]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/core/flow_dissector.c
flow_dissector: Add control/reporting of encapsulation
[karo-tx-linux.git] / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <linux/igmp.h>
10 #include <linux/icmp.h>
11 #include <linux/sctp.h>
12 #include <linux/dccp.h>
13 #include <linux/if_tunnel.h>
14 #include <linux/if_pppox.h>
15 #include <linux/ppp_defs.h>
16 #include <linux/stddef.h>
17 #include <linux/if_ether.h>
18 #include <linux/mpls.h>
19 #include <net/flow_dissector.h>
20 #include <scsi/fc/fc_fcoe.h>
21
22 static bool skb_flow_dissector_uses_key(struct flow_dissector *flow_dissector,
23                                         enum flow_dissector_key_id key_id)
24 {
25         return flow_dissector->used_keys & (1 << key_id);
26 }
27
28 static void skb_flow_dissector_set_key(struct flow_dissector *flow_dissector,
29                                        enum flow_dissector_key_id key_id)
30 {
31         flow_dissector->used_keys |= (1 << key_id);
32 }
33
34 static void *skb_flow_dissector_target(struct flow_dissector *flow_dissector,
35                                        enum flow_dissector_key_id key_id,
36                                        void *target_container)
37 {
38         return ((char *) target_container) + flow_dissector->offset[key_id];
39 }
40
41 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
42                              const struct flow_dissector_key *key,
43                              unsigned int key_count)
44 {
45         unsigned int i;
46
47         memset(flow_dissector, 0, sizeof(*flow_dissector));
48
49         for (i = 0; i < key_count; i++, key++) {
50                 /* User should make sure that every key target offset is withing
51                  * boundaries of unsigned short.
52                  */
53                 BUG_ON(key->offset > USHRT_MAX);
54                 BUG_ON(skb_flow_dissector_uses_key(flow_dissector,
55                                                    key->key_id));
56
57                 skb_flow_dissector_set_key(flow_dissector, key->key_id);
58                 flow_dissector->offset[key->key_id] = key->offset;
59         }
60
61         /* Ensure that the dissector always includes control and basic key.
62          * That way we are able to avoid handling lack of these in fast path.
63          */
64         BUG_ON(!skb_flow_dissector_uses_key(flow_dissector,
65                                             FLOW_DISSECTOR_KEY_CONTROL));
66         BUG_ON(!skb_flow_dissector_uses_key(flow_dissector,
67                                             FLOW_DISSECTOR_KEY_BASIC));
68 }
69 EXPORT_SYMBOL(skb_flow_dissector_init);
70
71 /**
72  * __skb_flow_get_ports - extract the upper layer ports and return them
73  * @skb: sk_buff to extract the ports from
74  * @thoff: transport header offset
75  * @ip_proto: protocol for which to get port offset
76  * @data: raw buffer pointer to the packet, if NULL use skb->data
77  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
78  *
79  * The function will try to retrieve the ports at offset thoff + poff where poff
80  * is the protocol port offset returned from proto_ports_offset
81  */
82 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
83                             void *data, int hlen)
84 {
85         int poff = proto_ports_offset(ip_proto);
86
87         if (!data) {
88                 data = skb->data;
89                 hlen = skb_headlen(skb);
90         }
91
92         if (poff >= 0) {
93                 __be32 *ports, _ports;
94
95                 ports = __skb_header_pointer(skb, thoff + poff,
96                                              sizeof(_ports), data, hlen, &_ports);
97                 if (ports)
98                         return *ports;
99         }
100
101         return 0;
102 }
103 EXPORT_SYMBOL(__skb_flow_get_ports);
104
105 /**
106  * __skb_flow_dissect - extract the flow_keys struct and return it
107  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
108  * @flow_dissector: list of keys to dissect
109  * @target_container: target structure to put dissected values into
110  * @data: raw buffer pointer to the packet, if NULL use skb->data
111  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
112  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
113  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
114  *
115  * The function will try to retrieve individual keys into target specified
116  * by flow_dissector from either the skbuff or a raw buffer specified by the
117  * rest parameters.
118  *
119  * Caller must take care of zeroing target container memory.
