *ptr;
1481
1482         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1483                 return -EINVAL;
1484         if (unlikely(offset > 0xffff || offset & 1))
1485                 return -EFAULT;
1486         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1487                 return -EFAULT;
1488
1489         ptr = (__sum16 *)(skb->data + offset);
1490         switch (flags & BPF_F_HDR_FIELD_MASK) {
1491         case 0:
1492                 if (unlikely(from != 0))
1493                         return -EINVAL;
1494
1495                 csum_replace_by_diff(ptr, to);
1496                 break;
1497         case 2:
1498                 csum_replace2(ptr, from, to);
1499                 break;
1500         case 4:
1501                 csum_replace4(ptr, from, to);
1502                 break;
1503         default:
1504                 return -EINVAL;
1505         }
1506
1507         return 0;
1508 }
1509
1510 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1511         .func           = bpf_l3_csum_replace,
1512         .gpl_only       = false,
1513         .ret_type       = RET_INTEGER,
1514         .arg1_type      = ARG_PTR_TO_CTX,
1515         .arg2_type      = ARG_ANYTHING,
1516         .arg3_type      = ARG_ANYTHING,
1517         .arg4_type      = ARG_ANYTHING,
1518         .arg5_type      = ARG_ANYTHING,
1519 };
1520
1521 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1522            u64, from, u64, to, u64, flags)
1523 {
1524         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1525         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1526         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1527         __sum16 *ptr;
1528
1529         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1530                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1531                 return -EINVAL;
1532         if (unlikely(offset > 0xffff || offset & 1))
1533                 return -EFAULT;
1534         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1535                 return -EFAULT;
1536
1537         ptr = (__sum16 *)(skb->data + offset);
1538         if (is_mmzero && !do_mforce && !*ptr)
1539                 return 0;
1540
1541         switch (flags & BPF_F_HDR_FIELD_MASK) {
1542         case 0:
1543                 if (unlikely(from != 0))
1544                         return -EINVAL;
1545
1546                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1547                 break;
1548         case 2:
1549                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1550                 break;
1551         case 4:
1552                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1553                 break;
1554         default:
1555                 return -EINVAL;
1556         }
1557
1558         if (is_mmzero && !*ptr)
1559                 *ptr = CSUM_MANGLED_0;
1560         return 0;
1561 }
1562
1563 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1564         .func           = bpf_l4_csum_replace,
1565         .gpl_only       = false,
1566         .ret_type       = RET_INTEGER,
1567         .arg1_type      = ARG_PTR_TO_CTX,
1568         .arg2_type      = ARG_ANYTHING,
1569         .arg3_type      = ARG_ANYTHING,
1570         .arg4_type      = ARG_ANYTHING,
1571         .arg5_type      = ARG_ANYTHING,
1572 };
1573
1574 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1575            __be32 *, to, u32, to_size, __wsum, seed)
1576 {
1577         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1578         u32 diff_size = from_size + to_size;
1579         int i, j = 0;
1580
1581         /* This is quite flexible, some examples:
1582          *
1583          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1584          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1585          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1586          *
1587          * Even for diffing, from_size and to_size don't need to be equal.
1588          */
1589         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1590                      diff_size > sizeof(sp->diff)))
1591                 return -EINVAL;
1592
1593         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1594                 sp->diff[j] = ~from[i];
1595         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1596                 sp->diff[j] = to[i];
1597
1598         return csum_partial(sp->diff, diff_size, seed);
1599 }
1600
1601 static const struct bpf_func_proto bpf_csum_diff_proto = {
1602         .func           = bpf_csum_diff,
1603         .gpl_only       = false,
1604         .pkt_access     = true,
1605         .ret_type       = RET_INTEGER,
1606         .arg1_type      = ARG_PTR_TO_MEM,
1607         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1608         .arg3_type      = ARG_PTR_TO_MEM,
1609         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
1610         .arg5_type      = ARG_ANYTHING,
1611 };
1612
1613 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1614 {
1615         /* The interface is to be used in combination with bpf_csum_diff()
1616          * for direct packet writes. csum rotation for alignment as well
1617          * as emulating csum_sub() can be done from the eBPF program.
1618          */
1619         if (skb->ip_summed == CHECKSUM_COMPLETE)
1620                 return (skb->csum = csum_add(skb->csum, csum));
1621
1622         return -ENOTSUPP;
1623 }
1624
1625 static const struct bpf_func_proto bpf_csum_update_proto = {
1626         .func           = bpf_csum_update,
1627         .gpl_only       = false,
1628         .ret_type       = RET_INTEGER,
1629         .arg1_type      = ARG_PTR_TO_CTX,
1630         .arg2_type      = ARG_ANYTHING,
1631 };
1632
1633 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1634 {
1635         return dev_forward_skb(dev, skb);
1636 }
1637
1638 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1639                                       struct sk_buff *skb)
1640 {
1641         int ret = ____dev_forward_skb(dev, skb);
1642
1643         if (likely(!ret)) {
1644                 skb->dev = dev;
1645                 ret = netif_rx(skb);
1646         }
1647
1648         return ret;
1649 }
1650
1651 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1652 {
1653         int ret;
1654
1655         if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1656                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1657                 kfree_skb(skb);
1658                 return -ENETDOWN;
1659         }
1660
1661         skb->dev = dev;
1662
1663         __this_cpu_inc(xmit_recursion);
1664         ret = dev_queue_xmit(skb);
1665         __this_cpu_dec(xmit_recursion);
1666
1667         return ret;
1668 }
1669
1670 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
1671                                  u32 flags)
1672 {
1673         /* skb->mac_len is not set on normal egress */
1674         unsigned int mlen = skb->network_header - skb->mac_header;
1675
1676         __skb_pull(skb, mlen);
1677
1678         /* At ingress, the mac header has already been pulled once.
1679          * At egress, skb_pospull_rcsum has to be done in case that
1680          * the skb is originated from ingress (i.e. a forwarded skb)
1681          * to ensure that rcsum starts at net header.
1682          */
1683         if (!skb_at_tc_ingress(skb))
1684                 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
1685         skb_pop_mac_header(skb);
1686         skb_reset_mac_len(skb);
1687         return flags & BPF_F_INGRESS ?
1688                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
1689 }
1690
1691 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
1692                                  u32 flags)
1693 {
1694         /* Verify that a link layer header is carried */
1695         if (unlikely(skb->mac_header >= skb->network_header)) {
1696                 kfree_skb(skb);
1697                 return -ERANGE;
1698         }
1699
1700         bpf_push_mac_rcsum(skb);
1701         return flags & BPF_F_INGRESS ?
1702                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1703 }
1704
1705 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
1706                           u32 flags)
1707 {
1708         if (dev_is_mac_header_xmit(dev))
1709                 return __bpf_redirect_common(skb, dev, flags);
1710         else
1711                 return __bpf_redirect_no_mac(skb, dev, flags);
1712 }
1713
1714 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1715 {
1716         struct net_device *dev;
1717         struct sk_buff *clone;
1718         int ret;
1719
1720         if (unlikely(flags & ~(BPF_F_INGRESS)))
1721                 return -EINVAL;
1722
1723         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1724         if (unlikely(!dev))
1725                 return -EINVAL;
1726
1727         clone = skb_clone(skb, GFP_ATOMIC);
1728         if (unlikely(!clone))
1729                 return -ENOMEM;
1730
1731         /* For direct write, we need to keep the invariant that the skbs
1732          * we're dealing with need to be uncloned. Should uncloning fail
1733          * here, we need to free the just generated clone to unclone once
1734          * again.