120  */
121 bool __skb_flow_dissect(const struct sk_buff *skb,
122                         struct flow_dissector *flow_dissector,
123                         void *target_container,
124                         void *data, __be16 proto, int nhoff, int hlen,
125                         unsigned int flags)
126 {
127         struct flow_dissector_key_control *key_control;
128         struct flow_dissector_key_basic *key_basic;
129         struct flow_dissector_key_addrs *key_addrs;
130         struct flow_dissector_key_ports *key_ports;
131         struct flow_dissector_key_tags *key_tags;
132         struct flow_dissector_key_keyid *key_keyid;
133         u8 ip_proto = 0;
134         bool ret = false;
135
136         if (!data) {
137                 data = skb->data;
138                 proto = skb->protocol;
139                 nhoff = skb_network_offset(skb);
140                 hlen = skb_headlen(skb);
141         }
142
143         /* It is ensured by skb_flow_dissector_init() that control key will
144          * be always present.
145          */
146         key_control = skb_flow_dissector_target(flow_dissector,
147                                                 FLOW_DISSECTOR_KEY_CONTROL,
148                                                 target_container);
149
150         /* It is ensured by skb_flow_dissector_init() that basic key will
151          * be always present.
152          */
153         key_basic = skb_flow_dissector_target(flow_dissector,
154                                               FLOW_DISSECTOR_KEY_BASIC,
155                                               target_container);
156
157         if (skb_flow_dissector_uses_key(flow_dissector,
158                                         FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
159                 struct ethhdr *eth = eth_hdr(skb);
160                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
161
162                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
163                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
164                                                           target_container);
165                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
166         }
167
168 again:
169         switch (proto) {
170         case htons(ETH_P_IP): {
171                 const struct iphdr *iph;
172                 struct iphdr _iph;
173 ip:
174                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
175                 if (!iph || iph->ihl < 5)
176                         goto out_bad;
177                 nhoff += iph->ihl * 4;
178
179                 ip_proto = iph->protocol;
180
181                 if (!skb_flow_dissector_uses_key(flow_dissector,
182                                                  FLOW_DISSECTOR_KEY_IPV4_ADDRS))
183                         break;
184
185                 key_addrs = skb_flow_dissector_target(flow_dissector,
186                               FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container);
187                 memcpy(&key_addrs->v4addrs, &iph->saddr,
188                        sizeof(key_addrs->v4addrs));
189                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
190
191                 if (ip_is_fragment(iph)) {
192                         key_control->is_fragment = 1;
193
194                         if (iph->frag_off & htons(IP_OFFSET)) {
195                                 goto out_good;
196                         } else {
197                                 key_control->first_frag = 1;
198                                 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
199                                         goto out_good;
200                         }
201                 }
202
203                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
204                         goto out_good;
205
206                 break;
207         }
208         case htons(ETH_P_IPV6): {
209                 const struct ipv6hdr *iph;
210                 struct ipv6hdr _iph;
211                 __be32 flow_label;
212
213 ipv6:
214                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
215                 if (!iph)
216                         goto out_bad;
217
218                 ip_proto = iph->nexthdr;
219                 nhoff += sizeof(struct ipv6hdr);
220
221                 if (skb_flow_dissector_uses_key(flow_dissector,
222                                                 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
223                         struct flow_dissector_key_ipv6_addrs *key_ipv6_addrs;
224
225                         key_ipv6_addrs = skb_flow_dissector_target(flow_dissector,
226                                                                    FLOW_DISSECTOR_KEY_IPV6_ADDRS,
227                                                                    target_container);
228
229                         memcpy(key_ipv6_addrs, &iph->saddr, sizeof(*key_ipv6_addrs));
230                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
231                 }
232
233                 flow_label = ip6_flowlabel(iph);
234                 if (flow_label) {
235                         if (skb_flow_dissector_uses_key(flow_dissector,
236                                 FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
237                                 key_tags = skb_flow_dissector_target(flow_dissector,
238                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
239                                                                      target_container);
240                                 key_tags->flow_label = ntohl(flow_label);
241                         }
242                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
243                                 goto out_good;
244                 }
245
246                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