1735          */
1736         ret = bpf_try_make_head_writable(skb);
1737         if (unlikely(ret)) {
1738                 kfree_skb(clone);
1739                 return -ENOMEM;
1740         }
1741
1742         return __bpf_redirect(clone, dev, flags);
1743 }
1744
1745 static const struct bpf_func_proto bpf_clone_redirect_proto = {
1746         .func           = bpf_clone_redirect,
1747         .gpl_only       = false,
1748         .ret_type       = RET_INTEGER,
1749         .arg1_type      = ARG_PTR_TO_CTX,
1750         .arg2_type      = ARG_ANYTHING,
1751         .arg3_type      = ARG_ANYTHING,
1752 };
1753
1754 struct redirect_info {
1755         u32 ifindex;
1756         u32 flags;
1757 };
1758
1759 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1760
1761 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1762 {
1763         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1764
1765         if (unlikely(flags & ~(BPF_F_INGRESS)))
1766                 return TC_ACT_SHOT;
1767
1768         ri->ifindex = ifindex;
1769         ri->flags = flags;
1770
1771         return TC_ACT_REDIRECT;
1772 }
1773
1774 int skb_do_redirect(struct sk_buff *skb)
1775 {
1776         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1777         struct net_device *dev;
1778
1779         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1780         ri->ifindex = 0;
1781         if (unlikely(!dev)) {
1782                 kfree_skb(skb);
1783                 return -EINVAL;
1784         }
1785
1786         return __bpf_redirect(skb, dev, ri->flags);
1787 }
1788
1789 static const struct bpf_func_proto bpf_redirect_proto = {
1790         .func           = bpf_redirect,
1791         .gpl_only       = false,
1792         .ret_type       = RET_INTEGER,
1793         .arg1_type      = ARG_ANYTHING,
1794         .arg2_type      = ARG_ANYTHING,
1795 };
1796
1797 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
1798 {
1799         return task_get_classid(skb);
1800 }
1801
1802 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1803         .func           = bpf_get_cgroup_classid,
1804         .gpl_only       = false,
1805         .ret_type       = RET_INTEGER,
1806         .arg1_type      = ARG_PTR_TO_CTX,
1807 };
1808
1809 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
1810 {
1811         return dst_tclassid(skb);
1812 }
1813
1814 static const struct bpf_func_proto bpf_get_route_realm_proto = {
1815         .func           = bpf_get_route_realm,
1816         .gpl_only       = false,
1817         .ret_type       = RET_INTEGER,
1818         .arg1_type      = ARG_PTR_TO_CTX,
1819 };
1820
1821 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
1822 {
1823         /* If skb_clear_hash() was called due to mangling, we can
1824          * trigger SW recalculation here. Later access to hash
1825          * can then use the inline skb->hash via context directly
1826          * instead of calling this helper again.
1827          */
1828         return skb_get_hash(skb);
1829 }
1830
1831 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
1832         .func           = bpf_get_hash_recalc,
1833         .gpl_only       = false,
1834         .ret_type       = RET_INTEGER,
1835         .arg1_type      = ARG_PTR_TO_CTX,
1836 };
1837
1838 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
1839 {
1840         /* After all direct packet write, this can be used once for
1841          * triggering a lazy recalc on next skb_get_hash() invocation.
1842          */
1843         skb_clear_hash(skb);
1844         return 0;
1845 }
1846
1847 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
1848         .func           = bpf_set_hash_invalid,
1849         .gpl_only       = false,
1850         .ret_type       = RET_INTEGER,
1851         .arg1_type      = ARG_PTR_TO_CTX,
1852 };
1853
1854 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
1855            u16, vlan_tci)
1856 {
1857         int ret;
1858
1859         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1860                      vlan_proto != htons(ETH_P_8021AD)))
1861                 vlan_proto = htons(ETH_P_8021Q);
1862
1863         bpf_push_mac_rcsum(skb);
1864         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1865         bpf_pull_mac_rcsum(skb);
1866
1867         bpf_compute_data_end(skb);
1868         return ret;
1869 }
1870
1871 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1872         .func           = bpf_skb_vlan_push,
1873         .gpl_only       = false,
1874         .ret_type       = RET_INTEGER,
1875         .arg1_type      = ARG_PTR_TO_CTX,
1876         .arg2_type      = ARG_ANYTHING,
1877         .arg3_type      = ARG_ANYTHING,
1878 };
1879 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1880
1881 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
1882 {
1883         int ret;
1884
1885         bpf_push_mac_rcsum(skb);
1886         ret = skb_vlan_pop(skb);
1887         bpf_pull_mac_rcsum(skb);
1888
1889         bpf_compute_data_end(skb);
1890         return ret;
1891 }
1892
1893 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
1894         .func           = bpf_skb_vlan_pop,
1895         .gpl_only       = false,
1896         .ret_type       = RET_INTEGER,
1897         .arg1_type      = ARG_PTR_TO_CTX,
1898 };
1899 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1900
1901 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
1902 {
1903         /* Caller already did skb_cow() with len as headroom,
1904          * so no need to do it here.
1905          */
1906         skb_push(skb, len);
1907         memmove(skb->data, skb->data + len, off);
1908         memset(skb->data + off, 0, len);
1909
1910         /* No skb_postpush_rcsum(skb, skb->data + off, len)
1911          * needed here as it does not change the skb->csum
1912          * result for checksum complete when summing over
1913          * zeroed blocks.
1914          */
1915         return 0;
1916 }
1917
1918 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
1919 {
1920         /* skb_ensure_writable() is not needed here, as we're
1921          * already working on an uncloned skb.
1922          */
1923         if (unlikely(!pskb_may_pull(skb, off + len)))
1924                 return -ENOMEM;
1925
1926         skb_postpull_rcsum(skb, skb->data + off, len);
1927         memmove(skb->data + len, skb->data, off);
1928         __skb_pull(skb, len);
1929
1930         return 0;
1931 }
1932
1933 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
1934 {
1935         bool trans_same = skb->transport_header == skb->network_header;
1936         int ret;
1937
1938         /* There's no need for __skb_push()/__skb_pull() pair to
1939          * get to the start of the mac header as we're guaranteed
1940          * to always start from here under eBPF.
1941          */
1942         ret = bpf_skb_generic_push(skb, off, len);
1943         if (likely(!ret)) {
1944                 skb->mac_header -= len;
1945                 skb->network_header -= len;
1946                 if (trans_same)
1947                         skb->transport_header = skb->network_header;
1948         }
1949
1950         return ret;
1951 }
1952
1953 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
1954 {
1955         bool trans_same = skb->transport_header == skb->network_header;
1956         int ret;
1957
1958         /* Same here, __skb_push()/__skb_pull() pair not needed. */
1959         ret = bpf_skb_generic_pop(skb, off, len);
1960         if (likely(!ret)) {
1961                 skb->mac_header += len;
1962                 skb->network_header += len;
1963                 if (trans_same)
1964                         skb->transport_header = skb->network_header;
1965         }
1966
1967         return ret;
1968 }
1969
1970 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
1971 {
1972         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
1973         u32 off = skb->network_header - skb->mac_header;
1974         int ret;
1975
1976         ret = skb_cow(skb, len_diff);
1977         if (unlikely(ret < 0))
1978                 return ret;
1979
1980         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
1981         if (unlikely(ret < 0))
1982                 return ret;
1983
1984         if (skb_is_gso(skb)) {
1985                 /* SKB_GSO_UDP stays as is. SKB_GSO_TCPV4 needs to
1986                  * be changed into SKB_GSO_TCPV6.
1987                  */
1988                 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1989                         skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
1990                         skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV6;
1991                 }
1992
1993                 /* Due to IPv6 header, MSS needs to be downgraded. */
1994                 skb_shinfo(skb)->gso_size -= len_diff;
1995                 /* Header must be checked, and gso_segs recomputed. */
1996                 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
1997                 skb_shinfo(skb)->gso_segs = 0;
1998         }
1999
2000         skb->protocol = htons(ETH_P_IPV6);
2001         skb_clear_hash(skb);
2002
2003         return 0;
2004 }
2005
2006 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2007 {
2008         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2009         u32 off = skb->network_header - skb->mac_header;
2010         int ret;
2011
2012         ret = skb_unclone(skb, GFP_ATOMIC);
2013         if (unlikely(ret < 0))
2014                 return ret;
2015
2016         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2017         if (unlikely(ret < 0))
2018                 return ret;
2019
2020         if (skb_is_gso(skb)) {
2021                 /* SKB_GSO_UDP stays as is. SKB_GSO_TCPV6 needs to
2022                  * be changed into SKB_GSO_TCPV4.
2023                  */
2024                 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
2025                         skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
2026                         skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV4;
2027                 }
2028
2029                 /* Due to IPv4 header, MSS can be upgraded. */
2030                 skb_shinfo(skb)->gso_size += len_diff;
2031                 /* Header must be checked, and gso_segs recomputed. */
2032                 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2033                 skb_shinfo(skb)->gso_segs = 0;
2034         }
2035
2036         skb->protocol = htons(ETH_P_IP);
2037         skb_clear_hash(skb);
2038
2039         return 0;
2040 }
2041
2042 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2043 {
2044         __be16 from_proto = skb->protocol;
2045
2046         if (from_proto == htons(ETH_P_IP) &&
2047               to_proto == htons(ETH_P_IPV6))
2048                 return bpf_skb_proto_4_to_6(skb);
2049
2050         if (from_proto == htons(ETH_P_IPV6) &&
2051               to_proto == htons(ETH_P_IP))
2052                 return bpf_skb_proto_6_to_4(skb);
2053
2054         return -ENOTSUPP;
2055 }
2056
2057 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2058            u64, flags)
2059 {
2060         int ret;
2061
2062         if (unlikely(flags))
2063                 return -EINVAL;
2064
2065         /* General idea is that this helper does the basic groundwork
2066          * needed for changing the protocol, and eBPF program fills the
2067          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2068          * and other helpers, rather than passing a raw buffer here.
2069          *
2070          * The rationale is to keep this minimal and without a need to
2071          * deal with raw packet data. F.e. even if we would pass buffers
2072          * here, the program still needs to call the bpf_lX_csum_replace()
2073          * helpers anyway. Plus, this way we keep also separation of
2074          * concerns, since f.e. bpf_skb_store_bytes() should only take
2075          * care of stores.
2076          *
2077          * Currently, additional options and extension header space are
2078          * not supported, but flags register is reserved so we can adapt
2079          * that. For offloads, we mark packet as dodgy, so that headers
2080          * need to be verified first.
2081          */
2082         ret = bpf_skb_proto_xlat(skb, proto);
2083         bpf_compute_data_end(skb);
2084         return ret;
2085 }
2086
2087 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2088         .func           = bpf_skb_change_proto,
2089         .gpl_only       = false,
2090         .ret_type       = RET_INTEGER,
2091         .arg1_type      = ARG_PTR_TO_CTX,
2092         .arg2_type      = ARG_ANYTHING,
2093         .arg3_type      = ARG_ANYTHING,
2094 };
2095
2096 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2097 {
2098         /* We only allow a restricted subset to be changed for now. */
2099         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2100                      !skb_pkt_type_ok(pkt_type)))
2101                 return -EINVAL;
2102
2103         skb->pkt_type = pkt_type;
2104         return 0;
2105 }
2106
2107 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2108         .func           = bpf_skb_change_type,
2109         .gpl_only       = false,
2110         .ret_type       = RET_INTEGER,
2111         .arg1_type      = ARG_PTR_TO_CTX,
2112         .arg2_type      = ARG_ANYTHING,
2113 };
2114
2115 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2116 {
2117         u32 min_len = skb_network_offset(skb);
2118
2119         if (skb_transport_header_was_set(skb))
2120                 min_len = skb_transport_offset(skb);
2121         if (skb->ip_summed == CHECKSUM_PARTIAL)
2122                 min_len = skb_checksum_start_offset(skb) +
2123                           skb->csum_offset + sizeof(__sum16);
2124         return min_len;
2125 }
2126
2127 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2128 {
2129         return skb->dev->mtu + skb->dev->hard_header_len;
2130 }
2131
2132 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2133 {
2134         unsigned int old_len = skb->len;
2135         int ret;
2136
2137         ret = __skb_grow_rcsum(skb, new_len);
2138         if (!ret)
2139                 memset(skb->data + old_len, 0, new_len - old_len);
2140         return ret;
2141 }
2142
2143 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2144 {
2145         return __skb_trim_rcsum(skb, new_len);
2146 }
2147
2148 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2149            u64, flags)
2150 {
2151         u32 max_len = __bpf_skb_max_len(skb);
2152         u32 min_len = __bpf_skb_min_len(skb);
2153         int ret;
2154
2155         if (unlikely(flags || new_len > max_len || new_len < min_len))
2156                 return -EINVAL;
2157         if (skb->encapsulation)
2158                 return -ENOTSUPP;
2159
2160         /* The basic idea of this helper is that it's performing the
2161          * needed work to either grow or trim an skb, and eBPF program
2162          * rewrites the rest via helpers like bpf_skb_store_bytes(),
2163          * bpf_lX_csum_replace() and others rather than passing a raw
2164          * buffer here. This one is a slow path helper and intended
2165          * for replies with control messages.
2166          *
2167          * Like in bpf_skb_change_proto(), we want to keep this rather
2168          * minimal and without protocol specifics so that we are able
2169          * to separate concerns as in bpf_skb_store_bytes() should only
2170          * be the one responsible for writing buffers.
2171          *
2172          * It's really expected to be a slow path operation here for
2173          * control message replies, so we're implicitly linearizing,
2174          * uncloning and drop offloads from the skb by this.
2175          */
2176         ret = __bpf_try_make_writable(skb, skb->len);
2177         if (!ret) {
2178                 if (new_len > skb->len)
2179                         ret = bpf_skb_grow_rcsum(skb, new_len);
2180                 else if (new_len < skb->len)
2181                         ret = bpf_skb_trim_rcsum(skb, new_len);
2182                 if (!ret && skb_is_gso(skb))
2183                         skb_gso_reset(skb);
2184         }
2185
2186         bpf_compute_data_end(skb);
2187         return ret;
2188 }
2189
2190 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2191         .func           = bpf_skb_change_tail,
2192         .gpl_only       = false,
2193         .ret_type       = RET_INTEGER,
2194         .arg1_type      = ARG_PTR_TO_CTX,
2195         .arg2_type      = ARG_ANYTHING,
2196         .arg3_type      = ARG_ANYTHING,
2197 };
2198
2199 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
2200            u64, flags)
2201 {
2202         u32 max_len = __bpf_skb_max_len(skb);
2203         u32 new_len = skb->len + head_room;
2204         int ret;
2205
2206         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2207                      new_len < skb->len))
2208                 return -EINVAL;
2209
2210         ret = skb_cow(skb, head_room);
2211         if (likely(!ret)) {
2212                 /* Idea for this helper is that we currently only
2213                  * allow to expand on mac header. This means that
2214                  * skb->protocol network header, etc, stay as is.
2215                  * Compared to bpf_skb_change_tail(), we're more
2216                  * flexible due to not needing to linearize or
2217                  * reset GSO. Intention for this helper is to be
2218                  * used by an L3 skb that needs to push mac header
2219                  * for redirection into L2 device.