247                         goto out_good;
248
249                 break;
250         }
251         case htons(ETH_P_8021AD):
252         case htons(ETH_P_8021Q): {
253                 const struct vlan_hdr *vlan;
254                 struct vlan_hdr _vlan;
255
256                 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
257                 if (!vlan)
258                         goto out_bad;
259
260                 if (skb_flow_dissector_uses_key(flow_dissector,
261                                                 FLOW_DISSECTOR_KEY_VLANID)) {
262                         key_tags = skb_flow_dissector_target(flow_dissector,
263                                                              FLOW_DISSECTOR_KEY_VLANID,
264                                                              target_container);
265
266                         key_tags->vlan_id = skb_vlan_tag_get_id(skb);
267                 }
268
269                 proto = vlan->h_vlan_encapsulated_proto;
270                 nhoff += sizeof(*vlan);
271                 goto again;
272         }
273         case htons(ETH_P_PPP_SES): {
274                 struct {
275                         struct pppoe_hdr hdr;
276                         __be16 proto;
277                 } *hdr, _hdr;
278                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
279                 if (!hdr)
280                         goto out_bad;
281                 proto = hdr->proto;
282                 nhoff += PPPOE_SES_HLEN;
283                 switch (proto) {
284                 case htons(PPP_IP):
285                         goto ip;
286                 case htons(PPP_IPV6):
287                         goto ipv6;
288                 default:
289                         goto out_bad;
290                 }
291         }
292         case htons(ETH_P_TIPC): {
293                 struct {
294                         __be32 pre[3];
295                         __be32 srcnode;
296                 } *hdr, _hdr;
297                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
298                 if (!hdr)
299                         goto out_bad;
300
301                 if (skb_flow_dissector_uses_key(flow_dissector,
302                                                 FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
303                         key_addrs = skb_flow_dissector_target(flow_dissector,
304                                                               FLOW_DISSECTOR_KEY_TIPC_ADDRS,
305                                                               target_container);
306                         key_addrs->tipcaddrs.srcnode = hdr->srcnode;
307                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
308                 }
309                 goto out_good;
310         }
311
312         case htons(ETH_P_MPLS_UC):
313         case htons(ETH_P_MPLS_MC): {
314                 struct mpls_label *hdr, _hdr[2];
315 mpls:
316                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
317                                            hlen, &_hdr);
318                 if (!hdr)
319                         goto out_bad;
320
321                 if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
322                      MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
323                         if (skb_flow_dissector_uses_key(flow_dissector,
324                                                         FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
325                                 key_keyid = skb_flow_dissector_target(flow_dissector,
326                                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
327                                                                       target_container);
328                                 key_keyid->keyid = hdr[1].entry &
329                                         htonl(MPLS_LS_LABEL_MASK);
330                         }
331
332                         goto out_good;
333                 }
334
335                 goto out_good;
336         }
337
338         case htons(ETH_P_FCOE):
339                 key_control->thoff = (u16)(nhoff + FCOE_HEADER_LEN);
340                 /* fall through */
341         default:
342                 goto out_bad;
343         }
344
345 ip_proto_again:
346         switch (ip_proto) {
347         case IPPROTO_GRE: {
348                 struct gre_hdr {
349                         __be16 flags;
350                         __be16 proto;
351                 } *hdr, _hdr;
352
353                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
354                 if (!hdr)
355                         goto out_bad;
356                 /*
357                  * Only look inside GRE if version zero and no
358                  * routing
359                  */
360                 if (hdr->flags & (GRE_VERSION | GRE_ROUTING))
361                         break;
362
363                 proto = hdr->proto;
364                 nhoff += 4;
365                 if (hdr->flags & GRE_CSUM)
366                         nhoff += 4;
367                 if (hdr->flags & GRE_KEY) {
368                         const __be32 *keyid;
369                         __be32 _keyid;
370
371                         keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid),
372                                                      data, hlen, &_keyid);
373
374                         if (!keyid)
375                                 goto out_bad;
376
377                         if (skb_flow_dissector_uses_key(flow_dissector,
378                                                         FLOW_DISSECTOR_KEY_GRE_KEYID)) {
379                                 key_keyid = skb_flow_dissector_target(flow_dissector,
380                                                                       FLOW_DISSECTOR_KEY_GRE_KEYID,
381                                                                       target_container);
382                                 key_keyid->keyid = *keyid;
383                         }
384                         nhoff += 4;
385                 }
386                 if (hdr->flags & GRE_SEQ)
387                         nhoff += 4;
388                 if (proto == htons(ETH_P_TEB)) {
389                         const struct ethhdr *eth;
390                         struct ethhdr _eth;
391
392                         eth = __skb_header_pointer(skb, nhoff,
393                                                    sizeof(_eth),
394                                                    data, hlen, &_eth);
395                         if (!eth)
396                                 goto out_bad;
397                         proto = eth->h_proto;
398                         nhoff += sizeof(*eth);
399                 }
400
401                 key_control->encapsulation = 1;
402                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
403                         goto out_good;
404
405                 goto again;
406         }
407         case NEXTHDR_HOP:
408         case NEXTHDR_ROUTING:
409         case NEXTHDR_DEST: {
410                 u8 _opthdr[2], *opthdr;
411
412                 if (proto != htons(ETH_P_IPV6))
413                         break;
414
415                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
416                                               data, hlen, &_opthdr);
417                 if (!opthdr)
418                         goto out_bad;
419
420                 ip_proto = opthdr[0];
421                 nhoff += (opthdr[1] + 1) << 3;
422
423                 goto ip_proto_again;
424         }
425         case NEXTHDR_FRAGMENT: {
426                 struct frag_hdr _fh, *fh;
427
428                 if (proto != htons(ETH_P_IPV6))
429                         break;
430
431                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
432                                           data, hlen, &_fh);
433
434                 if (!fh)
435                         goto out_bad;
436
437                 key_control->is_fragment = 1;
438
439                 nhoff += sizeof(_fh);
440
441                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
442                         key_control->first_frag = 1;
443                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
444                                 ip_proto = fh->nexthdr;
445                                 goto ip_proto_again;
446                         }
447                 }
448                 goto out_good;
449         }
450         case IPPROTO_IPIP:
451                 proto = htons(ETH_P_IP);
452
453                 key_control->encapsulation = 1;
454                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
455                         goto out_good;
456
457                 goto ip;
458         case IPPROTO_IPV6:
459                 proto = htons(ETH_P_IPV6);
460
461                 key_control->encapsulation = 1;
462                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
463                         goto out_good;
464
465                 goto ipv6;
466         case IPPROTO_MPLS:
467                 proto = htons(ETH_P_MPLS_UC);
468                 goto mpls;
469         default:
470                 break;
471         }
472
473         if (skb_flow_dissector_uses_key(flow_dissector,
474                                         FLOW_DISSECTOR_KEY_PORTS)) {
475                 key_ports = skb_flow_dissector_target(flow_dissector,
476                                                       FLOW_DISSECTOR_KEY_PORTS,
477                                                       target_container);
478                 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
479                                                         data, hlen);
480         }
481
482 out_good:
483         ret = true;
484
485 out_bad:
486         key_basic->n_proto = proto;
487         key_basic->ip_proto = ip_proto;
488         key_control->thoff = (u16)nhoff;
489
490         return ret;
491 }
492 EXPORT_SYMBOL(__skb_flow_dissect);
493
494 static u32 hashrnd __read_mostly;
495 static __always_inline void __flow_hash_secret_init(void)
496 {
497         net_get_random_once(&hashrnd, sizeof(hashrnd));
498 }
499
500 static __always_inline u32 __flow_hash_words(u32 *words, u32 length, u32 keyval)
501 {
502         return jhash2(words, length, keyval);
503 }
504
505 static inline void *flow_keys_hash_start(struct flow_keys *flow)
506 {
507         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
508         return (void *)flow + FLOW_KEYS_HASH_OFFSET;
509 }
510
511 static inline size_t flow_keys_hash_length(struct flow_keys *flow)
512 {
513         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
514         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
515         BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
516                      sizeof(*flow) - sizeof(flow->addrs));
517
518         switch (flow->control.addr_type) {
519         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
520                 diff -= sizeof(flow->addrs.v4addrs);
521                 break;
522         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
523                 diff -= sizeof(flow->addrs.v6addrs);
524                 break;
525         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
526                 diff -= sizeof(flow->addrs.tipcaddrs);
527                 break;
528         }
529         return (sizeof(*flow) - diff) / sizeof(u32);
530 }
531
532 __be32 flow_get_u32_src(const struct flow_keys *flow)
533 {
534         switch (flow->control.addr_type) {
535         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
536                 return flow->addrs.v4addrs.src;
537         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
538                 return (__force __be32)ipv6_addr_hash(
539                         &flow->addrs.v6addrs.src);