2220                  */
2221                 __skb_push(skb, head_room);
2222                 memset(skb->data, 0, head_room);
2223                 skb_reset_mac_header(skb);
2224         }
2225
2226         bpf_compute_data_end(skb);
2227         return 0;
2228 }
2229
2230 static const struct bpf_func_proto bpf_skb_change_head_proto = {
2231         .func           = bpf_skb_change_head,
2232         .gpl_only       = false,
2233         .ret_type       = RET_INTEGER,
2234         .arg1_type      = ARG_PTR_TO_CTX,
2235         .arg2_type      = ARG_ANYTHING,
2236         .arg3_type      = ARG_ANYTHING,
2237 };
2238
2239 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
2240 {
2241         void *data = xdp->data + offset;
2242
2243         if (unlikely(data < xdp->data_hard_start ||
2244                      data > xdp->data_end - ETH_HLEN))
2245                 return -EINVAL;
2246
2247         xdp->data = data;
2248
2249         return 0;
2250 }
2251
2252 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
2253         .func           = bpf_xdp_adjust_head,
2254         .gpl_only       = false,
2255         .ret_type       = RET_INTEGER,
2256         .arg1_type      = ARG_PTR_TO_CTX,
2257         .arg2_type      = ARG_ANYTHING,
2258 };
2259
2260 bool bpf_helper_changes_pkt_data(void *func)
2261 {
2262         if (func == bpf_skb_vlan_push ||
2263             func == bpf_skb_vlan_pop ||
2264             func == bpf_skb_store_bytes ||
2265             func == bpf_skb_change_proto ||
2266             func == bpf_skb_change_head ||
2267             func == bpf_skb_change_tail ||
2268             func == bpf_skb_pull_data ||
2269             func == bpf_l3_csum_replace ||
2270             func == bpf_l4_csum_replace ||
2271             func == bpf_xdp_adjust_head)
2272                 return true;
2273
2274         return false;
2275 }
2276
2277 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2278                                   unsigned long off, unsigned long len)
2279 {
2280         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2281
2282         if (unlikely(!ptr))
2283                 return len;
2284         if (ptr != dst_buff)
2285                 memcpy(dst_buff, ptr, len);
2286
2287         return 0;
2288 }
2289
2290 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
2291            u64, flags, void *, meta, u64, meta_size)
2292 {
2293         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
2294
2295         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
2296                 return -EINVAL;
2297         if (unlikely(skb_size > skb->len))
2298                 return -EFAULT;
2299
2300         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
2301                                 bpf_skb_copy);
2302 }
2303
2304 static const struct bpf_func_proto bpf_skb_event_output_proto = {
2305         .func           = bpf_skb_event_output,
2306         .gpl_only       = true,
2307         .ret_type       = RET_INTEGER,
2308         .arg1_type      = ARG_PTR_TO_CTX,
2309         .arg2_type      = ARG_CONST_MAP_PTR,
2310         .arg3_type      = ARG_ANYTHING,
2311         .arg4_type      = ARG_PTR_TO_MEM,
2312         .arg5_type      = ARG_CONST_SIZE,
2313 };
2314
2315 static unsigned short bpf_tunnel_key_af(u64 flags)
2316 {
2317         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
2318 }
2319
2320 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
2321            u32, size, u64, flags)
2322 {
2323         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2324         u8 compat[sizeof(struct bpf_tunnel_key)];
2325         void *to_orig = to;
2326         int err;
2327
2328         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
2329                 err = -EINVAL;
2330                 goto err_clear;
2331         }
2332         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
2333                 err = -EPROTO;
2334                 goto err_clear;
2335         }
2336         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2337                 err = -EINVAL;
2338                 switch (size) {
2339                 case offsetof(struct bpf_tunnel_key, tunnel_label):
2340                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
2341                         goto set_compat;
2342                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2343                         /* Fixup deprecated structure layouts here, so we have
2344                          * a common path later on.
2345                          */
2346                         if (ip_tunnel_info_af(info) != AF_INET)
2347                                 goto err_clear;
2348 set_compat:
2349                         to = (struct bpf_tunnel_key *)compat;
2350                         break;
2351                 default:
2352                         goto err_clear;
2353                 }
2354         }
2355
2356         to->tunnel_id = be64_to_cpu(info->key.tun_id);
2357         to->tunnel_tos = info->key.tos;
2358         to->tunnel_ttl = info->key.ttl;
2359
2360         if (flags & BPF_F_TUNINFO_IPV6) {
2361                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
2362                        sizeof(to->remote_ipv6));
2363                 to->tunnel_label = be32_to_cpu(info->key.label);
2364         } else {
2365                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2366         }
2367
2368         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2369                 memcpy(to_orig, to, size);
2370
2371         return 0;
2372 err_clear:
2373         memset(to_orig, 0, size);
2374         return err;
2375 }
2376
2377 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2378         .func           = bpf_skb_get_tunnel_key,
2379         .gpl_only       = false,
2380         .ret_type       = RET_INTEGER,
2381         .arg1_type      = ARG_PTR_TO_CTX,
2382         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
2383         .arg3_type      = ARG_CONST_SIZE,
2384         .arg4_type      = ARG_ANYTHING,
2385 };
2386
2387 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
2388 {
2389         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2390         int err;
2391
2392         if (unlikely(!info ||
2393                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
2394                 err = -ENOENT;
2395                 goto err_clear;
2396         }
2397         if (unlikely(size < info->options_len)) {
2398                 err = -ENOMEM;
2399                 goto err_clear;
2400         }
2401
2402         ip_tunnel_info_opts_get(to, info);
2403         if (size > info->options_len)
2404                 memset(to + info->options_len, 0, size - info->options_len);
2405
2406         return info->options_len;
2407 err_clear:
2408         memset(to, 0, size);
2409         return err;
2410 }
2411
2412 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
2413         .func           = bpf_skb_get_tunnel_opt,
2414         .gpl_only       = false,
2415         .ret_type       = RET_INTEGER,
2416         .arg1_type      = ARG_PTR_TO_CTX,
2417         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
2418         .arg3_type      = ARG_CONST_SIZE,
2419 };
2420
2421 static struct metadata_dst __percpu *md_dst;
2422
2423 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
2424            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
2425 {
2426         struct metadata_dst *md = this_cpu_ptr(md_dst);
2427         u8 compat[sizeof(struct bpf_tunnel_key)];
2428         struct ip_tunnel_info *info;
2429
2430         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
2431                                BPF_F_DONT_FRAGMENT)))
2432                 return -EINVAL;
2433         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2434                 switch (size) {
2435                 case offsetof(struct bpf_tunnel_key, tunnel_label):
2436                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
2437                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2438                         /* Fixup deprecated structure layouts here, so we have
2439                          * a common path later on.
2440                          */
2441                         memcpy(compat, from, size);
2442                         memset(compat + size, 0, sizeof(compat) - size);
2443                         from = (const struct bpf_tunnel_key *) compat;
2444                         break;
2445                 default:
2446                         return -EINVAL;
2447                 }
2448         }
2449         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
2450                      from->tunnel_ext))
2451                 return -EINVAL;
2452
2453         skb_dst_drop(skb);
2454         dst_hold((struct dst_entry *) md);
2455         skb_dst_set(skb, (struct dst_entry *) md);
2456
2457         info = &md->u.tun_info;
2458         info->mode = IP_TUNNEL_INFO_TX;
2459
2460         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
2461         if (flags & BPF_F_DONT_FRAGMENT)
2462                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
2463
2464         info->key.tun_id = cpu_to_be64(from->tunnel_id);
2465         info->key.tos = from->tunnel_tos;
2466         info->key.ttl = from->tunnel_ttl;
2467
2468         if (flags & BPF_F_TUNINFO_IPV6) {
2469                 info->mode |= IP_TUNNEL_INFO_IPV6;
2470                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
2471                        sizeof(from->remote_ipv6));
2472                 info->key.label = cpu_to_be32(from->tunnel_label) &
2473                                   IPV6_FLOWLABEL_MASK;
2474         } else {
2475                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
2476                 if (flags & BPF_F_ZERO_CSUM_TX)
2477                         info->key.tun_flags &= ~TUNNEL_CSUM;
2478         }
2479
2480         return 0;
2481 }
2482
2483 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
2484         .func           = bpf_skb_set_tunnel_key,
2485         .gpl_only       = false,
2486         .ret_type       = RET_INTEGER,
2487         .arg1_type      = ARG_PTR_TO_CTX,
2488         .arg2_type      = ARG_PTR_TO_MEM,
2489         .arg3_type      = ARG_CONST_SIZE,
2490         .arg4_type      = ARG_ANYTHING,
2491 };
2492
2493 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
2494            const u8 *, from, u32, size)
2495 {
2496         struct ip_tunnel_info *info = skb_tunnel_info(skb);
2497         const struct metadata_dst *md = this_cpu_ptr(md_dst);
2498
2499         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
2500                 return -EINVAL;
2501         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
2502                 return -ENOMEM;
2503
2504         ip_tunnel_info_opts_set(info, from, size);
2505
2506         return 0;
2507 }
2508
2509 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
2510         .func           = bpf_skb_set_tunnel_opt,
2511         .gpl_only       = false,
2512         .ret_type       = RET_INTEGER,
2513         .arg1_type      = ARG_PTR_TO_CTX,
2514         .arg2_type      = ARG_PTR_TO_MEM,
2515         .arg3_type      = ARG_CONST_SIZE,
2516 };
2517
2518 static const struct bpf_func_proto *
2519 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
2520 {
2521         if (!md_dst) {
2522                 /* Race is not possible, since it's called from verifier
2523                  * that is holding verifier mutex.