540         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
541                 return flow->addrs.tipcaddrs.srcnode;
542         default:
543                 return 0;
544         }
545 }
546 EXPORT_SYMBOL(flow_get_u32_src);
547
548 __be32 flow_get_u32_dst(const struct flow_keys *flow)
549 {
550         switch (flow->control.addr_type) {
551         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
552                 return flow->addrs.v4addrs.dst;
553         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
554                 return (__force __be32)ipv6_addr_hash(
555                         &flow->addrs.v6addrs.dst);
556         default:
557                 return 0;
558         }
559 }
560 EXPORT_SYMBOL(flow_get_u32_dst);
561
562 static inline void __flow_hash_consistentify(struct flow_keys *keys)
563 {
564         int addr_diff, i;
565
566         switch (keys->control.addr_type) {
567         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
568                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
569                             (__force u32)keys->addrs.v4addrs.src;
570                 if ((addr_diff < 0) ||
571                     (addr_diff == 0 &&
572                      ((__force u16)keys->ports.dst <
573                       (__force u16)keys->ports.src))) {
574                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
575                         swap(keys->ports.src, keys->ports.dst);
576                 }
577                 break;
578         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
579                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
580                                    &keys->addrs.v6addrs.src,
581                                    sizeof(keys->addrs.v6addrs.dst));
582                 if ((addr_diff < 0) ||
583                     (addr_diff == 0 &&
584                      ((__force u16)keys->ports.dst <
585                       (__force u16)keys->ports.src))) {
586                         for (i = 0; i < 4; i++)
587                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
588                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
589                         swap(keys->ports.src, keys->ports.dst);
590                 }
591                 break;
592         }
593 }
594
595 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
596 {
597         u32 hash;
598
599         __flow_hash_consistentify(keys);
600
601         hash = __flow_hash_words((u32 *)flow_keys_hash_start(keys),
602                                  flow_keys_hash_length(keys), keyval);
603         if (!hash)
604                 hash = 1;
605
606         return hash;
607 }
608
609 u32 flow_hash_from_keys(struct flow_keys *keys)
610 {
611         __flow_hash_secret_init();
612         return __flow_hash_from_keys(keys, hashrnd);
613 }
614 EXPORT_SYMBOL(flow_hash_from_keys);
615
616 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
617                                   struct flow_keys *keys, u32 keyval)
618 {
619         if (!skb_flow_dissect_flow_keys(skb, keys,
620                                         FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL))
621                 return 0;
622
623         return __flow_hash_from_keys(keys, keyval);
624 }
625
626 struct _flow_keys_digest_data {
627         __be16  n_proto;
628         u8      ip_proto;
629         u8      padding;
630         __be32  ports;
631         __be32  src;
632         __be32  dst;
633 };
634
635 void make_flow_keys_digest(struct flow_keys_digest *digest,
636                            const struct flow_keys *flow)
637 {
638         struct _flow_keys_digest_data *data =
639             (struct _flow_keys_digest_data *)digest;
640
641         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
642
643         memset(digest, 0, sizeof(*digest));
644
645         data->n_proto = flow->basic.n_proto;
646         data->ip_proto = flow->basic.ip_proto;
647         data->ports = flow->ports.ports;
648         data->src = flow->addrs.v4addrs.src;
649         data->dst = flow->addrs.v4addrs.dst;
650 }
651 EXPORT_SYMBOL(make_flow_keys_digest);
652
653 /**
654  * __skb_get_hash: calculate a flow hash
655  * @skb: sk_buff to calculate flow hash from
656  *
657  * This function calculates a flow hash based on src/dst addresses
658  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
659  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
660  * if hash is a canonical 4-tuple hash over transport ports.
661  */
662 void __skb_get_hash(struct sk_buff *skb)
663 {
664         struct flow_keys keys;
665         u32 hash;
666
667         __flow_hash_secret_init();
668
669         hash = ___skb_get_hash(skb, &keys, hashrnd);
670         if (!hash)
671                 return;
672
673         __skb_set_sw_hash(skb, hash,
674                           flow_keys_have_l4(&keys));
675 }
676 EXPORT_SYMBOL(__skb_get_hash);
677
678 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
679 {
680         struct flow_keys keys;
681
682         return ___skb_get_hash(skb, &keys, perturb);
683 }
684 EXPORT_SYMBOL(skb_get_hash_perturb);
685
686 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, struct flowi6 *fl6)
687 {
688         struct flow_keys keys;
689
690         memset(&keys, 0, sizeof(keys));
691
692         memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
693                sizeof(keys.addrs.v6addrs.src));
694         memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
695                sizeof(keys.addrs.v6addrs.dst));
696         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
697         keys.ports.src = fl6->fl6_sport;
698         keys.ports.dst = fl6->fl6_dport;
699         keys.keyid.keyid = fl6->fl6_gre_key;
700         keys.tags.flow_label = (__force u32)fl6->flowlabel;
701         keys.basic.ip_proto = fl6->flowi6_proto;
702