2524                  */
2525                 md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
2526                                                    GFP_KERNEL);
2527                 if (!md_dst)
2528                         return NULL;
2529         }
2530
2531         switch (which) {
2532         case BPF_FUNC_skb_set_tunnel_key:
2533                 return &bpf_skb_set_tunnel_key_proto;
2534         case BPF_FUNC_skb_set_tunnel_opt:
2535                 return &bpf_skb_set_tunnel_opt_proto;
2536         default:
2537                 return NULL;
2538         }
2539 }
2540
2541 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
2542            u32, idx)
2543 {
2544         struct bpf_array *array = container_of(map, struct bpf_array, map);
2545         struct cgroup *cgrp;
2546         struct sock *sk;
2547
2548         sk = skb_to_full_sk(skb);
2549         if (!sk || !sk_fullsock(sk))
2550                 return -ENOENT;
2551         if (unlikely(idx >= array->map.max_entries))
2552                 return -E2BIG;
2553
2554         cgrp = READ_ONCE(array->ptrs[idx]);
2555         if (unlikely(!cgrp))
2556                 return -EAGAIN;
2557
2558         return sk_under_cgroup_hierarchy(sk, cgrp);
2559 }
2560
2561 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
2562         .func           = bpf_skb_under_cgroup,
2563         .gpl_only       = false,
2564         .ret_type       = RET_INTEGER,
2565         .arg1_type      = ARG_PTR_TO_CTX,
2566         .arg2_type      = ARG_CONST_MAP_PTR,
2567         .arg3_type      = ARG_ANYTHING,
2568 };
2569
2570 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
2571                                   unsigned long off, unsigned long len)
2572 {
2573         memcpy(dst_buff, src_buff + off, len);
2574         return 0;
2575 }
2576
2577 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
2578            u64, flags, void *, meta, u64, meta_size)
2579 {
2580         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
2581
2582         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
2583                 return -EINVAL;
2584         if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
2585                 return -EFAULT;
2586
2587         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
2588                                 xdp_size, bpf_xdp_copy);
2589 }
2590
2591 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
2592         .func           = bpf_xdp_event_output,
2593         .gpl_only       = true,
2594         .ret_type       = RET_INTEGER,
2595         .arg1_type      = ARG_PTR_TO_CTX,
2596         .arg2_type      = ARG_CONST_MAP_PTR,
2597         .arg3_type      = ARG_ANYTHING,
2598         .arg4_type      = ARG_PTR_TO_MEM,
2599         .arg5_type      = ARG_CONST_SIZE,
2600 };
2601
2602 static const struct bpf_func_proto *
2603 bpf_base_func_proto(enum bpf_func_id func_id)
2604 {
2605         switch (func_id) {
2606         case BPF_FUNC_map_lookup_elem:
2607                 return &bpf_map_lookup_elem_proto;
2608         case BPF_FUNC_map_update_elem:
2609                 return &bpf_map_update_elem_proto;
2610         case BPF_FUNC_map_delete_elem:
2611                 return &bpf_map_delete_elem_proto;
2612         case BPF_FUNC_get_prandom_u32:
2613                 return &bpf_get_prandom_u32_proto;
2614         case BPF_FUNC_get_smp_processor_id:
2615                 return &bpf_get_raw_smp_processor_id_proto;
2616         case BPF_FUNC_get_numa_node_id:
2617                 return &bpf_get_numa_node_id_proto;
2618         case BPF_FUNC_tail_call:
2619                 return &bpf_tail_call_proto;
2620         case BPF_FUNC_ktime_get_ns:
2621                 return &bpf_ktime_get_ns_proto;
2622         case BPF_FUNC_trace_printk:
2623                 if (capable(CAP_SYS_ADMIN))
2624                         return bpf_get_trace_printk_proto();
2625         default:
2626                 return NULL;
2627         }
2628 }
2629
2630 static const struct bpf_func_proto *
2631 sk_filter_func_proto(enum bpf_func_id func_id)
2632 {
2633         switch (func_id) {
2634         case BPF_FUNC_skb_load_bytes:
2635                 return &bpf_skb_load_bytes_proto;
2636         default:
2637                 return bpf_base_func_proto(func_id);
2638         }
2639 }
2640
2641 static const struct bpf_func_proto *
2642 tc_cls_act_func_proto(enum bpf_func_id func_id)
2643 {
2644         switch (func_id) {
2645         case BPF_FUNC_skb_store_bytes:
2646                 return &bpf_skb_store_bytes_proto;
2647         case BPF_FUNC_skb_load_bytes:
2648                 return &bpf_skb_load_bytes_proto;
2649         case BPF_FUNC_skb_pull_data:
2650                 return &bpf_skb_pull_data_proto;
2651         case BPF_FUNC_csum_diff:
2652                 return &bpf_csum_diff_proto;
2653         case BPF_FUNC_csum_update:
2654                 return &bpf_csum_update_proto;
2655         case BPF_FUNC_l3_csum_replace:
2656                 return &bpf_l3_csum_replace_proto;
2657         case BPF_FUNC_l4_csum_replace:
2658                 return &bpf_l4_csum_replace_proto;
2659         case BPF_FUNC_clone_redirect:
2660                 return &bpf_clone_redirect_proto;
2661         case BPF_FUNC_get_cgroup_classid:
2662                 return &bpf_get_cgroup_classid_proto;
2663         case BPF_FUNC_skb_vlan_push:
2664                 return &bpf_skb_vlan_push_proto;
2665         case BPF_FUNC_skb_vlan_pop:
2666                 return &bpf_skb_vlan_pop_proto;
2667         case BPF_FUNC_skb_change_proto:
2668                 return &bpf_skb_change_proto_proto;
2669         case BPF_FUNC_skb_change_type:
2670                 return &bpf_skb_change_type_proto;
2671         case BPF_FUNC_skb_change_tail:
2672                 return &bpf_skb_change_tail_proto;
2673         case BPF_FUNC_skb_get_tunnel_key:
2674                 return &bpf_skb_get_tunnel_key_proto;
2675         case BPF_FUNC_skb_set_tunnel_key:
2676                 return bpf_get_skb_set_tunnel_proto(func_id);
2677         case BPF_FUNC_skb_get_tunnel_opt:
2678                 return &bpf_skb_get_tunnel_opt_proto;
2679         case BPF_FUNC_skb_set_tunnel_opt:
2680                 return bpf_get_skb_set_tunnel_proto(func_id);
2681         case BPF_FUNC_redirect:
2682                 return &bpf_redirect_proto;
2683         case BPF_FUNC_get_route_realm:
2684                 return &bpf_get_route_realm_proto;
2685         case BPF_FUNC_get_hash_recalc:
2686                 return &bpf_get_hash_recalc_proto;
2687         case BPF_FUNC_set_hash_invalid:
2688                 return &bpf_set_hash_invalid_proto;
2689         case BPF_FUNC_perf_event_output:
2690                 return &bpf_skb_event_output_proto;
2691         case BPF_FUNC_get_smp_processor_id:
2692                 return &bpf_get_smp_processor_id_proto;
2693         case BPF_FUNC_skb_under_cgroup:
2694                 return &bpf_skb_under_cgroup_proto;
2695         default:
2696                 return bpf_base_func_proto(func_id);
2697         }
2698 }
2699
2700 static const struct bpf_func_proto *
2701 xdp_func_proto(enum bpf_func_id func_id)
2702 {
2703         switch (func_id) {
2704         case BPF_FUNC_perf_event_output:
2705                 return &bpf_xdp_event_output_proto;
2706         case BPF_FUNC_get_smp_processor_id:
2707                 return &bpf_get_smp_processor_id_proto;
2708         case BPF_FUNC_xdp_adjust_head:
2709                 return &bpf_xdp_adjust_head_proto;
2710         default:
2711                 return bpf_base_func_proto(func_id);
2712         }
2713 }
2714
2715 static const struct bpf_func_proto *
2716 cg_skb_func_proto(enum bpf_func_id func_id)
2717 {
2718         switch (func_id) {
2719         case BPF_FUNC_skb_load_bytes:
2720                 return &bpf_skb_load_bytes_proto;
2721         default:
2722                 return bpf_base_func_proto(func_id);
2723         }
2724 }
2725
2726 static const struct bpf_func_proto *
2727 lwt_inout_func_proto(enum bpf_func_id func_id)
2728 {
2729         switch (func_id) {
2730         case BPF_FUNC_skb_load_bytes:
2731                 return &bpf_skb_load_bytes_proto;
2732         case BPF_FUNC_skb_pull_data:
2733                 return &bpf_skb_pull_data_proto;
2734         case BPF_FUNC_csum_diff:
2735                 return &bpf_csum_diff_proto;
2736         case BPF_FUNC_get_cgroup_classid:
2737                 return &bpf_get_cgroup_classid_proto;
2738         case BPF_FUNC_get_route_realm:
2739                 return &bpf_get_route_realm_proto;
2740         case BPF_FUNC_get_hash_recalc:
2741                 return &bpf_get_hash_recalc_proto;
2742         case BPF_FUNC_perf_event_output:
2743                 return &bpf_skb_event_output_proto;
2744         case BPF_FUNC_get_smp_processor_id:
2745                 return &bpf_get_smp_processor_id_proto;
2746         case BPF_FUNC_skb_under_cgroup:
2747                 return &bpf_skb_under_cgroup_proto;
2748         default:
2749                 return bpf_base_func_proto(func_id);
2750         }
2751 }
2752
2753 static const struct bpf_func_proto *
2754 lwt_xmit_func_proto(enum bpf_func_id func_id)
2755 {
2756         switch (func_id) {
2757         case BPF_FUNC_skb_get_tunnel_key:
2758                 return &bpf_skb_get_tunnel_key_proto;
2759         case BPF_FUNC_skb_set_tunnel_key:
2760                 return bpf_get_skb_set_tunnel_proto(func_id);
2761         case BPF_FUNC_skb_get_tunnel_opt:
2762                 return &bpf_skb_get_tunnel_opt_proto;
2763         case BPF_FUNC_skb_set_tunnel_opt:
2764                 return bpf_get_skb_set_tunnel_proto(func_id);
2765         case BPF_FUNC_redirect:
2766                 return &bpf_redirect_proto;
2767         case BPF_FUNC_clone_redirect:
2768                 return &bpf_clone_redirect_proto;
2769         case BPF_FUNC_skb_change_tail:
2770                 return &bpf_skb_change_tail_proto;
2771         case BPF_FUNC_skb_change_head:
2772                 return &bpf_skb_change_head_proto;
2773         case BPF_FUNC_skb_store_bytes:
2774                 return &bpf_skb_store_bytes_proto;
2775         case BPF_FUNC_csum_update:
2776                 return &bpf_csum_update_proto;
2777         case BPF_FUNC_l3_csum_replace:
2778                 return &bpf_l3_csum_replace_proto;
2779         case BPF_FUNC_l4_csum_replace:
2780                 return &bpf_l4_csum_replace_proto;
2781         case BPF_FUNC_set_hash_invalid:
2782                 return &bpf_set_hash_invalid_proto;
2783         default:
2784                 return lwt_inout_func_proto(func_id);
2785         }
2786 }
2787
2788 static bool __is_valid_access(int off, int size)
2789 {
2790         if (off < 0 || off >= sizeof(struct __sk_buff))
2791                 return false;
2792
2793         /* The verifier guarantees that size > 0. */
2794         if (off % size != 0)
2795                 return false;
2796
2797         switch (off) {
2798         case offsetof(struct __sk_buff, cb[0]) ...
2799              offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
2800                 if (off + size >
2801                     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32))
2802                         return false;
2803                 break;
2804         default:
2805                 if (size != sizeof(__u32))
2806                         return false;
2807         }
2808
2809         return true;
2810 }
2811
2812 static bool sk_filter_is_valid_access(int off, int size,
2813                                       enum bpf_access_type type,
2814                                       enum bpf_reg_type *reg_type)
2815 {
2816         switch (off) {
2817         case offsetof(struct __sk_buff, tc_classid):
2818         case offsetof(struct __sk_buff, data):
2819         case offsetof(struct __sk_buff, data_end):
2820                 return false;
2821         }
2822
2823         if (type == BPF_WRITE) {
2824                 switch (off) {
2825                 case offsetof(struct __sk_buff, cb[0]) ...
2826                      offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
2827                         break;
2828                 default:
2829                         return false;
2830                 }
2831         }
2832
2833         return __is_valid_access(off, size);
2834 }
2835
2836 static bool lwt_is_valid_access(int off, int size,
2837                                 enum bpf_access_type type,
2838                                 enum bpf_reg_type *reg_type)
2839 {
2840         switch (off) {
2841         case offsetof(struct __sk_buff, tc_classid):
2842                 return false;
2843         }
2844
2845         if (type == BPF_WRITE) {
2846                 switch (off) {
2847                 case offsetof(struct __sk_buff, mark):
2848                 case offsetof(struct __sk_buff, priority):
2849                 case offsetof(struct __sk_buff, cb[0]) ...
2850                      offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
2851                         break;
2852                 default:
2853                         return false;
2854                 }
2855         }
2856
2857         switch (off) {
2858         case offsetof(struct __sk_buff, data):
2859                 *reg_type = PTR_TO_PACKET;
2860                 break;
2861         case offsetof(struct __sk_buff, data_end):
2862                 *reg_type = PTR_TO_PACKET_END;
2863                 break;
2864         }
2865
2866         return __is_valid_access(off, size);
2867 }
2868
2869 static bool sock_filter_is_valid_access(int off, int size,
2870                                         enum bpf_access_type type,
2871                                         enum bpf_reg_type *reg_type)
2872 {
2873         if (type == BPF_WRITE) {
2874                 switch (off) {
2875                 case offsetof(struct bpf_sock, bound_dev_if):
2876                         break;
2877                 default:
2878                         return false;
2879                 }
2880         }
2881
2882         if (off < 0 || off + size > sizeof(struct bpf_sock))
2883                 return false;
2884         /* The verifier guarantees that size > 0. */
2885         if (off % size != 0)
2886                 return false;
2887         if (size != sizeof(__u32))
2888                 return false;
2889
2890         return true;
2891 }
2892
2893 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
2894                                const struct bpf_prog *prog)
2895 {
2896         struct bpf_insn *insn = insn_buf;
2897
2898         if (!direct_write)
2899                 return 0;
2900
2901         /* if (!skb->cloned)
2902          *       goto start;
2903          *
2904          * (Fast-path, otherwise approximation that we might be
2905          *  a clone, do the rest in helper.)
2906          */
2907         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
2908         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
2909         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
2910
2911         /* ret = bpf_skb_pull_data(skb, 0); */
2912         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
2913         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
2914         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2915                                BPF_FUNC_skb_pull_data);
2916         /* if (!ret)
2917          *      goto restore;
2918          * return TC_ACT_SHOT;
2919          */
2920         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
2921         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, TC_ACT_SHOT);
2922         *insn++ = BPF_EXIT_INSN();
2923
2924         /* restore: */
2925         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
2926         /* start: */
2927         *insn++ = prog->insnsi[0];
2928
2929         return insn - insn_buf;
2930 }
2931
2932 static bool tc_cls_act_is_valid_access(int off, int size,
2933                                        enum bpf_access_type type,
2934                                        enum bpf_reg_type *reg_type)
2935 {
2936         if (type == BPF_WRITE) {
2937                 switch (off) {
2938                 case offsetof(struct __sk_buff, mark):
2939                 case offsetof(struct __sk_buff, tc_index):
2940                 case offsetof(struct __sk_buff, priority):
2941                 case offsetof(struct __sk_buff, cb[0]) ...