703         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
704                           flow_keys_have_l4(&keys));
705
706         return skb->hash;
707 }
708 EXPORT_SYMBOL(__skb_get_hash_flowi6);
709
710 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, struct flowi4 *fl4)
711 {
712         struct flow_keys keys;
713
714         memset(&keys, 0, sizeof(keys));
715
716         keys.addrs.v4addrs.src = fl4->saddr;
717         keys.addrs.v4addrs.dst = fl4->daddr;
718         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
719         keys.ports.src = fl4->fl4_sport;
720         keys.ports.dst = fl4->fl4_dport;
721         keys.keyid.keyid = fl4->fl4_gre_key;
722         keys.basic.ip_proto = fl4->flowi4_proto;
723
724         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
725                           flow_keys_have_l4(&keys));
726
727         return skb->hash;
728 }
729 EXPORT_SYMBOL(__skb_get_hash_flowi4);
730
731 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
732                    const struct flow_keys *keys, int hlen)
733 {
734         u32 poff = keys->control.thoff;
735
736         switch (keys->basic.ip_proto) {
737         case IPPROTO_TCP: {
738                 /* access doff as u8 to avoid unaligned access */
739                 const u8 *doff;
740                 u8 _doff;
741
742                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
743                                             data, hlen, &_doff);
744                 if (!doff)
745                         return poff;
746
747                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
748                 break;
749         }
750         case IPPROTO_UDP:
751         case IPPROTO_UDPLITE:
752                 poff += sizeof(struct udphdr);
753                 break;
754         /* For the rest, we do not really care about header
755          * extensions at this point for now.
756          */
757         case IPPROTO_ICMP:
758                 poff += sizeof(struct icmphdr);
759                 break;
760         case IPPROTO_ICMPV6:
761                 poff += sizeof(struct icmp6hdr);
762                 break;
763         case IPPROTO_IGMP:
764                 poff += sizeof(struct igmphdr);
765                 break;
766         case IPPROTO_DCCP:
767                 poff += sizeof(struct dccp_hdr);
768                 break;
769         case IPPROTO_SCTP:
770                 poff += sizeof(struct sctphdr);
771                 break;
772         }
773
774         return poff;
775 }
776
777 /**
778  * skb_get_poff - get the offset to the payload
779  * @skb: sk_buff to get the payload offset from
780  *
781  * The function will get the offset to the payload as far as it could
782  * be dissected.  The main user is currently BPF, so that we can dynamically
783  * truncate packets without needing to push actual payload to the user
784  * space and can analyze headers only, instead.
785  */
786 u32 skb_get_poff(const struct sk_buff *skb)
787 {
788         struct flow_keys keys;
789
790         if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
791                 return 0;
792
793         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
794 }
795
796 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
797         {
798                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
799                 .offset = offsetof(struct flow_keys, control),
800         },
801         {
802                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
803                 .offset = offsetof(struct flow_keys, basic),
804         },
805         {
806                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
807                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
808         },
809         {
810                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
811                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
812         },
813         {
814                 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
815                 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
816         },
817         {
818                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
819                 .offset = offsetof(struct flow_keys, ports),
820         },
821         {
822                 .key_id = FLOW_DISSECTOR_KEY_VLANID,
823                 .offset = offsetof(struct flow_keys, tags),
824         },
825         {
826                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
827                 .offset = offsetof(struct flow_keys, tags),
828         },
829         {
830                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
831                 .offset = offsetof(struct flow_keys, keyid),
832         },
833 };
834
835 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
836         {
837                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
838                 .offset = offsetof(struct flow_keys, control),
839         },
840         {
841                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
842                 .offset = offsetof(struct flow_keys, basic),
843         },
844 };
845
846 struct flow_dissector flow_keys_dissector __read_mostly;
847 EXPORT_SYMBOL(flow_keys_dissector);
848
849 struct flow_dissector flow_keys_buf_dissector __read_mostly;
850
851 static int __init init_default_flow_dissectors(void)
852 {
853         skb_flow_dissector_init(&flow_keys_dissector,
854                                 flow_keys_dissector_keys,
855                                 ARRAY_SIZE(flow_keys_dissector_keys));
856         skb_flow_dissector_init(&flow_keys_buf_dissector,
857                                 flow_keys_buf_dissector_keys,
858                                 ARRAY_SIZE(flow_keys_buf_dissector_keys));
859         return 0;
860 }
861
862 late_initcall_sync(init_default_flow_dissectors);