2942                      offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
2943                 case offsetof(struct __sk_buff, tc_classid):
2944                         break;
2945                 default:
2946                         return false;
2947                 }
2948         }
2949
2950         switch (off) {
2951         case offsetof(struct __sk_buff, data):
2952                 *reg_type = PTR_TO_PACKET;
2953                 break;
2954         case offsetof(struct __sk_buff, data_end):
2955                 *reg_type = PTR_TO_PACKET_END;
2956                 break;
2957         }
2958
2959         return __is_valid_access(off, size);
2960 }
2961
2962 static bool __is_valid_xdp_access(int off, int size)
2963 {
2964         if (off < 0 || off >= sizeof(struct xdp_md))
2965                 return false;
2966         if (off % size != 0)
2967                 return false;
2968         if (size != sizeof(__u32))
2969                 return false;
2970
2971         return true;
2972 }
2973
2974 static bool xdp_is_valid_access(int off, int size,
2975                                 enum bpf_access_type type,
2976                                 enum bpf_reg_type *reg_type)
2977 {
2978         if (type == BPF_WRITE)
2979                 return false;
2980
2981         switch (off) {
2982         case offsetof(struct xdp_md, data):
2983                 *reg_type = PTR_TO_PACKET;
2984                 break;
2985         case offsetof(struct xdp_md, data_end):
2986                 *reg_type = PTR_TO_PACKET_END;
2987                 break;
2988         }
2989
2990         return __is_valid_xdp_access(off, size);
2991 }
2992
2993 void bpf_warn_invalid_xdp_action(u32 act)
2994 {
2995         WARN_ONCE(1, "Illegal XDP return value %u, expect packet loss\n", act);
2996 }
2997 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
2998
2999 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
3000                                   const struct bpf_insn *si,
3001                                   struct bpf_insn *insn_buf,
3002                                   struct bpf_prog *prog)
3003 {
3004         struct bpf_insn *insn = insn_buf;
3005         int off;
3006
3007         switch (si->off) {
3008         case offsetof(struct __sk_buff, len):
3009                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
3010
3011                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3012                                       offsetof(struct sk_buff, len));
3013                 break;
3014
3015         case offsetof(struct __sk_buff, protocol):
3016                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
3017
3018                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3019                                       offsetof(struct sk_buff, protocol));
3020                 break;
3021
3022         case offsetof(struct __sk_buff, vlan_proto):
3023                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
3024
3025                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3026                                       offsetof(struct sk_buff, vlan_proto));
3027                 break;
3028
3029         case offsetof(struct __sk_buff, priority):
3030                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);
3031
3032                 if (type == BPF_WRITE)
3033                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3034                                               offsetof(struct sk_buff, priority));
3035                 else
3036                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3037                                               offsetof(struct sk_buff, priority));
3038                 break;
3039
3040         case offsetof(struct __sk_buff, ingress_ifindex):
3041                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);
3042
3043                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3044                                       offsetof(struct sk_buff, skb_iif));
3045                 break;
3046
3047         case offsetof(struct __sk_buff, ifindex):
3048                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
3049
3050                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3051                                       si->dst_reg, si->src_reg,
3052                                       offsetof(struct sk_buff, dev));
3053                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
3054                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3055                                       offsetof(struct net_device, ifindex));
3056                 break;
3057
3058         case offsetof(struct __sk_buff, hash):
3059                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
3060
3061                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3062                                       offsetof(struct sk_buff, hash));
3063                 break;
3064
3065         case offsetof(struct __sk_buff, mark):
3066                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
3067
3068                 if (type == BPF_WRITE)
3069                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3070                                               offsetof(struct sk_buff, mark));
3071                 else
3072                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3073                                               offsetof(struct sk_buff, mark));
3074                 break;
3075
3076         case offsetof(struct __sk_buff, pkt_type):
3077                 return convert_skb_access(SKF_AD_PKTTYPE, si->dst_reg,
3078                                           si->src_reg, insn);
3079
3080         case offsetof(struct __sk_buff, queue_mapping):
3081                 return convert_skb_access(SKF_AD_QUEUE, si->dst_reg,
3082                                           si->src_reg, insn);
3083
3084         case offsetof(struct __sk_buff, vlan_present):
3085                 return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
3086                                           si->dst_reg, si->src_reg, insn);
3087
3088         case offsetof(struct __sk_buff, vlan_tci):
3089                 return convert_skb_access(SKF_AD_VLAN_TAG,
3090                                           si->dst_reg, si->src_reg, insn);
3091
3092         case offsetof(struct __sk_buff, cb[0]) ...
3093              offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
3094                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
3095                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
3096                               offsetof(struct qdisc_skb_cb, data)) %
3097                              sizeof(__u64));
3098
3099                 prog->cb_access = 1;
3100                 off  = si->off;
3101                 off -= offsetof(struct __sk_buff, cb[0]);
3102                 off += offsetof(struct sk_buff, cb);
3103                 off += offsetof(struct qdisc_skb_cb, data);
3104                 if (type == BPF_WRITE)
3105                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
3106                                               si->src_reg, off);
3107                 else
3108                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
3109                                               si->src_reg, off);
3110                 break;
3111
3112         case offsetof(struct __sk_buff, tc_classid):
3113                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
3114
3115                 off  = si->off;
3116                 off -= offsetof(struct __sk_buff, tc_classid);
3117                 off += offsetof(struct sk_buff, cb);
3118                 off += offsetof(struct qdisc_skb_cb, tc_classid);
3119                 if (type == BPF_WRITE)
3120                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
3121                                               si->src_reg, off);
3122                 else
3123                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
3124                                               si->src_reg, off);
3125                 break;
3126
3127         case offsetof(struct __sk_buff, data):
3128                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
3129                                       si->dst_reg, si->src_reg,
3130                                       offsetof(struct sk_buff, data));
3131                 break;
3132
3133         case offsetof(struct __sk_buff, data_end):
3134                 off  = si->off;
3135                 off -= offsetof(struct __sk_buff, data_end);
3136                 off += offsetof(struct sk_buff, cb);
3137                 off += offsetof(struct bpf_skb_data_end, data_end);
3138                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
3139                                       si->src_reg, off);
3140                 break;
3141
3142         case offsetof(struct __sk_buff, tc_index):
3143 #ifdef CONFIG_NET_SCHED
3144                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);
3145
3146                 if (type == BPF_WRITE)
3147                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
3148                                               offsetof(struct sk_buff, tc_index));
3149                 else
3150                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3151                                               offsetof(struct sk_buff, tc_index));
3152 #else
3153                 if (type == BPF_WRITE)
3154                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
3155                 else
3156                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3157 #endif
3158                 break;
3159         }
3160
3161         return insn - insn_buf;
3162 }
3163
3164 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
3165                                           const struct bpf_insn *si,
3166                                           struct bpf_insn *insn_buf,
3167                                           struct bpf_prog *prog)
3168 {
3169         struct bpf_insn *insn = insn_buf;
3170
3171         switch (si->off) {
3172         case offsetof(struct bpf_sock, bound_dev_if):
3173                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
3174
3175                 if (type == BPF_WRITE)
3176                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3177                                         offsetof(struct sock, sk_bound_dev_if));
3178                 else
3179                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3180                                       offsetof(struct sock, sk_bound_dev_if));
3181                 break;
3182
3183         case offsetof(struct bpf_sock, family):
3184                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
3185
3186                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3187                                       offsetof(struct sock, sk_family));
3188                 break;
3189
3190         case offsetof(struct bpf_sock, type):
3191                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3192                                       offsetof(struct sock, __sk_flags_offset));
3193                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
3194                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
3195                 break;
3196
3197         case offsetof(struct bpf_sock, protocol):
3198                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3199                                       offsetof(struct sock, __sk_flags_offset));
3200                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
3201                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
3202                 break;
3203         }
3204
3205         return insn - insn_buf;
3206 }
3207
3208 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
3209                                          const struct bpf_insn *si,
3210                                          struct bpf_insn *insn_buf,
3211                                          struct bpf_prog *prog)
3212 {
3213         struct bpf_insn *insn = insn_buf;
3214
3215         switch (si->off) {
3216         case offsetof(struct __sk_buff, ifindex):
3217                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
3218
3219                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3220                                       si->dst_reg, si->src_reg,
3221                                       offsetof(struct sk_buff, dev));
3222                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3223                                       offsetof(struct net_device, ifindex));
3224                 break;
3225         default:
3226                 return bpf_convert_ctx_access(type, si, insn_buf, prog);
3227         }
3228
3229         return insn - insn_buf;
3230 }
3231
3232 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
3233                                   const struct bpf_insn *si,
3234                                   struct bpf_insn *insn_buf,
3235                                   struct bpf_prog *prog)
3236 {
3237         struct bpf_insn *insn = insn_buf;
3238
3239         switch (si->off) {
3240         case offsetof(struct xdp_md, data):
3241                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
3242                                       si->dst_reg, si->src_reg,
3243                                       offsetof(struct xdp_buff, data));
3244                 break;
3245         case offsetof(struct xdp_md, data_end):
3246                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
3247                                       si->dst_reg, si->src_reg,
3248                                       offsetof(struct xdp_buff, data_end));
3249                 break;
3250         }
3251
3252         return insn - insn_buf;
3253 }
3254
3255 static const struct bpf_verifier_ops sk_filter_ops = {
3256         .get_func_proto         = sk_filter_func_proto,
3257         .is_valid_access        = sk_filter_is_valid_access,
3258         .convert_ctx_access     = bpf_convert_ctx_access,
3259 };
3260
3261 static const struct bpf_verifier_ops tc_cls_act_ops = {
3262         .get_func_proto         = tc_cls_act_func_proto,
3263         .is_valid_access        = tc_cls_act_is_valid_access,
3264         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
3265         .gen_prologue           = tc_cls_act_prologue,
3266 };
3267
3268 static const struct bpf_verifier_ops xdp_ops = {
3269         .get_func_proto         = xdp_func_proto,
3270         .is_valid_access        = xdp_is_valid_access,
3271         .convert_ctx_access     = xdp_convert_ctx_access,
3272 };
3273
3274 static const struct bpf_verifier_ops cg_skb_ops = {
3275         .get_func_proto         = cg_skb_func_proto,
3276         .is_valid_access        = sk_filter_is_valid_access,
3277         .convert_ctx_access     = bpf_convert_ctx_access,
3278 };
3279
3280 static const struct bpf_verifier_ops lwt_inout_ops = {
3281         .get_func_proto         = lwt_inout_func_proto,
3282         .is_valid_access        = lwt_is_valid_access,
3283         .convert_ctx_access     = bpf_convert_ctx_access,
3284 };
3285
3286 static const struct bpf_verifier_ops lwt_xmit_ops = {
3287         .get_func_proto         = lwt_xmit_func_proto,
3288         .is_valid_access        = lwt_is_valid_access,
3289         .convert_ctx_access     = bpf_convert_ctx_access,
3290         .gen_prologue           = tc_cls_act_prologue,
3291 };
3292
3293 static const struct bpf_verifier_ops cg_sock_ops = {
3294         .get_func_proto         = bpf_base_func_proto,
3295         .is_valid_access        = sock_filter_is_valid_access,
3296         .convert_ctx_access     = sock_filter_convert_ctx_access,
3297 };
3298
3299 static struct bpf_prog_type_list sk_filter_type __ro_after_init = {
3300         .ops    = &sk_filter_ops,
3301         .type   = BPF_PROG_TYPE_SOCKET_FILTER,
3302 };
3303
3304 static struct bpf_prog_type_list sched_cls_type __ro_after_init = {
3305         .ops    = &tc_cls_act_ops,
3306         .type   = BPF_PROG_TYPE_SCHED_CLS,
3307 };
3308
3309 static struct bpf_prog_type_list sched_act_type __ro_after_init = {
3310         .ops    = &tc_cls_act_ops,
3311         .type   = BPF_PROG_TYPE_SCHED_ACT,
3312 };
3313
3314 static struct bpf_prog_type_list xdp_type __ro_after_init = {
3315         .ops    = &xdp_ops,
3316         .type   = BPF_PROG_TYPE_XDP,
3317 };
3318
3319 static struct bpf_prog_type_list cg_skb_type __ro_after_init = {
3320         .ops    = &cg_skb_ops,
3321         .type   = BPF_PROG_TYPE_CGROUP_SKB,
3322 };
3323
3324 static struct bpf_prog_type_list lwt_in_type __ro_after_init = {
3325         .ops    = &lwt_inout_ops,
3326         .type   = BPF_PROG_TYPE_LWT_IN,
3327 };
3328
3329 static struct bpf_prog_type_list lwt_out_type __ro_after_init = {
3330         .ops    = &lwt_inout_ops,
3331         .type   = BPF_PROG_TYPE_LWT_OUT,
3332 };
3333
3334 static struct bpf_prog_type_list lwt_xmit_type __ro_after_init = {
3335         .ops    = &lwt_xmit_ops,
3336         .type   = BPF_PROG_TYPE_LWT_XMIT,
3337 };
3338
3339 static struct bpf_prog_type_list cg_sock_type __ro_after_init = {
3340         .ops    = &cg_sock_ops,
3341         .type   = BPF_PROG_TYPE_CGROUP_SOCK
3342 };
3343
3344 static int __init register_sk_filter_ops(void)
3345 {
3346         bpf_register_prog_type(&sk_filter_type);
3347         bpf_register_prog_type(&sched_cls_type);
3348         bpf_register_prog_type(&sched_act_type);
3349         bpf_register_prog_type(&xdp_type);
3350         bpf_register_prog_type(&cg_skb_type);
3351         bpf_register_prog_type(&cg_sock_type);
3352         bpf_register_prog_type(&lwt_in_type);
3353         bpf_register_prog_type(&lwt_out_type);
3354         bpf_register_prog_type(&lwt_xmit_type);
3355
3356         return 0;
3357 }
3358 late_initcall(register_sk_filter_ops);
3359
3360 int sk_detach_filter(struct sock *sk)
3361 {
3362         int ret = -ENOENT;
3363         struct sk_filter *filter;
3364
3365         if (sock_flag(sk, SOCK_FILTER_LOCKED))
3366                 return -EPERM;
3367
3368         filter = rcu_dereference_protected(sk->sk_filter,
3369                                            lockdep_sock_is_held(sk));
3370         if (filter) {
3371                 RCU_INIT_POINTER(sk->sk_filter, NULL);
3372                 sk_filter_uncharge(sk, filter);
3373                 ret = 0;
3374         }
3375
3376         return ret;
3377 }
3378 EXPORT_SYMBOL_GPL(sk_detach_filter);
3379
3380 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
3381                   unsigned int len)
3382 {
3383         struct sock_fprog_kern *fprog;
3384         struct sk_filter *filter;
3385         int ret = 0;
3386
3387         lock_sock(sk);
3388         filter = rcu_dereference_protected(sk->sk_filter,
3389                                            lockdep_sock_is_held(sk));
3390         if (!filter)
3391                 goto out;
3392
3393         /* We're copying the filter that has been originally attached,
3394          * so no conversion/decode needed anymore. eBPF programs that
3395          * have no original program cannot be dumped through this.
3396          */
3397         ret = -EACCES;
3398         fprog = filter->prog->orig_prog;
3399         if (!fprog)
3400                 goto out;
3401
3402         ret = fprog->len;
3403         if (!len)
3404                 /* User space only enquires number of filter blocks. */
3405                 goto out;
3406
3407         ret = -EINVAL;
3408         if (len < fprog->len)
3409                 goto out;
3410
3411         ret = -EFAULT;
3412         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
3413                 goto out;
3414
3415         /* Instead of bytes, the API requests to return the number
3416          * of filter blocks.
3417          */
3418         ret = fprog->len;
3419 out:
3420         release_sock(sk);
3421         return ret;
3422 }